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ABSTRACT

Software development projects receive many change requests
each day and each report must be examined to decide how
the request will be handled by the project. One decision that
is frequently made is to which software developer to assign
the change request. Efforts have been made toward semi-
automating this decision, with most approaches using machine
learning algorithms. However, using machine learning to cre-
ate an assignment recommender is a complex process that must
be tailored to each individual software development project.
The Creation Assistant for Easy Assignment (CASEA) tool
leverages a project member’s knowledge for creating an as-
signment recommender. This paper presents the results of a
user study using CASEA. The user study shows that users
with limited project knowledge can quickly create accurate
bug report assignment recommenders.
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INTRODUCTION

Large software development projects can receive hundreds of
bug reports per day [5, 6]. Each of these bug reports needs to
be analyzed and decisions made about how the report will be
handled by the project. In cases where a change to the source
code is needed, a decision is made about to whom the work
will be assigned. This decision process is called bug triage
and must be done for all incoming reports.

Bug triage takes significant time and resources [12]. Bug
report assignment recommenders have been proposed as a
method for reducing this overhead. Many researchers have
investigated different approaches for assignment recommender
creation, with most focusing on the use of machine learning
[5,7, 14,29, 31].

Conceptually, the creation of an assignment recommender
using machine learning is straightforward [3]. However in
practice creating an assignment recommender for a specific
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software development project is challenging. The Creation As-
sistant for Easy Assignment (CASEA) tool [1] was created to
assist software development projects in creating machine learn-
ing assignment recommenders tailored to a specific project.

This paper presents the results of a user study using CASEA
to create assignment recommenders for a large open source
project, and is the first such study. The study found that
subjects could quickly create an accurate assignment recom-
mender using the tool, despite the users having no specific
knowledge about the software project.

To our best knowledge, CASEA is the first system to address
the bug report assignment recommender creation problem, and
this paper presents the first study of its use.

This paper proceeds as follows. First, an overview of CASEA
is presented. Next, the results from a user study involving
subjects creating assignment recommenders for the Eclipse
Platform project are presented. The paper then concludes
with a discussion of some of the threats to the validity of this
work, related work and possible future improvements to make
CASEA more practical for software development projects.

BACKGROUND
This section presents background information about bug re-
ports, their life cycles, and machine learning.

Bug Reports

Bug reports, also known as change requests, provide a means
for users to communicate software faults or feature requests to
software developers. They also provide a means for developers
to manage software development tasks. Bug reports contain a
variety of information, some of which is categorical and some
of which is descriptive. Categorical information includes such
items as the report’s identification number (i.e. bug id), its
resolution status (e.g., NEW or RESOLVED), the component
the report is believed to involve, and which developer has been
assigned the work. Descriptive information includes the title
of the report, the description of the report, and discussions
about possible approaches to resolving the report. Finally, a
report may contain other information, such as attachments or
links to other reports.

Bug report lifecycles

All bug reports have a lifecycle. When a bug report first enters
a project’s issue tracking system (ITS), it is in a state such as
UNCONFIRMED or NEW. The bug report will then move



through different states, depending on the project’s develop-
ment process, and arrive at a resolution state, such as FIXED
or INVALID. The lifecycle of a bug report can be used to
categorize bug reports [5]. Figure 1 shows an example life
cycle state graphs from the Bugzilla ITS [20].

Machine learning algorithms

Machine learning is the development of algorithms and tech-
niques that allow computers to learn [18]. Machine learning
algorithms fall under three categories: supervised learning,
unsupervised learning, and reinforcement learning. Bug re-
port assignment recommenders primarily use supervised learn-
ing algorithms, such as Support Vector Machines (SVM)[15],
Naive Bayes [24] and ML-KNN [30]. Understanding how a
machine learning algorithm creates a recommender requires
understanding three concepts: the feature, the instance and the
class. A feature is a specific piece of information that is used
to determine the class, such as a term that appears in one or
more of a set of bug reports. An instance is a collection of
features that have specific values, such as all of the terms in
the description of a specific bug report. Finally, a class is the
collection of instances that all belong to the same category,
such as all of the bug reports fixed by a developer. In super-
vised machine learning, training instances are labeled with
their class. A recommender is created from a set of instances
and the output of the recommender is a subset of the classes
predicted for a new instance.

