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ABSTRACT 

The pathogenicity of Arcobacter butzleri remains enigmatic, in part due to a lack of genomic data 

and tools for comprehensive detection and genotyping of this bacterium. Comparative whole 

genome sequence analysis was employed to develop a high throughput and high resolution 

subtyping method representative of whole genome phylogeny. In addition, primers targeting a 

taxon-specific gene (quinohemoprotein amine dehydrogenase) were designed to detect and 

quantitate A. butzleri. The application of these methods showed that A. butzleri is present at 

high frequencies but low densities in diarrheic and healthy people, and specific strains are 

associated with human enteritis. The developed tools were also used to determine that A. 

butzleri is common in wastewater, survives tertiary wastewater treatment, and may be 

transmitted to people via ingestion of contaminated surface water. Diverse subtypes of A. 

butzleri occur in the environment, but pathogenicity is likely strain-specific and/or dependent on 

other factors such as host resistance. 
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CHAPTER ONE 

Literature review 

“…as we know, there are known knowns; there are things we know we know. We 
also know there are known unknowns; that is to say we know there are some things 
we do not know. But there are also unknown unknowns – the ones we don't know 
we don't know… it is the latter category that tends to be the difficult ones.” 

Donald Rumsfeld, United States Secretary of Defense, Feb 12, 2002 
(Transcript, Press Operations, United States Department of Defense) 

                     

1.1. INTRODUCTION 

In 1992, the Arcobacter genus was proposed to separate a number of aerotolerant 

species from other taxa within the Campylobacteraceae family of Epsilonproteobacteria (1-3). 

Arcobacter species were first detected in aborted livestock fetuses (4, 5), but since then the 

Arcobacter species A. butzleri, A. cryaerophilus, and A. skirrowii have been detected in people 

reporting diarrheic symptoms (6-9). In particular, A. butzleri is the fourth most commonly 

detected Campylobacteraceae in human beings with enteric illness (10). The association 

between A. butzleri and people with watery diarrhea, intestinal cramping, and dehydration (11, 

12) has led many to conclude that this bacterium is an emerging pathogen; however, direct 

evidence of its pathogenicity is lacking at present. A major limitation in ascertaining whether A. 

butzleri is a public health concern is the lack of genomic data and robust tools for the 

comprehensive detection, isolation, and genotyping of the bacterium.  

1.2. GROWTH AND MORPHOLOGY 

Arcobacter butzleri is a Gram negative bacterium with a curved shape and a single polar 

flagellum (Figure 1.1) (1, 13). It can grow at temperatures as low as 4oC (14) and in anoxic 

atmospheres (15), although optimal conditions are aerobic or reduced-oxygen atmospheres (1, 

3) at temperatures between 25oC (10) and 37oC (16). Although data are limited, the metabolism 

of A. butzleri is likely similar to that of Campylobacter species, as they are often co-isolated on  
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Figure 1.1. Arcobacter butzleri visualized by scanning electron microscopy. 

White bars represent increments of 0.5 µm in length. 
 
 
media that are semi-selective for campylobacters (1, 3, 13, 17). In addition, arcobacters and 

campylobacters share similar cultural morphologies. When grown on media containing blood, 

most taxa within the family Campylobacteraceae form smooth, round colonies 1-3 mm in 

diameter with a greyish color (1). Arcobacter butzleri is capable of forming a biofilm (18) in order 

to resist temperature extremes, and saline, acidic and biocidal stressors (Table 1.1), and it 

possesses strain-specific resistance to a range of antimicrobial agents (AMAs) (19-23) (Table 1.2). 

The adaptability of this bacterium to such a broad range of growth conditions may explain its 

ubiquity; A. butzleri has been detected in all types of livestock (22, 24-26) and their associated 

food products (27-32), seafood (33, 34), household pets (35), wastewaters (15, 36), 

environmental waters (32, 37) including contaminated groundwater (38, 39), and both diarrheic 

(40-42) and non-diarrheic human beings. 
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Table 1.1. Experimental inhibition of A. butzleri growth using environmental stressors. 

Stressor Viability Reference 

Acidity   

pH 4.0 > 24 hours (43) 

pH 5.0 > 24 hours (43) 

pH 7.0 > 5 days (44) 

pH 8.0 > 5 days (44) 

Chlorine   

1.16 mg/l 5 min (45) 

Starvation   

Filtered (drinking) water > 35 daysa (45) 

Salinity   

3.5% NaCl > 96 hours (44) 

5.0% NaCl > 96 hours (44) 

Temperature   

5°C > 77 days (46) 

10°C > 20 days (46) 

15°C > 10 days (46) 

48°C > 24 hours (43) 

52°C 30 min (47) 

56°C 16 min (47) 

60°C 5 min (47) 
a Arcobacter butzleri remained culturable between 16 and 21 days in filtered water, 
but membrane permeability stains suggested that cells remained viable but non-
culturable for more than 35 days. 

 
 
1.3. ECOLOGY 

1.3.1. Arcobacter butzleri in animals and animal products. Arcobacter butzleri has been isolated 

from clinically-healthy livestock at all levels of the “farm-to-fork” continuum, although 

prevalence varies greatly by animal and type of sample (e.g. skin versus feces), as well as the 

detection methods applied in each study (Table 1.3). Greater rates of detection of A. butzleri are 

reported from feces and intestinal contents of pigs and cattle compared to chickens, yet the 

rates of detection on carcasses at slaughter are greater for chickens than for other meat animals 

(26, 48, 49). Considering the ubiquity of A. butzleri in slaughterhouses and processing facilities 

(50-53), it is not surprising that this bacterium is also prevalent in retail animal products such as 

meat and dairy (52, 54, 55). Studies suggest that contamination of retail meats likely occurs  
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Table 1.2. Experimental inhibition of A. butzleri growth using antimicrobial agents. 

Antimicrobial  Mechanism of action MIC50/90 
(mg/l) 

Breakpoint 
(mg/l) 

a
 

Reference 

Aminocoumarin     

Novobiocin Energy transduction inhibition Resistant at 30 (56) 

Aminoglycoside     

Amikacin Protein synthesis inhibition 4/64 ≤16 (20) 

Gentamicin Protein synthesis inhibition 0.5/1 ≥8 (18)  

Kantamycin Protein synthesis inhibition Susceptible at 30 (56) 

Streptomycin Protein synthesis inhibition Susceptible at 300 (56) 

Tobramycin Protein synthesis inhibition 2.0/16 ≤4 (20) 

β-lactam cephalosporin     

Cefaclor Cell wall synthesis inhibition 8/128 ≤8 (20) 

Cefazolin Cell wall synthesis inhibition 128/>128 ≤8 (20) 

Cefepime Cell wall synthesis inhibition 4/8 ≤8 (20) 

Cefixime Cell wall synthesis inhibition 1/>128 ≤1 (20) 

Cefoperazone Cell wall synthesis inhibition 512/512 ≥64 (18) 

Cefotetan Cell wall synthesis inhibition 16/128 ≤16 (20) 

Ceftriaxone Cell wall synthesis inhibition 4/128 ≤8 (20) 

Cefuroxime Cell wall synthesis inhibition 32/128 ≤8 (20) 

Β-lactam penicillin     

Ampicillin Cell wall synthesis inhibition 128/256 ≥32 (18) 

Amoxicillin Cell wall synthesis inhibition 8/>128 ≤8 (20) 

Piperacillin Cell wall synthesis inhibition 512/512 ≥128 (18) 

Macrolides     

Azithromycin Protein synthesis inhibition Intermediate at 15 (56) 

Clindamycin Protein synthesis inhibition 64/>128 ≤0.5 (20)  

Erythromycin Protein synthesis inhibition Intermediate at 15 (56) 

Rokitamycin Protein synthesis inhibition 16/>128 - (20) 

No family     

Chloramphenicol Protein synthesis inhibition 16/64 ≤8 (20)  

Imipenem Cell wall synthesis inhibition 1/2 ≤4 (20) 

Oxytetracycline Protein synthesis inhibition Susceptible at 30 (56) 

Tetracycline Protein synthesis inhibition Susceptible at 30 (56) 

Trimethoprim DNA synthesis inhibition 512/512 ≥16 (18) 

Vancomycin Cell wall synthesis inhibition 512/512 ≥32 (18)  

Quinolones     

Ciprofloxacin Topoisomerase II/IV ligase inhibition 4/>8 >4 (18) 

Difloxacin Topoisomerase II/IV ligase inhibition 2/16 ≤4 (20) 

Enrofloxacin Topoisomerase II/IV ligase inhibition 2/4 ≤2 (20) 

Levofloxacin Topoisomerase II/IV ligase inhibition 0.5/4 ≤2 (20) 

Marbofloxacin Topoisomerase II/IV ligase inhibition 0.5/16 ≤1 (20) 

Norfloxacin Topoisomerase II/IV ligase inhibition 2/8 ≤1 (20) 
a Concentration of AMA below which A. butzleri is considered susceptible for a given minimum 
inhibitory concentration (MIC) level.
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Table 1.3. Frequency of detection of A. butzleri in livestock and retail meats. 

Sample origin Samples Prevalence (%) Reference 

Chicken carcass    

Iran 100 26 (57) 

Switzerland 248 53.6 (52) 

USA a 119 78.2 (23) 

USA b 12 91.7 (23) 

Chicken feces    

Chile 20 10.7 (48) 

Japan 234 6.8 (22) 

Switzerland 1090 1.4 (52) 

Chicken meat    

Iran 100 28 (57) 

Ireland 94 52.1 (55) 

Japan 41 46.3 (32) 

Japan 100 15 (54) 

Switzerland 238 15.1 (52) 

Cow carcass    

Belgium 247 8.1 (51) 

Switzerland 208 19.7 (52) 

Cow feces    

Belgium 276 1.4 (25) 

Chile 75 30.7 (48) 

Switzerland 210 0 (52) 

Cow meat    

Ireland 108 20.4 (55) 

Japan 90 1.1 (54) 

Switzerland 150 0 (52) 

Pig carcass    

Belgium 169 1.8 (53) 

Switzerland 300 19.7 (52) 

Pig feces    

Belgium 294 31.6 (26) 

Chile 135 49.6 (48) 

Japan 250 6 (22) 

Switzerland 250 21.6 (52) 

Pig meat    

Belgium 47 14.9 (53) 

Ireland 101 21.8 (55) 

Japan 100 4 (54) 

Switzerland 52 0 (52) 
a Pre-scald 
b Post-chill
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during slaughter and processing, although the mechanism of contamination may vary by 

livestock animal (23, 53, 58). Arcobacter butzleri has also been detected in sea creatures such as 

fish (59, 60), mussels and clams (61), which has been attributed to contamination of 

environmental waters with human and animal waste. It is possible that cross-contamination of 

seafood occurs during processing and at retail in a similar manner to that of domesticated 

livestock (50-53), although no such studies are currently available. 

1.3.2. Arcobacter butzleri in water sources. Arcobacter butzleri is often detected in surface 

waters (Table 1.4), which tends to coincide with the detection of indicators of fecal 

contamination (36, 37, 62). The bacterium is also ubiquitous in municipal and animal wastewater 

(15, 36, 63). A critical feature of wastewater treatment plants (WWTPs) is the removal of 

organisms that pose a risk to human health prior to wastewater discharge into environmental 

waters such as rivers or oceans. However, A. butzleri has been detected in treated wastewater 

effluent (37) and in treated solid waste that is spread onto fields as fertilizer (15); it is likely that 

A. butzleri enters surface waters directly via wastewater discharge or indirectly via field runoff. 

1.3.3. Arcobacter butzleri associated with plants and plant products. Arcobacter butzleri has 

been detected in vegetable wash water, and from carrots, lettuce and spinach at processing 

facilities and at retail (64-66). Outbreaks of bacterial enteritis have been associated with 

consumption of raw vegetables contaminated with bacterial pathogens such as Escherichia coli 

and C. jejuni (67). Considering that A. butzleri has been detected in treated wastewater (36, 37) 

and solid waste (15), it is plausible that contamination of vegetable crops occurs during 

fertilization or irrigation with contaminated water. Given the propensity for A. butzleri to resist 

temperate extremes (46, 47), antimicrobial agents (19, 20) and lack of nutrients (45), this 

bacterium may be able to persist during crop harvesting, washing and storage, and therefore to 

pose a risk to human beings. 
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Table 1.4. Frequency of detection of A. butzleri in 
municipal sewage and environmental waters. 

Source Samples Prevalence (%) Reference 

Canals    

Thailand 7 100 (32) 

Lakes    

Spain 29 27.6 (37) 

Rivers    

Japan 17 23.5 (32) 

Spain 29 55.2 (37) 

Seawater    

Italy 6 83.3 (62) 

Spain 101 35.6 (37) 

Sludge    

Italy 22 72.7 (15) 

Spain 27 44.4 (37) 

Sewage    

Spain 19 26.3 (37) 

 
 
1.3.4. Arcobacter butzleri in human beings. Arcobacter butzleri has been isolated from the 

stools of diarrheic people (39, 68, 69), both in population studies and in clinical cases. Although 

A. butzleri is commonly co-isolated with known enteric pathogens such as C. jejuni (10, 69-71), it 

has also been reported in diarrheic human beings in the absence of established pathogens. 

However, the majority of enteric infections are not attributed to a source due to the current 

limitations of pathogen surveillance methods. Thus, the isolation of A. butzleri from diarrheic 

human beings is insufficient to conclude disease incitation by the bacterium. Arcobacter butzleri 

has also been isolated from people with reduced immunity due to underlying diseases in the 

absence of symptoms of gastrointestinal diseases; recent work shows that a large number of 

otherwise healthy diabetic patients were positive for A. butzleri (72). The bacterium has also 

been detected in asymptomatic people (71). 

1.4. ISOLATION AND DETECTION 

1.4.1. Microbiological detection and isolation. There is no standard microbiological method 
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available for the detection, isolation, and/or identification of A. butzleri in complex matrices such 

as feces or environmental waters, although many combinations of growth conditions, culturing 

techniques, and antimicrobial agents have been proposed (Table 1.5). This may be due to the 

complex nature of A. butzleri, which is thought to be genetically diverse and to occupy many 

niches. Arcobacter butzleri is difficult to isolate in a comprehensive manner (17, 73), so culture 

conditions must therefore be general enough to allow growth of all strains of A. butzleri, yet 

selective enough to inhibit non-target growth by the endless variety of organisms that may be 

present in complex matrices such as feces. As a result, selective media cannot be relied upon to 

culture A. butzleri in a manner that is completely sensitive (i.e. able to select for minimal number 

of A. butzleri cells), specific (i.e. able to inhibit growth by all non-target taxa), and inclusive (i.e. 

able to select for growth of all strains of A. butzleri). The inability to reliably detect A. butzleri in 

complex matrices leads to underestimation of prevalence and is a serious obstacle to studying 

the epidemiology of arcobacteriosis.  

1.4.2. Molecular detection and identification. Comprehensive molecular methods to detect A. 

butzleri in complex matrices such as feces or water samples do not exist, although a number of 

novel and modified primer sets that target universal genes for multiplex and/or quantitative 

Polymerase Chain Reaction (PCR) have been proposed (74-78). Universal genes are an excellent 

PCR primer target for identification of A. butzleri deoxyribonucleic acid (DNA) extracted from 

pure culture, but as discussed in the section 1.4.1 it is not possible to comprehensively isolate 

this bacterium from complex matrices. Molecular methods must therefore be able to detect A. 

butzleri DNA extracted directly from complex sample such as feces, which by its very nature will 

contain non-target DNA that may competitively bind PCR primers. Under these conditions 

universal gene sequences may not be appropriate targets for sensitive and specific detection of 

A. butzleri DNA by PCR amplification because closely related species often differ in universal  
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Table 1.5. Proposed methods microbiological isolation of A. butzleri from complex matrices. 

Enrichment 
(AMA) 

Solid medium 
(technique)

b
 

Solid medium 
AMA 

Atmosphere
c
 Temperature 

(°C) 
Reference 

Arcobacter media Arcobacter 
media (dp)  

5-fu, amp-B, cfp, 
nvb, tmp 

Mcroaerobic 28 (6)  

Arcobacter media Arcobacter 
media (dp) 

amp-B, cfp, tcp Aerobic 30 (79) 

Arcobacter media 
(5-fu, amp-B, cfp, 
chx, nvb, tmp) 

Arcobacter 
media (dp) 

5-fu, amp-B, cfp, 
chx, nvb, tmp 

Microaerobic 28 (26) 

Brucella (cfp, chx 
pip, tmp) 

Brain-heart 
infusion 

Cefsulodin, 
irgasan, nvb 

Aerobic 25 (32) 

Brucella (cfp, chx 
pip, tmp) 

Mueller-Hinton 
(dp) 

Chx, cfp, pip, tmp Aerobic 24 (29)  

Brucella (cfp, chx 
pip, tmp) 

Mueller-Hinton 
(dp) 

Chx, cfp, pip, tmp Aerobic 25 (32) 

CAT (amp-B, cfp, 
tcp) 

Blood agar (mf) Amp-B, cfp, tcp Microaerobic 30 (49)  

CAT (amp-B, cfp, 
tcp) 

Blood agar (mf), 
mCCDA (dp) 

None Aerobic 37 (80) 

CAT (amp-B, cfp, 
tcp) 

CAT (dp) Amp-B, cfp, tcp Aerobic 37 (80) 

CAT (amp-B, cfp, 
tcp) 

Karmali (dp) None Aerobic 25, 30 (80) 

None CAT (dp) Amp-B, cfp, tcp Aerobic 37 (80) 

None Blood agar (mf), 
mCCDA (dp) 

None Aerobic 37 (80) 

None Arcobacter 
media (dp) 

5-fu, amp-B, cfp, 
chx, nvb, tmp 

Microaerobic 28 (26) 

None Arcobacter 
media (dp) 

Amp-B, cfp, tcp Aerobic 30 (79) 

a AMAs are 5-fluorouracil (5-fu), amphotericin B (amp-B), cefoperazone (cfp), cyclohexamide 
(chx), novobiocin (nvb), piperacillin (pip), teicoplanin (tcp), and trimethoprim (tmp). 
b Plating techniques used were direct plating (dp) or membrane filtration (mf). 
c Incubation of A. butzleri cultures occurred at ambient oxygen conditions (aerobic) or at reduced 
oxygen conditions (microaerobic) consisting of 5-6% O2, 6-10% CO2, 0-7% H2, and 79-85% N2. 
 
 
gene sequences by a small number of interspersed single nucleotide polymorphisms (SNPs). 

However, the relative lack of genomic data for A. butzleri makes it difficult to identify non-

universal gene sequences that are conserved within all strains of this bacterium, especially 

because members of the family Campylobacteraceae are known to be highly genetically diverse 

(81). Molecular detection methods must therefore be validated against a large number of 

genetically diverse A. butzleri strains in ordered to be considered inclusive for the direct 
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detection of this bacterium in complex matrices. 

1.5. ETIOLOGY 

1.5.1. Foodborne infection. As discussed in sections 1.3.1 and 1.3.3, A. butzleri is likely 

transmitted to human beings via ingestion of contaminated and undercooked or improperly 

treated animal and plant products. Previous studies concluded that A. butzleri heavily 

contaminates carcasses during slaughter, and others have shown that A. butzleri is ubiquitous on 

the machinery of slaughterhouses (26, 49, 52, 82). In addition, A. butzleri is often detected on 

animal meat products at retail (51-53, 55). Taken together, these findings indicate that carrier 

livestock provide initial contamination of the slaughterhouse environment, and that machinery 

is passively contaminated with A. butzleri cells within digesta/feces during the slaughter and 

meat processing process. The presence of A. butzleri on vegetable crops is likely the result of 

fecal contamination, which may occur during fertilization of plants with treated or untreated 

municipal waste or via irrigation water contaminated with fecal material. Elucidation of ’farm-to-

fork’ transmission is a focus for many foodborne pathogens (83, 84), with a primary objective of 

mitigating of these pathogens during processing (85-87). However, the ubiquity and biological 

characteristics of A. butzleri make mitigation of A. butzleri in processing plants a challenge; Houf 

et al. (50, 88) and Van Driessche et al. (47) showed that the bacterium is resistant to heat and 

chemical-based decontamination procedures, and is capable of surviving in chiller and freezer 

conditions (46, 89) suggesting that the bacterium remains viable for prolonged periods on retail 

meats and vegetables. 

1.5.2. Waterborne infection. Studies indicate that A. butzleri infection may occur by ingesting 

water contaminated with feces; A. butzleri has been associated with two disease outbreaks 

where groundwater wells were contaminated with fecal material (38, 39). Arcobacter butzleri is 

present in treated wastewater effluent that is discharged into environmental waters, and it 



11 
 

remains viable in both sterile and contaminated drinking water for extended periods of time 

(45). It is therefore possible that A. butzleri infection can occur as a result of aquatic recreational 

activities, or via improperly treated and/or contaminated drinking water. 

