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Abstract

Covering problems fall within the broader category of facility location, a branch of com-

binatorial optimization concerned with the optimal placement of service facilities in some

geometric space. This thesis considers two classes of covering problems. The first, Cov-

ering with Variable Capacities (CVC), was introduced in [1] and adds a notion of capacity

to the classical Uncapacitated Facility Location problem. That is, each facility has a fixed

maximum quantity of clients it can serve. The objective of each variant of CVC is either to

serve all clients, the greatest number of clients possible, or all clients using the least num-

ber of facilities possible. We provide approximation algorithms, and in a few select cases,

optimal algorithms, for all three variants of CVC.

The second class of covering problems is barrier coverage. When the purpose of cover-

age is surveillance rather than service, a cost effective approach to the problem of intruder

detection is to place sensors along the boundary, or barrier, of the surveilled region. A

barrier coverage is complete when any intrusion is sure to be detected by some sensor. We

limit our consideration of barrier coverage to the one-dimensional case, where the region is

a line segment. Sensors are themselves line segments, whose span forms a detection range.

The objective of barrier coverage as considered here is to form a complete barrier coverage

while minimizing the total movement cost, the sum of the weighted distances moved by

each sensor in the solution. We show that, by assuming the sensors lie in initial positions

where their detection ranges are disjoint from the barrier, one-dimensional barrier coverage

can be solved with an FPTAS. Along the way to developing the FPTAS, we give a fast,

simple 2-approximation algorithm for weighted disjoint barrier coverage.
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Chapter 1

Introduction

1.1 Background

This dissertation addresses problems in combinatorial optimization, specifically those

in the field of facility location. Facility location is concerned with the optimal placement

of service facilities in some space, usually under various given constraints. For instance, a

franchise owner may wish to choose a location for a new store in a large urban area accord-

ing to various factors determining the desirability of the prospective neighborhood. These

factors may include pedestrian traffic, the risk of robbery or theft in the area according to

crime statistics, and so on.

Facility location problems are often demonstrated to be quantifiably hard, more fre-

quently in the sense of being among the NP-hard problems. A well known question in

theoretical computer science asks if any NP-hard problem admits an efficient algorithmic

solution, an efficient algorithm being one that computes the best solution in polynomial

time. From decades of experience, it is commonly believed that the answer is no. Based

on the unlikelihood of finding an efficient solution to an NP-hard problem, one can instead

design an approximation algorithm, which computes a feasible solution within a guaranteed

range of the value of the best solution.

There are various types of facility location problems. Problems of median type concern

the location of facilities in such a way that the total distance of all clients to the nearest

facility is minimized. Problems of center type can be similarly phrased, by shifting the

focus to the minimization of the maximum distance of clients to the facility. Conversely,
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1.2. MOTIVATIONS

problems of competitive type seek to claim clients from competitors’ facilities by placing

facilities that provide better service [16], [21].

This dissertation considers members of a specific family of facility location problems,

covering problems on the line and in the two dimensional Euclidean plane. Some of these

problems are in the NP-hard class while the complexity of others is unknown. There are

many variations on covering problems, but they are generally defined according to the fol-

lowing template.

Objects in fixed locations on a line segment or in the plane (clients) are in need of cover-

age by service providers (facilities), which may be located in fixed or variable positions on

the line segment or plane. The objective of covering problems is to maximize the value of

the problem metric, a measure which numerically quantifies the quality of service provided

by a placement of facilities under the constraints imposed by the problem. The higher the

value of the metric, the better the service.

The choice of metric varies according to the covering problem, and helps to determine

the character of the problem. If the metric states that we must cover all clients within range

of a prescribed set of facilities at minimum total cost of opening each facility, then we are

dealing with a set cover problem. Another example is found in the metric that counts the

number of clients served as the result of opening n facilities. It expresses exactly the goal

of maximizing the number of clients served with a given number of facilities. This type of

problem is broadly classified as a maximum cover facility location problem. If each facility

can serve only a fixed number of clients, then we face a capacitated cover facility location

problem, in either the set cover or maximum setting.

Our thesis investigates the circumstances in which two classes of covering problems

admit constant-factor approximation algorithms. At times we isolate to edge cases exhibit-

ing structure not found in the general case. This is done to circumvent conditions in which

constant-factor approximation algorithms have been shown unlikely to exist.

2



1.2. MOTIVATIONS

1.2 Motivations

The choice of the geometric space in which facilities and clients are represented often

decides whether there is likely to exist an optimal algorithm that solves the problem in time

polynomial in the size of the problem. Such problems are said to be optimally solvable

in polynomial time. In industry, problems in wireless services, surveillance and intruder

detection frequently arise as covering problems. Since facility location problems in indus-

try often concern placements in physical space, industrial interest in covering problems is

usually bracketed to those occurring in two or three dimensional spaces.

The covering problem was introduced in [11] and has been widely used in practice in

areas such as the location of emergency vehicles, of retail facilities, and of telecommunica-

tions equipment. However, the simple “all or nothing” covering constraint has been found

to be too restrictive for many applications, and several relaxations have been proposed and

studied in the last decade. The survey [7] presents three relaxations: (a) the gradual cover

model where the degree with which a client is served decreases as its distance to the facility

increases; (b) the cooperative cover model where several facilities can contribute to serv-

ing the same client; (c) the variable covering radius model where the planner can choose

the covering range for the facilities, but the opening cost for the facility increases with its

range. The authors of [1] introduce a new family of covering problems, Covering with

Variable Capacities (CVC), which addresses the client coverage problem in the presence

of interference in wireless networks. Arguably, solutions to problems in the CVC models

have immediate applications in the mobile telephony industry.

When the purpose for coverage is surveillance rather than service, a cost effective

approach is to monitor the perimeter of the area in order to detect intruders. In one-

dimensional coverage problems, the barrier is represented by a horizontal line segment and

sensors are initially placed on the line containing the line segment. The goal is to compute

new positions for some subset of the given sensors, ensuring that every point in the barrier

segment is within the detection range of some sensor. In typical two dimensional coverage

3



1.3. OBJECTIVES AND CONTRIBUTIONS

problems, sensors are represented as points in the plane and assigned a radius of coverage

while the barrier is represented as the boundary of some closed planar region.

For a large scale deployment, using only the minimum number of sensors needed to

achieve full coverage is key to reducing costs. This discourages random deployments of

sensors, as they are unlikely to make efficient use of detection ranges, resulting in few

redundant sensors in the typical random covering.

1.3 Objectives and Contributions

This dissertation summarizes and extends the work of [1] and [6] as follows.

• The NP-hardness of the uniform CVC problem is demonstrated (section 3.1). It orig-

inally appeared in [1].

• Approximation algorithms are provided for the uniform, maximum and set cover

CVC problems (section 3.2). They all appeared in [1].

• Supposing a constant number of range/capacity pairs, an optimal polynomial time

algorithm for the 1-dimensional maximum uniform CVC problem is given (chapter

4). The result is unpublished at the time of this writing, and was established by me.

• The weighted disjoint MinSum barrier coverage problem is introduced, and shown

to be NP-hard (chapter 5 and section 5.1). It first appeared in [6] in its unweighted

version. The idea for the FPTAS was developed in an afternoon of collaboration

between myself and the other three authors of [6]. This lead to the proof of NP-

hardness of unweighted disjoint MinSum by me, and the proof of the correctness of

the FPTAS, a joint effort between myself and Zachary Friggstad.

• A 2-approximation algorithm for the weighted disjoint MinSum problem is developed

(section 5.2). The algorithm was suggested to me by Robert Benkoczi and Daya Gaur,

and I gave its correctness proof.
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1.4. METHODOLOGIES

• The FPTAS of [6] is extended to the weighted disjoint MinSum problem using the

2-approximation algorithm developed here. In doing so, a quadratic factor improve-

ment to the asymptotic time complexity of the original FPTAS is obtained in addition

to a linear factor space complexity improvement. (sections 5.3 and 5.4). At the time

of this writing, the weighted disjoint MinSum FPTAS is unpublished.

1.4 Methodologies

1.4.1 Linear Programming

A linear program is a way of representing an optimization problem in which the val-

ues of n real variables are to be determined under linear constraints, and under a linear

optimization criterion.

The standard form of a linear program is as follows.

minimize
n

∑
i=1

cixi

subject to
n

∑
j=1

ai jx j ≥ bi, 1≤ i≤ m

xi ≥ 0, 1≤ i≤ n

The objective function decides the optimal value, and must be a linear function. The

m constraints in the second row are expressed as linear inequalities that the variables must

satisfy, where all ai j and bi are real constants.

If we define the matrix A = [ai j]1≤i≤n,1≤ j≤m and the column vector b = [bi]1≤i≤n, the

linear program can be rewritten as

minimize cx

subject to Ax≥ b

xi ≥ 0, 1≤ i≤ n

5



1.4. METHODOLOGIES

where the inequality Ax ≥ b is interpreted as the componentwise inequality on the real

components of the vectors Ax and b. We refer to this representation as the matrix form of a

linear program.

A vector of non-negative components x satisfying Ax ≥ b is called a feasible solution,

since it meets the constraints of the problem.

1.4.2 The Simplex Method

Due to the relative compactness and simplicity of the presentation, we limit our overview

to the so-called revised simplex method.

We start with a linear program in matrix form. The idea of the simplex method is to

gradually refine a feasible solution x until an optimal solution is obtained. At all times, x

will have no more than m non-zero components.

The m non-zero components are known collectively as the basis variables in each iter-

ation of the simplex method. By the definition of A, each column a ,i of A corresponds to

a unique vector component xi. We denote as AB the submatrix of A whose columns corre-

spond to basis variables. Since there are m basis variables and m constraints, AB is an m×m

matrix. xB will denote the vector of basis variables, and similarly with respect to AN and xN

for the non-basis variables.

By adding a few extra variables, we can always tighten the constraints to Ax = b. If

the linear inequalities are cast as planar inequalities in R n, then the space Ax ≥ b can be

realized geometrically as a polytope in R n, with any feasible solution x as a point in the

polytope. If the constraints are tightened to Ax = b, x becomes a point on the surface of the

polytope.

The refinements of the simplex method consist of selecting a “surface point” x, which

is pushed along an edge, as far as possible without causing it to leave the domain of the

polytope. The direction it is pushed along will always decrease the value of the objective

function. Once x cannot progress further, it is said to occupy an extreme point, a vertex of

6



1.4. METHODOLOGIES

the polytope. At this time, one of the basis variables will be reduced to 0, and one of the

non-basis variables will be positive. The positive non-basis variable will enter the basis,

and the 0-valued basis variable will be removed from the basis. The process will continue

in iterations until no further reduction to the objective function is possible, which is to say

that the current feasible solution is an optimal one.

We begin by introducing m non-negative slack variables to the problem, xn+1, . . . ,xn+m,

which we add to x as components. A becomes [A| − Im] where Im is the m×m identity

matrix, and the m constraints Ax≥ b become Ax = b. Finally, we append a vector of m 0’s

onto the vectors c and b, to correspond to the new slack variable components of x.

As with A, we will refer to the basis subvectors of x and c as xB and cB, and similarly to

the non-basis subvectors as xN and cN .

To illustrate the process of selecting an entering and leaving variable, we use matrix

algebra. We have Ax = ABxB +ANxN = b. By definition of the basis, at the beginning of

any iteration, xN = 0, so that z = cx = cBxB + cNxN = cBxB.

We write xB as xB = A−1
B b− A−1

B ANxN (chapter 7 of [12] contains an argument for

the nonsingularity of AB). Then z = cx = cBxB + cNxN = cB(A−1
B b−A−1

B ANxN)+ cNxN =

cBA−1
B b+(cN− cBA−1

B AN)xN .

Let w = cN − cBA−1
B AN , and suppose it has a negative component. If we increase the

corresponding component of xN by a positive amount, it is clear from the above equation

for z that z can only decrease, even while potentially causing the basis variables to change

in order to preserve Ax = b. The component is increased until one or more of the basis vari-

ables is valued at 0. The first basis variable observed to reach 0 leaves the basis, swapping

places with the component variable, which is now positively valued.

If w has no negative component, z is an optimal solution and the revised simplex method

terminates.

7



1.4. METHODOLOGIES

1.4.3 Duality

Any linear program has a dual program, obtained as follows. For each of the m con-

straints of the form ∑
n
j=1 ai jx j ≤ bi, we introduce a new variable, yi, and add the constraint

yi ≥ 0. We get the constraints

yi
( n

∑
j=1

ai jx j

)
≤ biyi

for each 1≤ i≤ m. Summing the inequalities gives

m

∑
i=1

yi
( n

∑
j=1

ai jx j

)
≤

m

∑
i=1

biyi

We note that the inequality holds for all feasible solutions of the linear program {xi}n
i=1 and

any vector of non-negative components {yi}m
j=1 we may choose.

We add constraints to the dual linear program using the objective function coefficients

c j. We obtain n constraints of the form

m

∑
i=1

ai jyi ≤ c j∀1≤ j ≤ m

The dual linear program is summarized as

maximize
m

∑
i=1

biyi

subject to
m

∑
i=1

ai jyi ≤ c j, 1≤ j ≤ n

yi ≥ 0, 1≤ i≤ m

Rearranging inequalities as before, we find that

m

∑
i=1

biyi ≤
m

∑
i=1

( n

∑
j=1

ai jx j

)
yi ≤

n

∑
j=1

x j

( m

∑
i=1

ai jyi

)
≤

n

∑
j=1

c jx j

We have proved the theorem of weak duality. The theorem of strong duality says that

8
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the optimal solution values of any feasible linear program and its dual coincide.
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Chapter 2

Literature Review

2.1 Covering with Variable Capacities

CVC generalizes the classical capacitated covering due to [23] where an upper bound

on the total demand that can be served by a facility is imposed. Facilities correspond to

wireless base stations employing omni-directional antennas and clients represent service

subscribers. It is assumed that the location of the clients is given. Demands (bandwidth

requirements) and profits (revenue) are associated with the clients.

In the CVC model of [6], every facility has a variable covering range and the facilities

need to be located and assigned a covering range. The range can only be increased at

the expense of the capacity, as increasing the power of the radio transmitter causes more

interference in the network [8], [18], [19].

The maximum and set cover CVC formulations of [1] were at the time of publica-

tion open problems, aimed at understanding the connection between interference and base

station capacity in networks utilizing the popular code division multiple access (CDMA)

technology. Several researchers have investigated the idea of using this dependency to im-

prove the performance of networks. For example, the authors of [24] show that there are

significant savings in resource utilization for wide band CDMA networks when the range

of the base stations is appropriately chosen. The authors of [25] describe a cellular network

that exploits this phenomenon.

We should note that CVC abstracts away from some of the finer details of certain mod-

els. For wireless transmissions, the data rate received by a mobile user is affected by her

10



2.2. BARRIER COVERAGE PROBLEMS

proximity to the serving base station, as well as the amount of received interference power.

The authors of [1] describe three models of CVC problems: CVC with fixed facilities

(or simply CVC) where the location of the facilities is given and the objective is to maximize

the total profit of the clients served, maximum CVC where a set of clients with maximum

total profit must be covered by a fixed number of facilities, and set cover CVC where the

entire set of clients must be covered by a set of facilities with total minimum cost.

2.2 Barrier coverage problems

Kumar et al. [20] were first to formalize the barrier coverage by k sensors (k-barrier

coverage). They established the equivalence between k-barrier coverage and the problem

of determining k-vertex disjoint paths between a pair of vertices in a graph. The paper

has spurred research on many aspects of barrier coverage problems, varying from density

estimates of random deployments [3] to the relaxation of coverage requirements suited for

the study of localized algorithms [9].

The optimization problems defined by Czyzowicz et al. [14] [13] are one dimensional

problems where the barrier is modeled by a line segment and sensors are initially located

on the line containing the segment. The goal is to compute new positions for a subset of the

sensors so that every point in the target line segment is within the sensing range of at least

one sensor. Several objec- tive functions have been studied: minimizing the maximum dis-

tance (MinMax) traveled by one sensor [5], minimizing the number (MinNum) of sensors

moved [10], and minimizing the total (MinSum) travel distance [4].

In [14] and [13], Czyzowicz et al. introduced objective functions centered around the

minimization of cost spiking quantities and studied the one dimensional barrier coverage

problem. The MinMax problem minimizes the maximum distance travelled by any sensor;

the MinNum problem minimizes the number of sensors used.

In [10], Chen et al. show the one-dimensional MinMax problem to be solvable in

O(n2 logn) time, where n is the number of sensors. It is possible to derive more efficient

11



2.2. BARRIER COVERAGE PROBLEMS

algorithms under the assumption that the sensing ranges are uniform. In [13], Czyzowicz

et al. separate the barrier problem with uniform sensing ranges into two cases, those where

the total length of sensing ranges exceeds the size of the line segment making up the bar-

rier, and those where it does not. They provide exact algorithms for either case, with time

complexity O(n) for the second case and time complexity O(n2) for the first. Andrews

and Wang [2] improved the O(n2) bound to O(n logn) for the case of uniform sensors. An

extension of the line coverage problem where each point on the barrier is to be covered by

k-sensors (k-line coverage) was studied recently by Wang et al. [26], who gave optimal

algorithm for the case of uniform sensors.

Versions of two-dimensional MinMax and MinSum problems are addressed in [15], in

which there are multiple barriers fixed as line segments in the plane. Sensors can have

arbitrary sensing ranges and be located anywhere in the plane, and both Euclidean and rec-

tilinear metrics of distance are considered. Variants of both problem types are introduced

and distinguished according to the number of barriers to be covered. As well, the orienta-

tion of barriers plays a role, as barriers may be oriented parallel with or perpendicular to

one another. While in general sensors may move freely, some variants require sensors to

move to the closest point on a barrier. Dobrev et al. [15] demonstrate exact algorithms for

MinMax and MinSum in the single barrier and k parallel barrier cases, and show that in all

remaining cases, their variants of MinMax and MinSum are NP-hard.

