Wetmore, Stacey
Permanent URI for this collection
Browse
Browsing Wetmore, Stacey by Author "Hazendonk, Paul"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemChalcogen versus dative bonding in [SF3] + Lewis acid−base adducts: [SF3(NCCH3)2] +, [SF3(NC5H5)2] +, and [SF3(phen)]+ (phen = 1,10-phenanthroline)(American Chemical Society, 2021) Turnbull, Douglas; Chaudhary, Praveen; Hazendonk, Paul; Wetmore, Stacey D.; Gerken, MichaelThe Lewis-acid behavior of [SF3][MF6] (M = Sb, As) salts toward mono- and bidentate nitrogen bases was explored. Reactions of [SF3][MF6] with excesses of CH3CN and C5H5N yielded [SF3(L)2]+ (L = CH3CN, C5H5N) salts, whereas the reaction of [SF3][SbF6] with equimolar 1,10-phenanthroline (phen) in CH3CN afforded [SF3(phen)][SbF6]·2CH3CN. Salts of these cations were characterized by low-temperature X-ray crystallography and Raman spectroscopy in the solid state as well as by 19F NMR spectroscopy in solution. In the solid state, the geometries of [SF3(NC5H5)2]+ and [SF3(phen)]+ are square pyramids with negligible cation–anion contacts, whereas the coordination of CH3CN and [SbF6]− to [SF3]+ in [SF3(NCCH3)2][SbF6] results in a distorted octahedral coordination sphere with a minimal perturbation of the trigonal-pyramidal SF3 moiety. 19F NMR spectroscopy revealed that [SF3(L)2]+ is fluxional in excess L at −30 °C, whereas [SF3(phen)]+ is rigid in CH2Cl2 at −40 °C. Density functional theory (DFT-B3LYP) calculations suggest that the S–N bonds in [SF3(NC5H5)2]+ and [SF3(phen)]+ possess substantial covalent character and result in a regular AX5E VSEPR geometry, whereas those in [SF3(NCCH3)2]+ are best described as S···N chalcogen-bonding interactions via σ-holes on [SF3]+, which is consistent with the crystallographic data.
- ItemReactions of molybdenum and tungsten oxide tetrafluoride with sulfur(IV) Lewis bases: structure and bonding in [WOF4]4, MOF4(OSO), and [SF3][M2O2F9] (M = Mo, W)(American Chemical Society, 2020) Turnbull, Douglas; Chaudhary, Praveen; Leenstra, Dakota; Hazendonk, Paul; Wetmore, Stacey D.The structure of [WOF4]4 has been reinvestigated by low-temperature X-ray crystallography and DFT (MN15/def2- SVPD) studies. Whereas the W4F4 ring of the tetramer is planar and disordered in the solid state, the optimized gas-phase geometry prefers a disphenoidally puckered W4F4 ring and demonstrates asymmetric fluorine bridging. Dissolution of MOF4 (M = Mo, W) in SO2 and SF4 results in the formation of MOF4(OSO) and [SF3][M2O2F9], respectively. Both SO2 adducts and [SF3]- [Mo2O2F9] have been characterized by X-ray crystallography. The crystal structure of [SF3][Mo2O2F9] reveals dimerization of the ion pair that results in a rare heptacoordinate sulfur center. Optimization of the {[SF3][M2O2F9]}2 dimers in the gas phase, however, results in the elongation of one contact such that the sulfur centers are effectively hexacoordinate. Meanwhile, the crystal structure of [SF3][W2O2F9]·HF instead demonstrates hexacoordinate sulfur centers and a highly unusual coordination to [SF3]+ from [W2O2F9]−through an oxido ligand. While [SF3][W2O2F9] does not decompose at ambient temperature, MOF4(OSO) and [SF3][Mo2O2F9] are unstable toward evolution of SO2 or SF4. Computational studies reveal that the monomerization of [WOF4]4 in the gas phase at 25 °C is thermodynamically unfavorable using SO2, but favorable using SF4, consistent with the relative thermal stabilities of WOF4(OSO) and [SF3][W2O2F9].
- ItemStabilisation of [WF5]+ and WF5 by pyridine: facile access to [WF5(NC5H5)3]+ and WF5(NC5H5)2(Wiley, 2020) Turnbull, Douglas; Hazendonk, Paul; Wetmore, Stacey D.The enhanced reactivity of [WF5]+ over WF6 has been exploited to access a neutral derivative of elusive WF5. The reaction of WF6(NC5H5)2 with [(CH3)3Si(NC5H5)][O3SCF3] in CH2Cl2 results in quantitative formation of trigonal-dodecahedral [WF5(NC5H5)3]+, which has been characterised as its [O3SCF3]− salt by Raman spectroscopy in the solid state and variable-temperature NMR spectroscopy in solution. The salt is susceptible to slow decomposition in solution at ambient temperature via dissociation of a pyridyl ligand, and the resultant [WF5(NC5H5)2]+ is reduced to WF5(NC5H5)2 in the presence of excess C5H5N, as determined by 19F NMR spectroscopy. Pentagonal-bipyramidal WF5(NC5H5)2 was isolated and characterised by X-ray crystallography and Raman spectroscopy in the solid state, representing the first unambiguously characterised WF5 adduct, as well as the first heptacoordinate adduct of a transition-metal pentafluoride. DFT-B3LYP methods have been used to investigate the reduction of [WF5(NC5H5)2]+ to WF5(NC5H5)2, supporting a two-electron reduction of WVI to WIV by nucleophilic attack and diprotonation of a pyridyl ligand in the presence of free C5H5N, followed by comproportionation to WV.