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Abstract

The energy of a graph is the sum of the absolute values of gjeeehlues
of its adjacency matrix. The concept is related to the enefgyclass of
molecules in chemistry and was first brought to mathematicSdtman
in 1978 ([8]). In this thesis, we do a comprehensive studyhenenergy
of graphs and digraphs.

In Chapter 3, we review some existing upper and lower bouads f
the energy of a graph. We come up with some new results in iaigter.

A graph withn vertices is hyper-energetic if its energy is greater than
2n—2. Some classes of graphs are proved to be hyper-energatitindVv

a new class of hyper-energetic graphs which is introducedpaoved to

be hyper-energetic in Section 3.3.

The energy of a digraph is the sum of the absolute values aktile
part of the eigenvalues of its adjacency matrix. In Chaptevel study
the energy of digraphs in a way that Pefla and Rada in [19] thefieed.
Some known upper and lower bounds for the energy of digrapheea
viewed. In Section 4.5, we bring examples of some classegyodghs
in which we find their energy.

Keywords. Energy of a graph, hyper-energetic graph, energy of a di-
graph.
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Chapter 1

Introduction

The concept of the energy of a graph was introduced threeddeago
by lvan Gutman [8]. This notion is related to the total elentenergy
of a class of organic molecules in computational chemisirge total

energy of the so-callent-electrons is calculated by the formula

n

£n= 3 | (L.1)

]:

wheren is the number of the molecular orbital energy levels Ayslare
eigenvalues of the adjacency matrix of the so-called mddeau Hickel
graph. Although in chemistry the expression (1.1) is valdlydor the
class of “Huickel graphs”, the right-hand side of (1.1) idIvdefined for
any class of graphs in mathematics. This motivated Gutmadefioe the

energy of a graph.

Definition 1.0.1 [8] Let G be a graph, thenergyof G, denoted byt (G),
is the sum of the absolute values of the eigenvaluds, ak. if A1, ...,Ap

n
are the eigenvalues &, thenz (G) = Z IAi].
i=

For one example, by using the eigenvalues found in page é4&nargy

of a complete graph of orderis computed as

£(Ky) =|n—1/4|-1(n—1)=2n—-2.



There are some bounds on the energy of a graph. In this thesis,
mention some of the most well-known bounds. For a gi@udf ordern
with medges, McClelland ([17]) in early 70’s, gave the followirgngral

bounds on its energy whefeis the adjacency matrix d@.

2
n

V/2m+n(n— 1)|det(A)F < £(G) < v2mn

A lower bound for the energy of a graph only in terms of its nemb
of edges isz (G) > 2,/m with equality if and only ifG is a complete
bipartite graph plus some isolated vertices. In terms ofntlnaber of
vertices the lower bound is (G) > 2y/n— 1 with equality if and only G
is the staiKy n_1.

For the upper bound, there is a well-known result due to Koaled
Moulton ([14]) which is an improvement on the McCelland bduRor a

graphG with n vertices andn edges wherer# > n, they proved

2
£(G) < er]n-i-J (n—1) [2m— (27m) ]

with equality if and only ifG is Kp, ng, or a strongly regular graph

(SRG) with two eigenvalues having absolute v. mzﬁ"l‘)/”)z).

Next, if we consider the left hand side of the above inequalg a

function of m, it is maximized whenm = (n? +n,/n) /4. By substituting



this amount in the above formula we find

r(G) < MV (1.2)

2

Koolen and Moulton ([14]) proved that (1.2) is also valid 2 < n
and that the equality holds if and only@ is an SRG with parameters
(N, (N+ V) /2, (n+2/1) /4, (n+2,/7) /4).

They also conjectured that for a given- 0 there exists a grap@ of
ordern such that for almost ath > 1, £(G) > (1— s)g(ﬁJr 1) which
was later proved in [18] by Nikiforov.

There was a conjecture in 1978 that between graphs of oxdée
complete graplK, has the maximum energy. Although it was rejected
and it was shown that there exist subgraphispivith energy greater than
that of Ky, it was an introduction for defining hyper-energetic graphs
A graphG with n vertices ishyper-energetiéf £(G) > 2n—2. Some

classes of graphs have shown to be hyper-energetic.

Figure 1.1:G,

In this thesis, we introduce a new class of graphs which weettoat

they are hyper-energetic. Our first example in this class4sregular

3



graph with 13 vertices that we cdl, (see Figure 1.1).

In general case, we construst, as follows. Consider— 2 copies
of Koy andm copies ofK; and one copy oK;. Add edges to make it
2m-regular by adding @ edges from the single verté to vertices oin
copies ofKo. Then add one edge from each verteXeaf, to them copies
of K> (see Figure 3.4 in Section 3.3.1).

Gmis a 2nrregular graph witm = (2m—1)2m+-1 vertices. We found
that the characteristic polynomial &y, is (X — 2m)(x — (2m— 1))2m-3
(x4-1)M=3)Cm-1)(x2 _ (2m— 1))™(x? + 2x — (2m— 3))™ and from that
we can find the energy @&n,. Then we prove that fom > 2, graphGn,
is hyper-energetic.

If we want to generalize the concept of energy for the casei-of d
graphs, we should be reminded that the adjacency matrix isymomet-
ric and the eigenvalues might be complex numbers. Pefia add R

[19] proposed the following definition for the energy of dighs.

Definition 1.0.2 Let g be a digraph, the energy gf, denoted byt (G ),

is the sum of the absolute values of the real part of the eajaas ofg .

In fact, Pefia and Rada proved the Coulson integral fornarlghke case
of digraphs ([19]) and that was the motivation for the Defamit1.0.2.

As an example, consider the digraphin Figure 1.2.
The characteristic polynomial @f; equals<* — 1 and its eigenvalues are

1,—1)i,—i. Therefore (c4) = 2.



]

Figure 1.2:¢4

Rada later in [20] and [21] found some lower and upper bouads f
the energy of digraphs. The upper boundg) < %n(m—i— C2) was
found in [21] wheren,m, andc, are number of vertices, number of arcs,
and number of closed walks of length 2 respectively. The l@guelds
if and only if g is a digraph withg copies of directed cycle of length
2. An upper bound solely in terms of the number of arcs of aagiyris
£ (g ) < mwith equality if and only ifG consists off copies of directed
cycle of length 2 plus some isolated vertices.

The minimum energy for digraphs is O which is attained in &cyb-
graphs. For the minimal energy of digraphs, Rada ([20]) tbarng ) >
v/2¢, wherec; is the number of closed walks of digragh The equal-
ity holds for acyclic digraphs or digraphs with exactly tagenvalues
0, —/C2/2, \/c2/2 with multiplicitiesn — 2,1, 1 respectively.

Energy of digraphs is a new idea and not much work has been done
on it. Energy of most classes of digraphs are not known. Theltsein
this area are limited to the papers [19], [20], [21] of Pefid Rada. In
this thesis, we focus on two classes of digraphs and we findahergy.

Let g be a prime power. Consider the finite fidld. Let §; be the
set of square elements &f. Let g =3 (mod4). The Paley digraph

is a directed graplrg := (7,Aq) with vertices” = [Fq and arcsAq =



{(a,b) e Fq xFq : b—ae€ S}. In Section 4.5 we prove that the energy
of Paley digrapley is one half of the energy of its underlying graj,
LetH = [c; C2 ... Cn) be a Hadamard matrix of order= 4m where
;s are columns off and the last column equals all-one column. Define
C= cic}, i=1,---,n—1. Consider a symmetric Latin squdref order
n with numbers{1,--- ,n} andn on the diagonal ([13]). Construct the
matrix M by changing each numbeabove the diagonal &f with C; and
eachi below the diagonal of with —C; and change the on the diagonal
with a On., matrix. LetD4 be the matrix derived fronM by changing
1 to 0 and—1 to 1, andD, be the matrix derived fronM by changing
—11t0 0. Letg1 and g2 be their corresponding digraphs, respectively.
The energy of the digraphg; and g, is one half of the energy of their
underlying graph as it is proved in Section 4.5.

Throughout, if we give a different proof of any result, we rtien it.



# of vertices

# of edges

lower bound

equality occurs

\/2m-+n(n—1)|det(A)

2
n

n m -
- m 2y/m complete bipartite graph
plus some isolated vertices
n — 2v/n—1 Kin-1
n - 5(vin—n?/%0) -
for n sufficiently large
Table 1.1: Comparing lower bounds for the energy of graphs
# of vertices | # of edges upper bound equality occurs
n m v2mn -
n m 27”‘ + \/(n —1)(2m— (27”‘)2) SRG with 2 eigenvalues
2m—(2m/n)2
2m>n M| = [Ag| = |/ B2
n - n(l%\m) SRG with parameters
(n n—h/ﬁ n+2\/ﬁ n+2\/ﬁ)
T2 T4 4
Table 1.2: Comparing upper bounds for the energy of graphs
# of vertices | # of edges| lower bound | upper bound equality occurs
acyclic digraphs
- - V2C - or digraphs with 3
eigenvalues 0f+/Cp/2
n m - \/%n(m—i- C2) 5 copies of directed
cycle of length 2
2 copies of directed
- m - m cycle of length 2
+isolated vertices

Table 1.3: Comparing bounds for the energy of digraphs




Chapter 2

Preliminaries

In this section, we provide some basic definitions and ugghpositions
which are used throughout the thesis. The definitions arelatd and

are taken mostly from [7].

2.1 Basic Definitions

Throughout this thesis, we refer tagaaph G(digraph g) as an ordered
pair G := (V,E) (¢ := (V,A)) whereV(G) (V(g)) is a set whose ele-
ments are called vertices, alidG) (A(¢g)) is a set of unordered (or-
dered) pairs of distinct vertices, called edges (arcs). #eacgraphG
(digraphg) of ordernif V is a set oin elements. Thenderlying graph
of a diagraph is the graph obtained by replacing each aragftdph, i.e.
ordered pairs, by corresponding undirected edge, i.e.dened pairs.