Surprisingly, the combinatorial structure of the MinSum problem is not yet completely

understood. Czyzowicz et al. [14] proved the NP-hardness for the general problem with

non-uniform sensing ranges. We note that their proof constructs a MinSum instance where

the initial position for some of the sensors is inside the target line segment. The proof

also indicates that constant factor approximations for the general MinSum problem are not

possible unless P=NP. Except for this inapproximability result, the only restricted instances

solved are those with uniform sensors, for which an exact algorithm with time complexity

O(n) for the case of R < L and an O(n2) exact algorithm for the case R≥ L are possible.

12



2.2. BARRIER COVERAGE PROBLEMS

Of chief interest to us is the MinSum problem, which minimizes the total distance trav-

elled by all sensors to their final positions in the solution. A common variation on the

MinSum problem is the addition of some notion of sensor heterogeneity. In practice, some

sensing units may consume less power or have greater sensing ranges, while newer units

simply haven’t had the time to suffer the effects of wear, deterioration and obsolescence.

Therefore, barrier coverage models often allow for associated differences in the effective-

ness of individual sensors to be expressed.

One model exhibiting sensor heterogeneity is found in Bar-Noy et al. [4]. They devise a

sensing model where each sensor has finite battery life, and both moving and sensing cause

sensors to consume battery power. Covering therefore occurs in two phases: the deployment

phase, where sensors are moved into their final positions, and the covering phase, where

sensors decide their sensing ranges to form a full barrier coverage. The amount of power

consumed by movement and sensing is determined by given equations, which together

establish the lifetime of each sensor. The goal is to maximize the barrier coverage lifetime,

which is defined as the minimum lifetime of any sensor used in the coverage. For the case of

sensors with variable sensing ranges, they [5] give an FPTAS to minimized the total energy,

and an FPTAS to minimize the maximum energy spent. For the case of fixed sensing ranges

they give an inapproximability result.

In [6], we restrict the MinSum problem to the case where initially, sensors may only lie

in positions where their detection ranges are disjoint from the barrier. Their model allows

for sensing ranges to be non-uniform. They show the resulting DisjointMinSum problem

to be NP-hard, and present a fully polynomial time approximation scheme (FPTAS) for

DisjointMinSum, proving that solutions with approximation ratio arbitrarily close to 1 can

always be computed for it in polynomial time. This result provides a new direction of

investigation given that Czyzowicz et al. [14] proved that the unrestricted MinSum problem

admits no constant factor approximation.

A generalization of DisjointMinSum unexplored in [6] is obtained by assigning individ-

13
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ual weights to the movement costs of sensors, a second dimension of sensor heterogeneity

after allowing ranges to be non-uniform. The objective of WeightedDisjointMinSum is to

minimize the total weighted distance of sensors travelled in the solution under the con-

straints of DisjointMinSum.
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Chapter 3

Covering with Variable Capacities

Given a set of client locations in a Euclidean space, the covering facility location problem

is concerned with determining a set of optimal locations for facilities required to service the

clients. Facilities come with a built-in range, or radius, of coverage. In order for a client to

be serviced by a facility, it must fall within the radius of the facility.

Covering problems have been used in many industrial applications, among them the

placement of emergency services, retail locations and cellular towers. It was found that the

simple “all or nothing” model in which a client is either serviced totally or not at all is too

restrictive for many practical purposes. Therefore, a number of relaxations of all or nothing

have been proposed in the literature. They can be camped into three broad categories:

• gradual cover: the quality of service received by each client is numerically quantified,

and gradually declines according to its distance from the nearest facility;

• cooperative cover: multiple facilities assist in providing services to individual clients

simultaneously;

• variable covering radius: the planner chooses the radius of coverage for each facility;

the greater the range of coverage, the greater the facility cost.

In this chapter we discuss a family of covering problems distinct from all of these,

called Covering with Variable Coverings (CVC). CVC is a generalization of the classical

capacitated covering problem, where each facility has a predetermined cap on the number
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3. COVERING WITH VARIABLE CAPACITIES

of clients it can serve. As in the capacitated covering problem, we suppose that the client

set is fixed and given to us as an input.

Each client has a demand, represented as a positive integer, to be met by a single facility,

and offers a profit, also represented as a non-negative integer, in exchange for coverage.

Facilities have a pre-determined set of range/capacity pairs. The planner selects a distinct

range/capacity for each facility, under the restriction that the total demand of clients covered

cannot exceed the selected capacity of the facility, and must fall within the selected range.

As the range of coverage increases, capacity declines.

These constraints are motivated by considerations in the field of mobile telephony. In

the configuration of a cellular tower, interference increases with service range, and conse-

quently, coverage capacity goes down. Similarly, some clients may have greater bandwidth

requirements than others, and the service provider may wish to charge them more.

CVC problems can be situated in any Euclidean space. The variants of CVC studied

here as follows.

Problem 1 (CVC).

Input:

• A set C = {ci : i ∈ I} of clients where I is the index set of clients.

• For each client ci, a non-negative integral demand di and profit pi.

• A set F = { f j : j ∈ J } of facilities where J is the index set of facilities.

• For each facility f j, a set R j of allowed ranges and for each r ∈ R j, a corresponding

capacity c jr. By N jr we denote the set of clients within the covering range r of facility

f j.

Output:

• For each facility f j, a range r j ∈ R j.

16
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• For each facility f j, a subset of clients I j ⊆ I serviced only by f j, satisfying ∑i∈I j di≤

c jr j and ci ∈ N jr j for all i ∈ I j.

Objective:

• To maximize the total profit of clients served, maxi∈
⋃

j∈J I j pi.

Problem 2 (Maximum CVC).

Input:

• Same as for Problem 1. The set of facilities now represent candidate locations, of

which a subset must be chosen.

• A positive integer k.

Output:

• k facilities to be opened, indexed by J ∗ ⊆ J , where |J ∗|= k.

• For each facility f j, for j ∈ J ∗, a range r j ∈ R.

• For each facility f j, j ∈ J ∗, a subset of clients I j ⊆ I serviced only by f j, satisfying

∑i∈I j di ≤ c jr and ci ∈ N jr for all i ∈ I j.

Objective:

• To maximize the total profit of clients served, maxi∈
⋃

j∈J I j pi, using k or fewer facili-

ties.

Problem 3 (Set Cover CVC).

Input:

• Same as for Problem 1. The set of facilities now represent candidate locations, of

which a subset must be chosen.

Output:
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• A set of facilities to be opened, indexed by J ∗ ⊆ J .

• For each facility f j, for j ∈ J ∗, a range r j ∈ R.

• For each facility f j, j ∈ J ∗, a subset of clients I j ⊆ I serviced only by f j, satisfying

∑i∈I j di ≤ c jr and ci ∈ N jr for all i ∈ I j. Additionally, all clients are served, so that⋃
j∈J ∗ I j = I .

Objective:

• To minimize the number of opened facilities, min |J ∗|.

The uniform version of a CVC problem is a special case describing any of the above

three problems where for every client ci, we have di = pi = 1. We note that CVC generalizes

the capacitated covering problem, which can be considered otherwise identical to CVC, but

with the restriction that every facility uses the same range/capacity pairing.

We begin by demonstrating that the uniform CVC with fixed facilities problem is NP-

hard in the plane, even when the number of range/capacity pairs is limited to 2. We will

show that the formulation of CVC as a compact integer program yields a large integrality

gap.

Then, we give 1/2− ε approximation algorithms for both CVC and maximum CVC

problems with no restrictions on client demands or profits.

Lastly, we give a simple linear programming formulation of set cover CVC, and in-

troduce a simple rounding scheme that finds good approximate solutions in practice. We

conjecture but do not prove that the approximation has an integrality gap of e/(e−1) where

e is Euler’s number.

3.1 NP-completeness of the uniform CVC with fixed facilities problem

We show that uniform CVC is NP-complete, even when all fixed facilities are limited to

the same two covering range/capacity pairs. To do this, we will reduce from the Var-Linked

Planar 3-SAT problem [17].
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A planar 3-SAT problem is a version of the classic 3-SAT problem in which a bipartite

graph is formulated from a Boolean formula in conjunctive normal form (CNF). On one

side, there is a vertex for each variable of the formula while on the other, there is a vertex

for each clause. A variable vertex and a clause vertex are connected by an undirected edge if

and only if either the variable or its negation are present in the clause. Finally, the bipartite

graph is planar, meaning that it is possible to draw the graph in the plane in such a way that

no two edges cross.

A var-linked planar 3-SAT problem (VLP 3-SAT) implements the definition of planar

3-SAT, but adds two conditions. First, suppose the CNF formula has n variables. They are

put into a linear ordering x1, . . . ,xn. An edge (xi,xi+1) is added for every i = 1, . . . ,n, where

xn+1 = x1. The addition of these edges can be done so that the planarity of the graph is

not violated, but clearly, the graph is no longer bipartite. Second, each variable xi occurs in

exactly three clauses, one in which it is negated, and two in which it is non-negated.

We show in the next theorem that any uniform CVC with fixed facilities problem in the

plane, where facilities select from up to same two capacity/range pairs, is reducible from

var-linked planar 3-SAT.

Theorem 3.1. The uniform CVC problem with fixed facilities in the plane is NP-complete,

even when the facilities use the same two ranges with capacities in the set {1,2}.

Proof. We consider the CVC problem in the form of a decision problem. That is, given

some value P, is there a feasible assignment of clients to facilities such that the total profit

of the serviced clients is at least P? Once a solution is determined, it is easy to check

whether its total profit meets or exceeds P, so we can say that the problem is in NP.

The idea of the reduction is summarized as follows. First, we draw a planar represen-

tation of the clause-variable edges of the graph, with the variables linked by edges in the

ordered cycle, as described in the definition of the problem. The drawing is modified, so

that each variable vertex is substituted with a construct of three vertices, which we call

a variable gadget. The fact that the original planar graph has a cycle connecting all its
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variable vertices ensures that we can place variable gadgets without crossing any edges.

Similarly, every edge of the original planar graph is replaced with a path gadget.

A geometric CVC problem is built by selecting facilities and clients from among the

gadget nodes, and assigning ranges and capacities to the facilities. We will show that the

original Boolean CNF formula is satisfiable if and only if the CVC problem constructed has

a covering in which the attainable total profit is at least P, where P is the number of client

vertices contained in the transformed graph.

To obtain a variable gadget, we replace every variable vertex yi with a path of three

vertices, xi, ξi, and xi, and consider that xi and xi are facilities while ξi is a client. For every

clause C j, we add an edge connecting xi to the clause vertex representing C j if C j contains

xi in its nonnegated form. Similarly, we connect xi and C j with an edge if C j contains xi in

its negated form. The vertex ξi is connected only to xi and xi, as the middle vertex of the

path that forms the variable gadget.

The modified planar graph obtained in this way resembles the one illustrated in Figure

3.1. The white vertices correspond to the literal facilities xi and xi. The black vertices are

the clients ξi (which are connected exclusively to white vertices) and the clause clients C j.

Figure 3.1: Part of a transformed planar graph.

We now claim that these additions can be made to the graph without introducing any

edge crossings. To prove it, let δD > 0 be the shortest Euclidean distance between a node
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and an edge not incident to it in the drawing of the original graph. We place xi and xi apart

from the middle vertex ξi at distance δ < δD.

We observe that in the original drawing, there are three edges emanating from C j to

clause j’s variable vertices that do not cross the edges of the cycle linking the variable

vertices. Therefore, there is always a suitable orientation of the path connecting xi, ξi and xi

waiting to be found. As a client, ξi will only be coverable by facility xi or facility xi, due to

range constraints we will introduce later. We will refer to xi and xi as literal facilities from

now on.

Next, additional clients are introduced, one for each formula clause C j. These we refer

to as the clause clients. We connect each clause client with the literal facilities correspond-

ing to the three literals of the clause, using a path gadget. A path gadget is an alternating

sequence of clients and facilities beginning with a client and ending with a facility. Neigh-

boring nodes in the path gadget are separated by a distance of δ. Each facility in the path

gadget has available to it only one range/capacity pair, of range δ and capacity 1. It is there-

fore capable of covering either its predecessor or successor client on the path, but not both

at once. For the sake of brevity, we will refer to a facility at an end of the path as the path

gadget f-end and the client at the other end as its c-end.

For each clause j, we will use three path gadgets to connect C j to the literal facilities/-

variables that make it up. The c-end of the first path gadget will be connected via a single

edge to some literal facility xi if the literal yi appears in j. Recall that each literal occurs in

exactly three clauses, one in its negated form and the other two in its non-negated form. The

non-negated literal facilities/variables form the f -ends of two path gadgets each, connect-

ing them to their containing clause clients C j. The negated literal facilities/variables form

the f -ends of one path gadget each, likewise connecting them to their containing clause

clients C j. In either case, we ensure that the length of edges connecting clause clients and

literal facilities is ε < δ. It is easy to see that the size of the resulting graph is polynomial

in the size of the original VLP-3SAT graph. Let n be the number of vertices in the original
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Figure 3.2: The lengths of edges connecting a variable gadget to the graph
.

clause-variable graph, which is to say that n is the number of variables and clauses in the

CNF formula. The clause-variable graph can be drawn on an (n−1)× (n−1) grid in O(n)

time.

The shortest distance δ separating a node on the grid and a line segment on the grid can

be taken to satisfy the bound Ω(1/n2). Each path gadget introduced has up to O(n3) client

and facility vertices, and therefore the size of the resulting graph is O(n4).

In order to prove that what we have described is a reduction, we must show the Boolean

CNF formula to be satisfiable if and only if the CVC problem obtained from it has maxi-

mum profit at least P. In the reduction proof, P is the total number of clients represented in

the transformed graph.

Suppose the boolean assignment y1, . . . ,yn satisfies each clause of the formula. Set the

radii of the variable gadget facilities xi and xi as follows.

rxi =


δ if yi = 0

ε if yi = 1
rxi =


δ if yi = 1

ε if yi = 0

This way, client ξi is coverable by either facility xi or xi. In particular, xi covers ξi if and

only if yi is false.

So, fix a literal yi from the satisfying assignment and consider whether yi is true. If

it is, the literal facility xi has its covering range set to ε with capacity 2, following the

conditional definition of rxi . It is used to cover its two containing clause vertices, to which

it is connected by edges of length ε. Its counterpart facility at xi has range δ, and it is used

to cover ξi.

If instead yi is false, then the literal facility xi has covering range ε, and it is used to
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cover its sole containing clause vertex. This time, xi is assigned the greater range δ, and it

is used to cover ξi.

From the vantage point of the clients, each ξi is covered by some facility in the above

scheme, since every pair of facilities xi and xi contains a facility corresponding to a false

literal. For a clause client C j, one of its neighbouring literal facilities evaluates to true,

and hence is assigned to cover C j, whether the literal is in negated or non-negated form.

Therefore, the existence of a satisfying assignment allows us to construct a complete cover

under the given capacity/range constraints.

Conversely, we must show that a complete cover corresponds to a satisfying assignment.

From the constraints we put on the lengths of the graph edges, we note that each ξi is

covered by exactly one of its two neighbouring literal facilities. If xi covers ξi, we assign

xi false, and if xi covers ξi, we assign it true. Since exactly one of xi and xi covers ξi, the

assignment is consistent.

Similarly, each clause client C j is covered by some xi. From the structure of the trans-

formed graph, it follows that the covering literal facility of each clause C j corresponds to

a literal contained in the clause j. Since the literal determined by the covering literal fa-

cility is assigned true, the clause j is true in the assignment obtained. Therefore, we have

determined a satisfying assignment from the complete covering.

3.2 Algorithms for CVC with fixed facilities

We give three integer programming formulations for CVC with fixed facilities in an

arbitrary metric space. We show that they all give large integrality gaps, even when clients

are assumed to have uniform, unit demand. We note the similarity of CVC with fixed

facilities to the separable assignment problem, and how it implies the existence of a 1−1/e

approximation algorithm based on randomized rounding of a linear problem solution. We

go on to discuss a 1/2 approximation algorithm based on a simple greedy approach.
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3.2.1 Compact integer programming formulations for CVC with fixed facilities

The integer problems discussed here are devised for CVC with fixed facilities, but can

be easily adapted to handle set cover and maximum CVC.

Without loss of generality, we suppose that facility capacity is a decreasing function of

covering range. Let k be the total number of clients and f the total number of facilities. The

first IP is a natural formulation of the problem. The two types of variables are defined as

follows.

xua =


1 if client u is served by facility a

0 otherwise
yar =


1 if facility a uses range r

0 otherwise

An optimal solution of the first CVC covering problem on fixed facilities is given in the

following IP. pu is the profit of client u and du is its demand.

maximize ∑
u

puzu

subject to ∑
r∈Ra

yar ≤ 1, ∀1≤ a≤ f

xua ≤ zu, ∀1≤ u≤ k,1≤ a≤ f

f

∑
a=1

xua ≥ zu, ∀1≤ u≤ k

xua ≤ ∑
r:u∈Nar

yar, ∀1≤ a≤ f ,1≤ u≤ k

k

∑
u=1

duxua ≤ ∑
r∈Ra

caryar, ∀1≤ a≤ f

The first constraint ensures that only one range is selected for each open facility. The

second and third constraints ensure that every covered client u is covered by at least du

facilities, so that its demand is satisfied; note that if the client is uncovered, zu can be the

set to 0, and the third constraint then has no effect. The fourth constraint ensures that if

u is covered by facility a, it is covered at the range r configured for a. Finally, the fifth
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constraint ensures the number of clients covered by any facility a is not greater than the

capacity provided at a’s range.

