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Abstract

Numerical methods have been used to predict the eigenperiods and eigenfunctions of the

Earth’s Slichter modes, known as the Slichter triplets. In order to test the validity of our

method, we have also computed the frequencies and displacement eigenfunctions of some of

the inertial modes of the Earth’s fluid core. We use a Galerkin method to integrate the Three

Potential Description (3PD) for a neutrally, stratified and rotating fluid core of a modified

Preliminary Reference Earth Model (PREM). Moreover, the same mathematical tool is used

for the computation of the frequencies and displacement amplitudes of the Slichter modes.

In the Galerkin formulation of the 3PD, using the divergence theorem, we make use of the

natural character of the boundary conditions to reduce the order of derivatives from second

to first. To compute the frequencies of the Slichter modes, we solve simultaneously the

equations of the inner core motion and the dynamics of the fluid core as described above.

The results are compared to those in previous studies and it is shown that in the case of the

inertial modes they agree well, which proves the validity of the approach. For the Slichter

modes, however, it is shown that the results are significantly different from previous work

for a similar Earth model. We have also plotted the displacement eigenfunctions for the

motion of the fluid in the fluid core during the Slichter oscillations. It is shown that the

pattern of motion is consistent with the motion of the inner core, which serves as a second

test of the validity of our results.
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Chapter 1

Introduction

1.1 Motivation

Referred as the blue planet, the Earth is the densest and the fifth largest of the

eight planets in the solar system, and the third planet from the Sun [1]. Its rich physical and

geological properties are the key for sustaining life since its origin [2]. The Earth is composed

of three major layers: a solid Inner Core (IC) with radius RIC = 1221.5 km, the Fluid Outer

Core (FC) which is responsible for most of the Earth’s magnetic field, and about 2258.5 km

in thickness, and finally a thick layer of solid mantle with thickness of about 2891 km. In

addition, the Earth’s mean radius measured from the geocentre to the surface is R = 6371

km [3, 4]. Besides the above physical properties, the Earth is chemically composed of iron

(32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%),

calcium (1.5%), and aluminum (1.2%) and 1.2% for other trace elements. However, due

to mass segregation, the Earth’s core known as the inner core plus the fluid core is mostly

composed of iron (88.8%), and a small amount of nickel (5.8%), sulfur (4.5%), and about
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1.1. MOTIVATION

1% of trace elements [5]. In most studies, the Earth has been approximated as a sphere,

while its true figure is close to an oblate spheroid, flattened along the polar axis so that

there is a bulge at the equator due to rotation, and, as a consequence the equatorial radius

(Re = 6378.1 km) is about 21 km longer than the polar radius (Rp = 6356.8 km), and the

flattening produces an ellipticity of about e = 0.0033528 at the surface [3, 4, 6, 7].

The objectives of this work are to predict the frequencies and the displacement

eigenfunctions of the small translational oscillations of the inner core known as the Slichter

modes. Known as the hottest layer of the Earth, the inner core is the most enigmatic and

remote part of our Earth. It was discovered in 1936 by Inge Lehmans from Denmark, using

early seismological observations of P-waves travelling through the Earth’s deep interior [8,9].

The inner core crystallization from the center outward is believed to originate from the

increase in pressure as we go deeper toward the center due to mass, and also because iron

can no longer be liquid above a certain pressure [10,11]. Moreover, due to the temperature

drops below the melting point of the inner core boundary, the inner core crystallyzes within

the liquid outer core [10–12].

The inner core is mostly composed of iron and nickel, and the evidence from earth-

quake seismology that P-waves travel through both solid and liquid whereas S-waves only

travel through solid, revealed the solid aspect of the inner core [10]. P-waves are compres-

sional waves and are Principal (P) waves to be recorded at the seismograph stations at

the Earth’s surface, and they are longitudinal in nature (top image in figure 1). However,

S-waves are Secondary (S) waves and are recorded after the P-waves, they are shear waves

and are transverse in nature and they displace the ground perpendicular to the direction of

2



1.1. MOTIVATION

Figure 1.1: P (Principal) and S (Secondary) wave representations from Earthquake and
Seismic Education notes [15]

propagation during an earthquake excitation (bottom image in figure 1) [13, 14]. Since the

core is not directly accessible, much is still unknown about its properties. However, most of

the information extracted from the Earth has been made possible through ray seismology

and the normal mode theory. The velocity of the P and S-waves are given as

vp =

√
λ+ 2µ

ρ

vs =

√
µ

ρ

where λ, µ and ρ are the Lamé parameter, the shear modulus, and the density of the media

respectively. The above parameters in the core are established through the observations of

seismology and also the free oscillations. However, the density jump near the inner core

boundary is poorly known and varies from one model to another.

3



1.1. MOTIVATION

The spectrum of the Earth’s free oscilllations is divided into five types according

to the normal mode theory:

1- the seismic oscillations with the elasticity as their restoring force which have periods

shorter than a few hours;

2-the gravity modes which are excited in any unstably stratified region of the Earth’s fluid

core;

3-the Earth’s wobble and nutation modes caused by the Earth’s rotation and flattened figure;

4- the inertial modes of the Earth’s fluid core caused by the Earth’s rotation;

5-the translational modes of the solid inner core, known as the Slichter modes, with the

gravity as their restoring force.

The periods of some of the Earth’s modes depend on the material properties of

the Earth’s interior. If one of the modes is detected, the frequency, and the shape of

the predicted mode may be used to extract much information about the Earth’s interior.

Hundreds of oscillations of type 1 have been detected and used to improve the existing Earth

models (e.g PREM, by Dziewonsky and Anderson, 1981) [16]. Chandler (1891) discovered,

from available astronomical data, one of the Earth’s wobble modes, known as the Chandler

wobble, which has a period of about 430 days. Therefore any reliable Earth model must

yield a wobble period in the vicinity of the period of the Chandler wobble.

It is commonly accepted that the Earth has been existed for at least 3.6 billion

years [17]. The source and origin of its magnetic field is one of the most interesting topics

in the study of the Earth. The two dominant theories attempting to explain the Earth’s

magnetic field are based on precession driven flow and thermal convection. However, it was

4



1.1. MOTIVATION

shown that these ideas were insufficient to fully explain the origin, and the polarity reversal

of the Earth’s magnetic field [18, 19]. The determination of important parameters of the

Earth such as the density jump near the Inner Core Bounday (ICB), may help explain the

growth of the inner core (IC) from the outer fluid core [20, 21] and also to understand the

existence and the polarity reversal of the magnetic field [8].

The Earth’s material properties, such as viscosity and the density jump near the

ICB, are poorly constrained by seismology and the normal mode theory. Indeed a variety of

Earth models such as the Preliminary Reference Earth Model (PREM) [16], CORE11 [22]

and 1066A [23] give different density profiles, determined using surface observations of the

seismic activity travelling back and forth through the Earth, and also the use of the normal

modes. Therefore, for a better determination of the Earth’s parameters, or for instance

a direct image of the density structure inside the earth, it is necessary to develop meth-

ods which can be used to accurately predict the period of the Earth’s long-period modes.

Previous studies show the periods of the long-period modes such as the Slichter modes

to depend on the inverse of the square root of the density difference across the ICB as

T ' k(ρIC − ρ0)−1/2, where k depends on the dimensions and densities of the inner and

outer cores, and ρIC and ρ0 are the densities of the inner and outer cores near the inner

core boundary respectively [24–26]. Therefore, with this direct dependence, the Slichter

modes are the best candidates to estimate the density jump and other parameters such as

the viscosity of the fluid core near the ICB, and maybe also to quantify the energy required

to maintain the geodynamo of the Earth [27].

5



1.1. MOTIVATION

The inner core oscillates with the periods sensitive to the physical properties such

as density of both the inner and fluid cores at the ICB. It is held inside the FC mainly by the

buoyancy force [28]. Following the observations of unusual gravity signals recorded on the

LaCoste-Romberg Earth tide gravimeter after the 1960 Chilean Earthquake, Slichter [29],

based on his research on a particular types of oscillations known as S1 (spheroidal oscillation),

proposed that the observed unusual peak with a period of about 86 minutes could have been

produced by the translational oscillations of the IC. Further research showed that the period

of the central mode was much longer, 3-4 hours, and that the effects of the Earth’s rotation

and its ellipticity cause the principal mode (central mode) to split into three frequencies

known as the Slichter triplet. Much effort has been made and is still ongoing to detect these

modes [30, 31]. Although, there have been a few claims of the detection of these modes (to

be discussed later in this section), there is still a concensus among researchers that much

work is still needed [32–34].

In this work, we develop a method which we apply to a realistic Earth model to

numerically predict the periods of the Earth’s Slichter triplet. We will first test our computa-

tional codes by numerically solving for the frequencies and the displacement eigenfunctions

of the inertial modes of a rotating and spherical Earth model with a compressible and neu-

trally stratified fluid core based on the PREM model with rigid inner core and mantle.

Thereafter, we will numerically compute the eigenperiods and eigenfunctions of the Slichter

modes for the same model. We will show the steps we have taken to make sure that the

results are converged.

6



1.2. FUNDAMENTAL EQUATIONS OF THE FLUID CORE

1.2 Fundamental Equations of the Fluid Core

A set of different methods have been so far used to study the normal modes of the

Earth, from traditional approaches to the three potential description (3PD). In this section

we will briefly review some of these methods. The 3PD will be discussed in chapter 2.

The Earth’s liquid core is considered as inviscid, with the reference state being one of

hydrostatic equilibrium in a coordinate system which is attached to the Earth and rotates

with a constant angular velocity

ωr = Ωê3

where Ω is the rate of rotation of the Earth and ê3 is a unit vector along the rotational axis.

In this reference frame the density, the pressure, and the gravity are labelled as ρ0, p0, and

g0 and are related by [25,35]

∇p0 = ρ0g0 (1.1)

g0 = ∇W0 (1.2)

∇2W0 = −4πGρ0 + 2Ω2 (1.3)

∇ρ0 = (1− β)ρ0
g0

α2
(1.4)

where W0, G, α, β are respectively the gravitational potential, the constant of gravitation,

the local compressional wave speed, and the stability parameter. The stability parameter is

defined as

β = −α
2N2

g2
0

(1.5)

where N is the Brunt Väissäla frequency. The stability parameter measures the departure

of the Earth’s equilibrium density from neutral stratification. Specifically, its sign β < 0

7



1.2. FUNDAMENTAL EQUATIONS OF THE FLUID CORE

(N2 > 0), β = 0 (N2 = 0) or β > 0 (N2 < 0) correspond to a stably, neutrally or unstably

stratification. It is an important parameter for the understanding of Earth’s geodynamo.

However, like the density jump near the ICB, it has not been well defined [25,35].

The conservation of mass, momentum, gravitational flux and entropy yield the

equations governing small oscillations of an inviscid liquid core [36]:

∂ρ1

∂t
= −∇ · (ρ0v) (1.6)

∂v

∂t
+ 2Ωê3 × v = − 1

ρ0
∇p1 +∇V1 +

ρ1

ρ0
g0 (1.7)

∇2V1 = −4πGρ1 (1.8)

∂p1

∂t
= α2∂ρ1

∂t
− βρ0v · g0 (1.9)

where v = ∂u
∂t , u, ρ1, p1 and V1, all regarded as first order departures from the equilibrium

reference frame, are the velocity, the fluid displacement, the perturbation in density, the

pressure disturbance and the perturbation in the gravitational potential. Here u is the

Lagrangian displacement from the equilibrium configuration.

Since we are dealing with small oscillations, all the field variables have time de-

pendence of eiωt. With this consideration and some mathematical operations in the above

equations, the fundamental dynamical equations are written as

ω2u− 2iωΩê3 × u =
1

ρ0
∇p1 −∇V1 +

g0

ρ0
∇ · (ρ0u) (1.10)

∇2V1 = −4πG∇ · (ρ0u) (1.11)

p1

ρ0
= −(α2∇ · u + u · g0) (1.12)

The above equations (1.10-1.12) represent five scalar differential equations describing the

dynamics of the Earth’s fluid core [37]. In the traditional approach, to solve the above equa-

8



1.2. FUNDAMENTAL EQUATIONS OF THE FLUID CORE

tions for the modes of a spherical, symmetric and rotating Earth model, the field variables

are represented in spherical polar coordinates by means of spherical harmonics.

V1 =
∞∑

m=−∞

∞∑
n=|m|

φmn Y
m
n (1.13)

p1 =
∞∑

m=−∞

∞∑
n=|m|

ψmn Y
m
n (1.14)

u =

∞∑
m=−∞

∞∑
n=|m|

Smn + Tm
n (1.15)

Smn = [umn r̂ + rvmn ∇]Y m
n (1.16)

Tm
n = −tmn r̂×∇Y m

n (1.17)

Y m
n = Pmn (cosθ)eimφ (1.18)

where Smn , and Tm
n , are the spheroidal and toroidal components of u, and umn , vmn , tmn ,

φmn , ψmn are functions of the radial coordinate and Pmn the associated Legendre function of

degree n and azimuthal order m. The spheroidal oscillations are similar to the P-waves:

long-period oscillations strongly affected by the gravity. However, the toroidal or torsional

oscillations are waves in which the motion is parallel to the sphere’s surface. Contrarily to

the spheroidal modes, gravity does not influence these modes.

The traditional approach is an effective tool for the computation of short period

free oscillations, which rely on heavy truncations of the degree n of the associated Legendre

functions. Alterman et al. [38] computed the short period free oscillations (acoustic modes)

showing that the effect of rotation and ellipticity can be negligible for this type of oscillations.

However, Smith [39] showed that the choice of the displacement field as a sum of toroidal

and spheroidal components would give reasonable results for the Chandler wobble but for

the wobble modes of the inner core, the truncations have had to be extended way beyond 3

9



1.2. FUNDAMENTAL EQUATIONS OF THE FLUID CORE

to 4 terms [39]. Crossley [34] was able to extend the numerical computations of short period

modes to high degrees of truncations for both the spheroidal Smn and toroidal Tm
n for different

Earth models, thanks to the development of high speed computers. Besides the weakness

of the traditional approach due to high truncation, it is not valid for the computations of

many modes which are sensitive to the rotation and the ellipticity, especially the inertial

modes and Slichter modes. Therefore, new alternatives were considered for the solution of

the governing equations of the fluid core oscillations [37] .

The Subseismic Approximation (SSA) was developed by Smylie and Rochester

(1981) to solve for the free oscillations of the Earth [40]. They were able to reduce the

governing equations of the fluid core to only two scalar variables V1, and χ. In this method,

the contribution of the pressure perturbation p1
ρ0
<< |g0 ·u| is ignored in the entropy equation

(1.12). Therefore, equations (1.11) and (1.12) become

∇ · (f Γ̃ · ∇χ) = 0 (1.19)

1

4πGρ0
∇2V1 =

1

B
C · ∇χ (1.20)

where

χ =
p1

ρ0
− V1 (1.21)

B =
α2ω2

β
(1− µ2) + g2

0 − µ2(k̂ · g0)2 (1.22)

C = µ2k̂k̂ · g0 − g0 + iµk̂× g0 (1.23)

Γ̃ = 1̃− µ2k̂k̂− C∗C

B
+ iµk̂× 1̃ (1.24)

µ =
2Ω

ω
(1.25)

where 1̃ is a unit tensor, and f the decompression term introduced by Friedlander [41]. In

10



1.2. FUNDAMENTAL EQUATIONS OF THE FLUID CORE

this method, the Subseismic Wave Equation (SSWE) in (1.19) represents the major equation

to be solved, and the other variables V1, the field displacement u, and the perturbation in

density ρ1 and the pressure p1 are deduced from other relevant equations defined above.

The SSA was implemented by Rochester and Peng [42] to show frequency depen-

dence of the load Love numbers at the ICB and Core Mantle Boundary (CMB). Love numbers

are used to include the elasticity of the Earth’s solid parts in the dynamical equations at

the solid-liquid boundaries. They applied a variational principle to solve for the frequencies

of the Slichter modes for a rotating, spherical and neutrally stratified Earth model. They

showed that the SSA violates the conservation of the linear momentum near the CMB [25].

Furthermore, the Hermitian property of the matrix generated from the SSWE in equation

(1.19) is violated [36,42–44].

The shortcomings of the SSA, plus the inefficiency presented by the traditional

approaches, motivated a search for different approaches for the solution of the governing

equations of the fluid core dynamics. Wu and Rochester [43], proposed the Two Potential

Description (TPD). The TPD represent a coupling pair of second order linear partial differ-

ential equations based on two scalar potential fields V1 and χ [25]. This method bypasses the

conventional representation of spheroidal and toroidal components of the field displacement

u described earlier. The mathematical formulation of the TPD is

∇ · [Γ · ∇χ+ ω2(1− µ2)(χ+ V1)
C∗

B
]− ω2(1− µ2)

βB
[C · ∇χ− ω2(1− µ2)(χ+ V1)] = 0

(1.26)

1

4πG
∇2V1 − ρ0

C · ∇χ
B

− [
1− β
α2

+
ω2(1− µ2)

B
](χ+ V1) = 0 (1.27)

where B, C and Γ̃ are defined above.
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1.2. FUNDAMENTAL EQUATIONS OF THE FLUID CORE

Figure 1.2: Fluid core (FC) stability parameter of PREM (Dziewonsky and Anderson, 1981)

To discuss one of the limitations of the TPD, we show in figure 1.2 the stability

parameter profile of the PREM model, and discuss the failure of this method due to its

depedence on 1/β and also on 1/B. It is obvious from figure 1.2 that there are three

(03) singular points (β = 0). Therefore, the TPD becomes inadequate for such an Earth

model [25]. Since the TPD equations have a 1/B dependence, they may also become unstable

for some frequencies at which B tends to zero [25]. However, this method is useful for a

neutrally stratified Earth model (β = 0). To remove the instability of the TPD equations,

Peng [25] multiplied the equations (1.16) and (1.17) by the term (βB)2 so that the governing

equations become suitable for a numerical search for eigenperiods in a frequency range for

which B may vanish somewhere in the liquid core.