Theadjacency matriof a graphG (digraph ) of ordernis thenx n
(0,1)-matrixA(G) = [aj] (A(G ) = [&j]), whereajj = 1 if there is an edge
(arc) connecting verteixto vertexj, anda;; = 0 otherwise.

A digraphg is symmetridf whenever(vi,vj) € A(g ), then(vj,v;) €
A(G). A one-to-one correspondence between graphs and symmetric
graphs is given by : G — G whereG has the same vertex set as the

graphG, and each edgévi,vj} of G is replaced by a pair of symmetric



arcs(vi,vj) and (vj,v;). Under the correspondendg a graph can be
identified with a symmetric digraph.

Thedegreeg(in-degre¢ of a vertexvj, denoted by (d.”), is the num-
ber of edges ending &. In a digraph, theut-degreeof a vertexv;, de-
noted byd", is the number of edges startingiatThedegree sequenas
G is the non-increasing sequence of its vertex degrees. Agrbprder
n with an edge between any two vertices isoanplete graphdenoted by
Kn. A graph with no edges is called ampty graphA bipartite graphis
a graph whose vertices can be partitioned into two disjetd er parts
so that the vertices within the same part are nonadjacentomplete
bipartite graphof orderm+n, Kn,p, is a bipartite graph such that every
pair of vertices in the two disjoint se¥g§ (with mvertices) and/, (with n
vertices) are adjacent. The gralihn_1 is called thestar graph denoted
by S,. A graph ismultipartiteif the set of vertices in the graph can be
divided into non-empty subsets or parts, such that no twiicesrin the
same part have an edge connecting thencofplete multipartitgraph
is a multipartite graph such that any two vertices that atemtihe same
part have an edge connecting them.

The complemenbf a graphG = (V,E) is a graphG = (V,E) where
E is the complement oE with respect to all 2-subsets of vertices. A
subgraph(sub-digraph of a graphG (digraphg) is a graph (digraph)
with vertex and edge (arc) sets that are subsets of thaseAfubgraph

induced by a subset X V in graphG (digraphg) is a graph (digraph)



2-pseudo regular 3-pseudo regular 4-pseudo regular

Figure 2.1: Pseudo regular graphs

with vertex seiX, and edges (arcs) are thos&zthat have both endpoints
in X. An induced subgraph isomorphic to a complete graph iscalle
cliqgue The complement of a clique is calledclique A supergraphof

a graphG is a graph that haG as a subgraph.

A walk in a graphG (digraph g) is a sequencepeivi...V,_1€e/Vy,
whose terms are alternately vertices and edges (ar&s) @ which are
not necessarily distinct, such thatis an edge (arc) starting &t_1 and
ending atv;, 1 <i < /. If vo = v, we call it aclosed walk

A k-regular graphis a graph where each of its vertices has the same
numberk of neighbors, i.e. each vertex is of degieeA k-regular di-
graphis a digraph where each of its vertices has the same out-elagce
in-degree equal tk. The adjacency matrix ofleregular graph (digraph)
has a constant row and column simin general, we call matrices with
constant row and column suknthek-regular matrices

The 2degreeof a vertexv; of a graphG, denoted by;, is the sum of
the degrees of the vertices adjacentjtd heaverage-degreef v; ist; /d;.

The graphG is k-pseudo regulaif each vertex; of G has average-degree

10



k ([26]). Any k-regular graph ik-pseudo regular, but the converse is
not necessarily true. Figure 2.1 shows some examples otipsegular
graphs.

A pathin graphG (digraphg) is a walk which contains no repeated
vertices. A grapl@ (digraphg) is connecteqweakly connectedf from
any vertex to any other vertex there is a patl@iig). If G is not con-
nected we call it @isconnectedraph. The connected grahs of index
r if removal ofr + 1 edges results in a disconnected graph aiglthe
smallest number with this property. A digraphsisongly connected
for every pairu, v of vertices, there is a path fromto v and one fronv
to u. A componenfweak componehtf a graph (digraph) is a maximal
connected subgraph (weakly connected sub-digraph). sirbag com-
ponentsof a digraph are the maximal strongly connected sub-digraph
Note that ifg is a strongly connected digraph withvertices andn arcs,

thenn < m.

2.2 Eigenvalues of a graph

The characteristic polynomiabf a matrixA is the polynomial d€i —
xl). The characteristic polynomial of the graghis the characteristic
polynomial of the adjacency matrix of the graph. We denogectiarac-

teristic polynomial of the grap by ®g(x).

11



Theorem 1 [5] If G1, Gy, ..., Gk are the components of the graph, we have

(DG(X) = (DGl (X)(DGZ (X)...(DGK(X) . (2.1)

The formula (2.1) is also valid for the case of a digrapland its strong
components;1, G2, ..., Gk

The roots of the characteristic polynomial are éigenvaluesf A. A
non-zero vectoy is aneigenvectoof A with eigenvalue\ if the equation
Av= Av is satisfied. Note that an eigenvector cannot be the zerowect

Three useful properties of eigenvalues of a matrix are:

Theorem 2 [5] Given a symmetric R n matrix A with eigenvalues; >

... > Apn, we have the following

1. (Interlacing property ) [5] If Bmxmis principal submatrix of A with
eigenvalues {> ... > Um, We havehg > W > Ap_mik, for k=

1,...m;

2. (AM-QM Inequality )[23] Arithmetic mean is less than quadratic

mean

- - : (2.2)

MAA2+.. +An _ \/}\§+)\§+...+)\§ .

3. (Rayleigh’s principle) [1] For a given vectox, the Rayleigh quo-
. XAXE
tient Ra(x) = o satisfies

A <Ra(x) <\ (for all nonzerox € R") . (2.3)

12



If we choose an all-one vectpe=[11--- 1] and apply the Rayleigh’s
principle for matrixAnxn, thenAn < Ra(j) = ; < A1, Wheresis the sum

of all entries ofA. The equality happens whéis regular with row sum
S

n

Theorem 3 [11] (Schurs Unitary Triangularization Theorem)
Given an nx n matrix A with eigenvalues, > ... > Ap, there is a uni-
tary nx n matrix U such that 7= U*AU is upper triangular and each

diagonal element of Tjitis equal toa;.
A matrix isnormalif it commutes with its conjugate transpose.

Theorem 4 [11] Let A and B be normal matrices. If ABBA then there
exists a unitary matrix U such that'aU and U*BU are diagonal matri-

ces.

The eigenvalués) of a graph or digraph is (are) defined to be the
eigenvalue(s) of its adjacency matrix. It is not hard to e & graplG
has only one eigenvalue if and only&is an empty graph. Thepectral
radiusof Gisr = max{|Aj| : Aj is an eigenvalue d&}.

Note that since the adjacency matrix has zero on the diagomahlso
an eigenvalue o6G. The spectrumof a graph (digraph) is the multiset
of eigenvalues of the graph. The spectra of some graphs anerkn
For example, for the complete graph, the eigenvalues ame— 1 (with
multiplicity one) and—1 (with multiplicity n— 1). For the star graph
S,, the eigenvalues are/n— 1 (each with multiplicity one) and 0 (with

13



multiplicity n— 2). For the spectrum of the complete bipartite graph, we

have the following useful lemma.

Lemma 2.2.1 [2] The spectrum of the complete bipartite grapghcon-
sists of+,/mn (each with multiplicity one) and (with multiplicity m+
n—2).

PrOOF The adjacency matrix dfmn, A with order(m+n) x (m+n),

is of the form

OI’\XI’] 1nxm

A—

1m>< n Om>< m

Define matrice8z.2 andSm )2 to be

0 m S 1n><1 0n><1

n 0 Om><1 1m><1

It is straight forward thaAS= SB Now, if vis an eigenvector of matriz
for an eigenvalu@, thenSvis an eigenvector dAfor the same eigenvalue
A

Bv=Av = A(SVY) = ASv=SBv=S\v=A(SV)

Now, B has eigenvalues-y/mn, which are the nonzero eigenvalues of

Kmn. But the rank ofA is 2 and so, the rest of the eigenvalues ar&D.

The method that we used in the above proof is callecethetable par-
titions ([2], page 28). LeA be a symmetrie x n matrix with rows and

columns indexed b= {1,...,n}. Suppose = {ly,...,I; } is a partition

14



of I, where|lj| = nj. Now, we partitiorA into blocks of sizenj according

to I:
A1 -+ Arx

A1 - An

If the row sum of each blockj is constant, the partition is callesjui-
table We define theharacteristic matrix S= [s;] to be then x r matrix
so that the rows are indexed bynd the columns are indexed byand

1 ielj;

Sj =

0, otherwise.
Define thequotient matrix B= [bjj] to be ther x r matrix wherebj; is
the average row sum &{;. In an equitable partition we have;1 = bjj1

and thereforeAS= SB ([2], page 28

Lemma 2.2.2 [2] If the symmetric matrix A has an equitable partition
then the eigenvalues of the quotient matrix B are also thensiglues of

A.

PROOF Supposa is an eigenvalue dB with the corresponding eigen-

vectorv. ThenBv= Avimplies

ASv= SBv= ASv

and thereforeSvis an eigenvector oA with the eigenvalua. [

15



There are also some more useful properties about the spectiaigraph.

Proposition 2.2.1 [5] Suppose G is a graph of order n with m edges and

with eigenvaluedsy, ..., A. The following statements hold:
1. The numberay, ..., A, are real andy ! ; Aj = 0.

2. 3 M =2m, 3 ;AiAj=—m, and so, if m=0we have\; = ... =

)\n:O.

3. If m> 1, andA is the greatest eigenvalue aig is the smallest

one, we have

(a) 1 <A1 <n-—1. The upper bound holds if and only if G is a
complete graph, and the lower bound is reached if and only

if G is union of some Ks and K;'s.

(b) —A1 <A, < —1. The upper bound is attained if and only if G
is the union of complete graphs, and the lower bound holds
if and only if a component of G having the greatest index is a

bipartite graph.

4. G has two distinct eigenvalues if and only if G is the unibm,0
complete graphs of ordey; + 1, where g is the multiplicity ofA;.

In this case, the other eigenvalue+4 with multiplicity r1A;.