Now we construct an example showing an integrality gap of f − 1 in the IP. In the

example, all client demands and profits are equal to 1. Let all f facilities be fixed at the

same point F , and let the clients be positioned at one of two points, P and Q. P is an

outermost point of the first covering range of each facility, of capacity m. Similarly, Q is

the outermost point of the second, greater covering range of each facility, of capacity 1. We

place m clients at P and m( f −2) clients at Q.

It is easy to see that m+ f − 1 is the greatest number of clients that can be covered.

In the optimal solution, a single facility covers the m clients at P, and the remaining f −1

facilities cover f −1 clients at Q. Alternatively, there is a fractional solution where xua =
1
f

for all clients u and facilities a. If we take yar1 = ( f −1)/ f and yar2 = 1/ f for all facilities

a, we readily see that the first three constraints are satisfied. We are left to verify the fourth

constraint. This is easy, as m( f−1)
f ≤ m( f−1)

f + 1
f . Since the value of the fractional solution

is m( f −1), and since this equals the total demand of all clients under the linear relaxation

of the original IP, it is optimal. We therefore have an integrality gap of m( f−1)
m+ f−1 , which

approaches f −1 as m becomes large.

The second integer program uses all the same variables and has more constraints, but is

structurally simpler. Variable xua is interpreted in the same way, but the meaning of variable

yar is broadened to indicate the selection of r or some range greater than r at facility a. If

yar has its second index sorted in non-decreasing order of range, we have an IP with the

constraints

ya,r ≥ ya,r+1, ∀1≤ a≤ f ,r < |Ra|

xua ≤ yar, ∀1≤ u≤ k,1≤ a≤ f ,r is the smallest range covering u

k

∑
u=1

xua ≤ ca−∑
r>1

dar · yar, ∀1≤ a≤ f
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with the same objective function. The new coefficients dar represent the difference in ca-

pacity between ranges r− 1 and r, so that dar = ca,r−1− ca,r. ca represents the maximum

capacity at facility a, at the first and thus smallest available range. In cooperation with the

first constraint, the fifth constraint enforces the capacity limit of the facility at the selected

range.

The third IP drops the yar variables, and adds the constraints

k

∑
s=1

xsa ≤ ca−Dua · xua, ∀1≤ a≤ f ,1≤ u≤ k

Here, Dua is the loss of maximum capacity incurred if facility a serves client u. The furthest

client served by a determines the maximum range, and hence the capacity of the client,

reflected in the value of Dua.

These formulations have a large integrality gap as well. The quadratic number of con-

straints places practical limits on the size of CVC problems that can reasonably hoped to

be solved using IP solvers.

3.2.2 Known approximation results

Problem 1 is closely related to SAP, the Separable Assignment Problem. SAP concerns

the packing of sized items into bins of varying capacities, where the subset of items pack-

able into bin i is denoted Ii. Each item is assigned a value, and the goal to maximize the

total value of packed items.

SAP was studied in [8], where it was shown to have two approximation algorithms, a

linear program based 1−1/e approximation algorithm, and a 1/2 approximation algorithm

based on local search. From an instance of a CVC problem, we construct an instance of

SAP as follows. Each facility is interpreted as a bin. Define Ii,r the set of clients (items)

that can be covered by facility (placed in bin i) at range r. Then |Ii,r| ≤ cir. Finally, let

Ii =
⋃

r∈R Ii,r.

This reduction implies there is a 1− 1/e LP rounding based approximation algorithm
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for the CVC problem. While the number of constraints is exponential, there is a separation

oracle, allowing the relaxed linear program to be solved in polynomial time.

3.2.3 A greedy approximation algorithm for CVC with fixed facilities

Here we present a greedy algorithm for CVC with fixed facilities. It is well-known

that there is a (1− ε) FPTAS for the general Knapsack problem (see section 3.1 of [27]).

Suppose that we can call the Knapsack FPTAS using the notation K(α,C, I), where C is the

capacity of the Knapsack, I is the set of items to be covered along with their profits, and

0 < α < 1 is the desired approximation ratio. This means that the total profit of K(α,C, I)

is at least (1− ε) ·OPT , where α = 1− ε and OPT is the maximum attainable profit.

Algorithm 1 Solve the provided CVC problem using a greedy approximation technique.
1: procedure V (α)
2: for j ∈ J do
3: for r ∈ R j do
4: (p jr, I jr)← K(α,c jr,N jr) . p jr is the profit, and I jr the chosen clients.

5: p j←maxr∈R j p jr . p j is the solution with largest profit.
6: I j← argmaxI jr

p jr
7: r j← argmaxr∈R j

p jr

8: I ← I \ I j
return ∑ j∈J p j

The algorithm considers each facility by iterating through the facility index set J . At

each range/capacity pair that might be assigned to f j, it views the assignment of clients to

j as a Knapsack problem, where each item ci has demand di and value pi. It solves the

Knapsack problem at integrality gap α, so that the total profit of clients selected is within

a factor of α in proportion to the maximum profit attainable there. Then, it selects the

coverage offering the greatest profit out of all the range/capacity choices, and removes the

clients selected from I . This continues over every remaining facility, until the sum of profits

obtained from every set of facility assignments is returned.

We demonstrate that Algorithm V (α) has an approximation bound of α/(α+1).
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Theorem 3.2. Algorithm V (α) is an α/(α+1)-approximation algorithm for the CVC prob-

lem with fixed facilities. It has runtime O( f m4/ε), where α = 1− ε, f is the number of

facilities, and m is the number of clients.

Proof. Fix an optimal solution of the CVC problem and let Q j be the set of clients assigned

to facility f j in the optimal solution but not available to the iteration considering f j in

the approximation algorithm, because they were selected in previous iterations. Let A j =

OPTj \Q j, where OPTj is the set of clients assigned to f j in the optimal solution. If S

is any set of clients S, we denote the total profits of clients in S is as pS. Since K is an

α-approximation algorithm for Knapsack, we have

αpA j ≤ pK(α,c jr j ,N jr j )

for the selected range r ∈ R j. This follows from A j ⊆OPTj and the fact that every client of

A j was available to Algorithm V (α) at the time it assigned clients to f j for r ∈ R j.

Summing, we get

α

|J |

∑
j=1

pA j ≤
|J |

∑
j=1

pK(α,c jr j ,N jr j )

Since every set of clients Q j has its total profit claimed in both the optimal solution and

the solution V computed by Algorithm V (α), we also have

|J |

∑
j=1

pQ j ≤V

We have shown

OPT ≤
|J |

∑
j=1

pQ j +
|J |

∑
j=1

pA j ≤V
(

1+
1
α

)
For the run time analysis, it is well known that the standard Knapsack FPTAS has a run

time of O(m3/ε), where m is the number of items and α = 1−ε for ε > 0. Since there are at

most m different Knapsack instances considered with respect to each facility, and no more

than f facilities, we arrive at the claimed bound.
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For the uniform CVC problem with fixed facilities, we set α = 1 and obtain a 1/2-

approximation algorithm by dispensing with the use of the Knapsack FPTAS in Algorithm

V (α). Since demand is uniform, the optimal Knapsack solution is trivially obtained by

selecting clients greedily, according to largest profit. Apart from the replacement of the

Knapsack FPTAS with the much simpler, optimal greedy solution, the algorithm is identical

to Algorithm V (α), as it its analysis.

Corollary 3.3. The greedy approximation algorithm for uniform CVC with fixed facilities

is a 1/2-approximation algorithm when restricted to the uniform CVC problem with fixed

facilities.

To see that the bound is tight, consider the uniform CVC problem with fixed facilities

on four points on the real number line, equally spaced, positioned at the integers 1 through

4. The even numbered points are facilities with a single range/capacity pair, (1,1), while

the odd numbered points are clients. Since the problem is uniform, clients have a profit and

demand of 1. The greedy approximation will assign the facility at 2 to the client at 3. An

optimal solution is to assign facility 2 to client 1 and facility 4 to client 3. Therefore, the

problem exhibits a performance ratio of 1/2.

3.2.4 Adapting the greedy algorithm to maximum CVC

Algorithm V (α) can be made to handle maximum CVC instances. The algorithm runs

in k iterations, where k is the number of facilities to be opened. For each iteration, a

knapsack instance for each remaining candidate facility is considered over each available

range/capacity pair. The facility with the most profitable knapsack solution is opened at the

witnessing range/capacity pair. The maximum CVC version of Algorithm V (α) is given in

pseudocode as Algorithm 2.

We immediately see that the conditions of Theorem 3.2 are satisfied, and we obtain

Theorem 3.4. There is a greedy algorithm that computes an α/(α+1) approximate solu-

tion to the maximum CVC problem.
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Algorithm 2 Solve the provided maximum CVC problem using the greedy approximation
technique.

1: procedure V (α)
2: J ′← J
3: for i from 1 to k do
4: for j ∈ J ′ do
5: for r ∈ R j do
6: (p jr, I jr)← K(α,c jr,N jr) . p jr is the profit, and I jr the chosen clients.

7: p(i)j ←maxr∈R j p jr . p j is the solution with largest profit.

8: I (i)
j ← argmaxI jr

p jr

9: r(i)j ← argmaxr∈R j
p jr

10: j← argmax j∈J ′ p
(i)
j

11: p j← p(i)j

12: I j← I(i)j
13: I ← I \ I j
14: J ′← J \{ j}

return ∑ j∈J p j

3.3 A column generation approach for Set Cover CVC

Turning to Set Cover CVC, we give an approximation algorithm that proceeds in two

rounds. From a natural integer program formulation of set cover CVC, we relax to a linear

program, which we solve. The solution is fed to a simple randomized rounding procedure

that yields good results in practice. We present strong evidence for the conjecture that the

rounding procedure is a e/(e−1)-approximation scheme, where e denotes Euler’s constant.

In the language of the classic weighted set cover problem, any covering set S is a facility

instantiated over two features. The first is one of the available given range/capacity pairs.

The second is a subset of clients within the selected range, whose total demand does not

exceed the selected capacity. All facility instantiations S are collected in the set S . The

one time opening cost of a facility configuration S at a given range/capacity pair is its set

weight, wS. It is clear that the size of the set S is exponential in the size of the client set.

This scheme of enumerating all client assignments against every applicable configura-

tion of facilities means that the integer program is exactly that of the classical weighted set

30



3.3. A COLUMN GENERATION APPROACH FOR SET COVER CVC

cover. It is simply

minimize ∑
S∈S

wSxS

subject to ∑
S∈S :S3c

xS ≥ 1, ∀c ∈ C

xS ∈ {0,1}, j = 1, ..., |S |

We obtain a linear program by applying the relaxation of the value constraints on xS to

xS ≥ 0 for all S ∈ S . Due to the exponential size of S in the number of clients and facilities,

we cannot hope to compute a solution of the LP to any reasonable standard of efficiency.

Therefore, we apply the technique of column generation.

The column generation method is largely patterned after the revised simplex method,

but with the added complication that not all columns of the constraint matrix are considered

in each step. That is, in a linear program expressed in the form

minimize
nr

∑
j=1

x j

subject to Ax≤ b

and x≥ 0

it is assumed that A is fully known. In any given step of the revised simplex method, all

columns j of A of capacity c j > 0 are considered for shifting into the basis matrix B. In any

step of column generation, B forms our total knowledge of A up to that point. After each

iteration of the algorithm, a new column of A is generated and appended to B according to

the notion of best reduced cost.

If we look to the linear program above, we see that we are dealing with a version of

the set cover problem. A column of A describes a set of clients coverable by a given

facility/radius pair, with the clients enumerated in the rows. Although the number of fa-
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cility/radius pairs is independent of the number of clients, the addition of new clients to the

plane increases the number of columns of A at an exponential rate. This greatly inflates

the combinatorial complexity of the compact program in both its integral form and linear

relaxation, which we overcome using column generation.

The column generation method initializes the constraint matrix B to the m×m identity

matrix Im, m the number of client points [12]. As in the revised simplex method, every

column of B is a column of A, with the added caveats that B may contain multiple copies

of the same column of A. The sets of clients and facilities are always the same, and the

first radius in the nondecreasing sequence of radii belonging to each facility is always 0.

Therefore, B begins life as a submatrix of A.

The column giving the smallest negative as it applies to B in any iteration is computed

as follows. First, the solution to the dual problem

maximize
m

∑
i=1

yi

subject to [BT y] j ≤ 1 ∀ j

and yi ≥ 0 ∀i

is obtained. If a j is a column of A, then, following the revised simplex method, we want to

select j satisfying argmin j∈cols(A)c j−a jy < 0.

We proceed by iterating over the columns of M = [mi j], whose columns identify the

clients i within range of the facility/radius pair fixed to the column j. That is, mi j = 1 if

client i is within range of the facility/range pair j, and mi j = 0 otherwise. For the jth column

of M, m j, we compute the Hadamard product h = m j ◦ y = [mi j · yi] and find the largest c j

components of h. Initially, a j is the zero vector. If k is the index of any of the largest c j

components in h, we set ak j = mk j. Since there are no more than c j ones in a j at the end

of this process, from a j ≤m j we see that the single facility assignment represented by a j

meets the range and capacity constraints of the problem.
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The a j minimizing argmin j∈cols(A)c j−a jy < 0 is returned and appended to B, if such

an a j exists, and the algorithm continues to the next iteration. If such an a j does not

exist, then B is fully determined and the algorithm terminates with the solution of the linear

program

minimize
cols(B)

∑
j=1

x j

subject to [Bx] j ≥ 1 ∀ j

and 0≤ x j ≤ 1 ∀ j

We summarize the column generation procedure in the pseudocode of Algorithm 3. A

Algorithm 3 The column generation procedure.
1: B← Im
2: num f r← the number of facility/range pairs
3: while true do
4: y← the solution of the dual program with constraint matrix B
5: perms← random shuffle of the integers {1,2, . . . ,num f r}
6: for k from 1 to num f r do
7: i← perms[k]
8: (sorted, idx)← sort(M ,i ◦ y) . Return the sorted vector, and the permutation

of the indices of M ,i ◦ y made by sort.
9: s← sum(sorted[1 : cap(i)]) . Sum the first cap(i) components of sorted,

where cap(i) is the capacity of the facility/range pair at i.
10: if 1− s < 0 then
11: for j from 1 to cap(i) do
12: ai,idx[ j]←Mi,idx[ j]

13: break
14: if 1− y ·a≥ 0 then
15: break
16: B← append column a to B

number of alternatives to the above scheme were attempted, and found to underperform

when implemented in GNU Octave. The first was a direct translation of the column gener-

ation algorithm described in [12].

From the above analysis, the optimal solution to the original linear program can be
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found using only the m′ sets S1, . . . ,Sm′ corresponding to the columns selected in the for-

mation of B.

Now that we can efficiently obtain the solution to the original, exponential size linear

program, we are left to contend with the fact that the solution is fractional. To get a feasible

set cover out of the fractional solution, we use a simple randomized rounding scheme,

described in pseudocode as Since every value of every variable x∗S in the optimal solution

Algorithm 4 The randomized rounding procedure.
1: Let S be the set of generated columns.
2: Let x∗S ∈ S stand for S in the solution of the optimal linear program.
3: repeat
4: for all S ∈ S do
5: xS← 1 with probability x∗S, otherwise xS← 0
6: F ← F ∪{S : xS = 1}
7: until F is a set cover
8: for all S ∈ S in random order do
9: if F \{S} is a set cover then

10: F ← F \{S}
return F

is bounded between 0 and 1, we can interpret the solution as a probability distribution

determining the likelihood of every set S being included in the cover. We perform a series

of coin flips, one for each set S, using a biased coin with probability x∗S of heads. If this

does not produce a set cover, we start a new series of flips, and repeat until a set cover is

produced.

Once we have a cover, its sets are considered in random order, where sets that are

deemed superfluous are removed. A set is superfluous if its removal from F does not

change the fact that F is a set cover.

The results of Algorithm 4 are shown in Figure 3.3. Nearly 500 instances of set cover

CVC were generated at random in the plane. The number of clients is indicated in the x-

axis. Each facility was assigned 5 covering ranges with values in the interval (0,1) and five

capacities from the set {1, . . . ,5} determined uniformly at random, such that the capacity is

a nonincreasing function of the range.
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Figure 3.3: The results of the randomized rounding/compact IP experiment.

The y-axis indicates the performance ratio of Algorithm 4 to the optimal solution. Both

Algorithm 4 and the optimal IP were implemented in GNU Octave.
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Chapter 4

1-dimensional Maximum CVC with
Uniform Demand

In this chapter, we give an optimal, polynomial time algorithm for maximum CVC on the

line for the case where every client has uniform demand and profit, assuming a constant

number of ranges. That is, every client ui has profit pi = 1 and demand di = 1, and is

represented as a point on the line. Facilities can be placed anywhere on the line, and their

range/capacity configurations are chosen from a common set of range/capacity pairs.

We begin by developing the results of section 4.1. After pointing out several parallels

to the results of Mirchandani et al. in [22], we will see that our Algorithm 5 is a slightly

restricted version of their Algorithm DP2. To make the parallels explicit, we will follow the

terminology of [22]. Before giving the shared definitions, we describe the problem solved

in the third section of [22], and its relation to maximum CVC on the line.

In the linear capacitated covering problem considered in [22], Mirchandani et al. place n

facilities with fixed locations and capacities on the line. To each client, the problem assigns

a non-empty interval of facilities capable of covering the client. A facility is a member of a

client interval if and only if it can service that client.

In section 3 of [22], Mirchandani et al. describe a maximum version of their capacitated

covering problem, P2′, in which k facilities are to be selected with the aim of maximizing

the total profit of the clients covered. The problem is capacitated in that each facility has a

single fixed capacity, the total client demand it can serve in a feasible solution.

