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1. Introduction

Classically, the energy-momentum tensor of any field is expected to be covariantly conserved

in a curved background. Quantum mechanically, however, this is not always the case. For

example, for a chiral scalar field in (1 + 1)-dimensional curved spacetime, the covariant

derivative of the energy-momentum tensor reads

∇µT µ
ν =

1

96π
√−g

εβδ∂δ∂αΓα
νβ , (1.1)

the right hand side being the gravitational anomaly in that spacetime [1 – 3].

Under certain simplifying assumptions, it was shown by Christensen and Fulling [4],1

that the above anomaly can be interpreted as a flux of radiation, which quantitatively

agrees with the Hawking flux [10, 11], from a horizon in that spacetime. This means that

Hawking radiation is a necessary consequence of quantization [12, 13] (just as anomaly is),

and that it also helps to restore general covariance. The resultant ‘total’ energy-momentum

tensor is covariantly conserved.

Recently, the above idea was re-visited by Robinson and Wilczek, who demonstrated

that the result was valid for a wide variety of spacetimes, and without many of the previous

assumptions (henceforth abbreviated as the R-W method) [14].2 Thus Hawking radiation

indeed restores general covariance for a large class of spacetimes. The spacetimes considered

in the R-W method encompassed many of the known spherically symmetric black hole

solutions. However, it excluded certain others, such as the Garfinkle-Horowitz-Strominger

(GHS) black hole in string theory. Furthermore, black holes with non-static horizons, such

as the Vaidya spacetime, were excluded as well. In this paper, we show that the R-W

method can be applied to both the above scenarios. For the most general spherically

1For recent applications see [5 – 9].
2For more details see [15]

– 1 –



J
H
E
P
1
0
(
2
0
0
6
)
0
2
5

symmetric black hole (including the GHS black hole), the outgoing flux that is dictated

by gravitational anomaly agrees with the flux from a perfect blackbody, radiating at the

Hawking temperature of the black hole. For Vaidya spacetime, although such a flux exists,

it does not agree with a perfect blackbody flux. The reason of course is that the Hawking

temperature of the black hole is no longer constant in time. Turning the argument around,

one can say that the flux that may be observed from an evolving horizon is the one above.

This paper is organized as follows. In Section 1 we review the R-W method for the case of

Schwarzschild black hole. In section 2 we extend the R-W method to the case of nonstatic

Vaidya spacetime of arbitrary time-dependent mass function and derive its flux. In section

3 we generalize the R-W method to the most static, and spherically symmetric spacetimes.

As an example of the generalized method, we study the stringy GHS black hole. It is

shown that the gravitational anomaly in this stringy black hole background is cancelled by

the total flux of a 1+ 1 dimensional blackbody at the Hawking temperature of this stringy

black hole. Finally, section 4 is devoted to a brief summary of our results.

2. R-W method for the Schwarzschild type black holes

Robinson and Wilczek [14] considered a d-dimensional Schwarzschild type spacetime with

the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(d−2) (2.1)

where f(r) is arbitrary and dΩ2
(d−2) is the metric on Sd−2. This metric describes many

interesting solutions of Einstein equations. We assume that it has a single non-degenerate

horizon at r = rH .

Now, the classical action functional for gravity coupled to matter, S[matter, gµν ], under

general coordinate transformations, changes as

δλS = −
∫

ddx
√−gλν∇µT µ

ν (2.2)

(where λ is the variational parameter), and that the symmetry of the classical action

requires that

δλS = 0 ⇒ ∇µT µ
ν = 0 . (2.3)

R-W propose however, that to avoid problems of divergence associated with the Boulware

vacuum, propagating modes along one lightlike direction are absent. The price to pay is

that the resultant theory is chiral, for which the above condition is violated quantum me-

chanically due to chiral anomaly. Now instead, the general covariance of the full quantum

theory requires the variation of the effective action W [gµν ] to be zero

δλW = 0 . (2.4)

Explicit variation yields

−δλW =

∫

d2x
√−gλν∇µT µ

ν , (2.5)
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where

T µ
ν = T µ

i νΘ− + T µ
o νΘ+ + T µ

χ νH . (2.6)

Θ± = Θ (±(r − rH) − ε) are step functions and H ≡ 1 − Θ+ − Θ−, which is equal to

unity between rH ± ε and zero elsewhere. T µ
i ν and T µ

o ν are covariantly conserved inside and

outside the horizon respectively. However, T µ
χ ν in (2.6) is not conserved due to the chiral

anomaly at the horizon, which is timelike and given by [2]

∇µT µ
χ ν ≡ Aν ≡ 1√−g

∂µNµ
ν (2.7)

where

Nµ
ν =

1

96π
εβµ∂αΓα

νβ (2.8)

and εβµ is the two dimensional Levi-Civita tensor. eq. (2.5) can be simplified as