5. Suppose m 1. The spectrum of G, say S, is symmetric with respect
to the zero point, i.e. for evetye S,—A is also in S with the same

multiplicity, if and only if G is bipartite.

16



Theorem 5 [5] If the spectrum of graph G contains exactly one positive
eigenvalue, then G is a complete multipartite graph pluses@sulated

vertices.

PROOF The isolated vertices would add some 0s to the spectrum of a
graph. So, without loss of generality, we may ignore theaitedl vertices.
If Gis not a complete multipartite graph, it has the subgraptvbak an

induced subgraph

® X

But xis not an isolated vertex i@ and so, G has at least one of the graphs

Hi, H2, or Hz as an induced subgraph.

o ] Z'
o —0 o——o g

Hiy H> Hs

However, all these graphs have two positive eigenvaluesttzarefore,
by Theorem 2 (interlacing property}, has at least two positive eigenval-

ues. A contradiction.

17



Figure 2.2: Paley graph of order 13
2.3 Strongly Regular Graphs

Definition 2.3.1 [7] A strongly regular graph(SRG) with parameters
(n,k,A, ) is ak-regular graph of ordem where every two adjacent ver-
tices have the same numbeiof neighbors in common, and every two

non-adjacent vertices have the same nunplErneighbors in common.

The adjacency matriA of an SRG with paramete(s, k, A, ) satis-

fies the equation
AZ = Klp+ AN+ (I — In—A), (2.4)

wherel, is then x n all-one matrix.

The Paley graphof orderg, g = 1(mod4) a prime power, is a graph
P with g vertices such that two vertices are adjacent if their daffiee is
a square in the finite fielffg. Note that in order to have the adjacency
matrix of a graptg must be 1 (mod 4). A Paley graphiis, in fact, a strongly

regular graph with parametetg, %%, 9,2, 9.1). The eigenvalues of a

18



Paley graph aré%l, 7%” with multiplicities 1, q%l, q;zl respectively

[18, 22]. Figure 2.2 shows the Paley graph of order 13 whi@niSRG
with parameter$13 6, 2,3).

The eigenvalues of a strongly regular graph with paraméteksA, )
in general are known and consistlofwith multiplicity 1) and the two
rootsxy, X, of the polynomiak? 4 (u— A)x+ (u— k) (with multiplicities
r and s, calculated by solving the simultaneous equatichs=n—1
andk+rx; 4+ sx = 0).

We can extract SRGs from some types of matrices.

Definition 2.3.2 A Hadamard matrixis a squard —1, 1)-matrix whose
rows are mutually orthogonal, i.e. f is a Hadamard matrix of ordex,

HH! = nl,,, wherel, is then x n identity matrix.

The order of a Hadamard matrix must be 1, 2, or a multiple of 4.
A Hadamard matrix is calledraphicalif it is symmetric with constant
diagonal 1. IfH is a graphical Hadamard matrix of ordewith 1 on the
diagonal Ay = %(Jn —H) is the adjacency matrix of a graph.

One way to get new Hadamard matrices from old is to use the Kro-
necker product. Th&ronecker producof matricesA = [&jj]mxn andB
is ap x g matrix, denoted byA® B, is the block matridxC = [&;;BJ. If Hy
is a Hadamard matrix of order, andH, is a Hadamard matrix of order
ny, thenH; ® Hy is a Hadamard matrix of ordern,. The Kronecker
product of two regular graphical Hadamard matrices givesraar regu-

lar graphical Hadamard matrix.

19



If H is ak-regular (recall that matrices with constant row and column
sumk are thek-regular matrices) and graphical Hadamard matrix with 1

on the diagonal, it is easy to see tldat satisfies

A = In+ (In—1n) (2.5)

which shows that the associated gr&pbf Ay is a strongly regular graph

with parametersn, (n—k)/2, (n—2k) /4, (n— 2k)/4).

Definition 2.3.3 A Bush-typeHadamard matri¥d = (Hij) of ordern =
4Kk2, whereH;; is a X x 2Kk block matrix, is a Hadamard matrix with the

propertiesH;i = J, andH;jJox = JcHij =0, fori # j, 1 <i, j <2k

Kharaghani [13] constructed a Bush-type Hadamard matrordér

n? from a Hadamard matrix of ordex

Theorem 6 [13] If there exists a Hadamard matrix of ordeendk, then

there exists a Bush-type Hadamard matrix of ordeen1ek?.

PROOF Supposé! = [c; C; ... ¢y is a Hadamard matrix of orderwhere
c;s are columns o so that the last column df equals all-one matrix
(this can be done by multiplying rows byl). Define fori =1,---,n,

C= cic}. It is easy to see that the following are true:
1. Fori=1,---,n,Cjis symmetric with diagonal 1.

2. Fori=1,---,n—1,C; has row and column sums equal to 0.
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3.GCj=0ifi#j,1<i,j<n.
4. C2+C5+...+C3=nHH' =2,

Now, consider a Latin square= [g;j] such that for i, j <n, &j =
j+n—i( modn). We obtain a Bush-type Hadamard matrix of ordér

by replacing each entiiyof A by matrixC;. [
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Chapter 3
Energy of Graphs

In this section we outline a few results on the energy of gsap@ne
of the long known results is the Coulson Integral formulatfee graph

energy.

Theorem 7 [8] Let G be a graph with n vertices art;(x) be the char-

acteristic polynomial of G. Then

-2 (o)

%((DG(X) andi=+/—1.

where®g (x) =

PROOF LetA1 > ... > A, be all the eigenvalues of the graghand let
zbe a complex variablePg(z) = [_;(z— Vi)™, wherey'_; ni = nand

vi's are distinct eigenvalues @. Now, we have

O5(2) Y (nz—v)" i az-v))

Pe(2) Miza(z—vi)" G2 Vn'

Therefore ®(x) /P (X) is an analytic function with only simple poles,
Vi,---,Vp. Chooser > A1. LetT (Figure 3.1) be the contour that goes
along they-axis from the pointO,r) to point(0, —r) and returns tq0,r)

through a semicircle with radius Note that only positive;’s are interior
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Figure 3.1: Contour

to the contouf . Now, define the function

and apply the Cauchy integral formula to it. We get

niz niz

i?{f(z)dz—ij{ é dz—i é y{
211 Jr 21 ri;z—vi _Zmi; rZ—V

1
:ZniVi ZZNZEE(Q)

dz

(3.1)

wherey , is taken over the positive eigenvalues. The last equalit$.it)

comes from the fact that!_ ; Aj = 0.
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Sincenis constant,

%%r f(z)dz= Zim}{[f(z)—

Lety; be the semicircle in the contolir We have

L L

niz ! nwv,
f(z)—n dz:/ 1= _n dz:/ 17 dz (since S ni=n
/yl[ @=ndz= || 3120 -mldz= | 5 3Edz (since 3 =)

J

: 1 i 7 irel
=> njvj/ dz= z njvj / ———dt
- yi Z— V] 1 relt — v

1=

and

z  irelt
/2 h dt_/ |dt+/ dt_m+/ —_dt
el —v; .. -z Vj re' V]

If r — +o0, we havef), ;~-dx=1i and therefore

dx U njvj =0.
z i=
/ylJ 1x Vj

Thus,

57(6) = 5 flt@-ndz= o [ “[t(y)—ridy= - [ “In—fy)dy

and the result follows[
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The Coulson formula states that the energy of a graph depamdts
characteristic polynomial. In chemistry, this formula sisahat the en-
ergy of a molecule solely depends on its structure.

Coulson formula is perhaps the only theorem which gives attex
formula for finding the energy of a graph and yet the formul&aidy
complicated. There are some lower and upper bounds for tegeof
graphs which only depend on the number of vertices and edyes.of

the well-known bounds is the McClelland bound.

Theorem 8 [8] (McClelland, 1971) Consider a graph G of order n with

m edges. Let A be its adjacency matrix. We have

2
n

\/Zm-l— n(n—1)[det(A)[n < £(G) < v2mn (3.2)

PROOF LetA; > Az > ... > Ay be the eigenvalues @. Let u be the

arithmetic mean of thg@ distinct termgAi|[Aj| (i < j), i.e.

25 N
nin—-1) ~’

andn is the geometric mean of the ternag||A;| (i < j), i.e.

n(nz—l)
n=<ﬂMMMO
1<]

2 2
n

_ (ﬂmn—l)m - <i|j|m|> — | detA|n .
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Now, by Proposition 2.2.1

n 2
z2<G>:<Z|m|> Z|A|2+zz|x||xj|—2m+n<n .

i<]

Using the fact that the arithmetic mean of non-negative remnis always
greater than their geometric mean, we get the lower boun8.2).(For
the upper bound in (3.2), note that on one haiid; 37_; (|Ai| — [A; ?is

always a non-negative quantity; on the other hand

ilé |)\|—|)\J| 2 1.Z\|)\ |2+ZZ|)\J|2 Z\|)‘| |}\J|

— 2mn+ 2mn— 2£2(G)

Therefore, s/nn— 22 2(G) > 0 and the result follows[]

3.1 Minimal energy graphs

Many results on the minimal energy have been obtained favwaclasses

of graphs. One of the very well-known results is the follogitheorem.

Theorem 9 [8] Let G be a graph with m edges, then
£(G) > 2¢/m

with the equality attained if and only if G is a complete bitit@rgraph

plus some isolated vertices.
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PROOE )
26 = (S ) =3 N2 |

2N =2 w22 Nl

.Z)\i)\j

i<]

> 2m+-2 (Triangle inequality

=2m+2m=4m (Proposition 22.1)

The equality happens if and only if the graph has exactly as#ipe and
exactly one negative eigenvalue. This happens if and oriyisfa com-
plete bipartite graph plus some isolated vertices (by uSimgorem 5).
0]

Now, if we want to find a bound which depends only on the numlber o

vertices, we may restrict ourselves to graphs without tedlaertices.