1.5.3. Mechanism of infection. As with other taxa within the family Campylobacteraceae, A. 

butzleri likely colonizes the intestines (i.e. in close association with the epithelium) (90, 91), but 

evidence for the site and mechanism of infection in human beings is lacking. Arcobacter butzleri 

has genes that are homologous with those coding for factors associated with survival, adhesion,  

and invasion of host epithelial cells in known pathogens such as C. jejuni (Table 1.6). In addition, 

A. butzleri cells have been shown to adhere to and invade human enterocytes in vitro (92, 93), 

and there is evidence that A. butzleri induces epithelial barrier dysfunction at tight junction 

proteins (94). 

1.6. GENOMICS 

1.6.1. Data availability. The first A. butzleri draft genome is approximately 2.3 Mbp in length, 

with approximately 2300 coding sequences (56, 95, 96). At present, comprehensive whole 

genome sequence data for A. butzleri is lacking. Select coding regions such as the 16S ribosomal 

ribonucleic acid (rRNA) and 23S rRNA genes have been characterized (76, 78), but whole genome 

sequence data are only available for four strains (56, 95-97). In addition, few other Arcobacter 

species have been sequenced, and a lack of A. butzleri gene expression studies prevents 

traditional gene identification. As a result, genomic analysis of A. butzleri relies heavily on 

comparison to species such as C. jejuni, which has been better documented and is closely related 

by DNA hybridization (1) and 16S rRNA (56) sequence analysis. 

1.6.2 Genome annotation and variation. Similar to other Campylobacteraceae, A. butzleri 

strains are genetically diverse in terms of variability within conserved genes and variable 

presence/absence of accessory genes (16, 18, 98-100). Variation within conserved genes may be  



12 
 

Table 1.6. Putative A. butzleri virulence genes. 
Gene Putative protein group Putative protein activity Reference 

CadF Fibronectin binding Adhesion (101) 

CiaB Secretion protein Invasion (102) 

Cj1349 Fibronectin binding Adhesion (93) 

IrgA Iron acquisition Survival, metabolism, competitive exclusion (103) 

HecA Filamentous 
hemagglutininin 

Adhesion (104) 

HecB Hemolysin activation Damage erythrocytes (56) 

MviN Peptidoglycan biosynthesis Cell replication (105) 

PldA Phospholipase Damage erythrocytes, metabolism, competitive 
exclusion 

(106) 

TlyA Hemolysin Damage erythrocytes, survival within macrophages (107) 

IroE Iron acquisition Survival, metabolism, competitive exclusion (103) 

 
 
explained by the presence of a putative mutator bacteriophage within the A. butzleri genome 

(56, 108), especially because most Campylobacteraceae lack functional mismatch repair systems 

(56). The variable presence/absence of A. butzleri accessory genes has been attributed to the 

promiscuous nature of Campylobacteraceae (109, 110). This ability to readily integrate foreign 

DNA may also account for the accumulation of A. butzleri genes homologous to survival and 

growth factors in free-living taxa outside of Campylobacteraceae (56, 111). However the rate of 

promiscuity is strain-dependent for C. jejuni (110, 112), so a similar phenomenon may exist for A. 

butzleri. The existence of both promiscuous and discriminatory strains of A. butzleri would 

suggest that each survival strategy has competitive advantages and fitness costs. It is possible 

that generalist A. butzleri strains adapt to inhospitable environments by maintaining accessory 

survival factors or obtaining them from native taxa, which would explain increased adhesion 

rates of A. butzleri strains to intraperitoneal tissues in mice after repeat passage (113). In 

comparison, specialist A. butzleri strains adapted to a specific host species would not be exposed 

to the same variety of selective stressors. 

1.7. PATHOGENICITY 

1.7.1. Ascertaining pathogenicity. A pathogen is most conveniently defined as an infectious 
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agent if it causes negative change in biological function (i.e. disease). In the 1890’s, Robert Koch 

presented four criteria to ascertain the pathogenicity of microorganisms (114). First, the 

microorganism should be present in individuals suffering from disease (i.e. those with symptoms 

of illness) and absent from healthy individuals (i.e. asymptomatic individuals). Second, the 

microorganism should be isolated from the diseased individuals. Third, the isolated 

microorganism should induce the expected disease when introduced into a previously healthy 

individual. Finally, the introduced microorganism should be isolated from the individual 

inoculated with the pathogen. Although Koch’s postulates provide a valuable starting point for 

ascertaining whether a microorganism incites disease, they do not hold up to the modern 

understanding of bacterial pathogenicity and virulence (115). Advances in the detection and 

sequencing of genetic material have led to the identification of an increasing number of 

unequivocal pathogens that do not adhere to one or more of Koch’s postulates. As a result, 

Koch’s postulates have been amended to reflect the complex relationship that exists between a 

pathogen and its host in time and space; that is, pathogenicity must be defined within the 

context of both scientific inference of disease causation as presented by Austin Bradford Hill in 

1965 (116), and of the sum of host-, pathogen-, and environment-specific factors that influence 

the manifestation of disease (117).  

 In 1996, Fredericks and Relman advocated a new set of guidelines to define disease 

causation (115). They proposed the following postulates, for which the wording was designed to 

avoid absolute statements regarding forms of proof and strict adherence to every postulate: (i) 

nucleic acid sequences belonging to a putative pathogen should be present (preferentially in 

diseased organs or anatomic sites) in most cases of an infectious disease; (ii) fewer copies of 

nucleic acid sequences belonging to a putative pathogen should occur in hosts or tissues free of 

disease; (iii) with resolution of disease, the number of pathogen-associated nucleic acid 
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sequences should decrease; (iv) a causal relationship is more likely when pathogen-associated 

nucleic acid sequence copy number correlates with onset and/or severity of disease; (v) the 

nucleic acid sequences should be consistent with the biological characteristics of that group of 

organisms; (vi) at the cellular level, nucleic acid sequences should be correlated to areas of 

tissue pathology; and (vii) sequence-based forms of evidence for causation should be 

reproducible .  

1.7.2. Arcobacter butzleri as a potential pathogen. The occurrence of A. butzleri in healthy 

people (72) suggests that this bacterium is not a pathogen. However, incitation of disease 

requires an infectious agent and a susceptible host in the same time and space (118, 119). Due 

to the complexity of host immune systems and the protective nature of the microbiota (e.g. 

colonization resistance), it is possible that A. butzleri is able to survive within healthy individuals, 

and only incites disease under certain environmental conditions (e.g. compromised immune 

system). Another explanation for the presence of A. butzleri in healthy individuals is that A. 

butzleri pathogenicity is strain-specific. By its very nature, an enteric pathogen must be able to 

survive in the host intestine, adhere to and/or invade host epithelial tissues, and incite disease 

as a result of cytotoxicity and/or interference with the host immune response (118, 119). 

Although little is known about the mechanisms of A. butzleri infection, the presence/absence of 

putative virulence factors has been shown to vary by A. butzleri strain (93, 111, 120), so it is 

likely that only certain A. butzleri strains possess the full complement of genes necessary to 

incite disease in its host.  

1.7.3. Animal models of infection. Due to the ethical constraints of testing potential pathogens 

on human beings, animal models are often applied to study the interaction between an 

infectious agent and its host. Appropriate animal models of infection can be used to study the 

interactions that occur between a pathogenic bacterium and its host during infection. Wesley et 
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al. (121) showed that A. butzleri colonize neonatal pigs, but the experimental sample size was 

small and severe gross pathologic changes were not observed. Wesley and Baetz (122) tested 

strain-dependent A. butzleri pathogenicity in chicken and turkey poults; A. butzleri strains 

colonized inbred poults, and in some cases led to mortality. Most recently, IL-10-/- mice have 

been proposed as a useful model of infection because the subsequent loss of inflammation 

regulation facilitates the study of C. jejuni colonization and pathogenicity (123, 124). Mice are a 

common model for studying bacterial pathogenicity in human beings because human and 

murine immune systems are similar (125). Golz et al. (126) tested the pathogenicity of two A. 

butzleri strains, isolated from a human patient and from chicken meat, against IL-10-/- mice that 

had been subjected to broad-spectrum antibiotics (e.g. to create a dysbiosis in the intestinal 

microbiota). Arcobacter butzleri was able to colonize the antibiotic-modulated microbiome of IL-

10-/- mice at population densities that remained stable throughout the sample period, but no 

histopathological change or overt symptoms of illness (e.g. diarrhea, weight loss) were noted 

(126). Although intestinal cell apoptosis and compensatory cell proliferation accompanied by 

upregulation of some pro-inflammatory and inflammation-mediating cytokine production (e.g. 

TNF, IFN-γ, IL-6, and IL-12p70) was observed in mice inoculated with A. butzleri, an increase in 

inflammation-mediating cytokine FOXP3+ was also noted and most pro-inflammatory cytokines 

decreased to control levels by day 6 (126). In a companion article (127), the authors reported 

further strain-dependent upregulation of IL-17A and IL-18, as well as downregulation of 

production of protective Mucin-2 proteins. These studies (126, 127) provide support that A. 

butzleri induces strain-dependent immune response in mice, but the reported lack of 

histopathological change and/or overt symptoms of illness in this immunocompromised animal 

model require further study. 
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1.8. MOLECULAR EPIDEMIOLOGY, POPULATION STRUCTURE, AND SPECIES SUBTYPING 

1.8.1. Molecular epidemiology. As the interplay between A. butzleri and human illness is poorly 

understood, it is useful to employ an epidemiological approach to elucidate its pathogenicity and 

virulence. Epidemiology is the study of disease in time and space, and more specifically the 

interaction between a pathogen and human beings at the population level. Thus, molecular 

epidemiology is the application of DNA-based methods to study the interaction between an 

infectious agent and its host in time and space. The goal of molecular epidemiology is to 

elucidate the risk that a pathogen poses to the health of a host species; it entails the 

identification of potential hosts, reservoirs, environmental factors and transmission pathways by 

which a pathogen comes into contact with people. In practice, molecular epidemiology is used to 

attribute human illness to a source of contact with an infectious organism in order to facilitate 

the development of mitigation strategies. As discussed previously, A. butzleri is ubiquitous in 

livestock (22, 48, 52) and in surface waters contaminated with fecal material (36, 37). It is likely 

that confined feeding operations (CFOs) function as an important reservoir of A. butzleri (58, 

128), and its ability to survive for extended periods of time in water containing organic matter 

(45, 47) suggests that contaminated environmental waters may act as another reservoir for this 

bacterium. 

1.8.2. Population structure. Individuals within a species that possess genotypic variations can be 

divided into subspecies groups (i.e. strains) based on those variations, which is useful because 

pathogenicity can be strain-dependent. That is, only certain strains of a species possess the 

complement of functional genomic machinery to allow for survival, infection, and disease 

incitation in a host species (129, 130). Previous work has indicated that the same bacterial strain 

can be non-virulent in one host species, yet highly virulent in another host species. For example, 

E. coli O157:H7 naturally colonizes asymptomatic ruminants, but it is associated with 
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hemorrhagic diarrhea in infected human beings (131). Thus, the ability to differentiate strains 

within a species is critical to identify and track those that may be associated with disease.  

1.8.3. Species subtyping. Species subtyping is the differentiation of clonal isolates from non-

clonal isolates based on shared characteristics (132) towards the study of transmission, survival, 

colonization and/or incitation of disease in a host species by pathogenic subtypes (133, 134). 

Genotyping is the subtyping of individuals within a species by comparative analysis of loci within 

the genome (132). It is noteworthy that genotyping methods tend to be more discriminatory and 

reliable than phenotype-based methods (112, 135). Whole genome sequencing provides the 

greatest possible resolution for discriminating isolates based on genotype, because every 

nucleotide base pair of each isolate can be compared. However, whole genome comparison is 

too costly and analyses of whole genome data too bioinformatically intensive at present to 

justify its use to genotype the large number of individuals that are required for epidemiological 

comparison. Sequencing, assembling and bioinformatics analysis of whole genomes requires 

specialized and dedicated machinery and computers (136). Alternatively, whole genome analysis 

can be applied to develop reproducible genotyping techniques that mimic whole genome 

comparison at a resolution that balances cost and discriminatory power (137). 

Multilocus sequence typing (MLST) is the current gold standard for genotyping A. 

butzleri; a portion of six or seven highly conserved housekeeping genes (i.e. core genes) are 

sequenced, specific alleles are determined based on the SNPs within each gene sequence, and a 

subtype is assigned based on the allelic pattern (138, 139). However, MLST is time-consuming 

and it requires specialized equipment (e.g. to ensure the accuracy of SNPs, genes must be 

sequenced a minimum of two times using a sequencing technology with low error rates), which 

is problematic because epidemiological studies often require the characterization of a large 

number of isolates (140). In order to elucidate the pathogenicity of A. butzleri, an ideal 



18 
 

genotyping technique should provide highly discriminatory and transferable identification of 

strains at a cost and throughput that is accessible to most research groups. Recently Taboada et 

al. (141) developed a comparative genomic fingerprinting (CGF) assay to type C. jejuni isolates 

based on variably present/absent regions of the bacterial genome (i.e. accessory genes). As a 

PCR-based method, CGF is more easily deployed by researchers lacking the specialized 

equipment and funding required for sequence-based methods such as MLST. Moreover, the CGF 

assay may provide greater discrimination between closely related strains (142), which is critical 

for surveillance of genetically diverse species such as C. jejuni (143) and A. butzleri (138). 

1.9. SOUTHWESTERN ALBERTA AS A MODEL AGROECOSYSTEM 

Southwestern Alberta, Canada is a large geographical area that possesses a high rate of 

enteritis among its human inhabitants (144, 145), but the majority of cases of enteritis are not 

linked to an etiological agent and A. butzleri is not examined as a pathogen (e.g. VITEK® 

Automated Microbial Identification System used at the Chinook Regional Hospital (CRH) does 

not include Arcobacter species within its database of pathogens). Reasons for the high rate of 

enteric disease in this region are currently unknown, but it may be linked to higher densities of 

CFOs, higher rates of contact with livestock, and the potential for transfer of fecal material from 

CFOs to environmental waters (Figure 1.2). Southwestern Alberta is an ideal model 

agroecosystem for the study of waterborne pathogens because it consists of a single primary 

water basin, the Oldman River Watershed, which begins relatively pristine in the Rocky 

Mountains and becomes progressively contaminated with biological agents as it flows eastwards 

and encounters increasingly dense human populations and agricultural activity (146, 147). 

Animal feces from pastures and CFOs enters the Oldman River and its tributaries directly or as a 

result of runoff from rainwater and crop irrigation (148, 149). In addition, waste produced at 

livestock slaughterhouses and processing facilities contributes to municipal WWTPs, the effluent  
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Figure 1.2. Oldman River basin in Southwestern Alberta (SWA) showing the location of confined 
feeding operations. Source: image is modified from Figure 7.4 in the Oldman River State of the 

Watershed Report 2010 (146) with permission from the authors. 
 
 

of which flows into the Oldman River (146, 150). 

1.10. KNOWLEDGE GAPS 

1.10.1. Colonization versus infection. Elucidation of the pathogenicity of A. butzleri is hindered 

by a lack of understanding of its ecology in people, both diarrheic and non-diarrheic. As 

discussed in section 1.7.1, a pathogen should be detected more frequently, or in greater 

densities in diseased individuals. Although experimental evidence to prove incitation of disease 

in healthy individuals by A. butzleri is not currently possible due to the lack of appropriate animal 
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models, it is possible to compare the frequency of detection and density of A. butzleri in cohorts 

of diseased and healthy human cohorts. However, few previous studies have compared the 

frequency of detection of A. butzleri in diseased and healthy cohorts, and no studies have 

quantified the densities of A. butzleri. This is due in part to the difficulty of obtaining cohorts of 

diseased and healthy samples (i.e. stools) in the same time and space, and also to the lack of 

standardized tools for comprehensive detection and quantitation of A. butzleri in complex 

matrices such as feces. 

1.10.2. Strain-based pathogenicity. As discussed in section 1.7.2, the presence of A. butzleri in 

asymptomatic people may indicate that some strains of this bacterium are not pathogenic. 

Although A. butzleri isolated from diarrheic human beings may be the best candidate strains for 

testing strain-specific pathogenicity, experimental testing of strain pathogenicity is not possible 

due to the lack of an appropriate animal model of infection. Instead, A. butzleri isolated from 

diseased and healthy people can be genotyped, which may facilitate identification of candidate 

pathogenic strains based on their presence in diseased individuals and absence in healthy 

individuals. However, no studies have compared the genotypes of A. butzleri isolated from 

diseased and healthy human cohorts, which is likely due to a lack of access to appropriate 

sample groups and/or genotyping methods. 

1.10.3. Population structure. Most cases of A. butzleri infection likely result from the ingestion 

of contaminated and improperly treated food or water, and less commonly from direct contact 

with infected livestock, people, or pets (17). However, the ubiquity of this bacterium in many 

possible host species and environmental reservoirs, combined with the number of potential 

mechanisms of infection may hinder identification of the original source of contamination. A 

number of genotyping techniques have been applied for surveillance of A. butzleri, and while the 

majority of these studies identified high genotype diversity, they failed to draw further 
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conclusions about A. butzleri population structure in any of the sample sets (17, 99, 100, 151). It 

is plausible that the limited throughput of current genotyping methods has hindered the 

elucidation of A. butzleri population structure because its highly diversity necessitates that a 

large number of isolates be genotyped to achieve comprehensive comparison. 

1.11. STUDY GOAL AND HYPOTHESES 

The overarching goal of my thesis research was to develop and utilize novel molecular 

tools to assess whether A. butzleri is an enteric pathogen of human beings. The hypotheses 

erected were: (1) A. butzleri is detected more frequently, and in greater densities in diarrheic 

people than in non-diarrheic people; (2) A. butzleri pathogenicity is strain-specific, and that non-

pathogenic A. butzleri strains are able to colonize human beings as a commensal bacterium; and 

(3) A. butzleri infection of people in SWA is part of a complex web of transmission pathways 

between human beings and their environment (e.g. surface waters, ready-to-eat vegetables, 

animals and animal products). 

1.12. OBJECTIVES 

To test the erected hypotheses, the following three overarching and interrelated project 

objectives were established: (i) develop a comprehensive PCR method for detection and 

quantitation of A. butzleri in complex matrices, and apply this method to diarrheic and non-

diarrheic human stools from SWA; (ii) develop and apply a CGF assay to subtype and compare A. 

butzleri isolates from diarrheic and non-diarrheic human beings; and (iii) apply my quantitative 

detection method and my CGF assay to characterize the population structure of A. butzleri in 

SWA. 

1.13. INTRODUCTION TO CHAPTERS  

The research reported herein has resulted in the publication of two peer-reviewed 

scientific journal articles, and the submission of two additional manuscripts for publication. 
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These manuscripts serve as the body of the thesis as follows: (i) whole core genome sequence 

comparison was employed to develop and validate comprehensive PCR primers for direct 

quantitative detection of A. butzleri in complex matrices, and the method was applied to 

diarrheic and non-diarrheic stools from people living in SWA (chapter 2); (ii) accessory genome 

sequence comparison was applied to develop a CGF method for the high-throughput and 

discriminatory genotyping of A. butzleri isolates (chapter 3); the developed quantitative 

detection method and CGF assay were used to determine the efficacy of wastewater treatment 

on A. butzleri density and strain diversity, and its relation to the A. butzleri population structure 

in human beings (chapter 4); and the developed CGF assay was applied to ascertain the 

prevalence and population structure of A. butzleri in environmental waters as compared to that 

of municipal wastewater discharge into the Oldman River in SWA (chapter 5). Chapter 6 presents 

an overview of the results and conclusions drawn from chapters 2-5, and proposes topics for 

future research. 
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CHAPTER TWO 

Comparative detection and quantification of Arcobacter butzleri in stools from diarrheic and 

non-diarrheic human beings in Southwestern Alberta, Canada1 

2.1. ABSTRACT 

Arcobacter butzleri has been linked to enteric disease in human beings, but its 

pathogenicity and epidemiology remain poorly understood. The lack of suitable detection 

methods is a major limitation. Using comparative genome analysis, PCR primers for direct 

detection and quantification of A. butzleri DNA in microbiologically-complex matrices were 

developed. These primers, along with existing molecular and culture-based methods, were used 

to detect A. butzleri and enteric pathogens in stools of diarrheic and non-diarrheic people 

(n=1596) living in SWA from May to November 2008. In addition, quantitative PCR was used to 

compare A. butzleri densities in diarrheic and non-diarrheic stools. Arcobacter butzleri was 

detected more often by PCR (59.6%) than by isolation methods (0.8%). Comparison by PCR-

based detection found no difference in prevalence of A. butzleri between diarrheic (56.7%) and 

non-diarrheic (45.5%) individuals. Rates of detection in diarrheic stools peaked in June (71.1%) 

and October (68.7%), but there was no statistically significant correlation between the presence 

of A. butzleri and patient age, sex, or place of habitation. Densities of A. butzleri DNA in diarrheic 

stools (1.6 log10
 ± 0.59 copies mg-1) were higher (P=0.007) than in non-diarrheic stools (1.3 log10

 ± 

0.63 copies mg-1). Of the 892 diarrheic samples that were positive for A. butzleri, 74.1% were not 

positive for other bacterial and/or viral pathogens. The current study supports previous work 

suggesting that A. butzleri pathogenicity is strain-specific, and/or dependent on other factors 

such as the level of host resistance. 

