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Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues

of its adjacency matrix. The concept is related to the energyof a class of

molecules in chemistry and was first brought to mathematics by Gutman

in 1978 ([8]). In this thesis, we do a comprehensive study on the energy

of graphs and digraphs.

In Chapter 3, we review some existing upper and lower bounds for

the energy of a graph. We come up with some new results in this chapter.

A graph withn vertices is hyper-energetic if its energy is greater than

2n−2. Some classes of graphs are proved to be hyper-energetic. We find

a new class of hyper-energetic graphs which is introduced and proved to

be hyper-energetic in Section 3.3.

The energy of a digraph is the sum of the absolute values of thereal

part of the eigenvalues of its adjacency matrix. In Chapter 4, we study

the energy of digraphs in a way that Peña and Rada in [19] havedefined.

Some known upper and lower bounds for the energy of digraphs are re-

viewed. In Section 4.5, we bring examples of some classes of digraphs

in which we find their energy.

Keywords. Energy of a graph, hyper-energetic graph, energy of a di-

graph.
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Chapter 1

Introduction

The concept of the energy of a graph was introduced three decades ago

by Ivan Gutman [8]. This notion is related to the total electron energy

of a class of organic molecules in computational chemistry.The total

energy of the so-calledπ-electrons is calculated by the formula

Eπ =
n

∑
j=1

|λ j | (1.1)

wheren is the number of the molecular orbital energy levels andλ js are

eigenvalues of the adjacency matrix of the so-called molecular or Hückel

graph. Although in chemistry the expression (1.1) is valid only for the

class of “Hückel graphs”, the right-hand side of (1.1) is well-defined for

any class of graphs in mathematics. This motivated Gutman todefine the

energy of a graph.

Definition 1.0.1 [8] Let G be a graph, theenergyof G, denoted byE (G),

is the sum of the absolute values of the eigenvalues ofG, i.e. if λ1, ...,λn

are the eigenvalues ofG, thenE (G) =
n

∑
i=1

|λi|.

For one example, by using the eigenvalues found in page 14, the energy

of a complete graph of ordern is computed as

E (Kn) = |n−1|+ |−1|(n−1) = 2n−2 .
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There are some bounds on the energy of a graph. In this thesis,we

mention some of the most well-known bounds. For a graphG of ordern

with medges, McClelland ([17]) in early 70’s, gave the following general

bounds on its energy whereA is the adjacency matrix ofG.

√

2m+n(n−1)|det(A)| 2
n ≤ E (G)≤

√
2mn.

A lower bound for the energy of a graph only in terms of its number

of edges isE (G) ≥ 2
√

m with equality if and only ifG is a complete

bipartite graph plus some isolated vertices. In terms of thenumber of

vertices the lower bound isE (G)≥ 2
√

n−1 with equality if and only G

is the starK1,n−1.

For the upper bound, there is a well-known result due to Koolen and

Moulton ([14]) which is an improvement on the McCelland bound. For a

graphG with n vertices andm edges where 2m≥ n, they proved

E (G)≤ 2m
n

+

√

√

√

√(n−1)

[

2m−
(

2m
n

)2
]

with equality if and only ifG is Kn, n
2K2, or a strongly regular graph

(SRG) with two eigenvalues having absolute value
√

(2m−(2m/n)2)
(n−1) .

Next, if we consider the left hand side of the above inequality as a

function ofm, it is maximized whenm= (n2+n
√

n)/4. By substituting
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this amount in the above formula we find

E (G)≤ n(1+
√

n)
2

. (1.2)

Koolen and Moulton ([14]) proved that (1.2) is also valid for2m< n

and that the equality holds if and only ifG is an SRG with parameters

(n,(n+
√

n)/2,(n+2
√

n)/4,(n+2
√

n)/4).

They also conjectured that for a givenε > 0 there exists a graphG of

ordern such that for almost alln≥ 1, E (G) ≥ (1− ε)
n
2
(
√

n+1) which

was later proved in [18] by Nikiforov.

There was a conjecture in 1978 that between graphs of ordern, the

complete graphKn has the maximum energy. Although it was rejected

and it was shown that there exist subgraphs ofKn with energy greater than

that of Kn, it was an introduction for defining hyper-energetic graphs.

A graphG with n vertices ishyper-energeticif E (G) > 2n− 2. Some

classes of graphs have shown to be hyper-energetic.

Figure 1.1:G2

In this thesis, we introduce a new class of graphs which we prove that

they are hyper-energetic. Our first example in this class is a4-regular
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graph with 13 vertices that we callG2 (see Figure 1.1).

In general case, we constructGm as follows. Consider 2m−2 copies

of K2m andm copies ofK2 and one copy ofK1. Add edges to make it

2m-regular by adding 2medges from the single vertexK1 to vertices ofm

copies ofK2. Then add one edge from each vertex ofK2m to themcopies

of K2 (see Figure 3.4 in Section 3.3.1).

Gm is a 2m-regular graph withn= (2m−1)2m+1 vertices. We found

that the characteristic polynomial ofGm is (x−2m)(x− (2m−1))2m−3

(x+1)(2m−3)(2m−1)(x2− (2m−1))m(x2+2x− (2m−3))m and from that

we can find the energy ofGm. Then we prove that form> 2, graphGm

is hyper-energetic.

If we want to generalize the concept of energy for the case of di-

graphs, we should be reminded that the adjacency matrix is not symmet-

ric and the eigenvalues might be complex numbers. Peña and Rada in

[19] proposed the following definition for the energy of digraphs.

Definition 1.0.2 Let G be a digraph, the energy ofG , denoted byE (G ),

is the sum of the absolute values of the real part of the eigenvalues ofG .

In fact, Peña and Rada proved the Coulson integral formula for the case

of digraphs ([19]) and that was the motivation for the Definition 1.0.2.

As an example, consider the digraphC4 in Figure 1.2.

The characteristic polynomial ofC4 equalsx4−1 and its eigenvalues are

1,−1, i,−i. Therefore,E (C4) = 2.

4



Figure 1.2:C4

Rada later in [20] and [21] found some lower and upper bounds for

the energy of digraphs. The upper boundE (G ) ≤
√

1
2n(m+c2) was

found in [21] wheren,m, andc2 are number of vertices, number of arcs,

and number of closed walks of length 2 respectively. The equality holds

if and only if G is a digraph with
n
2

copies of directed cycle of length

2. An upper bound solely in terms of the number of arcs of a digraph is

E (G )≤ mwith equality if and only ifG consists ofm2 copies of directed

cycle of length 2 plus some isolated vertices.

The minimum energy for digraphs is 0 which is attained in acyclic di-

graphs. For the minimal energy of digraphs, Rada ([20]) found E (G ) ≥
√

2c2 wherec2 is the number of closed walks of digraphG . The equal-

ity holds for acyclic digraphs or digraphs with exactly three eigenvalues

0,−
√

c2/2,
√

c2/2 with multiplicitiesn−2,1,1 respectively.

Energy of digraphs is a new idea and not much work has been done

on it. Energy of most classes of digraphs are not known. The results in

this area are limited to the papers [19], [20], [21] of Peña and Rada. In

this thesis, we focus on two classes of digraphs and we find their energy.

Let q be a prime power. Consider the finite fieldFq. Let Sq be the

set of square elements ofFq. Let q ≡ 3 (mod4). The Paley digraph

is a directed graphPq := (V ,Aq) with verticesV = Fq and arcsAq =

5



{(a,b) ∈ Fq×Fq : b−a∈ S}. In Section 4.5 we prove that the energy

of Paley digraphPq is one half of the energy of its underlying graph,Kq.

Let H = [c1 c2 ... cn] be a Hadamard matrix of ordern = 4m where

cis are columns ofH and the last column equals all-one column. Define

Ci = cict
i , i = 1, · · · ,n−1. Consider a symmetric Latin squareL of order

n with numbers{1, · · · ,n} andn on the diagonal ([13]). Construct the

matrixM by changing each numberi above the diagonal ofL with Ci and

eachi below the diagonal ofL with −Ci and change then on the diagonal

with a 0n×n matrix. LetD1 be the matrix derived fromM by changing

1 to 0 and−1 to 1, andD2 be the matrix derived fromM by changing

−1 to 0. LetG1 andG2 be their corresponding digraphs, respectively.

The energy of the digraphsG1 andG2 is one half of the energy of their

underlying graph as it is proved in Section 4.5.

Throughout, if we give a different proof of any result, we mention it.
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# of vertices # of edges lower bound equality occurs

n m
√

2m+n(n−1)|det(A)| 2
n –

– m 2
√

m complete bipartite graph
plus some isolated vertices

n – 2
√

n−1 K1,n−1

n – n
2(
√

n−n1/10) –
for n sufficiently large

Table 1.1: Comparing lower bounds for the energy of graphs

# of vertices # of edges upper bound equality occurs
n m

√
2mn –

n m 2m
n +

√

(n−1)(2m− (2m
n )2) SRG with 2 eigenvalues

2m≥ n |λ1|= |λ2|=
√

(2m−(2m/n)2)
(n−1)

n –
n(1+

√
n)

2
SRG with parameters

(n, n+
√

n
2 , n+2

√
n

4 , n+2
√

n
4 )

Table 1.2: Comparing upper bounds for the energy of graphs

# of vertices # of edges lower bound upper bound equality occurs
acyclic digraphs

– –
√

2c2 – or digraphs with 3
eigenvalues 0,±

√

c2/2

n m –
√

1
2n(m+c2)

n
2 copies of directed

cycle of length 2
m
2 copies of directed

– m – m cycle of length 2
+isolated vertices

Table 1.3: Comparing bounds for the energy of digraphs

7



Chapter 2

Preliminaries

In this section, we provide some basic definitions and usefulpropositions

which are used throughout the thesis. The definitions are standard and

are taken mostly from [7].

2.1 Basic Definitions

Throughout this thesis, we refer to agraph G(digraphG ) as an ordered

pair G := (V,E) (G := (V,A)) whereV(G) (V(G )) is a set whose ele-

ments are called vertices, andE(G) (A(G )) is a set of unordered (or-

dered) pairs of distinct vertices, called edges (arcs). We call a graphG

(digraphG ) of ordern if V is a set ofn elements. Theunderlying graph

of a diagraph is the graph obtained by replacing each arc of diagraph, i.e.

ordered pairs, by corresponding undirected edge, i.e. unordered pairs.

Theadjacency matrixof a graphG (digraphG ) of ordern is then×n

(0,1)-matrixA(G)= [ai j ] (A(G )= [ai j ]), whereai j = 1 if there is an edge

(arc) connecting vertexi to vertex j, andai j = 0 otherwise.

A digraphG is symmetricif whenever(vi ,v j) ∈ A(G ), then(v j ,vi) ∈

A(G ). A one-to-one correspondence between graphs and symmetricdi-

graphs is given byψ : G → Ǧ whereǦ has the same vertex set as the

graphG, and each edge{vi ,v j} of G is replaced by a pair of symmetric
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arcs(vi ,v j) and (v j ,vi). Under the correspondenceψ, a graph can be

identified with a symmetric digraph.

Thedegree(in-degree) of a vertexvi , denoted bydi (d−
i ), is the num-

ber of edges ending atvi . In a digraph, theout-degreeof a vertexvi , de-

noted byd+
i , is the number of edges starting atvi . Thedegree sequenceof

G is the non-increasing sequence of its vertex degrees. A graph of order

n with an edge between any two vertices is acomplete graph, denoted by

Kn. A graph with no edges is called anempty graph. A bipartite graphis

a graph whose vertices can be partitioned into two disjoint sets or parts

so that the vertices within the same part are nonadjacent. Acomplete

bipartite graphof orderm+n, Km,n, is a bipartite graph such that every

pair of vertices in the two disjoint setsV1 (with mvertices) andV2 (with n

vertices) are adjacent. The graphK1,n−1 is called thestar graph, denoted

by Sn. A graph ismultipartite if the set of vertices in the graph can be

divided into non-empty subsets or parts, such that no two vertices in the

same part have an edge connecting them. Acomplete multipartitegraph

is a multipartite graph such that any two vertices that are not in the same

part have an edge connecting them.