To remedy on the above limitations, a new approach was develop by Seyed-Mahmoud

12
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and Rochester (2006) [45], the three potential description (3PD), to study of the dynamics

of the Earth’s fluid core and rotating stars. Beside the linear character of the scalar repre-

sentation in solving for the oscillations of the fluid core, the 3PD is a set of three equations

describing the fluid core oscillations without any approximations [45,46]. We adopt the 3PD

to solve for the dynamical equations of the Earth’s core oscillations (see chapter 2).

1.3 Previous Work

We review some published work on the theoretical and observations of the Earth’s

core oscillations. Among the first to conduct studies of the inertial modes of the Earth

were Hough [47] and Poincaré [48]. They found analytical solutions for the inertial modes

of a spherical, incompressible, inviscid and homogenous core model. After a successful

computation of the inertial modes, their theory was extended to treat more realistic cases.

There is a network of superconducting gravimeters installed around the globe in

order to record the Earth’s seismic activities for the identification of the Earth’s oscillations

such as the Slichter modes and other normal modes. Since the South Pole is seismically quiet,

it is an ideal point for observing the translational oscillations of the inner core. Jackson and

Slichter [30] proposed that if these modes were excited with an amplitude of up to 1 nanogal

during the period of October 1970 to September 1971, they would have been recorded

using the spring gravimeter (the gal or galileo, is a unit of acceleration used in the science

of gravimetry, it is defined as 1 centimeter per second squared (1cm/s2)) . At the lower

limit of its detection, Crossley [34] showed that with PREM-like model, the Slichter mode

excitations could produce a weak gravity signal of about 0.5 nanogal at the Earth’s surface

13
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for the Great Chilean Earthquake (1960).

The influence of the fluid core rotation on the Slichter mode was first studied

by Busse [24]. He used a rotating Earth model with a rigid mantle, an incompressible,

homogeneous and inviscid fluid core. He concluded that a change of 50% in the frequency of

the Slichter modes could be seen if the action of the Coriolis force is taken into account, and

that their rotational splitting was not symmetric. In addition to Busse’s model, Crossley [49]

and Smith [50] added to the rotation of the Earth the compressibility and the density

stratification of the FC, with an elastic IC and mantle. They showed that these parameters

added to Busse’s model are important in the determination of the Slichter modes, and should

therefore be considered for a realistic Earth model.

To account for the effects of the ellipticity, Smith [50] showed that the main contri-

bution to the Slichter splitting is due to rotation, and the ellipticity affects the frequency of

the central mode by 10%. Smith used Busse’s Earth model [24], but with an elastic IC and a

radially stratified FC. However, Smith’s calculated period for the Slichter triplet was about

20% higher than those obtained by Busse’s (7.653 to 6.397 h) [50]. Moreover, a perturbation

theory was used by Dahlen and Sailor [51] to study the effects of the ellipticity and rotation

on the free oscillations of the Earth. They include parameters of second order in rotation

and ellipticity, and develop a convenient formula to evaluate the splitting coefficient, con-

clude that the frequencies of the Slichter modes for a spherical Earth are displaced only by

about 0.1% when the elliptical figure of the Earth is considered.

The Slichter modes have been the subject of searches in data produced by the global

network of gravimeters since a motion of the inner core would produce a small change in the
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Earth’s gravity field. After the Great Chilean Earthquake of May 22, 1960, a gravimeter

peak near 86 min was tentatively identified by Slichter (1961) as originating from the inner

core translational oscillations [29]. However, in 1992 research conducted by Smylie [52]

using his theoretical prediction and analysis based on the recorded gravity data claimed

the detection of the Slichter triplets. Shortly after Smylie’s publication, authors such as

Crossley [53], and Rochester and Peng [42], disputed Smylie’s claims. They showed that it

is not relevant to avoid the frequency-dependence of the load Love numbers, it is a parameter

of great importance between the elastic IC and mantle to the liquid core, therefore, should

be accounted. They concluded that it was unrealistic to use the static Love numbers for the

rotational splitting [42].

Moreover, using geophysical processing tools to correct the noise in the data from

seismic activities recorded across the worldwide gravimeter network, Jensen [54] and Hin-

derer [55] showed that the peaks identifed by Smylie [52] were not significant.

In 2000, Courtier et al., [56] using 294,106 hours of observations from station logs

from different gravimeter across Europe, confirmed the presence of the Slichter triplets

claimed by Smylie [52]. However, Rieutord [57] showed that the results of Courtier [56] do

not agree with the observed Q factors (under-damped oscillations) of several recorded data,

and could not be reproduced using a realistic dynamical Earth model. Rogister [58] using

the PREM and 1066A Earth models, studied the splitting by rotation and ellipticity using

normal mode theory and concluded that the ellipticity and the centrifugal force contibute

0.3% of the variation of the frequencies of the Slichter modes [58].

In addition, studies based on possible sources of excitation of the Slichter modes
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have been conducted for a simple Earth model, composed of three layers (solid and de-

formable IC, FC and elastic mantle) by Marianne and Legros [59], and for a spherical,

self-gravitating anelastic PREM-like Earth model by Rosat and Rogister [27]. They both

concluded that the Slichter modes can best be excited by a pressure change at the core

boundary at the time scale of half the Slichter periods [27], and for a considerable pressure

of 100 Pa, the signal due to the Slichter triplet can be recorded at the Earth’s surface using

any sensitive superconducting gravimeters [59].

1.4 Thesis Scope

This thesis is divided into 5 chapters as follows: In chapter 2 we discuss the three

potential descriptions (3PD). We then develop a Galerkin formulation which we apply to the

3PD to solve the dynamical equations. We expand the equations and use the orthogonality

relation among spherical harmonics to implement the equation with respect to the radial

component r. Next, we discuss the boundary conditions. In chapter 3, we discuss the Earth

model and the parameters needed for this study, and also develop and expand the inner core

equations of motion.

In chapter 4, the results of this work are discussed. We will first describe the

procedure to solve for the frequencies of the inertial modes of the fluid core. The inertial

modes of a spherical and rotating Earth with a solid inner core and neutrally stratified and

compressible fluid core will be discussed and presented along with their eigenfunctions, and

the discussion on the Slichter modes will follow. Finally, a summary and concluding remarks

will be presented in chapter 5.
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Chapter 2

GALERKIN FORMULATION OF

THE 3PD AND BOUNDARY

CONDITIONS

In this chapter, we briefly describe the 3PD in section 2.1, and summarize the

method named after Boris Galerkin in section 2.2. The Galerkin method is widely used

in the area of numerical analysis to convert continuous operator problems such as Partial

Differential Equation (PDE) subject to boundary conditions to a discrete problem [60]. After

a description of the Galerkin method, we will present the expansion of the 3PD in sections

2.3, 2.4 and 2.5. In section 2.6 we will implement the boundary conditions.
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2.1. THE THREE POTENTIAL DESCRIPTION (3PD)

2.1 The Three Potential Description (3PD)

Constructed from the dilatation, the gravitational potential and the perturbation in

pressure, the 3PD represent a set of 3 linearized equations in 3 scalar potentials describing the

dynamics of a rotating, self gravitating, stratified, compressible and inviscid fluid body [45].

To construct the 3PD, the reference state is considered one of hydrostatic equi-

librium, rotating with the rate Ω about the unit vector fixed in the inertial space ê3. The

motion of the fluid is considered as oscillatory. Based on the conservation of laws described

in chapter 1 for the mass, momentum, gravitational flux, and entropy in equations (1.6)-(1.9)

respectively, and also replacing the time dependence of these equations with eiωt. With the

choice of 3 scalars potentials defined as χ = p1
ρ0
, ζ = ∇·u and V1. After several mathematical

operations on the equations (1.6)-(1.9). By using the dimensionless terms are χ′
= χ

4Ω2R2 ,

V
′

1 = V1
4Ω2R2 , the local wave speed α = α

′

2ΩR , the Poincare tensor Γ̃
′
P = Γ̂P

4Ω2 , the modal

frequency σ = ω
2Ω , the gravity g

′
0 = g0

4RΩ2 , and the dimensionless constant of gravitation

G′ = Gρ0
4Ω2 . Where R is the radius of the Earth, Ω the Earth’s rotation rate, the notation (

′
)

is used to represent the dimensionless terms. We write the dimensionless equations of 3PD

(see Seyed-Mahmoud and Rochester, 2006 [45])

∇ ·
[
Γ̃p · ∇(χ− V1)− βC∗ζ

]
− σ2(σ2 − 1)ζ = 0 (2.1)

∇2V1 − 4πG

(
βζ − 1− β

α2
χ

)
= 0 (2.2)

C · ∇(χ− V1)− σ2(σ2 − 1)χ−Bζ = 0 (2.3)
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where

Γ̃P = σ21̃− ê3ê3 + iσê3 × 1̃, (2.4)

C = −σ2g0 + ê3 · g0ê3 + iσê3 × g0, (2.5)

B = α2σ2(σ2 − 1) + β
[
σ2g2

0 − (ê3 · g0)2
]
, (2.6)

where 1̃ is the unit dyadic, and for convenience we have dropped the (
′
) notation from all

terms. Equations (2.1), (2.2), and (2.3) are known as the 3PD. They are composed of two

second and one first order differential equations describing the dynamics of an oscillating

fluid body via 3 scalars χ, ζ, V1 without approximations [37,45].

The boundary conditions require that at all boundaries the following conditions

are met:

- continuity of the normal component of the displacement, n̂ · u ,

- continuity of the normal component of the gravitational flux, n̂ · (∇V1 − 4πGρ0u) ,

- continuity of the normal component of the stress tensor, n̂ · τ̃ ,

- continuity of the perturbation in the gravitational potential, V1,

where n̂, and τ̃ = −(p1 + u · ∇p0)1̃ are the unit normal vector to the boundary surface,

and the additional stress developed by the deformation superimposed on the equilibrium

pressure.
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2.2. THE GALERKIN METHOD

2.2 The Galerkin Method

The Galerkin method is a tool to approximate the solution of an operator equa-

tion in the form of a linear combination of the elements of a linear independent sys-

tem [61]. Following Seyed-Mahmoud’s work [37], and suppose we have a set of functions

χ = (χ1, χ2, ......, χn) which satisfies, in a region V , the set of simultaneous PDEs

N∑
j=1

Lijχj = 0, (i = 1, ...N) (2.7)

where Lij are linear partial differential operator. Suppose also that for a linear operator Bij

which satified a set of boundary conditions S, such that

M∑
j=1

Bijχj = 0, (i = 1, ...N) (2.8)

Using a set of basis functions fk, k = 1, ..., L, introduce trial functions χj =
∑L

k=1Cjkfk, for

every j = 1, ..., N , which need not a priori satisfy the boundary conditions. The Galerkin

formulation requires that

N∑
j=1

L∑
k=1

∫
V
f∗k′LijCjkfkdV = 0, (k′ = 1, ...L) (2.9)

where (∗) denote the complex conjugate of fk. The problem in equation (2.9) is changed

into a matrix formulation as

N∑
j=1

L∑
k=1

∫
V
Hk′ijkCjk = 0, (2.10)

whereHk′ijk =
∫
V f
∗
k′Lijfk. In general the trial functions do not a priori satisfy the boundary

conditions. A set of basis functions equal in number to the basis functions defined in the

trial functions is used to reconstruct in addition equation (2.9) as

N∑
j=1

L∑
k=1

[∫
V
f∗k′LijCjkfkdV +

∫
S
g∗k′BijCjkfkdS

]
= 0, (2.11)

20



2.2. THE GALERKIN METHOD

Therefore, the Galerkin formulation is then given by

Fk′ijk = Hk′ijk +

∫
S
g∗k′BijfkdS (2.12)

where gk′ are the weighted functions. The surface integral can possibly be removed by im-

plementing the divergence theorem, which arises by the conversion of the volume integral to

a surface one. When this happens with a proper choice of weighted functions, the boundary

conditions are considered natural.

In this study, a conventional approach to solving the 3PD is to consider spherical

harmonics for the three scalars potential V1, χ, ζ, and apply the Galerkin method, which

reduces the set of differential equations into a system of matrices. Once the matrix is

generated the solution can be estimated by any numerical method [25,37,60–62]. For further

calculations we choose the trial functions as

V1 =
N∑

n=|m|

L∑
l=1

E[L(n)+l]fl(x)Y m
n (θ, φ), (2.13)

χ =
N∑

n=|m|

L∑
l=1

E[L(N+n)+l]fl(x)Y m
n (θ, φ), (2.14)

ζ =
N∑

n=|m|

L∑
l=1

E[L(2N+n)+l]fl(x)Y m
n (θ, φ) (2.15)

where fl(x) is a function of the dimensionless radius x = r
R and can be any functions, where

r is the varying radius of the Earth, and R the mean Earth radius. As one of the objectives

of this study is to test the convergence of the results, the completeness requirement for

varying N , or L is an advantage of using the Galerkin formulation, therefore in this study,

we consider the Legendre functions for fl(x), since we can vary both N,L → ∞, or any

other functions which can be used to test the convergence of the results [63]. The argument
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x of fl is defined in equation (2.16) below

x =
2r

b− a
− b+ a

b− a
(2.16)

where a and b are the dimensionless inner and outer radii of the spherical shell, and a ≤ r ≤ b.

2.3 Galerkin Formulation of the Poisson Equation

The Galerkin formulation of Poisson’s equation can be written as

∫
V
fl′(x)Y m∗

q ∇2V1dV − 4πG

∫
V
fl′(x)Y m∗

q

(
βζ − 1− β

α2
χ

)
dV

+

∫
ICB+CMB

ψ∗
l′

(x)[n̂ · (∇V1 − 4πGρ0u)− n̂ · (∇V ′
1 − 4πGρICuIC)]dS = 0, (2.17)

where l′ = 1, ..., L and ρIC , ρ0, u, uIC , G, V1 and V
′

1 are the density of the inner core,

and the density of the fluid core near the ICB, the displacement of the fluid near the

ICB, the inner core displacement, the dimensionless gravitational constant, the perturbation

in gravitational potential for the fluid near the ICB, and for the inner core respectively.

The surface integral terms added to the Poisson equation are used to consider the natural

character of the boundary conditions. Applying the divergence theorem on the first term

fl′(x)Y m∗
q ∇2V1, with a proper choice of the weighted functions ψ∗

l′
(x) = −fl′(x)Y m∗

q , and

with the implementation of the boundary conditions n̂ ·u = n̂ ·uIC , we can rewrite equation

(2.17) as

∫
V
∇
[
fl′(x)Y m∗

q

]
· ∇V1dV + 4πG

∫
V
fl′(x)Y m

q

(
βζ − 1− β

α2
χ

)
dV

−
∫
FC+LC

fl′(x)Y m∗
n [4πG(ρ0 − ρIC)n̂ · uIC + n̂ · ∇V ′

1 ]dS = 0 (2.18)

22



2.3. GALERKIN FORMULATION OF THE POISSON EQUATION

For convenience, we write

PE1 =

∫
V
∇
[
fl′(x)Y m∗

q

]
· ∇V1dV (2.19)

PE2 = 4πG

∫
V
fl′(x)Y m

q

(
βζ − 1− β

α2
χ

)
dV (2.20)

PE3 =

∫
FC+LC

fl′(x)Y m∗
n [4πG(ρ0 − ρIC)n̂ · uIC + n̂ · ∇V ′

1 ]dS (2.21)

The surface integral in the PE3 term of equation (2.21) will be developed later using the

implementation of the boundary conditions. By using the spherical harmonic representation

of the trial functions, following the gradient operations shown in apendix A.1, we can operate

∇
[
fl′(x)Y m∗

q

]
· ∇V1 and then rewrite PE1 as

PE1 =
N∑

n=|m|

L∑
l=1

E[L(n)+l]

∫
V

[
dfl(x)

dx

dfl′(x)

dx
Pmq P

m
n +

1

x2
fl′(x)fl(x)

dPmq
dθ

dPmn
dθ

+
m2

x2sin2θ
fl′(x)fl(x)Pmq P

m
n

]
dV

(2.22)

Substituting dV = x2 sin θ dθ dφ dx and knowing that

∫ π

0

dPmq
dθ

dPmn
dθ

sinθdθ =

∫ π

0

[
n(n+ 1)− m2

sin2θ

]
Pmq P

m
n sin θdθ (2.23)

we write equation (2.22) as

PE1 =
L∑
l=1

E[L(q)+l]

∫ [
x2dfl(x)

dx

dfl′(x)

dx
+ q(q + 1)fl′(x)fl(x)

]
dx

∫
Pmn P

m
q sin θdθ (2.24)

The development of PE2 in equation (2.20) is given by

PE2 = 4πG

L∑
l=1

[
E[L(2N+q)+l]

∫
βx2fl′(x)fl(x)dx

−E[L(N+q)+l]

∫
1− β
α2

x2fl′(x)fl(x)dx

∫
Pmn P

m
q sin θdθ

] (2.25)

We know that the orthogonality relation of the associated Legendre polynomials is given by

∫ ∫
Y m∗
q Y m

n sin θdθdφ = 2π

∫
Pmq P

m
n sin θdθ = 2π

2(n+m)!