They impose several restrictions on the problem to obtain an optimal algorithm in P.
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The first of these restrictions is unit demand on each client, whose definition matches our

own in the context of CVC. The second is what they term the non-nestedness assumption,

which is defined as follows. For a client u j, let f ′i( j) be the leftmost facility of u j’s client

interval, and f ′′i( j) the rightmost facility of its client interval. The non-nestedness assumption

states that for any two clients u j < uk, f ′i( j) < f ′i(k) implies f ′′i( j) ≤ f ′′i(k).

The final restriction, their monotonicity property, involves sorting facilities by the left-

most client they can cover, breaking ties by the rightmost client they can cover. The mono-

tonicity property says that if clients u j < uk are covered by distinct facilities fi( j) and fi(k),

it is always possible to have fi( j) ≤ fi(k) in an optimal solution.

In addition to the concept of client demand, P2′ considers the costs of opening facilities

and satisfying individual units of client demand, as well as penalties incurred for not sat-

isfying demand, that maximum CVC does not. As we will discuss later, the version of the

non-nestedness assumption used in section 4.1 is slightly less permissive than that of [22].

Algorithm 5 is generalized in section 4.2, where we relax our version of the non-nestedness

assumption.

4.1 The non-nested algorithm

Once Algorithm 5 is established, we will discuss its connections to P2′ in section 4.1.1.

We begin the development of Algorithm 5 by reducing the 1-dimensional maximum

uniform CVC problem to a capacitated covering problem on at most k facilities.

Our 1-dimensional k-capacitated covering problem is identical to uniform maximum

CVC with an added constraint: we are to decide the optimal set of capacitated facility/-

client assignments from among a set of facilities whose locations and ranges (and therefore

capacities) are fixed on the line, in the same way clients are.

Lemma 4.1. Suppose we are given a 1-dimensional uniform maximum CVC problem with

client set C . We can give a k-capacitated covering problem with facility set F and client set

C , such that |F |= k · |C | and that the greatest number of clients coverable with k facilities in
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the fixed facility (k-capacitated) setting coincides with that of the variable facility (uniform

maximum CVC) setting.

Proof. For each client c ∈ C , place k facilities, one for each range/capacity pairing, such

that the left end point of each facility’s range coincides with the location of c on the location.

Each facility is placed in the fashion of that depicted in Figure 4.1. This results in k · |C |

Figure 4.1: A facility of fixed capacity and range opened at the leftmost end point of a
client.

fixed facilities on the line.

Now fix a solution S of the uniform maximum CVC problem. For each facility f ,

opened in S, designate lc f as the leftmost client assigned to that facility, where f has range

r f . In the placement of fixed facilities, we know there is a facility f ′ of the same range and

capacity as f whose left end point coincides with lc f . It is apparent from the definition of f ′

that the range of f ′ includes all the clients assigned to f in S. Therefore, we can assign all

clients of f in S to f ′ in the k-capacitated solution without violating f ′’s range and capacity

constraints, which establishes the second claim of the lemma.

Let F ⊆ R be the set of facilities and C ⊆ R the set of clients. Each facility f has

associated to it an interval of coverage referred to as R f , where |R f | = r f . A facility can

cover a client c under an assignment if c ∈ R f .

Let S : C → Fω, where Fω = F ∪{ω}, be the assignment function and ω denote “noth-

ing”, a non-facility. Then S(c) = ω signifies that client c is unassigned.
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Suppose that S satisfies the condition that for each f ∈ F and c ∈ C , c ∈ RS(c) and

|S−1( f )| ≤ c f , where c f denotes the capacity of f (S−1 is the inverse image of f ∈ Fω,

from the usual set-theoretic convention). We adopt the convention that c ∈ Rω for all c ∈ C ,

and that cω =+∞. Additionally, if up to k facilities f ∈ F satisfy |S−1( f )|> 0, then S is a

solution of the k-capacitated variable covering problem defined by the tuple < C ,F >.

We number the clients in ascending order from left to right as c1, . . . ,cm, m = |C |,

n = |F |. We refer to S as a contiguous solution if for all f ∈F , S−1( f ) = [cl( f ),cu( f )]∩C ,

where cl( f ) ≤ cu( f ) are the first and last clients covered by F respectively. We allow

cl( f ) = cu( f ) =−∞ in order to signify S−1( f ) = /0.

We order the facilities f in ascending order by f + r f /2, and break ties by f − r f /2. If

two facilities tie under this scheme (their positions and ranges coincide), they are ordered

arbitrarily. This defines a total ordering of F .

Borrowing from the terminology of [22], we say the problem < C ,F > is non-nested if

for every pair of distinct facilities f1, f2 ∈ F , we have R f1 6⊆ R f2 and R f2 6⊆ R f1 . Two nested

facilities are shown in Figure 4.2.

Figure 4.2: Two nested facilities.

Lemma 4.2. For every solution S : C → Fω of a non-nested k-capacitated covering prob-
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lem, there is a contiguous solution S′ covering the same number of clients.

Proof. Let S be a solution of a non-nested problem P =< C ,F >. We can transform S into

a contiguous solution using the following algorithm.

Start from the rightmost facility f assigned in S, and work leftwards on the clients

c ∈ R f . We suppose that the rightmost covered client is assigned to f . If this doesn’t hold,

find the rightmost assigned client, and the rightmost client assigned to f , and swap them.

Since the number of clients covered has not decreased, take this new cover to be S.

Once the rightmost client assigned to f is found, go to its neighboring left client. If

it’s assigned to f , select it in place of the rightmost client. Otherwise, continue going left

in this manner until a new client assigned to f is found. Between this client and the one

selected previously, there is either an unassigned client, or a client assigned to a facility

distinct from f .

In Figure 4.3, the process starts at client u j, and continues leftward and it reaches the

black client.

Figure 4.3: A non-contiguous solution where the white clients belong to the later (green)
facility and the only black client within range is assigned to the purple facility.

In either case, we swap facility assignments to make the revealed client assignment of
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f contiguous. This is depicted in Figure 4.4.

Figure 4.4: The assignments are swapped, so that the green facility’s clients are contigu-
ously located.

We continue until we’ve reached the leftmost c ∈ R f . At that point, the clients assigned

to f form a contiguous sequence in the client set. Furthermore, the number of clients

assigned to any facility did not decrease from the original assignment of S, and the maximal

client assigned to each facility in the total ordering did not increase.

Since the argument in the case of |F | = 1 is trivial, we establish the statement of the

lemma by induction. We use the last observation in the preceding paragraph to tie the

induction hypothesis together with the argument on the clients of f .

By Lemma 4.2, every non-nested problem has a contiguous solution as an optimal so-

lution. To motivate the complexity of the general algorithm, which computes optimal so-

lutions for all 1-dimensional k-capacitated problems, we give an algorithm that computes

optimal contiguous solutions.

We sort the facilities according to the above right endpoint / left endpoint ordering, and

compute a dynamic program in k rounds. We use the optimal solutions for the r-capacitated

covering problems on the first i facilities and c clients as our subproblems.
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We define dp[i][c][n][r] as the greatest number of clients 1 ≤ c′ ≤ c covered in a con-

tiguous solution of no more than r of the first i facilities, i being the last facility used in

the covering and with exactly n clients assigned to i, supposing that (c− n,c] ⊆ Ri. If

(c−n,c] 6⊆ Ri, then dp[i][c][n][r] is set to 0, as no covering as described by the table indices

is possible.

An example of a solution corresponding to a dp entry in which n = 2 is depicted in

Figure 4.5. In the facility ordering, the purple facility (facility i) comes last.

Figure 4.5: The white clients are assigned to the purple facility.

Once the purple facility’s clients are assigned, it is stripped away and we consider the

assignments to be made against the remaining facilities. The subproblem we get by decom-

posing from 4.5 produces the image in Figure 4.6.

Figure 4.6: The purple facility of Figure 4.5 is stripped away.

42



4.1. THE NON-NESTED ALGORITHM

With the relevant information stored in dp, m[i][c][r] is set to the greatest number of

clients c′ ∈ [1,c] coverable in a contiguous solution of no more than r of the first i facilities.

The tables are computed as in Algorithm 5, which is proved correct by induction on k.

Algorithm 5 Compute the optimal contiguous solution for a k-capacitated covering prob-
lem.
Require: < C ,F > is a chained problem.

1: for r from 0 to k do
2: for i from 0 to |F | do
3: for c from 0 to |C | do
4: m[i][c][r]← 0
5: for r from 1 to k do
6: for i from 1 to |F | do
7: for c from 1 to |C | do
8: for n from 1 to c do
9: dp[i][c][n][r]← 0

10: for n from 1 to min(c fi,c) do
11: if (c−n,c]⊆ R fi then
12: dp[i][c][n][r]← n+m[i−1][c−n][r−1]
13: m[i][c][r]←max{m[i−1][c][r],max1≤n≤min(c fi ,c)

dp[i][c][n][r]}
return m[|F |][|C |][k]

Proposition 4.3. Algorithm 5 computes the size of the best contiguous solution of any k-

capacitated covering problem (nested or non-nested) in O(k|F ||C |2) time.

Proof. In the k = 1 case, the correctness of dp is assured by greedily assigning clients

within the range of facility i while respecting the capacity of facility i. Namely, the only

non-trivial assignments to dp occur in line 12, which renders as

d p[i][c][n][1]← n+0

under the constraints k = 1, (c− n,c] ⊆ R fi , n ≤ min(c fi,c). Since we can only assign

clients to a single facility, the optimal solution is obtained by selecting as many clients as

the capacity and range of the selected facility will allow. Since all facilities are considered

in turn, it’s clear that dp (and subsequently m) optimize for the facility which can contain
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the most clients. Since the selected clients are contiguous by the definition of dp and its

indices, we have shown the algorithm to compute the best contiguous solution in the case

k = 1 without supposing the problem to be nested or non-nested.

For the induction step, suppose k= r+1, and that each entry of the table slices dp[·][·][·][r′]

and m[·][·][r′] is the maximum number of clients coverable in the subproblem described by

its indices for all r′ ≤ r.

Here the relation of dp[i][c][n][r] to previous subproblems is as follows. If each client of

(c− n,c] is assigned to facility i, then having selected i as the last of up to r facilities, we

are left with the subproblem of assigning as many as we can of the first c−n clients to up

to r−1 facilities, the last of which does not surpass facility i−1 in the total ordering.

By induction, m[i− 1][c][k− 1] gives the greatest possible assignment of the clients of

[c1,c] to up to k−1 of the first i−1 facilities, while respecting each of the assigned facilities’

range and capacity constraints. Let n ∈ Z satisfy (c− n,c] ⊆ R fi and n ≤ c fi , the capacity

of facility i. Then the n clients of (c− n,c] are assignable to i without violating its range

or capacity constriants. We add n facilities (implicitly assigned to i – there is no need to

explicitly record this fact) to the maximum number of clients coverable in the subproblem

described by the indices of m[i− 1][c][r− 1]. If either n > min(c fi,c) or (c− n,c] ⊆ R fi ,

dp[i][c][n][r] retains its initial value of 0.

By the maximality of m[i− 1][c][r− 1], it follows that dp[i][c][n][r] is maximal also, if

the adjoining assignment to i is feasible. dp[i][c][n][r] = 0 if and only if the assignment of

the clients of (c−n,c] to i is infeasible.

As for m[i][c][r], the maximal assignment described by its indices assumes one of two

forms. Either the i facility is not among the r or fewer facilities opened, in which case

m[i][c][r] = m[i−1][c][r], or it is. If facility i is included, then by the previous argument, for

some integer n, dp[i][c][n][r] describes the best contiguous solution possible by the previous

argument, with n bound in the range 1≤ n≤min(c fi,c).

Therefore m[i][c][r] is the number of clients covered in the best contiguous solution of

44



4.1. THE NON-NESTED ALGORITHM

the first c clients using up to r facilities, with none of the selected facilities surpassing i.

For the run time analysis, we multiply the limits of the four main loops together to

obtain a run time of O(k|F ||C |2). We note that the range check (c− n,c] ⊆ R fi can be

completed in constant time, using a static range query array that is computed exactly once.

It takes O(|F |+ |C |) time to fill the array.

4.1.1 Relation to Mirchandani et al.’s Problem P2′

In [22], problem P2 is defined as the following profit maximization problem:

“Select up to k facilities that maximize the total profit from serving some or all (non-

nested) customers on the straight line.”

Again, in problem P2 clients are located on the line and have pre-defined intervals of

facilities that are able to cover them, up to some capacity. Client demands are uniform, and

there are opening costs for facilities, as well as per-unit costs for satisfying client demand.

The non-nested k-capacitated covering problem of section 4.1 is a restrained version

of P2′, with opening and per-unit costs set to 0. This can be seen through the following

reduction. Fix an instance of the non-nested q-capacitated covering problem. We sort the

facilities in the order used in [22], by the leftmost client covered, breaking ties by the

rightmost client covered.

If we fix any client, the set of facilities containing that client is a contiguous interval in

the sorted sequence of facilities. This follows from the non-nestedness of the k-capacitated

problem from which we started. The set is exactly the customer interval of the fixed client

in [22]. It is clear that no two customer intervals are nested, since that would imply the

existence of facilities with nested ranges in our version of the problem.

The dynamic programming table v(i, j,k, t) of Algorithm DP2 in [22] is structured al-

most identically to dp[i][c][n][r]: i (resp. i) determines the last facility opened, 1, . . . , j

(1, . . . ,c) are the clients that can be covered, exactly k (n) clients are covered by i, and t (r)

facilities are opened. The dynamic progrma of DP2 is considerably simpler, considering
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only single additions of clients to i at a time. The more complex algorithm presented in sec-

tion 4.2 is to set the stage for the development of Algorithm 5, in which the non-nestedness

assumption is abandoned completely.

4.2 The nested algorithm

We find that as we look to solving non-nested k-capacitated covering problems, the best

contiguous solution isn’t necessarily the optimal solution. Consider the problem shown in

Figure 4.7. The circles represent facility ranges and the x’s represent clients.

Figure 4.7: A 2-capacitated covering problem whose optimal solution is not a contiguous
solution.

In Figure 4.7, the innermost facility has capacity 3 and the outermost facility has capac-

ity 2. Plainly all five clients (the crosses) can be covered, by assigning the inner clients to

the inner facility and the outer clients to the outer facility, but this cannot be arranged as a

contiguous solution.

We generalize Algorithm 5 by giving special consideration to what we term interior

facilities. That is, we compute optimal solutions of k-capacitated covering problems by
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memoizing the solutions of interior subproblems.

An interior subproblem is an r-capacitated problem restricted to a set of facilities whose

ranges are entirely interior to a given facility’s range. When selecting a facility as the last

facility used in a covering, as dp does, we modify Algorithm 5 to range over i’s interior

subproblems. The selected interior solution will be augmented to contain i’s client assign-

ments, and the assignments of any clients to facilities preceding but not interior to i will be

handled as before using dp.

Figure 4.8: An interior subproblem.

The clients selected for assignment by subproblems will be stored in descending order

in a sorted linked list. We will assign clients to i by adding the missing clients in order

to the linked list, copying only those nodes that are surrounded by the added clients in the

client ordering. This means that in any round of list augmentation, the number of nodes

copied is O(|C |), and the original subproblem list on which the interpolation was based is

not disturbed.
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Figure 4.9: An interior subproblem with solution list indexed somewhere in sub.

The subproblem table has five dimensions. The first (cl) is the leftmost client of the

interior subproblem, the second (cu) is the rightmost client, the third ( fl) is the leftmost

facility of the interior subproblem and the fourth ( fu) is the right facility (again, not nec-

essarily used). The fifth (p) gives the number of facilities used in the interior subproblem.

Finally, sub[cl][cu][ fl][ fu][p] is the maximum number of clients coverable by p facilities in

the p-capacitated covering problem described by the indices. lst[cl][cu][ fl][ fu][p] contains

the linked list representation of the subproblem solution as described above.

F[ fl , fu] is the set of facilities whose right and left endpoints fall between fl and fu. It can

be computed in O(|F |) time by traversing the sorted sequence of facilities.

The m table is much the same as in Algorithm 5, but without the middle (client) dimen-

sion. m[i][r] gives the cost of the optimal solution of the r-capacitated covering problem

restricted to the first i facilities.

Algorithm 6 fills the sub table by calling the generalized algorithm routine, solve, on

each interior subproblem. For solve to be correct, we require every entry of the table slice

sub[·][·][·][·][0] to be 0. For r > 0, we require initially that sub[·][·][·][·][r] = −1 to indicate

that we haven’t yet memoized the solutions of any of those subproblems.
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Algorithm 6 Fill the sub table.

Require: sub[·][·][·][·][r] =

{
0 if r = 0
−1 otherwise

1: procedure POPULATE SUBS(F , C , k)
2: for r from 1 to k−1 do
3: for i from f1 to f|F | do
4: for cu from cmin(i) to cmax(i) do
5: for cl from cmin(i) to cu do
6: for fu from fmin(i) to fmax(i) do
7: for fl from fmin(i) to fu do
8: if |F[ fl , fu]| ≥ r and sub[cl][cu][ fl][ fu][r] =−1 then
9: (new cost,new list)← SOLVE(F[ fl , fu],C[cl ,cu],r)

10: lst[cl][cu][ fl][ fu][r]← new list
11: sub[cl][cu][ fl][ fu][r]← new cost

fmin(i) and fmax(i) denote the least and greatest facilities interior to facility i respec-

tively, and similarly for cmin(i) and cmax(i) with respect to clients. With Algorithm 6 de-

fined, we are ready to give solve.

Some needed definitions: greatest non overlapping(i) maps facility i to the greatest fa-

cility j ≤ i such that the ranges of j and i do not overlap. If all preceding facilities overlap

i, greatest non overlapping(i) returns −1. The function non interior overlapping(i) maps i

to the set of facilities j ≤ i which do overlap i, but are not interior to i.

round up is a procedure that greedily augments the interior subproblem specified by its

arguments. It extends the interior subproblem solution by assigning as many clients as pos-

sible to i, using the linked list representation described above and assumed by lst[cl][cu][ fl][ fu][r].