Thecomplementof a graphG = (V,E) is a graphG= (V,E) where

E is the complement ofE with respect to all 2-subsets of vertices. A

subgraph(sub-digraph) of a graphG (digraphG ) is a graph (digraph)

with vertex and edge (arc) sets that are subsets of those ofG. A subgraph

induced by a subset X⊂ V in graphG (digraphG ) is a graph (digraph)

9



sss ss ss
2-pseudo regular

ss sss ss

3-pseudo regular

s ss s ss s
ss sss s

s
s

s
s

4-pseudo regular

Figure 2.1: Pseudo regular graphs

with vertex setX, and edges (arcs) are those ofG that have both endpoints

in X. An induced subgraph isomorphic to a complete graph is called a

clique. The complement of a clique is calledcoclique. A supergraphof

a graphG is a graph that hasG as a subgraph.

A walk in a graphG (digraphG ) is a sequencev0e1v1...vℓ−1eℓvℓ,

whose terms are alternately vertices and edges (arcs) ofG (G ) which are

not necessarily distinct, such thatei is an edge (arc) starting atvi−1 and

ending atvi , 1≤ i ≤ ℓ. If v0 = vℓ we call it aclosed walk.

A k-regular graphis a graph where each of its vertices has the same

numberk of neighbors, i.e. each vertex is of degreek. A k-regular di-

graphis a digraph where each of its vertices has the same out-degree and

in-degree equal tok. The adjacency matrix of ak-regular graph (digraph)

has a constant row and column sumk. In general, we call matrices with

constant row and column sumk, thek-regular matrices.

The 2-degreeof a vertexvi of a graphG, denoted byti , is the sum of

the degrees of the vertices adjacent tovi . Theaverage-degreeof vi is ti/di.

The graphG is k-pseudo regularif each vertexvi of G has average-degree

10



k ([26]). Any k-regular graph isk-pseudo regular, but the converse is

not necessarily true. Figure 2.1 shows some examples of pseudo regular

graphs.

A path in graphG (digraphG ) is a walk which contains no repeated

vertices. A graphG (digraphG ) is connected(weakly connected) if from

any vertex to any other vertex there is a path inG (G ). If G is not con-

nected we call it adisconnectedgraph. The connected graphG is of index

r if removal of r +1 edges results in a disconnected graph andr is the

smallest number with this property. A digraph isstrongly connectedif

for every pairu,v of vertices, there is a path fromu to v and one fromv

to u. A component(weak component) of a graph (digraph) is a maximal

connected subgraph (weakly connected sub-digraph). Thestrong com-

ponentsof a digraph are the maximal strongly connected sub-digraphs.

Note that ifG is a strongly connected digraph withn vertices andmarcs,

thenn≤ m.

2.2 Eigenvalues of a graph

The characteristic polynomialof a matrixA is the polynomial det(A−

xI). The characteristic polynomial of the graphG is the characteristic

polynomial of the adjacency matrix of the graph. We denote the charac-

teristic polynomial of the graphG by ΦG(x).

11



Theorem 1 [5] If G1,G2, ...,Gk are the components of the graph, we have

ΦG(x) = ΦG1(x)ΦG2(x)...ΦGk(x) . (2.1)

The formula (2.1) is also valid for the case of a digraphG and its strong

componentsG1,G2, ...,Gk.

The roots of the characteristic polynomial are theeigenvaluesof A. A

non-zero vectorv is aneigenvectorof A with eigenvalueλ if the equation

Av= λv is satisfied. Note that an eigenvector cannot be the zero vector.

Three useful properties of eigenvalues of a matrix are:

Theorem 2 [5] Given a symmetric n×n matrix A with eigenvaluesλ1 ≥

...≥ λn, we have the following

1. (Interlacing property ) [5] If Bm×m is principal submatrix of A with

eigenvalues µ1 ≥ ... ≥ µm, we haveλk ≥ µk ≥ λn−m+k, for k =

1, ...,m ;

2. (AM-QM Inequality )[23] Arithmetic mean is less than quadratic

mean

λ1+λ2+ ...+λn

n
≤

√

λ2
1+λ2

2+ ...+λ2
n

n
; (2.2)

3. (Rayleigh’s principle) [1] For a given vectorx, the Rayleigh quo-

tient RA(x) =
xAxt

xxt satisfies

λn ≤ RA(x)≤ λ1 (for all nonzerox ∈ R
n) . (2.3)

12



If we choose an all-one vectorj = [1 1 · · · 1] and apply the Rayleigh’s

principle for matrixAn×n, thenλn ≤ RA(j) =
s
n
≤ λ1, wheres is the sum

of all entries ofA. The equality happens whenA is regular with row sum
s
n

.

Theorem 3 [11] (Schurs Unitary Triangularization Theorem)

Given an n×n matrix A with eigenvaluesλ1 ≥ ... ≥ λn, there is a uni-

tary n×n matrix U such that T= U∗AU is upper triangular and each

diagonal element of T , tii , is equal toλi .

A matrix isnormal if it commutes with its conjugate transpose.

Theorem 4 [11] Let A and B be normal matrices. If AB= BA then there

exists a unitary matrix U such that U∗AU and U∗BU are diagonal matri-

ces.

The eigenvalue(s) of a graph or digraph is (are) defined to be the

eigenvalue(s) of its adjacency matrix. It is not hard to see that a graphG

has only one eigenvalue if and only ifG is an empty graph. Thespectral

radiusof G is r = max{|λi| : λi is an eigenvalue ofG}.

Note that since the adjacency matrix has zero on the diagonal, r is also

an eigenvalue ofG. The spectrumof a graph (digraph) is the multiset

of eigenvalues of the graph. The spectra of some graphs are known.

For example, for the complete graphKn, the eigenvalues aren−1 (with

multiplicity one) and−1 (with multiplicity n− 1). For the star graph

Sn, the eigenvalues are±
√

n−1 (each with multiplicity one) and 0 (with

13



multiplicity n−2). For the spectrum of the complete bipartite graph, we

have the following useful lemma.

Lemma 2.2.1 [2] The spectrum of the complete bipartite graph Km,n con-

sists of±√
mn (each with multiplicity one) and0 (with multiplicity m+

n−2).

PROOF. The adjacency matrix ofKm,n, A with order(m+n)× (m+n),

is of the form

A=







0n×n 1n×m

1m×n 0m×m






.

Define matricesB2×2 andS(m+n)×2 to be

B=







0 m

n 0






, S=







1n×1 0n×1

0m×1 1m×1






.

It is straight forward thatAS=SB. Now, if v is an eigenvector of matrixB

for an eigenvalueλ, thenSvis an eigenvector ofA for the same eigenvalue

λ:

Bv= λv ⇒ A(Sv) = ASv= SBv= Sλv= λ(Sv)

Now, B has eigenvalues±√
mn, which are the nonzero eigenvalues of

Km,n. But the rank ofA is 2 and so, the rest of the eigenvalues are 0.�

The method that we used in the above proof is called theequitable par-

titions ([2], page 28). LetA be a symmetricn×n matrix with rows and

columns indexed byI = {1, . . . ,n}. SupposeI = {I1, . . . , Ir} is a partition

14



of I , where|I j |= n j . Now, we partitionA into blocks of sizen j according

to I :

A=













A11 · · · A1r

...
. . .

...

Ar1 · · · Arr













.

If the row sum of each blockAi j is constant, the partition is calledequi-

table. We define thecharacteristic matrix S= [si j ] to be then× r matrix

so that the rows are indexed byI and the columns are indexed byI and

si j =











1, i ∈ I j ;

0, otherwise.

Define thequotient matrix B= [bi j ] to be ther × r matrix wherebi j is

the average row sum ofAi j . In an equitable partition we haveAi j 1= bi j 1

and therefore,AS= SB. ([2],page 28)

Lemma 2.2.2 [2] If the symmetric matrix A has an equitable partitionI ,

then the eigenvalues of the quotient matrix B are also the eigenvalues of

A.

PROOF. Supposeλ is an eigenvalue ofB with the corresponding eigen-

vectorv. ThenBv= λv implies

ASv= SBv= λSv

and therefore,Svis an eigenvector ofA with the eigenvalueλ. �
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There are also some more useful properties about the spectrum of a graph.

Proposition 2.2.1 [5] Suppose G is a graph of order n with m edges and

with eigenvaluesλ1, ...,λn. The following statements hold:

1. The numbersλ1, ...,λn are real and∑n
i=1λi = 0.

2. ∑n
i=1λ2

i = 2m,∑i< j λiλ j =−m, and so, if m= 0 we haveλ1 = ...=

λn = 0.

3. If m≥ 1, andλ1 is the greatest eigenvalue andλn is the smallest

one, we have

(a) 1 ≤ λ1 ≤ n−1. The upper bound holds if and only if G is a

complete graph, and the lower bound is reached if and only

if G is union of some K2’s and K1’s.

(b) −λ1 ≤ λn ≤−1. The upper bound is attained if and only if G

is the union of complete graphs, and the lower bound holds

if and only if a component of G having the greatest index is a

bipartite graph.

4. G has two distinct eigenvalues if and only if G is the union of r1

complete graphs of orderλ1+1, where r1 is the multiplicity ofλ1.

In this case, the other eigenvalue is−1 with multiplicity r1λ1.

5. Suppose m≥ 1. The spectrum of G, say S, is symmetric with respect

to the zero point, i.e. for everyλ ∈ S,−λ is also in S with the same

multiplicity, if and only if G is bipartite.
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Theorem 5 [5] If the spectrum of graph G contains exactly one positive

eigenvalue, then G is a complete multipartite graph plus some isolated

vertices.

PROOF. The isolated vertices would add some 0s to the spectrum of a

graph. So, without loss of generality, we may ignore the isolated vertices.

If G is not a complete multipartite graph, it has the subgraph below as an

induced subgraph

ss
sx

But x is not an isolated vertex inG and so, G has at least one of the graphs

H1, H2, or H3 as an induced subgraph.

ss
s s

H1

ss
s s

H2

ss
s s

H3

However, all these graphs have two positive eigenvalues, and therefore,

by Theorem 2 (interlacing property),G has at least two positive eigenval-

ues. A contradiction.�

17



s1 s2
s3
s
4s

5s
6

s
7

s
8

s
9

s10

s11

s12
s0

Figure 2.2: Paley graph of order 13

2.3 Strongly Regular Graphs

Definition 2.3.1 [7] A strongly regular graph(SRG) with parameters

(n,k,λ,µ) is ak-regular graph of ordern where every two adjacent ver-

tices have the same numberλ of neighbors in common, and every two

non-adjacent vertices have the same numberµ of neighbors in common.

The adjacency matrixA of an SRG with parameters(n,k,λ,µ) satis-

fies the equation

A2 = kIn+λA+µ(Jn− In−A), (2.4)

whereJn is then×n all-one matrix.

ThePaley graphof orderq, q≡ 1(mod4) a prime power, is a graph

P with q vertices such that two vertices are adjacent if their difference is

a square in the finite fieldFq. Note that in order to have the adjacency

matrix of a graphqmust be 1 (mod 4). A Paley graph is, in fact, a strongly

regular graph with parameters(q, q−1
2 , q−5

4 , q−1
4 ). The eigenvalues of a

18



Paley graph areq−1
2 ,

−1±√
q

2 with multiplicities 1, q−1
2 , q−1

2 respectively

[18, 22]. Figure 2.2 shows the Paley graph of order 13 which isan SRG

with parameters(13,6,2,3).