(2n+ 1)(n−m)!
δqn (2.26)
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where δqn is the Kronecker delta, which is zero for n 6= q and 1 only for n = q. However, we

will just drop the constant in front of the orthogonality relation since the Poisson equation

(2.17) equal to zero. Therefore, we finally rewrite the Galerkin formulation of Poisson’s

equation as:

− PE3 +

L∑
l=1

∫ [
E[L(q)+l]

(
x2dfl(x)

dx

dfl′(x)

dx
+ q(q + 1)fl′(x)fl(x)

)

+4πG

(
E[L(2N+q)+l]βx

2fl′(x)fl(x)− E[L(N+q)+l]
1− β
α2

x2fl′(x)fl(x)

)]
dx = 0,

(2.27)

where the term PE3 will later be completed after the implementation of the boundary

conditions in section 2.6. Note that equation (2.27) is a function of x only, that is we have

integrated the Poisson equation analytically with respect to θ and φ.

2.4 Galerkin Formulation of the Momentum Equation

The Galerkin formulation of the momentun equation can be written as∫
V
fl′(x)Y m∗

q

[
∇ ·
(
Γ̃p · ∇(χ− V1)− βC∗ζ

)
− σ2(σ2 − 1)ζ

]
dV

+

∫
ICB+LC

ψl′(x)n̂ · (u− uIC)dS = 0,

(2.28)

where l′ = 1, ..., L and Y m∗
q the complex conjugate spherical harmonics of order m, and

degree q, u, and uIC are the displacement of the fluid core and inner core respectively.

Applying the divergence theorem, we can write∫
S

n̂ ·
[
fl′(x)Y m∗

q

(
Γ̃p · ∇(χ− V1)− βC∗ζ

)]
dS − σ2(σ2 − 1)

∫
V
fl′(x)Y m∗

q ζdV

−
∫
V
∇(fl′(x)Y m∗

q ) ·
(
Γ̃p · ∇(χ− V1)− βC∗ζ

)
dV

+

∫
ICB+LC

ψl′(x)n̂ · (u− uIC)dS = 0.

(2.29)
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We know from the implementation of the 3PD in equation (21) of Seyed-Mahmoud and

Rochester’s work [45] that

Γ̃p · ∇(χ− V1)− βC∗ζ = σ2(σ2 − 1)u (2.30)

therefore, with a proper choice of ψ∗l′(x) = −fl′(x)Y m∗
q , and with the substitution of the

boundary condition n̂ · u = n̂ · uIC at the inner core boundary, and at the core mantle

boundary n̂ · u = 0, we then rewrite equation (2.29) as

σ2(σ2 − 1)

∫
S
fl′(x)Y m∗

q n̂ · uICdS − σ2(σ2 − 1)

∫
V
fl′(x)Y m∗

q ζdV

−
∫
V
∇(fl′(x)Y m∗

q ) ·
[
Γ̃p · ∇(χ− V1)

]
dV + β

∫
V
∇(fl′(x)Y m∗

q ) ·C∗ζdV = 0

(2.31)

For a clear expansion, we write

ME1 =

∫
S
fl′(x)Y m∗

q n̂ · uICdS (2.32)

ME2 =

∫
V
fl′(x)Y m∗

q ζdV (2.33)

ME3 =

∫
V
∇(fl′(x)Y m∗

q ) ·
[
Γ̃p · ∇(χ− V1)

]
dV (2.34)

ME4 =

∫
V
∇(fl′(x)Y m∗

q ) ·C∗ζdV (2.35)

The term ME1 will be expanded in the next section dealing with the boundary conditions.

We now expand equation (2.31) term by term, starting with the third term ME3. Therefore,

with the substitution of the Poincaré tensor we write

ME3 =

∫ {
σ2∇(fl′(x)Y m∗

q ) · ∇(χ− V1)− [∇(fl′(x)Y m∗
q ) · ê3][ê3 · ∇(χ− V1)]

+ iσ∇(fl′(x)Y m∗
q ) · (ê3 × 1̃) · ∇(χ− V1)

}
dV

(2.36)
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In a spherical coordinate system, 1̃ = r̂r̂ + θ̂θ̂ + φ̂φ̂, and ê3 = r̂cosθ − θ̂sinθ. By using the

gradient operations shown in appendix A.1, we get∫
∇(fl′(x)Y m∗

q ) · (ê3 × 1̂) · ∇(χ− V1)dV = −im
N∑

n=|m|

L∑
l=1

(E[L(N+n)+l] − E[L(n)+l])×

∫ ∫ [
cos θ

x2 sin θ
fl′(x)fl(x)Pmq

dPmn
dθ

+
cos θ

x2 sin θ
fl′(x)fl(x)Pmn

dPmq
dθ

+
1

x
fl′(x)

dfl(x)

dx
Pmn P

m
q

+
1

x
fl(x)

dfl′(x)

dx
Pmn P

m
q

]
sin θdθdφ.

(2.37)

We use the identity [37]

∫
cos θ

sin θ

(
Pmq

dPmn
dθ

+ Pmn
dPmq
dθ

)
sin θdθ =

∫
Pmn P

m
q sin θdθ. (2.38)

Substituting equation (2.38) into equation (2.37), we write∫
∇(fl′(x)Y m∗

q ) · (ê3 × 1̂) · ∇(χ− V1)dV = −im
N∑

n=|m|

L∑
l=1

(E[L(N+n)+l] − E[L(n)+l])×

∫ [
fl′(x)fl(x) + xfl′(x)

dfl(x)

dx
+ xfl(x)

dfl′(x)

dx

]
dx

∫
Pmn P

m
q sin θdθ

∫
dφ,

(2.39)

However, following the transformations in the above section for the term PE1 in equation

(2.19), we get∫
∇(fl′(x)Y m∗

q ) · ∇(χ− V1)dV =
N∑

n=|m|

L∑
l=1

(E[L(N+n)+l] − E[L(n)+l])×

∫ [
x2dfl′(x)

dx

dfl(x)

dx
+ n(n+ 1)fl′(x)fl(x)

]
dx

∫
dφ

∫
Pmn P

m
q sin θdθ,

(2.40)

Following the above scheme of calculations and using the identities of associated Legendre’s

polynomials below [37]

∫
P 1

2

dPmq
dθ

Pmn sin θdθ =

∫ (
6P2P

m
n − P 1

2

dPmn
dθ

)
Pmq sin θdθ (2.41)
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2.4. GALERKIN FORMULATION OF THE MOMENTUM EQUATION

∫
sin2θ

dPmq
dθ

dPmn
dθ

sin θdθ =

∫ [
2

3
n(n+ 1)−m2 − 2

3
n(n+ 1)P2

]
Pmn P

m
q

+
2

3

∫
P 1

2P
m
q

dPmn
dθ

sin θdθ,

(2.42)

we rewrite the second term of ME3 in equation (2.36) as∫
[∇(fl′(x)Y m∗

q ) · ê3][ê3 · ∇(χ− V1)]dV =
L∑
l=1

(E[L(N+n)+l] − E[L(n)+l])×∫ ∫ ∫ ([
(
2

3
n(n+ 1)−m2)fl′(x)fl(x) +

1

3
x2dfl(x)

dx

dfl′(x)

dx

]
Pmn P

m
q

+

[
2

3
x2dfl(x)

dx

dfl′(x)

dx
+ 2xfl′(x)

dfl(x)

dx
− 2

3
n(n+ 1)fl′(x)fl(x)

]
P2P

m
n P

m
q

+

[
2

3
fl′(x)fl(x)− 1

3
xfl′(x)

dfl(x)

dx
+

1

3
xfl(x)

dfl′(x)

dx

]
P 1

2P
m
q

dPmn
dθ

)
sin θdxdθdφ

(2.43)

Since the summation is over all n, we use the following two identities

P2P
m
n = Amn P

m
n−2 +Bm

n P
m
n + Cmn P

m
n+2 (2.44)

P 1
2

dPmn
dθ

= 2(n+ 1)Amn P
m
n−2 + 3Bm

n P
m
n − 2nCmn P

m
n+2 (2.45)

where

Amn =
3(n+m)(n+m− 1)

2(2n+ 1)(2n− 1)

Bm
n =

n(n+ 1)− 3m2

(2n+ 3)(2n− 1)

Cmn =
3(n+ 2−m)(n+ 1−m)

2(2n+ 3)(2n+ 1)

By expanding the chain with P2 and P 1
2 , since the summation is all over n, equations (2.44)

and (2.45) are transformed as a function of Pmn , by interchanging n from the constant Amn ,

Bm
n and Cmn with those attached to the associated Legendre polynomial, and vice versa.
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Substituting the orthogonality relation of associated Legendre polynomials, also we know

that the Kronecker delta involved while integrating with respect to θ only survives for n = q.

We therefore, rearrange terms with respect to E[L(N+q+2)+l], E[L(N+q)+l], and E[L(N+q−2)+l],

and finally rewrite ME3 as:

ME3 =

L∑
l=1

∫ {[
σ2

(
x2dfl(x)

dx

dfl′(x)

dx
+ q(q + 1)fl′(x)fl(x)

)
− (

2

3
q(q + 1)−m2)fl′(x)fl(x)

+mσ

(
fl′(x)fl(x) + xfl′(x)

dfl(x)

dx
+ xfl(x)

dfl′(x)

dx

)
− x2

3

dfl(x)

dx

dfl′(x)

dx

−
(

2x2

3

dfl(x)

dx

dfl′(x)

dx
+ 2xfl′(x)

dfl(x)

dx
− 2

3
q(q + 1)fl′(x)fl(x)

)
Bm
q

−
(

2fl′(x)fl(x)− xfl′(x)
dfl(x)

dx
+ xfl(x)

dfl′(x)

dx

)
Bm
q

]
(E[L(N+q)+l] − E[L(q)+l])

−Amq+2

[(
2x2

3

dfl(x)

dx

dfl′(x)

dx
+ 2xfl′(x)

dfl(x)

dx
− 2

3
(q + 2)(q + 3)fl′(x)fl(x)

)
+2(q + 3)

(
2

3
fl′(x)fl(x)− x

3
fl′(x)

dfl(x)

dx
+
x

3
fl(x)

dfl′(x)

dx

)]
(E[L(N+q+2)+l] − E[L(q+2)+l])

−Cmq−2

[(
2x2

3

dfl(x)

dx

dfl′(x)

dx
+ 2xfl′(x)

dfl(x)

dx
− 2

3
(q − 2)(q − 1)fl′(x)fl(x)

)
−2(q − 2)

(
2

3
fl′(x)fl(x)− x

3
fl′(x)

dfl(x)

dx
+
x

3
fl(x)

dfl′(x)

dx

)]
(E[L(N+q−2)+l] − E[L(q−2)+l])

}
dx

(2.46)

To develop the term ME4 of equation (2.31), we need to define in the spherical coordinate

system the gravity as g0 = −g0r̂, where g0 is evaluated in appendix A.2. We now first

expand C∗ζ as

C∗ζ = g0

N∑
n=|m|

L∑
l=1

[
(σ2 − cos2 θ)r̂ + (cos θ sin θ + σ2)θ̂ − iσ sin θφ̂

]
E[L(2N+n)+l]fl(x)Y m

n

(2.47)
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Therefore, we write ME4 as

ME4 =

N∑
n=|m|

L∑
l=1

∫ ∫ ∫ [
(σ2 − cos2 θ)x2fl(x)

dfl′(x)

dx
Pmq P

m
n

+(cos θ sin θ + σ2)xfl′(x)fl(x)Pmn
dPmq
dθ

−mσxfl′(x)fl(x)Pmq P
m
n

]
E[L(2N+n)+l]dx sin θdθdφ

(2.48)

We know that cos2 θ = 2P2
3 + 1

3 and P 1
2 = −3 cos θ sin θ, and substituting into equation

(2.48), we write ME4 as

ME4 = g0

N∑
n=|m|

L∑
l=1

{[(
−2

3
x2fl(x)

dfl′(x)

dx
+ 2xfl′(x)fl(x)

)
P2

−mσ
x
fl′(x)fl(x)−

(
1

3
− σ2

)
fl(x)

dfl′(x)

dx

]
Pmq P

m
n

−1

3
xfl′(x)fl(x)P 1

2P
m
q

dPmn
dθ

}
E[L(2N+n)+l],

(2.49)

Using the identity in equations (2.44) and (2.45) and substituting the orthogonality relation

of the associated Legendre polynomials, which only survive for n = q, we therefore, rearrange

terms with respect to E[L(2N+q+2)+l], E[L(2N+q)+l], and E[L(2N+q−2)+l], and finally rewrite

ME4 as:

ME4 = g0

L∑
l=1

∫ {[
−mσxfl′(x)fl(x)−

(
1

3
− σ2

)
x2fl(x)

dfl′(x)

dx

−xfl′(x)fl(x)Bm
q +

(
2xfl′(x)fl(x)− 2x2

3
fl(x)

dfl′(x)

dx

)
Bm
q

]
E[L(2N+q)+l]

+Amq+2

(
2xfl′(x)fl(x)− 2x2

3
fl(x)

dfl′(x)

dx
− 2(q + 3)

3
xfl′(x)fl(x)

)
E[L(2N+q+2)+l]

+Cmq−2

(
2xfl′(x)fl(x)− 2x2

3
fl(x)

dfl′(x)

dx
+

2(q − 2)

3
xfl′(x)fl(x)

)
E[L(2N+q−2)+l]

}
dx.

(2.50)

Next, the term ME2 is therefore written as

ME2 =

L∑
l=1

∫
x2fl′(x)fl(x)E[L(2N+q)+l]. (2.51)
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We keep the first term ME1 as it is defined in equation (2.32), and will discuss it later in

section 2.6. Therefore, by adding ME2, ME3 and ME4, the Galerkin formulation of the

momentum equation is given by

− σ2(σ2 − 1)ME1 + σ2(σ2 − 1)ME2 +ME3− βME4 = 0 (2.52)

2.5 Galerkin Formulation of the Entropy Equation

The Galerkin formulation of the entropy equation can be written as∫
V
fl′(x)Y m∗

q [C · ∇ (χ− V1)] dV − σ2
(
σ2 − 1

) ∫
V
fl′(x)Y m∗

q χdV

−
∫
V
fl′(x)Y m∗

q BζdV = 0

(2.53)

For simplicity of the calculations, we use

EE1 =

∫
V
fl′(x)Y m∗

q [C · ∇ (χ− V1)] dV

EE2 =

∫
V
fl′(x)Y m∗

q χdV

EE3 =

∫
V
fl′(x)Y m∗

q BζdV

(2.54)

From the expansion of C in the spherical coordinate system in equation (2.47), we write

C = g0

[
(σ2 − cos2 θ)r̂ + sin θ cos θθ̂ − iσ sin θφ̂

]
,

we therefore, operate C · ∇ (χ− V1) as

C · ∇ (χ− V1) = g0

N∑
n=|m|

L∑
l=1

(
E[L(N+n)+l] − E[L(n)+l]

) [
(σ2 − cos2 θ)

dfl(x)

dx
Y m
n

+ sin θ cos θ
1

x

dPmn
dθ

fl(x)eimφ +
mσ

x
fl(x)Y m

n

]
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Integrating with respect to θ, and using the recurrence relation in equations (2.44) and

(2.45), and also using the orthogonality relation in equation (2.26), we rewrite EE1 as

EE1 = g0

L∑
l=1

∫ {[
(σ2 − 1

3
)x2fl′(x)

dfl(x)

dx

+mσfl′(x)fl(x)− 2

3
x2fl′(x)

dfl(x)

dx
Bm
q − xfl′(x)fl(x)Bm

q

] (
E[L(N+q)+l] − E[L(q)+l]

)
−Amq+2

[
2

3
x2fl′(x)

dfl(x)

dx
+

2(q + 3)

3
xfl′(x)fl(x)

] (
E[L(N+q+2)+l] − E[L(q+2)+l]

)
−Cmq−2

[
2

3
x2fl′(x)

dfl(x)

dx
− 2(q − 2)

3
xfl′(x)fl(x)

] (
E[L(N+q−2)+l] − E[L(q−2)+l]

)}
dx

(2.55)

Now, ê3 · g0 = −g0 cos θ, therefore,

Bζ =

N∑
n=|m|

L∑
l=1

[
α2σ2(σ2 − 1) + βg2

0(σ2 − cos2 θ)
]
E[L(2N+q)+l]fl(x)Y m

n . (2.56)

We write EE3 as

EE3 =

L∑
l=1

∫ {2

3
βg2

0A
m
q+2x

2fl′(x)fl(x)E[L(2N+q+2)+l]

+
2

3
βg2

0C
m
q−2x

2fl′(x)fl(x)E[L(2N+q−2)+l]

+

[
α2σ2(σ2 − 1) + βg2

0(σ2 − 1

3
) +

2

3
βg2

0B
m
q

]
x2fl′(x)fl(x)E[L(2N+q)+l]

}
dx

(2.57)

EE2 is written as

EE2 = 2π
L∑
l=1

∫
x2fl′(x)fl(x)dxE[L(N+q)+l] (2.58)

Combining equations (2.55), (2.57), and (2.58), we finally write the Galerkin formulation of

the entropy as

EE1− σ2(σ2 − 1)EE2− EE3 = 0 (2.59)
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2.6. THE BOUNDARY CONDITIONS AND THE INERTIAL MODES

2.6 The Boundary Conditions and the Inertial Modes

In this section, we will implement the boundary conditions involved in the Galerkin

formulation of the 3PD. These conditions refer to the continuity of V1, the normal component

of the displacement, the normal component of the stress and the gravitational flux across

the inner core boundary and core mantle boundary.