Each entry of lst is a pointer to the head node of a linked list, containing three fields: a facil-

ity f , a client it covers c, and the address of the next node in the list named next. round up

is given here as Algorithm 8.

We prove several needed properties of round up in Lemma 4.4.

Lemma 4.4. Suppose the sorted linked list lst[cl][cu][ fl][ fu][p] is a representation of the

optimal solution of the subproblem corresponding to its indices described in the call,

round up(i,cl,cu, fl, fu, pi). Then Algorithm 8 returns a tuple of two values, such that
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Algorithm 7 Compute the optimal solution to a given k-capacitated covering problem.
1: procedure SOLVE(F , C , k)
2: for r from 1 to k do
3: for i from 1 to |F | do
4: m[i][r]← m[i−1][r]
5: for c from 1 to |C | do
6: for n from 1 to min(c fi,c) do
7: if (c−n,c]⊆ R fi then
8: for ri from 1 to i−1 do
9: dp[i][c][ fri][r]← 0

10: ml[i][c][ fri][r]← null
11: for li from 1 to ri do
12: for pi from 0 to r−1 do
13: (pc, pl)← ROUND UP(i,c−n+1,c, fli, fri, pi)
14: if pc > d p[i][c][ fri][r] then
15: dp[i][c][ fri][r]← pc
16: ml[i][c][ fri][r]← pl
17: for j ∈ non interior overlapping( fi) do
18: l← APPEND(ml[ j][c−n][ fli−1][r− pi−1], pl)
19: pc′← pc+dp[ j][c−n][ fli−1][r− pi−1]
20: if pc′ > dp[i][c][ fri][r] then
21: dp[i][c][ fri][r]← pc′

22: ml[i][c][ fri][r]← l
23: i′← greatest non overlapping(i)
24: if i′ >−1 then
25: l′← APPEND(top lvl lst[i′][r− pi−1], pl)
26: if m[i′][r− pi +1]+ pc > m[i][r] then
27: dp[i][c][ fri][r]←m[i′][r− pi +1]+ pc
28: ml[i][c][ fri][r]← l′

29: if dp[i][c][ fri][r]> m[i][r] then
30: m[i][r]← dp[i][c][ fri][r]
31: top lvl lst[i][r]←ml[i][c][ fri][r]

return (m[n][k], top lvl lst[n][k])
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Algorithm 8 Augment an existing interior solution according to the provided bounds.
Require: fl ≤ fu

1: function ROUND UP(i, cl , cu, fl , fu, p)
2: n← cu− cl +1
3: scov← 0
4: new list← node(0,0,null) . A dummy node storing the list head
5: if fl ≥ fmin(i) then
6: scov← sub[cl][cu][ fl][ fu][p]
7: assn← lst[cl][cu][ fl][ fu][p]
8: remaining clients←min(scov+ c fi,n)
9: tail← new list

10: num added← 0
11: while assn 6= null do
12: while remaining clients+ c−n > assn.c do
13: if num added ≥min(c fi,n− scov) then break
14: tail.next← new node( fi,remaining clients+ c−n,null)
15: tail← tail.next
16: remaining clients← remaining clients−1
17: num added← num added +1
18: tail.next← copy of assn
19: tail← tail.next
20: remaining clients← remaining clients−1
21: assn← assn.next
22: while remaining clients > 0 do
23: tail.next← new node( fi,remaining clients+ c−n,null)
24: tail← tail.next
25: remaining clients← remaining clients−1

return (min(scov+ c fi,n),new list.next)

51



4.2. THE NESTED ALGORITHM

• the first value is a linked list of facility/client pairs sorted in descending order of

clients, containing copies of each of the nodes of lst[cl][cu][ fl][ fu][p], the “old nodes.”

The new nodes describe client assignments to facility i, and the number of new nodes

does not exceed the capacity of fi, and

• the second value is the length of the list comprising the first value.

Proof. We suppose fl ≤ fmin(i) and establish some preliminary facts.

First, it is immediately apparent that n ≤ scov, the subproblem solution described by

lst[cl][cu][ fl][ fu][p] is limited to the range of n clients, [cl,cu], and scov is its length, by

assumption. Second, we observe that everywhere in its pseudocode, round up decrements

the variable remaining clients whenever a node is added to the tail of new list, which it

eventually returns. round up terminates only when remaining clients is 0; therefore, the

initial value of remaining clients is the length of new list at the time round up terminates.

The length of new list is either scov+c fi , the length of lst[cl][cu][ fl][ fu][p] plus the capacity

of facility i, or n, the number of clients in the range [cl,cu], whichever is smaller. Whatever

the minimum value, it is clear that the length is large enough to accommodate every node

of lst[cl][cu][ fl][ fu][p], and that the number of new clients to be assigned to facility i does

not exceed the capacity of i.

round up begins by iterating down the list at lst[cl][cu][ fl][ fu][p] one node at a time,

aggressively plugging the gaps between clients belonging to adjacent nodes. The gaps

are filled with assignments of clients to facility i, decrementing remaining clients with

each new assignment. This occurs whenever the candidate client remaining clients+ c−

n is greater than the client at the lower bound assn.c. Since assn.c ≥ cl , the new client

assignment cannot fall outside the range [cl,cu]. If during the execution of the inner loop, we

find that num added exceeds min(c fi,n−scov), we terminate the loop. min(c fi,n−scov) is

exactly the number of new nodes that new list will contain once round up terminates, and

so, once the limit of new nodes is reached, no new nodes are added. Then remaining clients

is exactly the length of the tail of lst[cl][cu][ fl][ fu][p] that starts at assn, and we append that
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tail to new list, until assn is null. The loop terminates, and the entry condition of the second

while loop is not met, so new list is returned along with its length in a tuple.

If the break condition on new added is never incurred before assn becomes null, the

inner loop is exited once remaining clients+ c− n > assn.c fails. There it fails because

remaining clients+c−n = assn.c, since remaining clients decreases by one unit at a time.

The node at assn is copied, and the copy is appended to the intermediate list at new list.

remaining clients is decremented, and construction of new list resumes in this manner until

assn is null, meaning that every node of lst[cl][cu][ fl][ fu][p] has been copied and recorded

in new list.

The clients that remain to be assigned to new list are greedily assigned to facility i

in descending order. At this stage, every client in the range [cl,remaining clients+ c−

n] = [c−n,remaining clients+ c−n] is unassigned. Further, we have min(c fi,n− scov)−

num added = remaining clients, where we know min(c fi,n−scov)−num added to be the

number of new nodes yet to be added. Therefore, all new client assignments fall within the

range [cl,cu], and both claims made in the statement of the lemma are established.

Finally, a generalized version of Lemma 4.2 allows us to claim that the optimized so-

lutions produced by Algorithm 7 coincide exactly with the optimal solutions of the given

k-capacitated covering problem. It uses the concept of the generalized contiguous solution,

given here.

Definition 4.5 (Generalized contiguous solution). Let S : C → Fω be an assignment of

clients to facilities. S is a generalized contiguous solution if for every pair of facilities fi,

f j such that R fi 6⊆ R f j and R f j 6⊆ R fi and fi < f j in the facility ordering, we have max{c :

S(c) = fi}< min{c : S(c) = f j}.

Lemma 4.6. For every solution S : C → Fω of a k-capacitated covering problem, there is a

generalized contiguous solution S′ covering the same number of clients.

The proof of Lemma 4.6 is virtually identical to that of Lemma 4.2. We summarize the
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top-level solve routine as follows.

Algorithm 9 Populate the sub table and solve the top level problem.
1: function TOP LEVEL SOLVE(F , C , k)
2: POPULATE SUB(F , C , k)
3: return SOLVE(F , C , k)

Proposition 4.7. Algorithm 9 computes the optimal generalized contiguous solution of any

k-capacitated covering problem in O(k3|F |7|C |5) space and time.

Proof. To prove Algorithm 9 correct, we perform strong induction on k.

In the base case, we have k = 1. We want to show dp[i][c][ fri][1] contains the greatest

number of clients coverable in the subproblem indicated by the loop indices, and similarly

for the list representation of the solution contained in ml[i][c][ fri][1].

First, populate subs is called with k = 1, and since the outer loop variable r is less than

k, it terminates immediately, having done nothing.

solve is called next. We fix the loop variables i, c and n such that (c− n,c] ⊆ R fi . Let

the loop variables li, ri take any value in their allowed ranges. We note that r = 1 and pi = 0

unconditionally.

round up is called in line 13, with arguments instantiated to the values of various loop

variables, the last of which is p = 0. Therefore, in the internals of round up, scov = 0

and assn = null, the empty list. remaining clients = min(c fi,n), where n is the num-

ber of clients in the range [cl,cu]. Since assn = null, round up skips down to the sec-

ond while loop, where new list is augmented to contained the entire range of clients in

(c−n,remaining clients+ c−n], all of them assigned to facility i.

After round up returns, we go to the next line, where we begin looping over the facilities

whose ranges overlap the range of i but are not contained within it. l is set to the list

described in the previous paragraph, since ml[ j][c−n][ fli−1][r− pi−1] is null. pc is then

the number of clients assigned in l. Throughout the loop, dp[i][c][ fri][1] is maximized over

the largest assignment of clients to i, with ml[i][c][ fri][1] set to the list describing it.
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Once the loop terminates, the outcome of greatest non overlapping(i) is immaterial,

since k = 1 and we cannot add to the assignments of clients to i by round up any further.

Thus, by appealing to the correctness of round up through Lemma 4.4, we have proved

the proposition for the base case. From this, it is apparent that m[i][1] contains the great-

est number of clients coverable by a single facility in the facility range [ f1, fi], and that

top lvl lst[i][1] contains its linked list representation.

Now for k > 1, suppose the proposition holds for every configuration < F ,C > when-

ever k′< k. By induction, populate subs places the correct values into the arrays sub and lst,

since their final indices, those deciding the number of facilities placed in the corresponding

coverings, are limited to values less than k.

Similarly, when we enter solve, for every r < k we can suppose that every entry of the

tables dp, ml, top lvl lst, and m all hold the defined values whenever their final indices are

equal to r. This also holds under the inductive hypothesis.

Now let i, c, n, li and pi be loop variables such that (c−n,c]⊆ R fi holds. Suppose also

that the best possible solution of the subproblem described by the indices of dp[i][c][ fri][k]

can be realized under the constraints imposed by this particular combination of n, li and pi.

By Lemma 4.4 and the induction hypothesis, the result of line 13 returns a covering, pl,

and the number of clients it covers, pc. The covering returned is an optimal covering of at

most pi facilities, selected from among the facility range [ fli, fri] internal to fi and fi itself,

that covers clients in the range [cl,cu]. If pc > dp[i][c][ fri][k], the cost pc and corresponding

solution pl are written to the corresponding entries of the intermediary cost and list arrays,

in case they represent the best solution of the subproblem.

Otherwise, in the solution whose representation will be written to the table entry ml[i][c][ fri][k]

when the inner loop terminates, the assignment returned by round up will be extended by

some placement of k− pi−1 facilities to the left of, and non-interior to, i. The extension is

described at dp[ j][c−n][ fli−1][k− pi−1] for some facility j non-interior to i.

If facility j overlaps i, then that value of j is instantiated in the inner loop. Then the final
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value of ml[i][c][ fri][k] is written to l, and the total cost of the extension and the assignment

of clients to i and its interior facilities is pc′. Since this solution is best in the presumed case,

its size and representation are propagated to dp[i][c][ fri][k] and ml[i][c][ fri][k] respectively.

If facility j is disjoint from i, it lies to the left of the facility greatest non overlapping(i),

which is to say the condition i′ > −1 is satisfied in the pseudocode. Then the value

of the best possible extension is given at m[greatest non overlapping(i)][r− pi− 1], with

representation top lvl lst[greatest non overlapping(i)][r− pi − 1], and dp[i][c][ fri][k] and

ml[i][c][ fri][k].

From this, it becomes clear that as i varies, top lvl lst[i][k] and m[i][k], after their final

assignments, are the optimal values as defined according to their indices.

With the induction hypothesis proved for all k ≥ 1, it follows that solve returns the

number of clients covered in the optimal placement of k facilities and the representation of

that placement.

For the cost analysis, we begin by analyzing the run time of solve. Multiplying the

lengths of the loops together, we get O(k2|F |3|C |2) iterations of the inner body of code be-

ginning at line 13. The run time of the inner body of code is bounded by time O(|C |+

|F | · |C |+ |C |). round up takes O(|C |) time to run, and the loop on the elements of

non interior overlapping(i) takes O(|F | · |C |) time. The last step, taken if i′ > 0, takes time

O(|C |), the length of top lvl lst[i′][r− pi−1]. Therefore, solve runs in time O(k2|F |4|C |3).

The rest of the execution of top level solve is spent in the body of populate subs. Mul-

tiplying the lengths of its loops together produces O(k|F |3|C |2) iterations. Combined with

the runtime of solve, and the range tree query used to compute F[ fl , fu], we get an overall run

time of O(k3|F |7|C |5).

Theorem 4.8. Suppose we have a 1-dimensional uniform maximum CVC problem with

client set C and P range/capacity pairs. Then the problem can be solved optimally in

O(k3P7|C |12) time, where k is the number of facilities opened.

Proof. By Lemma 4.1, every maximum CVC problem with uniform demand can be trans-
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formed into an equivalent k-capacitated covering problem, where k is the number of facil-

ities to be opened. The two problems are equivalent in the sense that they share the same

maximum number of coverable clients drawn from the same client set.

Furthermore, by Lemma 4.6, the optimal solution of any k-capacitated covering problem

can be expected to take the form of a generalized contiguous solution. Proposition 9 says

that the best generalized batch assignment of any k-capacitated covering problem on |C |

clients and |F | facilities can be computed in O(k3|F |7|C |5) time and space.

The value of |F | in the k-capacitated problem obtained from the algorithm of Lemma

4.1 is P · |C |. Tying these observations together, we have that any 1-dimensional maximum

uniform CVC problem can be solved in time and space O(k3P7|C |12).
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Chapter 5

Disjoint Weighted Barrier Coverage

Wireless sensor networks are used to provide detection services over an area of interest.

Sensors are placed on the boundary, or perimeter, of the area. The perimeter to be covered

is the barrier. If the sensors are placed such that any perimeter intrusion is sure to be

detected, the sensors are said to cover the barrier. The covering of the perimeter by the

sensors is also referred to as a barrier coverage, as the sensors act as a barrier to intruders.

In one-dimensional coverage problems, the barrier is represented by a horizontal line

segment and sensors are initially placed on the line containing the line segment. The goal is

to compute new positions for some subset of the given sensors, ensuring that every point in

the barrier segment is within the detection range of some sensor. In typical two dimensional

coverage problems, sensors are represented as points in the plane and assigned a radius of

coverage while the barrier is represented as the boundary of some closed planar region.

In this chapter we consider the problem of One-Dimensional Disjoint Barrier Coverage

on a line segment. Sensors si are represented as finite intervals of R , with center points

xi and detection radii ri. Each sensor si triggers an alarm upon detecting movement at any

point in the interval [xi− ri,xi + ri].

Barriers are represented by the interval [0,L], for some real L > 0. The family of prob-

lems is termed disjoint because sensors are placed in initial positions where their detection

ranges do not meet the barrier, so that [xi− ri,xi + ri]∩ [0,L] = /0 for each sensor si.

We evaluate the quality of a covering in terms of the MinSum problem, which is con-

cerned with minimizing the total distance travelled by all sensors to their final positions in
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the solution. In MinSum, each sensor is shifted mi units to the right or left, depending on

whether xi < 0 or xi > L, respectively, to align with the furtherest uncovered point on the

barrier.

This leaves us with the goal of minimizing the sum ∑si∈S wi ·mi, where wi > 0 is a real-

valued weight assigned to the sensor si. The inclusion of a weight allows the mathematical

model of sensor placement to more accurately reflect certain practical realities. In addi-

tion to allowing sensors to have non-uniform detection ranges, some of the sensors used

may have suffered the effects of wear, deterioration and obsolescence and so, bear higher

mobilization costs.

After showing that unweighted, one-sided disjoint barrier coverage is NP-hard, we will

develop a 2-approximation algorithm for the one-sided disjoint weighted case. It will then

be used to derive an FPTAS for the two-sided disjoint weighted case.

5.1 NP-hardness of the one-sided, disjoint case

In order to motivate the development of approximation algorithms, we show that the

MinSum barrier coverage problem is NP-complete by reducing from the Partition problem,

which is defined in the following way. Given a sequence of positive integers a1, . . . ,an and

an integer B such that ∑1≤i≤n ai = 2B, find a subset of integers S such that ∑ai∈S ai = B.

From the instance ({ai}1≤i≤n,B), we create a barrier from the line segment [0,B], and

for each integer ai > 0, we create a sensor with range ri = ai/2 and distance di = |xi|−ri≥ 0

from 0, xi < 0, for xi determined later in the reduction. Let S be any subset of sensors whose

total range covers all of the barrier. Using the formula for the cheapest movement covering

the barrier completely, we have

c(S) = |S| ·B−
|S|

∑
i=1

(|S|− i) ·asi +
|S|

∑
i=1

dsi
(5.1)

where the sequence {si}1≤i≤|S| indexes the intervals of S, and is again ordered so that rs1 ≥
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rs2 ≥ . . .≥ rs|S| . Similarly, l(S) denotes the total length of the sensors in S, so that

l(S) = ∑
s∈S

ls

where ls is the length of sensor s.

We choose di in order to ensure that, for any covering sensor subsets S and S′, l(S) >

l(S′) implies c(S)> c(S′). An optimal algorithm for DisjointMinSum then gives an optimal

algorithm for the Partition problem. We need only apply the optimal algorithm for Disjoint-

MinSum to the reduction of the Partition problem instance and check that the solution has

total length B.