Theorem 10 [8] Let G be a graph of order n with no isolated vertices.
We have

£(G) >2vn—1.
The equality holds if and only if G is the star graph S

PROOF. If G is connected, then it has at least 1 edges and the theo-
rem is a result of Theorem 9. L& be disconnected withcomponents,
Gy,---,Gp with ng, - -+, ng vertices, respectively. We can apply the theo-

rem for each connected component:

£(Gj) >2y/n—1 (fori=1,---.¢)
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Thus,

E(G)if(a)nimZJ (ii\/m)z

= ZJ i(ni -1) -I—Z.Z( N — 1\/ﬁ

>2y/n—0+0(0—1) (sincen; > 2)

—2\/n-1+(-12>2/n"1

Note that there aré(¢ — 1) /2 summands of the fornyn; — 1/ng — 1.
O

Therefore, among graphs of orderthe star grapls, has the minimal
energy. In [4], Caporossi et al by doing series of experimantd com-

putations made a conjecture for the minimum energy graphs.

Conjecture 3.1.1 [4] Connected graphs with minimum energy ard 6
vertices and n- 1 < m< 2(n—2) edges are stars with mn+ 1 addi-
tional edges for i< n+ (n—7)/2 [these additional edges are all con-
nected to the same veriexand bipartite graphs with two vertices on
one side, one of which is connected to all vertices on ther ctide for

m>n+(n—7)/2.

The conjecture is proved to be true for=n—1,2(n—2) in the same

paper [4]. In [12] the conjecture is proved for= n, and in [16] the
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second part of the conjecture on bipartite graphs is proeacptetely.

Yet the conjecture is still open in the general case.

3.2 Maximal Energy Graphs

Since the energy of a graph can be used to approximate thettota
electron energy of the molecule, it has been intensivelgistlby many
scholars. One of the most significant result is the upper d@lmained
by Koolen and Moulton in [14]. In fact, they found the uppemnbd
”(Lz\/ﬁ) for the energy of a graph of orderand characterized the max-
imal energy graph attaining this bound. Here, we review sofrtbeir

results.

Theorem 11 [14] Let G be a graph of order n with m edges.2th > n,

2
£(G) < 2r:n+J (n—1) [2m— (2?”1) ] , (3.3)

and equality is attained if and only if G ispK3K>, or a strongly reg-

then

ular graph with two eigenvalues which both have the absousiee

2m—(2m/n)?2
n-1 )

PROOF. LetA; > ... > A, be the eigenvalues @. Theorem 2(2) shows
thath1 > 2" and from Proposition 2.2.1(2) we hay8 ; A? = 2m. There-
fore,

n
;}\F =2m—A2, A?<2m
i=
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Applying Cauchy-Schwartz inequality to the vect@(s;|,...,|An|) and

(1,1,...,1) with n— 1 entries, we get

n

P \/ (n—1)( i\m =/(n-D@Em-23). (@4

SinceA1 >0, E(G) <A1+ \/(n— 1)(2m—A2). Now, using the fact that

the functionF (x) := x+ 1/ (n— 1)(2m— x2) is decreasing on the interval
v/2m/n < x < v/2m and that,/2m/n < 2m/n < A1 (since 2n > n), we
haveF (A1) < F(2m/n) and so, inequality (3.3) holds.

Sincez (5Kz) = nand £ (K,) = 2n— 2, if graphG is either5Kz or
K the equality hold in (3.3).

If equality holds in (3.3), thei; must be 2n/n. ThereforeG should
be regular of degreen2/n. Also, the equality must hold in (3.4), and we
(2m—(

;”1‘/”)2) for 2 <i < n. So, we have three possibilities:

have|Ai| = o

1. Gis 5Ka. Its eigenvalues are1 (both with multiplicity 5);

2. GisKy. Its eigenvalues ame— 1 (with multiplicity 1) and—1 (with

multiplicity n— 1);

3. G is a non-complete connected strongly regular graph witbethr

eigenvalues having distinct absolute values equatttr /(2m— (2m/n)2) /(n— 1).

This completes the proof.]

Note that Theorem 11 is an improvement on the McCelland boumd

fact, for the functionF (x) in the proof we havé= (\/2m/n) = v/2mn
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SinceF decreases on the intervgd2m/n < x < v/2m, we have

2:+J (n—1) [2m— (2?”])2] <+/2mn

and the equality holds if and only ii2= n andG = (n/2)Ka.

Theorem 12 [14] Let G be a graph with n vertices. Then

£ (G) < MV (3.5)

2

and equality holds if and only if G is a strongly regular grapfth pa-

rameters

(n,(n++/n)/2,(n+2v/n)/4,(n+2v/n) /4). (3.6)

PROOF Supposé& hasmedges and> n. In Theorem 11, consider the
left hand side of the inequality (3.3) as a functiomafIt is maximized
whenm= W. Then on replacingn in inequality (3.3) byw,
we obtain the inequality (3.5). By Theorem 11, the equaldidk if and
only if Gis a strongly regular graph with parametéms(n+./n)/2, (n+
2,/n)/4,(n+2y/n)/4).

If 2m < nthenG has at least— 2misolated vertices. L&b be a graph
obtained fromG by deleting then — 2misolated vertices. Therefor&
is a graph with Bn vertices andn edges. By Theorem 1% (G) <2m<
n< g(1+ V). Sincez (G) = £ (G), the proof is completel
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In fact, as Nikiforov later proved in [18], for a given> O there

exists a grapl® of ordern such that for sufficiently large> 1, £(G) >

(1_e)g(ﬁ+1).

Theorem 13 [18 For all sufficiently large n, there exists a graph G of

order n such that (G) > g(\/ﬁ —nt/10),

PROOF Letmbe the number of edges@and letA1]| > |A2| > ... > |Aq|

be the eigenvalues @. By using property 2 of Proposition 2.2.1 we have
2m—Maf? = A2+ Anl? < A2+ A2l A3l + .+ [A2][An|

< A2|(E(G) — [Aa)).
Therefore, ifm > 0 we have

2m— ‘}\1|2

£(6) > M+ T

(3.7)

First, we prove the theorem for a prinpe> 11 so thatp = 1(mod4).
ConsiderP(p), the Paley graph of ordgr. Recall from page 19 that the
Paley graph is in fact strongly regular with parametgrsp—1)/2, (p—
5)/4,(p—1)/4), the number of edgeg%, the largest eigenvalue

1 1
_1 - Il s P
A= p7 and the second largest eigenvalug = | 2 & = —i—2p2_

Therefore, by (3.7) we have

5 p—1 2p(p—1)/4—(p—1)?/4
B(P(R) > Py
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3, 1 s
>P1(g, p+11 _pPrproz pr
2 11 ph 2 2

Consequently, the theorem is true for a pripxe 1(mod4).

In the general case, for a sufficiently largethere exists a prime
p=1(mod4 suchthan < p<n+ nz+€, For a largen, fix a primep
such thatp < n+ ne /2 and consider the Paley gragh(p), of orderp
with eigenvalued\; > ... > Ap. LetK be a set oh vertices inP(p) and
consider the subgrag® (n) of P(p) induced byK. The average number

of edgesm, in Pk (n) is obtained as follows

mk _ n(n-1)/2 _ n(n—1) n(n—1)
m ~pp-1/2 "% pp-1) 4

Therefore, we may pick the vertic&ssuch that the number of edges of
P (n) is greater than or equal tan—1)/4. Letp > ... > Y, be the
eigenvalues ofx (n). By the interlacing property (page 12), we know

thatpy < A1 andpp < A». Therefore,

— 2 _ _ _ 2
2m— || _n 1+n(n 1)/2— |\

>

_n-1, n(n—1)/2— (n+ns/2—1)2/4
-2 (N+n8/2)2 +1)/2

_n-1, n(n—l)/2;(n;tng/2)2/4 . n_%_n;l
2 (N+n5/2)2 +1)/2 2

ol
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An SRG with parameters (3.6) is calledareax energy grapbf order
n. In [9] and [10], a max energy graph of orderf4for any positive inte-
germhas been found. In fact, as we will see below, the regularycap
Hadamard matrices lead us to the max energy graphs.

Recall that a Hadamard mattikis k-regular if all its row and column
sums are constatkt and it is graphical if it is symmetric with constant
diagonald. Following [9] we callH of type+1 if 8k > 0 and oftype—1
if 8k < 0.

Recall that we can associate a grapho the graphical Hadamard
matrix H so thatAy = %(Jn —OH) is its adjacency matrix. Lep be
the type of the regular graphical Hadamard makti)of ordern. Then
ok = py/n and the associated graghis regular of degreén — ok) /2 =
(n—py/n)/2. SinceH is graphical and therefore symmetric, we have
HH! = H? = nl, andJ,H = HJ,. Also, sinceH is regularJ,H = HJ, =

kJ, . Now, we have

A2 — F(Jn—éH)} [}un_aH)] - % 32— 834H — 8HJ, + 82H2]

2 2
1 n— ok n— 20K
= 7 [ = 28k3+ &nl] = ==+ ——(Jn—In).

Therefore, by formula (2.4%; is a strongly regular graph with parameter

set

n n—pPyn n-2pyn n—2pyn
? 2 ) 4 ? 4 M
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As we see the regular graphical Hadamard matrices of tybgive max
energy graphs.

Consider the following matrix:

1 1 1 -

1 1 -1
H_l,_:

1 - 11

-1 1 1

The Kronecker product dfi . with any regular graphical Hadamard ma-
trix of ordern of type —1 gives a regular graphical Hadamard matrix of
type —1 of order 4. Haemers in [9], by making a slight change in the
construction of Theorem 6, found a regular graphical Haadmaatrix

of type—1:

Theorem 14 ([9],[13) If nis the order of a Hadamard matrix, then there
exist regular graphical Hadamard matrices of ordet of type—1, and

therefore max energy graphs of orde n

PROOF LetH =[c1 ¢z ... cy) be a Hadamard matrix of orderwhere
;s are columns ofl so that the last column ¢d equals all-one. Define
fori=1,...,n—1,G =cc. So,G (i =1,...,n—1) is symmetric with
diagonal 1 and with row and column sums equal to 0.Q.et —Jp,. Itis

easy to see that the following are satisfied:
1. GCj=0ifi#j,1<i,j<n
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2. C3+C3+...+C2=nHH' = r?l,

Now, consider the matrik = [g;;], a symmetric Latin square with entries
1,...,nwith constant diagonal 1. Lét’ be the Hadamard matrix of order
n? which is obtained by replacing each entryf A with matrixC;. H’ is
symmetric and has constant diagonal 1. It is alsaélaregular Hadamard
matrix. ThereforeH’ is the regular graphical Hadamard matrix of order

n? of type—1. O

Yu et al. found a better upper bound for the graph energy ih [26
Recall that the sum of the degrees of the vertices adjacene teertexv;
is its 2-degree, denoted fyyandt; /d; is its average-degree. If all vertices

of the graphG have average-degréeG is k-pseudo regular.