2.6.1 Inertial modes

Since the inner core and mantle are rigid, for the inertial modes of a rotating and

neutrally stratified fluid core, the normal component of the displacement requires that

n̂ · u = n̂ · uIC = 0 (2.60)

The dimensionless gravitational potential is V1 =
∑
φmn Y

m
n . The continuity of V1 is written

as

V1(b−) = V1(b+) (2.61)

where b+ is the radius of the inner layer of the mantle, b− the outer radius of the liquid core

at the CMB. Using the spherical harmonics representation of the gravitational potential,

the continuity in V1 reduces to

φmn (b−) = φmn (b+) (2.62)

Now, V1 must be a solution of Laplace’s equation in the mantle, so

φmn (r) =
amn
rn+1

, r > Rmantle (2.63)
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Since the mantle is rigid, then the continuity of n̂ ·(∇V1−4πGρu) accross the CMB becomes

n̂ · ∇V1(b−) = n̂ · ∇V1(b+) (2.64)

Now

n̂ · ∇V1(b+) = −(n+ 1)
amn
rn+2

= −(n+ 1)

r
φmn (b+) (2.65)

where n̂ = r̂. Therefore using equation (2.63), we write

n̂ · ∇V1(b−) = −(n+ 1)

r
φmn (b−)Y m

n (2.66)

or

dφmn
dr

(b−) = −(n+ 1)

r
φmn (b−)Y m

n (2.67)

Therefore, with the omission of the Kronecker delta, the boundary condition involved in the

Galerkin formulation of the Poisson equation is given as

∫
fl′(x)Y m

q n̂ · ∇V1dS = −(q + 1)xfl′(x)fl(b
+)E[L(q) + l] (2.68)

The term in equation (2.68) will be added to the elements E[L(q) + l] of the matrix in the

Poisson expansion. However, rigidity of the mantle requires that at the outer surface, the

stress vanishes. Therefore, we write

τ̃ = −(p1 + u · ∇p0)1̃ = 0 (2.69)

or

p1 + u · ∇p0 = p1 + u · (ρ0g0) = 0 (2.70)
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or

p1

ρ0
+ u · g0 = 0 (2.71)

Therefore

χ = −g0n̂ · u = 0 (2.72)

Since the mantle is rigid, this condition is automatically satisfied as the motion is parallel

at the CMB. In the next section we present the boundary conditions implemented for the

Galerkin formulation of the 3PD to solve for the Slichter frequencies.

2.6.2 Continuity of the normal component of the displacement

The continuity of the normal component of the displaced inner core at the ICB

boundary requires that

n̂ · u = n̂ · uIC . (2.73)

Here u is the displacement of the fluid near the inner core boundary and uIC the inner core

displacement. We know that any point on a rigid solid body such as the inner core oscillates

similar to a simple pendulum with a constant displacement amplitude in each direction.

Assuming Xmax, Ymax, Zmax are the maximun displacement amplitudes of any point of the

inner core along the unit vectors ê1, ê2, ê3 in a Cartesian coordinate system rotating with

the Earth, with ê3 along the rotation axis, we write

uIC = Xmaxê1 + Ymaxê2 + Zmaxê3 (2.74)

We omit the time dependence e±iωt of the inner core displacement. It will be clear in chapter

3 why it is easier to defined uIC in a Cartersian coordinate system. For a spherical Earth
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2.6. THE BOUNDARY CONDITIONS AND THE INERTIAL MODES

n̂ = −r̂. Therefore, for l′ = 1, .., L and q = 1, ..., N , we write the Galerkin formulation of

the normal component of the inner core displacement in equation (2.31) as

ME1 = −
∫
ICB

fl′(x)(XmaxP
m
q sin θ cosφ+ YmaxP

m
q sin θ sinφ+ ZmaxP

m
q cos θ)e−imφdS

(2.75)

By using the fact that sin θ = 2P−1
1 , cos θ = P 0

1 , sinφ = −iIm(eiφ), and cosφ = Re(e−iφ),

where Re, and Im are the real and the imaginary parts of a complex number respectively,

we rewrite equation (2.75) as

ME1 = −
∫
ICB

fl′(x)(2XmaxP
m
q p
−1
1 e−i(m+1)φ − iYmaxPmq P 1

1 e
−i(m−1)φ

+ ZmaxP
m
q P

0
1 e
−imφ)dS

(2.76)

Coupling the associated Legendre polynomial and integrating with respect to θ and φ,

considering that only for m = 1, 0,−1, and q = 1 does the Kronecker symbol survive,

we can rewrite equation (2.76) as

ME1 =



−4π
3 x

2fl′(x)Xmax if m = −1, and q = 1,

8πi
3 x

2fl′(x)Ymax if m = 1, and q = 1,

−4π
3 x

2fl′(x)Zmax if m = 0, and q = 1.

(2.77)

By introducing new variables X0 = Xmax + iYmax and X1 = Xmax − iYmax, we rewrite

equation (2.77) as

ME1 =



−2π
3 x

2fl′(x)(X0 +X1) if m = −1, and q = 1,

4π
3 x

2fl′(x)(X0 −X1) if m = 1, and q = 1,

−2π
3 x

2fl′(x)Zmax if m = 0, and q = 1.

(2.78)
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Considering the integration with respect to θ in the Galerkin formulation of the 3PD, we

can therefore write the Galerkin formulation of the normal component of the displacement

as

ME1 =



−x2fl′(x)(X0 +X1) if m = −1, and q = 1,

x2

2 fl′(x)(X0 −X1) if m = 1, and q = 1,

−x2fl′(x)Zmax if m = 0, and q = 1.

(2.79)

The above equations are then added to the Galerkin formulation of the momentum equation

in section 2.4, which complete the system of 3LN unknowns, with 3 additional unknowns

X0, X1, and Zmax to form a (3NL+ 3)× (3NL+ 3) matrix.

2.6.3 Continuity of the normal component of the gravitational flux

The continuity of the normal component of the gravitational flux at the inner core

boundary requires that

n̂ · (∇V1 − 4πGρ0u) = n̂ · (∇V ′
1 − 4πGρICuIC), (2.80)

Here V ′
1 is the inner core contribution for the perturbation in the gravitational potential.

Rearranging the term involved in the continuity of the normal displacement, we write

PE3 =

∫
fl′(x)Y m∗

q [4πG(ρ0 − ρIC)n̂ · uIC + n̂ · ∇V ′
1 ]dS (2.81)

Since the continuity of n̂ · uIC is given in (2.79), we will follow Peng’s work [64] to expand

n̂ · ∇V ′
1 . Therefore, we write

V
′

1 (r) = GρIC

∫
ICB

uIC · ∇(
1

R
)dV ′ (2.82)
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Using the divergence theorem, we then write

V
′

1 (r) = GρIC

∫
ICB

1

R
n̂ · uICdS′ (2.83)

where R (see figure 3.3) is the distance from source point r′ to field point r, which for r′ < r

is expanded to two terms in Legendre polynomials as

1

R
=

1

r
+
r′

r2
cos θ

considering n̂ = −r̂, at the ICB, where r̂ is expanded in the Cartesian coordinate system.

Substituting dS, and integrating with respect to φ, some of the component of the vector

displacement uIC vanishes, therefore, we write V ′
1 as

V
′

1 (r) = −2πGρICZmax

∫ (
r
′2

r
sin θ cos θ +

r
′3

r2
sin θ cos2 θ

)
dθ (2.84)

Integrating with repect to θ, we rewrite equation (2.84) as

V
′

1 (r) = −4π

3
GρIC

a3

r2
Zmax. (2.85)

Here G = G
4Ω2 , and using the dimensionless gradient ∇V ′

1 = 8π
3 GρIC

a3

r3
Zmaxr̂, therefore, we

write

n̂ · ∇V ′
1 = −r̂ · ∇V ′

1 (a) = −8π

3
GρICZmax. (2.86)

By applying the Galerkin method in equation (2.81), where l′ = 1, .., L and q = 1, .., N , we

write

∫
ICB

fl′(x)Y m∗
q n̂ · ∇V ′

1dS = −8π

3
GρIC

∫
ICB

Zmaxfl′(x)Y m∗
q dS, (2.87)
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Following the same procedure as in section 2.6.2 and using the orthogonality relation asso-

ciated to the integration with respect to θ, and φ, we can then write

∫
ICB

fl′(x)Y m∗
q n̂ · ∇V ′

1dS =


−8π

3 GρICx
2fl′(x)Zmax if m = 0, and q = 1;

0 otherwise .

(2.88)

Finally, the Galerkin formulation of the boundary condition involved in the Poisson equation

is given by

PE3 =



−4πG(ρ0 − ρIC)x2fl′(x)(X0 +X1) if m = −1, and q = 1,

2πG(ρ0 − ρIC)x2fl′(x)(X0 −X1) if m = 1, and q = 1,

−4πG(ρ0 − 1
3ρIC)x2fl′(x)Zmax if m = 0, and q = 1.

(2.89)

As for the normal component of the displacement, the condition in equation (2.89) will be

added to the 3NL × 3NL system from the Galerkin formulation of the 3PD. Finally, the

boundary conditions developed add 3 additional rows with 3 unknowns to the 3PD, forming

a (3NL+3)×(3NL+3) system. Therefore, we will solve a system of (3NL+3)×(3NL+3)

elements to compute for the zeros of the determinant which correspond to the frequencies

of the Slichter modes.
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Chapter 3

DYNAMICS OF A RIGID INNER

CORE

In this section, a simple Earth model will be adopted to solve for the frequencies

of both the inertial and Slichter modes. To implement the IC equations of motion, we will

use Newton’s law to first show the contribution of all the forces involved in the dynamics

of a prestress solid body such as the Earth. Thereafter, a vectorial inner core equations of

motion derived from Newton’s law will be projected along the unit vector of a Cartesian

coordinate system.

3.1 Earth Model

The Earth model adopted in this study is a modified Preliminary Reference Earth

Model (PREM) [16] with a rigid inner core and mantle, and an inviscid and neutrally strat-

ified liquid core. The material properties such as density, compressional wave speed, mass
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3.1. EARTH MODEL

of the inner core (IC), and the mass of the Earth and so on, are from PREM (see Ap-

pendix A.3). We take the radius of the Earth to be R = 6371 km, the Earth rotation rate

Ω = 7.292115 × 10−5 s−1, the gravitational constant G = 6.6690941 × 10−11 m3 kg−1 s−2.

The density of the inner core ρIC and that of the fluid core ρ0 near the inner core bound-

ary will be directly calculated in the numerical computation using the data available from

PREM. We will mainly study a modified PREM like Earth model where the density profile

is a parabolic function of the radius of the inner core and a cubic function of radius in the

outer core:

ρIC = a1 + a2x
2

ρ0 = b1 + b2x+ b3x
2 + b4x

3

where a1, a2, b1, b2, b3, b4 are PREM parameters (given in Appendix A.2 ) and x the radius

normalized by the mean Earth’s radius R = 6371 km. From the density profile of PREM in

figure 3.1, it is easy to see the density jump across the ICB and the FC. We will first solve

for the inertial modes of a rotating PREM with neutrally stratified fluid core, and thereafter

compute numerically the frequencies of oscillation of the Slichter modes.

Figure 3.2 shows the inner core oscillating in a random direction from its initial

position to the edge of a maximum shaded sphere. The shaded sphere is the maximum

displacement of the inner core in any direction. In figure 3.2, the shaded area represents

a small portion of the total fluid core interior of the Earth. Figure 3.3 shows the vector

representation of the inner core in motion, including the vector relationships between the

displaced inner core and the outer core system. In this diagram, a, uIC , ρ0 and ρIC are
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3.1. EARTH MODEL

Figure 3.1: The density profile of PREM

Figure 3.2: Inner core in random motion

the radius of the inner core, the inner core displacement, the density of the shadded area or

fluid core and the inner core density as discussed in Peng’s thesis [25] .
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3.2. GRAVITATIONAL AND PRESSURE CONTRIBUTIONS

Figure 3.3: Vectorial representation of the inner core in motion in the surrounding portion
of the fluid core (shaded area). R, R′, a, ρIC , ρ0, uIC and Ω are the field vector, the source
vector, the radius of the inner core, the density of the inner core, the density of the fluid
core, the inner core displacement and the Earth rotation rate respectively [25]

.

3.2 Gravitational and Pressure Contributions

In this section, we implement the effect of the gravitational force Fg, and also the

force due to the pressure contribution Fp. The inner core experiences the gravitational force

acting at any point interior to the inner core and the hydrodynamic pressure applied at the

boundary. So as a starting model, we will use a non-rotating Earth, and recall the equation

of motion of a deformable solid subject to hydrostatic prestress by Smylie and Mansinha

(1971) [25,52].

−ρICω2uIC = ∇ · τ̃ + ρIC∇V1 + ρIC∇(uIC · g0) (3.1)
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3.2. GRAVITATIONAL AND PRESSURE CONTRIBUTIONS

Integrating over the inner core volume, we rewrite equation (3.1) as

−ω2MICuIC =

∫
ICB
∇ · τ̃ dV + ρIC

∫
ICB
∇(V1 + uIC · g0)dV (3.2)

where ω is the modal frequency andMIC the mass of the inner core. By using the divergence

theorem, we rewrite equation (3.2) as

−ω2MICuIC =

∫
ICB

τ̃ n̂1dS + ρIC

∫
ICB

(V1 + uIC · g0)n̂2dS (3.3)

where n̂1, and n̂2 are the outward pointing normal vector in the liquid core, and the inward

pointing normal on the inner core. The stress in the liquid core is given as τ̃ = −(p1 + ρ0u ·

g0)1̃, By substituting the stress τ̃ , and after rearranging we rewrite equation (3.3) as

−ω2MICuIC = −
∫
ICB

(P1 + ρ0u · g0)n̂1dS + ρIC

∫
ICB

(V1 + uIC · g0)n̂2dS (3.4)

Assuming that n̂1 = r̂ at the FC, and n̂2 = −r̂ at the inner core, and also g0 = −g0r̂ at

the inner core, with the implementation of u · g0 = uIC · g0 as in Peng’s work [25], we then

rewrite equation (3.4) as

−ω2MICuIC = −
∫
ICB

P1r̂dS + g0(a)(ρIC − ρ0)uIC ·
∫
ICB

r̂r̂dS + ρIC

∫
ICB

V1r̂dS (3.5)

substituting P1 = ρ0χ into equation (3.5), we finally can write both the contributions of

gravitational force and pressure as

−ω2MICuIC = −ρ0

∫
ICB

χr̂dS + ρIC

∫
ICB

V1r̂dS + (ρIC − ρ0)

∫
ICB

uIC · g0r̂dS (3.6)

where the force due to pressure is given by

Fp = ρIC

∫
ICB

V1r̂dS − ρ0

∫
ICB

χr̂dS, (3.7)
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3.3. INNER CORE EQUATION OF MOTION

and the gravitational force as

Fg = (ρIC − ρ0)

∫
ICB

uIC · g0r̂dS = −ω2
sMICuIC (3.8)

where ω2
s = 4π

3 Gρ0(1− k), and k = ρ0
ρIC

.