The eigenvalues of a strongly regular graph with parameters(n,k,λ,µ)

in general are known and consist ofk (with multiplicity 1) and the two

rootsx1, x2 of the polynomialx2+(µ−λ)x+(µ−k) (with multiplicities

r and s, calculated by solving the simultaneous equationsr + s= n−1

andk+ rx1+sx2 = 0).

We can extract SRGs from some types of matrices.

Definition 2.3.2 A Hadamard matrixis a square(−1,1)-matrix whose

rows are mutually orthogonal, i.e. ifH is a Hadamard matrix of ordern,

HHt = nIn, whereIn is then×n identity matrix.

The order of a Hadamard matrix must be 1, 2, or a multiple of 4.

A Hadamard matrix is calledgraphical if it is symmetric with constant

diagonal 1. IfH is a graphical Hadamard matrix of ordern with 1 on the

diagonal,AH =
1
2
(Jn−H) is the adjacency matrix of a graph.

One way to get new Hadamard matrices from old is to use the Kro-

necker product. TheKronecker productof matricesA = [ai j ]m×n andB

is a p×q matrix, denoted byA⊗B, is the block matrixC= [ai j B]. If H1

is a Hadamard matrix of ordern1 andH2 is a Hadamard matrix of order

n2, thenH1⊗H2 is a Hadamard matrix of ordern1n2. The Kronecker

product of two regular graphical Hadamard matrices gives another regu-

lar graphical Hadamard matrix.
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If H is ak-regular (recall that matrices with constant row and column

sumk are thek-regular matrices) and graphical Hadamard matrix with 1

on the diagonal, it is easy to see thatAH satisfies

A2
H =

n−1k
2

In+
n−2k

4
(Jn− In) (2.5)

which shows that the associated graphG of AH is a strongly regular graph

with parameters(n,(n−k)/2,(n−2k)/4,(n−2k)/4).

Definition 2.3.3 A Bush-typeHadamard matrixH = (Hi j ) of ordern=

4k2, whereHi j is a 2k×2k block matrix, is a Hadamard matrix with the

propertiesHii = J2k, andHi j J2k = J2kHi j = 0, for i 6= j, 1≤ i, j ≤ 2k.

Kharaghani [13] constructed a Bush-type Hadamard matrix oforder

n2 from a Hadamard matrix of ordern.

Theorem 6 [13] If there exists a Hadamard matrix of order n= 4k, then

there exists a Bush-type Hadamard matrix of order n2 = 16k2.

PROOF. SupposeH = [c1 c2 ... cn] is a Hadamard matrix of ordern where

cis are columns ofH so that the last column ofH equals all-one matrix

(this can be done by multiplying rows by−1). Define fori = 1, · · · ,n,

Ci = cict
i . It is easy to see that the following are true:

1. Fori = 1, · · · ,n, Ci is symmetric with diagonal 1.

2. Fori = 1, · · · ,n−1,Ci has row and column sums equal to 0.
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3. CiCj = 0 if i 6= j, 1≤ i, j ≤ n.

4. C2
1 +C2

2 + ...+C2
n = nHHt = n2In.

Now, consider a Latin squareA= [ai j ] such that for 1≤ i, j ≤ n, ai j =

j +n− i( modn). We obtain a Bush-type Hadamard matrix of ordern2

by replacing each entryi of A by matrixCi . �
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Chapter 3

Energy of Graphs

In this section we outline a few results on the energy of graphs. One

of the long known results is the Coulson Integral formula forthe graph

energy.

Theorem 7 [8] Let G be a graph with n vertices andΦG(x) be the char-

acteristic polynomial of G. Then

E (G) =
1
π

∫ +∞

−∞

(

n− ixΦ′
G(ix)

ΦG(ix)

)

dx ,

whereΦ′
G(x) =

d
dx

ΦG(x) and i=
√
−1.

PROOF. Let λ1 ≥ ... ≥ λn be all the eigenvalues of the graphG and let

z be a complex variable.ΦG(z) = ∏ℓ
i=1(z−νi)

ni , where∑ℓ
i=1ni = n and

νi ’s are distinct eigenvalues ofG. Now, we have

Φ′
G(z)

ΦG(z)
=

∑ℓ
i=1

(

ni(z−νi)
ni−1∏ j 6=i(z−ν j)

n j
)

∏ℓ
i=1(z−νi)ni

=
ℓ

∑
i=1

ni

z−νi
.

Therefore,Φ′
G(x)/ΦG(x) is an analytic function with onlyℓ simple poles,

ν1, · · · ,νℓ. Chooser ≥ λ1. Let Γ (Figure 3.1) be the contour that goes

along they-axis from the point(0, r) to point(0,−r) and returns to(0, r)

through a semicircle with radiusr. Note that only positiveνi ’s are interior
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Figure 3.1: ContourΓ

to the contourΓ. Now, define the function

f (z) := z
Φ′

G(z)

ΦG(z)
=

ℓ

∑
i=1

niz
z−νi

and apply the Cauchy integral formula to it. We get

1
2πi

∮
Γ

f (z)dz=
1

2πi

∮
Γ

ℓ

∑
i=1

niz
z−νi

dz=
1

2πi

ℓ

∑
i=1

∮
Γ

niz
z−νi

dz

= ∑
+

niνi = ∑
+

λi =
1
2
E (G ) (3.1)

where∑+ is taken over the positive eigenvalues. The last equality in(3.1)

comes from the fact that∑n
i=1 λi = 0.
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Sincen is constant,

1
2πi

∮
Γ

f (z)dz=
1

2πi

∮
Γ
[ f (z)−n]dz

Let γ1 be the semicircle in the contourΓ. We have

∫
γ1

[ f (z)−n]dz=
∫

γ1

ℓ

∑
j=1

[
n jz

z−ν j
−n j ]dz=

∫
γ1

ℓ

∑
j=1

n jν j

z−ν j
dz (since

ℓ

∑
j=1

n j =n)

=
ℓ

∑
j=1

n jν j

∫
γ1

1
z−ν j

dz=
ℓ

∑
j=1

n jν j

∫ π
2

− π
2

ireit

reit −ν j
dt

and

∫ π
2

− π
2

ireit

reit −ν j
dt=

∫ π
2

− π
2

idt+
∫ π

2

− π
2

iν j

reit −ν j
dt= πi+

∫ π
2

− π
2

iν j

reit −ν j
dt .

If r →+∞, we have
∫

γ1
1

x−ν j
dx= πi and therefore

∫
γ1

ℓ

∑
j=1

n jν j

x−ν j
dx= πi

ℓ

∑
j=1

n jν j = 0.

Thus,

1
2
E (G )=

1
2πi

∮
Γ
[ f (z)−n]dz=

1
2π

∫ −∞

+∞
[ f (iy)−n]dy=

1
2π

∫ +∞

−∞
[n− f (iy)]dy

and the result follows.�
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The Coulson formula states that the energy of a graph dependson its

characteristic polynomial. In chemistry, this formula shows that the en-

ergy of a molecule solely depends on its structure.

Coulson formula is perhaps the only theorem which gives an exact

formula for finding the energy of a graph and yet the formula isfairly

complicated. There are some lower and upper bounds for the energy of

graphs which only depend on the number of vertices and edges.One of

the well-known bounds is the McClelland bound.

Theorem 8 [8] (McClelland, 1971) Consider a graph G of order n with

m edges. Let A be its adjacency matrix. We have

√

2m+n(n−1)|det(A)| 2
n ≤ E (G)≤

√
2mn. (3.2)

PROOF. Let λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues ofG. Let µ be the

arithmetic mean of the
n(n−1)

2
distinct terms|λi ||λ j | (i < j), i.e.

µ=
2∑i< j |λi||λ j |

n(n−1)
,

andη is the geometric mean of the terms|λi||λ j | (i < j), i.e.

η =

(

∏
i< j

|λi||λ j |
) 2

n(n−1)

=

(

n

∏
i=1

|λi|n−1

)
2

n(n−1)

=

(

n

∏
i=1

|λi|
)

2
n

= |detA| 2
n .
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Now, by Proposition 2.2.1

E 2(G) =

(

n

∑
i=1

|λi|
)2

=
n

∑
i=1

|λi|2+2∑
i< j

|λi||λ j |= 2m+n(n−1)µ .

Using the fact that the arithmetic mean of non-negative numbers is always

greater than their geometric mean, we get the lower bound in (3.2). For

the upper bound in (3.2), note that on one hand∑n
i=1 ∑n

j=1(|λi|− |λ j |)2 is

always a non-negative quantity; on the other hand

n

∑
i=1

n

∑
j=1

(|λi|− |λ j |)2 =
n

∑
j=1

n

∑
i=1

|λi|2+
n

∑
i=1

n

∑
j=1

|λ j |2−2(
n

∑
i=1

|λi|)(
n

∑
j=1

|λ j |)

= 2mn+2mn−2E 2(G)

Therefore, 4mn−2E 2(G)≥ 0 and the result follows.�

3.1 Minimal energy graphs

Many results on the minimal energy have been obtained for various classes

of graphs. One of the very well-known results is the following theorem.

Theorem 9 [8] Let G be a graph with m edges, then

E (G)≥ 2
√

m

with the equality attained if and only if G is a complete bipartite graph

plus some isolated vertices.
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PROOF.

E 2(G) =

(

n

∑
i=1

|λi|
)2

=
n

∑
i=1

|λi|2+2∑
i< j

|λi||λ j |

≥ 2m+2

∣

∣

∣

∣

∣

∑
i< j

λiλ j

∣

∣

∣

∣

∣

(Triangle inequality)

= 2m+2m= 4m (Proposition 2.2.1)

The equality happens if and only if the graph has exactly one positive and

exactly one negative eigenvalue. This happens if and only ifG is a com-

plete bipartite graph plus some isolated vertices (by usingTheorem 5).

�

Now, if we want to find a bound which depends only on the number of

vertices, we may restrict ourselves to graphs without isolated vertices.

Theorem 10 [8] Let G be a graph of order n with no isolated vertices.

We have

E (G)≥ 2
√

n−1.

The equality holds if and only if G is the star graph Sn.

PROOF. If G is connected, then it has at leastn−1 edges and the theo-

rem is a result of Theorem 9. LetG be disconnected withℓ components,

G1, · · · ,Gℓ with n1, · · · ,nℓ vertices, respectively. We can apply the theo-

rem for each connected component:

E (Gi)≥ 2
√

ni −1 (for i = 1, · · · , ℓ)
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Thus,

E (G)=
ℓ

∑
i=1
E (Gi)≥2

ℓ

∑
i=1

√

ni −1=2

√

√

√

√

(

ℓ

∑
i=1

√

ni −1

)2

= 2

√

√

√

√

ℓ

∑
i=1

(ni −1)+2∑
i<k

√

ni −1
√

nk−1

≥ 2
√

n− ℓ+ ℓ(ℓ−1) (sinceni ≥ 2)

= 2
√

n−1+(ℓ−1)2 ≥ 2
√

n−1

Note that there areℓ(ℓ− 1)/2 summands of the form
√

ni −1
√

nk−1.

�

Therefore, among graphs of ordern, the star graphSn has the minimal

energy. In [4], Caporossi et al by doing series of experiments and com-

putations made a conjecture for the minimum energy graphs.

Conjecture 3.1.1 [4] Connected graphs with minimum energy and n≥ 6

vertices and n−1 ≤ m≤ 2(n−2) edges are stars with m−n+1 addi-

tional edges for m≤ n+(n−7)/2 [these additional edges are all con-

nected to the same vertex], and bipartite graphs with two vertices on

one side, one of which is connected to all vertices on the other side for

m> n+(n−7)/2.

The conjecture is proved to be true form= n−1,2(n−2) in the same

paper [4]. In [12] the conjecture is proved form= n, and in [16] the
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second part of the conjecture on bipartite graphs is proved completely.

Yet the conjecture is still open in the general case.