CREATION ASSISTANT FOR EASY ASSIGNMENT

The Creation Assistant for Easy Assignment (CASEA) [1]is a
software tool to assist a software project in creating and main-
taining bug report assignment recommenders. CASEA guides
a project member through the assignment recommender cre-
ation process in four steps: Data Collection, Data Preparation,
Recommender Training, and Recommender Evaluation. The
remainder of this section presents an overview of how CASEA
assists with each of these steps.

Data Collection

The first step in recommender creation is to gather the data
to be used for creating the recommender. Specifically, bug
reports are extracted from the project’s issue tracking system
(ITS). The project member provides the URL of the project’s
ITS, a date range for data collection, and an optional maximum
limit for number of reports to gather. Reports that have a
resolution status of RESOLVED, VERIFIED or CLOSED are
gathered chronologically, with every tenth report selected as a
testing report to create an unbiased set for evaluation.

Data Preparation

Having collected the data from the project’s ITS, the next step
is to filter the data to produce the highest quality training set.
Two types of filtering are performed: automatic and assisted.

The automatic filtering performs three actions on the textual
data. First, terms that are stopwords (i.e. common words such
as ’a’ and ’the’) are removed. Next, stemming is performed to
reduce all of the terms to their respective root values so that
words such as "user’ and ’users’ are treated as the same word,
ensuring a common vocabulary between the reports. Finally,

punctuation and numeric values are removed, except where
the punctuation is important to the term, such as URLSs or class
names (e.g. “org.eclipse.jdt”).

CASEA assists the user with two types of filtering: label fil-
tering and instance filtering. To assist with label filtering,
CASEA presents the user with a label frequency graph. For
an assignment recommender, this graph presents bug fixing
statistics, a type of activity profile [21], for the project devel-
opers based on a random sample of all of the bug reports in
the training data set. Figure 2 shows the Configuration tab
and an example of label filtering. As can be seen in the graph,
developer activity follows a Pareto distribution curve with a
few developers contributing the bulk of the work, and many
other developers making small contributions [11, 16, 19, 25].
CASEA visualizes the project’s development activity and al-
lows the user to select a threshold using a slider, such that
only a core set of developers are recommended. In Figure 2, a
cutoff of 21 has been selected.

Instance filtering is done using project-specific heuristics. The
heuristics have two parts: a grouping rule and a label source.
The grouping rule is used to categorize the data into groups for
which the label source will be used for labeling the instances.
For an assignment recommender, the grouping rule is a bug
report lifecycle (called “Path Group” in Figure 2) and the label
source (i.e. data source in Figure 2) is either a field from the
bug report, such as the assigned-to field, or other labelling
information that can be extracted from the bug report, such as
the user that last attached a patch or the developer who marked
the report as resolved.

Figure 2 shows an example of instance filtering in CASEA.
All of the training reports are used to determine the specific
bug report life cycles for the project and the user is presented
with a statistical summary of the categories. The figure shows
that for the data set for the Eclipse Product project, 30.6% of
the reports have a NEW — FIXED (NF) lifecycle, followed
by 22.6% NEW — FIXED — VERIFIED (NFV), and 15.6%
being NEW (N). Using this information, the user can create
heuristics for the most common occurring categories. In this
case, “FixedBy" was chosen for the NF category, “Resolver"
for the NFV category, and “Reporter" for the N category. The
user can also choose the number of heuristics to be applied, to
a maximum of ten; six was chosen in Figure 2.

Recommender Training

After filtering the data to create the set of training and evalua-
tion instances for the recommender, the data is then formatted
for use with the machine learning algorithm. Once the user has
filtered the data and the data is formatted, the recommender is
created using a multi-class Support Vector Machines (SVM)
algorithm with a Gaussian kernel. SVM is a commonly used
algorithm for assignment recommendation [5, 7].

Recommender Evaluation

Once the user starts the recommender creation process, the
user is moved to the Analysis tab that presents the recom-
mender evaluation results (Figure 3). The user can then return
to the Configuration tab, adjust the values for label and in-
stance filtering, and create a new recommender. This process
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Figure 1. Bug report life cycle state diagram from the Bugzilla ITS.
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Figure 2. The Creation Assistant for Easy Assignment (Configuration tab).



continues until the user is either satisfied with the created
recommender, or the user has determined that an assignment
recommender cannot be created with a high enough accuracy
to benefit the project. At any time the user can save the recom-
mender configuration and return at a later date.
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Figure 3. Recommender evaluation in CASEA (Analysis Tab).