3.3 Inner Core Equation of Motion

Newton’s second law states that

∑
F = MICa, (3.9)

where
∑

F is the total force acting on the mass MIC of the solid inner core, and a the

total acceleration of the oscillating body. Now we use equations (3.7) and (3.8) for Fg and

Fp, from the above expansion, and with the addition of the action of the centrifugal force

Fc = −(MIC −M0)Ω2ê3 × (ê3 × u
′
IC), and also the Coriolis force FCor = 2MICΩê3 ×

du
′
IC
dt

where u
′
IC = uIC

R , dS′ = dS
R2 are the dimensionless inner core displacement and surface

element, and χ′, V ′
1 are the dimensionless trial functions defined in chapter 2. Here M0 is

the displaced fluid mass at the ICB. We next drop the prime sign for convenience and also

the time dependence of the inner core displacement. then we rewrite equation (3.9) as

(−ω2uIC + 2Ωê3 ×
duIC
dt

)MIC = −ω2
sMICuIC − (MIC −M0)Ω2ê3 × (ê3 × uIC)

+ ρIC

∫
ICB

V
′

1 r̂dS − ρ0

∫
ICB

χr̂dS (3.10)
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3.3. INNER CORE EQUATION OF MOTION

However, dividing by 4Ω2MIC , and choosing σ = ω
2Ω , η = 1−k

4 , k = ρ0
ρIC

, ω2
s = 4π

3 (1 − k),

xIC = rIC
R , γ = ω2

s
4Ω2 we rewrite equation (3.10) as

−σ2uIC + 2iσê3 × uIC = −γuIC − ηê3 × (ê3 × uIC)

+
3

4πx3
IC

∫
ICB

V1r̂dS −
3k

4πx3
IC

∫
ICB

χr̂dS, (3.11)

We use the inner core displacement uIC = Xmaxê1 + Ymaxê2 + Zmaxê3. Thus, ê3 × uIC =

Xmaxê2 − Ymaxê1, and ê3 × (ê3 × uIC) = −Xmaxê1 − Ymaxê2. We therefore expand the

inner core equations of motion as

[(γ − η − σ2)Xmax − iσYmax]ê1 + [(γ − η − σ2)Ymax + iσXmax]ê2 + (γ − σ2)Zmaxê3

=
3

4πx3
IC

[∫
ICB

V1r̂dS − k
∫
ICB

χr̂dS

]
, (3.12)

From the earlier representation of the trial functions in equations (2.13)-(2.15) and with the

substitution of r̂dS = x2
IC(sin θ cosφê1 + sin θ sinφê2 + cos θê3) sin θdθdφ, we can write

[(γ − η − σ2)Xmax − iσYmax]ê1 + [(γ − η − σ2)Ymax + iσXmax]ê2 + (γ − σ2)Zmax

=

N∑
n=|m|

L∑
l=0

(
3

4πxIC
E[L(n)+l] −

3k

4πxIC
E[L(N+n)+l])fl(x)

∫
ICB

(sin θ cosφê1 (3.13)

+ sin θ sinφê2 + cos θê3)Pmn e
imφ sin θdθdφ,
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3.3. INNER CORE EQUATION OF MOTION

We therefore rewrite the vector equation above as three scalar equations



(γ − η − σ2)Xmax − iσYmax − 3
4πxIC

∑N
n=|m|

∑L
l=0(E[L(n)+l]

−kE[L(N+n)+l])fl(x)
∫
ICB sin2 θ cosφPmn e

imφdθdφ = 0

(γ − η − σ2)Ymax + iσXmax − 3
4πxIC

∑N
n=|m|

∑L
l=0(E[L(n)+l]

−kE[L(N+n)+l])fl(x)
∫
ICB sin2 θ sinφPmn e

imφdθdφ = 0

(γ − σ2)Zmax − 3
4πxIC

∑N
n=|m|

∑L
l=0[E[L(n)+l]

−kE[L(N+n)+l]]fl(x)
∫
ICB cos θ sin θPmn e

imφdθdφ = 0.

(3.14)

Using the orthogonality relation of the Legendre polynomials in equation (2.26), we write

equation (3.14) as follows:

For m = −1 and q = 1

(γ − η − σ2)Xmax − iσYmax − 1
xIC

∑L
l=0(E[L(q)+l] − kE[L(N+q)+l])fl(x) = 0

(γ − η − σ2)Ymax + iσXmax = 0

(γ − σ2)Zmax = 0

(3.15)

For m = 1 and q = 1

(γ − η − σ2)Xmax − iσYmax = 0

(γ − η − σ2)Ymax + iσXmax + 2i
xIC

∑L
l=0(E[L(q)+l] − kE[L(N+q)+l])fl(x) = 0

(γ − σ2)Zmax = 0

(3.16)
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3.3. INNER CORE EQUATION OF MOTION

For m = 0 and q = 1,

(γ − η − σ2)Xmax − iσYmax = 0

(γ − η − σ2)Ymax + iσXmax = 0

(γ − σ2)Zmax − 1
xIC

∑L
l=0(E[L(q)+l] − kE[L(N+q)+l])fl(x) = 0

(3.17)

Considering the variables X0 and X1 adopted in the boundary conditions in sections 2.6.2

and 2.6.3, we rewrite the inner core equation of motion as follow:

For m = −1 and q = 1,

(γ − η − σ − σ2)X0 + (γ − η + σ − σ2)X1 − 2
xIC

∑L
l=0(E[L(q)+l] − kE[L(N+q)+l])fl(x) = 0

(σ − γ + η + σ2)X0 + (σ + γ − η − σ2)X1 = 0

(γ − σ2)Zmax = 0

(3.18)

For m = 1 and q = 1,

(γ − η − σ − σ2)X0 + (γ − η + σ − σ2)X1 = 0

(σ − γ + η + σ2)X0 + (σ + γ − η − σ2)X1 + 4
xIC

∑L
l=0(E[L(q)+l] − kE[L(N+q)+l])fl(x) = 0

(γ − σ2)Zmax = 0

(3.19)
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3.3. INNER CORE EQUATION OF MOTION

For m = 0 and q = 1,

(γ − η − σ − σ2)X0 + (γ − η + σ − σ2)X1 = 0

(σ − γ + η + σ2)X0 + (σ + γ − η − σ2)X1 = 0

(γ − σ2)Zmax − 1
xIC

∑L
l=0(E[L(q)+l] − kE[L(N+q)+l])fl(x) = 0

(3.20)

For the computations of the Slichter frequencies, these equations will be added to the ex-

panded radial component of the 3PD discussed earlier in chapter 2 to form a square matrix,

for which any numerical method can be used to solve for the zeros of the determinant, which

correspond to the frequencies of the Earth’s normal modes.
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Chapter 4

RESULTS AND DISCUSSIONS FOR

A SPHERICAL EARTH

In this section, we first compute the frequencies and displacement eigenfunctions

for some of the inertial modes of a neutrally stratified core for which the results are known

in order to check the validity our results. We will then present and discuss the results for

the frequencies and eigenfunctions of the Slichter modes for the same model .

4.1 Matrix Implementation and Eigenvalues

The matrix to be solved for the eigenvalues of a rotating, compressible and stratified

fluid core is obtained by the implementation of the Galerkin formulation for the numerical

solution of the 3PD. There are 3 equations and 3 unknowns. We have shown that the use

of the orthogonality relation among spherical harmonics leads to the removal of the θ and φ

dependence of field variables. The r dependence of one of the terms in the series expansion
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4.1. MATRIX IMPLEMENTATION AND EIGENVALUES

is linked to every other components in the same series via the chain relations in equations

(2.44)-(2.45).

For each q there corresponds Nmax terms from expanding the r components. Each

equation involves 3 × N × L unknowns and the application of a Galerkin method ensures

that there are 3 × N × L equations. The expansion of the 3PD shows that there are 2 in-

dependent chains representing the dynamics of the core, one links the odd degree spherical

harmonics, the other, the even. For the non-trivial solution of the set of Galerkin equations,

then the determinant of the coefficient matrix must vanish. An example of the shape of the

matrix involved in this study is given by assuming Lmax = 3, Nmax = 1 where Lmax and

Nmax represent the truncation level of the Legendre polynomials and the highest degree of

the spherical harmonics. Then, for the above choice, a 9× 9 matrix is shown below for even

values of q.



u11 u12 u13 v11 v12 v13 0 0 0

u21 u22 u23 v21 v22 v23 0 0 0

u31 u32 u33 v31 v32 v33 0 0 0

w11 w12 w13 u11 u12 u13 v11 v12 v13

w21 w22 w23 u21 u22 u23 v21 v22 v23

w31 w32 w33 u31 u32 u33 v31 v32 v33

0 0 0 w11 w12 w13 u11 u12 u13

0 0 0 w21 w22 w23 u21 u22 u23

0 0 0 w31 w32 w33 u31 u32 u33



×



E1

E2

E3

E4

E5

E6

E7

E8

E9



= 0
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4.2. INERTIAL MODES OF A ROTATING FLUID CORE

Here wij , uij , vij are the coefficients attached to the unknowns E[L(q− 2) + l], E[L(q) + l]

and E[L(q+2)+l] in the Galerkin formulation of the 3PD respectively. The inner product of

trial functions and the terms in the Galerkin formulation of the 3PD gives these coefficients

for different values of l = 1...L, and l′ = 1...L and different values of q = 1...N . The matrix

above is given by first choosing Lmax = 3. Since we are dealing with 3 equations, then for

each incrementation of l′, 3 rows are formed. The incremenation of l contributes in forming

the columns of the matrix, after full incrementation a 9× 9 matrix is finally obtained.

4.2 Inertial Modes of a Rotating Fluid Core

To compute the desired frequencies, we first fixed the value of Nmax and then

increase Lmax until the computed frequency shows convergence, then we will increase Nmax

and repeat the process until the computed frequency converges for any Nmax or Lmax. Here

we compute some of the low order modes for m = 0, and m = 1 for the inertials modes of

a spherical, and neutrally stratified and compressible PREM model. Then later the same

techniques are applied for the computation of the Slichter modes for m = 0, 1,−1.

We search for the zeros of the determinant of the coefficient matrix in the frequency

range |σ| ≤ 1 for m = 1, and 0 ≤ σ ≤ 1 for m = 0. This is because the modes are symmetric

for m = 0, and the dimensionless frequencies of the inertial modes satisfy |σ| ≤ 1. We

adopt Greenspan’s (1968) notation (n, k,m ) for mode labelling [65], where for each n and

m, there corresponds k modes, (n, k,m) refers to the degree of the spherical harmonics, the

order of the mode and the azimuthal wavenumber, respectively. The orders of the modes

are according to the size of their frequencies. For the same azimuthal number m, and n
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4.2. INERTIAL MODES OF A ROTATING FLUID CORE

the smallest modal frequency is labelled (n, 1,m). To avoid repetition, we will only select

positive modes for m = 0. This is because the only difference is that one is prograde and

the other retrograde but the frequencies are the same. However, for m = 1 there is no

symmetry, therefore, every possible frequency will be reported.

Table 4.1: Test of convergence of some of the low order modes for a neutrally stratified
PREM Earth model

Mode N=6, L=12 N=8, L=16 N=10, L=16 N=12, L=18 N=12, L=20

(4, 1, 0) 0.6648 0.6639 0.6643 0.6644 0.6644

(2, 1, 1) 0.5000 0.5000 0.5000 0.5000 0.5000

(4, 3, 1) 0.8527 None 0.8537 0.8530 0.8530

(6, 4, 1) 0.6576 0.6572 0.6573 0.6574 0.6574

In table 4.1, we show the trend of convergence for some low order modes for different

truncations levels. It is shown that for a higher level of truncation L = 16 of the Legendre

polynomial, the modes converge and are stable without fluctuating for the mode (4, 1, 0).

However, the mode (2, 1, 1) converges so fast and shows no fluctuation starting for low

level of truncation L = 3, N = 1. Furthermore, for the modes (4, 3, 1) and (6, 4, 1) the

trend of convergence is up to 3 decimal points from the level of truncation (16, 10), (18, 12),

and (20, 12) respectively. The results shown in table 4.2 represent the frequencies of more

modes of a shell. Columns 2, and 3 represent both the dimensionless frequencies σ = ω
2Ω for

a compressible shell studied for a neutrally stratified fluid core by Seyed-Mahmoud et al.,

2007 [35], and studied in this thesis respectively. We should note that the values in column
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4.2. INERTIAL MODES OF A ROTATING FLUID CORE

Table 4.2: Frequencies of some of the low order modes of a rotating, compressible and
neutrally stratified fluid core (column 1), σBSM (Seyed-Mahmoud et. al., 2007) in column
2, in column 3 those computed in this work, and the truncation level in column 4.

Mode σBSM σ Nmax, Lmax

(4, 1, 0) 0.664 0.664 12, 18

(6, 1, 0) 0.473 0.472 14, 23

(6, 2, 0) 0.833 0.834 12, 25

(2, 1, 1) 0.500 0.500 3, 5

(4, 2, 1) 0.304 0.304 10, 16

(4, 3, 1) 0.852 0.853 12,18

(5, 4, 1) 0.932 0.933 12, 25

(6, 1, 1) -0.703 -0.702 12, 18

(6, 4, 1) 0.657 0.657 12, 18

(7, 2, 1) -0.434 -0.434 10, 23

(7, 5, 1) 0.740 0.740 8, 16

3 were recorded and rounded off to 3 significant figures. The level of truncation is shown in

column 4 for the modes studied in this thesis. It is shown a high agreement between our

results in column 3 and column 4 are taken from Seyed-Mahmoud et al. (2007) [35].
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4.3 Eigenfunctions of Some of the Inertial Modes of the Fluid

Core

Here we present some of the eigenfunctions corresponding to the frequencies shown

in table 4.2. The eigenfunctions were plotted, as previously mentioned, by the help of the

engineering software package TecPlot 10 (re: software company AMTEC ENGINEERING,

INC.). In figure 4.1 (a-g), we show the displacement eigenfunctions for the (2, 1, 1),

Figure 4.1: Displacement patterns for (a): the (2, 1, 1), (b): (4, 1, 0), (c): (4, 2, 1), (d): (4,
3, 1), (e): (6, 1, 1), (f): (6, 4, 1) and (g): (7, 5, 1) modes of PREM in a meridional plane,
φ = 0, for a compressible shell.

(a)

(4, 1, 0), (4, 2, 1), (4, 3, 1), (6, 1, 1), (6, 4, 1) and (7, 5, 1) inertial modes of a modified

PREM. In most figures the displacement is parallel to the boundaries. It is clear that the

overall displacement patterns are regular, but there are some discrepancies in a few spots

on some plots mostly originating from truncation. For some of the modes, the displacement
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(b)

(c)
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(d)

(e)
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(f)

(g)
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patterns are forced to be parallel to the boundaries, especially at the ICB. Therefore, the

mathematical treatment may not be adequate for these modes. Most of the patterns shown

in these figures are very similar to those studied by Poincaré [65]. For the (2, 1, 1) mode,

the displacement patterns are parallel to the boundary. This may be the reason why the

convergence is so fast.

4.4 The Slichter Modes

To solve for the frequencies of the Slichter triplets, we will first highlight how to

implement the matrix generated from the expansion of the 3PD and the inner core equations

of motion previously discussed. Next we will present and discuss the results of the Earth’s

Slichter frequencies for a spherically and neutrally stratified fluid core, with a rigid inner

core, for both non-rotating and rotating cases.

In this section we are dealing with a (3NL + 3) × (3NL + 3) square matrix, in

which 3NL×3NL coefficients arise from the implementation of the 3PD as previously shown

during the study of the inertial modes. However, for a complete set, the inner core equations

of motion must also be added. The boundary conditions provide three extra unknowns X0,

X1, and Zmax from the momentum and Poisson equations, via the implementation of the

surface integral in the Galerkin formulation of the 3PD.

On the search of the Slichter triplets, we show in chapters 2 and 3 that the Slichter

frequencies and displacements correspond to the azimuthal wavenumbers 1, -1, and 0. In

chapters 2 and 3 we also showed that the spherical harmonics of degree 1 (q = 1 in chapter

2 in equations (2.79) and (2.89), also in chapter 3 in equations (3.18)-(3.20)) correspond
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to the Slichter triplets. Therefore, the chain in equations (2.44)-(2.45) which corresponds

to the odd values for the degree of the spherical harmonics describes the Slichter triplet.

However, we change the range of the dimensionless modal frequency σ to 1.5 ≤ σ ≤ 6 for a

search of periods between 2 and 8 hours.

We use the computer language FORTRAN 95 and the IMSL library. There were

different internal routines from International Mathematics and Statistics Library (IMSL) [66]

used for the numerical computation of the frequencies and displacements involved for this

study. In this study, the desired absolute error in the numerical integration of radial functions

is ERRABS= 10−8. However, the chosen tolerance is Tol=10−7. This means that the non-

trivial roots of the determinant of (3×N ×L+ 3) system are found accurate to 10−7. The

integrations with respect to r are evaluated using the IMSL internal double precision routine

DQ2AG [66] for the computation of all the integral terms in the mathematical equations of

this work. The routine DQ2AG integrates by subdividing the interval [a, b] using a globally

adaptive scheme to reduce the absolute error based on the Kronrod rule to estimate the

integral error over each subinterval [66].

We basically use a technique similar to the bisection method. Once the value of

the determinant changes sign for two consecutive values of σ, there exists a root of the

determinant. Assuming that [a, b] is the interval in which the determinant changes sign, the

search of modal frequencies is conducted from b to a searching back and forth with a specific

value of step size which gets smaller in each iteration until the tolerance is satisfied.

We first present the convergence scheme of possible modes as discussed earlier, for

both a non-rotating and rotating case for a neutrally stratified and compressible PREM
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model, and discuss the procedure of mode selection. Once a frequency is converged, the

frequency and the associated degrees of convergence, L and N are reported. The same

procedure is used as in the study of the inertial modes. In tables 4.4, 4.5 and 4.6, we show

the convergence for the azimuthal number m = 0, m = 1, and m = −1 respectively. For

consistency with the literature, we report the period of the mode, rather than the frequency,

T = 2π
f .

Table 4.3: Convergence of the periods of the Slichter central mode (m=0)(hr) for a neutrally
stratified PREM: non-rotating case.