3.2 Maximal Energy Graphs

Since the energy of a graph can be used to approximate the total π-

electron energy of the molecule, it has been intensively studied by many

scholars. One of the most significant result is the upper bound obtained

by Koolen and Moulton in [14]. In fact, they found the upper bound

n(1+
√

n)
2 for the energy of a graph of ordern and characterized the max-

imal energy graph attaining this bound. Here, we review someof their

results.

Theorem 11 [14] Let G be a graph of order n with m edges. If2m≥ n,

then

E (G)≤ 2m
n

+

√

√

√

√(n−1)

[

2m−
(

2m
n

)2
]

, (3.3)

and equality is attained if and only if G is Kn, n
2K2, or a strongly reg-

ular graph with two eigenvalues which both have the absolutevalue
√

2m−(2m/n)2

n−1 .

PROOF. Let λ1 ≥ ...≥ λn be the eigenvalues ofG. Theorem 2(2) shows

thatλ1≥ 2m
n and from Proposition 2.2.1(2) we have∑n

i=1λ2
i = 2m. There-

fore,
n

∑
i=2

λ2
i = 2m−λ2

1, λ2
1 ≤ 2m.
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Applying Cauchy-Schwartz inequality to the vectors(|λ2|, ..., |λn|) and

(1,1, ...,1) with n−1 entries, we get

n

∑
i=2

|λi| ≤
√

(n−1)(
n

∑
i=2

|λi|2) =
√

(n−1)(2m−λ2
1). (3.4)

Sinceλ1 ≥ 0,E (G)≤ λ1+
√

(n−1)(2m−λ2
1). Now, using the fact that

the functionF(x) := x+
√

(n−1)(2m−x2) is decreasing on the interval
√

2m/n< x≤
√

2m and that
√

2m/n≤ 2m/n≤ λ1 (since 2m≥ n), we

haveF(λ1)≤ F(2m/n) and so, inequality (3.3) holds.

SinceE (n
2K2) = n andE (Kn) = 2n−2, if graphG is either n

2K2 or

Kn the equality hold in (3.3).

If equality holds in (3.3), thenλ1 must be 2m/n. ThereforeG should

be regular of degree 2m/n. Also, the equality must hold in (3.4), and we

have|λi|=
√

(2m−(2m/n)2)
n−1 for 2≤ i ≤ n. So, we have three possibilities:

1. G is n
2K2. Its eigenvalues are±1 (both with multiplicity n

2);

2. G is Kn. Its eigenvalues aren−1 (with multiplicity 1) and−1 (with

multiplicity n−1);

3. G is a non-complete connected strongly regular graph with three

eigenvalues having distinct absolute values equal to 2m/nor
√

(2m− (2m/n)2)/(n−1).

This completes the proof.�

Note that Theorem 11 is an improvement on the McCelland bound. In

fact, for the functionF(x) in the proof we haveF(
√

2m/n) =
√

2mn.
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SinceF decreases on the interval
√

2m/n< x≤
√

2m, we have

2m
n

+

√

√

√

√(n−1)

[

2m−
(

2m
n

)2
]

≤
√

2mn

and the equality holds if and only if 2m= n andG= (n/2)K2.

Theorem 12 [14] Let G be a graph with n vertices. Then

E (G)≤ n(1+
√

n)
2

(3.5)

and equality holds if and only if G is a strongly regular graphwith pa-

rameters

(n,(n+
√

n)/2,(n+2
√

n)/4,(n+2
√

n)/4). (3.6)

PROOF. SupposeGhasmedges and 2m≥ n. In Theorem 11, consider the

left hand side of the inequality (3.3) as a function ofm. It is maximized

whenm= n2+n
√

n
4 . Then on replacingm in inequality (3.3) byn2+n

√
n

4 ,

we obtain the inequality (3.5). By Theorem 11, the equality holds if and

only if G is a strongly regular graph with parameters(n,(n+
√

n)/2,(n+

2
√

n)/4,(n+2
√

n)/4).

If 2m< n thenGhas at leastn−2m isolated vertices. Let̃Gbe a graph

obtained fromG by deleting then−2m isolated vertices. Therefore,̃G

is a graph with 2m vertices andm edges. By Theorem 11,E (G̃)≤ 2m≤

n≤ n
2
(1+

√
n). SinceE (G) = E (G̃), the proof is complete.�
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In fact, as Nikiforov later proved in [18], for a givenε > 0 there

exists a graphG of ordern such that for sufficiently largen≥ 1,E (G)≥

(1− ε)
n
2
(
√

n+1).

Theorem 13 [18] For all sufficiently large n, there exists a graph G of

order n such thatE (G)≥ n
2
(
√

n−n1/10).

PROOF. Letmbe the number of edges inG and let|λ1| ≥ |λ2| ≥ ...≥ |λn|

be the eigenvalues ofG. By using property 2 of Proposition 2.2.1 we have

2m−|λ1|2 = |λ2|2+ . . .+ |λn|2 ≤ |λ2|2+ |λ2||λ3|+ . . .+ |λ2||λn|

≤ |λ2|(E (G)−|λ1|).

Therefore, ifm> 0 we have

E (G)≥ |λ1|+
2m−|λ1|2

|λ2|
. (3.7)

First, we prove the theorem for a primep > 11 so thatp ≡ 1(mod4).

ConsiderP(p), the Paley graph of orderp. Recall from page 19 that the

Paley graph is in fact strongly regular with parameters(p,(p−1)/2,(p−

5)/4,(p− 1)/4), the number of edges
p(p−1)

4
, the largest eigenvalue

λ1=
p−1

2
, and the second largest eigenvalue|λ2|= |−1− p

1
2

2
|= 1+ p

1
2

2
.

Therefore, by (3.7) we have

E (P(p))≥ p−1
2

+
2p(p−1)/4− (p−1)2/4

(1+ p
1
2)/2
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≥ p−1
2

(

1+
p+1

1+ p
1
2

)

=
p

3
2 + p

1
2 −2

2
>

p
3
2

2
.

Consequently, the theorem is true for a primep≡ 1(mod4).

In the general case, for a sufficiently largen, there exists a prime

p ≡ 1(mod4) such thatn ≤ p≤ n+n
11
20+ε. For a largen, fix a primep

such thatp ≤ n+n
3
5/2 and consider the Paley graph,P(p), of order p

with eigenvaluesλ1 ≥ ... ≥ λp. Let K be a set ofn vertices inP(p) and

consider the subgraphPK(n) of P(p) induced byK. The average number

of edges,mK, in PK(n) is obtained as follows

mK

m
=

n(n−1)/2
p(p−1)/2

⇒ mK =
n(n−1)
p(p−1)

m=
n(n−1)

4
.

Therefore, we may pick the verticesK such that the number of edges of

PK(n) is greater than or equal ton(n− 1)/4. Let µ1 ≥ ... ≥ µn be the

eigenvalues ofPK(n). By the interlacing property (page 12), we know

thatµ1 ≤ λ1 andµ2 ≤ λ2. Therefore,

E (PK(n))≥ |µ1|+
2m−|µ1|2

|µ2|
≥ n−1

2
+

n(n−1)/2−|λ1|2
|λ2|

≥ n−1
2

+
n(n−1)/2− (n+n

3
5/2−1)2/4

((n+n
3
5/2)

1
2 +1)/2

>
n−1

2
+

n(n−1)/2− (n+n
3
5/2)2/4

((n+n
3
5/2)

1
2 +1)/2

>
n

3
2

2
−n

11
10 .

�
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An SRG with parameters (3.6) is called amax energy graphof order

n. In [9] and [10], a max energy graph of order 4m4 for any positive inte-

germhas been found. In fact, as we will see below, the regular graphical

Hadamard matrices lead us to the max energy graphs.

Recall that a Hadamard matrixH isk-regular if all its row and column

sums are constantk, and it is graphical if it is symmetric with constant

diagonalδ. Following [9] we callH of type+1 if δk> 0 and oftype−1

if δk< 0.

Recall that we can associate a graphG to the graphical Hadamard

matrix H so thatAH = 1
2(Jn − δH) is its adjacency matrix. Letρ be

the type of the regular graphical Hadamard matrixH of ordern. Then

δk = ρ
√

n and the associated graphG is regular of degree(n−δk)/2=

(n− ρ
√

n)/2. SinceH is graphical and therefore symmetric, we have

HHt = H2 = nIn andJnH = HJn. Also, sinceH is regular,JnH = HJn =

kJn . Now, we have

A2
H =

[

1
2
(Jn−δH)

] [

1
2
(Jn−δH)

]

=
1
4

[

J2
n −δJnH −δHJn+δ2H2]

=
1
4

[

nJn−2δkJn+δ2nIn
]

=
n−δk

2
In+

n−2δk
4

(Jn− In).

Therefore, by formula (2.4),G is a strongly regular graph with parameter

set
(

n,
n−ρ

√
n

2
,
n−2ρ

√
n

4
,
n−2ρ

√
n

4

)

.
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As we see the regular graphical Hadamard matrices of type−1 give max

energy graphs.

Consider the following matrix:

H+ =



















1 1 1 −

1 1 − 1

1 − 1 1

− 1 1 1



















The Kronecker product ofH+ with any regular graphical Hadamard ma-

trix of ordern of type−1 gives a regular graphical Hadamard matrix of

type−1 of order 4n. Haemers in [9], by making a slight change in the

construction of Theorem 6, found a regular graphical Hadamard matrix

of type−1:

Theorem 14 ([9], [13]) If n is the order of a Hadamard matrix, then there

exist regular graphical Hadamard matrices of order n2 of type−1, and

therefore max energy graphs of order n2.

PROOF. Let H = [c1 c2 . . . cn] be a Hadamard matrix of ordern where

cis are columns ofH so that the last column ofH equals all-one. Define

for i = 1, . . . ,n−1,Ci = cict
i . So,Ci (i = 1, . . . ,n−1) is symmetric with

diagonal 1 and with row and column sums equal to 0. LetCn =−Jn. It is

easy to see that the following are satisfied:

1. CiCj = 0 if i 6= j, 1≤ i, j ≤ n
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2. C2
1 +C2

2 + . . .+C2
n = nHHt = n2In

Now, consider the matrixA= [ai j ], a symmetric Latin square with entries

1, . . . ,n with constant diagonal 1. LetH ′ be the Hadamard matrix of order

n2 which is obtained by replacing each entryi of A with matrixCi . H ′ is

symmetric and has constant diagonal 1. It is also a−4-regular Hadamard

matrix. Therefore,H ′ is the regular graphical Hadamard matrix of order

n2 of type−1. �

Yu et al. found a better upper bound for the graph energy in [26].

Recall that the sum of the degrees of the vertices adjacent tothe vertexvi

is its 2-degree, denoted byti, andti/di is its average-degree. If all vertices

of the graphG have average-degreek, G is k-pseudo regular.

Theorem 15 [26] For the graph G of order n, with m edges, if we have

the degree sequence d1,d2, · · · ,dn and 2-degree sequence t1, t2, · · · , tn,

then

E (G)≤

√

√

√

√

(

n

∑
i=1

t2
i

)

/

(

n

∑
i=1

d2
i

)

+

√

√

√

√(n−1)

(

2m−
(

n

∑
i=1

t2
i

)

/

(

n

∑
i=1

d2
i

))

.

The equality is attained if and only if G is Kn, n
2K2, or a non-bipartite con-

nected k-pseudo regular graph (k>
√

2m/n) with three distinct eigenval-

ues k,−
√

(2m−k2)/(n−1), and
√

(2m−k2)/(n−1).

The argument made in [26] for the proof of Theorem 15 is simi-

lar to the proof of Theorem 11 except for the bound forλ1 they used
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λ1 ≥
√

∑n
i=1 t2

i

∑n
i=1 d2

i
(found in [25]) where the equality happens if and only if

the graph is a non-bipartite pseudo regular graph. Althoughthe bound at-

tained in Theorem 15 is better than Koolen and Moulton bound,there are

not known examples different from those of Koolen and Moulton’s which

attain this newer bound and do not satisfy the conditions of Theorem 12.