CASEA uses the metrics of precision and recall to evaluate
a created recommender. It presents results for the top recom-
mendation (top-1), the top 3 recommendations (top-3), and the
top 5 recommendations (top-5). Figure 3 shows an example of
the evaluation results for a recommender after eighteen trials.
It shows that the first four configurations did not create very ac-
curate recommenders as the activity threshold was too low, but
when the threshold was raised, a more accurate recommender
was produced. After about five more trials, a good heuristic
configuration was determined that produced an assignment
recommender with a high top-1 accuracy and reasonable top-3
and top-5 accuracies. Further experimentation was done with
the heuristics with varying results, before determining that the
configuration from trial #10 was the best configuration.

USER STUDY OF CASEA

A small user study was conducted to assess the potential for
CASEA to assist software projects in creating assignment
recommenders. Specifically, the study sought to answer qual-
itative questions such as “What aspects of the recommender
creation process and the CASEA interface do users find help-
ful? challenging? or confusing?". This study was similar in
intent to Stumpf et al [28], who conducted a user study to
determine how users interact with a machine learning system.

The study was conducted using a sample of eight computer
science graduate and undergraduate students. This study pop-
ulation was selected under the assumption that using a group
with no specific project knowledge would provide a lower-
bound for future in-field user studies.

User Study Setup

The user study was conducted in the following manner. First,
subjects were asked to complete a prior knowledge and expe-
rience survey. Specifically, subjects were asked about their
prior knowledge and experience in two areas: technical ex-
perience and technical knowledge. For technical experience,
subjects were asked about their level of experience with is-
sue tracking systems, open source projects and software test-
ing. To assess prior technical knowledge, subjects were asked
about their familiarity with bug reports, machine learning
algorithms, classifiers or recommender systems, user inter-
face design principles, and data mining. A Likert scale (Very

Experienced/Familar, Some Experience/Familarity, Little Ex-
perience/Familarity, Heard Of, No Experience/Familarity) was
used for the self-reporting of their experience level.

After completing the prior experience and knowledge survey,
subjects were asked to create an assignment recommender for
the Eclipse Platform project within fifteen minutes.

Once the subjects expressed that they were done using CASEA,
a debriefing interview was conducted. The subjects were
asked to explain their approach to creating an assignment
recommender using CASEA and what they recommended as
improvements to the tool, as well as any other comments about
their experience with CASEA.

Prior Knowledge and Experience

Figure 4 shows a summary of the responses from subjects
regarding their prior experience. As shown, most of the sub-
jects had prior experience with issue tracking systems, with
four reporting some experience and four reporting little ex-
perience. Overall testing experience was a bit less, with six
subjects reporting little experience, two reporting “heard of”
and one reporting no experience. Subjects had the least overall
experience with contributing to open source projects, with two
reporting litte experience, three reporting “heard of”” and four
reporting no experience. !

For technical knowledge, Figure 5 shows a summary of the
responses. Most of the subjects reported either being very
familar (2 subjects) or having some familiarity (6 subjects)
with user interface design principles from either recently or
currently taking an undergraduate course about this topic. Half
of the subjects reported familiarity with machine learning
algorithms, and slightly more (5 subjects) reported familiarity
with classifiers and recommender systems. The knowledge in
these areas came from either taking an undergraduate course
in computational intelligence or from other course projects.
Subjects reported the least familiarity with the bug report
lifecycle and data mining.

Quantitative Results

Table 1 shows the quantitative results from the eight subjects.
The first column identifies the subjects. The next two columns
present both the number of trials a subject conducted before
creating their most accurate assignment recommender, and the
total number of trials that the subject conducted in creating
an assignment recommender using CASEA. The next three
columns show the Top-1, Top-3 and Top-5 precision and recall
values for the best Eclipse Platform assignment recommender
created by the subject. The last three rows of Table 1 show a
summary of the results, presenting the maximum, minimum,
and median values for the columns.

Table 2 shows the threshold and heuristic configurations for
the best assignment recommender created by each of the eight
subjects. The first two columns list the top ten path groups
for the data set and how much of the data set is covered by
the path group. As shown by the table, 77% of the data set is
covered by the first five path groups, and most of the subjects
specified heuristics for six or fewer path groups. Also, with

INot all subjects provided answers to all of the questions.
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one exception, the “Assigned” data source was used for the
remaining 11%-27% not covered by the specified heuristics.
Half of the subjects chose values less than 10 for the threshold
and the others used values greater than 20.