N, L N=3, L=5 N=3, L=7 N=3, L=10 N=3, L=15

m=0 NA 5.254 NA 5.254

N, L N=4, L=7 N=4, L=9 N=4, L=11 N=4, L=15

m=0 5.254 5.254 5.254 5.254

N, L N=7, L=9 N=7, L=10 N=7, L=12 N=7, L=15

m=0 5.254 5.254 5.254 5.254

N, L N=8, L=14 N=8, L=16 N=8, L=18 N=8, L=20

m=0 5.254 5.254 5.254 5.254

N, L N=10, L=14 N=10, L=16 N=10, L=18 N=10, L=20

m=0 5.254 5.254 5.254 5.254

N, L N=12, L=14 N=12, L=16 N=12, L=18 N=12, L=20

m=0 5.254 5.254 5.254 5.254

In table 4.3 we show the convergence of the central mode (m=0) for a neutrally
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stratified PREM for a non-rotating Earth. The highest level of truncation chosen N = 3

and L = 5. By increasing the complexity of the Legendre functions from L = 5...15, and

for a fixed value of N , the value 5.254 h shows the trend of a potential mode. Moreover, by

increasing from N = 4 to N = 12, and keeping in mind that L is increased for any fixed N in

the above range, the mode listed above does not show fluctuation computed up to 3 decimal

points in the table of convergence, for the central mode of a non-rotating, and spherically

stratified PREM model. However a close analysis of table 4.3, and looking at the highest

level truncations corresponding to N = 10 and N = 12, we can conclude that the period of

the central mode has converged up to 3 decimal places and will be reported as 5.254 h.

Table 4.4: Convergence of the periods of the Slichter modes (hr) for a neutrally stratified
PREM: rotating case.

N, L N=3, L=5 N=3, L=8 N=3, L=10 N=3, L=12

m=0
5.254 5.254 5.254 5.254

3.651 3.651 3.651 3.651

3.455 3.455 NA 3.455

m=1

4.976 4.976 4.976 4.976

4.376 4.376 4.376 4.376

3.426 3.426 3.426 3.426

m=-1

5.874 5.875 5.875 5.875

4.376 4.376 4.376 4.376

3.870 3.870 3.870 3.870
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Table 4.5: Convergence of the periods of the Slichter modes (hr) for a neutrally stratified
PREM: rotating case (continued).

N, L N=4, L=7 N=4, L=9 N=4, L=12 N=4, L=14

m=0
5.254 5.254 5.254 5.254

3.651 3.651 3.651 3.651

3.455 NA 3.455 3.457

m=1

4.976 4.976 4.976 4.976

4.376 4.376 4.376 4.376

3.426 3.426 3.426 3.426

m=-1

5.875 5.875 5.875 5.875

4.376 4.376 4.376 4.376

3.870 3.870 3.870 3.870

N, L N=7, L=10 N=7, L=12 N=7, L=14 N=7, L=16

m=0
5.254 5.254 5.254 5.254

3.651 3.651 3.651 3.651

3.455 3.455 3.457 NA

m=1

4.976 4.976 4.976 4.976

4.376 4.376 4.376 4.376

3.426 3.426 3.426 3.426

m=-1

5.875 5.875 5.875 5.875

4.376 4.376 4.376 4.376

3.870 3.870 3.870 3.870
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Table 4.6: Convergence of the periods of the Slichter modes (hr) for a neutrally stratified
PREM: rotating case (continued).

N, L N=8, L=14 N=8, L=16 N=8, L=18 N=8, L=20

m=0
5.254 5.254 5.254 5.254

3.651 3.651 3.651 3.651

3.455 3.455 3.455 3.455

m=1

4.976 4.976 4.976 4.976

4.376 4.376 4.376 4.376

3.426 3.426 3.426 3.426

m=-1

5.875 5.875 5.875 5.875

4.376 4.376 4.376 4.376

3.870 3.870 3.870 3.870

Following the procedure described above for the central mode, we show in tables

4.4, 4.5, 4.6 and 4.7, the convergence of the periods of the Slichter modes of a rotating

spherical Earth for a neutrally stratified PREM. In column 1 are presented the azimuthal

number m = 0, 1,−1 which are associated with the central, retrograde, and prograde modes

respectively. In column 2, the roots of the displayed level of truncation are given. We

can see three possible modes listed for each truncations, starting from N = 3, L = 5 until

N = 7, and L = 10, for the mode with period 5.254 h. However, increasing N = 8, and

choosing L = 14, 16, 18, 20, the suspected eigenvalue 5.254 h shows stability. To ensure

for the convergence of this mode, we increase N = 10 and also increment L = 16, 18, 20.

As shown in table 4.6, the same mode does not fluctuate, therefore we consider that it is
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Table 4.7: Convergence of the periods of the Slichter modes (hr) for a neutrally stratified
PREM: rotating case (continued).

N, L N=10, L=16 N=10, L=18 N=10, L=20

m=0
5.254 5.254 5.254

3.651 None None

3.455 None None

m=1

4.976 4.976 4.976

4.376 4.376 4.376

3.426 3.426 3.426

m=-1

5.875 5.875 5.875

4.376 4.376 4.376

3.870 3.870 3.870

converged. We then assigned it as the mode representing the central mode (m = 0).

From both the convergence for the central mode of a non-rotating case and those

for a rotating and neutrally stratified PREM model presented above, we recover all the

three modes corresponding to the Slichter triplets, for a rotating Earth model. We are

also presented with some false roots in the table of convergence. However, the false roots

either disappear or change considerably when Nmax or Lmax are increased, i.e. there is no

convergence. In table 4.7 we present the departure from the axial mode (m = 0) to the

prograde (m = −1) and the retrograde (m = 1) modes.
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Table 4.8: Possible Slichter eigenperiods corresponding to the prograde (m = −1) and
retrograde (m = 1) modes (column 2) and their departure from the central mode (column
3) for a rotating and neutrally stratified PREM model.

m Slichter eigenvalues (hr) % difference

1 4.976 0.28

1 4.376 0.88

1 3.426 1.83

-1 5.875 0.62

-1 4.376 0.88

-1 3.870 1.38

Table 4.9: Schliter’s eigenperiods (hr) for spherical and neutrally stratified PREM, for both
a non-rotating and rotating modes.

m Slichter eigenvalues (hr)

0 5.254

1 4.976

-1 5.875

Non rotating 5.254

Following the convergence scheme shown in tables 4.4, 4.5, and 4.6, based on

the restriction that the departure of the central mode is the smallest from possible modes

shown in table 4.7, we therefore present in table 4.8, a final selection of the Slichter triplet

corresponding to the central (m=0), prograde (m=-1), and retrograde (m=1) for a spherical

and neutrally stratified rotating (rows 2, 3, and 4), and for the non-rotating (in 5 row)

PREM. As a further check of the validity of our results, we compare them with those studied
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for a stratified fluid core of the PREM by Peng [25] using the two potential description

(TPD), and the subseismic approximation. They are presented in table 4.9. In column

1 the method used, from the second to fourth column, the value of m for a rotating and

spherical Earth model, and finally the fifth column, the mode of a non-rotating case is

presented.

Table 4.10: Slichter eigenperiods (hr) comparison for a spherically and neutrally stratified
liquid core, for a rotating and non-rotating Earth, using differents methods.
3PD: results of this thesis.
TPD: Two Potential Description by Peng (1995).
SSA: Subseismic approximation by Peng (1995).

Method m=0 m=1 m=-1 non-rotating

3PD 5.254 4.976 5.875 5.254

TPD 5.303 4.759 5.972 5.413

SSA 5.301 4.759 5.969 5.411

% diff 3PD-TPD 0.92 4.45 1.63 2.98

% diff 3PD-SSA 0.89 4.45 1.58 2.94

Note that the percentage difference in rows 5 and 6 are evaluated using the formula

%diff=|3PD-TPD|/average (3PD, TPD), and in the second case TPD is replaced by SSA.

Generally speaking, the error between the computed modes for the 3PD and TPD for the

rotating PREM is about 5%, and the maximum difference appears in retrograde mode

(m=+1) and the minimun difference in the central mode (m=0), with respective values of

about 4.45% and 0.92%. The difference for the prograde mode is about 1.63%. Note that

the percentage difference between the 3PD and SSA is still less than 5% following the same
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trend for the prograde and retrograde mode with the discrepancy of about 4.45% and 0.89%

respectively. The difference in retrograde is about 1.58%. However, the percentage difference

between the SSA and TPD against our results for the central mode for a non-rotating PREM

is about 3%. The difference between the results from this work and those from Peng arises

from Peng’s use of an elastic inner core and mantle while we consider them to be rigid, and

also some of the differences may be from the use of the TPD rather than the 3PD.

We next compared the results of this study with the computed frequency in Wu

and Rochester [67]. They used PREM, as in this thesis, and solved the TPD using a Galerkin

formulation, but in their study the trial functions satisfy a priory the boundary conditions.

Note that the percentage differences were calculated as above. In table 4.11 we show our

results along with those of Wu and Rochester [67].

Table 4.11: Slichter eigenperiods (hr) comparison of different authors.
3PD: results of this thesis using the 3PD.
W-TPD: Wu and Rochester (1994) results, using TPD and Galerkin method with boundary
conditions satisfied a priori.

Authors and methods m=0 m=1 m=-1 non-rotating

3PD 5.254 4.976 5.875 5.254

W-TPD 5.310 4.766 5.979 5.420

% W-3PD 1.0 4.3 1.7 3.1

Table 4.11 shows a good agreement of about 1% between the eigenperiods calcu-

lated in this thesis and those studied by Wu and Rochester [67] for the central or polar mode

(m=0). However, the eigenperiods associated to the retrograde (m=+1), and prograde (m=-
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1) are 1.7%, and 4.3% shorter than those of Wu and Rochester [67]. For the non-rotating

case a fair agreement of about 3% between the two methods. This small discrepancy may

be due to the way we handle the boundary conditions. We use the natural character of the

boundary conditions while in Wu and Rochester [67], the continuity of the scalar field was

set in a way that the trial functions satify a priori the boundary conditions exactly.

We next compared the results of this thesis with the results of Rieutord [57]. We

both use the same inner core equations of motion deduced using Newton’s Law. Moreover,

the Earth model adopted in his work is PREM with neutrally stratified and inviscid liquid

core. The difference in Rieutord’s model is that he used a viscous fluid core of PREM, and

also in his study the dynamics of the fluid core was treated using the SSA as compared to

the 3PD in this work. We show in table 4.12, the comparison of the results of this study and

those of Rieutord [57]. In column 1, the method used, and from columns 2-4, the frequencies

for different azimuthal numbers for both methods for a rotating case are given. However, in

column 5 is presented the mode for a non-rotating case.

Table 4.12: Slichter eigenperiods (hr) compared for different representation of the motion of
the fluid
3PD: results of this thesis using the 3PD.
MR-SSA: Michel Rieutord (2002) results, using SSA in the fluid side and IC equation of
motion.

Authors and methods m=0 m=1 m=-1 non-rotating

3PD 5.254 4.976 5.875 5.254

MR-SSA 4.240 3.833 4.614 4.240

% 3PD-MR 23.8 25.9 24.0 23.8
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From table 4.12, the axial, prograde and retrograde modes in this work are 23.8%,

25.9% and 24% respectively larger than those studied by Rieutord [57]. However, the results

for a non-rotating case is 23.8% larger (which is the same as for the central mode). The

lowest discrepancy is shown in the non rotating case, and the largest in the rotating case

for the retrograde mode. The larger discrepancy between the result of this work and those

of Rieutord maybe due to the consideration of the SSA at the fluid side, and also by the

treatment of the fluid as viscous. Moreover, the disagreement between Rieutord and our

work may arise by the choice of constant density of 12 g/cm3 instead of 12.166 g/cm3 for the

fluid core and 13 g/cm3 instead of 12.763g/cm3 for the inner core near the ICB. In addition,

this disagreement maybe partially due to the use of toroidal and spheroidal representations

of the displacement field.

4.5 Slichter’s Eigenfunctions

In this section we will present the displacement patterns of the Slichter modes for a

rotating and non-rotating spherical and neutrally stratified fluid core of PREM. The proce-

dure to compute the eigenfunctions is as follows. After the eigenperiods have been obtained,

we solve for the coefficients of the trial functions using the IMSL internal subroutine DL-

SARG. Note that DLSARG is a double precision IMSL version of LSARG, which solves a

system of linear algebraic equations with real coefficients using iterative refinement via LU

factorization [66]. They are used to compute the displacement patterns, and by the help

of the engineering software package TecPlot 10 the modes associated to the Slichter triplets

are plotted.
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The linear and algebraic equation used to develop the algorithm of the displacement

vector is based on the formula for a neutrally stratified fluid core of the PREM as in Seyed-

Mahmoud et al. [35], namely

σ2(σ2 − 1)u = Γ̃P · ∇(χ− V1), (4.1)

where u, σ, χ and V1 are the fluid motion during Slichter oscillations, the Slichter frequency

associated to the displacement u, the trial functions associated to pressure, and the gravi-

tational potential.

Figure 4.2: Displacement patterns of the the fluid motion during the Slichter oscillation
associated to (a): the central (σ = 5.254028 h), (b): prograde (σ = 5.875292 h) , and (c):
retrograde (σ = 4.976512 h) modes for a neutrally stratified core, in a meridional plane,
φ = 0, for a compressible shell. The axis of rotation is perpendicular to the horizontal plane

(a)
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(b)

(c)
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Figure 4.8 (a-c) shows the displacement patterns for the motion of the fluid in the

fluid core during the Slichter oscillations, the so-called Slichter modes. The motion of the

inner core for the mode in figure 4.8 (a) is along the z-axis, perpendicular to the figure

4.8 (a), and the fluid motion shows similar patterns. A little disturbance of the boundary

conditions near the intersection of the flows, which we believe originates from the effect

of a solid body oscillating along z-axis. Therefore, we can report this type of flow to the

displacement associated of the inner core moving up and down along the axis of rotation, as

it is expected.

Figure 4.8(b) represents the prograde motion of the inner core oscillations associ-

ated with the azimuthal number m = −1. It shows the fluid flowing through the meridional

plane from the left to the right hand side. Figure 4.18(c) shows the flow of the fluid due to

the displacement of the inner core for the azimuthal number m = 1. As in figure 4.9(b), this

flow is directed from the right to the left hand side. For these two modes, the motion of the

inner core is horizontal. The displacement vectors in the fluid core clearly follow the motion

of the inne core. Moreover, the overall displacement patterns are different in direction and

structure, therefore supporting the non-symmetry of these modes.

To compute σ for the Slichter modes, we have used a minimun of 3×10×16 = 480

terms. The error involved in adding the terms for the complexity of the Legendre polynomial

is the main cause of the small discrepancy in the plot of the eigenfunctions. It may appear

that near the inner core boundary, the boundary conditions are not satisfied. However,

recall that these are the displacement vectors for the translational motion of the inner core.

It is expected that the fluid motion is in the direction of the inner core motion.
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Chapter 5

CONCLUSIONS

A great effort to detect the Slichter and other core oscillations of the Earth has

been made in the past few decades. This is due to the development of a superconducting

gravimeter network distributed globally. In this study, the frequencies and displacement

eigenfunctions of some of the low order inertial modes and the Slichter modes are com-

puted numerically using a realistic Earth model. A Galerkin method is implemented for

the numerical integration of the dynamics of the fluid core, and the inner core equations of

motion. The boundary conditions were implemented in a convenient way. The periods of

the Slichter triplet were found to be 5.25403, 4.97651 and 5.87529 hours associated to the

central (m = 0), retrograde (m = 1) and prograde (m = 1) modes for a realistic spherical

Earth model. These results provide a theoretical reference for possible identification and

also for future observations.

The results of this work were achieved by following a number of steps which can

be summarized as:
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-We solve the 3PD for the dynamics of the fluid core.

-We expand the equations using a spherical harmonic representation of the scalar fields V1

χ, and ζ, and use the orthogonality relation and the linear independence of the functions

to remove the θ and φ dependence, so that the final coupled equations are functions of the

radial components only.

-We use the natural character of the boundary conditions to reduce the second order deriva-

tives to first order ones.

-The results for the inertial modes of a spherical and neutrally stratified PREM are com-

puted and compared to those previously studied by Seyed-Mahmoud et al. [35], as a test of

our program.

-The inner core equations of motion were expanded and added to the 3PD for the final form

of the system of equations which needed to be solved numerically for the frequencies of the

Slichter modes.

-We made sure of the convergence of the results by increasing the number of terms in both

θ and r components.