                                                           
1
 A version of this chapter was published as: Webb AL, Boras VF, Kruczkiewicz P, Selinger LB, Taboada EN, 

Inglis GD. 2016. Comparative detection and quantification of Arcobacter butzleri in stools from diarrheic 
and non-diarrheic human beings in southwestern Alberta, Canada. Journal of Clinical Microbiology 54:1-7. 
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2.2. INTRODUCTION 

Nearly 1.7 billion cases of diarrheal disease are reported globally each year (152), 

although this is an underestimation of true rates of enteritis as many afflicted individuals do not 

have access to or choose not to pursue medical assistance (153). For those seeking diagnosis, 

the majority of cases of acute enteritis are not linked to an identified etiological agent (154, 

155). Ascertaining the etiology of enteric disease is essential for the development of effective 

therapeutics and preventative mitigation strategies. Direct contact with animals and ingestion of 

untreated water and/or undercooked animal products are recognized risk factors for acute 

enteritis (154), which suggests that a significant number of cases of enteritis are incited by 

unidentified biotic pathogens of human or zoonotic origin. Critical components of the 

epidemiology of arcobacteriosis and the population structure of A. butzleri have yet to be 

resolved, in large part because effective culture and/or molecular-based detection methods for 

this bacterium have yet to be developed. 

Arcobacter butzleri is ubiquitous in the environment (e.g. river water contaminated with 

human and/or non-human animal feces) (17, 81, 156). That the bacterium is detected in such a 

variety of sources suggests that pathways for transmission among animals and environmental 

sources exist, but accurate source tracking of A. butzleri is hampered by a lack of standard 

detection and isolation methods. Most methods for the isolation of A. butzleri from 

microbiologically-complex matrices rely on selective enrichments and/or antibiotics to inhibit 

the growth of non-target microorganisms (40, 157). In addition, the incubation temperature and 

atmosphere utilized for isolation have been inconsistent; temperatures vary from 25oC (10) to 

37oC (16), and atmospheres range from aerobic (40, 72) to microaerobic (5-6% O2, 6-10% CO2, 0-

7% H2, and 79-85% N2) and anaerobic (10, 59, 158, 159). Accumulated evidence indicates that no 

single medium, temperature, or atmosphere will isolate all strains of A. butzleri. For example, 
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Merga et al. (73) recently compared five media and plating techniques and found that the most 

effective strategy only detected A. butzleri in 70.7% of positive samples. 

A number of researchers have utilized primers to detect A. butzleri in non-selective 

enrichment (74, 75). However, no primers have been specifically designed to detect and quantify 

A. butzleri DNA extracted directly from complex matrices without an intermediate enrichment 

step. Primer development for the detection of microorganisms can be divided into two broad 

steps: (i) the in silico design of primers targeting taxon-specific gene sequences ascertained from 

comparative analysis of genome data; and (ii) the in vitro validation of primer sensitivity (i.e. the 

minimum detectable amount of target DNA), specificity (i.e. the lack of detection of non-target 

taxa), and inclusivity (i.e. the detection of all subtypes within a target taxon). During primer 

design, potential gene targets must be identified and compared to a sequence database to 

identify marker sites that have conserved nucleotide length, composition, and presence within 

the target species while being absent from non-target species. As genomic databases cannot 

contain the entirety of genetic diversity of bacteria, and data are particularly lacking for the 

genetically diverse A. butzleri, developed primers must also be carefully evaluated to ensure 

sensitivity, specificity, and inclusivity. This is especially true for development of primers to detect 

DNA in complex matrices such as feces. 

I hypothesized that A. butzleri is a significant enteric pathogen that is underdiagnosed 

because of the limitations of culture-based detection. Thus, A. butzleri DNA will be more 

prevalent in stools from diarrheic than from non-diarrheic individuals (i.e. cohorts in the same 

space and time). Furthermore, A. butzleri loads will be higher in diarrheic stools, and the 

bacterium will be present in diarrheic stools in the absence of other recognized bacterial and 

viral pathogens. To test these hypotheses, the following objectives were established: (i) use 

comparative whole genome sequence analysis to select unique, highly conserved, non-variable 
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loci to develop direct detection and quantification primers for A. butzleri; (ii) evaluate the 

sensitivity, specificity, and inclusivity of the developed primers; (iii) contrast isolation and PCR 

detection frequency of A. butzleri in stools of diarrheic and non-diarrheic people (n≈1600) living 

in SWA as a model health region; (iv) use quantitative PCR to contrast A. butzleri DNA load in 

stools from diarrheic and non-diarrheic people; and (v) determine the frequency to which A. 

butzleri occurs with other recognized bacterial and viral pathogens. 

2.3. MATERIALS AND METHODS 

2.3.1. Primer design and in silico evaluation. The online tool Rapid Annotation Using Subsystem 

Technology (RAST) (160) was used to identify open reading frames (ORFs) for genomic 

sequences from 12 A. butzleri strains available in the National Center for Biotechnology 

Information (NCBI) database (PRJNA233527, PRJNA58557, PRJNA158699, PRJNA61483, 

PRJNA200766), including eight sequenced by my research group (81), along with whole genomes 

from ten additional A. butzleri strains (PRJNA309088) provided by Catherine Carrillo (Canadian 

Food Inspection Agency). The Basic Local Alignment Search Tool (BLAST) (161) and a program 

developed in-house (Concatenator) were used to compare ORFs between A. butzleri strains; 

those that were redundant or missing from any strains, or that varied in length or sequence 

were removed from consideration. The RAST (160) and BLAST (161) tools were also used to 

compare the A. butzleri genomic sequences to those of four Arcobacter skirrowii (PRJNA307998) 

and six Arcobacter cryaerophilus (PRJNA307600) strains that were sequenced as part of the 

current project; any A. butzleri ORFs that were detected in A. skirrowii or A. cryaerophilus were 

removed from consideration. The program Geneious (version 5.3.6, Biomatters Ltd, Auckland 

NZ) was used to concatenate and align the remaining sequences, and to identify sites for PCR 

primer design. Primers for endpoint and qPCR were designed for optimal use with HotStar Taq 

Plus DNA polymerase (Qiagen Inc., Toronto ON) and QuantiTect SYBR® Green (Qiagen Inc.). 
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2.3.2. Primer evaluation. 

(i) Primer specificity. Selected PCR primers were tested for specificity against genomic DNA from 

22 type strain taxa within the order Campylobacterales, including Arcobacter spp. (i.e. A. 

butzleri, A. cryaerophilus, A. skirrowii), Campylobacter spp. (i.e. C. coli, C. concisus, C. curvus, C. 

fetus subspecies fetus, C. hominis, C. hyointestinalis subspecies hyointestinalis, C. insulaenigrae, 

C. jejuni, C. jejuni subspecies doylei, C. lanienae, C. lari, C. mucosalis, C. showae, C. sputorum 

subspecies sputorum, and C. upsaliensis), and Helicobacter spp. (i.e. H. canadensis, H. pullorum, 

H. pylori). Amplification reactions consisted of 2.0 µl 10X PCR Buffer containing 15 mM MgCl2 

(Qiagen Inc.), 2.0 µl UltraPure BSA (1.0 mg ml-1; Ambion, Life Technologies Inc., Burlington ON), 

0.4 µl dNTP mix (10 mM; Bio Basic Canada Inc., Markham, ON), 0.1 µl HotStar Taq Plus DNA 

Polymerase (5.0 U µl-1; Qiagen Inc.), 1.0 µl ddAbutzF (10 µM; Integrated DNA Technologies, 

Coralville, IA), 1.0 µl ddAbutzR (10 µM; Integrated DNA Technologies), 2.0 µl DNA template, and 

11.5 µl Nuclease-Free Water (Qiagen Inc.). The PCR reaction consisted of activation at 95°C for 

5.0 m, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 65°C for 90 s and 

elongation at 72°C for 60 s, followed by a final elongation at 72°C for 5 m and storage at 4°C. 

Amplicons were visualized on a QIAxcel capillary electrophoresis machine (Qiagen Inc.) using the 

AM320 separation and resolution method, with 15-3000 bp alignment marker and 100-2500 bp 

size marker.  

(ii) Primer inclusivity. Primers were evaluated for their ability to amplify DNA from 130 A. 

butzleri isolates representing 92 different subtypes. The PCR reagents and conditions used for 

primer evaluation were the same as described for primer specificity. The identity of isolates was 

confirmed by sequencing the near complete 16S rRNA gene (162). Isolate subtypes were 

identified using  a CGF40 method specific to A. butzleri (81). 

(iii) Primer sensitivity. To determine the limit of detection of developed primers, DNA extracted 
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from porcine feces seeded with A. butzleri was tested; pigs were selected as a monogastric 

model for human beings. Multiple fresh samples of feces were collected from three pigs 

obtained from the University of Alberta Swine Unit (Edmonton, AB), and were stored at -20oC. 

No antibiotics were administered to the pigs. To produce cells for incorporation into feces, A. 

butzleri ATCC49616 was cultured in triplicate on Columbia Agar (DF0944-17-0, Difco) amended 

with 10% sheep blood (CBA) in microaerobic atmosphere (i.e. 5% O2, 3% H2, 10% CO2, and 82% 

N2) at 37°C for 48 h. Biomass from the three cultures was removed from the surface of the 

medium and combined in Columbia Broth (CB). The absorbance (A600) was adjusted to 0.5, which 

contained approximately 2.0 x 109 cells ml-1. The suspension was diluted with CB in a ten-fold 

dilution series. Feces were thawed and 1.0 ml from each dilution of A. butzleri cells was 

thoroughly mixed into 10 g of the feces. The control treatment consisted of 10 g of feces mixed 

with 1.0 ml of sterile CB. Three 0.2 ± 0.02 g subsamples were removed from the seeded feces 

and stored at -20°C for later DNA extraction. To enumerate A. butzleri cells by culture, 1.0 g of 

the seeded feces was suspended in 9.0 ml of CB and diluted in a ten-fold dilution series, and 100 

µl of each dilution was spread on CBA in duplicate, cultures were incubated in a microaerobic 

atmosphere (i.e. 5% O2, 3% H2, 10% CO2, and 82% N2) at 37°C, and colonies were enumerated at 

the dilution yielding 30 to 300 CFU after 48 and 96 h. The experiment was conducted two times 

on separate occasions. 

 DNA was extracted from the frozen feces subsamples using a QIAamp DNA Stool Mini Kit 

(Qiagen Inc.) according to the manufacturer’s specifications for pathogen detection. As an 

internal amplification control (IAC), 2 µl of DNA (1 x 106 copies µl-1) from a synthesized gene 

designed using the Pyrococcus yayanosii genome (163) was added to the feces subsamples prior 

to extraction; this bacterium is an obligate piezophilic hyperthermophilic archaeon isolated from 

deep-sea hydrothermal sites (164). The IAC targets a 268 bp sequence in a putative 
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carbohydrate kinase (PfkB family; AEH23732.1) using the primers IAC-f (3’-

GGTATGCTAGCCCCGCTTAGGGT-5’) and IAC-r (3’-TGCTCCAGAAAAGATGTCCAGCGG-5’, and was 

synthesized by Integrated DNA Technologies. The presence and quantities of the IAC was 

confirmed by real-time PCR amplification on a Stratagene Mx3005P qPCR System (Agilent 

Technologies, Santa Clara CA) using the following reagents: 10 µl 2X Quantitect SYBR Green 

(Qiagen Inc.), 2.0 µl UltraPure BSA (1.0 mg ml-1; Ambion), 1.0 µl primer IAC-f (10 µM; Integrated 

DNA Technologies), 1.0 µl primer IAC-r (10 µM; Integrated DNA Technologies), 2.0 µl DNA 

template, and 4.0 µl Nuclease-Free Water (Qiagen Inc.). Samples were quantified in duplicate 

reactions. The amplification conditions were one cycle at 95°C for 15 m, followed by 40 cycles of 

15 s at 94°C, 30 s at 64°C, and 30 s at 72°C for data acquisition. Direct endpoint detection of A. 

butzleri DNA was carried out as described above for primer specificity. Quantitative PCR 

detection of A. butzleri was carried out on a Stratagene Mx3005P qPCR System (Agilent 

Technologies) using the following reagents: 10 µl 2X Quantitect SYBR Green mastermix (Qiagen 

Inc.), 2.0 µl UltraPure BSA (1.0 mg ml-1; Ambion), 1.0 µl ddAbutzF (10 µM; Integrated DNA 

Technologies), 1.0 µl ddAbutzR (10 µM; Integrated DNA Technologies), 2.0 µl DNA template, and 

4.0 µl Nuclease-Free Water (Qiagen Inc.). Samples were quantified in duplicate reactions. The 

amplification conditions were one cycle at 95°C for 15 m, followed by 40 cycles of 30 s at 94°C, 

90 s at 65°C, and 60 s at 72°C for data acquisition. At the end of amplification, melt curve 

analysis was conducted. The quantitative PCR data were analysed using MxPro (Version 4.10, 

Agilent Technologies Inc.). 

2.3.3. Detection and quantification of A. butzleri in diarrheic and non-diarrheic stools. 

(i) Ethics approval. Scientific and ethics approval to isolate, detect, and quantify A. butzleri from 

diarrheic and non-diarrheic human beings (i.e. healthy volunteers) was obtained from the 

Regional Ethics Committee of the former Chinook Health Region (CHR) and from the University 
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of Lethbridge Human Subject Research Committee. 

(ii) Acquisition of stool samples. A total of 1506 stool samples were obtained from diarrheic 

individuals submitting samples to the CRH between May 1 and November 25, 2008. Stool 

samples from diarrheic people were suspended in Cary-Blair medium (165) for transportation to 

the CRH in Lethbridge, AB. In addition, stool samples were obtained from 90 non-diarrheic 

volunteers from October 27, 2008 to November 12, 2008. Samples were kept at 4°C for no 

longer than 24 h. Information provided with the samples included stool collection date, along 

with the age, sex, and place of habitation (i.e. postal code) of the submitting individual. Using 

the same method as described for seeded porcine feces, 0.2 ± 0.02 g subsamples were taken 

from stools and stored at -20°C for later DNA extraction. 

(iii) Isolation of A. butzleri. Media for isolation of A. butzleri were CBA, Karmali Agar (CM0935, 

Oxoid) with Karmali supplement (KSA; SR0167, Oxoid), Karmali Agar (CM0935, Oxoid) with 

Bolton supplement (KBA; SR0183E, Oxoid), Arcobacter Selection and Isolation Agar (ASIA) (166), 

and Johnson and Murano Agar (JMA) (167). The isolation method varied by medium: membrane 

filtration (158) was used for CBA; direct plating of 100 µl of the processed sample was used for 

KS, KB, and ASIA; and Bolton Broth (CM0983, Oxoid) with Bolton supplement (BBS; SR0183E, 

Oxoid) was used for enrichment culture with subsequent isolation on KS, KB, ASIA, and JMA. The 

CBA cultures were incubated at 37°C for up to ten days, and all other agar media were incubated 

at both 30°C and 37°C for 72 h. All cultures were maintained in a high hydrogen atmosphere (i.e. 

5% O2, 30% H2, 10% CO2, and 55% N2). For enrichment cultures, 25 µl of each sample was added 

to 2.0 ml of BBS and incubated at both 30°C and 37°C. At 24 and 48 h, 10 µl of the enrichment 

was streaked on the KS, KB, ASIA, and JMA. 

 Two colonies per morphology per medium per sample were collected and streaked for 

purity on CBA, and examined microscopically for cell size, shape, and motility. Genomic DNA was 
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extracted from isolates using the DNeasy Blood and Tissue Kit (Qiagen Inc.) according to 

manufacturer specifications and an automated system (Model 740, Autogen, Holliston, MA). 

Arcobacter butzleri DNA was identified by taxon-specific PCR using the same reagents and 

conditions as specified for primer specificity, and sequencing of the near complete 16S rRNA 

gene (162). All recovered A. butzleri isolates were subtyped using CGF40 (81).  

(iv) Extraction of total DNA from feces and direct detection of A. butzleri DNA. The IAC was 

added to all stool subsamples, and genomic DNA was extracted using the QIAamp DNA Stool 

Mini Kit (Qiagen Inc.). Quantitative PCR for the IAC and endpoint PCR for A. butzleri were 

conducted as described for seeded porcine feces. Amplifications were scored as positive or 

negative, and only samples that were positive for the IAC in the absence of A. butzleri 

amplification were considered to be true negatives.  

(v) Specificity of primers in stools by sequencing of direct PCR amplicons. To confirm the 

specificity of amplification, 90 arbitrarily-selected amplicons were sequenced. In order generate 

enough product for sequence analysis, the A. butzleri PCR reaction volume was doubled to 40 µl, 

containing 4.0 µl 10X PCR Buffer with 15 mM MgCl2 (Qiagen Inc.), 4.0 µl UltraPure BSA (1.0 mg 

ml-1; Ambion), 0.8 µl dNTP mix (10 mM; Bio Basic), 0.2 µl HotStar Taq Plus (5.0 U µl-1; Qiagen 

Inc.), 2.0 µl ddAbutzF (10 µM; Integrated DNA Technologies), 2.0 µl ddAbutzR (10 µM; Integrated 

DNA Technologies), 4.0 µl DNA template, and 23 µl Nuclease-Free Water (Qiagen Inc.). The PCR 

reaction mix was activated at 95°C for 5 m, followed by 35 cycles of denaturation at 94°C for 30 

s, annealing at 65°C for 60 s, and elongation at 72°C for 30 s, a final elongation at 72°C for 5 m, 

and storage at 4°C. Products were purified with a MinElute 96 UF Purification Kit (Qiagen Inc.), 

and rehydrated to 20.0 µl. Sequencing was conducted by Eurofins MWG Operon, and sequences 

were aligned in Geneious (Version 5.3.6, Biomatters) and identified using the BLAST program in 

NCBI. 
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(vi) Quantification of A. butzleri DNA extracted from stools. DNA from human diarrheic (n=69) 

and non-diarrheic (n=50) stools collected during the same time period (i.e. October 27 to 

November 11, 2008) that tested positive for A. butzleri by direct detection PCR was quantified by 

qPCR using the same conditions as for seeded porcine feces. 

 (vii) Comparison of A. butzleri prevalence to known pathogens. The current study was part of a 

larger study examining the prevalence of bacterial and viral pathogens in stools from diarrheic 

and non-diarrheic people living in SWA. All samples were processed by staff at the CRH for 

Aeromonas spp. (i.e. A. caviae, A. hydrophilia, A. salmonicida, A. sobria, and A. veronii) (168), 

Edwardsiella spp. (E. hoshinae and E. tarda) (169), Campylobacter spp. (C. coli, C. fetus, C. lari, C. 

jejuni) (170), E. coli 0157:H7 (171), Plesiomonas shigelloides (169), Salmonella enterica enterica 

(171), Shigella spp. (S. boydii, S. dysenteriae, S. flexneri, S. sonnei) (171), Staphylococcus aureus 

(172), Vibrio spp. (V. alginolyticus, V. cholerae, V. fluvialis, V. metschnikovii, V. mimicus, V. 

parahemolyticus, and V. vulnificus) (173), and Yersinia spp. (Y. enterocolitica, Y. pestis, Y. 

pseudotuberculosis, and Y. ruckeri) (174). In addition, RNA viruses (Norovirus GI, GII, GIII, GIV, 

Sapovirus, Rotavirus, Astrovirus) were detected using Taqman PCR (175) (D. Leblanc, G. D. Inglis, 

V. F. Boras, J. Brassard, and A. Houde, submitted for publication). 

(viii) Data analysis. All statistical analyses were carried out using SigmaPlot (version 12.0, Systat 

Software, San Jose CA). The chi-square test of independence was used to calculate significant 

differences in prevalence of A. butzleri between diarrheic and non-diarrheic people by culture-

based isolation and by PCR-based detection, as well as for calculating significant differences in 

prevalence of A. butzleri in diarrheic humans by age, sex and location. The chi-square test of 

independence was also used to ascertain possible difference in rates of coinfection of A. butzleri 

with known pathogens in diarrheic human beings. In order to determine if significant differences 

existed in the rate of coinfection of A. butzleri with more than two tested pathogens, the rate of 
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coinfection for each pathogen was compared to the mean coinfection of all other pathogens. 