3.3 Hyper-energetic Graphs

In summer 2008, I had a chance to work with Lily Liu, who was one

of my supervisor’s summer students. Part of the work in this section

resulted from the discussion we had with our supervisor.

In searching for maximum energy graphs we see that by using the

interlacing property (Theorem 2), the energy of an induced subgraph of

a graphG is less than the energy ofG. This is not true for an arbitrary

subgraph of a graphG unless it is induced. For example, the energy of

C4 is less than the energy ofC4−{e}= P4. In fact,E (C4) = 4< 2
√

5=

E (P4) ([6]). Based on this property, Gutman in 1978 made a conjecture

that among graphs of ordern, the complete graphKn has the maximum

energy. The conjecture was soon rejected and it was shown that, in fact,

there exist subgraphs ofKn with energy greater than that ofKn. These

graphs are calledhyper-energeticgraphs.
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Figure 3.2: A hyper-energetic graph on 8 vertices

Definition 3.3.1 A graphG with n vertices is said to behyper-energetic

if its energyE (G) satisfies the inequalityE (G)> 2n−2.

Here is an example of a hyper-energetic graph:

EXAMPLE . ConsiderK8; we know thatE (K8) = 14. Now delete the

edges of a quadrangle ofK8, sayu2u4, u4u6, u6u8, andu8u2 (see Fig-

ure 3.2). The incidence matrix of such a graph is

































0 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0

1 1 0 1 1 1 1 1

1 0 1 0 1 0 1 1

1 1 1 1 0 1 1 1

1 1 1 0 1 0 1 0

1 1 1 1 1 1 0 1

1 0 1 1 1 0 1 0

































The characteristic polynomial of this graph is

φ(λ) = (λ2−4λ−13)(λ+1)5(λ−1)
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and the eigenvalues are 2+
√

17, 2−
√

17, −1, −1, −1, −1, −1, 1.

Therefore,

E (K8−u2u4−u4u6−u6u8−u8u2) = 2
√

17+5+1> 14= E (K8).

As it is mentioned in the Theorem 12, only those strongly regular

graphs with parameters (3.6) give the maximal energy.

Here we consider another class of strongly regular graphs with pa-

rameters(n,(n−1)/2,(n−5)/4,(n−1)/4)which are calledconference

graphs. In [15], it is shown that these graphs are in fact hyper-energetic

graphs.

Definition 3.3.2 A conference matrix Cis ann×n (0,±1)-matrix with

zero diagonal satisfyingCCt = (n−1)In.

It can be shown that a necessary condition for existence of a symmet-

ric conference matrix of ordern is n≡ 2(mod4) ([24]). Letq≡ 1(mod4)

be a prime power and consider the index setI = Fq∪{∞}. Define the ma-

trix C= [ci j ] so that the rows and columns are indexed byI and

ci j =



































1, if i, j ∈ Fq, i − j ∈ Sq

−1, if i, j ∈ Fq, i − j ∈ Nq

1, if i = ∞ or j = ∞ but not both

0, if i = j

whereSq is the set of squares andNq is the set of non-squares ofFq.
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It is proved in [24] thatC with the construction above is a symmetric

Conference matrix of orderq+1.

EXAMPLE . The following matrix is a conference matrix of order 14.

F13 = Z13, S13 = {1,3,4,9,10,12}, andN13 = {2,5,6,7,8,11}.

C=































































0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 − 1 1 − − − − 1 1 − 1

1 1 0 1 − 1 1 − − − − 1 1 −
1 − 1 0 1 − 1 1 − − − − 1 1

1 1 − 1 0 1 − 1 1 − − − − 1

1 1 1 − 1 0 1 − 1 1 − − − −
1 − 1 1 − 1 0 1 − 1 1 − − −
1 − − 1 1 − 1 0 1 − 1 1 − −
1 − − − 1 1 − 1 0 1 − 1 1 −
1 − − − − 1 1 − 1 0 1 − 1 1

1 1 − − − − 1 1 − 1 0 1 − 1

1 1 1 − − − − 1 1 − 1 0 1 −
1 − 1 1 − − − − 1 1 − 1 0 1

1 1 − 1 1 − − − − 1 1 − 1 0































































This conference matrix is anormalizedConference matrix since all en-

tries in its first row and first column are 1 (except the(1,1) entry which

is 0). If we remove the first row and first column and change the “-” to

“0”, we get the adjacency matrix for the Conference graph of order 13.

This Conference graph is in fact the Paley graph in Figure 2.2.

By constructing the Conference graphs from Conference matrices,

we realize that these graphs are strongly regular graphs with parameters
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(4t+1,2t, t−1, t), for every prime powert.

Let GC be a conference graph of ordern = 4t + 1 with parameters

(4t +1,2t, t − 1, t). Using the argument made on page 18, we find the

eigenvalues ofGC as follows:

λ1 = 2t (with multiplicity 1)

λ2 =
−1+

√
4t+1

2
(with multiplicity 2t)

λ3 =
−1−

√
4t+1

2
(with multiplicity 2t)

Therefore the energy ofGC is:

E (GC) = 2t(1+
√

4t +1) =
1
2
(n−1)(1+

√
n)

Sincen≥ 5, it shows thatE (GC)≥ 2(n−1) and, therefore, we have the

following.

Theorem 16 [15] Conference graphs are hyper-energetic.

We do not restrict ourselves to the strongly regular graphs,instead we

may think of graphs which have the property for some of their vertices.

Here we considerµ= λ.

Definition 3.3.3 A graphG of ordern is locally strongly regular(LSR)

with parameters(n,k,λ) if it is regular of degreek and there exists at least

one vertex such that it hasλ common neighbors with every other vertices

of G.
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Figure 3.3:G2

EXAMPLE . G2 is an example of a locally strongly regular graph with

parameters(13,4,1) (Figure 3.3). It is a 4-regular graph with 13 vertices

andu13 has the LSR property. With the labeling shown in Figure 3.3, the

adjacency matrix ofG2 is



























































0 1 1 1 0 0 0 0 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 0 1 1 0 1 0 0 0

0 0 0 0 1 1 0 1 0 0 1 0 0

0 0 0 0 1 1 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 0


























































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=



















J4− I4 04×4 I4 04×1

04×4 J4− I4 I4 04×1

I4 I4
⊕

2J2− I2 14×1

01×4 01×4 11×4 0



















In order to find the characteristic polynomial of the above matrix we have

to find the determinant(3.8). The following transformations leave the

value of(3.8) unchanged.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 1 1 0 0 0 0 1 0 0 0 0

1 −x 1 1 0 0 0 0 0 1 0 0 0

1 1 −x 1 0 0 0 0 0 0 1 0 0

1 1 1 −x 0 0 0 0 0 0 0 1 0

0 0 0 0 −x 1 1 1 1 0 0 0 0

0 0 0 0 1 −x 1 1 0 1 0 0 0

0 0 0 0 1 1 −x 1 0 0 1 0 0

0 0 0 0 1 1 1 −x 0 0 0 1 0

1 0 0 0 1 0 0 0 −x 1 0 0 1

0 1 0 0 0 1 0 0 1 −x 0 0 1

0 0 1 0 0 0 1 0 0 0 −x 1 1

0 0 0 1 0 0 0 1 0 0 1 −x 1

0 0 0 0 0 0 0 0 1 1 1 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.8)

Add the first 12 rows to the last row and extract the factor(−x+4) from
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the determinant to get(3.9).

= (−x+4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 1 1 0 0 0 0 1 0 0 0 0

1 −x 1 1 0 0 0 0 0 1 0 0 0

1 1 −x 1 0 0 0 0 0 0 1 0 0

1 1 1 −x 0 0 0 0 0 0 0 1 0

0 0 0 0 −x 1 1 1 1 0 0 0 0

0 0 0 0 1 −x 1 1 0 1 0 0 0

0 0 0 0 1 1 −x 1 0 0 1 0 0

0 0 0 0 1 1 1 −x 0 0 0 1 0

1 0 0 0 1 0 0 0 −x 1 0 0 1

0 1 0 0 0 1 0 0 1 −x 0 0 1

0 0 1 0 0 0 1 0 0 0 −x 1 1

0 0 0 1 0 0 0 1 0 0 1 −x 1

1 1 1 1 1 1 1 1 1 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.9)

Now, letz=−x−1. Subtract the last column from all the other columns;
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then subtract the last row from from rows 9,10,11,12 to get

(−x+4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 1 1 0 0 0 0 1 0 0 0 0

1 −x 1 1 0 0 0 0 0 1 0 0 0

1 1 −x 1 0 0 0 0 0 0 1 0 0

1 1 1 −x 0 0 0 0 0 0 0 1 0

0 0 0 0 −x 1 1 1 1 0 0 0 0

0 0 0 0 1 −x 1 1 0 1 0 0 0

0 0 0 0 1 1 −x 1 0 0 1 0 0

0 0 0 0 1 1 1 −x 0 0 0 1 0

0 −1 −1 −1 0 −1 −1 −1 z 0 −1 −1 0

−1 0 −1 −1 −1 0 −1 −1 0 z −1 −1 0

−1 −1 0 −1 −1 −1 0 −1 −1 −1 z 0 0

−1 −1 −1 0 −1 −1 −1 0 −1 −1 0 z 0

0 0 0 0 0 0 0 0 0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This determinant is equal to the determinant of the first 12 rows and

columns. Now, subtract row 5 from row 1, row 6 from row 2, row 7

from row 3, and row 8 from row 4. Then, add column 1 to column 5,

column 2 to column 6, column 3 to column 7, and column 4 to column 8

to get

(−x+4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J4− I4−xI4 04×4 04×4

04×4 J4− I4−xI4 I4

04×4 −2J4+2I4 (
⊕

2J2− I2)−xI4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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= (−x+4)(x−3)(x+1)3

∣

∣

∣

∣

∣

∣

∣

J4− I4−xI4 I4

−2J4+2I4 (
⊕

2J2− I2)−xI4

∣

∣

∣

∣

∣

∣

∣

The last determinant is equal to

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 1 1 1 0 0 0

1 −x 1 1 0 1 0 0

1 1 −x 1 0 0 1 0

1 1 1 −x 0 0 0 1

0 −2 −2 −2 z 0 −1 −1

−2 0 −2 −2 0 z −1 −1

−2 −2 0 −2 −1 −1 z 0

−2 −2 −2 0 −1 −1 0 z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Now, add 2 times row 1 to row 5, 2 times row 2 to row 6, two times row

3 to row 7, and two times row 4 to row 8, and sety :=−x+1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−x 1 1 1 1 0 0 0

1 −x 1 1 0 1 0 0

1 1 −x 1 0 0 1 0

1 1 1 −x 0 0 0 1

−2x 0 0 0 y 0 −1 −1

0 −2x 0 0 0 y −1 −1

0 0 −2x 0 −1 −1 y 0

0 0 0 −2x −1 −1 0 y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

∣

J4− (x+1)I4 I4

−2xI4 D

∣

∣

∣

∣

∣

∣

∣

(3.10)

SinceD is a regular symmetric matrix, it commutes withJ4 and so, the

determinant in(3.10) is equal to det[(J4− (x+1)I4)D−2xI4], which is

equal to

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x(x+1)−2 −x−1 0 0

−x−1 x(x+1)−2 0 0

0 0 x(x+1)−2 −x−1

0 0 −x−1 x(x+1)−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b 0 0

b a 0 0

0 0 a b

0 0 b a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and that equals(a−b)2(a+b)2. So, the determinant(3.10) is equal to

(x2+2x−1)2(x2−3)2

and therefore the determinant(3.8), which is the characteristic polyno-

mial of G2, equals(x− 4)(x− 3)(x+ 1)3(x2 − 3)2(x2 + 2x− 1)2. So,

E (G2) = 10+4(
√

2+
√

3) and thusG2 is not hyper-energetic.