-We also compute the eigenfunctions for their modes and our results are different by as much

as 5%, from those given by Peng [25], and Wu and Rochester [67]. We can attribute the

difference to the fact that Peng [25] used an elastic Earth model whereas we use a rigid

inner core and mantle. Our results are, however, significantly different from those given by

Rieutord [57]. He used a viscous and an incompressible Earth model.
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One of the advantages of this method is that we were able to plot the inner core

oscillation patterns, which show an oscillating solid body moving up and down for the central

mode, and right to left or left to right for the associated prograde and retrograde modes

respectively. In future work, the ellipticity of the equipotential surfaces and the elasticity of

the solid parts of the Earth may be included.
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Appendix A

APPENDIX

A.1 Gradient Operations of the Basis Functions and Scalar

Fields

In a sperical coordinate system, and ignoring the φ dependence e±imφ, we write

∇(fl′Y
m∗
q ) =

dfl′(x)

dx
Pmq r̂ +

1

x
fl′(x)

dPmq
dθ

θ̂ − im

x sin θ
fl′P

m
q φ̂ (A.1)

Following the same scheme of expansion we write

∇V1 =

N∑
n=|m|

L∑
l=1

[
dfl(x)

dx
Pmn r̂ +

1

x
fl(x)

dPmn
dθ

θ̂ − im

x sin θ
flP

m
n φ̂

]
(A.2)

A.2 Gravity

The gravity at CMB is evaluated as

g0 = G

∫ r
0 ρdV

r2
(A.3)
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We therefore rewrite

g0 = G
MIC +MFC

r2
(A.4)

where G, MIC , and MFC =
∫ r
rIC

ρ0dV are the gravitational constant given in chapter 3,

the mass of the inner core reported in the code as xMIC , and the mass of the fluid core

respectively.

A.3 Density Data

As discussed in chapter 3, here we present the density of the fluid core and the

inner core from the PREM data

ρFC = 12.5815− 1.2638x− 3.6426x2 − 5.5281x3 (A.5)

ρIC = 13.0885− 8.8381x2 (A.6)

A.4 Codes to Computes the Inertials and Slichter Modes

In this section, we present the codes used to numerically compute the frequencies

and amplitude displacement of both the inertials and Slichter modes of the model of the

Earth in this work.

A.4.1 Inertial modes for a rotating and neutrally stratified fluid core of

the PREM

The FORTRAN code below computes the (2, 1, 1) mode for the truncation level

L = 5 and N = 3. The flag for the choice of either odd or even modes is given by controlling
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lf .

Program Inertial2 !!!! IC+beta=0
implicit real*8(a-h,o-z)
parameter(lm=5,nm=3)
PARAMETER (lda=3*lm*nm,ldf=lda,N=lda,ntt=1000)
INTEGER IPVT(N), nout
external dlfdrg,dlftrg,umach
dimension Xmat(lda,lda),FACT(ldf,ldf)
call PREM(x,xrho,xdrho,xalpha,xgzero,xbeta,xGrav)
CALL UMACH (2, NOUT)
write(15,*) ’L=5,N=3’
m=1
lf=2
if(m.eq.0) then
xlm=-0.83d0
else
xlm=0.51d0
endif
Lmax=lm
Nmax=nm
h=1.d0/ntt
dett2=1.0d0
sig=0.498d0
dsig=h
tol=1.d-8
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
do 321 i=1,10000000
sig=sig+dsig
write(*,*) sig
if(sig.gt.xlm) goto 322
call Pmatrix(Lmax,Nmax,lda,lda,sig, Xmat,lf,m)
if(lf.eq.2.and.m.eq.0) Xmat(1,1)=1.d0
CALL dlftrg (lda,Xmat,lda, FACT, ldf,IPVT)
CALL dlfdrg (lda,FACT,ldf, IPVT, DET1, DET2)
det= DET1*10**DET2
dett=det1*dett2
dett2=det1
if (i.eq.1.or.i.eq.iloop) goto 21
if (dett.lt.0.0d0) then
if (dabs(dsig).le.tol) then
write(*,90) det1, sig
dsig=h
sig=sig-h/2
iloop=i+1
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goto 321
endif
dsig=-dsig/10
goto 321
endif
321 continue
322 continue
90 format(2f14.8)
end
Subroutine Pmatrix(Lmax,Nmax,nl1,nl2,ysig,Xmat,lf,im)
implicit real*8(a-h,o-z)
dimension Xmat(nl1,nl2)
parameter(maxsub=500000)
parameter (ri=1221.5d3,rm=3480.d3,rt=6371.d3)
parameter(xa=ri/rt,xb=rm/rt,x0=-1.d0,x1=1.d0)
external Sq,Sqp2,Sqm2,S2Nq,S2Nqp2,S2Nqm2,DQDAG,UMACH,dq2ag
external SPq,SPPq,SPqp2,SPqm2,SP2Nq,SP2Nqp2,SP2Nqm2,SPoq,SPoNq,SPo2Nq
common /xd/l,lp,iq,sig,m
common/xxx/xxa,xxb
call umach (2, NOUT)
!x0 and x1 are integration boundaries
!!! Initialization of the matrix elements!!!!!!!!!!!!!!!!!!!!!
m=im
xxa=xa
xxb=xb
sig=ysig
do i=1,nl1
do j=1,nl2
Xmat(i,j)=0.d0
enddo
enddo
ml=Lmax*Nmax
!!!!!!!!!!!!!!!!
errrel=0.d0
errabs=1.d-8
irule=6
! start forming the matrix
do 100 k=1, Nmax
if (lf.eq.2.and.m.eq.0) iq=2*(k-1) !even modes
if (lf.eq.1.and.m.eq.0) iq=2*(k-1)+1 !odd modes
if (lf.eq.2.and.m.eq.1) iq=2*(k) !even modes
if (lf.eq.1.and.m.eq.1) iq=2*(k-1)+1 !odd modes
do 101 lp=1,Lmax
lmp=Lmax*(k-1)+lp !Equation 1 row Momentum equation
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llmp=Lmax*(Nmax+k-1)+lp !Equation 2 row Poisson equation
lmmp=Lmax*(2*Nmax+k-1)+lp !Equation 3 row Entropy equation
do 102 l=1, Lmax
!!!!!!!!!!!!!!!!!!!!!Generating the matrix Xmat
!!===================MOMENTUMEQUATION=========!!
!************************************************************************
!!!Matrix formation of E[L*(q)+l]
lq=Lmax*(k-1)+l
if ( (lq.ge.1.d0) .and. (lq.le.ml)) then
call dq2ag(Sq,x0,x1,errabs,errrel,irule,result1,errest,maxsub,neval,nsubin,alist,blist,
rlist,elist,iord)
Xmat(lmp,lq)=-result1
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqp2=Lmax*(k)+l
if ( (lqp2.ge.1.d0) .and. (lqp2.le.ml)) then
call dq2ag(Sqp2,x0,x1,errabs,errrel,irule,result2,errest,maxsub,neval,nsubin,alist,blist,
rlist,elist,iord)
Xmat(lmp,lqp2)=result2
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqm2=Lmax*(k-2)+l
if ((lqm2.ge.1.d0) .and. (lqm2.le.ml)) then
call dq2ag(Sqm2,x0,x1,errabs,errrel,irule,result3,errest,maxsub,neval,nsubin,alist,
blist, rlist,elist,iord)
Xmat(lmp,lqm2)=result3
endif
!!!End forming elements E[L*(q)+l]
!************************************************************************
!!!Matrix formation of E[L*(N+q)+l]
lqq=Lmax*(Nmax+k-1)+l
if ( (lqq.gt.ml) .and. (lqq.le.2*ml)) then
call dq2ag(Sq,x0,x1,errabs,errrel,irule,result1,errest,maxsub,neval,nsubin,alist,blist,
rlist,elist,iord)
Xmat(lmp,lqq)=result1
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqpp2=Lmax*(Nmax+k)+l
if ( (lqpp2.gt.ml) .and. (lqpp2.le.2*ml)) then
call dq2ag(Sqp2,x0,x1,errabs,errrel,irule,result2,errest,maxsub,neval,nsubin,alist,blist,
rlist,elist,iord)
Xmat(lmp,lqpp2)=-result2
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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lqmm2=Lmax*(Nmax+k-2)+l
if ( (lqmm2.gt.ml) .and. (lqmm2.le.2*ml)) then
call dq2ag(Sqm2,x0,x1,errabs,errrel,irule,result3,errest,maxsub,neval,nsubin,alist,blist,
rlist,elist,iord)
Xmat(lmp,lqmm2)=-result3
endif
!!!End forming elements E[L*(N+q)+l]
!*****************************************************************************
!!!Matrix formation of E[L*(2N+q)+l]
lqqq=Lmax*(2*Nmax+k-1)+l
if ( (lqqq.gt.2*ml) .and. (lqqq.le.3*ml)) then
call dq2ag(S2Nq,x0,x1,errabs,errrel,irule,result11,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmp,lqqq)=result11
endif
write(*,*) result11
!!!End forming elements E[L*(2N+q)+l]
!!=================END of MOMENTUMEQUATION==========!!
!*****************************************************************************
!!=================ENTROPY EQUATION================!!
!*****************************************************************************
!!!Matrix formation of E[L*(q)+l]
lq=Lmax*(k-1)+l
if ( (lq.ge.1.d0) .and. (lq.le.ml)) then
call dq2ag(SPq,x0,x1,errabs,errrel,irule,result111,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmmp,lq)=result111
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqp2=Lmax*(k)+l
if ( (lqp2.ge.1.d0) .and. (lqp2.le.ml)) then
call dq2ag(SPqp2,x0,x1,errabs,errrel,irule,result222,errest,maxsub,neval,nsubin,alist,
blist, rlist,elist,iord)
Xmat(lmmp,lqp2)=result222
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqm2=Lmax*(k-2)+l
if ( (lqm2.ge.1.d0) .and. (lqm2.le.ml)) then
call dq2ag(SPqm2,x0,x1,errabs,errrel,irule,result333,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmmp,lqm2)=result333
endif
!!!End forming elements E[L*(q)+l]
!************************************************************************
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!!!Matrix formation of E[L*(N+q)+l]
lqq=Lmax*(Nmax+k-1)+l
if ( (lqq.gt.ml) .and. (lqq.le.2*ml)) then
call dq2ag(SPPq,x0,x1,errabs,errrel,irule,result101,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmmp,lqq)=result101
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqpp2=Lmax*(Nmax+k)+l
if ( (lqpp2.gt.ml) .and. (lqpp2.le.2*ml)) then
call dq2ag(SPqp2,x0,x1,errabs,errrel,irule,result222,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmmp,lqpp2)=-result222
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
lqmm2=Lmax*(Nmax+k-2)+l
if ( (lqmm2.gt.ml) .and. (lqmm2.le.2*ml)) then
call dq2ag(SPqm2,x0,x1,errabs,errrel,irule,result333,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmmp,lqmm2)=-result333
endif
!!!End forming elements E[L*(N+q)+l]
!*****************************************************************************
!!!Matrix formation of E[L*(2N+q)+l]
lqqq=Lmax*(2*Nmax+k-1)+l
if ( (lqqq.gt.2*ml) .and. (lqqq.le.3*ml)) then
call dq2ag(SP2Nq,x0,x1,errabs,errrel,irule,result110,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(lmmp,lqqq)=result110
endif
!!=================END of ENTROPY EQUATION==========!!
!*****************************************************************************
!!=================POISSON EQUATION================!!
!*****************************************************************************
!!!Matrix formation of E[L*(q)+l]
lq=Lmax*(k-1)+l
if ( (lq.ge.1.d0) .and. (lq.le.ml)) then
call dq2ag(SPoq,x0,x1,errabs,errrel,irule,result1110,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(llmp,lq)=result1110
endif
!!!End forming elements E[L*(q)+l]
!************************************************************************
!!!Matrix formation of E[L*(N+q)+l]
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lqq=Lmax*(Nmax+k-1)+l
if( (lqq.gt.ml) .and. (lqq.le.2*ml)) then
call dq2ag(SPoNq,x0,x1,errabs,errrel,irule,result1010,errest,maxsub,neval,nsubin,alist,
blist,rlist,elist,iord)
Xmat(llmp,lqq)=result1010
endif
!!!End forming elements E[L*(N+q)+l]
!!=================END of POISSON EQUATION============!!
!*****************************************************************************
102 continue
101 continue
100 continue
end
!!!!!!!!!!!!!!!!FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!
function f(l,x)
implicit real*8(a-h,o-z)
external xgender
f=xgender(l,0,x)
return
end
!!!!!!!!!!!!!!!!DERIVATIVES!!!!!!!!!!!!!!!!!!!!!!!!!!!
function df(l,x)
implicit real*8(a-h,o-z)
common/xxx/xa,xb
external dxgender
df=2.d0/(xb-xa)*dxgender(l,0,x)
return
end
!!!!!!!!!!!!!!!!!!!!!!MOMENTUM EQUATIONS FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!!!!
function Sq(xp)
implicit real*8(a-h,o-z)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
bmq= dfloat( (iq*(iq+1)-3*m*m) )/( (2*iq+3)*(2*iq-1) )
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
Sq=(sig**2)*(x*x*dfl*dfp+iq*(iq+1)*fl*fp)+m*sig*(fl*fp+x*fp*dfl+x*fl*dfp)-
(2.d0*iq*(iq+1)/3-m*m)*fp*fl-x*x*dfl*dfp/3-(2.d0*fl*fp-x*fp*dfl+x*fl*dfp)*bmq-