To that end, we decide the values of di. Suppose S, S′ are covering subsets of sensors

satisfying l(S)> l(S′). Using the cost formula, we get

c(S)− c(S′) = (|S|− |S′|) ·B−
|S|

∑
i=1

(|S|− i) ·asi

+
|S′|

∑
i=1

(|S′|− i) ·as′i
+
|S|

∑
i=1

dsi−
|S′|

∑
i=1

ds′i

= B
|S|

∑
i=1

(
dB

si
+1− |S|− i

B
·asi

)

−B
|S′|

∑
j=1

(
dB

s′j
+1− |S

′|− j
B
·as′j

)

where we define dB
i = di/B. Then c(S)− c(S′)> 0 is equivalent to

|S|

∑
i=1

(
dB

si
+1− |S|− i

B
·asi

)
>
|S′|

∑
j=1

(
dB

s′j
+1− |S

′|− j
B
·as′j

)
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Let dB
i = (2B+1) ·ai−1 > 0. In particular, we have

|S|

∑
i=1

dB
si
+1− |S|− i

B
·asi =

|S|

∑
i=1

(2B+1− |S|− i
B

) ·asi

>
|S|

∑
i=1

2B ·asi

where the inequality holds by the following argument. |S|− i < |S| ≤ B, and so 1− (|S|−

i)/B > 0. With the assumptions as1 > 0 and |S| ≥ 1, we establish strict inequality.

From l(S)− l(S′)≥ 1, we get that

|S|

∑
i=1

2B ·asi−
|S′|

∑
j=1

2B ·as′j
= 2B · (l(S)− l(S′))≥ 2B

It is easy to see that

2B≥
|S′|

∑
j=1

(
1− |S

′|− j
B

)
·as′j

giving c(S)> c(S′), combined with the earlier inequalities.

5.2 A 2-approximation algorithm for the one-sided, disjoint weighted

case

We begin by describing a 2-approximation algorithm for a version of the weighted bar-

rier coverage under MinSum using the initial restriction that sensors lie only to the left of

the barrier. The algorithm is given as pseudocode in Figure 10.

The algorithm is greedy, filling the line by packing sensors from the right. It selects one

sensor in each step, the witness to the minimum of the cost function cost(s,x) := ws(ds +

x)/min(ls,x) as it ranges over si ∈ S, with x fixed as the length of the line segment that

remains to be covered. The loop iterates until a full covering is produced.

We show that Algorithm 10 is a 2-approximation to the weighted, left-lying disjoint

MinSum problem. The idea is to fix two solutions to the problem instance, the first any
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Algorithm 10 Calculate a covering of the line.
Require: ∑si∈S li ≥ L

1: Covering← /0

2: x← L
3: while x > 0 do
4: s← argminsi∈S{wi(di + x)/min(li,x)}
5: S← S−{s}
6: x← x− ls
7: Covering←Covering∪{s}

return Covering

covering of least cost, and the second the covering given by Algorithm 10.

The bounds proof is structured as a procedure whose subroutines are given as lemmas

handling the various cases. The approximate sensor solution is iterated over one sensor at

a time, starting from the rightmost sensor and moving leftward. The cost of each sensor

in the approximate solution is bounded by no more than twice the cost of sensors in the

optimal solution. We refer to the rightmost end point of the remaining approximate sensors

as the cursor. That is, the variable x assumed the value of the cursor in line 6 of Algorithm

10 at a unique time in its execution. We therefore refer to the “cursor at x”, and consider x

to denote a “time” in the execution of Algorithm 10.

Along the way, we derive invariants that must be maintained for the assumptions made

by the lemmas to hold. This way, the lemmas can be applied on a case-driven basis as

required, since the conditions of at least one of the lemmas are guaranteed to hold with

each change of the cursor.

The first invariant describes what we term the viability of sensors in the optimal solution

with respect to the approximate sensor at the cursor. That is, when sensor si was selected by

Algorithm 10, it was the minimum of the function s→ cost(s,x) over the set of candidate

sensors for the cursor x. We also see that Algorithm 10 denotes the set of candidate sensors

as S.

Let Sx be the value of the set variable S in Algorithm 10 at time x, and let app refer to

the set of sensors comprising the solution given by Algorithm 10. Let opt be a fixed optimal
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solution. An optimal sensor t ∈ Sx is said to be viable with respect to an approximate sensor

s at x if cost(s,x)≤ cost(t,x).

Viability is summarized in Definition 5.1. A sensor t ∈ opt is viable at x if t ∈ Sx,

implying cost(s,x)≤ cost(t,x).

Definition 5.1 (Viability). Let s ∈ app be the sensor at cursor x, so that s witnesses the

minimum of the function s→ cost(s,x) over Sx. If t ∈ opt∩Sx, then t is viable with respect

to s at x.

Let ps,T be the location of the rightmost end point of sensor s in solution T ∈ {app,opt}.

If s 6∈ T , we set ps,T =−∞. Define the ratio of sensor s as the ratio of its weight to length,

denoted as ratio(s) = ws/ls.

An important property used throughout the bounds procedure is the Order Preserva-

tion Property, which states that the sensors comprising any optimal solution are ordered in

descending order of ratio.

Lemma 5.2 (Order Preservation Property). Let opt be an optimal solution, with sensors s,

s′ ∈ opt such that ps,opt ≤ ps′,opt. Then

ratio(s)≥ ratio(s′)

Proof. By transitivity, we may suppose without loss of generality that s and s′ are packed

adjacently in opt, with ps,opt ≤ ps′,opt. Suppose for the sake of contradiction that

ws

ls
<

ws′

ls′

This means that exchanging the positions of s and s′ in opt yields a change in cost

wsls′−ws′ls < 0

This is a contradiction.
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In the course of developing the bounds procedure, it will sometimes be necessary to

split optimal solution sensors into one or more sensors, and to distribute the cost of the

original among its constituent parts. More specifically, let s ∈ opt and let the number ls′

satisfy 0 < ls′ < ls. Starting from the left end point of s, designate a contiguous length of

s as sensor s′ of length ls′ , weight ws′ = (ls′/ls)ws and distance ds′ = ds. Then set ls′′ =

ls− ls′ , ws′′ = (ls′′/ls)ws, and ds′′ = ds. Then s has been split into sensors s′ and s′′, both of

which have been given length, weight and distance attributes. We refer to the procedure as

fractioning.

A useful fact is that the ratio and cost of each of the split sensors do not differ from

those of the original.

Lemma 5.3 (Invariance of Cost and Ratio under Fractioning). Suppose that sensor s has

been fractioned into sensors s′ and s′′. Then cost(s,x) = cost(s′,x) and ratio(s) = ratio(s′)

for all x > ls, and similarly for sensors s and s′′.

Proof. Expanding the definitions of the weights, we note that

ratio(s′) = ws′/ls′ = (ls′ws/ls)/ls′ = ws/ls = ratio(s)

and similarly for s′′.

Similarly, for the weighted movement to length ratio at any x > ls, we have

cost(s′,x) = ws′(ds′+ x)/ls′ = ws(ds + x)/ls = cost(s,x)

and the same follows for cost(s′′,x) by a similar argument.

Next, we define and prove two facts used crucially in the bounds procedure.

Lemma 5.4. Let a1, . . . ,an, b1, . . . ,bn be positive real numbers. Then

min
1≤i≤n

ai

bi
≤ a1 + . . .+an

b1 + . . .+bn
≤ max

1≤i≤n

ai

bi
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Proof. We prove the second inequality, (a1 + . . .+ an)/(b1 + . . .bn) ≤ max1≤i≤nai/bi, by

induction. It is vacuously true in the case of n = 1, so the base case occurs at n = 2.

Let a,b,c,d > 0 and suppose without loss of generality that a/b ≤ c/d. The assertion

(a+c)/(b+d)> c/d is equivalent to (a+c)d > c(b+d), while a/b≤ c/d is equivalent to

ad ≤ bc. The two statements contradict each other, so for a/b≤ c/d to hold, (a+ c)/(b+

d)≤ c/d must be true.

Now let n = k+1 for k > 2 and assume the righthand equality of the lemma holds for

n = k. Let Ak = ∑
k
i=1 ai and Bk = ∑

k
i=1 bi.

If Ak/Bk ≤ ak+1/bk+1, then we adapt the argument of the base case to show that (Ak +

ak+1)/(Bk +bk+1)≤ ak+1/bk+1 ≤ maxi=1,...,k+1ai/bi.

If on the other hand Ak/Bk > ak+1/bk+1 is true, we use the base case argument to show

that (Ak+ak+1)/(Bk+bk+1)≤ Ak/Bk, and combining it with the statement of the induction

hypothesis at k, we get Ak/Bk ≤maxi=1,...,k ai/bi = maxi=1,...,k+1 ai/bi, the desired inequal-

ity.

To prove the lower bound, we swap the labels of ai and bi for every i, apply the righthand

inequality just shown, and take the recripocals of either side.

The second fact leverages the Order Preservation Property to induce upper bounds on

the movement costs of sensors. Recall that ps,opt is the position of sensor s in opt, and

similarly for ps,app.

Lemma 5.5 (Shifting trick). Let s ∈ opt, and for 1≤ i≤ n, si ∈ opt. Suppose ps,opt ≤ psi,opt

for each 1≤ i≤ n and ∑
n
i=1 lsi ≤ ls. Then

ws ≥
n

∑
i=1

wsi

Proof. From Lemma 5.2 we have ws/ls ≥ wsi/lsi for each 1 ≤ i ≤ n. From the righthand
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inequality of Fact 5.4 we get

ws

ls
≥ max

1≤i≤n

wsi

lsi

≥ ∑
n
i=1 wsi

∑
n
i=1 lsi

From ∑
n
i=1 lsi ≤ ls, we may conclude that ws ≥ ∑

n
i=1 wsi .

At last, we are ready to give the first case of the bounds procedure in Proposition 5.6.

Proposition 5.6. Suppose Invariant 5.1 holds and that s ∈ opt is the sole element of opt,

meaning that s is at the cursor x, and ls ≥ x. Then the total cost of sensors s′ ∈ app is no

more than twice the cost of s.

Proof. Let sn ∈ app be the sensor at cursor x and s1, . . . ,sn−1 the remaining sensors in app

in order starting from the left. We assume that the left end of the barrier, point 0, is covered

by sensor s1.

Since s1 is needed to cover the left end point, we must have ∑
n
i=2 lsi < x ≤ ls. ls ≥ x

implies s 6= si for each 2 ≤ i ≤ n, and thus, s ∈ Sx−∑
n
i= j+1 lsi

for each 2 ≤ j ≤ n, and so by

Invariant 5.1 is viable with respect to each s j at x−∑
n
i= j+1 lsi .

From this observation and Lemma 5.4, we derive

ws(ds + x)
x

≥ max
2≤i≤n

wsi(dsi + x−∑
n
j=i+1 ls j)

lsi

≥
∑

n
i=2 wsi(dsi + x−∑

n
j=i+1 ls j)

∑
n
i=2 lsi

Since x≥ ∑
n
i=2 lsi , it is clear that ws(ds + x)≥ ∑

n
i=2 wsi(dsi + x−∑

n
j=i+1 ls j).

Now, if s = s1, then the cost of s1 can be paid by debiting a second copy of the cost of

s to the approximate solution. If s 6= s1, then s is viable with respect to s1 at ps1,app and a

similar bounding argument shows we can pay for s1 using a second charge to the cost of

s.

We will assume from this point forward that s ∈ opt at the cursor x has its full length

contained within the barrier at [0,L]. Any exceptions to the assumption will be dispatched
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using Proposition 5.6. In effect, the equalities

cost(s,x) =
ws(ds + x)
min(ls,x)

=
ws(ds + x)

ls

are assumed to hold unconditionally for every sensor s and at every point x ∈ [0,L] from

now on.

For the next part of the bounds procedure, we consider the case where there is a single

sensor in opt underlying the sensor at the cursor in app.

Proposition 5.7. Suppose that Invariant 5.1 holds. Let s′ ∈ app and s ∈ opt be the sensors

at x, such that s ∈ Sx. Suppose that x≥ ls′ and ls > ls′ as in Figure 5.1. Then we can pay the

cost of s′ using the fractional cost of s proportional to the length of s′. By contracting the

unused part of s to a sensor s′′ ∈ opt with cost(s′′,x) = cost(s,x) and ratio(s′′) = ratio(s),

we have that Invariant 5.1 is preserved under the assumption that s′′ ∈ Sx−ls′ .

Figure 5.1: Bounding the cost of a sensor using a larger sensor underlying it in opt.

Proof. By Invariant 5.1, we have

ws′(ds′+ x)≤ ls′
ws(ds + x)

ls
≤ ws(ds + x)

We move the cursor x to x− ls′ , having paid the cost of s′ using the fraction of the cost of s

that forms the right-hand side of the bound.

We fraction the unused part of s to a new sensor s′′, where the right end point of s′′ falls
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on the succeeding cursor x− ls′ with ws′′ = (1− ls′/ls)ws and ls′′ = ls− ls′ . By Lemma 5.3,

we have cost(s′′,y) = cost(s,y) and ratio(s′′) = ratio(s) for all y > 0.

We observe also that s 6= s′ and s ∈ Sx, and together these facts imply s ∈ Sx−ls′ . There-

fore, we may substitute s′′ for the remaining part of s in the succeeding cursor step and

assert that s′′ ∈ Sx−ls′ without violating Invariant 5.1.

The other major case occurs when there are multiple optimal sensors underlying the

sensor at the cursor in app.

Proposition 5.8. Let s be the approximate sensor at cursor x, and suppose that Invariant

5.1 holds. Suppose we find by stabbing downward from the left endpoint of s a sensor

distinct from that found in the optimal solution at x, as in Figure 5.2, with each sensor on

and to the right of the stabline an element of Sx. Then the cost of the approximate sensor at

x can be bounded by no more than twice the cost of the optimal sensors that lie on and to

the right of the stabline.

Figure 5.2: A single sensor with multiple sensors underlying it.

Proof. We label the sensors used in the optimal solution for ease of reference in Figure 5.3.
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Figure 5.3: The underlying sensors are labelled.

As noted in the figure, s is bisected, fractioning the sensor in opt about the bisection line

(below, am) if necessary. This process is depicted in Figure 5.4.

Figure 5.4: The bisected sensor is fractioned, if necessary.

The optimal sensor am is fractioned at the bisector, so that wa′m = (la′m/lam)wam and

wa′′m =(la′′m/lam)wam . By Lemma 5.3, ratio(am′)= ratio(am′′)= ratio(am) and cost(am′,y)=

cost(am′′ ,y) = cost(am,y) for all y > 0.

Next, we compact the optimal sensors lying to the right of the bisector to right-align

with x, as in Figure 5.5.
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Figure 5.5: The sensors lying to the right of the bisector are compacted to x.

The extra charge needed to perform the compaction is not included in the costs tallied in

the optimal solution. In order to pay for the compaction, we charge each sensor am′′ , . . . ,an

twice, and deduct the cost of the compaction from the secondary charge of each compacted

sensor, as depicted below on the sec line. See Figure 5.6.

Figure 5.6: The residual charges of the compacted sensors are mapped on sec.

The dashed sensors in sec correspond to empty space of length equal to the length of

the labelled sensor. Of the compacted sensors, am′′ is furthest to the left, and the charge

required to compact it is equal to the length of all the sensors following it in opt. In sec,

am′′ is deducted the same total length, retracted back from its original position at pam′′ ,sec =

pam′′ ,opt. This is to compensate for the cost of the shift made to it in opt, since the goal is to

charge am′′ no more than twice its original cost. The same compensation scheme is applied
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to the shifting movements undertaken by each of the compacted sensors, leaving the solid

sensors in sec to represent the unused portions of the secondary charges.

Since am′′ , . . . ,an ∈ Sx, we have by Fact 5.4

∑
n
i=m′′wai(dai + x)

∑
n
i=m′′ lai

≥ ws(ds + x)
ls

Because ∑
n
i=m′′ lai = ls/2, we have ∑

n
i=m′′wai(dai + x)≥ ws(ds + x)/2.

To pay for the second half of ws(ds + x), we use the untouched optimal sensors to the

left of the bisector to shift the remaining secondary charges to x. That, we shift each of the

solid sensors in sec to align with x by using the untapped charge of the sensors to the left of

the bisector in opt, as follows.

Starting from x− ls/2, we trawl leftward, selecting the sensors in the interval Iam′′ = [x−

ls/2− lam′′ ,x− ls/2], fractionally if necessary; since both ratio and cost are invariant under

fractioning, we can safely ignore the possibility of fractioning in the rest of the argument.

If sensor a∈ Iam′′ , then by Lemma 5.2 we have ratio(a)≥ ratio(am′′). Since ∑a∈Iam′′
la =

lam′′ , we apply Lemma 5.5 to get ∑a∈Iam′′
wa ≥ wam′′ .

We note that for every point p ∈ Iam′′ , p− (x− ls) ≥ ls/2− lam′′ . By charging every

interval in Iam′′ twice, we get (ls− 2lam′′ )(∑a∈Iam′′
wa) in charge. By the inequality just

obtained, we have

(ls−2lam′′ ) ∑
a∈Iam′′

wa ≥ (ls−2lam′′ )wam′′

which is the minimum charge necessary to shift am′′ ∈ sec to right-align with x.

The same argument serves to move the remaining sensors in opt to right align with x,

with the lengths adjusted to match the distance of each sensor in sec from x. Once each

copy of am′′ , . . . ,an is aligned to x, we pay for the second half of ws(ds + x) as before.

Lastly, we should note that a1′ can be assumed to be an element of Sx−ls . This follows

from Lemma 5.3 and the assumptions made in the statement of this lemma.

We might be tempted to adapt the argument of Proposition 5.8 to an entire approximate
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solution by bisecting the whole of the optimal solution and applying the charging scheme.