However, the method used in Example 3.3 will be using in the next

section to introduce a class of hyper-energetic graphs.
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3.3.1 Generalization and Main Result

Here we introduce a class of graphs with the locally stronglyregular

property. In fact, the first graph of this class, that we callGm, is G2

in Example 3.3.

Gm is a graph withn = (2m−1)2m+1 vertices with the following

construction:

Consider 2m−2 copies ofK2m andm copies ofK2 and one copy ofK1.

Label the graph such that the vertexK1 is labeled asun, the vertices of the

m copies ofK2 by u1,u2, . . . ,u2m, and the vertices ofith copy ofK2m as

vi1,vi2, . . . ,vi(2m). Add edges to make it 2m-regular by adding 2m edges

from un to u1,u2, . . . ,u2m and joinvi j to u j for 1 ≤ i ≤ 2m−2 and 1≤

j ≤ 2m.

Vertexun is the vertex with strongly regular property and has 1 com-

mon neighbor with every other vertices ofGm. Therefore,Gm is an LSR

graph with parameters((2m−1)2m+1,2m,1).

The adjacency matrix ofGm is of order(2m−1)(2m)+1 and it is

A(Gm)=

































J2m− I2m 02m×2m · · · 02m×2m I2m 02m×1

02m×2m J2m− I2m · · · ... I2m 02m×1

...
...

. . . 02m×2m
...

...

02m×2m · · · 02m×2m J2m− I2m I2m 02m×1

I2m I2m · · · I2m B2m×2m 12m×1

01×2m 01×2m · · · 01×2m 11×2m 0
































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...

K2m

...

K2m

...

K2m

Figure 3.4: An example of local strongly regular graphs

whereB2m×2m is
⊕

m(J2− I2).

In the following, we find the characteristic polynomial ofA(Gm) and

show that it is equal to

(x−2m)(x− (2m−1))2m−3(x+1)(2m−3)(2m−1)

(x2− (2m−1))m(x2+2x− (2m−3))m .

For the simplicity, for matrices02m×1 and01×2m we just write0 and

for matrices12m×1 and11×2m we just write1. Also,B=
⊕

m(J2− I2).
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Now, the determinant ofA(Gm)−xI equals

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m 02m×2m · · · 02m×2m I2m 0

02m×2m J2m− (x+1)I2m · · · ... I2m 0
...

...
. . .

...
...

...

02m×2m 02m×2m · · · J2m− (x+1)I2m I2m 0

I2m I2m · · · I2m B−xI2m 1

0 0 · · · 0 1 −x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

By adding the first(2m−1)(2m) rows to the last row, extracting the

factor(−x+2m) from the determinant; then subtracting the last column

from all the other columns and then subtracting the last row from rows

2m(2m−2)+1, · · · ,2m(2m−1), the determinant remains unchanged and

it equals:

(−x+2m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m 02m×2m · · · 02m×2m I2m 0

02m×2m J2m− (x+1)I2m · · · ... I2m 0
...

...
. . .

...
...

...

02m×2m 02m×2m · · · J2m− (x+1)I2m I2m 0

−J2m+ I2m −J2m+ I2m · · · −J2m+ I2m B−xI2m−J2m 0

0 0 · · · 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=(−x+2m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m 02m×2m · · · 02m×2m I2m

02m×2m J2m− (x+1)I2m · · · ... I2m

...
...

. . .
...

...

02m×2m 02m×2m · · · J2m− (x+1)I2m I2m

−J2m+ I2m −J2m+ I2m · · · −J2m+ I2m B−xI2m−J2m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

If we subtract the block row[02m×2m 02m×2m· · ·J2m−(x+1)I2m I2m] from

all the blocks above it, and then add the first 2m−3 block columns to the

(2m−2)th block column, we get the following

(−x+2m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m 02m×2m · · · 02m×2m 02m×2m

02m×2m J2m− (x+1)I2m · · · ... 02m×2m

...
...

. . .
...

...

02m×2m 02m×2m · · · J2m− (x+1)I2m I2m

−J2m+ I2m −J2m+ I2m · · · (2m−2)(−J2m+ I2m) B−xI2m−J2m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Add
−1

2m−2
times the(2m−2)th block column to all the first 2m−3

block columns; then add
1

2m−2
times the first 2m−3 block rows to the
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(2m−2)th block row to get

(−x+2m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m 02m×2m · · · 02m×2m 02m×2m

02m×2m J2m− (x+1)I2m · · · ... 02m×2m

...
...

. . .
...

...

02m×2m 02m×2m · · · J2m− (x+1)I2m I2m

02m×2m 02m×2m · · · (2m−2)(−J2m+ I2m) B−xI2m−J2m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

which is equal to

(−x+2m) |J2m− (x+1)I2m|2m−3

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m I2m

(2m−2)(−J2m+ I2m) B−xI2m−J2m

∣

∣

∣

∣

∣

∣

∣

= (−x+2m)(x− (2m−1))2m−3(x+1)(2m−3)(2m−1)|C|

where

C=







J2m− (x+1)I2m I2m

(2m−2)(−J2m+ I2m) B−xI2m−J2m







Now, we just need to compute|C| which equals

∣

∣

∣

∣

∣

∣

∣

J2m− (x+1)I2m I2m

−(2m−2)xI2m B+(2m−2−x)I2m−J2m

∣

∣

∣

∣

∣

∣

∣

. (3.11)

Note thatB+(2m−2−x)I2m−J2m is a regular symmetric matrix. There-

fore, it commutes withJ2m− (x+1)I2m. Consequently, by using the for-
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mula for the determinant of block matrices, the determinant(3.11) which

is equal

det[(J2m− (x+1)I2m)(B+(2m−2−x)I2m−J2m)+(2m−2)xI2m]

Which is equal to

det
[

(x2+x− (2m−2))I2m− (x+1)B
]

(3.12)

If we seta := x(x+1)− (2m−2) andb :=−x−1, and rewrite the deter-

minant(3.12), we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b 0 0 · · · · · · 0

b a 0 0 · · · · · · 0

0 0 a b · · · · · · ...

0 0 b a · · · · · · ...
...

...
...

...
. . .

...
...

...
...

...
...

... a b

0 0 · · · · · · · · · b a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (a−b)m(a+b)m

Thus, the characteristic polynomial ofGm is

(−x+2m)(x− (2m−1))2m−3(x+1)(2m−3)(2m−1)

(x2− (2m−1))m(x2+2x− (2m−3))m .

Theorem 17 For m> 2, graph Gm is hyper-energetic.
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PROOF. For the casem= 2, from Example 3.3, it follows that

E (G2) = 10+4(
√

2+
√

3)≈ 22.58< 24

and so,G2 is not hyper-energetic. Form≥ 3, we need to show that

E (Gm) is greater than 4m(2m−1). If m= 3, thenE (Gm) = 48+6
√

5≈

61.4164079> 60.

Form≥ 4 we have
√

2m−1+
√

2m−2> 5. Therefore,

E (Gm) = 8m2−14m+2m(
√

2m−1+
√

2m−2)+6

> 8m2−14m+10m+6= 8m2−4m+6

> 8m2−4m= 4m(2m−1)

which shows that these graphs are hyper-energetic form> 2. �
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Chapter 4

Energy of Digraphs

4.1 Introduction

Peña and Rada in [19] extended the concept of energy for the case of

digraphs.

Definition 4.1.1 The energy of a digraphG with n vertices is defined as

E (G ) =
n

∑
i=1

|Re(ζi)|

whereζ1, ...,ζn are eigenvalues ofG .

In fact, it will be proved in Theorem 20, by defining the energyfor di-

graphs in this way that the Coulsons integral formula remains valid. Let

A be the adjacency matrix of a digraphG . The coefficients of the char-

acteristic polynomialG can be determined as follows.

4.2 Coefficients Theorem

Let ΦG (x) = xn+bn−1xn−1+ · · ·+b0 be the characteristic polynomial of

digraphG , then the values ofbi ’s can be found if all the directed cycles

of G are known.

Theorem 18 [5] (Coefficients Theorem for Digraphs)LetG be a digraph
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with n vertices. LetA = [ai j ] be its adjacency matrix and

ΦG (x) = det(xI−A ) = xn+bn−1xn−1+ · · ·+b0

be its characteristic polynomial. Then

bn−i = ∑
L∈L i

(−1)c(L) (i = 1, · · · ,n) (4.1)

whereL i is the set of all linear directed subgraphs L (i.e. subgraphsL

in which every vertex has indegree and outdegree equal to 1) of G with i

vertices, and c(L) is the number of cycles of which L is composed.

PROOF. First, considerb0 = ΦG (0) = det(−A ) = (−1)ndet(A ). By

Leibnitz definition of determinant

det(A ) = ∑
σ∈Sn

(−1)N(σ)
n

∏
i=1

ai,σ(i)

whereSn is the permutation group of ordern andN(σ) is the parity of the

permutationσ. Therefore,

b0 = ∑
σ∈Sn

(−1)n+N(σ)a1,σ(1)a2,σ(2) · · ·an,σ(n). (4.2)

But (−1)n+N(σ)a1,σ(1)a2,σ(2) · · ·an,σ(n) is nonzero if and only if all of

the arcs(1,σ(1)), (2,σ(2)), · · · , (n,σ(n)) are inG . Now, σ can be pre-
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sented as

(1 σ(1) ...)(...) ...(...)

where parentheses are disjoint inσ. If a term in the sum (4.2) is nonzero,

then to each parenthesis inσ there corresponds a cycle inG, therefore, to

σ there corresponds a direct sum of disjoint cycles containing n vertices

(all vertices) ofG, means a linear directed subgraphL ∈ Ln. On the other

hand, a linear directed subgraphL is the union of cycles inG and we

could assign a permutationσ to it with the sign depending on the number

of cycles ofL. So, the theorem is true forb0.

Suppose 1≤ i < n is fixed. It is well-known (for the proof see[3],

p.68) that(−1)n−ibn−i is the sum of all principal minors of ordern− i

of A . Note that the set of these minors is in one-to-one correspondence

to the set of induced subgraphs ofG having exactlyn− i vertices. Now,

the theorem follows by applying the above result to each of the







n

i







minors, and adding them up.�

An acyclic digraph is a digraph containing no directed cycles. By the

argument made in Theorem 18, we see that the energy of acyclicdigraphs

are 0.

EXAMPLE .[19] Consider the digraphCn to be the cycle ofn vertices (as

shown in Figure 4.1).
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Figure 4.1: Digraph.

Using Theorem 18, the characteristic polynomial ofCn is xn−1, and

E (Cn) =
n−1

∑
k=0

∣

∣

∣

∣

cos

(

2kπ
n

)∣

∣

∣

∣

(4.3)

Similarly, let G be a digraph withn vertices and a unique cycleC t of

lengtht, where 2≤ t ≤ n. Then

E (G ) = E (C t) =
t−1

∑
k=0

∣

∣

∣

∣

cos

(

2kπ
t

)∣

∣

∣

∣

(4.4)

Theorem 19 [19] Among all digraphs with n vertices and a unique cycle

C t , the minimal energy is attained when t= 2,3, or 4 and maximal energy

is attained when t= n.

PROOF. Let G be a digraph withn vertices and a unique cycleC t of

lengtht ≥ 2. Using (4.4), ift = 2,3, or 4,E (C t) = 2. To complete the
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first part, we prove that ift ≥ 5,E (C t)> 2. Note that

t−1

∑
r=0

cos

(

2rπ
t

)

= 0 (4.5)

Therefore,

1+cos

(

2π
t

)

+
t−1

∑
r=2

cos

(

2rπ
t

)

= 0

So,

1+cos

(

2π
t

)

=−
t−1

∑
r=2

cos

(

2rπ
t

)

≤
t−1

∑
r=2

∣

∣

∣

∣

cos

(

2rπ
t

)∣

∣

∣

∣

Now, sincet > 4, cos(2π
t )> 0, and

E (C t) =
t−1

∑
r=0

∣

∣

∣

∣

cos

(

2rπ
t

)∣

∣

∣

∣

= 1+cos

(

2π
t

)

+
t−1

∑
r=2

∣

∣

∣

∣

cos

(

2rπ
t

)∣

∣

∣

∣

≥ 2

(

1+cos

(

2π
t

))

> 2 .