(2.d0*x*x*dfl*dfp/3+2.d0*x*fp*dfl-2.d0*iq*(iq+1)*fl*fp/3)*bmq
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return
end
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function Sqp2(xp)
implicit real*8(a-h,o-z)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
amq2=dfloat((3*(iq+m+2)*(iq+m+1)) )/( 2*(2*iq+5)*(2*iq+3) )
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
Sqp2=amq2*(2.d0*x*x*dfl*dfp/3+2.d0*x*fp*dfl-2.d0*(iq+2)*(iq+3)*fl*fp/3+
2.d0*(iq+3)*(2.d0*fl*fp/3-x*fp*dfl/3+x*fl*dfp/3))
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function Sqm2(xp)
implicit real*8(a-h,o-z)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
cmq2=dfloat( (3*(iq-m)*(iq-m-1)) )/( 2*(2*iq-3)*(2*iq-1) )
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
Sqm2=cmq2*(2.d0*x*x*dfl*dfp/3+2.d0*x*fp*dfl-2.d0*(iq-2)*(iq-1)*fl*fp/3-
2.d0*(iq-2)*(2.d0*fl*fp/3-x*fp*dfl/3+x*fl*dfp/3))
return
end
!!!!!!!!!!!!!!!!!!!!End function of E[L(N+q)+l] and E[L(q)+l]
!*************************************************************
!!!!!!!!!!!!!!!!!!!!Function of E[L(2N+q)+l]
function S2Nq(xp)
implicit real*8(a-h,o-z)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
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fl=f(l-1,xp)
fp=f(lp-1,xp)
S2Nq=sig**2*(sig*sig-1.d0)*x*x*fl*fp
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!End function of E[L(2N+q)+l]
!***************************************************************************
!!!!!!!!!!!!!!!!!!!!!!End MOMENTUM FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!===========================================
!!!!!!!!!!!!!!!!!!!!!! ENTROPY EQUATION FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!
!************************************************************************
!!!!!!!!!!!!!!!!!!!!!!!Function of E[L(N+q)+l] and E[L(q)+l]
function SPq(xp) !function of E[L(q)+l]
implicit real*8(a-h,o-z)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
bmq= dfloat( (iq*(iq+1)-3*m*m) )/( (2*iq+3)*(2*iq-1) )
call PREM(x,rho,drho,alpha,gzero,beta,Grav)
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
g0=gzero/(4.d0*rt*Rotrate*Rotrate) !dimensionless gravity
SPq=-g0*( (sig**2-1.d0/3)*x*x*fp*dfl+m*sig*x*fl*fp-
2.d0*x*x*fp*dfl*bmq/3-x*fl*fp*bmq)
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function SPPq(xp) !function of E[L(N+q)+l]
implicit real*8(a-h,o-z)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
bmq= dfloat( (iq*(iq+1)-3*m*m) )/( (2*iq+3)*(2*iq-1) )
call PREM(x,rho,drho,alpha,gzero,beta,Grav)
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
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g0=gzero/(4.d0*rt*Rotrate*Rotrate) !dimensionless gravity
SPPq= g0*( (sig**2-1.d0/3)*x*x*fp*dfl+m*sig*x*fl*fp-
2.d0*x*x*fp*dfl*bmq/3-x*fl*fp*bmq)-sig**2*(sig**2-1.d0)*x*x*fp*fl
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function SPqp2(xp) !function of E[L(N+q+2)+l]
implicit real*8(a-h,o-z)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
amq2=dfloat((3*(iq+m+2)*(iq+m+1)) )/( 2*(2*iq+5)*(2*iq+3) )
call PREM(x,rho,drho,alpha,gzero,beta,Grav)
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
g0=gzero/(4.d0*rt*Rotrate*Rotrate) !dimensionless gravity
SPqp2=g0*amq2*(2.d0*x*x*fp*dfl/3+2.d0*(iq+3)*x*fl*fp/3)
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function SPqm2(xp) !function of E[L(N+q-2)+l]
implicit real*8(a-h,o-z)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
cmq2=dfloat( (3*(iq-m)*(iq-m-1)) )/( 2*(2*iq-3)*(2*iq-1) )
call PREM(x,rho,drho,alpha,gzero,beta,Grav)
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
g0=gzero/(4.d0*rt*Rotrate*Rotrate) !dimensionless gravity
SPqm2=g0*cmq2*(2.d0*x*x*fp*dfl/3-2.d0*(iq-2)*x*fl*fp/3)
return
end
!!!!!!!!!!!!!!!!End function of E[L(N+q)+l] and E[L(q)+l]
!**********************************************************************
!!!!!!!!!!!!!!! function of E[L(2N+q)+l]
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function SP2Nq(xp)
implicit real*8(a-h,o-z)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
bmq= dfloat( (iq*(iq+1)-3*m*m) )/( (2*iq+3)*(2*iq-1) )
call PREM(x,rho,drho,alpha,gzero,beta,Grav)
fl=f(l-1,xp)
fp=f(lp-1,xp)
alf=alpha/(2.d0*rt*Rotrate) !alf is the dimensionless p-wave
SP2Nq= -(alf**2)*sig*sig*(sig*sig-1.d0)*x*x*fl*fp
return
end
!!!!!!!!!!!!!!!!!!!!!!End ENTROPY EQUATION FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!
!=========================================
!!!!!!!!!!!!!!!!!!!!!!POISSON EQUATION FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!
!*****************************************************************
!!!!!!!!!!!!!!!!!!!!!!function of E[L(q)+l]
function SPoq(xp)
implicit real*8(a-h,o-z)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
x=(xb-xa)*xp/2 +(xb+xa)/2
bmq= dfloat( (iq*(iq+1)-3*m*m) )/( (2*iq+3)*(2*iq-1) )
fl=f(l-1,xp)
fp=f(lp-1,xp)
dfl=df(l-1,xp)
dfp=df(lp-1,xp)
SPoq=x*x*dfp*dfl+iq*(iq+1)*fl*fp
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!End function of E[L(q)+l]
!***********************************************************
!!!!!!!!!!!!!!!!!!!!function of E[L(N+q)+l]
function SPoNq(xp)
implicit real*8(a-h,o-z)
parameter(pi=3.14159265d0)
parameter (rt=6371.d3,Rotrate=7.292115d-5)
common /xd/l,lp,iq,sig,m
common/xxx/xa,xb
external f,df
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x=(xb-xa)*xp/2 +(xb+xa)/2
amq2=dfloat((3*(iq+m+2)*(iq+m+1)) )/( 2*(2*iq+5)*(2*iq+3) )
call PREM(x,rho,drho,alpha,gzero,beta,Grav)
fl=f(l-1,xp)
fp=f(lp-1,xp)
alf=alpha/(2.d0*rt*Rotrate) !alf is the dimensionless p-wave
SPoNq=-4.d0*pi*Grav*x*x*fl*fp/alf**2
return
end
!!!!!!!!!!!!!!!!!!!!!!!!!End function of E[L(N+q)+l]
!!!!!!!!!!!!!!!!!!!!!!End POISSON EQUATION FUNCTIONS!!!!!!!!!!!!!!!!!!!!!!!
!========================================
!!!!!!!!!!! Material profiles of PREM
Subroutine PREM(x,xrho,xdrho,xalpha,xgzero,xbeta,xGrav) ! PREM with solid
inner core
implicit real*8(a-h,o-z)
parameter (ri=1221.5d3,rm=3480.d3,rt=6371.d3,xa=ri/rt,xb=rm/rt)
parameter(c1=11.0487d3,c2=-4.0362d3,c3=4.8023d3,c4=-13.5732d3)!PREM con-
stant
parameter(a1=12.5815d3,a2=-1.2638d3,a3=-3.6426d3,a4=-5.5281d3,xMic=2425084894.30688d0)
parameter(pi=3.14159265d0,Rotrate=7.292115d-5,GC=6.6690941d-11)
xalpha=c1+c2*x+c3*x*x+c4*x**3
xrho=a1+a2*x+a3*x*x+a4*x*x*x ! density
xdrho=a2+2*a3*x+3*a4*x**2 ! derivative of density
xgzero= GC*(xMic + 4*pi*rt*( (a1/3.d0)*(x**3- xa**3) + (a2/4.d0)*(x**4-
xa**4) +
(a3/5.d0)*(x**5- xa**5)+ (a4/6.d0)*(x**6- xa**6)) )/(x*x) !gravity
xbeta=0.d0
!xbeta= 1.d0+xalpha*xalpha/xrho/xgzero*xdrho/rt
xGrav=(GC*xrho)/(4*Rotrate**2) ! evaluate the dmensionless G in poisson
equation
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!**********Associated Legendere polynomials*************!!!!!!!!!!!!!!!!!!!!!!!!
function xgender(l,m,x)
implicit real*8(a-h,o-z)
if (m.lt.0.or.m.gt.l.or.dabs(x).gt.1.d0) pause ’bad argument’
pmm=1.d0
if (m.gt.0) then
somx2=dsqrt((1.d0-x)*(1.d0+x))
fact=1.d0
do 11 i=1,m
pmm=-pmm*fact*somx2
fact=fact+2.d0
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11 continue
endif
if (l.eq.m) then
plgndr=pmm
else
pmmp1=x*(2*m+1)*pmm
if(l.eq.m+1) then
plgndr=pmmp1
else
do 12 ll=m+2,l
pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll
12 continue
plgndr=pll
endif
endif
xgender=plgndr
return
end
!!!!**********Derivatives of the associated Legendere polynomials*************!!!!!!!!!!!!!!!!!!!!!
function dxgender(l,m,x)
implicit real*8(a-h,o-z)
if (m.lt.0.or.m.gt.l.or.dabs(x).gt.1.) pause ’bad argument’
pmm=1.d0
dpmm=0.d0
if (m.gt.0) then
somx2=dsqrt(1.d0-x*x)
dsomx2=-x/dsqrt(1.-d0x*x)
fact=1.d0
do 11 i=1,m
dpmm=-fact*(dpmm*somx2+pmm*dsomx2)
pmm=-pmm*fact*somx2
fact=fact+2.d0
11 continue
endif
if (l.eq.m) then
pgender=pmm
dxgender=dpmm
else
pmmp1=x*(2*m+1)*pmm
dpmmp1=(2*m+1)*(pmm+x*dpmm)
if (l.eq.m+1) then
pgender=pmmp1
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dxgender=dpmmp1
else
do 12 ll=m+2,l
dpll=((2*ll-1)*(pmmp1+x*dpmmp1)-(ll+m-1)*dpmm)/(ll-m)
pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
dpmm=dpmmp1
pmmp1=pll
dpmmp1=dpll
12 continue
pgender=pll
dxgender=dpll
endif
endif
return
end

A.4.2 Slichter modes for a rotating and neutrally stratified fluid core of

the PREM

To compute the Slichter modes, the code above is considered as a subroutine to

generate the coefficients of the matrix of size 3 × N × L by 3 × N × L discussed in the

matrix generation section in chapter 4. However, for the complete set of the matrix of size

3 × N × L + 3 by 3 × N × L + 3, we will add the subroutine involved for the boundary

conditions and inner core equation of motion. Note that in case one wants to test this code,

they will have to add the subroutine above for the call of Pmatrix.

Program Modem1 !!!! Slichter mode for m=1
implicit real*8(a-h,o-z)
parameter(lm=20,nm=10) !
PARAMETER ( lda=3*lm*nm+3, ldf=lda,N=lda,ntt=40)
parameter(pi=3.14159265d0,Rotrate=7.292115d-5)
INTEGER IPVT(N), nout
external dlfdrg,dlftrg,umach
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common/xxx/xxa,xxb
dimension Smat(lda,lda),FACT(ldf,ldf),BCmat(lda,lda),sICmat(lda,lda),Xmat(lda,lda)
character*50 fln
CALL
UMACH (2, NOUT)
write(15,*) ’m=1,L=15 and N=10’
m=1
lf=1
sb=6.d0
Lmax=lm
Nmax=nm
h=1.d0/ntt
do ii=1,lda
do ji=1,lda
Smat(ii,ji)=0.d0
enddo
enddo
!!!!!!!!!!!!
dett2=1.0d0
sig=1.5d0
dsig=h
tol=1.d-7
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
do 321 i=1,20000000
sig=sig+dsig
write(*,*) sig
if(sig.ge.sb) goto 322
call Pmatrix(Lmax,Nmax,lda,lda,sig, Xmat,lf,m)
call Bondcond(Lmax,Nmax,lda,sig,BCmat,lf,m)
call xICmatrix(Lmax,Nmax,lda,sig,sICmat,lf,m)
do ip=1,lda
do ir=1,lda
Smat(ip,ir)=Xmat(ip,ir)+BCmat(ip,ir)+sICmat(ip,ir)
enddo
enddo
CALL dlftrg (lda,Smat,lda, FACT, ldf,IPVT)
CALL dlfdrg (lda,FACT,ldf, IPVT, DET1, DET2)
det= DET1*10**DET2
dett=det1*dett2
dett2=det1
if (i.eq.1.or.i.eq.iloop) goto 321
if (dett.lt.0.0d0) then
if (dabs(dsig).le.tol) then
t=pi/(Rotrate*sig)/3600
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write(*,90) sig, t
dsig=h
sig=sig-h/2
iloop=i+1
goto 321
endif
dsig=-dsig/10
goto 321
endif
321 continue
322 continue
90 format(2f14.6)
end
!!!************************************************!
Subroutine xICmatrix(Lmax,Nmax,nl,ysig,sICmat,lf,im)
implicit real*8(a-h,o-z)
dimension (nl,nl)
parameter (ri=1221.5d3,rm=3480.d3,rt=6371.d3)
parameter(xa=ri/rt,xb=rm/rt,x0=-1.d0,x1=1.d0)
parameter(pi=3.14159265d0,Rotrate=7.292115d-5,GC=6.6690941d-11)
external UMACH,f
common /xd/l,lp,iq,sig,m
common/xxx/xxa,xxb
call umach (2, NOUT)
m=im
xxa=xa
xxb=xb
sig=ysig
do i=1,nl
do j=1,nl
sICmat(i,j)=0.d0
enddo
enddo
call Evar(ro,roIC,xk,eta,xlbd)
ml=Lmax*Nmax
k=1
do 300 il=1,201
xp=-1.d0+(il-1)*del
x=(xb-xa)*xp/2 +(xb+xa)/2
do 301 l=1, Lmax
!!!!!!!!!!!!!!!!!!!!!Generating the matrix Xmat
!!!!!!!!!!!!!!!!INNER CORE EQUATION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Matrix formation of E[L*(q)+l]
lq=Lmax*(k-1)+l
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if ( (lq.ge.1.d0) .and. (lq.le.ml)) then
fl=f(l-1,xp)
res1= 4.d0*fl/xa !
sICmat(3*ml+2,lq)=res1
endif
!!!End formation E[L*(q)+l]
!*********************************************
!!!Matrix formation of E[L*(Nmax+q)+l]
lqq=Lmax*(Nmax+k-1)+l
if ( (lqq.ge.ml) .and. (lqq.le.2*ml)) then
fl=f(l-1,xp)
res2=-4.d0*xk*fl/xa
sICmat(3*ml+2,lqq)=res2
endif
sICmat(3*ml+1,3*ml+1)=xlbd-eta-sig-sig**2
sICmat(3*ml+1,3*ml+2)=xlbd-eta+sig-sig**2
sICmat(3*ml+2,3*ml+1)=sig-xlbd+eta+sig**2
sICmat(3*ml+2,3*ml+2)=sig+xlbd-eta-sig**2
sICmat(3*ml+3,3*ml+3)=xlbd-sig**2
!!!End INNER CORE EQUATION
!************************************************
301 continue
300 continue
end
!!!!!!!!!!!***********************************************
Subroutine Bondcond(Lmax,Nmax,nl,ysig,BCmat,lf,im)
implicit real*8(a-h,o-z)
dimension BCmat(nl,nl)
parameter (ri=1221.5d3,rm=3480.d3,rt=6371.d3)
parameter(xa=ri/rt,xb=rm/rt,x0=-1.d0,x1=1.d0)
parameter(pi=3.14159265d0,Rotrate=7.292115d-5,GC=6.6690941d-11)
external UMACH,f
common /xd/l,lp,iq,sig,m
common/xxx/xxa,xxb
call umach (2, NOUT)
!!! Initialization of the matrix elements!!!!!!!!!!!!!!!!!!!!!
m=im
xxa=xa
xxb=xb
sig=ysig
do i=1,nl
do j=1,nl
BCmat(i,j)=0.d0
enddo
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enddo
ml=Lmax*Nmax
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
errrel=0.d0
errabs=1.d-6
irule=6
del=0.01d0
k=1
do 200 il=1,201
xp=-1.d0+(il-1)*del
x=(xb-xa)*xp/2 +(xb+xa)/2
do 201 lp=1,Lmax
lmp=Lmax*(k-1)+lp !Momentum BC
llmp=Lmax*(Nmax+k-1)+lp !Poisson BC
do 202 l=1,Lmax
!!===================MOMENTUMEQUATION=============
fp=f(lp-1,xp)
BCmat(lmp,3*ml+1)=-0.5d0*sig*(sig**2-1.d0)*x*x*fp
BCmat(lmp,3*ml+2)=0.5d0*sig*(sig**2-1.d0)*x*x*fp
!!=================END of MOMENTUMEQUATION=========
!!=================POISSON EQUATION================
GCp=GC/(4.d0*Rotrate**2)
fp=f(lp-1,xp)
call Evar(ro,roIC,xk,eta,xlbd)
BCmat(llmp,3*ml+1)=-2.d0*pi*GCp*(ro-roIC)*x*x*fp
BCmat(llmp,3*ml+2)=2.d0*pi*GCp*(ro-roIC)*x*x*fp
202 continue
201 continue
200 continue
end
!=============================================
Subroutine Evar(ro,roIC,yk,eta,xlbd) !
implicit real*8(a-h,o-z)
parameter (ri=1221.5d3,rm=3480.d3,rt=6371.d3,xa=ri/rt,xb=rm/rt)
parameter(a1=12.5815d3,a2=-1.2638d3,a3=-3.6426d3,a4=-5.5281d3)
parameter(h1=13.0885d3,h2=-8.8381d3)
parameter(pi=3.14159265d0,Rotrate=7.292115d-5,GC=6.6690941d-11)
ro=a1+a2*xa+a3*xa**2+a4*xa**3 ! FC density near ICB
roIC= h1+h2*xa**2 ! IC density at ICB
yk=ro/roIC
eta= (1.d0-yk)/4
xlbd =(pi*GC*(1.d0-yk)*ro)/(3.d0*Rotrate**2)
end subroutine
!!!!!!!******* END******!!!!!!!!!!!
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A.5 Recurrence Chain

The recurrence chains given below are useful for the expansion of the 3PD when

the effect of the ellipticity is added. Assuming that we have

P2P
m
n E[L(n) + l] = (Amn P

m
n−2 +Bm

n P
m
n + Cmn+2)E[L(n) + l] (A.7)

since the summation is all over n, we can therefore write

P2P
m
n E[L(n) + l] = (Amn+2E[L(n+ 2) + l] +Bm

n E[L(n) + l] + Cmn−2E[L(n− 2) + l]) (A.8)

in which Amn , Bm
n and Cmn are the parameters defined in chapter 2. Following the same

procedure, we can write

(P2)2Pmn = (Amn+4A
m
n+2 +Amn+2(Bm

n+2 +Bm
n ) + [Amn C

m
n−2 + (Bm

n )2 +Amn+2C
m
n−2] (A.9)

+Cmn−2(Bm
n +Bm

n−2) + Cmn−4C
m
n )Pmn

P2P
1
2

Pmn
dθ

= (2(n+ 5)Amn+4A
m
n+2 +Amn+2(3Bm

n+2 + 2(n+ 3)Bm
n ) + [2(n+ 1)Amn C

m
n−2(A.10)

+3(Bm
n )2 − 2nAmn+2C

m
n−2] + Cmn−2(3Bm

n−2 − 2(n− 2)Bm
n )− 2(n− 4)Cmn−4C

m
n )Pmn

A.6 Integrations of the Associated Legendre Polynomial

Below are the necessary integrations for the study of the inertial and also the

Slichter modes by adding the effect of the ellipticity.

∫
sin2 θ

dPmn
dθ

dPmq
dθ

sin θdθ =
∫

[ <
2

3
q(q + 1)(1− P2)−m2 > Pmn (A.11)

2

3
P 1

2

dPmn
dθ

]Pmq sin θdθ
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∫
cosθ

sin θ
[Pmq

dPmn
dθ

+ Pmn
dPmq
dθ

] sin θdθ =

∫
Pmn P

m
q sin θdθ (A.12)

∫
sin2 θ[P2

dPmn
dθ

dPmq
dθ

] sin θdθ = −
∫

[
2

3
(1− 2P2)P 1

2

dPmn
dθ

(A.13)

−P2 <
2

3
q(q + 1)(1− P2)−m2 > Pmn ]Pmq sin θdθ

∫
P2P

1
2P

m
n

dPmq
dθ

sin θdθ = −
∫

[2P2 − 10(P2)2 + 2Pmq + P2P
1
2

dPmn
dθ

]Pmq sin θdθ (A.14)

∫
P2

cos θ

sin θ
[Pmn

dPmq
dθ

+ Pmq
dPmn
dθ

] sin θdθ =

∫
(3P2 + 1)Pmn P

m
q sin θdθ (A.15)

∫
P2[

Pmn
θ.

dPmq
dθ

+
m2

sin2 θ
Pmq P

m
n ] sin θdθ =

∫
[q(q + 1P2P

m
n − P 1

2

dPmn
dθ

]Pmq sin θdθ (A.16)
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