−δλW =

∫

d2x
√−gλt

{

∂r (N r
t H) +

(

T r
o t − T r

χ t + N r
t

)

∂Θ+ +
(

T r
i t − T r

χ t + N r
t

)

∂Θ−

}

+

∫

d2x
√−gλr

{(

T r
o r − T r

χ r

)

∂Θ+ +
(

T r
i r − T r

χ r

)

∂Θ−

}

, (2.9)

which when combined with eq. (2.4) yields the following solution

T t
t = −(K + Q)

f
− B(r)

f
− I(r)

f
+ Tα

α (r),

T r
r =

(K + Q)

f
+

B(r)

f
+

I(r)

f
, (2.10)

T r
t = −K + C(r) = −f2T t

r ,

where

B(r) =

∫ r

rH

f(x)Ar(x)dx, (2.11)

C(r) =

∫ r

rH

At(x)dx, (2.12)

I(r) =
1

2

∫ r

rH

Tα
α (x)f ′(x)dx , (2.13)

and K,Q are constants of integration. Here, it is assumed that I
f

∣

∣

∣

rH

= 1
2Tα

α

∣

∣

∣

rH

is finite,

and

lim
(r−rH)→0

−

(

1

f

)

= − lim
(r−rH)→0+

(

1

f

)

. (2.14)

Next, in the limit ε → 0, using eq. (2.14) and

∂µΘ± = δr
µ

(

±1 − ε∂r ±
1

2
ε2∂2

r − . . .

)

δ (r − rH) , (2.15)
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the variation of the effective action (2.9) takes the form

−δλW =

∫

d2xλt {[Ko − Ki] δ (r − rH)

− ε [Ko + Ki − 2Kχ − 2N r
t ] ∂δ (r − rH) + . . .}

−
∫

d2xλr

{[

Ko + Qo + Ki + Qi − 2Kχ − 2Qχ

f

]

δ (r − rH)

− ε

[

Ko + Qo − Ki − Qi

f

]

∂δ (r − rH) + . . .

}

. (2.16)

It is easily seen in equation (2.16) that the values of the energy-momentum tensor on the

horizon contribute to the gravitational anomaly. Also, the parameters λt and λr being

independent, the necessary and sufficient conditions for eq. (2.16) to hold are

Ko = Ki = Kχ + Φ (2.17)

Qo = Qi = Qχ − Φ , (2.18)

where

Φ = N r
t

∣

∣

∣

rH

. (2.19)

The energy-momentum tensor now assumes the form

T µ
ν = T µ

c ν + T µ
Φ ν , (2.20)

where T µ
c ν represents the conserved energy-momentum tensor without any quantum effects,

and T µ
Φ ν is a conserved tensor with K = −Q = Φ, representing the flux Φ.

For the specific Schwarzschild type black hole spacetime described by (2.1), one can show

that

N t
t = N r

r = 0

N r
t =

1

192π

(

f ′2 + f ′′f
)

(2.21)

N t
r = − 1

192πf2

(

f ′2 − f ′′f
)

,

implying

Φ = N r
t

∣

∣

∣

rH

(2.22)

=
1

192π
f ′2(rH) . (2.23)

Now, it is well known that the surface gravity κ in this case is given by

κ =
1

2

∂f

∂r

∣

∣

∣

r=rH

(2.24)

=
1

2
f ′(rH) , (2.25)
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which implies the following Hawking temperature

TH =
κ

2π
(2.26)

=
f ′(rH)

4π
. (2.27)

On the other hand, a beam of massless black body radiation moving outwards in the radial

direction at a temperature TH has a flux of the form

Φ =
π

12
T 2

H . (2.28)

Therefore it is evident that the flux (2.23) is nothing but the Hawking flux, which exactly

cancels the gravitational anomaly! Recently, Iso, Umetsu, and Wilczek [16] showed that in

the case of a charged black hole apart from the gravitational anomalies, gauge anomalies

show up. These are cancelled by the Hawking radiation of charged particles from the

charged black hole. Furthermore, extended versions of [14] were presented in [17] which

included 4-dimensional rotating black holes as well as in [18] which included the (2 + 1)-

dimensional rotating BTZ black hole.