Next, we prove that for 5≤ t < n:

E (C t)< E (Cn) .

If r =1, ...,⌊ t
4⌋, then2rπ

n , 2rπ
t ∈ (0,

π
2
] and sincet <n, cos(2rπ

t )< cos(2rπ
n ).

Now,

E (C t)=
t−1

∑
r=0

∣

∣

∣

∣

cos

(

2rπ
t

)∣

∣

∣

∣

=1+2
⌊ t

4⌋

∑
r=1

cos

(

2rπ
t

)

−2
⌊ t

2⌋

∑
1+⌊ t

4⌋
cos

(

2rπ
t

)
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= 1+4
⌊ t

4⌋

∑
r=1

cos

(

2rπ
t

)

(by using(4.5) )

<1+4
⌊ t

4⌋

∑
r=1

cos

(

2rπ
n

)

≤1+4
⌊ n

4⌋

∑
r=1

cos

(

2rπ
n

)

=E (Cn) .

�

4.3 Integral representation of the energy

In this section, we include the proof of Coulson Integral Formula for

digraphs given by Peña and Rada in [19].

Theorem 20 [19] (Integral representation of the energy)Let G be a di-

graph with n vertices and eigenvaluesζ1, ...,ζn. Then

1
π

∫ +∞

−∞

(

n−
izΦ′
G (iz)

ΦG (iz)

)

dz=
n

∑
i=1

|Re(ζi)|

PROOF. Let ΦG (z) = ∏ℓ
i=1(z−νi)

ni be the characteristic polynomial of

the digraph G. The eigenvaluesν1, ...,νℓ are complex possibly non-real

numbers and∑ℓ
i=1ni = n.

Now, we have

Φ′
G (z)

ΦG (z)
=

∑ℓ
i=1

(

ni(z−νi)
ni−1∏ j 6=i(z−ν j)

n j
)

∏ℓ
i=1(z−νi)ni

=
ℓ

∑
i=1

ni

z−νi

Therefore,Φ′
G (z)/ΦG (z) is an analytic function with onlyℓ simple poles,

ν1, · · · ,νℓ. Suppose for any 1≤ k≤ ℓ, we have‖νk‖ ≤ ‖ν1‖. Chooser ≥
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Figure 4.2: ContourΓ

‖ν1‖. Let Γ be the contour that goes along they-axis from the point(0, r)

to point (0,−r) and returns to(0, r) through a semicircle with radiusr.

But some of the eigenvalues might appear on the imaginary axis and it

is not possible to integrate along a curve passing through a singularity.

Note that the coefficients ofΦG (z) are real numbers and so, ifν j is an

eigenvalue, its complex conjugate,ν̄ j , is also an eigenvalue. Therefore,

we adjust the contourΓ to the one shown in Figure 4.2. Note that only

theνi ’s with positive real part are interior to the contourΓ.

Define the function

f (z) := z
Φ′
G (z)

ΦG (z)
=

ℓ

∑
i=1

niz
z−νi
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and apply the Cauchy integral formula to it. Now, we have

1
2πi

∮
Γ

f (z)dz=
1

2πi

∮
Γ

ℓ

∑
i=1

niz
z−νi

dz=
1

2πi

ℓ

∑
i=1

∮
Γ

niz
z−νi

dz

= ∑
+

niνi = ∑
+

ζi = ∑
+

Re(ζi) =
1
2
E (G )

where∑+ is taken over the eigenvalues with positive real part. Sincen is

constant,
1

2πi

∮
Γ

f (z)dz=
1

2πi

∮
Γ
[ f (z)−n]dz

If ε → 0, we have

∫
γ2

[ f (z)−n]dz=−
∫ π

2

− π
2

[ f (εeit +νk)−n]iεeit dt = 0

Also, if ε′ → 0, we have

∫
γ3

[ f (z)−n]dz=−
∫ π

2

− π
2

[ f (ε′eit + ν̄k)−n]iε′eit dt = 0

On the other hand, since∑ℓ
j=1n j = n we have

∫
γ1

[ f (z)−n]dz=
∫

γ1

ℓ

∑
j=1

[
n jz

z−ν j
−n j ]dz=

∫
γ1

ℓ

∑
j=1

n jν j

z−ν j
dz

=
ℓ

∑
j=1

n jν j

∫
γ1

1
z−ν j

dz=
ℓ

∑
j=1

n jν j

∫ π
2

− π
2

ireit

reit −ν j
dt

∫ π
2

− π
2

ireit

reit −ν j
dt =

∫ π
2

− π
2

idt+
∫ π

2

− π
2

iν j

reit −ν j
dt = πi +

∫ π
2

− π
2

iν j

reit −ν j
dt
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If r →+∞, we have
∫

γ1
1

z−ν j
dz= πi and therefore

∫
γ1

ℓ

∑
j=1

n jν j

z−ν j
dz= πi

ℓ

∑
j=1

n jν j = 0

Thus,

1
2
E (G ) =

1
2πi

∮
Γ
[ f (z)−n]dz=

1
2π

∫ −∞

+∞
[ f (iy)−n]dy

=
1
2π

∫ +∞

−∞
[n− f (iy)]dy

and the result follows.�

4.4 Upper and lower bounds

In [20] and [21], some lower and upper bounds for the energy ofdigraphs

have been found. We present these results.

4.4.1 Upper bound for the energy of digraphs

Rada in [21], found an upper bound for the energy of digraphs in terms

of the number of vertices, the number of arcs, and the number of closed

walks of a digraph.

Let us denote the number of closed walks of lengthk in a digraphG

by ck. If A is the adjacency matrix of digraphG , from elementary graph
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theory we know that the entry(i, j) in Ak gives the number of walks of

lengthk from i to j. Also, if ζ is an eigenvalue ofA, ζk is an eigenvalue

of Ak. Therefore, the number of closed walks of lengthk is, in fact, equal

to the trace ofAk. Thus, ifG is a digraph with eigenvaluesζ1, · · · ,ζn,

∑n
i=1ζk

i = ck .

Lemma 4.4.1 [21] If G is a digraph with n vertices and m arcs and

ζ1, · · · ,ζn are the eigenvalues ofG then

n

∑
i=1

(Re(ζi))
2−

n

∑
i=1

(Im(ζi))
2 = c2

n

∑
i=1

(Re(ζi))
2+

n

∑
i=1

(Im(ζi))
2 ≤ m

PROOF. By the argument above,

c2 =
n

∑
i=1

ζ2
i =

n

∑
i=1

(Re(ζi))
2−

n

∑
i=1

(Im(ζi))
2+2i

n

∑
i=1

(Re(ζi))(Im(ζi)) .

The first relation follows from the fact thatc2 is an integer.

For the second relation, supposeA= [ai j ] is the adjacency matrix of

G . Theorem 3 shows thatA is unitarily similar to an upper triangular

matrixT = [ti j ], with tii = ζi . Therefore,∑n
i=1∑n

j=1a2
i j = ∑n

i=1∑n
j=1 |ti j |2.

By using the fact thatA is a(0,1) matrix, we have

n

∑
i=1

(Re(ζi))
2+

n

∑
i=1

(Im(ζi))
2=

n

∑
i=1

[(Re(ζi))
2+(Im(ζi))

2] =
n

∑
i=1

|ζi |2=
n

∑
i=1

|tii |2

64



≤
n

∑
i=1

n

∑
j=1

|ti j |2 =
n

∑
i=1

n

∑
j=1

a2
i j =

n

∑
i=1

n

∑
j=1

ai j = m

�

Theorem 21 [21] LetG be a digraph of order n with m edges. Then

E (G )≤
√

1
2

n(m+c2)

where equality holds if and only ifG is a digraph with
n
2

copies of di-

rected cycle of length2.

PROOF. We can see that ifG is a digraph with
n
2

copies of directed

cycle of length 2, the eigenvalues ofG consist of{1,−1}, each with

multiplicity n
2, and so,E (G ) = n =

√

1
2n(n+n). By Lemma 4.4.1 we

see that
n

∑
i=1

(Re(ζi))
2 =

n

∑
i=1

(Im(ζi))
2+c2

⇒ 2
n

∑
i=1

(Im(ζi))
2+c2 ≤ m ⇒

n

∑
i=1

(Im(ζi))
2 ≤ 1

2
(m−c2)

Supposeζ1, · · · ,ζn are eigenvalues ofG . Apply Cauchy-Schwartz in-

equality to the vectors(|Re(ζ1)|, ..., |Re(ζn)|) and(1,1, ...,1)
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E (G ) =
n

∑
i=1

|Re(ζi)| ≤
√

n(
n

∑
i=1

(Re(ζi))2) =

√

n(
n

∑
i=1

(Im(ζi))2+c2)

≤
√

n(
1
2
(m−c2)+c2) =

√

1
2

n(m+c2) (4.6)

We remain to prove that if the equality happens thenG is a digraph

with
n
2

copies of directed cycle of length 2. SupposeE (G )=
√

1
2n(m+c2).

Since the isolated vertices do not change the energy, we can assume

that G has no isolated vertices. On the other hand, with this assump-

tion, all the inequalities in 4.6 are now equalities and so,∑n
i=1 |Re(ζi)|=

√

n∑n
i=1(Re(ζi))2. Therefore, we have

Re(ζ1) = Re(ζ2) = . . .= Re(ζn) = ℓ ∈ R .

Recall from Section 2.2 that the spectral radiusr of the adjacency

matrix is an eigenvalue ofG and so,ℓ = r. On the other hand, we have

ℓ = |Re(ζi)| ≤ |ζi | ≤ r and so,|Re(ζi)| = |ζi| = r, i = 1, ...,n, which

implies that all eigenvalues ofG are real with absolute valuer. Therefore,

nr = E (G ) =
√

1
2n(m+c2) and c2 = ∑n

i=1ζ2
i = nr2. Combining two

relations, we have

nr =

√

1
2

n(m+nr2) ⇒ nr2 = m ⇒ c2 = m

which means the number of closed walks of length 2 inG equals the
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number of arcs ofG and thereforeG is a symmetric digraph withE (G )=
√

nm. Recall from page 9 that there is a bijectionψ between graphs and

symmetric digraphs. LetG be the graph such thatψ(G) = G . If k is

the number of edges inG, E (G ) = E (G) =
√

2nk. Note thatG andG

have no isolated vertices and so, 2k ≥ n. Using the Cauchy-Schwartz

inequality in a similar fashion as it was used in the proof of Theorem 11,

together with the equality∑n
i=1ζ2

i = 2k, we can see thatE (G) =
√

2nk

if and only if G is n
2 copies ofK2. Therefore,G is n

2 copies of directed

cycle of length 2.�

A natural question here is to find an upper bound depending only on the

number of vertices and arcs, as it was found by Koolen and Moulton for

the case of graphs. SupposeG is a strongly connected digraph withn

vertices andm arcs. Recall from Section 2.1 (page 11), thatn≤ m. By

using the fact thatc2 ≤ m, we have

E (G )≤
√

1
2

n(m+c2)≤
√

nm≤
√

m2 = m (4.7)

If equality happens, thennm=m2, which impliesm= 0 orm= n. If m=

0 thenG is a vertex. Otherwisem= n, and we also have
√

1
2n(m+c2) =

√
nmwhich meansc2 = m= n.

Rada in [21] proved that the relationE (G ) ≤ m is true for every di-

graph, and therefore an upper bound in terms of the number of arcs exists

for the energy of digraphs. We include here the proof of Rada for the
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relation (4.7) for every digraphs.