The Mann-Whitney Rank Sum test was used to calculate significant difference between 

abundance of A. butzleri in stools from diarrheic and non-diarrheic human beings 

2.4. RESULTS 

2.4.1. Primer design and in silico evaluation. Comparative whole genome sequence analysis of 

Arcobacter species revealed 1906 conserved ORFs. Of the 66 ORFs that were not present in A. 

skirrowii or A. cryaerophilus, 48 did not contain sufficient length or sequence variation, and 42 

were also longer than 300 bp. These 42 ORFs were concatenated for further analysis. The gene 

sequence for PCR amplification was required to be no more than 200 bp long, with a primer 

length between 19 and 23 nucleotides, a GC content of 35% to 65%, a melting temperature of 

60°C to 68°C, and self-annealing or cross-annealing stretches less than four bp in length. The 

designed primers (ddAbutzF: 5’-AGTGATGGTGGAGTTGCTAGTC-3’; ddAbutzR: 5’-

GTTGCAGGAGCTTTTTCACTCC-3’) targeted a sequence that was identified as part of a putative 

gene encoding the gamma subunit of quinohemoprotein amine dehydrogenase 

(WP_004510536.1). In silico analysis of 22 A. butzleri strains (PRJNA233527, PRJNA58557, 

PRJNA158699, PRJNA61483, PRJNA200766, and PRJNA309088) identified a single copy of the 

target sequence per genome. The predicted PCR product was 137 bp, and was unique to A. 

butzleri by BLAST analysis (176). In addition, the primer target sequences were identical to all 

available A. butzleri genomes, and the closest non-target match possessed 79% query coverage. 

2.4.2. Primer evaluation. 

(i) Primer specificity. Of the 22 taxa within Campylobacterales that were evaluated, only A. 

butzleri produced a detectable PCR amplification product when tested with the ddAbutz 

primers. 

(ii) Primer inclusivity. All 130 isolates (100%) were amplified by PCR using the ddAbutz primers.  
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(iii) Primer sensitivity. The ddAbutz primers amplified A. butzleri DNA at concentrations as low 

as 0.6 Log10 copies mg-1 by endpoint PCR and qPCR, which equated to a minimum detection limit 

of 1.1 copies per reaction (Figure 2.1). 

2.4.3. Detection and quantification of A. butzleri in diarrheic and non-diarrheic stools. 

(i) Isolation of A. butzleri. The overall rate of detection of A. butzleri by culture-based isolation 

using a variety of media and plating methods was low (0.8%), and there was no difference 

(P=0.81) in detection between diarrheic and non-diarrheic individuals (Table 2.1). For culture 

positive samples, 8 of 13 were positive by a single method, and membrane filtration on CBA was 

the most inclusive (46%). No A. butzleri isolates were obtained by direct plating of processed 

stools onto KS. No medium and plating technique was specific to A. butzleri; each selected for at 

least one non-target bacterium (Table 2.2). There were too few A. butzleri positive stools to 

compare the effectiveness of direct plating compared to enrichment techniques.  

(ii) Total DNA extraction and detection of A. butzleri DNA. Of the 1596 human stool samples 

tested, an IAC and/or A. butzleri amplicon were not observed in extracted DNA from 26 samples 

(1.6%). Of the remaining 1570 stools, 1482 samples were obtained from diarrheic people and 88 

were obtained from non-diarrheic people. The overall prevalence of A. butzleri was 60%, and 

there was no difference (P=0.13) in prevalence of A. butzleri DNA between diarrheic (57%) and 

non-diarrheic (46%) stools. The rate of detection of A. butzleri in diarrheic individuals varied 

throughout the sample period with peaks at the beginning and the end of the summer (Figure 

2.2). No correlation was observed between A. butzleri prevalence in diarrheic stools with sex 

(P=0.37), age (P≥0.26), or place of habitation (P=0.15) (Table 2.3).  

(iii) Specificity of PCR primers in diarrheic stools by PCR amplification. All 90 (100%) of the 

amplicons from human stools that were sequenced were identified as A. butzleri by BLAST 

analysis. Trimmed sequences were 93 bp to 95 bp in length. All trimmed sequences were 
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Figure 2.1. Direct PCR detection of A. butzleri L130 extracted from inoculated pig feces by 

targeting the single-copy quinohemoprotein amine dehydrogenase gene with novel 
ddAbutz primers. Amplicons were visualized on a QIAxcel capillary electrophoresis machine 

(Qiagen Inc.) using the AM320 separation and resolution method with 15-3000 bp 
alignment marker and 100-2500 bp size marker. Lane 1, A. butzleri L130 positive PCR 

controls; lane 2, H
2
O (Optima) negative PCR control; lane 3, total DNA extracted from feces 

inoculated with sterile Columbia broth (Difco) as a negative control; lane 4, DNA from feces 
inoculated with A. butzleri L130 at a density of 3.6 Log

10
 copies/mg; lane 5, DNA from feces 

inoculated with A. butzleri L130 at a density of 2.6 Log
10

 copies/mg; lane 6, DNA from feces 

inoculated with A. butzleri L130 at a density of 1.6 Log
10

 copies/mg; lane 7, DNA from feces 

inoculated with A. butzleri L130 at a density of 0.6 Log
10

 copies/mg; lane 8, DNA from feces 

inoculated with A. butzleri L130 at a density of 0.06 Log
10

 copies/mg. 

 

 
identical, so a single consensus sequence was compared to the NCBI database.  

(iv) Quantification of A. butzleri. Overall cell density in human stool samples was 1.4 ± 0.62 log10 

cells mg-1, but quantities of DNA were higher (P=0.007) in stools of diarrheic (1.6 log10 ± 0.59 

copies mg-1) than non-diarrheic (1.3 log10 ± 0.63 copies mg-1) people. 

(v) Comparison of A. butzleri prevalence to known pathogens. Of the 1482 diarrheic samples 

examined, 390 (26%) were positive for recognized bacterial and/or viral pathogens. Of the 

samples positive for A. butzleri, 661 (74%) were not positive for other bacterial and/or viral 

pathogens. None of the recognized pathogens were more likely to be co-detected with A. 

butzleri (P≥0.26) (Table 2.4). 
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Table 2.1. Detection of A. butzleri by isolation. 

Stool CBA 
(mf)b 

KSA 
(dp)c 

KSA 
(en)d 

KBA 
(dp)e 

KBA 
(en)f 

ASIA 
(dp)g 

ASIA 
(en)h 

JMA 
(en)i 

1     +a    

2 +  + + +   + 

3 +  + + +    

4        +a 

5    +a     

6      +  + 

7    +a     

8 +    + + +  

9 +a        

10 +a        

11 +a        

12      + +  

13       +a         

Total 6 0 2 5 4 3 2 3 
a Unique isolation 
b Membrane filtration (158) onto CBA 
c Direct plating of 100 µl of processed stool sample onto KSA 
d Enrichment culture in BBS followed by subsequent isolation on KSA 
e Direct plating of 100 µl of processed stool sample onto KBA 
f Enrichment culture in BBS followed by subsequent isolation on KBA 
g Direct plating of 100 µl of processed stool sample onto ASIA (166) 
h Enrichment culture in BBS followed by subsequent isolation on ASIA (166) 
i Enrichment culture in BBS followed by subsequent isolation on JMA (167) 

  
 
2.5. DISCUSSION 

2.5.1. Efficiency of A. butzleri detection methods. In the current study, the detection of A. 

butzleri by isolation was compared to detection by PCR amplification. The rate of detection of A. 

butzleri in human stools by isolation was low (0.8%) compared to PCR-based detection (60%). 

Others have found that PCR was more effective than culturing for detection of A. butzleri in 

human stools (72), seawater (62), and wastewater and chicken carcasses (177). Fera et al. (72) 

suggested that the decreased rate of detection observed in selective and enrichment media may 

be the result of competition by non-target members of the source microbiota, along with 

difficulty replicating source conditions for growth in a controlled system. In addition, the use of 
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Table 2.2. Isolated bacterial taxa. 
Isolated taxa CBA 

(mf)a 
KSA 
(dp)b 

KSA 
(en)c 

KBA 
(dp)d 

KBA 
(en)e 

ASIA 
(dp)f 

ASIA 
(en)g 

JMA 
(en)h 

Acinetobacter sp. +   +     
Actinomyces sp. +        
Alistipes sp. +   + +   + 
Anaerobiospirillium sp.    +     
Arcobacter butzleri +  + + + + + + 
Arcobacter cryaerophilus +   +    + 
Arcobacter skirrowii    +    + 
Bacillus sp. +        
Bacteroides sp. +   +    + 
Bifidobacterium sp. +  + +     
Campylobacter coli +   +     
Campylobacter concisus + + + + +   + 
Campylobacter curvus + + + + +    
Campylobacter gracilis +   +     
Campylobacter hyointestinalis    +     
Campylobacter jejuni + + + + + + + + 
Campylobacter lanienae + + + + +    
Campylobacter showae + + + + +    
Campylobacter upsaliensis +      + + 
Catabacter sp. +     +  + 
Christensella sp.     +    
Citrobacter sp.  +  +    + 
Desulfovibrio sp. +    +    
Eggerthella sp. +   +    + 
Enterobacter sp.        + 
Enterococcus sp. + + + +    + 
Escherichia sp.  +  +    + 
Facklamia sp. +        
Fastidiosipila sp.    +     
Gordonibacter sp.     +    
Halomonas sp.        + 
Helicobacter sp. + +  +     
Klebsiella sp.   +      
Lactobacillus sp.  +  + +   + 
Micrococcus sp.  +   +    
Mobiluncus sp. +        
Ochrobactrum sp.    +     
Parabacteroides sp.    +     
Parasutterella sp. +        
Pediococcys sp.    +     
Phascolarctobacterium sp. + + +  +   + 
Propionibacterium sp. +   +     
Pseudomonas sp.  + + + +   + 
Staphylococcus sp. +        
Sutterella sp. + + + + +   + 
Veillonella sp. + +   + +       
Total 29 15 12 30 16 3 3 19 

a Unique isolation 
b Membrane filtration (158) onto CBA 
c Direct plating of 100 µl of processed stool sample onto KSA 
d Enrichment culture in BBS followed by subsequent isolation on KSA 
e Direct plating of 100 µl of processed stool sample onto KBA 
f Enrichment culture in BBS followed by subsequent isolation on KBA 
g Direct plating of 100 µl of processed stool sample onto ASIA (166) 
h Enrichment culture in BBS followed by subsequent isolation on ASIA (166) 
i Enrichment culture in BBS followed by subsequent isolation on JMA (167) 
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Figure 2.2. Rate of detection (%) of A. butzleri in stools from diarrheic humans, as 

determined by direct endpoint PCR targeting the single-copy quinohemoprotein amine 
dehydrogenase gene with novel ddAbutz primers. The total number of human stools 

processed by month were 209 (May), 232 (June), 199 (July), 228 (August), 225 
(September), 198 (October), and 191 (November). 

  
 
enrichment culture has been shown to reduce the diversity of other enteric pathogens (178, 

179), and antimicrobial agents in A. butzleri selective media may also reduce diversity (19). This 

is problematic because antimicrobial agents are often required to inhibit growth of non-target 

taxa that could exclude A. butzleri. Frequently, presumptive A. butzleri (i.e. based on colony 

morphology) turned out to be Alistipes spp., Bacteroides spp., Catabacter spp., Citrobacter spp., 

Helicobacter spp., and Campylobacter spp. in particular. Previous studies have noted a similar 

lack of specificity for culture isolation of A. butzleri from feces (10, 73). 
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Table 2.3. Direct PCR detection of A. butzleri in diarrheic stools. 

Category Samples (n) Rate of infection (%) P value 

Sex    
Male 599 61.8 0.37 

Female 873 59.5 

Age (years)    

0-4 215 62.3 0.53 

5-18 112 55.4 0.26 

19-64 747 61.3 0.46 

65+ 398 59.0 0.52 

Habitation a    

Rural 560 57.7 0.15 

Urban 887 61.4 
a Rural or urban location of habitation was ascertained from postal 
codes submitted by diarrheic individuals. 

  
 
2.5.2. Prevalence of A. butzleri in human stools. The overall prevalence of A. butzleri in human 

stools was 60%, which is much higher than rates of 25% or less reported by others (40-42, 72). 

The high rate of detection of A. butzleri observed in the current study may be attributed to the 

use of primers designed and validated for maximum efficiency in complex matrices. While 

previous studies evaluated primer sensitivity and/or specificity, they typically did not examine 

inclusivity. In contrast, the primers used in the current study were designed and evaluated with 

an emphasis on inclusivity. PCR inclusivity is the ability of primers to amplify all subtypes of the 

target taxon, and it is reduced as a result of poor binding efficiency at the primer binding site. It 

is therefore important to select a target site that lacks sequence variation within the targeted 

bacterium so that it is not susceptible to competitive binding by non-target taxa. The PCR 

primers used in previous studies target universal gene sequences such as 16S rRNA (42), 23S 

rRNA (40), hsp60 (74), and gyrA (41). In the current study, non-universal gene sequences that 

were conserved within A. butzleri were identified, thereby circumventing the potential pitfalls of 

PCR amplification of universal genes. To validate primer inclusivity, 130 A. butzleri isolates 

representing 92 different CGF subtypes were tested, and the primers successfully amplified the  
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Table 2.4. Detection of A. butzleri and recognized enteric pathogens in diarrheic stools 

Pathogen Positive 
samples (n) 

Coinfections with A. 
butzleri (n) 

Rate of 
coinfection (%) 

P value 

Aeromonas spp. 
a
 9 6 66.7 --- 

C. coli 16 9 56.3 0.94 

C. difficile
 a

 7 5 71.4 --- 

C. jejuni 183 103 56.3 0.68 

E. coli O157:H7 17 11 64.7 0.54 

Salmonella spp. 25 15 60.0 0.79 

Astrovirus 20 10 50.0 0.49 

Norovirus GI 16 7 43.8 0.26 

Norovirus GII 110 66 60.0 0.53 

Norovirus GIII
 a

 0 0 --- --- 

Norovirus GIV
 a

 1 1 100 --- 

Rotavirus 14 6 42.9 0.26 

Sapovirus 26 16 61.5 0.66 

Total 444 255 57.4 --- 
a Pathogen was not detected in enough samples to be statistically viable. 

 
 
gamma subunit of the quinohemoprotein amine dehydrogenase gene (WP_004510536.1) for all 

130 isolates. In comparison, previous studies have evaluated inclusivity of their primers against a 

relatively small number (one to seven) of A. butzleri isolates (74, 77, 78, 180). 

2.5.3. Comparative detection of A. butzleri in diarrheic and non-diarrheic stools. Arcobacter 

butzleri is the fourth most commonly isolated Campylobacter-like organism from diarrheic 

humans (10), but few studies have compared the prevalence of A. butzleri in diarrheic and non-

diarrheic humans. I hypothesized that if A. butzleri is an emerging pathogen, it would be 

significantly more prevalent in stools from diarrheic than non-diarrheic people. Even though a 

much higher prevalence of A. butzleri was detected in stools compared to previous studies, 

there was no significant difference between diarrheic and non-diarrheic groups. Collado et al. 

(40) also found no difference in prevalence between stools from diarrheic and non-diarrheic 

people in Chile, although there were too few A. butzleri positive stools for statistical comparison. 

In South Africa, Samie et al. (71) used PCR to compare prevalence of A. butzleri in stools from 

diarrheic and non-diarrheic individuals and found no significant difference. These findings 



41 
 

contrast with those of recognized enteric pathogens, which are more prevalent in diarrheic than 

non-diarrheic individuals (181). 

2.5.4. Comparative quantification of A. butzleri in diarrheic and non-diarrheic stools. In 

situations where the pathogenicity of enteric bacteria is uncertain (182, 183), quantification of 

microorganism density can provide evidence in support of pathogenicity (i.e. an increase in 

density of a microorganism in diseased individuals). For example, Phillips et al. (184) observed 

that viral loads of the recognized pathogen, Norovirus GII were much greater in diarrheic than 

non-diarrheic individuals, and Brassard et al. (185) observed that viral loads of the emerging 

pathogen, Torque teno virus were much greater in diarrheic than non-diarrheic people. To my 

knowledge, the current study is the first to compare densities of A. butzleri in diarrheic and non-

diarrheic people. Although A. butzleri DNA loads were low in both diarrheic and non-diarrheic 

individuals, the density of A. butzleri DNA in stools from diarrheic people was slightly higher than 

in stools from non-diarrheic individuals. It is uncertain whether the difference in DNA loads 

between the two groups is biologically relevant (i.e. that pathogenic subtypes exist and 

contribute to the differential density), or is confounded by the diseased status of the diarrheic 

group. This warrants further investigation. 

2.5.5. Epidemiology of diarrheic individuals infected with A. butzleri. The prevalence of A. 

butzleri in diarrheic human stools increased with the onset of summer, and it remained relatively 

high throughout the sample period, but there was no correlation between rate of detection of A. 

butzleri and patient age or sex. Previous studies also found no correlation between A. butzleri 

infection and patient age or sex (41, 71). In comparison, host infection by pathogenic 

campylobacters is influenced by both age and sex (71, 186, 187), as is infection by other 

emerging pathogens such as H. pylori (71) and Torque teno virus (185). There was no correlation 

between A. butzleri infection and place of habitation (i.e. whether patients lived in an urban or 
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rural area). However, it was not possible to ascertain the degree to which people living in urban 

versus rural locations interacted with livestock (e.g. through occupational exposure). Thus, it was 

not possible to determine whether there was a correlation between direct contact of people 

with livestock and infection by A. butzleri. 

2.5.6. Co-isolation of A. butzleri with recognized pathogens. In the current study, 74% of A. 

butzleri positive diarrheic human stool samples were not positive for recognized pathogens. The 

most commonly detected bacterial pathogen was C. jejuni, but the rate of co-infection with A. 

butzleri was not significantly greater than with other pathogens. Although it is difficult to directly 

compare my results with previous studies (i.e. because the pathogens detected varied, as did the 

methods of detection), others reported that significant numbers of samples ranging from 16% 

(71) to 60% (41) were positive for A. butzleri and not for recognized pathogens. Considering that 

most cases of enteritis are not attributed to a single pathogenic species (154, 155), and that the 

majority of cases of enteritis are not linked to an etiological agent (153), the isolation of A. 

butzleri in the absence of other pathogens does not necessarily indicate that A. butzleri incites 

disease. Furthermore, my observation that A. butzleri is equally and highly prevalent in diarrheic 

and non-diarrheic individuals supports the conclusion that A. butzleri does not possess species-

wide pathogenicity. 

2.6. CONCLUSIONS 

The current study examined the prevalence and abundance of A. butzleri in stools from 

diarrheic and non-diarrheic people living in SWA. It was hypothesized that, as an emerging 

enteric pathogen, the prevalence and abundance of A. butzleri will be greater in diarrheic than in 

non-diarrheic people. Culture-based isolation and novel direct detection PCR primers were used 

to detect A. butzleri in 1596 human stools. The vast majority of A. butzleri infections were not 

detected by culture-based isolation, that there was no difference in prevalence of A. butzleri 
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between diarrheic and non-diarrheic cohorts, and that A. butzleri DNA loads were only slightly 

greater in diarrheic stools. Thus, it was concluded that either A. butzleri is not a pathogen, or the 

strain of A. butzleri and/or the status of the host regulates pathogenicity (e.g. A. butzleri is an 

opportunistic pathogen in a similar manner to H. pylori (188)). The application of high-

throughput subtyping methods such as CGF40 (81) is necessary to ascertain whether specific 

strains of A. butzleri are associated with disease in human beings, with confirmation using 

models of pathogenicity/virulence. 
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CHAPTER THREE 

Development of a Comparative Genomic Fingerprinting assay for rapid and high resolution 

genotyping of Arcobacter butzleri2 

3.1. ABSTRACT 

Molecular typing methods are critical for epidemiological investigations, facilitating 

disease outbreak detection and source identification. Studies on the epidemiology of the 

emerging human pathogen Arcobacter butzleri is currently hampered by the lack of a subtyping 

method that is easily deployable in the context of routine epidemiological surveillance. The 

purpose of this study was to design and validate a CGF method for high-resolution and high-

throughput subtyping of the A. butzleri. Comparative analysis of the genome sequences of 

eleven A. butzleri strains, including eight strains newly sequenced as part of this project, was 

employed to identify accessory genes suitable for generating unique genetic fingerprints for 

high-resolution subtyping based on gene presence or absence within a strain. A set of eighty-

three accessory genes was used to examine the population structure of a dataset comprised of 

isolates from various sources, including human and non-human animals, sewage and water 

(n=156). A streamlined assay (CGF40) based on a subset of 40 genes was subsequently developed 

through marker optimization. High levels of profile diversity, 121 distinct profiles were observed 

among the 156 isolates in the dataset, and a high Simpson’s index of diversity (ID) observed 

(ID>0.969) indicate that the CGF40 assay possesses high discriminatory power. At the same time, 

my observation that 115 isolates in this dataset could be assigned to 29 clades with a profile 

similarity of 90% or greater indicates that the method can be used to identify clades comprised 

of genetically similar isolates. The CGF40 assay described herein combines high resolution and 

                                                           
2
 A version of this chapter was published as: Webb AL, Kruczkiewicz P, Selinger LB, Inglis GD, Taboada EN. 

2015. Development of a comparative genomic fingerprinting assay for rapid and high resolution 
genotyping of Arcobacter butzleri. BMC Microbiology 15:1-12. 