Theorem 15 [26] For the graph G of order n, with m edges, if we have
the degree sequenceq,dy,---,d, and 2-degree sequenca,ty,--- ,tp,

then

(8] () oo 3) 3)

The equality is attained if and only if G is;K5 K>, or a non-bipartite con-

nected k-pseudo regular graphxk,/2m/n) with three distinct eigenval-
ues k,—/(2m—k2)/(n—1), and/(2m—k2)/(n— 1).

The argument made in [26] for the proof of Theorem 15 is simi-

lar to the proof of Theorem 11 except for the bound Xg@rthey used
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A > z%—llé'lzz (found in [25]) where the equality happens if and only if
the graph is a non-bipartite pseudo regular graph. Althabglthound at-
tained in Theorem 15 is better than Koolen and Moulton bothrete are
not known examples different from those of Koolen and Mauikavhich

attain this newer bound and do not satisfy the conditionshafofem 12.

3.3 Hyper-energetic Graphs

In summer 2008, | had a chance to work with Lily Liu, who was one
of my supervisor's summer students. Part of the work in teitien
resulted from the discussion we had with our supervisor.

In searching for maximum energy graphs we see that by usmg th
interlacing property (Theorem 2), the energy of an induagafysaph of
a graphG is less than the energy @. This is not true for an arbitrary
subgraph of a grap® unless it is induced. For example, the energy of
C4 is less than the energy 6% — {€} = P4. In fact, £ (Cy) =4 < 2/5=
£ (Ps) ([6]). Based on this property, Gutman in 1978 made a conjectu
that among graphs of order the complete grapK,, has the maximum
energy. The conjecture was soon rejected and it was shownrnHact,
there exist subgraphs &, with energy greater than that &,. These

graphs are calledyper-energetigraphs.
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ui

Ug Uo

Uy, us

Us
Figure 3.2: A hyper-energetic graph on 8 vertices

Definition 3.3.1 A graphG with n vertices is said to bbyper-energetic

if its energyz (G) satisfies the inequalitg (G) > 2n— 2.
Here is an example of a hyper-energetic graph:

ExampLE. ConsiderKg; we know thatz (Kg) = 14. Now delete the
edges of a quadrangle &, sayusus, UsUg, Ugug, andugu, (see Fig-

ure 3.2). The incidence matrix of such a graph is

01111111
10101110
11011111
10101011
11110111
11101010
11111101
L1 01110 1 O

The characteristic polynomial of this graph is

OA) = (A2 — 4N —13)(A+1)°(A—1)
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and the eigenvalues aret2/17, 2— 17, -1, -1, -1, -1, -1 1.

Therefore,

f(Kg—U2U4—U4U6—U6U8— U8U2) = 2\/1_7+5—|—1 >14= E(Kg).

As it is mentioned in the Theorem 12, only those strongly l@&gu
graphs with parameters (3.6) give the maximal energy.

Here we consider another class of strongly regular graphs pa-
rametergn,(n—1)/2,(n—5)/4,(n—1)/4) which are calledconference
graphs In [15], it is shown that these graphs are in fact hyper-geiss
graphs.

Definition 3.3.2 A conference matrix @ ann x n (0,+1)-matrix with

zero diagonal satisfyinGC! = (n— 1)I,.

It can be shown that a necessary condition for existence yhanet-
ric conference matrix of orderis n=2(mod4) ([24]). Letq= 1(mod4)
be a prime power and consider the indexisetFqU{e}. Define the ma-

trix C = [cjj] so that the rows and columns are indexed layd

1, ifi,jelF,i—-je
=1, ifi,jeFg,i—]€Ng

1, if i =00 0r )= butnotboth

0, ifi=]
where §; is the set of squares and is the set of non-squares &f,.
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It is proved in [24] thatC with the construction above is a symmetric

Conference matrix of order+ 1.

EXAMPLE. The following matrix is a conference matrix of order 14.

F13 = Z13, Si3={1,3,4,9,10,12}, andNy3 = {2,5,6,7,8, 11}.

=

1
1

R O K

1
1 - - — — 11 -1
1

P o r
[ =

|

|

|

|
Ll =

|

P O

R oR
P O R

P O P
el

el

|

|

|

R R
R R
|l P O P
P O
R R
R R
|

R P
Lol
Ll =
Ll =
Ll o
P O R
P O R
R O R
R O R
Ll
I P

P O -
=

O
I
P P P PP PP PFPPPP PP PO
|
Lol

This conference matrix is mormalizedConference matrix since all en-
tries in its first row and first column are 1 (except tiel) entry which
is 0). If we remove the first row and first column and change théo*
“0”, we get the adjacency matrix for the Conference graphrdeo13.

This Conference graph is in fact the Paley graph in Figure 2.2

By constructing the Conference graphs from Conferenceiceatr

we realize that these graphs are strongly regular graplmspaitameters
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(4t+1,2t,t—1,t), for every prime powet.
Let G¢c be a conference graph of order= 4t + 1 with parameters
(4t+1,2t,t —1t). Using the argument made on page 18, we find the

eigenvalues o6¢ as follows:

A =2t (with multiplicity 1)
Ny — 1 VAHL V24t+1 (with multiplicity 2t)
Ng— Lo VAFL V24t+1 (with multiplicity 2t)

Therefore the energy @ is:
£(Ge) =21+ Va4t +1) = %(n— 1)(1++/n)

Sincen > 5, it shows thate (G¢) > 2(n— 1) and, therefore, we have the

following.
Theorem 16 [15 Conference graphs are hyper-energetic.

We do not restrict ourselves to the strongly regular graipissead we
may think of graphs which have the property for some of theitiges.

Here we considen = A.

Definition 3.3.3 A graphG of ordern is locally strongly regularLSR)
with parametergn, k,A) if it is regular of degre& and there exists at least
one vertex such that it hascommon neighbors with every other vertices

of G.
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Figure 3.3:G2

EXAMPLE. G is an example of a locally strongly regular graph with
parameter$13 4,1) (Figure 3.3). It is a 4-regular graph with 13 vertices
anduiz has the LSR property. With the labeling shown in Figure 318, t

adjacency matrix o6, is

011100001000
10110000O01O00
110100000010
111000000001
000O0O0OO1111000
000010110100
000011010010
0000111000001
100010000100
01 0001001000
001 000100O0O01
000100010010
L0 00000001111

42



- Ja—la  Oagxa l4 Oax1 -
| Oaxa Ja—l4 l4 Oax1
la la  Drl—12 lax1

| Oix4 O l1xa 0 |

In order to find the characteristic polynomial of the abovérimave have
to find the determinant3.8). The following transformations leave the

value of(3.8) unchanged.

-x 1 1 1 0 o0 o0 o0 1 o0 O o0 ©O
1 x1 1 0 O O O O 1 O 0o o
1 1 x1 0 o0 o0O O O O 1 o0 O
11 1 x 0 O O O O O O 1 o
o o 0 0 x 1 1 1 1 O O O O
o 0o 0o 0 1. x1 1 O 1 O O O
o o 0 0o 121 1 -x1 O O 1 0 O
o 0 0 0 1. 1.1 —x 0O O O 1 O
1 0o 0 0 1 0 O O0-—x1 0 0 1
o 1 0 0 01 0 O 1 -x 0 0 1
o 0o 1 0 0 0 1 O O 0-—x 1 1
o o 0 1 o 0 O 1 O O 1—x1
o o 0 0o o 0 0 0 1 1 1 1-x

(3.8)

Add the first 12 rows to the last row and extract the fa¢tex+ 4) from
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the determinant to g€¢B8.9).

0

0

1

0

0 x 1

0

1

0

1 x O

0O —x 1 1

1 x 1

0

= (—x+4)

(3.9)

Now, letz= —x— 1. Subtract the last column from all the other columns;
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then subtract the last row from from rowsl®, 11, 12 to get

—x 1 1 1 0 0 0 0 1 0 0 0 ¢
1 -x 1 1 0 0 0 0 0 1 0 0 O
1 1 -x 1 0 0 0 0 0 0 1 0 0
1 1 1 -x 0 0 0 0 0 0 0 1 0
0O 0 0 0-x 1 1 1 1 0 0 0 0
0O 0 0 0 1 -x 1 1 0 1 0 0 0
(x+4)| 0 0 0 0 1 1 —x 1 0 0 1 0 O
0o 0 0 0 1 1 1 -x 0 0 0 1 0
0O -1 -1 -10 -1-1-12z 0 -1-10
-1 0 -1 -1 -1 0 -1 -1 0 z -1 -10
-1 -1 0 -1 -1-1 0 -1-1-1 2z 0 0
-1 -1-10 -1 -1-10 -1-10 z 0
o 0 0 0O 0O 0O O 0O O 0 O 0 1

This determinant is equal to the determinant of the first Msrand
columns. Now, subtract row 5 from row 1, row 6 from row 2, row 7
from row 3, and row 8 from row 4. Then, add column 1 to column 5,

column 2 to column 6, column 3 to column 7, and column 4 to cal@m

to get
Ja—ls—xXlg Osx4 Oax4
(—x+4) O4x4 Ja—1a—xXlg la
O4x4 —2J4+2ls (Drd2—12) —Xlg
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Ja—1g—Xlg I4

= (—x+4)(x—3)(x+1)°
-2 +2l4 (@ZJZ — |2) —Xlg

The last determinant is equal to

-x 1 1 1 1 0 0 O
1 x 1 1 0 1 0 O
1 1 —x 1 0 0 1 O
1 1 1 —x 0 0 0 1
o -2 -2-2 2z 0 -1 -1