3. The Vaidya Metric

In this section we examine the R-W method for nonstatic spacetimes, of which one of the

simplest is given by the Vaidya metric

ds2 = −
(

1 − 2M(υ)

r

)

dυ2 + 2dυdr + r2dΩ2 (3.1)

where υ = t + r? is the advanced time coordinate (r? is the tortoise coordinate) and the

mass M is a function of the advanced time υ. This spacetime accommodates two kinds of

surfaces of particular interest. The apparent horizon is at rAH = 2M , whereas the event

horizon is denoted by rEH = rh [19]. To determine the null-surface rh = rh(υ), one first

defines

υ̃ = υ and r̃ = r − rh , (3.2)

in terms of which the line element (3.1) can be written as [20]

ds2 = −
(

1 − 2M(υ)

r
− 2ṙh

)

dυ̃2 + 2dυ̃dr + r̃2dΩ2 . (3.3)

Then the event horizon rh satisfies the null-surface condition

1 − 2M(υ)

rh
− 2ṙh = 0 , (3.4)

which yields

rh =
2M(υ)

1 − 2ṙh

, (3.5)

– 5 –
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where ṙh = drh/dυ. The surface gravity is given by

κ =
M(υ)

(1 − 2ṙh)r2
h

(3.6)

and the corresponding radiation temperature by [21]

T =
1 − 2ṙh

8πM(υ)
, (3.7)

which, using (3.5) becomes

T =
1

4πrh
. (3.8)

It should be noted that since rh depends on υ, the location of the event horizon as well as

the shape of the black hole change with time.

Since the Vaidya metric can be written in the form of eq. (2.1), in order to evaluate the

corresponding flux one can evaluate the quantity N r
υ on the event horizon. Using eq. (2.8),

this is given by

N r
υ =

1

96π
εβr∂αΓα

υβ

=
1

96π
ευr∂αΓα

υυ

=
1

96π

(

6M2(υ)

r4
− 2M(υ)

r3

)

. (3.9)

The corresponding gravitational anomaly evaluated on the event horizon is

Φ = N r
υ

∣

∣

∣

rh

(3.10)

=
1

96π

(

6M2(υ)

r4
− 2M(υ)

r3

)

∣

∣

∣

rh

(3.11)

=
1

96πr2
h

(

6M2(υ)

r2
h

− 2M(υ)

rh

)

. (3.12)

If one now considers the Vaidya metric to be radiating at the radiation temperature T ,

then using eqs. (3.5) and (3.8), the flux is given by

Φ =
π

12
T 2

(

1 − 8ṙh + 12ṙ2
h

)

=
π

12
ξ T 2 (3.13)

where

ξ ≡ 1 − 8ṙh + 12ṙ2
h . (3.14)

Thus, it is seen that the flux from the horizon of Vaidya spacetime is not the blackbody

(thermal) flux given by (2.28). The underlying reason for this difference is the non-constant

temperature in this case, owing to its time-dependent mass [22]. The factor of ξ ex-

presses this dependence, and as expected, for the special case M → a constant, ξ → 1 and

flux (3.13) yields the previously obtained flux (2.28) for a Schwarzschild black hole.

– 6 –
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4. Generalizing to non-Schwarzschild type black holes

In this section, we generalize the R-W method to the case of non-Schwarzschild type black

holes, i.e the most general static, spherically symmetric (non-Schwarzschild type black

holes) metric

ds2 = −f(r)dt2 +
dr2

g(r)
+ +r2d2Ω(d−2) (4.1)

where

f(r) · g(r) 6= 1 . (4.2)

If it has a horizon at r = rH then close it, one can write

f(r) ≈ f ′(rH) · (r − rH) (4.3)

g(r) ≈ g′(rH) · (r − rH) . (4.4)

The corresponding surface gravity and the Hawking temperature are given respectively by

κ =
1

2

√

f ′(rH)g′(rH) (4.5)

TH =

√

f ′(rH)g′(rH)

4π
. (4.6)

Thus, a beam of massless blackbody radiation moving in the positive radial direction at a

temperature TH will have a flux of the form

Φ =
1

192π
f ′(rH)g′(rH) . (4.7)

As for R-W, we assume that the physics near the horizon is described by a 1+1 dimensional

field theory, in the the ‘r-t’ section of the spacetime (4.1), and as before, the form of the

energy-momentum tensor after variation of the effective action (2.9) is given by (up to

constants K, Q and the trace Tα
α )

T t
t = −(K + Q)

f
− B(r)

f
− I(r)

f
+ Tα

α (r), (4.8)

T r
r =

(K + Q)

f
+

B(r)

f
+

I(r)

f
, (4.9)

T r
t = −K + C̄(r) = −f(r)g(r)T t

r . (4.10)

Now the quantities B(r), C(r), and I(r) are defined as follows

B(r) =

∫ r

rH

f(x)Ar(x)dx, (4.11)

C̄(r) =

√

g(r)

f(r)

∫ r

rH

√

f(x)

g(x)
At(x)dx, (4.12)

I(r) =
1

2

∫ r

rH

Tα
α (x)f ′(x)dx . (4.13)

– 7 –
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Continuing the R-W method, we end up with an identical expression for the energy-

momentum tensor due to the gravitational anomaly, which is expressed through the pure

flux (2.19).