45 
 

repeatability with high throughput for the rapid characterization of A. butzleri strains. This assay 

will facilitate the study of the population structure and epidemiology of A. butzleri. 

3.2. INTRODUCTION 

Arcobacter butzleri is closely related to the pathogen Campylobacter jejuni (189), and it 

has been isolated from surface waters, livestock, and animal products (99, 190-192). The 

pathogenicity of A. butzleri has yet to be resolved (99, 138); although A. butzleri has been 

isolated from the stools of diarrheic human beings, which is highly suggestive of pathogenicity 

(56, 74, 76), it has also been obtained from non-diarrheic individuals (71, 156) suggesting that it 

is a commensal or that non-pathogenic strains or subtypes exist within the species.  

An important facet in the study of pathogens is epidemiology-based analysis of their 

incidence and distribution. Molecular subtyping or genotyping, which allows the classification of 

a bacterial species into distinct strains or subtypes based on genetic variation (40, 193), forms 

one of the pillars of molecular epidemiology, through which the identification of etiological 

agents, patterns of transmission, and potential outbreaks can be carried out with enhanced 

precision (194). Until recently, the study of A. butzleri has been hampered by the lack of 

advanced methods for subtyping. A recently developed MLST scheme (195) provides excellent 

identification of subtypes and has been utilized to examine genetic diversity in A. butzleri 

isolated from people, livestock and animal products (99, 138). However, this method remains a 

resource-intensive and relatively low-throughput means of subtyping, which limits the number 

of isolates that can be analyzed by most research groups (196, 197), as evidenced by the 

relatively small number of isolates that have been contributed to the MLST database for A. 

butzleri by the global research community (n=683, PubMLST accessed on October 21, 2014). 

More importantly, the lack of a highly deployable subtyping method suitable for use in routine 

surveillance has precluded the large-scale epidemiological surveys required to fully assess the 
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potential role of A. butzleri as an emerging pathogen of humans.  

Recent advances in sequencing technologies (i.e. next generation sequencing) and 

bioinformatics have made it possible to rapidly obtain draft whole genome sequencing (WGS) 

data (198) and it is likely that methods based on WGS analysis, including whole genome MLST, 

will eventually become the new standard for microbial subtyping in an epidemiological context 

(199, 200). However, until the resources required for WGS-based subtyping allow it to become 

practical enough to be deployed in large-scale epidemiological surveillance, there is a continuing 

need for methods that fulfill performance criteria such as discriminatory power and 

repeatability, and convenience criteria such as throughput, cost and ease of use (194). Recently, 

Taboada et al. (141) employed whole genome analysis to develop a CGF method for high-

resolution subtyping of C. jejuni that was highly concordant with MLST but better suited to large-

scale surveillance due to improved throughput and cost relative to MLST. Moreover, by targeting 

a large number of accessory genes (e.g. 40 loci), the CGF method showed improved 

discriminatory power compared to MLST, allowing the differentiation of closely related strains 

with distinct epidemiology (141, 142).  

The overall goal of the current study was to develop a highly discriminatory CGF assay 

for A. butzleri by employing the strategy described by Taboada et al. (141) for C. jejuni. 

Objectives were to: (i) select A. butzleri isolates for WGS; (ii) utilize whole genome sequence 

data to identify candidate CGF target genes in the accessory genome; (iii) screen CGF targets 

against a panel of A. butzleri isolates to determine accessory gene frequency and assess 

accessory genome variability; (iv) select a subset of CGF targets for development of a CGF40 

assay; and (v) evaluate the ability of the CGF40 assay to reliably reproducibly discriminate A. 

butzleri strains.  The development of highly deployable genotyping techniques that are suitable 

for use in routine surveillance will improve my ability to distinguish strains of A. butzleri and 
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facilitate the study of its epidemiology. 

3.3. MATERIALS AND METHODS 

3.3.1. Ethics statement. Scientific and ethics approval to isolate A. butzleri from diarrheic and 

non-diarrheic human beings (i.e. healthy volunteers) was obtained by GDI from the Regional 

Ethics Committee of the former CHR and from the University of Lethbridge Human Subject 

Research Committee. The requirement for informed written consent was waived by the CHR 

Regional Ethics Committee and the U of L Human Subject Research Committee for subsamples of 

stools submitted by diarrheic people as the samples were submitted for the detection of enteric 

pathogens at the CRH and the identities of patients was not disclosed. Informed written consent 

as mandated by the U of L Human Subject Research Committee was obtained from all healthy 

volunteers in advance of the submission of stool samples for the isolation of A. butzleri and 

other enteric bacteria. 

3.3.2. Arcobacter butzleri isolation and DNA extraction. Arcobacter butzleri were isolated from 

a stool sample obtained from eleven diarrheic humans, and from two stools obtained from one 

non-diarrheic human, as well as from non-human animal feces, sewage, and river water 

collected in SWA during 2008 and 2009. Isolates were streaked for purity and stored at -80oC in 

CB with 30% glycerol. Isolates from glycerol stocks were grown on CBA in a microaerobic 

atmosphere (5% O2, 3% H2, 10% CO2, and 82% N2) at 37°C for 24-48 hr, and biomass was 

collected from the surface of the agar medium. An automated system (Model 740, Autogen, 

Holliston, MA) was used to extract genomic DNA. Putative A. butzleri isolates were identified by 

PCR amplification using an Arcobacter PCR-multiplex assay (76). 

3.3.3. Whole genome sequencing and assembly. In order to design a CGF assay for A. butzleri it 

was necessary to perform a comparative whole genomic analysis of strains representing diverse 

sources and genetic backgrounds. To minimize possible genetic bias amongst strains selected for 
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WGS, A. butzleri isolates from diverse sources were genotyped using Amplified Fragment Length 

Polymorphism (AFLP) analysis as described previously (201, 202), and eight strains representing 

highly diverse AFLP profiles were chosen for sequencing (Figure 3.1). For WGS analysis, DNA was 

extracted using a DNEasy Blood and Tissue Kit (Qiagen Inc, Toronto, ON). The identity of isolate 

DNA was tested by sequencing approximately 1000 bp of the 16S rRNA gene and by comparing 

the results with A. butzleri sequences within the NCBI genetic database (161, 176). The DNA for 

isolates to be sequenced was quantified by spectrophotometry (A600) (Ultrospec 3100 pro, GE 

Healthcare Life Sciences, Baie d’Urfe, QC). Isolates were sequenced as paired-end, 100 bp reads 

on a HiSeq platform (Illumina Inc., San Diego, CA) with Phred30 (99.9%) base-calling accuracy 

(203), and reads were de novo assembled into contigs using ABySS (204) with specifications for 

short paired-end reads. Sequencing data for the A. butzleri isolates were accessioned in the NCBI 

genetic sequence database as a single bioproject (PRJNA233527). 

3.3.4. Detection and identification of coding sequences. The RAST tool (160) was used to 

identify ORFs for the eight sequenced A. butzleri genomes, as well as three previously available 

genome assemblies (RM4018 - PRJNA58557, ED1 - PRJNA158699, JV22 - PRJNA61483). The 

genome assembly for a fourth strain, 7h1h (PRJNA200766), was not available at the time that 

the comparative genomic analysis was performed, however the four published WGS strains were 

included in all subsequent in silico CGF analyses. 

To identify core and accessory genes, the ORFs from each genome were searched against the 

eleven genome assemblies using BLAST (161, 176), with filtering to remove redundant results 

from likely orthologous genes. ORFs present in all assemblies were identified as core, and all 

non-redundant ORFs absent from one or more strains were designated as accessory. 

3.3.5. Identification of candidate accessory genes for CGF assay development. To simplify CGF 

assay design, accessory genes with limited genotypic potential due to a highly biased population 
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Figure 3.1. Isolates of A. butzleri from diverse sources selected for whole genome sequence 
analysis based on AFLP profile comparison. AFLP clades were defined using an 85% similarity 

threshold (dashed line). A total of eight strains (green) were selected for WGS, an additional ten 
strains (orange) were included in the dataset for assessment of CGF discrimination and 

concordance (Figure 3.3), and four strains (red) were not included as part of the CGF dataset. 
 
 
distribution (i.e. present in greater than 80% of strains or present in fewer than 20% of strains) 

were eliminated from further consideration as candidate markers. Moreover, for groups of 

accessory genes that presented redundant patterns of presence and absence in the dataset (i.e. 

genes that are typically linked and provide limited additional discrimination), only one 

representative gene from each unique pattern was considered as a candidate marker for CGF 

development. Short genes (i.e. <300 bp) and/or those containing gaps or polymorphisms that 

might affect PCR primer design were also discarded. Accessory genes meeting the above criteria 

were identified and used to design an expanded CGF assay (i.e. the reference assay) to examine 

the population structure of a diverse collection of A. butzleri isolates (n=152) based on accessory 

genome variability. Data from these isolates, which were recovered from river water, raw and 

treated sewage, diarrheic and non-diarrheic human beings, and non-human animals in SWA was 

used in conjunction with in silico-derived (205) CGF data from four published genome-
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sequenced strains (RM4018 - PRJNA58557, ED1 - PRJNA158699, JV22 - PRJNA61483, 7h1h - 

PRJNA200766). CGF profiles were also generated in silico using the program Microbial In Silico 

Typer (MIST) (205) for the eight isolates sequenced de novo to allow for comparison with PCR-

derived CGF data, thus facilitating assessment of marker performance. A dendrogram 

representing an estimate for a ‘reference phylogeny’ was constructed from the binary (i.e. 

presence and absence) data for those genes that generated data fully concordant with in silico-

predicted CGF profiles (n=72). Hierarchical clustering was performed by Unweighted Pairwise 

Grouping with Arithmetic Mean (UPGMA) using the hclust function in R (206) and the simple 

matching coefficient of genetic similarity. 

3.3.6. Optimization of markers for development of final CGF assay. The program CGF Optimizer 

(CGFO) (207), which calculates the Adjusted Wallace Coefficient (AWC) and the symmetric 

distance (SymD) (208-211) to assess the concordance between clustering results from sets of 

prospective CGF markers and a reference phylogeny, was used to identify a subset of accessory 

genes yielding high concordance to the reference phylogeny generated using the expanded CGF 

assay. Briefly, CGFO was used to subsample sets of candidate accessory genes and to compute 

the AWC of each set to the reference phylogeny; the 40 loci that were most concordant with the 

reference phylogeny (i.e. the set with the highest AWC) were selected for the final CGF40 assay. 

3.3.7. CGF assay development. Primer3 (212) was employed to design PCR primers for genes 

selected for CGF assays. The programs MultiPLX (213) and CGF Multiplexer (207) were used to 

arrange primers with compatible thermodynamic properties into multiplex pools that would 

generate amplicons differing by at least 100 bp to facilitate unambiguous scoring of marker 

presence or absence. The CGF profiles obtained in silico (205) and by multiplex PCR amplification 

for the sequenced strains were compared to ascertain primer sensitivity and specificity, and 

primer pair concentrations within each multiplex were adjusted to optimize product 
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amplification (Table 3.1). In addition, the reproducibility of the final CGF40 assay was tested by 

running duplicate PCR reactions for a set of 24 A. butzleri isolates (23 test isolates plus 1 

control). To generate a CGF profile, eight PCR reactions targeting five loci per reaction were 

performed for each A. butzleri isolate. Individual PCR reactions (25 µl) contained 2.0 µl of 

genomic DNA, 2.5 µl of 10X incubation mix without MgCl2 (MP Biomedicals, Solon, OH; 1X), 2.5 

µl of MgCl2 (MP Biomedicals; 2.5 mM), 0.5 µl of a deoxynucleoside triphosphate pool (0.2 mM), 

1.0 µl of the multiplex primer pool (0.4 µM), 0.2 µl Taq DNA Polymerase (MP Biomedicals; 1 U µl-

1), and 16.3 µl Optima water (Fisher Scientific, Ottawa, ON). PCR conditions consisted of 32 

cycles of denaturation at 93°C for 30 s, annealing at 60°C for 90 s, and extension at 72°C for 60 s. 

After a final extension step at 72°C for 5 min, PCR products were stored at 4°C, and visualized 

using a QIAxcel automated capillary electrophoresis system (Qiagen Inc.) with a QIAxcel 2400 

Sample DNA Screening Kit (Qiagen Inc.), QX 15-1000 bp alignment marker (Qiagen Inc.), and 30 

ng µL-1 QX 50-800 bp Size Marker (Qiagen Inc.). Capillary electrophoresis lanes were scored for 

amplification of the five loci targeted (i.e. scored as present or absent) in each multiplex PCR, 

resulting in a 40-digit binary profile for each isolate. Isolate profiles were clustered using the 

simple matching coefficient in BioNumerics (version 6.6, Applied Maths, Austin, TX), and isolate 

similarity was visualized as an UPGMA dendrogram.  

3.3.8. Assessment of CGF discrimination and concordance. PCR data for the reference and 

CGF40 assays was generated for the 152 A. butzleri isolates. The CGF profiles of four previously 

published genome-sequenced strains (RM4018, ED1, JV22, and 7h1h) were also obtained in silico 

(205). To verify concordance between the expanded CGF and CGF40 assays, binary data from 

each assay was subjected to hierarchical clustering by UPGMA using the hclust function in R 

(206) and the simple matching coefficient of genetic similarity. The online ‘Comparing Partitions’ 

tool (208) was used to calculate the discriminatory power of each assay and the concordance  
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Table 3.1. Primers for PCR amplification of CGF40 markersa. 

 Product Size (bp) Primer Forward (5ʹ to 3ʹ) Primer Reverse (5ʹ to 3ʹ) Concentrationb (µM) 

M
u

lt
ip

le
x 

1
 

150 GCATCCTCTTCCTCCATCAT TCGAATAAATCCCCTACCCTT 12 

250 ATACACCACCAGATGAGCTG TAACGTACCGCATCCATTGA 10 

400 AGTGCCCGTTCTATTGGTAT GCATAAAGAGCTTCTCCTCC 8 

500 ACTCTTCCCGAATCTGCAAT TCTCCAATTCCTTGTCCTATTGT 10 

600 AGTCATGCAATCCTAACGAGA AGGAGCCTACTATGTACCTCT 10 

M
u

lt
ip

le
x 

2
 

150 TTTTCATTGGGAAGAAGAATTTAGT TCCAATTCATAAATATCTCTTGGTGA 12 

250 TCTTTTAAAGAAGACAGCTGTAGT TTTTGCAACACCTAATCTTGC 18 

350 TGATACAGGAATTATAAGAAGTGTTCC GCATGAACTTCAACTCCAGG 5 

450 TGGAAATGACAGAGGATGGT AGTAACGGATGAGCTTTTAAATTT 8 

600 TTGGGCTATTATGTCCCCAG TCGTACAACTGGCATAGCTT 7 

M
u

lt
ip

le
x 

3
 

200 CCTCAACTTCTAACAGCAGG CTCACATCACCCAATCCACT 8 

300 TGGAATATCATAAACCAAAAATTGTTT TTCATTGCAAATCCGCCTTT 10 

450 ACAGCATCCTTGATTCTAGCA GTGTAATCATAGCCCAAATCCA 12 

550 TGAAATAATGAATGAACACAATAGCA GTGCACAACCTAAAACCTCA 10 

700 GACAGGAACAGAGGGAAGTC AGCATCTTTATTTGTCGCACT 10 

M
u

lt
ip

le
x 

4
 

200 TGATGAAACACTAGAAAATAAGGCT CCAGTAAAACCTCTGTCAGC 11 

350 TCACTTTTAGGTACTCACGACT GCTATAAAACTTGCACCTTTATCG 9 

450 CAAAGATTTCTACGGGAAATTTGT ACATCCTTTGCCTCTTTAAAAGA 9 

550 TCGAGGACAAGCAGATTCAA GCCATTTCTACTTCCATTGTGT 7 

700 ACAGCAGTAACATTACAGGG TCAAAAGCAATTCCACCACT 11 

M
u

lt
ip

le
x 

5
 

150 TCTATAGGTGCTGACCCACT GCCGCAATACTTCCAAAACT 9 

250 TTTACAGGAGCTTGGACATCA TTTTACCATCATCTTCAACCCA 9 

400 CATCGTCCTTCAGTCGAATAT GGAAACCATTTTCTTTTGCCA 9 

550 GTCATTTTTACACCACCTGCA TCAAAACGCTTAGCCAAATCT 12 

700 ACTTTTTGCTTCTCAAAGTAGAAC CCTCTGAAAAATTGAAATAATATACCC 10 

M
u

lt
ip

le
x 

6
 

150 GGTTGGGGAAAACTGCTTTT TCTCTTGATTTTTAGTTTCAATCTCT 10 

250 TGCTATGGGTGCAATGGTTA AAGATTCTAGCAACACCCGA 8 

400 TGGGGACATGAAAACTGGAA TTCACATACTTTCTCAGGCATT 10 

550 ACTATGGCTATATATGCGAAGAAA TCCATAAATGTTTCAACTCAGGA 10 

650 GGAATTGCCGAGTTTACACG TGAGCTCCATGTTGTATTGGA 10 

M
u

lt
ip

le
x 

7
 

200 ACTCCATTTGTGCTTATTGGA TCTTGAACTAGCCAAAAGTGC 10 

350 TCGAAATATCTTTTAGCTTCAAGAA AAAACATCATTTTCTTTTGCCCA 10 

450 AGAGTTTGGATGGAAAACTGT TGCAACTATTCCATCAAAACCA 10 

550 GGTTCAACACCAGGAACAAA TGCAACACCTATCATCTCATTT 10 

700 GGAAAAGGCAAAGAATCCTCA ACCATCGCCAGACTTCATTA 10 

M
u

lt
ip

le
x 

8
 

150 TGCAAGAAATGGTGGAACAA CCTGTTGCAATAGTTGGTGT 10 

250 TGGTAGAAGAAACAATAAAAAGATTTG AGTCTTGATTTATCGACAGTTCT 10 

350 TTTTGTTTGAAGCTTATTCGTGA AGTCCATATCCTTTCTCTCTCA 8 

450 AGGAGCTGTTGAGATTTTCAA GTCGTTGCTCATCTGCTTTT 7 

550 GATGCTGGATTTTGTATGGCT AGCCAAGAAACTTTCAATATCTCT 10 

a Primer pairs were selected and grouped into multiplexes using Primer3 (212), multiPLX (213), 
and CGF Multiplexer (207). 
b Multiplex primer pair concentrations were optimised for Ta=60°C. 
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between assays. The discriminatory power of each CGF assay was calculated using Simpson’s ID 

(214), and the concordance was calculated as the AWC value between the CGF40 assay and the 

reference phylogeny. A "tanglegram" was generated using a custom R script to compare 

dendrograms for CGF40 and the reference phylogeny. This script is available online at 

https://gist.github.com/peterk87/d92f81ae475063792f49. Briefly, the script generates the 

dendrograms from binary CGF40 and reference phylogeny data and rearranges the CGF40 

dendrogram with respect to the reference phylogeny in order to maximize structural 

concordance or minimize entanglement of branches using the "untangle_step_rotate_1side" 

function from the R package dendextend (https://github.com/talgalili/dendextend). It then uses 

the reference phylogeny to create color-coded linkage groups at a 90% cluster similarity level 

and plots the color-coded tanglegram. 

3.4. RESULTS 

3.4.1. Whole genome sequence assembly and comparison. Illumina 100 bp read paired-end 

sequencing of A. butzleri isolates (n=8) produced an average of 132 ± 37.0 times coverage based 

on an assembly size of 2.27 Mbp ± 0.09, with a GC content of 27.3% ± 0.90 and 2.10 ± 1.70 

ambiguous bases per 100 kbp. The de novo assemblies contained 444 ± 146 contigs and 2.28 x 

103 ± 129 predicted ORFs. In total, 2.47 x 104 coding sequences were identified from the 

assembled contigs, and 1.42 x 103 core and 1.63 x 103 unique accessory genes were identified by 

comparative genomic analysis of the eleven strains included in this study. After removing genes 

with biased population distribution, those with redundant patterns of presence and absence, or 

those presenting problems for subsequent PCR primer design, a set of eighty-three candidate 

accessory genes was identified and used to design an expanded CGF assay aimed at examining 

the population structure of a large set of A. butzleri isolates (n=156) based on shared accessory 

genome content. Data from eleven accessory genes was discarded due to discordance between 
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in silico-predicted CGF profiles and laboratory results on eight isolates sequenced de novo as 

part of this project. The reference CGF-based phylogeny was established from the remaining 

seventy-two accessory genes. 