-2 0 -2 -2 0 z -1 -1
-2 -2 0 -2 -1 -1 z O

-2 -2 -2 0 -1 -1 0 =z

Now, add 2 times row 1 to row 5, 2 times row 2 to row 6, two times ro

3 torow 7, and two times row 4 to row 8, and yet= —x+1

—-x 1 1 1 1 0 0 O

1 —x 1 1 O 1 0 O

1 1 —x 1 O 0 1 O

1 1 1 x 0 0 0 1

- -2x 0 0 O y 0 -1 -1
0 -2 O 0 O vy -1 -1

0 O —2x 0 -1 -1 vy O

0 0 0O —-2x -1 -1 0 vy
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_ Ja—(X+1)lg g (3.10)

—2Xlg D

SinceD is a regular symmetric matrix, it commutes withand so, the

determinant in(3.10) is equal to dgfJs — (X+ 1)14)D — 2xl4], which is

equal to
X(x+1)—2 —x-—1 0 0 abo0oO
—x—1 x(x+1)-2 0 0 b ao0OQ 0
0 0 X(x+1)—2 —x-—1 0 0ab
0 0 —x—1 x(x+1)-2 0 0b a

and that equaléa— b)?(a+b)2. So, the determinar{8.10) is equal to

(3% 4 2x— 1)%(x% — 3)2

and therefore the determinaf®8), which is the characteristic polyno-
mial of G, equals(x — 4)(x — 3)(x+ 1)3(x* — 3)2(x> + 2x— 1)%. So,
£ (Gz) = 10+ 4(v/2++/3) and thusG; is not hyper-energetic.

However, the method used in Example 3.3 will be using in thd ne

section to introduce a class of hyper-energetic graphs.
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3.3.1 Generalization and Main Result

Here we introduce a class of graphs with the locally strorrgtyular
property. In fact, the first graph of this class, that we &, is G,
in Example 3.3.

Gm is a graph withn = (2m— 1)2m+ 1 vertices with the following
construction:
Consider tJn— 2 copies ofKoy, andm copies ofK, and one copy oKj.
Label the graph such that the vertexis labeled asi,, the vertices of the
m copies ofKy by uy, Uy, ..., Usm, and the vertices af? copy of Ko, as
Vi1, Viz, .- -, Viem)- Add edges to make itrregular by adding & edges
from up to Uy, Up, ..., Usm @nd joinvij tou; for 1 <i <2m-—2 and 1<
j<2m.

Vertexuy, is the vertex with strongly regular property and has 1 com-
mon neighbor with every other vertices@f,. ThereforeGn, is an LSR
graph with parameterg2m—1)2m+1,2m, 1).

The adjacency matrix dby, is of order(2m—1)(2m) +1 and itis

Jom— lom Ome 2m T Ome 2m lom o2mx1
Oomxom  Jom—lom - : lom  Oomx1
A(Gm) _ O2mx2m
O2mx2m e Oomx2m Jm—lom  lom Oomxa
l2m I2m e l2m Bomxom  lomxa
i le 2m O1><2m T leZm 11><2m 0 ]
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Figure 3.4: An example of local strongly regular graphs

whereBamsxom iS @m(J2 — I2).

In the following, we find the characteristic polynomialAfG,) and

show that it is equal to

(x—2m)(x— (2m— 1))?™3(x 4 1)(2m-3)(2m-1)
(X% — (2m—1))"(x* + 2x— (2m—3))™.

For the simplicity, for matrice®n1 and01..om we just write0 and

for matriceslomx1 andl1y.om we just writel. Also, B = @, (J2—12).
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Now, the determinant o&(G,) — xI equals

Jom— (X+1)lom O2msx 2m
O2msx2m Jom— (X+1)lom
02mx 2m 02mx 2m

I2m I2m
0 0

o2m>< 2m I2m 0

Jom— (X+1)lom l2m 0

0 1 —X

By adding the firs{2m— 1)(2m) rows to the last row, extracting the

factor (—x+ 2m) from the determinant; then subtracting the last column

from all the other columns and then subtracting the last mmfrows

2m(2m—2)+1,---,2m(2m—1), the determinant remains unchanged and

it equals:
Jom — (X+ 1) [om O2ms2m
O2msx2m Jom— (X+1)lom
(—Xx+2m)
Ome 2m Ome 2m
—Jom+ lom —Jom+ lom
0 0
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I2m
Jom— (X+1)lom lom

—Jom+ lom B — Xlom — Jom

0 0
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Jom — (X+ 1)lom O2mx2m o O2msx2m lom
Oomx2m Jom— (X+1D)lom -+ : lom
= (—X+2m)
O2mx2m O2mx2m o Jom— (X+1)l2m l2m
—Jom+l2m —Jdm+lom - —JIm+lom  B—Xlom—Jom

If we subtract the block roM02mx 2m O2mx 2m - - - Jom— (X+ 1) l2m l2m] from
all the blocks above it, and then add the finst-23 block columns to the

(2m— 2)th block column, we get the following

Jom — (X4 1)I2m O2mx2m e O2mx2m O2mx2m
O2myx2m Jom— (X+1L)lom -+ 5 O2msx2m
(—X+2m)
O2mx2m O2mx2m o Jm— (X+1)lom l2m
—Jom+ lom —Jm+lom - (2m=2)(=Jom+l2m) B—Xlom—Jom
Add ——— times the(2m— 2)th block column to all the firsta— 3

2m—2
1
lock col : i i —
block columns; then adgm times the first 21— 3 block rows to the
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(2m— 2)th block row to get

Jom — (X+1)l2m O2mx2m O2mx2m O2mx2m
O2msx2m Jom— (X+1)lom - : O2msx2m
(—x+2m)
O2mx2m O2mx2m o Jm— (X+1)l2m l2m
O2mx2m O2mx2m o (2m—=2)(=Jom+l2m) B—Xlom—Jom

which is equal to

Jom— (X+1)lo I
(—x+2m) |Jam — (X -+ 1)l 2™3 m = (X+ Dlzm "

= (—x+2m)(x— (2m—1))2"3(x 4- 1)(2M-3)m-1)|c|

where
co Jom— (X+1)lom l2m
Now, we just need to comput€| which equals

Jom— (X+1)lom lom (3.11)

Note thatB+ (2m— 2 —X)loyn — Jom IS a regular symmetric matrix. There-

fore, it commutes witllom — (X+ 1)l2m. Consequently, by using the for-
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mula for the determinant of block matrices, the determidsitl) which

is equal
det](Jom — (X+ 1)l2m) (B+ (2M— 2 — X)l2m — Jom) + (2M — 2)Xl 2]
Which is equal to
det[(x*+x— (2m—2))lom— (x+1)B] (3.12)

If we seta:=x(x+1) — (2m—2) andb:= —x— 1, and rewrite the deter-

minant(3.12), we get

ab 0 O 0

b a 0 O 0

00 a b

0O00b a - - :|=(a—bM™a+bm
a b

0 0 - b a

Thus, the characteristic polynomial Gf;, is

(—X+2m) (x— (2m— 1))?™3(x+ 1)@m= (@m-1)
(X — (2m—1))M(® + 2x— (2m—3))™.

Theorem 17 For m> 2, graph Gy is hyper-energetic.
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PROOF For the casen= 2, from Example 3.3, it follows that
£ (Gp) = 10+ 4(V2+V/3) ~ 2258 < 24

and so,Gy is not hyper-energetic. Fan > 3, we need to show that
£ (Gn) is greater thand(2m— 1). If m= 3, thenz (Gy,) = 48+ 61/5~
61.4164079> 60.

Form> 4 we havey/2m—1++/2m—2 > 5. Therefore,

£ (Gm) = 8m? — 14m+2m(v/2m—1+4+/2m—2) + 6

> 8m? — 14m+ 10m+ 6 = 8n? — 4m+ 6
> 8m? — 4m= 4m(2m—1)

which shows that these graphs are hyper-energetimtor2. [J
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Chapter 4
Energy of Digraphs

4.1 Introduction

Pefa and Rada in [19] extended the concept of energy forabe of

digraphs.

Definition 4.1.1 The energy of a digraplg with n vertices is defined as

£(g) = 3, Red)

where(y, ..., (, are eigenvalues af .

In fact, it will be proved in Theorem 20, by defining the enefgy di-
graphs in this way that the Coulsons integral formula reshaalid. Let
4 be the adjacency matrix of a digragh The coefficients of the char-

acteristic polynomial; can be determined as follows.

4.2 Coefficients Theorem

Let ®; (x) =x"+ bn_1X""1+- ..+ bg be the characteristic polynomial of
digraphg, then the values dfi’s can be found if all the directed cycles

of g are known.

Theorem 18 [5] (Coefficients Theorem for Digraphisgt g be a digraph
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with n vertices. Lez = [a;j] be its adjacency matrix and
P, (x) = det(xl — a) = X"+ bp_1xX" 1+ +bo
be its characteristic polynomial. Then

bri= 5 (=) (=10 (4.1)

LeL;

where ; is the set of all linear directed subgraphs L (i.e. subgraphs
in which every vertex has indegree and outdegree equal td G)with i

vertices, and () is the number of cycles of which L is composed.

PROOF. First, considehy = ®;(0) = det—a) = (—1)"deta). By

Leibnitz definition of determinant

det(q) = %(—1)“‘(") .Ijaivom

whereS, is the permutation group of orderandN (o) is the parity of the

permutatioro. Therefore,
b = %(—1) "NOay 51)82.0(2)  Bno(m)- (4.2)
oc
But (—1)"™N©ay 51)85 5(2) - @n o(n) IS NONZzero if and only if all of

the arcs(1,0(1)), (2,0(2)), ---, (n,0(n)) are ing. Now, o can be pre-
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sented as

where parentheses are disjointinlf a term in the sum (4.2) is nonzero,
then to each parenthesisarthere corresponds a cycle@®) therefore, to
o there corresponds a direct sum of disjoint cycles contginivertices
(all vertices) ofG, means a linear directed subgrdph £,,. On the other
hand, a linear directed subgraphs the union of cycles irG and we
could assign a permutatianto it with the sign depending on the number
of cycles ofL. So, the theorem is true fw.