Theorem 22 [21] LetG be a digraph with m arcs. Then we have

E (G )≤ m

and the equality holds if and only ifG consists ofm2 copies of directed

cycle of length2 plus some isolated vertices.

PROOF. As we have seen on (4.7), the statement is true for strongly

connected digraphs. SupposeG hasn vertices. LetC1,C2, ...,Ck be the

strongly connected components ofG such that fori = 1,2, ...,k, ni and

mi are the number of vertices and arcs ofC i , respectively. Then,

k

∑
i=1

ni = n and
k

∑
i=1

mi ≤ m .

Denote the characteristic polynomial ofG by ΦG(x). By Theorem 1, we

have

ΦG (x) = ΦC1(x)ΦC2(x) · · ·ΦCk(x)

and therefore,

E (G ) =
k

∑
i=1
E (C i)≤

k

∑
i=1

mi ≤ m .

For the second part, ifG is a graph consists ofm2 directed cycle of length

2 thenE (G ) = m. For the converse, ifG is strongly connected digraph,

by argument before the theorem, we havec2 = m= n and so,G is a

directed cycle of length 2.
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For the general case, we have

k

∑
i=1
E (C i) =

k

∑
i=1

mi = m .

For eachi, we haveE (C i)≤ mi . Therefore,E (C i) = mi , i = 1, ...,k and

so, eachC i is a directed cycle of length 2 or a vertex.�

4.4.2 Lower bound for the energy of digraphs

As we have seen in page 57, the energy of an acyclic digraph is zero. On

the other hand, letG be a digraph withE (G ) = 0. If G is of ordern with

eigenvaluesζ1, ...,ζn, then Re(ζi) = 0, i = 1, ...,n. Let r be the spectral

radius ofG . Since the adjacency matrix ofG is non-negative,r is real

and non-negative and it belongs to the spectrum ofG . In particularr = 0

and so,ζi = 0, i = 1, ...,n. This shows thatΦG (x) = xn and so,G is an

acyclic digraph. Therefore, the minimal energy 0 is attained in acyclic

digraphs.

Rada in [20] found a lower bound for the energy of digraphs in terms

of the number of closed walks of a digraph. Here, we include the result

of Rada.

Theorem 23 [20] LetG be a digraph of order n with eigenvaluesζ1, ...,ζn.

If A is the adjacency matrix ofG and c2 is the number of closed walks of

69



length2 in G , we have

E (G )≥
√

2c2 (4.8)

and equality holds if and only ifG is acyclic or the eigenvalues ofG are

0,−
√

c2/2,
√

c2/2 with multiplicities n−2,1,1 respectively.

PROOF. Since all the diagonal entries inA are 0,trA= 0 and we have

0=

(

n

∑
i=1

Re(ζi)

)2

=
n

∑
i=1

(Re(ζi))
2+2∑

i< j
(Re(ζi))(Re(ζ j)) (4.9)

Now, by triangular inequality we have

(E (G ))2=

(

n

∑
i=1

|Re(ζi)|
)2

=
n

∑
i=1

(Re(ζi))
2+2∑

i< j
|Re(ζi)||Re(ζ j)|

≥
n

∑
i=1

(Re(ζi))
2+2

∣

∣

∣

∣

∣

∑
i< j

Re(ζi)Re(ζ j)

∣

∣

∣

∣

∣

= 2
n

∑
i=1

(Re(ζi))
2

On the other hand, by Lemma 4.4.1,

c2 =
n

∑
i=1

(Re(ζi))
2−

n

∑
i=1

(Im(ζi))
2 ≤

n

∑
i=1

(Re(ζi))
2 (4.10)

and the inequality (4.8) is established.

AssumeG is not acyclic and the equality happens in (4.8). Then the

equality also holds in (4.10) and so,∑n
i=1(Im(ζi))

2 = 0, which shows that

all the eigenvalues ofG are real.
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In addition, we have∑i< j |Re(ζi)||Re(ζ j)|=
∣

∣∑i< j Re(ζi)Re(ζ j)
∣

∣, which

is possible only when all theζi ’s have the same sign or all are zero except

two of them with opposite signs. By (4.9), we have∑i< j Re(ζi)Re(ζ j)<

0. Therefore, exactly two of the eigenvalues are nonzero with opposite

signs, sayζ,−ζ. Therefore, the characteristic polynomial ofG is

ΦG (x) = (x−ζ)(x+ζ)xn−2 = xn−ζ2xn−2

By Theorem 18,ζ =
√

c2/2 and the proof is complete.�

4.5 Energy of some digraphs

In this section we find the energy of some classes of digraphs.

Let q be a prime power such thatq ≡ 3 (mod4). Let Sbe the set of

square elements of the finite fieldF∗
q. Then−1 6∈ S, and so, for each pair

(a,b) of distinct elements ofFq, eithera−b∈Sor b−a∈S, but not both.

Now, we define thePaley digraphas the directed graphPq := (V ,Aq)

with verticesV = Fq and arcsAq = {(a,b) ∈ Fq×Fq : b−a∈ S}. (see

Figure 4.3)

In the following theorem, we are introducing the relation between the

energy of the Paley digraph and the energy of its underlying graph.

Theorem 24 Let q≡3(mod4) be a prime power. The energy of the Paley

digraphPq of order q is one half of the energy of its underlying graph.
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Figure 4.3:P7 : Paley digraph of order 7

PROOF. By the definition of Paley digraph, for indicesi, j wherei 6= j,

eitherai j = 1,a ji = 0 or ai j = 0,a ji = 1. Therefore,Aq+At
q = Jq− Iq,

AqJq = JqAq, andAt
qJq = JqAt

q. Now, by usingAt
q(Jq− Iq) = (Jq− Iq)At

q

we have the following:

At
q(Aq+At

q) = At
q(Jq− Iq)

(Aq+At
q)A

t
q = (Jq− Iq)A

t
q = At

q(Jq− Iq)

At
qAq = AqAt

q = At
q(Jq− Iq)− (At

q)
2

ThereforeAq andAt
q commute and soAq is a normal matrix.∗

By Theorem 4, there exists a unitary matrixU of orderq in such a way

that bothU∗AqU andU∗(Jq− Iq)U are diagonal matrices. LetU∗AqU =

diag(λ1, ...,λq), thenU∗At
qU =diag(λ̄1, ..., λ̄q), we haveU∗(Aq+At

q)U =

∗Note. In factAq form a symmetric design ([24]) and obviouslyAq andAt
q commute.

Here, we have given the proof not relying on this fact.
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diag(λ1+ λ̄1, ...,λq+ λ̄q) =U∗(Jq− Iq)U . Therefore{λi + λ̄i : 1≤ i ≤ q}

is exactly all the eigenvalues ofJq− Iq. It follows now that 2E (Pq) =

E (Kq) �

EXAMPLE . Consider the matrix

H =



















1 1 1 1

1 − − 1

1 − 1 −

1 1 − −



















As described in Theorem 6, fori = 1,2,3, and 4, defineCi by C4 = 04×4

and

C1=



















1 − − 1

− 1 1 −

− 1 1 −

1 − − 1



















, C2=



















1 − 1 −

− 1 − 1

1 − 1 −

− 1 − 1



















, C3=



















1 1 − −

1 1 − −

− − 1 1

− − 1 1



















Next consider the following matrix

H16 =



















0 C1 C2 C3

−C1 0 C3 C2

−C2 −C3 0 C1

−C3 −C2 −C1 0


















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Let D1 be the matrix derived fromH16 by changing “1” to “0” and “− ”

to “1” and D2 be the matrix derived fromH16 by changing “− ” to “0”.

ThenD1 andD2 are adjacency matrices of digraphsG1 andG2 shown

in Figure 4.4. D2 is, in fact, the transpose ofD1 and the characteristic

polynomials of bothD1 andD2 are the same and it equals to(x2+4)6(x−

6)(x+2)3. So, by Definition 4.1.1, the energy of digraphsD1 andD2

equals 12. On the other hand,D1+D2 is the adjacency matrix for the

underlying graph of bothG1 andG2.

D1+D2 =



















04×4 14×4 14×4 14×4

14×4 04×4 14×4 14×4

14×4 14×4 04×4 14×4

14×4 14×4 14×4 04×4



















. (4.11)

Figure 4.4: Digraphs for matricesD1 andD2

The characteristic polynomial ofD1+D2 is x12(x−12)(x+4)3 and
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so, the energy of the underlying graph is 24.

In general case, we may use the methods of Theorem 6. LetH =

[c1 c2 ... cn] be a Hadamard matrix of ordern= 4mwherecis are columns

of H and the last column equals all-one column. DefineCi = cict
i , i =

1, · · · ,n−1 as it was in the proof of Theorem 6. Now, consider a sym-

metric Latin squareL of ordern with numbers{1, · · · ,n} andn on the di-

agonal ([13]). Construct the matrixM by changing each numberi above

the diagonal ofL with Ci and eachi below the diagonal ofL with −Ci

and change then on the diagonal with a0n×n matrix.

Let D1 be the matrix derived fromM by changing 1 to 0 and− to 1,

andD2 be the matrix derived fromM by changing− to 0. LetG1 andG2

be their corresponding digraphs, respectively. LetD3 = D1+D2 with its

corresponding graphG3, thenD3 is of the form

D3 = D1+D2 =



















04m×4m 14m×4m · · · 14m×4m

14m×4m 04m×4m · · · 14m×4m

...
...

. . .
...

14m×4m 14m×4m · · · 04m×4m



















.

Theorem 25 Let n= 4m. The energy of the digraphG1 of order n2 that

we constructed above is one half of the energy of its underlying graph,

G3. Furthermore,E (G1) = E (G2) =
1
2
E (G3) = n(n−1)

PROOF. Since the Latin squareL is symmetric, we see thatD2 is the
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transpose ofD1, i.e. D2 = Dt
1. Note that sinceD1 is a real matrixDt

1 and

D∗
1 are the same.

REMARK . The fact thatD1 andDt
1 commute follows from the observa-

tion thatD1 form a symmetric design ([24], [13]). We have opted to give

a proof here not relying on this fact.

We have

Dt
1(D1+Dt

1) = Dt
1D3 = Jn(n−1)/2 . (4.12)

(D1+Dt
1)D

t
1 = D3Dt

1 = Jn(n−1)/2

Dt
1D1 = D1Dt

1 = Jn(n−1)/2− (Dt
1)

2

Therefore,D1 andDt
1 commute and soD1 is normal. From (4.12) we

can also see thatD1 andD3 commute. Now, by Theorem 4, there exists a

unitary matrixU of ordern2 in such a way that bothU∗D1U andU∗D3U

are diagonal matrices. LetU∗D1U = diag(λ1, ...,λn2), thenU∗Dt
1U =

diag(λ̄1, ..., ¯λn2), we haveU∗(D1+Dt
1)U = diag(λ1+ λ̄1, ...,λn2+ ¯λn2) =

U∗D3U . Therefore{λi + λ̄i : 1≤ i ≤ n2} is exactly all the eigenvalues of

D3. It follows now that 2E (G1) = E (G3)

Now, we need to just compute the energy ofG3. We use the method

of equitable partition (Section 2.2). We partitionD3 into the blocks of
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ordern= 4m. Let B be the quotient matrix forD3. Then

B=



















0 n · · · n

n 0 · · · ...
...

...
. . . n

n · · · n 0



















and the eigenvalues ofB are

−n (with multiplicity n−1)

n(n−1) (with multiplicity 1)

which are also the nonzero eigenvalues ofD3 by Lemma 2.2.2. The rank

of D3 is n, therefore, the other eigenvalues ofD3 are 0. Consequently

the energy ofG3 which is in fact the underlying graph ofG1 andG2 is

2n(n−1). Therefore,E (G1) = E (G2) = n(n−1). �
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