3.4.2. A ‘reference phylogeny’ for a sample population of A. butzleri isolates. A reference 

phylogeny for a comprehensive set of A. butzleri isolates (n=156) recovered from river water, 

raw and treated sewage, diarrheic and non-diarrheic people, and non-human animals was 

derived from the binary (i.e. presence and absence) data for the expanded CGF assay. The 

phylogenetic distribution of twelve genome-sequenced strains, which includes four previously 

sequenced strains and eight strains sequenced as part of this study, shows that all but two 

sequence type while the remaining strains are from diverse sequence types. An average of ten 

distinct alleles was observed at each of the seven MLST loci, and the lack of shared alleles 

suggests significant genetic diversity among the twelve WGS strains. Although this dataset does 

not represent a comprehensive sampling of the A. butzleri population, a comparative genomic 

analysis of these isolates would be expected to capture significant accessory genome diversity. 

The reference phylogeny contained a total of 31 multi-isolate clades when a ≥90% isolate 

similarity threshold was applied (Figure 3.2). The largest clade (Clade 5) comprised 12 isolates 

strains (149 and 151) belong to distinct CGF clades. Moreover, the in silico MLST data (Table 3.2) 

is consistent with the CGF results since strains 149 and 151 share the same, albeit novel, from 

four human diarrheic stool samples. Clade 31 contained all of the isolates recovered from two 

non-diarrheic human stools. Isolates from non-human animals clustered together and distinctly 

from other isolates. Although human isolates clustered with water isolates (clades 2 and 31, 

respectively), there were no clades that contained isolates from both diarrheic and non-diarrheic 

human beings. None of the four previously sequenced strains included in this dataset clustered 

at the 90% similarity level with the A. butzleri isolates from SWA. 
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Figure 3.2. Reference genealogy of A. butzleri isolates (n=156). Clusters were calculated by 
simple matching comparison of 72 accessory genes using pairwise coefficients and UPGMA 
analysis. The scale represents fingerprint similarity based on the total number of shared loci 

between isolate profiles and the total number of loci in the assay. Dashed grey line 
represents a 90% similarity threshold used for clade definition. Isolates sequenced as part of 

this study are highlighted in yellow; ID 17 (strain L353, PRJNA233527), ID 40 (strain L355, 
PRJNA233527), ID 64 (strain L348, PRJNA233527), ID 69 (strain L352, PRJNA233527), ID 82 

(strain L354, PRJNA233527), ID 100 (strain L349, PRJNA233527), ID 149 (strain L351, 
PRJNA233527), ID 151 (strain L350, PRJNA233527). Published reference A. butzleri strains are 

designated with arrows and include ID 68 (strain 7h1h, PRJNA200766), ID 109 (strain JV22, 
PRJNA61483), ID 138 (strain RM4018, PRJNA58557), ID 154 (strain ED-1, PRJNA158699). 
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Table 3.2. Identification of A. butzleri isolates by Reference CGF and MLST typing. 

Isolate 
ID 

a
 

CGF 
Clade 

b
 

MLST Subtype 
c
 AspA AtpA GlnA GltA GlyA Pgm Tkt 

17 4 New ST; 4/7 matches 
with ST387 

23 7 11 11 221 87 178 

40 n/a New ST; 2/7 matches 
with ST27 

15 66 124 37 178 2 6 

64 13 New ST; 4/7 matches 
with ST87 

23 7 34 19 176 76 51 

68 n/a New ST; 6/7 matches 
with ST303/ST347 

150 4 1 122 220 194 52 

69 14 New ST; 3/7 matches 
with ST177 

4 133 1 15 346 102 6 

82 17 Existing ST18 4 4 4 4 139 4 89 

100 21 New ST; 2/7 matches 
with ST62 

14 45 128 55 47 17 50 

109 n/a New ST; 5/7 matches 
with ST12 

3 17 16 20 new 231 7 

138 n/a Existing ST1 1 1 1 1 1 1 1 

149 31 New ST; 4/7 matches 
with ST170 

209 15 15 48 169 74 86 

151 31 New ST; 4/7 matches 
with ST170 

209 15 15 48 169 74 86 

154 n/a New ST; 5/6 matches 
with ST142 

55 37 32 40 71 57 32 

a Only those CGF isolates for which MLST data was available (via in silico subtyping) are shown. 
b Reference CGF clades were defined using a 90% similarity threshold, which corresponds to ~ 7 
mismatches, and only those clades corresponding to multiple isolates were provided clade 
numbers. 
c Sequence Type (ST) information was unavailable for all but one strain (82), and the remaining 
strains represent novel sequence types; in each case, the closest ST is described under 
"Comments". 
 
 
3.4.3. Analysis of CGF40 concordance with reference phylogeny. After 1.0 x 104 iterations, CGFO 

(207) retrieved 40 accessory genes for CGF40 that had an AWC of 1.0 with respect to the 

reference phylogeny. Analysis of the 156 A. butzleri isolates yielded high Simpson’s ID (Table 3.3) 

and AWC (Table 3.4) values for both assays at 90% and 95% similarity thresholds. In addition, 

direct comparison showed that clusters in the reference and CGF40 phylogenies were highly 

concordant (Figure 3.3). At 90% similarity, isolates from 29 of the 31 clades identified in the 

reference phylogeny also clustered together when analysed using the CGF40 assay. Moreover, of 

the 54 isolates that shared identical CGF40 profiles, 45 also shared identical profiles when  
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Table 3.3. Simpson's ID a for A. butzleri isolates (n=152) genotyped by CGF40. 

Partitioning Method Assay Partitions 
b
 Simpson's ID CI (95%) CINA (95%) 

Binary Pairwise 
Similarity (UPGMA) 

Reference  87 0.984 0.978-0.991 0.977-0.992 

CGF40 86 0.987 0.983-0.992 0.982-0.992 
a Simpson’s ID, confidence interval (CI), and non-approximated confidence interval 
(CINA) were calculated using the online tool of the Comparing Partitions Website 
(http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Tool). 

b Partitions were denoted at the 95% similarity level, which was calculated using the simple 
matching coefficient in BioNumerics (version 6.6, Applied Maths, Austin, TX). 
 

 
analysed with the expanded set of 72 markers. 

3.4.4. Analysis of CGF40 reproducibility. To assess assay reproducibility, the CGF40 analysis was 

repeated for 24 A. butzleri isolates on separate occasions. Concordance analysis revealed that 

907 of the 920 data points assessed (98.6%) had identical presence/absence patterns in both 

runs. 

3.5. DISCUSSION 

Enteritis is inflammation of the alimentary canal (i.e. enteron) that is often characterized 

by diarrhea, abdominal pain, dehydration, loss of appetite, fever and nausea (215). 

Southwestern Alberta was selected for the study because this region possesses high rates of 

enteritis (144), which has been attributed to dense livestock populations in the region (149, 216, 

217). Arcobacter butzleri is closely related to C. jejuni and it is considered to be an emerging 

pathogen by some (17, 74, 190) because it has been isolated from diarrheic people (111, 156). 

However, its pathogenicity and reservoirs/pathways of transmission for potentially pathogenic 

genotypes have yet to be elucidated. In order to understand the relationship between A. butzleri 

and human illness a method is required for the rapid and accurate genotyping of A. butzleri 

strains to facilitate epidemiological studies. 

A number of subtyping methods have recently been used to examine genetic diversity of 

Arcobacter and to compare genotypes between sources. Douidah et al. proposed a two-stage  
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Table 3.4. Adjusted Wallace Coefficient values a of CGF40 compared to the reference 
phylogeny for A. butzleri isolates (n=152). 

Partitions b Reference (90% Similarity) Reference (95% Similarity) 
CGF40 (90% Similarity) 0.88 (0.83-0.93) 0.62 (0.53-0.71) 
CGF40 (95% Similarity) 0.92 (0.89-0.95) 0.87 (0.83-0.91) 
a Adjusted Wallace Coefficient values were calculated using the online tool of 
the Comparing Partitions Website 
(http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Tool). 

b Partitions were denoted by 90% accessory gene pairwise similarity, which 
were calculated using the binary simple matching algorithm in BioNumerics 
(version 6.6, Applied Maths). 

 
 
approach using Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction 

(ERIC-PCR) and Pulsed Field Gel Electrophoresis (PFGE) for subtyping of human and animal 

Arcobacter isolates (17, 138, 218). For A. butzleri a scheme for MLST, a leading method for 

related organisms such as C. jejuni and H. pylori, has recently been developed (17, 138, 218). No 

A. butzleri sequence types have been directly linked to human illness, but given the relative 

paucity of data both in the literature and within the global MLST database (219) it is difficult to 

assess whether the A. butzleri MLST data generated so far is representative of large-scale 

population or epidemiological trends. Moreover, despite the demonstrated ability of MLST to 

accurately distinguish subtypes of A. butzleri and other bacteria, the resources required to 

generate MLST data for the substantial numbers of A. butzleri isolates that are necessary for 

comparative epidemiological investigations may be prohibitive for many research groups.  

Comparative genomic fingerprinting provides a high-resolution and high-throughput alternative 

to MLST that is also deployable in the context of large-scale epidemiological surveillance (141, 

142). The CGF method identifies intraspecies relationships by targeting accessory loci that are 

representative of genetic variation throughout the genome. The phylogenetic signal in accessory 

genome content variation has been examined in several bacterial species and shown to be highly 
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Figure 3.3. Tanglegram of Reference CGF and CGF40 genealogies for A. butzleri isolates (n=156). 
Coloured lines represent isolates within clusters in the reference cladogram that are ≥90% 

similar to one or more other isolates. Scales represent fingerprint similarity based on the total 
number of shared loci between isolate profiles and the total number of loci in the assay. 
Coloured lines also indicate the location of the same isolate in the CGF72 and the CGF40 

cladograms. Scales represent fingerprint similarity based on the total number of shared loci 
between isolate profiles and the total number of loci in the assay. Isolates sequenced as part of 

this study are highlighted in yellow; ID 17 (strain L353, PRJNA233527), ID 40 (strain L355, 
PRJNA233527), ID 64 (strain L348, PRJNA233527), ID 69 (strain L352, PRJNA233527), ID 82 

(strain L354, PRJNA233527), ID 100 (strain L349, PRJNA233527), ID 149 (strain L351, 
PRJNA233527), ID 151 (strain L350, PRJNA233527). Published reference A. butzleri strains are 

designated with arrows and include ID 68 (strain 7h1h, PRJNA200766), ID 109 (strain JV22, 
PRJNA61483), ID 138 (strain RM4018, PRJNA58557), ID 154 (strain ED-1, PRJNA158699). 

 
 

concordant with that contained in other forms of genetic variation (for examples, see (140, 220, 

221)). Such loci are binary (i.e. present or absent) and determination of their allelic status does 

not require sequencing, with assessment possible by PCR amplification. In addition, CGF assays 

target sufficient loci to distinguish between closely related strains that may be indistinguishable 

by other methods (141) while generating phylogenetic signal that is consistent with that of MLST 

(222). Previous work has shown the CGF assay for C. jejuni to be highly predictive of MLST, and 

although each method clustered strains similarly, CGF provided additional discrimination within 

those groups (141, 142). In Canada, the CGF method is being used to analyse C. jejuni isolates 

generated through several large-scale surveillance networks, which will facilitate the study of 

campylobacteriosis through the holistic comparison of C. jejuni subtypes collected from a 

diverse range of sources and infection cases (223). In addition to being a close phylogenetic 

relative of C. jejuni, two features of the A. butzleri pan-genome identified through my 

comparative genomic analysis suggested that it would be an excellent species for the 

development of a CGF-based genotyping assay. The A. butzleri strains showed significant 

variability in accessory genome content, which facilitates a high level of discriminatory power 

among genotypes. The CGF40 assay is based on a marker optimization process that yielded 

phylogenetic clusters that were highly concordant those observed in the reference phylogeny 
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and it provided a high discriminatory power for differentiation of isolates from diverse sources. 

In addition, the majority of isolates that were identical by CGF40 analysis also proved to be 

identical or highly similar using the larger number of markers. This suggests that the finalized set 

of 40 loci were appropriate for high resolution genotyping of A. butzleri strains, and that there 

may be an “efficiency plateau” above which additional loci do not sufficiently increase 

discriminatory power to justify their inclusion in the assay. The CGF40 assay was found to be 

easily deployable; 32 isolates could be processed (i.e. from stock to digital phylogeny) in a 

typical workday by a single individual using one thermal cycler and capillary electrophoresis 

system. 

Previous efforts to characterize A. butzleri have identified a high degree of genetic 

variation but have failed to associate specific genotypes in a geographic or temporal context (73, 

100, 128, 138). In the current study, 29 A. butzleri clades were identified within the CGF40 

phylogeny when compared at a similarity threshold of 90% or greater and 121 distinct (i.e. non-

identical) CGF40 profiles were observed among the 156 isolates analysed. Of interest, each of the 

four previously genome-sequenced strains in the public databases formed their own clades in 

both CGF-based phylogenies. Taken together, these results suggest that the density of marker 

sampling targeted by the CGF assay described herein provides sufficient power for discriminating 

isolates at a high level of resolution. At the same time, my observation that 115 of the 156 

isolates in this dataset could be assigned to clades with a profile similarity of 90% or greater 

suggests that this level of discriminatory power does not compromise the ability to identify 

clades comprised of genetically similar isolates. It is noteworthy that although the CGF40 assay 

was developed using isolates primarily obtained from SWA, the dataset used for the 

comparative genomic analysis to identify potential CGF markers also included several genome-

sequenced isolates from international sources. Moreover, it is my intention to further validate 
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the CGF40 assay by examining A. butzleri populations in a pan-Canadian and an international 

context. 

Arcobacter butzleri were isolated from the stools of diarrheic and non-diarrheic human 

beings living in SWA, as well as from river and sewage samples throughout SWA during 2008 and 

2009. The clustering of isolates from human beings with isolates from river and sewage waters 

throughout SWA over the same time period suggests that it may be possible for A. butzleri 

strains to be transferred between people and their environment. Although it was not possible to 

identify clades that included isolates from human beings and non-human animals in the current 

study, this may be due a lack of overlap between sampling periods for human and non-human 

animals. Further research may identify a linkage between A. butzleri found in human beings and 

non-human animals through concurrent and comprehensive sampling; the rapid and inexpensive 

characterization of isolates using the developed CGF40 method will be very useful in this regard. 

To my knowledge no studies conducted to date have examined the carriage and 

shedding of A. butzleri strains in diarrheic and non-diarrheic human beings, and although 

Arcobacter species have been detected in and occasionally isolated from the stools of non-

diarrheic individuals (71, 156), this is the first time that A. butzleri has been isolated from stools 

of a non-diarrheic person sampled on two separate occasions. Individuals were sampled six 

months apart and periodic shedding of the same A. butzleri genotype suggests that strains of 

this bacterium may chronically colonise people without inciting disease. Colonization of healthy 

human beings by A. butzleri may occur in a similar manner to the closely related pathogen C. 

jejuni, which has been shown to colonise healthy people more frequently in areas with endemic 

rates of infection (224-226). Thus, it may be possible to relate genotypes to endemic disease 

rates by characterizing A. butzleri isolates from diarrheic and non-diarrheic human beings. 
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3.6. CONCLUSIONS 

Whole genome sequencing and comparative genomic analysis of A. butzleri isolated 

from diverse sources and demonstrated that accessory gene variation among strains can be used 

for high-throughput, high-resolution, and reproducible subtyping of this bacterium. Although 

WGS analysis will eventually become the gold standard in epidemiological genotyping of 

pathogenic bacteria, until WGS data are routinely deployed for surveillance of highly prevalent 

pathogens, the CGF40 assay described herein will allow the scientific community to address key 

knowledge gaps about the epidemiology of arcobacteriosis toward the prevention and 

mitigation of enteric disease. Furthermore, the CGF40 assay developed is highly deployable and 

will allow researchers and clinicians to efficiently compare the genetic diversity, persistence, and 

prevalence of A. butzleri subtypes in different sources, and to rapidly and efficiently identify 

relevant strains as candidates for WGS analysis. 
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CHAPTER FOUR 

Efficacy of wastewater treatment on Arcobacter butzleri density and strain diversity3 

4.1. ABSTRACT 

Arcobacter butzleri is a suspected waterborne enteric pathogen that is ubiquitous in the 

environment, but the degree to which wastewater treatment prevents A. butzleri entry into 

environmental waters and the risks posed are not well established. Untreated and treated 

wastewater samples (n=260) were collected weekly from the Lethbridge and Fort Macleod 

wastewater treatment facilities in SWA, Canada from May 2008 to April 2009. Human diarrheic 

stools (n=2709) from the CRH, which services communities in SWA, were processed daily. 

Arcobacter butzleri was isolated from stools and wastewater, and isolates were genotyped using 

a novel comparative genomic fingerprinting method. Densities of the bacterium were 

determined by quantitative PCR. High densities of A. butzleri were detected in untreated 

wastewaters at both Lethbridge and Fort Macleod, locations that use different wastewater 

treatment processes. At both locations, biological and mechanical wastewater treatment 

significantly decreased but did not eliminate the number of viable A. butzleri and fecal coliforms 

in effluent, and tertiary ultraviolet B (UVB) irradiation reduced numbers further. Overall genetic 

diversity of A. butzleri was greater in Lethbridge wastewater, but survival during treatment was 

not strain-dependent. Arcobacter butzleri isolated from diarrheic humans shared common 

subtypes and were most closely related to treated wastewater effluent. The current study 

demonstrates that wastewater treatment processes differentially affect A. butzleri viability, and 

viable cells enter environmental waters via wastewater effluent discharge and pose a risk of 

enteric disease in human beings. 

                                                           
3
 A version of this chapter has been accepted for publication as: Webb AL, Taboada EN, Selinger LB, Boras 

VF, Inglis GD. 2016. Efficacy of wastewater treatment on Arcobacter butzleri density and strain diversity. 
Water Research (accepted 11/08/2016). 
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4.2. INTRODUCTION 

Arcobacter butzleri is the fourth most commonly detected Campylobacter species or 

Campylobacter-like organism in human beings with enteric disease (10), but its mechanisms of 

transmission have yet to be determined. The presence of A. butzleri in drinking water has been 

linked to multiple enteric disease outbreaks (38, 39), and this bacterium possesses many genetic 

traits characteristic of waterborne free-living pathogens (56). Arcobacter butzleri grows in 

aerobic, anoxic, and anaerobic environments (3, 56), at temperatures as low as 10 °C (46, 227), 

and in the presence of a wide range of antimicrobial agents (19, 20). Arcobacter butzleri has 

been detected in human stools and livestock waste, and the presence of A. butzleri in surface 

waters has been linked to fecal contamination (36, 37). 

Recent studies indicate that A. butzleri in urban wastewaters survive treatment and are 

discharged into environmental waters (36, 37). WWTPs utilize a combination of mechanical (i.e. 

screens and sedimentation), biological (i.e. activated sludge and bioreactors), and enhanced (i.e. 

nutrient removal, chlorine, and UVB irradiation) processes (228, 229) to remove enteric 

pathogens prior to discharge of effluent into environmental waters. These methods limit the 

number of fecal coliforms that are released into environmental waters, but their effects on A. 

butzleri cell density, viability, and genetic diversity have not been documented. Considering that 

A. butzleri is a potential pathogen that displays greater survival capacity in water containing 

organic material, it is likely that environmental waters contaminated with A. butzleri serve as 

reservoirs of human infectious cells for this enteric pathogen. 

The purpose of the current study was to determine the efficacy of standard wastewater 

treatments on the viability of A. butzleri at two WWTPs that discharge treated municipal 

wastewater into the Oldman River in SWA, Canada, and to compare the genotypes of A. butzleri 

in wastewater with those from diarrheic people over a 1-year period. I hypothesized that 
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wastewater treatment would reduce the number of viable A. butzleri cells entering the Oldman 

River as effluent, and genotypes surviving treatment also occur in people with diarrhea. Primary 

objectives were to: (i) utilize novel quantitative PCR to measure total and viable densities of A. 

butzleri in wastewaters at various stages of the treatment process; (ii) compare the density of A. 

butzleri in Lethbridge and Fort Macleod wastewater (the two major municipal inputs in SWA, 

that utilize different treatment processes); and (iii) comparatively examine the genetic diversity 

of A. butzleri shed in stools from diarrheic people with those in wastewaters. 