Suppose K i < nis fixed. It is well-known (for the proof seg],
p.68) that(—1)"'by_; is the sum of all principal minors of order— i
of 2. Note that the set of these minors is in one-to-one corredgrue

to the set of induced subgraphs@®fhaving exactlyn —i vertices. Now,

n
the theorem follows by applying the above result to each ef|th
i

minors, and adding them uf.]

An acyclic digraph is a digraph containing no directed cycles. By the
argument made in Theorem 18, we see that the energy of adygtaphs

are 0.

ExaMPLE.[19] Consider the digraply, to be the cycle oh vertices (as

shown in Figure 4.1).
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Figure 4.1: Digraph.

Using Theorem 18, the characteristic polynomiatgis X" — 1, and

n—1

Z cos(?) ‘ (4.3)

k=0

Z(Cn) =

Similarly, let ¢ be a digraph with vertices and a unique cyclg of

lengtht, where 2<t < n. Then

t—1

z cos(@) ‘ (4.4)

k=0

£(g)=Z(Ct)=

Theorem 19 [19 Among all digraphs with n vertices and a unique cycle
Ct, the minimal energy is attained wheat2, 3, or 4 and maximal energy

is attained when £ n.

PROOF Let g be a digraph witin vertices and a unique cyclg of

lengtht > 2. Using (4.4), ift = 2,3, or 4, £(¢,) = 2. To complete the
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first part, we prove that if > 5, £ (¢t) > 2. Note that

5 1cos<2m) (4.5)

r=

Therefore,

So,

21 1 2rm\ '
l+cos{ —|=—) cos{ — | <
t r= t r;
Now, sincet > 4, cog2™) > 0, and

t—1

2T o\ '
z(ct):Z)cos ~—— )| =1+cos| — —i—;co
r= t t r=
2
> 2 (l-l—cos(Tn)) > 2.

Next, we prove that for 5t < n:

(%)

E£(Ct) < E(Cn) -

fr=1,..1%], thean_n 2r—"e(O,T—ZT] and since < n, cos(z[—”)<cos(2rT").

Now,
t—1 4] 13

E(Ct) = cos(er[)’ 1+ZZ cos(2 ) 2 Z cos(zm)
r= t 1+ 21
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—1+45 co (2;—”) (by using(4.5) )
r=1
13) 17] m
<1+4 cos<—) <1+4 Zcos(—) =E£(Cn)
=1 = n

4.3 Integral representation of the energy

In this section, we include the proof of Coulson Integral rirola for

digraphs given by Pefia and Rada in [19].

Theorem 20 [19 (Integral representation of the enerdygt ¢ be a di-

graph with n vertices and eigenvalués ..., {n. Then

1 [t izd’. (iz) n
=N (n— T )olzzg1 Re@)

PROOF Let®;(2) = [{_;(z— Vi)™ be the characteristic polynomial of

the digraph G. The eigenvalues,...,v, are complex possibly non-real
numbers ang_;nj = n.
Now, we have

(2 (v T NaE-v)Y) L
D;(2) Mi—1(z—vi)" i1 Z—Vi

Therefore®. (2)/® (2) is an analytic function with only simple poles,

V1,---,V. Suppose for any ¥ k </, we have||vg|| < ||v1]|. Choose >
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Figure 4.2: Contour

|lv1]|. LetT” be the contour that goes along thraxis from the poin{O,r)

to point (0, —r) and returns td0,r) through a semicircle with radius
But some of the eigenvalues might appear on the imaginas/and it

is not possible to integrate along a curve passing throughgulgrity.
Note that the coefficients @b, (z) are real numbers and so,\if is an
eigenvalue, its complex conjugats, is also an eigenvalue. Therefore,
we adjust the contour to the one shown in Figure 4.2. Note that only
thev;’s with positive real part are interior to the contdur

Define the function




and apply the Cauchy integral formula to it. Now, we have

ZLT[i?{rf(Z) ZN%ZZ Vi 2T[I Z\?{z Vi

=S mvi=3 ZZRe(Zi):%f(G)
T + +

where}y ., is taken over the eigenvalues with positive real part. Simise

%ﬁ f(2)dz= Zimjfr[f(z)—

If € — 0, we have

/yz[f(z)—n]dz:—/

constant,

=]

[f(e€' +vy) —nlieetdt =0

INER

Also, if & — 0, we have

n

/ (f(2) —ndz= —/2 [f (e +vi) — njie’etdt = 0
Y3

NS

On the other hand, sin@f:l nj = nwe have

14 l V
/yl[f(z)—n]dz:/yljzl[ _V]—nJ Jdz— /1; sz

12

¢ 7 irelt
= niv dz= nv/
> ,,/ylz_ z Vi [ e

Vi
2 iret %‘. |v,
— :/ m—m+/
—rret —vj I

dt

n
2

re't —vJ
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If r — +o0, we havef}, ;-dz= i and therefore

L

¢
njv; .
/ S S Rdz=T 5 njvj=0
Vi =12 Vi =

Thus,
27(6) = o plf@ —nldz= 5 [ “[f(y)—nidy
=2 [ tiy)ay

and the result follows[

4.4 Upper and lower bounds

In [20] and [21], some lower and upper bounds for the energligrbphs

have been found. We present these results.

4.4.1 Upper bound for the energy of digraphs

Rada in [21], found an upper bound for the energy of digraphsims
of the number of vertices, the number of arcs, and the nunfbeosed
walks of a digraph.

Let us denote the number of closed walks of lerigth a digraphg

by ck. If Ais the adjacency matrix of digraph, from elementary graph
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theory we know that the entry, j) in A€ gives the number of walks of
lengthk fromi to j. Also, if Z is an eigenvalue oA, {¥ is an eigenvalue
of AX. Therefore, the number of closed walks of lenkik, in fact, equal

to the trace ofAk. Thus, if ¢ is a digraph with eigenvaluds,- - - ,Zp,
Sl =

Lemma 4.4.1[2]] If ¢ is a digraph with n vertices and m arcs and

(1,---,(n are the eigenvalues af then

5 (Re)= 3 (Im(Z) ~c.
3 (Re(l)+ 3 (Im(Z) <m

PROOF By the argument above,

n

2= 3 = 3 (Re(l))*~ 3 (m(Z)*+2 3 (Re(t) (m(Z).

The first relation follows from the fact thas is an integer.

For the second relation, suppo&e= [g;j] is the adjacency matrix of
G. Theorem 3 shows thak is unitarily similar to an upper triangular
matrixT = [t;j], witht; = ;. Thereforey! ;57 ;a5 = 51, 50 [tj[2

By using the fact tha is a (0, 1) matrix, we have

I;(RG(Z )%+ Z =3 [(Re@)*+(m@) = 3 [al*= 3 il

=]
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n n

n n n n
< ti: 2 _ 2 _ Lo
_i;;‘”‘ izizla” i;;aj "

i=
U

Theorem 21 [21] Let g be a digraph of order n with m edges. Then
1
£(g) < \/5nM+c2)

where equality holds if and only & is a digraph Withg copies of di-

rected cycle of lengtB.

iy

PROOF We can see that if; is a digraph withg copies of directed
cycle of length 2, the eigenvalues gf consist of{1,—1}, each with

multiplicity 3, and s0,£(G) =n= \/%n(n+ n). By Lemma 4.4.1 we

see that
Z(Re@i))zz Z<Im<1i))2+02

S 23 (M@)o sm = m@)R< pmec

Suppose(s,---,, are eigenvalues of . Apply Cauchy-Schwartz in-
equality to the vector§Re({4)], ..., |R€Cn)|) and(1,1,...,1)
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2(g) =3 IRelG)| < \/an(Re(zi»Z) = \/ (3 (m(@)2+cz)

< \fn3m=cz)+e) = | Inm+co (4.6)

We remain to prove that if the equality happens tlgers a digraph
.. n . . 1
with > copies of directed cycle of length 2. Suppasg; ) = |/ sn(m+cz).
Since the isolated vertices do not change the energy, we ssaume
that ¢ has no isolated vertices. On the other hand, with this assump

tion, all the inequalities in 4.6 are now equalities andgb, |[Re(¢)| =

V/NY L, (ReZ))2. Therefore, we have

Re(C1) =Re(lz) =...= Re(n) = (€ R .

Recall from Section 2.2 that the spectral radiugf the adjacency
matrix is an eigenvalue of and so/ =r. On the other hand, we have
¢ = |Re(g)| < [Ci| <r and so,|Re()| = || =1, i =1,...,n, which
implies that all eigenvalues of are real with absolute value Therefore,
nr=£(g)=1/in(m+c) andc, = 3 2% = nr2. Combining two

relations, we have

1 ) 5
nr= én(m-i-nr) = Nr‘"=m = C=m

which means the number of closed walks of length Zzirequals the
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number of arcs of and therefore; is a symmetric digraph witl (g ) =
v/nm Recall from page 9 that there is a bijecti¢prbetween graphs and
symmetric digraphs. Le® be the graph such thadi(G) = g. If kis
the number of edges i6, £ (G) = £(G) = v2nk Note thatg andG
have no isolated vertices and sd& 2 n. Using the Cauchy-Schwartz
inequality in a similar fashion as it was used in the proof bé®rem 11,
together with the equalitg ! , % = 2k, we can see that (G) = v/2nk

if and only if G is 5 copies ofK,. Therefore,g is § copies of directed

cycle of length 2.0J

A natural question here is to find an upper bound dependingamthe
number of vertices and arcs, as it was found by Koolen and tdoubr
the case of graphs. Supposeis a strongly connected digraph with
vertices andn arcs. Recall from Section 2.1 (page 11), that m. By

using the fact that, < m, we have

£(g) <\ Zn(m+co) < VAm< ViR =m (4.7)

If equality happens, themm= m?, which impliesn=0orm=n. If m=
0 theng is a vertex. Otherwisei= n, and we also hav%/ %n(m+ C2) =
v/nmwhich meang; = m=n.