Since the proof of Proposition 5.8 depends on every optimal sensor in the range underlying

s at cursor x being a member of Sx, the scheme cannot work in every case.

We could easily conceive of a weighted MinSum problem in which some sensor t sat-

isfies pt,opt = pt,app = L, implying t 6∈ Sx for any x < t. That is, the cost of t would be

applicable as a bound exactly once, at x = L, rendering a second copy of t useless in the

charging scheme of Proposition 5.8, where it plays an essential role.

Since the propositions we now have all assume that optimal sensors near x satisfy In-

variant 5.1, the only cases left to consider are those in which the condition fails for optimal

sensors near x. An optimal sensor t 6∈ Sx if and only if t appeared in app after the approxi-

mate sensor s at x. Equivalently, t was drawn by the algorithm from some Sy where y > x,

in preference to s.

Therefore, to get a fully general bounds procedure, we must give special consideration

to sensors t ∈ app∩ opt. To that end, we ask whether charging t twice is enough to shift t

to x.

If the answer is yes, we apply Proposition 5.9. If the answer is no, we apply Proposition

5.10.

Proposition 5.9. Suppose the approximate sensor s at cursor x satisfies 2ps,opt ≥ x. Then

the cost of s ∈ app can be paid entirely by twice the cost of s ∈ opt.

Proof. We charge s ∈ opt twice, noting

2ws(ds + ps,opt)≥ ws(ds +2ps,opt)≥ ws(ds + x)

Proposition 5.10. Suppose the approximate sensor s at cursor x satisfies 2ps,opt < x and

that the subinterval of sensor placements [x− ps,opt,x] ⊆ opt contains no gaps. Then the
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cost of s ∈ app can be paid using the cost of s ∈ opt, and a length of ls in sensors belonging

to [x− ps,opt,x]⊆ opt.

Proof. We break the proof into cases centered around the total size of the sensors in the set

I = {t ∈ app : t ∈ [x− ps,opt,x]∩opt}.

We define |I |size to be the sum of the lengths of the sensors of I. If |I |size = ∑t∈I lt ≥ ls,

we select sensors t ∈ I by priority of largest pt,opt, until the total length of selected sensors

is exactly ls; we fraction one of the sensors to achieve this, if necessary. Let I ′ be this subset

of I , so that |I ′|size = ls.

Since 2ps,opt < x and t ∈ I implies t ∈ [x− ps,opt,x], we have ps,opt < pt,opt for all t ∈ I .

Therefore, ratio(s)≥ ratio(t) for all t ∈ I by Lemma 5.2.

From Fact 5.4, we have
ws

ls
≥ ∑t∈I ′wt

∑t∈I ′ lt
≥ ∑t∈I ′wt

ls

so that ws ≥ ∑t∈I ′wt .

Since |x− pt,opt| ≤ ps,opt for each t ∈ I ′, we can use a single charge of s to move each

t ∈ I ′ to right-align with x. We notice that each t ∈ I is viable with respect to s at x, since t

precedes s in app.

Since |I ′|size = ls, we can pay for s ∈ app using a single charge of s ∈ opt and a single

charge of each t ∈ I ′, like so

ws ps,opt + ∑
t∈I ′

wt(dt + pt,opt)≥ ∑
t∈I ′

wt(dt + x)≥ ws(ds + x)

To prove the first inequality, we exploit the fact that ps,opt + pt,opt ≥ x for every t ∈ I ′ in

conjunction with the earlier inequality ws ≥∑t∈I ′wt . The second follows from the viability

of every sensor of I ′ with respect to s at x alongside ∑t∈I ′ lt = ls. The process is concluded

by substituting a gap for s ∈ opt and for each t ∈ I ′. We note that this is an adaptation of

the shifting trick first used in Proposition 5.8.

If |I |size < ls, we use the same shifting trick to move each t ∈ I to right-align with x,
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charging the shift to s ∈ opt. This leaves s with a fraction of (ls− |I |size)/ls of a single

charge remaining, which we use to shift ls−|I |size in total length of sensors (any sensors)

in [x− ps,opt,x]− I to x.

The sensors we select to shift, whether in I or not, are viable with respect to s ∈ app at

x. By definition, the selected sensors not in I were never present in app, and so are elements

of Sx, making them viable with respect to s at x.

Once more, the cost of s is paid and the selected sensors moved by s and s ∈ opt itself

are replaced by gaps after the charge scheme is concluded.

We have left open the problem of how to address the presence of gaps in opt. We

especially want to guard against the possibility of gaps showing up near x, which could

preclude the use of earlier propositions which depend on a sufficient length of optimal

sensors being present near x.

To deal with gaps, we note that, in the statements of the previous two propositions, we

charged the costs of t and each of the shifted sensors u in opt only once. We could instead

charge the used optimal sensors twice, to get two copies of each of them shifted to x. As

before, the first copy of each optimal sensor selected is used to pay for s while the second

copy of each optimal sensor is cached for later use.

We introduce an invariant relating the total size of the gaps in opt and the total size of

the sensors stored in the cache. The cache is implemented as a priority queue, PQ. The

order of the sensors in the priority queue is the same we used to select the shifted sensors

in the proof of Proposition 5.10, where sensors t ∈ opt are stored in preference of largest

pt,app.

Definition 5.11. The total length of sensors in the priority queue PQ is equal to the total

size of gaps in opt. Furthermore, for every t ∈ PQ we have pt,app ≤ x where x is the cursor.

Looking back on the proofs of Propositions 5.9 and 5.10, we see that the new invariant is

maintained in either case. Proposition 5.9 closes the gaps it introduces without contributing
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to the cache, while Proposition 5.10 caches copies of the sensors whose lengths in opt are

substituted by precisely the gaps introduced. Similarly, the earlier propositions create no

gaps and cache no sensors.

Before we give the full bounds procedure, we introduce a final invariant describing a

lower bound on the distance separating the nearest gap in opt from the cursor x.

Specifically, for every gap g in opt, we maintain a so-called “active region”, a gapless

interval of contiguous sensors rg of size large enough that the shifting trick always has an

adequately sized pool of sensors from which to draw. Every cached sensor t added to PQ

after the formation of gap g will be tagged as belonging to g, which we denote as tag(t) = g.

Thus, every sensor in PQ is tagged as belonging to a unique gap g, and g is closed at

the exact time the last sensor tagged g is removed from PQ.

Definition 5.12 (Total size of active region with respect to gaps). Let g be a gap in opt. Then

there is a contiguous (gapless) region rg right-aligned at the cursor in opt, whose length is

equal to the total size of sensors lying to the left of g in opt. Furthermore, at the time of any

cursor x, the following statements hold:

• For any sensor s ∈ rg, ps,app ≤ pg = min{pt,app : t ∈ PQ, tag(t) = g}, and

• ∑t∈PQ:tag(t)=g lt = lg, where lg is the length of g.

Finally, in place of the notation opt, we use optC to denote a subset of opt in which some

sensors have been replaced by gaps, shifted leftward from their original positions to close

previous gaps, or retained their original positions in opt. We will use the notation appC to

refer to the current state of app, whose configuration of sensors experiences no change apart

from when sensors are discarded at the cursor.

Proposition 5.13. (Bounding procedure) Suppose we have sensor configurations appC and

optC satisfying the conditions of Invariants 5.1, 5.11 and 5.12. Then the total cost of sensors

in appC is no more than twice the total cost of the sensors in optC plus the cost of sensors

in the priority queue.
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Proof. By induction on the number of sensors whose cost remains to be bounded in appC.

Suppose n = 1. A single sensor is in appC, with the possibility of sensors punctuated by

gaps “below” it in optC, as depicted in Figure 5.7.

Figure 5.7: A single sensor in app overlying some gaps.

By Invariants 5.1 and 5.11, we can pay for exactly the proportion of s equal to the total

length of the gaps using the cost of sensors drawn from the priority queue. If this does not

cover the cost of s entirely, the configuration is made to resemble Figure 5.8, where s is

fractioned to s′, the remaining unpaid length of s, with the sensors in optC compacted to

align with the new cursor px.

Figure 5.8: The gaps are closed by compact sensors to the left.

Since each t ∈ optC is distinct from s (with the lone possibility of the sensor t containing

0, but this makes no difference to the argument), we have t ∈ Sx. By Invariant 5.1, the

sensors t ∈ optC satisfy
ws(ds + x)
min(x, ls)

≤ wt(dt + x)
min(x, lt)
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and therefore, since p = px/x≤ 1 is the unpaid portion of s,

p · ws(ds + x)
min(x, ls)

≤ p · wt(dt + x)
min(x, lt)

≤ wt(dt + p · x)
min(x, lt)

≤ wt(dt + px)

min(x, lt)

With the conditions of Propositions 5.6, 5.7 and 5.8 all satisfied, we conclude the bound

with whichever of the three applies.

Now suppose n = k+1 and that the statement of the proposition holds if appC has k or

fewer sensors. We consider the sensor s at cursor x by case.

Case 1: s ∈ appC∩optC

If 2ps,optC ≥ x, we apply Proposition 5.9 to pay for s ∈ appC, closing the gap left by s

by compacting the optimal sensors to the right of s leftward. It is easy to see that Invariants

5.1 and 5.11 are maintained after the shift.

To show that Invariant 5.12 is maintained, suppose there is a gap g such that ps,optC ∈ rg

where rg is the corresponding active region. Since Invariant 5.12 holds at time x by the

induction hypothesis, we have that ps,appC < pt,appC for all sensors t in the priority queue

such that tag(t) = g. The inequality is strict because ps,appC ≥ 0, and all non-negatively

valued positions are unique.

Additionally, Invariant 5.12 tells us the length of sensors t in the priority queue tagged

with gap g is equal to exactly the current length of g. By Invariant 5.11, pt,appC ≤ x, but

since sensor s is now right-aligned to x, we must have x = ps,appC ≥ pt,appC for every such

t. This is a contradiction to the last sentence of the previous paragraph, since the positive

length of gap g attests to the presence of sensors t with tag(t) = g in the priority queue.

Therefore, ps,optC 6∈ rg. Since g was selected arbitrarily, Invariant 5.12 must remain true

after Proposition 5.9 is applied, since s does not lie in any active region, and the gaps and

priority queue are all left untouched.
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If 2ps,optC < x, we apply Proposition 5.10 with a modification to its argument made

to maintain Invariant 5.12. Let u1, . . .un ∈ optC be the first ls in total length of sensors u

satisfying 2pu,optC < pu,appC leftward from x, selected in preference of largest pu,optC . We

note that ps,optc ≤ pui,optc for every i = 1, . . . ,n and that any sublength of s itself can be

considered the last of these sensors if necessary, which guarantees that such a sequence of

u’s exists.

Figure 5.9: The modification in a case where n = 3.

We substitute the sensors ui for s in providing the charge to shift the sensors selected

by Proposition 5.10 in the range [x− ps,optC ,x]∩optC forward to x. That is, for each sensor

ui, we select a length lui of sensors t ∈ [x− pui,opt,x]∩ optC in the manner described in

Proposition 5.10, which are shifted to x. We do this in descending order, starting with the

rightmost sensor in opt, un.

This means the active region run contains the active region run−1 , which contains region

run−2 , and so on, all the way down to region ru2 containing region ru1 . As secondary copies

of sensors are added to the priority queue, it is clear that Invariant 5.12 is maintained among

the regions rui . Supposing we modify Proposition 5.10 to follow this greedy approach

whenever it is applied, Invariant 5.12 must hold with respect to the regions of gaps opened

previously. Since those gaps fall to the right of the current un because of the greedy selection

of previous ui, their active regions contain run .

Gaps gu1, . . . ,gun are introduced in the place of u1, . . . , un, and the length of s ∈ opt

that was unused in the shifting scheme, if positive, is divided into contiguous fragments
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of lengths lu1, . . . , lun . We note that the division must use all of the unused length. The

fragments are identified with sensors u1, . . . ,un ∈ appC respectively. The old ui in appC and

the “new” ui in optC are relabeled uniquely as v1, . . .vn to avoid later confusion with the

gaps gu1, . . .gun and their active regions.

Each new sensor vi is assigned weight wvi = wui . Since each ui followed s in opt, this

can be assumed over all ui without increasing the cost of optC, by Lemma 5.2. Clearly,

pvi,optC ≤ ps,optC and pvi,appC = pvi,appC , so any charges made against the vi in optC under the

usual constraints cannot exceed the original cost of s in opt.

Invariant 5.11 is maintained, under the modified subroutine of Proposition 5.10. It is

clear that Invariant 5.1 also holds.

Case 2: s 6∈ appC∩optC.

If the priority queue is not empty, we use Invariant 5.11 to draw viable sensors from the

priority queue to pay for s.

Suppose we can entirely pay for s using auxiliary sensors drawn from the queue. Since

pt,optC ≤ x for all t ∈ PQ, and t is ordered maximally by pt,optC , we have that the sensors t ′

remaining in the queue after the cost of s is paid satisfy pt ′,optC ≤ x− ls, since every positive

pt,optc is unique.

If the auxiliary sensors in the priority queue can only pay for a partial length of s (or no

length of s, meaning the queue is empty), we fall back on the argument given in case n = 1,

which does not rely on the assumption that s is the only sensor left in appC.

In either case, Invariant 5.11 is preserved and the gaps tagged by the secondary sensors

drawn from the queue are compacted against by the length of those sensors. The remaining

regions and gaps are unaffected except as a result of the compaction that occurred after

drawing from the queue. Due to the ordering of the queue, the only effect this has is to

reduce or close the rightmost gaps, leaving Invariant 5.12 intact.

Theorem 5.14 (Algorithm 10 is a 2-approximation to WeightedMinSum). Let app be a

solution to an instance of the WeightedMinSum problem with cost APP and let opt be any
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fixed optimal solution for the same instance with cost OPT . Then APP≤ 2OPT .

Proof. We invoke Proposition 5.13, noting that all three Invariants are trivially satisfied by

the solution computed by Algorithm 10.

Finally, we show that no smaller approximation bound holds for Algorithm 10.

Theorem 5.15 (Tightness of the approximation bound). The 2-approximation bound for

Algorithm 10 is tight.

Proof. We construct a parametric family of covering problems whose solution costs under

Algorithm 10 are arbitrarily close to twice their optimal solution costs.

Let L > 0 be the length of the barrier. Lying disjointly to the left of the barrier are two

sensors. The first sensor, s1, has length l1 = cL and distance from the line d1 = 1− ε for

some ε > 0 and 1− ε < c < 1, with weight w1 = c.

Similarly, sensor s2 has l2 = L, d2 = c and w2 = 1.

It is readily seen that the optimal solution consists only of s2, so that OPT = c+L.

Running Algorithm 10 on the instance produces an ordered solution of < s2,s1 >, with

cost c(1− ε)+ cL+ c+L− cL = c(1− ε)+ c+L, giving the approximation ratio

c(1− ε)+ c+L
c+L

=
1− ε

1+L/c
+1

Let L = cε. Since we have free choice of ε > 0 and limε→0+(1−ε)/(1+ε) = 1, the perfor-

mance ratio can come as close to 2 as we wish, demonstrating that the bound is tight.

5.3 An FPTAS for the one-sided disjoint weighted case

Initially we develop an FPTAS for the left lying disjoint weighted barrier coverage

problem, then extend it to a more general two-sided version.

The idea is that the one-sided FPTAS considers sensors for placement one at a time,

in the order specified by Lemma 5.2, the Order Preservation Property. Packing sensors
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leftward from the barrier point L, it maximizes the length of a partial barrier coverage

without exceeding a given budget in sensor movements.

Placements are structured recursively through dynamic programming. We define a dy-

namic programming table f ∗(i,z), where i restricts the placement to the first i sensors in the

ordering of Lemma 5.2, and z sets the budget to be spent in the movement of sensors.

As a recurrence relation, f ∗(i,z) is defined as

f ∗(i,z) = max{min{ f ∗(i−1,z),g∗(i,z)},0}

where for i > 0 and z≥ 0,

g∗(i,z) = min
0≤x≤z

{ f ∗(i−1,z− x)−2ri : wi · | f ∗(i−1,z− x)− ri− xi| ≤ x}

Intuitively, in the top-level recurrence, we either include the sensor si in the partial

coverage or we do not, out of preference for some cheaper placement involving only the

first i− 1 sensors. If we do place si, we assign some budget 0 ≤ x ≤ z to pay for the

movement of si, and use the remaining budget z− x to pay for other i− 1 sensors. This

proceeds under the assumption that the total cost of moving si, | f ∗(i,z− x)− ri− xi|, does

not exceed x. Then the value of f (i,z) is set to f ∗(i−1),z− x)−2ri, the left end point of

the partial cover, provided that the inclusion of si enables us to cover more of the barrier.

From the definition of f ∗(i,z), we have

OPT = min
z≥0
{z : f ∗(n,z)≤ 0}

where n is the number of sensors in S. From here, it is a routine exercise in induction to

show that the last equation is correct.

To translate f ∗(i,z) into a recurrence we can compute, two things must happen. First,

we note that the budget z is assumed to be any non-negative real number. Since most real
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numbers cannot be represented precisely on a binary computer, z must be restricted to a

discrete sampling of the real numbers. Second, for the computation to terminate, we also

need to induce an upper bound on the budgets z.

The upper bound on budgets Z will be defined as the cost of the solution offered by

Algorithm 10, and immediately we get Z ≤ 2 ·OPT from the work of the preceding section.

The discrete sampling of budgets z will be given by iterating across the interval [0,Z] in

integer multiples of the quantum ζ = εZ/2(n+1), which depends on some ε > 0.

We modify the recurrence to reflect the discretization as follows.

f (i,kζ) = min{ f (i−1,kζ), f (i−1,(k−1)ζ),g(i,kζ)}

where

g(i,kζ) = min
1≤c≤k

{ f (i−1,(k− c)ζ)−2ri

s.t. wi · | f (i−1,(k− c)ζ)− ri− xi| ≤ cζ}

We consider f (i,kζ) = L if i = 0 or k = 0. The claim that an FPTAS can be defined on the

basis of f is founded on the following lemma.