4.3. MATERIALS AND METHODS 

4.3.1. Ethics Statement. The University of Lethbridge Human Subject Research Committee 

approved the collection and analysis of stool samples from diarrheic human beings (Internal File 

2012-015). In addition, the CHR Research Committee approved the transfer of diarrheic stool 

samples to Agriculture and Agri-Food Canada for the isolation of Arcobacter, Campylobacter, and 

Helicobacter species (Research Study Proposal 2012-02). 

4.3.2. Diarrheic stool collection and isolation of A. butzleri. Human diarrheic fecal samples 

(n=2709) were obtained daily from the CRH, which services Lethbridge and surrounding 

communities in the former Chinook Region of SWA from May 2008 to April 2009. Stool samples 

from diarrheic people were suspended in Cary-Blair medium (165) for transportation to the CRH. 

Data collected with samples included the date of stool production and patient age, sex, and 

residence (i.e. postal area). Arcobacter butzleri was isolated in a microaerobic environment (i.e. 

5% O2, 3% H2, 10% CO2, and 82% N2) using a combination of membrane filtration, direct plating, 

and enrichment at 30oC and 37oC (230). Two colonies per morphology per medium per sample 

were collected, streaked for purity on Columbia agar (DF0944-17-0; Difco) containing 10% sheep 

blood (CBA) in a microaerobic atmosphere, and examined microscopically for cell size, shape, 

and motility. Genomic DNA was extracted from isolated A. butzleri colonies using the DNeasy 



67 
 

blood and tissue kit (Qiagen Inc.) and an automated system (model 740; Autogen, Holliston, MA) 

according to the manufacturer’s specifications. 

4.3.3. Wastewater sample collection and processing. Untreated (n=104) and treated (n=156) 

wastewater samples were collected weekly from the Fort Macleod and Lethbridge WWTPs in 

SWA from May 2008 to April 2009. At the time of the study, the wastewater treatment process 

at the Fort Macleod WWTP consisted of a mechanical bar screen, grit removal, RBC activated 

sludge contact tank, secondary clarifier, solids removal to a digester and/or recirculated to front 

of contact tank, and treated effluent release to the Oldman River via a 3 km-long outfall line. At 

the Lethbridge WWTP, the wastewater treatment process consisted of a mechanical bar screen, 

grit removal, primary clarifiers, anaerobic, anoxic, and aerobic digesters, secondary clarifiers, 

removal of activated sludge, UVB irradiation of liquid effluent, and treated effluent release to 

the Oldman River via a 1 km-long outfall line. Untreated wastewater (i.e. raw sewage) was 

collected at both sites immediately after mechanical bar screening. Treated liquid effluent was 

collected at the end of the treatment process (i.e. immediately prior to effluent release into the 

Oldman River). At the Lethbridge WWTP, treated liquid effluent was collected immediately 

before and after UVB irradiation. 

Samples were collected, maintained on ice, and processed within 6 hr of collection. A 

total of 100 ml of each sample was filtered through a 150 mm pre-filter (#1001-150, Whatman 

International Ltd., Maidstone England) and a GMF grade 0.2 µm filter (#1842-090, Whatman). 

Both filters were vortexed (high setting) in 10 ml of phosphate buffered saline (PBS) (pH 7.X) to 

release particulates from the filters. The filters were removed, and the suspension was 

centrifuged at 14 900 X g for 10 minutes. All but 3.0 ml of supernatant was removed by 

aspiration. The pellet was suspended by vortexing (high setting), and the suspension was used 

for DNA extraction, quantitation of fecal coliforms, and isolation of A. butzleri. For DNA 
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extraction, aliquots (200 µl) of the pellet were placed in four 2-ml tubes. Ethidium monoazide 

(Invitrogen Canada Inc., Burlington, ON, Canada) was added to two tubes (4 µl; final 

concentration of 100 µg ml-1), and Optima water alone (4 µl) was added to the other two tubes 

under low-light conditions (216). Tubes were placed in the dark for 5 min, lids were opened, and 

all tubes were exposed to light emitted from a 500-W halogen light bulb for 1 min on ice; the 

light source was situated 10 cm from the samples. An IAC was also added to each sample (230). 

Samples were stored at -80oC. The remaining suspension was used to quantify fecal coliforms 

and to isolate A. butzleri. 

4.3.4. Fecal coliform enumeration. To enumerate fecal coliforms, 1.0 ml from each wastewater 

suspension was diluted in a ten-fold dilution series in PBS, and 100 µl of each dilution was spread 

on mFC Agar (Sigma-Aldrich) in duplicate. Cultures were incubated aerobically for 24 h at 45°C, 

and blue colonies were enumerated at the dilution yielding 30-300 CFU per dish. The mean of 

the two duplicate cultures was calculated. 

4.3.5. Isolation of A. butzleri from wastewaters. Arcobacter butzleri isolates in wastewater were 

recovered and DNA was extracted and identified as described for diarrheic stools. 

4.3.6. Quantitative PCR. Extraction of total DNA from wastewater samples was performed using 

the Powerlyzer Powersoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad CA) according to the 

manufacturer’s recommendations. Presence of extracted DNA was confirmed by quantitative 

PCR with primers targeting the added IAC, and quantitative PCR with primers targeting a single-

copy gene sequence unique to A. butzleri was performed on all successful extractions (230). 

Briefly, the IAC was a synthesized gene designed from a 268-bp sequence encoding a putative 

carbohydrate kinase (PfkB family; GenBank accession number AEH23732.1) within the genome 

of Pyrococcus yayanosii, a bacterium that is an obligate piezophilic hyperthermophilic archaeon 

isolated from deep-sea hydrothermal sites. The IAC (2 µl at 1 x 106 copies µl-1) was added to 
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concentrated wastewater samples before freezing. Primers to detect and quantify the IAC were 

IAC-f (3'-GGTATGCTAGCCCCGCTTAGGGT-5') and IAC-r (3'-TGCTCCAGAAAAGATGTCCAGCGG-5'). 

The presence and quantities of the IAC were measured by quantitative PCR amplification using a 

Stratagene Mx3005P qPCR System (Agilent Technologies, Santa Clara CA). Quantitative primers 

for A. butzleri (ddAbutzF, 5'-AGTGATGGTGGAGTTGCTAGTC-3', and ddAbutzR, 5'-

GTTGCAGGAGCTTTTTCACTCC-3') were designed using comparative whole genome sequence 

analysis; the primers targeted a single copy gene that was identified as part of a putative gene 

encoding the gamma subunit of quinohemoprotein amine dehydrogenase of the bacterium 

(NCBI reference sequence WP_004510536.1). Quantitative PCR detection of A. butzleri was 

carried out using a Stratagene Mx3005P qPCR System (Agilent Technologies). At the end of 

amplification, melt curve analysis was conducted. Samples were quantified in duplicate 

reactions, and the quantitative PCR data were analysed using MxPro (Version 4.10, Agilent 

Technologies Inc.) 

4.3.7. Subtyping of A. butzleri isolates. Arcobacter butzleri isolates from wastewater and 

diarrheic human stool samples were subtyped using a previously developed high-throughput 

and high-resolution CGF method (81) . Briefly, a set of 40 accessory genes representative of 

whole genome single nucleotide polymorphism phylogeny were identified via comparative 

whole genome sequence analysis, primers were designed and validated, and multiplex end-point 

PCR was completed with capillary electrophoresis to generate a 40-digit binary profile for each 

isolate. One A. butzleri isolate per site per week was arbitrarily selected for CGF characterization. 

Isolates were clustered at 95% fingerprint similarity (i.e. less than two locus mismatches) using 

simple matching with UPGMA and minimum spanning trees in Bionumerics (version 6.6, Applied 

Maths, Austin, TX). Similarity in A. butzleri populations between human diarrheic stools and 

wastewaters was calculated as the number of shared subtypes multiplied by 2, divided by the 
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sum of the number of subtypes, multiplied by 100. 

4.4. RESULTS AND DISCUSSION 

4.4.1. Densities in untreated in wastewater. High densities of A. butzleri DNA were consistently 

observed in untreated wastewater at the Lethbridge (Figure 4.1A) and Fort Macleod (Figure 

4.1B) WWTP. In previous studies Collado et al. (37) detected A. butzleri in 100% of sewage 

samples and in 96.3% of sludge. In addition, Stampi et al. (15) found A. butzleri to be viable at all 

stages of solid waste treatment (i.e. primary clarification, activated sludge, thickened sludge, and 

anaerobically-digested sludge). At the Lethbridge WWTP, approximately 29.5 ± 20.6% of total A. 

butzleri cells detected in untreated wastewater were deemed viable by qPCR, and at the Fort 

Macleod WWTP 14.4 ± 13.0% of total A. butzleri cells were viable. Culture-based quantification 

of A. butzleri in complex matrices such as wastewater is not accurate because no method of 

isolation is comprehensive for all strains of A. butzleri (73, 230). PCR methods have been shown 

to provide increased detection of A. butzleri in complex matrices such as feces (72, 230) and 

surface waters (62), but these methods target DNA that has been extracted from lysed cells 

regardless of their viability. Thus, the current study utilized qPCR of untreated wastewater 

samples to which ethidium monoazide (EMA) had been added prior to DNA extraction, because 

EMA is effective for live/dead cell differentiation of Campylobacter (216), Helicobacter (231, 

232), and Salmonella species (233). My results are likely an underestimation of cell viability 

because EMA can penetrate cells possessing an intact cell membrane (i.e. viable cells) (234). 

4.4.2. Wastewater treatment efficacy. Wastewater treatment greatly decreased densities of 

viable A. butzleri in Lethbridge (Figure 4.2A) and Fort Macleod (Figure 4.2B) wastewaters. The 

overall density of viable A. butzleri in treated wastewater at Lethbridge and Fort Macleod was 

0.71 log10 ± 0.85 cells ml-1 (99.8% reduction) and 1.13 log10 ± 0.77 cells ml-1 (81.5% reduction), 

respectively. Although qPCR did not show an appreciable reduction in densities of A. butzleri as a 
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Figure 4.1. Detection of A. butzleri DNA by quantitative PCR in 

untreated wastewater at the Lethbridge WWTP (A) and the Fort 
Macleod WWTP (B) from May 2008 to April 2009. Solid lines 

represent total A. butzleri DNA and dotted lines represent viable 
A. butzleri DNA. Viable A. butzleri cell density was determined by 
quantitative PCR of samples to which EMA had been added prior 

to sample storage and subsequent DNA extraction. The 
quantitative PCR primers target a portion of the putative gene 
sequence encoding the gamma subunit of quinohemoprotein 

amine dehydrogenase (WP_004510536.1), for which A. butzleri 
possesses a single gene copy (81). 

 
 
result of UVB irradiation (Figure 4.2C), the culture-based frequency of detection of A. butzleri in 

treated Lethbridge wastewater was significantly reduced (P<0.01) from 100% before UVB 

irradiation to 56% after UVB irradiation. This suggests that qPCR of samples treated with EMA 

may not be a reliable means of determining the effects of UVB irradiation on cell viability; likely 

because UV radiation disrupts the replicative ability of bacterial cells without compromising 
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Figure 4.2. Comparison of viable A. butzleri DNA by quantitative 
PCR in untreated wastewater and treated wastewater without 

UVB irradiation at Lethbridge WWTP (A) and Fort Macleod 
WWTP (B), and in treated wastewater immediately prior to and 

after UVB irradiation at the Lethbridge WWTP (C) from May 
2008 to April 2009. Solid lines represent untreated wastewater, 

dotted lines represent treated wastewater effluent prior to 
discharge into the Oldman River, and dashed lines represent 

treated wastewater immediately prior to UVB irradiation. The 
quantitative PCR primers target a portion of the putative gene 
sequence encoding the gamma subunit of quinohemoprotein 

amine dehydrogenase (WP_004510536.1), for which A. butzleri 
possesses a single gene copy (81). 
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membrane integrity (235, 236). This prevented accurate quantification of viable A. butzleri 

discharged into the Oldman river at the Lethbridge WWTP, although the density of viable A. 

butzleri in the Oldman River at the Fort Macleod WWTP effluent outfall site increased by 5.0 

cells L-1. The density of fecal coliforms in treated wastewater at the Lethbridge WWTP (Figure 

4.3A) and the Fort Macleod WWTP (Figure 4.3B) was reduced. In addition, the density of fecal 

coliforms in treated wastewater at the Lethbridge WWTP was further reduced by UVB 

irradiation. The overall density of fecal coliform indicators in treated wastewater at the 

Lethbridge and Fort Macleod WWTPs was 0.5 log10 ± 0.5 cells ml-1 (100% reduction) and 2.3 log10 

± 0.5 cells ml-1 (97.9% reduction), respectively. This equates to an increase in fecal coliform 

density in the Oldman River of 27.8 and 72.3 cells L-1 at the Lethbridge and Fort Macleod WWTP 

effluent outfall sites, respectively. Previous studies demonstrated that wastewater treatment 

reduces bacterial pathogens to acceptable densities prior to discharge (237), and that further 

treatment with UVB irradiation leads to greater reduction in bacterial pathogen viability (238, 

239). At the time of sampling for the current study, the Fort Macleod WWTP handled 1.5 million 

liters of wastewater per day using RBC activated sludge removal, secondary clarification, and 

biological treatment (i.e. aerobic digestion). At the same time, the Lethbridge WWTP handled 

36.0 million liters of wastewater per day using a process comprised of primary clarification, 

biological treatment (i.e. anaerobic, anoxic, and aerobic digestion), secondary clarification, and 

UVB irradiation. Both the Fort Macleod and Lethbridge processes reduced fecal coliform 

indicators to similar levels, although the Lethbridge WWTP handled greater initial densities of 

fecal coliforms. In contrast, the Lethbridge wastewater treatment process decreased viable A. 

butzleri densities to a lower level than the Fort Macleod process, despite greater initial A. 

butzleri densities in untreated wastewaters at Lethbridge. To my knowledge, my study is the first 

to provide a quantitative comparison of the viability and/or density of A. butzleri in  
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Figure 4.3. Detection of fecal coliform indicators in wastewater 
from the Lethbridge WWTC (A) and the Fort Macleod WWTP (B) 

from May 2008 to April 2009. Solid lines represent untreated 
wastewater, dotted lines represent treated wastewater effluent 

prior to discharge into the Oldman River, and dashed lines 
represent treated wastewater immediately prior to UVB 

irradiation. Fecal coliform indicators were enumerated by 
spreading 100 µl of ten-fold dilutions of processed wastewater 
samples on mFC Agar (Sigma-Adrich). Cultures were incubated 

aerobically for 24 h at 45°C, and blue colonies were enumerated 
at the dilution yielding 30-300 colony forming units (CFU) per dish. 

 
 
wastewater by treatment. My results indicate that the effectiveness of wastewater treatment on 

viability of A. butzleri varies based on the type of process employed (e.g. anaerobic, anoxic, and 

aerobic digestion versus aerobic digestion alone), while traditional fecal coliform indicators are 

greatly reduced regardless of the specific process. Wery et al. (240) found that the enteric 

pathogens Salmonella spp. and C. jejuni also tended to survive better than fecal indicators during 
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wastewater treatment, and previous studies showed that A. butzleri remains viable during 

sludge composting (15) and in surface waters contaminated by effluent discharge (36, 37). The 

high densities of A. butzleri that were present in untreated effluent entering WWTPs at the 

Lethbridge and Fort Macleod WWTPs suggests that this bacterium may be a suitable alternative 

pathogen indicator in treated solid and liquid waste. 

4.4.3. Comparative genomic analysis. Comparative genomic fingerprinting (81) was performed 

on 688 A. butzleri isolates, and 342 subtypes were identified (Figure 4.4). There was no change in 

A. butzleri genetic diversity during treatment at either wastewater facility, but overall genetic 

diversity was greater at Lethbridge compared to Fort Macleod (Table 4.1). This may be because 

wastewater input at Lethbridge is more varied than Fort Macleod; although both facilities handle 

human inputs, waste from pork, and chicken and cheese processing plants are present in 

Lethbridge (Doug Kaupp, City of Lethbridge, personal communication) but not in Fort Macleod 

(Dan Segboer, Town of Fort Macleod, personal communication). These additional inputs likely 

increase the genetic diversity of A. butzleri in Lethbridge wastewater because animal holding and 

processing facilities are suspected reservoirs for A. butzleri (50, 58). The lack of a decrease in 

diversity as a result of wastewater treatment indicates that resistance to deactivation by 

wastewater treatment is not strain-specific. Finally, A. butzleri isolated from untreated 

wastewaters at Lethbridge and Fort Macleod were most similar to their respective treated 

wastewaters, and A. butzleri from diarrheic samples were most closely related to effluent from 

both Lethbridge and Fort Macleod (Figure 4.5). These findings provide additional evidence that 

A. butzleri is present in municipal wastewater effluent as a result of surviving the treatment 

process, and not as a result of post-treatment contamination. 

4.5. CONCLUSIONS 

The association between A. butzleri and human illness is poorly defined. My findings 
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Figure 4.4. Cluster comparison of A. butzleri isolated wastewaters from the Fort Macleod and 
Lethbridge WWTPs, and human diarrheic stools. Clusters represent groups of A. butzleri isolates 
with at least 95% CGF similarity, and isolates that did not cluster are not shown. Lines represent 

CGF fingerprint mismatches between clusters, where each mismatch is equal to a 2.5% 
difference in subtype similarity. Minimum spanning tree analysis was conducted using 

Bionumerics (version 6.6, Applied Maths). 
 
 
suggest that A. butzleri from diarrheic human beings are able to survive the wastewater 

treatment process, and their presence in environmental waters may pose a risk to human 

health. In addition, A. butzleri isolated from the stools of multiple diarrheic humans often shared 

the same subtype in time and space, which demonstrates the value of high-throughput 

genotyping methods such as CGF for identifying potentially pathogenic A. butzleri subtypes.



77 
 

Table 4.1. Genetic diversity of A. butzleri in municipal WWTPs and diarrheic human beings. 

Sample source Isolates Subtypes Simpson's ID CI (95%) CINA (95%) 

Lethbridge untreated 128 106 0.996 0.994-0.999 0.993-1.000 
Lethbridge biological 158 118 0.995 0.992-0.997 0.991-0.998 

Lethbridge effluent 58 49 0.993 0.987-0.999 0.984-1.000 

Macleod untreated 162 93 0.984 0.978-0.991 0.977-0.991 

Macleod effluent 127 72 0.985 0.979-0.991 0.979-0.992 

Diarrheic stools 52 9 0.825 0.770-0.880 0.767-0.883 
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Figure 4.5. Genetic similarity of A. butzleri isolated from 

human diarrheic stools to isolates recovered in 
wastewater from Fort Macleod and Lethbridge WWTPs 

in SWA using CGF. Similarity between A. butzleri 
populations was calculated based on the proportion of 

shared subtypes. 
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CHAPTER FIVE 

Prevalence and Diversity of Waterborne Arcobacter butzleri in Southwestern Alberta, Canada4 

5.1. ABSTRACT 

Arcobacter butzleri is a potential enteric pathogen to human beings, but its reservoirs 

and modes of transmission are largely unverified. Microbiological and molecular detection and 

subtyping techniques can facilitate surveillance of A. butzleri in environmental reservoirs and 

hosts. Arcobacter butzleri were isolated from surface waters (n=676) and treated wastewaters 

(n=104) in the Oldman River Basin over a 1 year period using eight culture-based techniques. 

The frequency of detection of A. butzleri in surface water was seasonal, peaking during summer 

months. In the Oldman River mainstem the frequency of detection of A. butzleri was greatest at 

sites directly downstream of outfall sites, and in its tributaries the greatest frequencies were in 

regions with high densities of confined feedlot operations. Arcobacter butzleri isolates (n=500) 

were subtyped using a CGF method recently developed by my group. Arcobacter butzleri 

isolated from wastewater effluent were most similar to those from the Oldman River directly 

downstream of the first outfall site (21.8%), while Oldman River tributary isolates were most 

similar to those from the Oldman River directly downstream of the second outfall site (15.6%). A 

total of 64 A. butzleri subtypes (25.6%) were isolated at more than one sampling period, 

suggesting that A. butzleri persists over time in environmental waters contaminated by fecal 

material. Evidence indicated that viable A. butzleri enters the Oldman River and its tributaries as 

wastewater from both human and non-human animal populations, which may pose a risk to 

human health.  

 

                                                           
4
 A version of this chapter will be submitted for publication as: Webb AL, Selinger LB, Boras VF, Taboada 

EN, Inglis GD. 2016. Prevalence and diversity of waterborne Arcobacter butzleri in southwestern Alberta, 
Canada. 
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5.2. INTRODUCTION 

Arcobacter butzleri is a Gram negative Epsilonproteobacterium that is considered an 

emerging or potential enteric pathogen (17). This bacterium has been detected in diarrheic and 

non-diarrheic human beings, farm animals, animal products, wildlife, wastewater, and surface 

waters (36, 42, 55, 58, 71, 99). Infection by A. butzleri is thought to arise from the ingestion of 

food or water that has been contaminated with fecal material (17), but the mechanisms through 

which A. butzleri is transmitted from the environment to potential hosts are poorly understood, 

largely because high-resolution and high-throughput subtyping methods to facilitate 

epidemiological investigations of this bacterium have been lacking. 