Rada in [21] proved that the relation(g ) < mis true for every di-
graph, and therefore an upper bound in terms of the numbec®kaists

for the energy of digraphs. We include here the proof of RadlaHe
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relation (4.7) for every digraphs.

Theorem 22 [2]] Let g be a digraph with m arcs. Then we have
£(g)<m

and the equality holds if and only  consists of] copies of directed

cycle of lengtl2 plus some isolated vertices.

PROOF As we have seen on (4.7), the statement is true for strongly
connected digraphs. Suppogehasn vertices. Letcs, C2, ..., Ck be the
strongly connected components @fsuch that foin = 1,2,....k, n; and

m; are the number of vertices and arcscpfrespectively. Then,

k k

i;ni =n and i;m <m.

Denote the characteristic polynomial@foy ®g(x). By Theorem 1, we
have
Py (X) = Py (X) P, (X) -+ Py (X)

and therefore,
K K

£(G) :i;Z(Ci) < i;mi <m.
For the second part, i is a graph consists & directed cycle of length
2 thenz (6 ) = m. For the converse, i§ is strongly connected digraph,
by argument before the theorem, we hage= m=n and so,g is a

directed cycle of length 2.
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For the general case, we have

k k
.;f(a):;m =m.

For eachi, we havez (¢;) < m. Thereforez (¢;) =m,i=1,...kand

S0, eacly; is a directed cycle of length 2 or a vertekl

4.4.2 Lower bound for the energy of digraphs

As we have seen in page 57, the energy of an acyclic digrapgras ©n
the other hand, le; be a digraph withe (g ) = 0. If g is of ordermn with
eigenvalue<, ...,y then Ré¢¢j) = 0,i =1,...,n. Letr be the spectral
radius ofg. Since the adjacency matrix of is non-negativer is real
and non-negative and it belongs to the spectrum olin particular =0
and soj =0,i = 1,...,n. This shows tha®; (x) = X" and so,G is an
acyclic digraph. Therefore, the minimal energy 0 is attdimeacyclic
digraphs.

Rada in [20] found a lower bound for the energy of digraph&imts
of the number of closed walks of a digraph. Here, we includerésult

of Rada.

Theorem 23 [20] Letg be a digraph of order n with eigenvalués ..., {n.

If Ais the adjacency matrix af and @ is the number of closed walks of
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length2in g, we have

£(G) >\ 2C2 (4.8)

and equality holds if and only if is acyclic or the eigenvalues gf are

—4/C2/2,+/C2/2 with multiplicities n— 2,1, 1 respectively.

PROOF Since all the diagonal entries &are 0trA = 0 and we have

(Zqu> ZRQ@ 25 (Re(Z))(Re(Z;)  (4.9)

<J

Now, by triangular inequality we have

i<

n 2 n
= (_;IRe(ZiM) =_;<Re(zi))2+2z|Re(zi)||Re(zj>|

5

> 3 (ReG))” +2| y ReG)Re(t)

i <]

zzéme(zo)z

On the other hand, by Lemma 4.4.1,

n

Co = Zl Re(Z:)) Zl P< Y Re0))? (410

and the inequality (4.8) is established.
Assumeg is not acyclic and the equality happens in (4.8). Then the
equality also holds in (4.10) and spi_, (Im(;))? = 0, which shows that

all the eigenvalues of are real.
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In addition, we havg; . |Re(%i)[|Re(L)| = | ¥i<j Re(Zi)Re((;)|, which
is possible only when all th§’s have the same sign or all are zero except
two of them with opposite signs. By (4.9), we hgyg j Re((i)Re({j) <
0. Therefore, exactly two of the eigenvalues are nonzerb wfposite

signs, say, —(. Therefore, the characteristic polynomial@fis
®g (X) = (X= X+ OX"2 = X" = Px"?

By Theorem 18{ = \/c2/2 and the proof is completd.]

4.5 Energy of some digraphs

In this section we find the energy of some classes of digraphs.

Let q be a prime power such thgt= 3 (mod4). Let Sbe the set of
square elements of the finite fieky. Then—1 ¢ S and so, for each pair
(a,b) of distinct elements df, eithera—be Sorb—ac S, but not both.
Now, we define théPaley digraphas the directed graphg := (7,Aq)
with vertices” = Fq and arcsq = {(a,b) e FqxFq : b—ac S}. (see
Figure 4.3)

In the following theorem, we are introducing the relatiotvizeen the

energy of the Paley digraph and the energy of its underlyraghy

Theorem 24 Let g= 3(mod4) be a prime power. The energy of the Paley

digraph®q of order q is one half of the energy of its underlying graph.
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Figure 4.3:p7 : Paley digraph of order 7
PROOF By the definition of Paley digraph, for indiceg wherei # |,
eithera;j = 1,aj; = 0 ora; = 0,aj; = 1. Therefore Aq+ A}, = Jq—Iq,

Aqdq = JgAq, andALJq = JgA,. Now, by usingAy(Jq —Iq) = (Jg— lq)Aq

we have the following:
A(Ag+AY) = Ay(Jdg—1lg)

(Aq+ADA; = (Jg— o)Ay = Aq(Jg— o)
AyAg = AghAy = Aq(Jg—lg) — (A)?

ThereforeA; andA; commute and séy is a normal matrix.

By Theorem 4, there exists a unitary matdof orderg in such a way
that bothU*AqU andU*(Jq— Iq)U are diagonal matrices. LEX*AqU =
diag(A1, ..., Aq), thenU*ALU = diag(As, ..., Aq), we havel * (Aq + AL U =

*Note. In factAq form a symmetric design ([24]) and obviougly andAtq commute.
Here, we have given the proof not relying on this fact.
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diagA\1+ A1, ... Aq+Aq) =U*(Jg— Iq)U. Therefore{A;+A;: 1<i < q}

is exactly all the eigenvalues d§ — I4. It follows now that 2 (2q)

£(Kg) O

ExAMPLE. Consider the matrix

I
|
|
[EEN

1 — —

As described in Theorem 6, foe= 1,2, 3, and 4, defin€; by C4 = 0444

and

Ci= 7C2: 7C3:

0 G G G
-C 0 G &
—-C C 0 C
—-C G -G O
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Let D; be the matrix derived frorklig by changing “1” to “0” and “—”

to “1” and D2 be the matrix derived froril;5 by changing “—” to “0”.

ThenD; andD; are adjacency matrices of digrapfs and g2 shown

in Figure 4.4.D5, is, in fact, the transpose @1 and the characteristic

polynomials of bottD; andD; are the same and it equals(tG + 4)8(x—

6)(x+2)3. So, by Definition 41.1, the energy of digraph®; and D,

equals 12. On the other handj + D> is the adjacency matrix for the

underlying graph of botlg; andg».

D1+Ds=

O4x4
144

144

144

laxa
Oaxa
laxa
laxa

14x4
14><4

Osx4

14x4

14x4
14><4
14><4

Osx4

R

Figure 4.4: Digraphs for matricé3 andD»

(4.11)

The characteristic polynomial d; 4 D is x*?(x — 12)(x+4)2 and
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so, the energy of the underlying graph is 24.

In general case, we may use the methods of Theorem 6HL=et
[C1 C2 ... Cy] be a Hadamard matrix of order= 4mwherec;s are columns
of H and the last column equals all-one column. Defihe- cic}, i =
1,---,n—1 as it was in the proof of Theorem 6. Now, consider a sym-
metric Latin squaré of ordern with numbers{1,---, n} andn on the di-
agonal ([13]). Construct the matrM by changing each numbeabove
the diagonal oL with C; and each below the diagonal ok with —C;
and change the on the diagonal with 8., matrix.

Let D1 be the matrix derived frorvl by changing 1 to 0 ané- to 1,
andD; be the matrix derived froriM by changing- to 0. Letg1 andg»
be their corresponding digraphs, respectively. Dgt= D1 + D, with its

corresponding grap@s, thenD3 is of the form

04mx4m 14m><4m t 14mx4m

Limxam Oamxam -+ Lamxam
Dz3=D1+D2=

Limxam lamxam -+ Oamxam

Theorem 25 Let n=4m. The energy of the digrapiy of order rf that
we constructed above is one half of the energy of its unaeylgraph,

Gs. Furthermorez (G1) = £(G2) = %z (G3) =n(n—1)

PROOF Since the Latin squark is symmetric, we see th&d, is the
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transpose oD, i.e. Dy = Dtl. Note that sincd®1 is a real matri>d:)tl and

Dj are the same.

REMARK. The fact thaD; andD} commute follows from the observa-
tion thatD1 form a symmetric design ([24], [13]). We have opted to give

a proof here not relying on this fact.

We have

DY (D1+D}) = DiD3=Jyn_1)/2 - (4.12)
(D1+ D})D} = D3aD} = Jyn-1)/2
DiD1 = D1D} = Jyn_1)/2 — (D})?

Therefore,D1 and Dt1 commute and s®1 is normal. From (4.12) we
can also see th&l; andD3 commute. Now, by Theorem 4, there exists a
unitary matrixU of ordern? in such a way that bott *“D;U andU*DsU
are diagonal matrices. L&t*DiU = diag(A4,...,A2), thenU*D{U =
diag\1, ..., Anz), we havel* (D1 + DU = diagA 1+ A1, ..., A+ A) =
U*D3U. Therefore{A; -l—); 1<i< n2} is exactly all the eigenvalues of
Ds. It follows now that Z (g1) = £ (G3)

Now, we need to just compute the energyGaf We use the method

of equitable partition (Section 2.2). We partiti@3y into the blocks of
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ordern = 4m. Let B be the quotient matrix foD3. Then

O n n
n O
B pu—
n
n n O
and the eigenvalues &fare
-n (with multiplicity n—1)

n(n—1) (with multiplicity 1)

which are also the nonzero eigenvalue®gtby Lemma 2.2.2. The rank
of D3 is n, therefore, the other eigenvalues®$ are 0. Consequently
the energy ofG3 which is in fact the underlying graph @f; and g2 is
2n(n—1). Thereforez (G1) = £(G2) =n(h—1). O
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