The results show that the subjects were usually able to create
a reasonably accurate assignment recommender in 10 trials ® Herustic mBoth m Threshold
or less. The two most accurate recommenders (created by

. . . 14
Subjects #7 and #8) had the same configuration (i.e. threshold 1
and heuristic values), as shown in Table 2.

10

8

Qualitative Results and Observations 6
Based on observations during the study and responses from 4
the debriefing interview, subjects were found to employ two 2
strategies for assignment recommender creation using CASEA. 0

Some subjects were found to be very experimental in their Sub. #1 Sub.#2 Sub.#3 Sub.#4 Sub.#5 Sub.#6 Sub.#7 Sub. #8
approach, making many changes before creating a new rec-
ommender. Other users were more methodical, making small
changes and testing the results. Figure 6 shows a catego-
rization of the different types of changes (heuristic change,
threshold change or both) made by each subject. As expected,
subjects changed the heuristic configurations the most, and
most subjects only changed the threshold three times or fewer.

Figure 6. Types of changes made by subjects.




Trials to

Identifier Best Max Trials Top 1 (%) Top 3 (%) Top 5 (%)
Precision | Recall || Precision [ Recall || Precision | Recall
Subject #1 5 5 68.63 1.25 54.98 3.01 66.27 6.04
Subject #2 10 10 39.95 1.14 41.26 3.52 45.1 6.42
Subject #3 5 16 68.63 2.08 46.49 4.22 35.25 5.33
Subject #4 3 5 37.99 2.32 27.53 5.04 22.99 7.02
Subject #5 2 3 81.62 1.49 62.66 3.43 51.62 4.7
Subject #6 16 18 68.87 4.07 34.97 6.2 34.66 10.24
Subject #7 11 20 89.22 3.48 56.45 6.6 52.7 10.27
Subject #8 10 19 89.22 3.48 56.45 6.6 52.7 10.27
Max 16 20 8922 | 407 | 6266 | 66 6627 | 1027
Min 2 3 3700 | 1.14 || 2753 | 301 | 2299 | 47
Median 7.5 13 68.75 2.2 50.735 4.63 48.36 6.72

Table 1. Best Eclipse Platform assignment recommenders created by subjects.

[Covers || Sub. #1 | Sub. #2 | Sub.#3 | Sub.#4 | Sub. #5 | Sub. #6 | Sub. #] | Subject#8

|

NF 30.6% || FirstResp. | Resolver | Assigned | FixedBy | FirstResp. | FixedBy | FixedBy FixedBy
NFV 22.6% || Resolver | Resolver | Assigned | Assigned | FixedBy | Assigned | Resolver | Resolver
N 15.1% || Reporter | Assigned | FixedBy | Assigned | FirstResp. | Assigned | Assigned | Assigned
NM 5.1% FixedBy | FirstResp. | FirstResp. | Assigned | Assigned | Assigned | FirstResp. | FirstResp.
NAFV 3.9% FixedBy | Resolver | FirstResp. Assigned | Assigned | Assigned | Assigned
NAF 3.2% Resolver | Reporter Assigned | Assigned
NC 3.0% FirstResp. | Reporter
NX 2.5% FirstResp. | Assigned
NFRFV 1.8% FixedBy
NA 1.1% Assigned
Other Assigned | Assigned | Assigned | Assigned | Assigned | FixedBy | Assigned | Assigned
Activit
Threshold 47 31 3 5 5 5 22 2

Table 2. Best assignment recommender configurations of subjects.

One subject commented that the best strategy was to make
small incremental changes, and that CASEA made it easy to
employ this strategy. Another subject observed that creating
an assignment recommender using CASEA was similar to
trying to get a high score in a game, where the score was the
precision and recall values.

As part of the recommender evaluation, CASEA provides
information about how long it takes to create a recommender.
This led some subjects to work towards an incorrect goal of
minimizing the recommender creation time.

Although subjects were provided with a brief tutorial of
CASEA and a high level explanation of the recommender
creation process at the beginning of the study session, subjects
encountered a number of problems related to understanding
terminology or concepts. Specifically, the term “Path Group"
was used to describe the categorization of bug reports, and
subjects found this term unintuitive. This led to some ini-
tial confusion about the options in the heuristic configuration
panel. Also, the meaning of the precision and recall metrics
was not initially well understood by subjects. However, once
their meaning was understood, subjects felt that they made
more intelligent choices about the configuration.