Lemma 5.16. For every 1 ≤ i ≤ n, and every integer k ≥ 0, there is a barrier coverage of

the interval ( f (i,kζ),L] that uses the first i sensors and has movement cost no more than

kζ.

Conversely, for any x ≥ 0, suppose there is a barrier coverage of the interval [x,L]

that uses the first i sensors with total movement cost no more than z. Let k be an integer

satisfying k ·ζ≥ z. Then f (i,(k+ i)ζ)≤ x.

Proof. Both claims of the lemma can be proved inductively, and we begin by proving the

first claim.

For i = 1, if kζ ≥ w1(d1 +L), then by the definition of f , f (1,kζ) is the left end point
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of the cover consisting only of s1 right-aligned to L, attained using movement cost no more

than kζ. Otherwise, no movement of s1 is possible, and f (1,kζ) = L; then ( f (1,kζ),L] = /0

and the statement is vacuously true.

Now let i = m+1 and suppose the statement holds in the case i = m. In the case that i

is not selected for use in the cover, we have f (i,kζ) = f (i−1,kζ) and apply the induction

hypothesis to the first i−1 sensors. Otherwise, f (i,kζ) = f (i−1,(k− c)ζ)−2ri for some

1≤ c≤ k, where the cost of moving si into place is no more than cζ.

By the induction hypothesis, there is a cover involving the first i− 1 sensors of the

barrier interval ( f (i−1,(k− c)ζ),L] of cost (k− c)ζ. It follows from the definition of the

case selected in f that this covering can be extended by length li = 2ri using sensor si, at a

cost of at most cζ, for a total cost of kζ.

For the second claim, we again use induction. Let x ≥ 0 and i = 1 such that there

is a barrier coverage of [x,L] using only the first i sensors. Since we are limited to the

exclusive use of the first sensor, we must have x ≥ L− l1. Let z = w1(d1 +L), the cost of

moving s1 to right-align with L. Let k ∈ Z such that kζ≥ z. Then f (1,(k+1)ζ)≤ x, since

f (1,(k+1)ζ) = L− l1.

Now let i = m + 1 for some m ≥ 1 and suppose the induction hypothesis holds for

every x ≥ 0 satisfying the stated condition when i = m. Let x ≥ 0 and suppose there is

a cover of the interval [x,L] from among the first (i+ 1) sensors. If the cover is in fact

limited to the first i sensors, we apply the induction hypothesis, noting that due to budget

increases, f (i,(k + i+ 1)ζ) ≤ f (i,(k + i)ζ) ≤ x. Combined with f (i+ 1,(k + i+ 1)ζ) ≤

f (i,(k+ i+1)ζ), we get the desired statement.

Otherwise, si+1 is included in the cover. Due to Lemma 5.2, we can freely suppose

that si+1 lies closest to 0 of all sensors in the cover at no additional cost. Then lying

to the right of si+1, there is a cover of the interval (x+ li+1,L] using the first i sensors,

of cost z. By the induction hypothesis, it follows that for every k ∈ Z satisfying kζ ≥ z,

f (i,(k+ i)ζ)≤ x+ li+1.

83



5.3. AN FPTAS FOR THE ONE-SIDED DISJOINT WEIGHTED CASE

Select an integer k′ satisfying k′ζ≥ wi+1(di+1 + x+ li+1)+ z, the total cost of the cover

with si+1, and an integer k′′ ≤ k′ satisfying (k′′−1)ζ < wi+1(di+1 + x+ li+1) ≤ k′′ζ. Then

(k′−k′′+1)ζ≥ z, the cost of moving the first i sensors into place. Setting c= k′′, we see that

f (i,(k′−k′′+ i+1)ζ)−2ri+1 belongs to the range of values of which g(i+1,(k′+ i+1)ζ)

is the minimum. We observe also that by the induction hypothesis, f (i,(k′−k′′+ i+1)ζ)≤

x+ li+1, and therefore, f (i,(k′− k′′+ i+ 1)ζ)− 2ri+1 ≤ x. f (i+ 1,k′ζ+ i+ 1) ≤ g(i+

1,k′ζ+ i+1) by definition of f , and this completes the proof of the induction step.

The pseudocode for the one-sided FPTAS is given as Algorithm 11, which iteratively

calculates the recurrence of f , storing intermediary results in a dynamic programming table.

Algorithm 11 The FPTAS for one-sided disjoint MinSum
1: procedure LEFTFPTAS(x,r,L,ε)
2: Z← a value in [OPT,n ·OPT ] computed as described above
3: ζ = εZ/2(n+1)
4: n← # of sensors
5: for k from 0 to . . .Z/ζ+n+1 do
6: f [0,kζ]← L
7: for i from 1 to n do
8: for k from 0 to Z/ζ+n+1 do
9: g[i,kζ]←+∞

10: for c from 0 to k do
11: if | f [i−1,kζ− cζ]− ri− xi| ≤ cζ then
12: endpt← f [i−1,kζ− cζ]−2ri
13: g[i,kζ]←min(g[i−1,kζ],endpt)

14: f [i,kζ]←min( f [i−1,kζ],g[i,kζ])
15: if k > 0 then
16: f [i,kζ]←min( f [i,k], f [i,(k−1)ζ])
17: return min{kζ : k ≤ Z/ζ+n+1, f (n,kζ)≤ 0}

Recall that Z is the cost of the solution produced by Algorithm 10, so that Z ≤ 2 ·OPT .

We prove that Algorithm 11 is an FPTAS.

Theorem 5.17. Given ε > 0, Algorithm 11 computes a (1+ε)-approximation in O(n3/ε2).
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Proof. Algorithm 11 determines k∗, which is defined as

k∗ = min{kζ : 0≤ k ≤ Z
ζ
+n+1 and f (n,kζ)≤ 0}

Let k′ be the smallest k′ ∈ Z such that (k′− 1)ζ < OPT ≤ k′ζ. Since Z +(n+ 1)ζ ≥

OPT +(n+ 1)ζ ≥ (k′+ n)ζ, k′+ n is in the range of integers 0 ≤ k ≤ Z/ζ+(n+ 1). We

have by Lemma 5.16 that there is a full coverage of [0,L] using the n sensors given, and

that its cost is no more than (k′+n)ζ.

From these observations and the definition of k∗, we have immediately that k∗ ≤ k′+n.

Furthermore, we have

k∗ζ≤ (k′+n)ζ≤ OPT +(n+1)ζ≤ OPT +
εZ
2
≤ (1+ ε) ·OPT

Lastly, by multiplying the containing loop ranges together, Algorithm 11 has runtime

O(n · (Z/ζ+n+1)2) = O(n3/ε2).

5.4 An FPTAS for the two-sided disjoint MinSum problem

We will adapt Algorithm 11 to give a generalized FPTAS for the two sided, disjoint

MinSum problem. First, we will prove some structural properties for later use in the two-

sided FPTAS.

Lemma 5.18. For any optimal complete barrier coverage of a two-sided disjoint MinSum

instance, we may suppose without loss of generality that there exists a point x∗ ∈ [0,L] such

that the interval [0,x∗) is covered only by sensors si with xi < 0 and (x∗,L] is covered only

by sensors si with xi > L.

Proof. Fix any optimal solution of a given two-sided disjoint MinSum instance and suppose

that the statement of the lemma does not hold. That is, there exist sensors sl with xl < 0

and sr with xr > 0. Since sr initially lies to the right of the barrier, its movement cost mr is
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negative, and will be added to xr to obtain its position in the coverage. So that the statement

of the lemma fails, we suppose xl +ml > xr +mr.

We may suppose that sl and sr are consecutive, since this must be true of some pair of

sl and sr for the property to fail. We swap sl and sr. Since sl crossed the point xr +mr on

its way to xl +ml , the swap has reduced ml , and likewise for mr. Since the original solution

had optimal cost and the swapping actions could not have increased it, the cost remains

optimal.

Another property we will exploit is the fact that overhang can be eliminated on one side

of an optimal solution. A sensor si overhangs from the right side of a barrier if xi+mi−ri <

L < xi +mi and similarly if it overhangs from the left side.

Lemma 5.19. There exists an optimum barrier coverage in which there is either no left

overhang or no right overhang.

Proof. Fix a solution of optimal cost and assume that both left and right overhang are

present. Define the sensor sets SL = {si ∈ opt : xi < 0} and SR = {si ∈ opt : xi > L}. Suppose

that ∑s∈SL ws ≥ ∑t∈SR wt . Then shifting the packed sensors of opt simultaneously to the left

by the length of the right overhang changes the changes of the solution, adding to it the

non-positive amount

∑
t∈SR

wt− ∑
s∈SL

ws ≤ 0

If ∑s∈SL ws < ∑t∈SR , the same argument holds by symmetry.

To get a two-sided disjoint MinSum FPTAS, it will suffice to limit ourselves to solutions

without either left- or right overhang, where the left and right sensors are partitioned to

either side of a unique point 0≤ x∗ ≤ L.

Theorem 5.20. There is an FPTAS for the two-sided, disjoint MinSum problem with run-

ning time O(n5

ε3 ).
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Proof. The FPTAS proceeds in two phases. First, we pack from the right using only sensors

that lie initially to the right of L, growing positively in the direction towards 0. This will

require us to reverse the order of selection in the one-sided case, in preference of the sensors

s of smallest ratio(s) = ws/ls.

We’ll designate the cost of such a packing using the first i right-lying sensors of budget

z as fR(i,z). Its definition is given as the recurrence relation

fR(i,z) = max{ f ∗R(i−1,z),g∗R(i,z)},

where

g∗R(i,z) = max
x∈[0,z]

{ f ∗R(i−1,z− x)−2ri : wi · (xi− f ∗R(i−1,z− x)+ ri)≤ x}.

fR(i,z) is structured as a mirror version of the one-sided recurrence f ∗(i,z). Once again,

the strategy we take is to discretize fR. In its discretized form, fR(i,z) will serve as an

estimate of the left-right partition point x∗, whose existence can be assumed in an optimal

solution, as shown in Lemma 5.18. With fR(i,z) serving as the right endpoint of a barrier,

we will run the original one-sided disjoint MinSum FPTAS on the interval [0, fR(i,z)]. This

will occur for every combination of 0 ≤ i ≤ n and integer multiple of some ζ ≤ Z, where

both ζ and Z have yet to be chosen. The result will be a solution of the type described

in Lemma 5.18, without any right overhang. Then we will run the same procedure with

swapped sides, to produce solutions without any left overhang, and take the minimum cost

solution over both. This will yield an FPTAS with approximation ratio 1+ ε and run time

O(n5/ε3).

We begin by computing Z, as follows. For each sensor si, let αi = min(|xi|, |xi−L|).

We try to guess the value of α = maxsi∈opt αi by iterating through the n sensors given. For

each guess αi, move all sensors s j with α j ≤ αi to align with 0 or L, whichever is closest, at

their nearest endpoint. For the correct guess αi, the total movement so far is no more than
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n times the total movement used in the optimal solution to move sensors from their starting

points to the endpoints of [0,L]. This is because si is included in opt supposing that αi is

the correct guess, and we choose an additional i−1≤ n−1 sensors whose distance to their

nearest endpoint is no more than si’s.

Now guess the number iL of left-lying sensors used in the optimal solution. Of the

sensors moved to 0 in the previous step, choose the top iL of them according to least ratio(·).

Where the selected sensors have total length L , greedily cover [0,L ] with them, and greedily

cover [L ,L] using the right-lying sensors aligned at L, again chosen by least ratio(·). Due

to the greedy selection by least ratio(·), the movement cost of this second step is no more

than the total movement of sensors that occurs within the optimal solution when moving

within the barrier interval [0,L].

If we total all movements made in this solution into Z, we have OPT ≤ Z ≤ n ·OPT .

We set ζ = εZ/n(n+1) for a given ε > 0. We will now discretize f ∗R over integer multiples

of ζ, as we did in the one-sided disjoint MinSum FPTAS, into

fR(i,kζ) = max{ fR(i−1,kζ),gR(i,kζ)}

where

gR(i,kζ) = max
1≤c≤k

{ fR(i−1,(k− c)ζ)+2ri : wi · (xi− fR(i−1,(k− c)ζ)+ ri)≤ cζ}

and

fR(0,kζ) = 0 for all k

where, as before, we iterate over k.

We introduce a claim similar to the one made in Lemma 5.16.

Lemma 5.21. For every 0≤ i≤ n and every integer 0≤ k, there is a barrier for the interval

[ fR(i,kζ),L] that uses the top i sensors to the right of L, chosen by greatest ratio(·), and
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has movement cost at most k ·ζ.

Conversely, for x ≥ 0 suppose there is a barrier for an interval [x,L] that uses the top

i sensors, chosen by greatest ratio(·), to the right of L with total movement cost at most z.

Let k ∈ Z be such that k ·ζ≥ z. Then fR(i,(k+ i)ζ)≤ x.

The proof is identical to that of Lemma 5.16.

Let x∗ be the midpoint in the optimal solution, so that [0,x∗] is covered entirely by

sensors si with xi < 0, and [x∗,L] covered entirely by sensors si with xi > L. Let OPTL and

OPTR denote the costs of the solutions that make up either side of the optimal solution.

Let k∗R be the smallest integer satisfying k∗Rζ ≥ OPTR + (nR + 1)ζ. By Lemma 5.21,

fR(nr,k∗R)ζ)≤ x∗ and there is a covering of [ fR(nr,k∗Rζ),L] with cost no greater than k∗Rζ.

We approximate the left hand side solution with cost OPTL by packing the interval

[0, fR(nR,k∗Rζ)] with left-lying sensors, using the FPTAS of the previous section. By the

previous section’s results, the interval [0,x∗] can be covered at cost OPTL. Additionally,

fR(nR,k∗Rζ)≤ x∗. Thus, the total cost of the solution covering [0,L] by splitting it into two

sub-intervals around some point fR(nR,k′ζ) is at most

(1+ ε)OPTL +OPTR +(nR +1)ζ

≤ (1+ ε) ·OPT +(n+1)ζ

≤ (1+2ε) ·OPT

Since we do not know the explicit value of x∗, we must guess. We guess for x∗ by it-

erating over the f (nR,kRζ) in the pseudocode of the two-sided FPTAS, whose pseudocode

is given here. The process of finding all values of fR(nR,kRζ) is structured after the pseu-

docode of Algorithm 11, but reflects the discretized recurrence of f ∗R rather than that of

f ∗L .

The two-sided FPTAS has run time O(n5/ε3). Finding all the fR values takes time

O(n5/ε3), and each call to Algorithm 11 takes time O(n3/ε2). There are O(n2/ε) calls to
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Algorithm 12 The FPTAS for DisjointMinSum
1: procedure DISJOINTMINFPTAS(x,r,L)
2: Z← a value in [OPT,n ·OPT ] computed by the n-approximation algorithm
3: ζ← εZ/(n(n+1))
4: nR← # of right-sensors
5: xL,rL← the sub-lists of positions and ranges x,r for the left-sensors

6: for k from 0 to . . .Z/ζ+n+1 do
7: fR[0,kζ]← L
8: for i from 1 to n do
9: for k from 0 to Z/ζ+n+1 do

10: gR[i,kζ]←+∞

11: for c from 0 to k do
12: if wi · |xi− fR[i−1,kζ− cζ]+ ri| ≤ cζ then
13: endpt← fR[i−1,kζ− cζ]+2ri
14: gR[i,kζ]←min(gR[i−1,kζ],endpt)

15: fR[i,kζ]←min( fR[i−1,kζ],gR[i,kζ])
16: if k > 0 then
17: fR[i,kζ]←min( fR[i,k], fR[i,(k−1)ζ])
18: best←+∞

19: for kR from 0 to Z/ζ+n+1 do
20: left← LEFTFPTAS(xL,rL, fR(nR,kRζ),ε)
21: best←min(best, left+ kRζ)

22: return best

90



5.4. AN FPTAS FOR THE TWO-SIDED DISJOINT MINSUM PROBLEM

Algorithm 11 in the final loop, giving a total run time of O(n5/ε3).
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Chapter 6

Conclusion

In this dissertation, we established approximation bounds for two classes of covering prob-

lems, and provided optimal algorithms for some special cases.

First, approximation algorithms were provided for the uniform, maximum and set cover

CVC problems. Additionally, we described an exact algorithm for maximum uniform CVC

on the line, which runs in polynomial time under the assumption that the number of range/-

capacity pairs is fixed.

Second, we have shown that the barrier coverage FPTAS of [6] can be extended to

the weighted case of the disjoint MinSum barrier coverage problem. By developing a 2-

approximation algorithm for the weighted disjoint MinSum, the time and space complex-

ities of our FPTAS decrease from those of the unweighted FPTAS by quadratic and linear

factors respectively.

6.1 Future Work

Other variants of the barrier coverage problem remain to be solved. The MinMax bar-

rier coverage problem on the line seeks to cover a barrier with sensors, as in the MinSum

problem. The only change is to the objective function, which now assumes the greatest cost

of any individual sensor movement. Can mitigating constraints be imposed on MinMax to

allow a constant factor approximation algorithm?

92



Bibliography

[1] Selim Akl, Robert Benkoczi, Daya Ram Gaur, Hossam Hassanein, Shahadat Hossain,
and Mark Thom. On a class of covering problems with variable capacities in wireless
networks. Theoretical Computer Science, 575:42–55, 2015.

[2] Aaron M. Andrews and Haitao Wang. Minimizing the aggregate movements for in-
terval coverage. In Algorithms and Data Structures: 14th International Symposium,
WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings, pages 28–39,
Cham, 2015. Springer International Publishing.
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