However the explicit expression associated with the spacetime under consideration

is quite different from the one given for the Schwarzschild type black holes, i.e. expres-

sion (2.23). This difference stems from the fact that the components of Nµ
ν for the non-

Schwarzschild type black holes are now given by

N t
t = N r

r = 0

N r
t =

1

192π

(

f ′g′ + f ′′g
)

(4.14)

N t
r = − 1

192πg2

(

g′2 − g′′g
)

.

Therefore the quantity Φ that describes the pure flux for the non-Schwarzschild type black

holes reads

Φ =
1

192π
f ′(rH)g′(rH) . (4.15)

We see that this is identical to the expression (4.7), derived using black hole thermody-

namics. Thus, once again, the gravitational anomaly is cancelled by the Hawking flux.

As an application of the above result, we examine the GHS black hole [23] which is member

of a family of solutions to low-energy string theory, described by the action (in the string

frame)

S =

∫

d4x
√−g e−2φ

[

−R − 4 (∇φ)2 + F 2
]

(4.16)

where φ is the dilaton field and Fµν is the Maxwell field associated with a U(1) subgroup

of E8 × E8 or Spin(32 )/Z2 . Its charged black hole solution is given as

ds2
string = −

(

1 − 2Meφ0

r

)

(

1 − Q2e3φ0

Mr

)dt2 +
dr2

(

1 − 2Meφ0

r

)(

1 − Q2e3φ0

Mr

) + r2dΩ (4.17)

where φ0 is the asymptotic constant value of the dilaton. This metric describes a black

hole with an event horizon at

r+ = 2Meφ0 (4.18)

when Q2 < 2e−2φ0M2. For the aforementioned black hole we have

f(r) =

(

1 − 2Meφ0

r

)

(

1 − Q2e3φ0

Mr

) (4.19)

g(r) =

(

1 − 2Meφ0

r

)(

1 − Q2e3φ0

Mr

)

. (4.20)

The corresponding Hawking temperature follows from eq. (4.6)

TH =
1

8πMeφ0
(4.21)

– 8 –
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when the metric elements (4.19) and (4.20) of GHS black hole are used. One can see

that the Hawking temperature of the GHS black hole is independent of the charge Q, for

Q <
√

2e−φ0M .

At extremality, i.e. when Q2 = 2e−2φ0M2, the GHS black hole solution (4.17) becomes

ds2
string = −dt2 +

(

1 − 2Meφ0

r

)−2

dr2 + r2dΩ . (4.22)

and its Hawking temperature vanishes, since the corresponding Euclidean section is smooth

without any identifications. The quantity N r
t given by (4.14), reads

N r
t =

1

192π

(

g′f ′ + gf ′′
)

. (4.23)

When we evaluate this quantity at rH the second term is zero since g(rH) = 0. Thus,

N r
t

∣

∣

∣

rH

=
1

192π
g′(rH)f ′(rH) (4.24)

=
1

192π

e−2φ

4M2
(4.25)

=
π

12

(

e−2φ

64π2M2

)

(4.26)

=
π

12

(

1

64π2M2e2φ

)

(4.27)

=
π

12

(

1

8πMeφ

)2

. (4.28)

Therefore, comparing with (4.21), we get

N r
t

∣

∣

∣

rH

=
π

12
T 2

H . (4.29)

As for the extremal case (4.22), it is obvious that the generalized R-W method gives the

correct null result (due to the vanishing Hawking temperature, i.e. T ext
H = 0) since in this

case f(r) = 1 and thus f ′(r) = 0.

5. Conclusions

In this work, we have computed the gravitational anomaly for chiral scalar fields for the

nonstatic Vaidya spacetime of arbitrary mass function. According to R-W, this is the flux

of radiation from a horizon in the above spacetime, such that general covariance at the

quantum level is restored. To our knowledge, this is the first time that Hawking flux from

such a dynamical spacetime has been computed. There have been some computations in

the past but only for specific mass functions. In addition in these cases the flux was in a

rather complicated form, contrary to our result derived here. In the limiting case where

the mass function is equal to the ADM mass of the Schwarzschild black hole, we recover

the R-W results. Furthermore, we have generalized their method to the most general

– 9 –
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static, and spherically symmetric spacetimes. We then applied the generalized method to

the Garfinkle-Horowitz-Strominger stringy black holes. The gravitational anomaly of this

stringy black hole is cancelled by the flux of a beam of massless 1+1 dimensional particles

at the Hawking temperature of this black hole. Moreover, at extremality we get the known

zero temperature and correspondingly a null flux indicating that there is no gravitational

anomaly.

It would be interesting to study the physical implications of our result for other dy-

namical spacetimes, on which we hope to report elsewhere.

Note: A related work by Keiju Murata and Jiro Soda [24] appeared on the archive on

the same day we submitted our paper.
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