As was mentioned, the subjects did not have specific knowl-
edge about the project, such as who formed the core group of

developers. This led to some subjects choosing a low activity
cutoff so as to not exclude developers, and resulted in rec-
ommenders that were not accurate and took longer to create.
This behavior would not be expected from an actual project
member using CASEA, as they would have knowledge about
the core development team.

THREATS TO VALIDITY
This section highlights some of the threats to the internal
validity, external validity, and construct validity of this work.

Threats to the internal validity of this work relate to the poten-
tial sources of error in the evaluation of CASEA. A potential
source of error is with the creation of the data set used for
the evaluation. Although a random sample of bug reports was
examined to establish that the data collection procedure was
correct, there may have been some bug reports that contained
incorrect data.

Threats to external validity relate to the generalizability of the
results to other projects or user groups. In this work, subjects
with no project-specific knowledge were used to evaluate the
usability of CASEA. Therefore, these results would not gener-
alize to those with project-specific knowledge, but could be
considered as a lower-bound for such a group.



Threats to construct validity refers to the suitability of the
evaluation measures. The method used to determine the set
of developers that could have fixed a bug report, used for cal-
culating precision and recall, is known to overestimate the
group [4]. This results in precision values that are overvalued,
and recall values that are undervalued. However, the evalua-
tion results in CASEA show the relative differences between
different configurations, so even if the precision and recall
values are over or under their true value, CASEA still provides
meaningful information to the user.

RELATED WORK
This section presents related work in the areas of assisting with
triage, assisting with recommender creation, and explaining
machine learning.

Assisting with Bug Report Triage

Like CASEA, Porchlight [9] and it’s predecessor TeamBugs
[10] seek to provide a tool to assist project triagers in making
their tasks more efficient. Porchlight allows a triager to group
similar bug reports together using tags, and then apply a triage
decision to the group. This tagging is similar to the path groups
in CASEA, which also groups bug reports into categories for
specifying and applying labelling heuristics.

Assisting with Recommender Creation

SkyTree Infinity [26] and BigML [8] both provide means for
guiding a user through the creation of machine-learning rec-
ommenders. However, using Skytree Infinity still requires
advanced knowledge of machine learning and statistics [13].
BigML provides no support for data preparation or visualiza-
tion, and creates recommenders using decision-trees, which
was shown to be ineffective for the bug report assignment
problem [5].

Explaining Machine Learning

One avenue toward making the use of recommender systems
practical is to assist in their creation and evaluation. This is
the approach taken by CASEA. An alternative approach to
making their use practical is by explaining their results.

Poulin et al. [23] developed ExplainD, a framework for ex-
plaining decisions made by classifiers that use additive evi-
dence, such as Naive Bayes. The framework was used in a
bioinformatics web-based system called Proteome Analyst.

Strumbelj and Konoenko [27] presented a method for explain-
ing classifier predictions that used coalitional game theory.
The method used a sampling-based approach to reduce the
computational complexity of explaining the contributions of
individual feature values. Their approach was applied to ex-
plaining the results of various machine learning algorithms,
including Naive Bayes and SVM.

Kulesza et al. [17] created an end user debugging approach
for intelligent assistants, such as bug report assignment recom-
menders. The system allowed the user to ask ‘why’ questions
about predictions and then change the answers to debug cur-
rent and future predictions.

Basilio Noris developed a visualization tool for machine learn-
ing called MLDemos [22]. MLDemos assists in understanding

how different machine learning algorithms function. It also
demonstrates how the parameters of the algorithms affect and
modify the results in classification problems.

CONCLUSION

This paper presented the results of a pilot study of CASEA, a
tool to assist in the creation of bug report assignment recom-
menders. CASEA assists a user in labelling and filtering the
bug reports used for creating a project-specific assignment rec-
ommender, as well as providing feedback on the effectiveness
of the configured assignment recommender. The study found
that users with little to no project-specific knowledge were
able to quickly create effective assignment recommenders for
the Eclipse Platform project.

Based on feedback and the results of the user study, a num-
ber of future improvements were idenitified for CASEA, in-
cluding having CASEA first attempt to tune a recommender
automatically and then have the user tweak the configura-
tion, extending CASEA to assist with the creation of other
triage recommenders, supporting other machine learning al-
gorithms, and providing other evaluation metrics, such as F1.
An improved version of CASEA, called the Creation Assistant
Supporting Triage Recommenders (CASTR) [2] was created
to incorporate these changes in preparation for a field study
with project developers.
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