 Molecular subtyping is routinely used to study the population structure of 

Campylobacter jejuni (223), an enteric pathogen that is closely related to A. butzleri. It is now 

recognized that individual strains of C. jejuni appear to be source-specific ‘specialists’ (e.g. to 

humans or non-human animal), while other ‘generalists’ can be associated with a variety of 

different hosts (241, 242). Comparison of C. jejuni strains isolated from host species and their 

environment has facilitated the identification of shared transmission pathways between 

reservoirs and host species (243). Given that A. butzleri and C. jejuni share many genetic 

characteristics (56) their epidemiology may be similar, so a similar approach may facilitate the 

study A. butzleri pathogenic genotypes, reservoirs of infectious strains, and modes of 

transmission. 

 Previous studies that utilized MLST found that A. butzleri is genetically diverse (99, 138), 

but evidence that A. butzleri subtypes are unique within or shared between sources (e.g. 

humans, non-human animals, surface waters) is lacking. This is likely because the relatively high 

cost of MLST hinders the examination of large numbers of isolates, which is often necessary to 

resolve cluster patterns in relation to source. Alternate subtyping methods such as AFLP (100) 
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and PFGE (31) have been applied to A. butzleri, but they are labour-intensive and may not 

discriminate between closely-related strains (81, 223, 244). The recently developed CGF method 

for A. butzleri was used to rapidly type a large number of isolates at high resolution (81).  

 Arcobacter butzleri has been detected in city wastewater (15, 36), and greater frequency 

of A. butzleri has been linked to fecal contamination of surface waters (36, 37). In SWA, the 

effluent of treated municipal wastewater (i.e. sewage) is discharged into the Oldman River 

watershed (146). This region possesses high densities of livestock production and animal waste 

that results from intensive agricultural activity enters the Oldman River and its tributaries as 

contaminated irrigation water (146, 147, 150). Given the ability of A. butzleri to remain viable in 

animal feces (48, 166), treated wastewater (15, 36), and surface waters (32, 37), it is likely that 

waterborne transmission of this potential pathogen constitutes an enteric disease risk. 

 The overall goal of the current study was to apply CGF to identify potential pathways of 

waterborne transmission of A. butzleri in the Oldman River watershed in SWA, Canada. I 

hypothesized that A. butzleri enters the Oldman River via its tributaries and city wastewater 

effluent. Primary objectives were to: (i) utilize selective media and enhanced plating techniques 

to isolate A. butzleri from treated effluent at the Fort Macleod and Lethbridge WWTPs (i.e. the 

two major municipal inputs), and surface waters in SWA; (ii) conduct CGF profiling to 

characterize and subtype a large number of A. butzleri isolates; and (iii) conduct comparative 

examination of subtype frequency in wastewater and surface waters. 

5.3. MATERIALS AND METHODS 

5.3.1. Sample collection and processing. Surface water samples (n=676) were collected weekly 

from 12 sites along the Oldman River and its tributaries in SWA from May 2008 to April 2009 

(Figure 5.1). Treated wastewater effluent samples (n=104) were also collected weekly from the 

Fort Macleod and Lethbridge WWTPs. It is noteworthy that at the time of sample collection, the  
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Figure 5.1. Surface water and wastewater sample sites in SWA, and their proximity to confined 

feeding operations. Water samples were collected weekly from May 2008 to April 2009. 
Confined feeding operations are defined by the Canadian Agricultural Operation Practices Act as 
“fenced or enclosed land or buildings where livestock are confined for the purpose of growing, 

sustaining, finishing or breeding by means other than grazing and any other building or structure 
directly related to that purpose”. The Oldman River Basin contains approximately 1.28 million 

head of cattle, 2.50 million chickens, and 0.40 million hogs (Alberta Agriculture, Food and Rural 
Development). Source: image is modified from Figure 7.4 in the Oldman River State of the 

Watershed Report 2010 (146) with permission from the authors. 
 
 
wastewater treatment process at the Fort Macleod WWTP consisted of a mechanical bar screen, 

grit removal, RBC activated sludge contact tank, secondary clarifier, solids removal to a digester 

and/or recirculated to front of contact tank, and treated effluent release to the Oldman River via 

a 3 km-long outfall line. In comparison, the Lethbridge WWTP used a mechanical activated 

sludge process comprised of a mechanical bar screen, grit removal, primary clarifiers, anaerobic, 
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anoxic, and aerobic digesters, secondary clarifiers, removal of activated sludge, UVB irradiation 

of liquid effluent, and treated effluent release to the Oldman River via a 1 km-long outfall line. 

Surface water and wastewater effluent samples (500 ml) were stored at 4°C for less than 6 hr. 

Air temperature data during the sample period were collected daily by the Lethbridge Research 

and Development Centre weather station. Subsamples of surface water (250 ml) and 

wastewater effluent (100 ml) were filtered through a 150 mm pre-filter (#1001-150, Whatman 

International Ltd., Maidstone England) and a GMF grade 0.20 µm filter (#1842-090, Whatman). 

Both filters were vortexed vigorously in 10 ml PBS buffer to release particulates. The filters were 

removed and the tubes were centrifuged at 14 900 x g for 10 min, and all but 3 ml of 

supernatant were removed by aspiration. Pellets were suspended by vortexing and used for 

culture-based quantification and/or isolation of fecal coliforms and A. butzleri. 

5.3.2. Detection and quantification of fecal coliforms. Samples were diluted in a ten-fold 

dilution series, and 100 µl from each dilution were spread on mFC Agar (Sigma-Aldrich) in 

duplicate. Cultures were incubated for 24 h at 45°C, and CFU were enumerated at the dilution 

yielding 30-300 dark blue colonies per dish. 

5.3.3. Isolation and identification of A. butzleri. Media used to isolate A. butzleri from 

wastewater and surface waters were CBA, KSA, ASIA (29), and JMA (167). Media for enrichment 

of A. butzleri were BBS, Arcobacter Selection and Isolation Broth (ASIB) (29), and Johnson and 

Murano Broth (JMB) (167). The isolation technique varied by medium; membrane filtration (158) 

was used for CBA and ASIA, direct plating of 25 µl (river water) and 10 µl (wastewater) of 

inoculum was used for KSA, and for enrichments 150 µl of inoculum was incubated in 2 ml of 

BBS, ASIB, and JMB before subsequent plating on the respective agar medium. All cultures were 

grown at high hydrogen atmosphere conditions (i.e. 5% O2, 30% H2, 10% CO2, and 55% N2), but 

incubation temperature varied by isolation method; KSA and CBA cultures were incubated at 
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37°C, membrane filtration ASIA cultures were incubated at 30°C, and enriched ASIA and JMA 

cultures were incubated at 30°C and 37°C. Two colonies per morphology per medium per 

isolation technique per sample were collected and streaked for purity on CBA, and examined 

microscopically for cell size, shape, and motility. Genomic DNA was extracted from isolates using 

the DNeasy Blood and Tissue Kit (Qiagen Inc.) according to manufacturer specifications and an 

automated system (Model 740, Autogen, Holliston, MA). Extracted DNA was identified as A. 

butzleri by endpoint PCR with ddAbutz primers, which are specific to A. butzleri (230). 

5.3.4. Subtyping of A. butzleri isolates. The CGF method (81) was used to characterize A. butzleri 

isolates recovered from surface water and wastewater effluent. One A. butzleri isolate per site 

per week was arbitrarily selected for CGF characterization. This system was repeated until 500 

isolated had been selected.   

5.3.5. Data analysis. Comparison of the efficacy of culture-based detection methods was 

performed using the Chi-square statistic in Sigmaplot (version 12.0, Systat Software Inc., San 

Jose CA). Comparison of CGF-based A. butzleri genotypes was performed using simple matching 

distance and minimum spanning trees in Bionumerics (version 6.6, Applied Maths, Austin TX). 

5.4. RESULTS AND DISCUSSION 

5.4.1. Isolation effectiveness by medium and technique. Although methods utilizing KSA were 

most effective for isolation of A. butzleri regardless of the sample source (Figure 5.2), 

enrichment techniques  had greater sensitivity for surface water samples (P=0.016) and direct 

plating had greater sensitivity for wastewater samples (P=0.001). Each of the eight methods was 

responsible for solely isolating A. butzleri from at least one sample, and non-target bacteria were 

observed using all methods (data not shown). This was consistent (i.e. lack of specificity and 

inclusivity) with the previous study that used the same methods to isolate A. butzleri from 

diarrheic stools (230). Others also reported that culture-based methods lack specificity and  
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Figure 5.2. Comparative sensitivity of culture methods for selective detection and/or 
isolation of A. butzleri. Sensitivity is defined as the proportion of A. butzleri positive 

surface water (n=173) and wastewater (n=81) samples from which each A. butzleri was 
isolated using each method. Isolation method conditions were as follows: Direct plating 

onto KSA at 37°C (method 1); enrichment culture in BBS and isolation on KSA at 37°C 
(method 2); enrichment culture in ASIB (166) and isolation on ASIA (166) at 30°C (method 

3); enrichment culture in JMB (167) and isolation on JMA (167) at 30°C (method 4); 
enrichment culture in JMB (167) and isolation on JMA (167) at 37°C (method 5); 

membrane filtration (158) on ASIA (166) at 30°C (method 6); membrane filtration (158) on 
CBA at 37°C (method 7); and enrichment in ASIB (166) and isolation on AISA (166) at 37°C. 

 
 
inclusivity for the detection of A. butzleri in microbiologically-complex matrices (10, 73). It is 

therefore important to utilize multiple media and plating techniques to achieve comprehensive 

isolation of A. butzleri.  

5.4.2. Detection of A. butzleri in surface waters. The overall frequency of detection of A. butzleri 

in surface waters peaked during the summer months before decreasing in autumn and winter, a 

trend which corresponded with Oldman River flow rates (Figure 5.3). There was no difference
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Figure 5.3. Frequency of detection of A. butzleri in surface waters in SWA (May 2008 to April 

2009). Frequency of detection is defined as the proportion of weekly surface water sample sites 
(n=12) that were A. butzleri positive by at least one culture-based detection method. Oldman 

River flow rate data was provided by Alberta Environment and Parks. 
 
 
(P=0.830) between frequency of detection of A. butzleri at sites immediately downstream of the 

Fort Macleod (71.7%) and Lethbridge (69.8%) outfall sites, and at both sites the frequency of 

detection of the bacterium was higher than at any other site along the Oldman River or its 

tributaries (P≤0.011). There was no difference (P=0.555) between frequency of detection of A. 

butzleri at the Battersea drainage (39.6%) and Little Bow River (45.3%), and the bacterium was 

more frequently isolated at both of these sites compared to other Oldman River tributaries 

(P≤0.019). Densities of fecal coliform indicators corresponded to A. butzleri isolation frequency 

(Figure 5.4). Others have demonstrated that A. butzleri remains viable in feces from cattle (166), 

pigs (48), and poultry (245). Aside from sites immediately downstream of wastewater outfalls, 

the frequency of detection of A. butzleri in the Oldman River and its tributaries was greater at  
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Figure 5.4. Frequency of detection of A. butzleri and density of fecal indicators at surface water 
sample sites in SWA from May to October 2008. Frequency of detection for each sample site is 
defined as the proportion of weeks (n=26) that were A. butzleri positive by at least one culture-

based detection method. Vertical lines associated with histogram bars represent standard 
deviation of the means. Sites are arranged geographically from west to east. 

 
 
eastern sample sites. As the Oldman River flows west to east from its source in the Rockies into a 

prairie agroecosystem of increasing agricultural activity, both in terms of contained feedlots 

(Figure 5.1) and ranging cattle (146). In particular, the Battersea drainage sample site channels 

waters from a region known as “feedlot alley”, which possesses a high density of confined 

feeding operations. Irrigation canals that divert water from the Oldman River and its tributaries 

to flow through confined feedlots return to their source river with significantly greater levels of 

fecal contamination (148), so it is likely that the greater frequency of A. butzleri at eastern 

sampling sites are the direct result of greater livestock inputs. 
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5.4.3. Detection of A. butzleri in wastewaters. The frequency of detection of A. butzleri in city 

wastewater effluent was greater (P<0.010) at Fort Macleod (100%) than at Lethbridge (55.8%). 

Previous studies found viable A. butzleri to be present in treated wastewater effluent (36), but to 

my knowledge my study is the first to compare the frequency of detection of A. butzleri in 

wastewater effluent treated using different treatment processes. At the time of sampling, the 

Fort Macleod WWTP treated 1.53 million liters of wastewater per day using mechanical bar 

screen, grit removal, RBC activated sludge contact tank, secondary clarifier, solids removal to a 

digester and/or recirculated to front of contact tank, and treated effluent release to the Oldman 

River via a 3 km-long outfall line (Dan Segboer, Town of Fort Macleod, personal communication). 

The Lethbridge WWTP handled 36.0 million liters of wastewater per day using a mechanical 

activated sludge process comprised of a mechanical bar screen, grit removal, primary clarifiers, 

anaerobic, anoxic, and aerobic digesters, secondary clarifiers, removal of activated sludge, UVB 

irradiation of liquid effluent, and treated effluent release to the Oldman River via a 1 km-long 

outfall line (Doug Kaupp, City of Lethbridge, personal communication). Although UV irradiation 

has been shown to reduce the amount of fecal-associated bacteria in wastewater effluent (238, 

239), no studies have examined its efficacy against A. butzleri. It was concluded that the 

Lethbridge wastewater treatment process at the time of the study was more effective than the 

Fort Macleod process for reducing the frequency of A. butzleri in effluent discharge, although 

further study is required to identify the exact cause of this increased effectiveness. 

5.4.4. Genetic diversity and persistence. Comparative genomic fingerprinting was conducted on 

500 A. butzleri isolates, and 250 subtypes were identified (Figure 5.5). Too few A. butzleri 

isolates for statistical comparison were recovered at four sites, but A. butzleri isolated from the 

remaining sites were highly diverse (Table 5.1). A greater proportion of subtypes isolated from
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Figure 5.5. Cluster comparison of A. butzleri isolated from wastewater and 

surface waters. Clusters represent groups of A. butzleri isolates with at least 95% 
CGF similarity. Isolates that did not cluster at 95% CGF similarity are not shown. 

Lines represent CGF fingerprint mismatches between clusters, where each 
mismatch is equal to a 2.5% difference in subtype similarity. Minimum spanning 

tree analysis was conducted using Bionumerics (version 6.6, Applied Maths). 
 
 
Lethbridge effluent were unique compared to Fort Macleod effluent. The sources of waste input 

at the Lethbridge treatment facility are more varied; large volumes of wastewater from pork, 

chicken, and cheese processing plants make use of the Lethbridge sewage system, while almost 

all of the input at Fort Macleod is of human and household origin. Considering that animal 
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holding and processing facilities are suspected reservoirs for A. butzleri (58, 177), the greater 

variety of A. butzleri inputs likely accounts for the increased genetic diversity in Lethbridge 

wastewater. Similarly, the lack of difference in A. butzleri genetic diversity (P≥0.077) between 

surface water sites may be attributed to the selection of sample sites within a relatively uniform 

watershed and agro-ecosystem, which would suggest similar inputs at all surface water sample 

sites. 

 A total of 64 subtypes (25.6%) were identified on more than one occasion (Figure 5.6). 

Previously, A. butzleri subtypes were found to persist in pig pens (58), poultry slaughterhouses 

(192), and dairy facilities (151). Others have suggested that wastewater is a potential reservoir 

for A. butzleri (177, 246), and my findings indicate that specific A. butzleri subtypes in 

wastewaters survive treatment to be introduced into and persist in surface waters. Arcobacter 

butzleri has been shown to remain viable for greater periods of time in water contaminated with 

organic material (47). Considering that both the frequency of A. butzleri detection and the 

number of persistent subtypes declined with increased distance from waste input sites, this 

suggests that wastewater acts as a long-term reservoir for A. butzleri, with surface waters 

contaminated by the bacterium from feces serving as a potential transmission medium. 

5.4.5. Isolate similarity. Arcobacter butzleri isolated from wastewater effluent was most similar 

to isolates from sites along the Oldman River that were immediately downstream of wastewater 

outfalls, and similarity decreased with increasing distance (Figure 5.7). In addition, the similarity 

between effluent and the Fort Macleod outfall site was significantly greater than that of the 

Lethbridge outfall site. These findings provide further evidence that A. butzleri enters the 

Oldman River as wastewater effluent, and that the Fort Macleod treatment process was less 

effective at removing viable A. butzleri than the Lethbridge process at the time of the study. 

Regardless of their geographical location, Oldman River tributaries were most similar to the
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Table 5.1. Genetic diversity of A. butzleri in surface waters and treated wastewater. 

Sample site a Source Isolates Simpson's 
IDb 

CI (95%) CINA (95%) 

Oldman River      
Highway 2 bridge Oldman River 1 NC NC NC 

Downstream of Fort 
Macleod 

Oldman River 59 0.974 0.954-0.995 0.952-0.997 

Monarch Oldman River 1 NC NC NC 

Popson Park Oldman River 2 NC NC NC 

Highway 3 bridge Oldman River 16 0.958 0.910-1.000 0.886-1.000 

Downstream of 
Lethbridge 

Oldman River 83 0.992 0.987-0.996 0.985-0.998 

Highway 845 bridge Oldman River 25 0.973 0.938-1.00 0.929-1.000 

Tributaries      

Willow Creek Tributary 23 0.933 0.871-0.995 0.861-1.000 

Belly River Tributary 4 NC NC NC 

St Mary River Tributary 13 0.923 0.805-1.000 0.784-1.000 

Battersea drainage Tributary 41 0.967 0.941-0.993 0.937-0.998 

Little Bow River Tributary 44 0.953 0.919-0.988 0.915-0.992 

Wastewater effluent      

Fort Macleod Wastewater 127 0.986 0.980-0.991 0.979-0.992 

Lethbridge Wastewater 58 0.993 0.987-0.999 0.984-1.000 
a Subsites are listed geographically from west to east, and their location with respect to SWA 
municipalities are indicated in Figure 5.1. 
b Arcobacter butzleri subtype diversity was not calculated (NC) for sample sites that had too few 
isolates to be statistically relevant. 
 
 
eastern regions of the Oldman River. Findings by Van Driessche et al. (25) suggest that A. butzleri 

can be transmitted both by direct contact and by sources such as water or feces. As these rivers 

and tributaries are subject to high densities of livestock production on rangeland and within 

confined feedlot operations, it is likely that these sites all receive A. butzleri via direct deposition 

of feces in water, and/or via precipitation and irrigation runoff containing animal fecal material. 

5.5. CONCLUSIONS 

Selective media and enhanced plating techniques were used to detect and isolate A. 

butzleri in surface water and wastewaters, and to link the presence of A. butzleri in the Oldman 

River and its tributaries in SWA with fecal contamination. Conventional treatment decreased, 

but did not eliminate the amount of viable A. butzleri in municipal wastewaters. In addition,
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Figure 5.6. Frequency of detection of specific A. butzleri subtypes in 

wastewater and surface waters in SWA, Canada. Frequency of detection 
refers to the sum of sampling weeks at which any particular subtype was 
detected, regardless of sample site or weeks elapsed between detection. 

 
 
subtype analysis indicated that A. butzleri is highly genetically diverse, that it remains viable in 

wastewater and surface waters, and that the bacterium enters surface waters as a result of 

human and non-human fecal contamination. My findings suggest that the presence of the 

potential pathogen A. butzleri in surface waters may constitute a risk to human health.  
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Figure 5.7. Genetic similarity of A. butzleri isolated from surface waters and wastewater 
to the Oldman River by CGF fingerprinting. Similarity in A. butzleri populations between 

each sample source and Oldman River regions is defined as the number of subtypes 
shared by a pair of sites multiplied by 2, divided by the sum of the number of subtypes at 
the pair of sites, multiplied by 100. Geolocation of tributaries was determined in relation 

to Lethbridge; Willow Creek, Belly River and St Mary River are western tributaries, and the 
Battersea drainage and Little Bow River are eastern tributaries. 
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CHAPTER SIX 

General Discussion 

6.1. RESEARCH GOAL 

The primary goal of my thesis project was to develop and apply novel tools to ascertain 

whether A. butzleri is a pathogen of human beings in the model agroecosystem of SWA. 

6.2. HYPOTHESES, FINDINGS, AND SCIENTIFIC CONTRIBUTIONS  

6.2.1. Hypothesis 1. I hypothesized that A. butzleri is detected more frequently, and in greater 

densities in human beings with diarrheic illness. To test this hypothesis, a comprehensive PCR 

method for detection and quantitation of A. butzleri in complex matrices was developed and 

applied to compare prevalence/densities of the bacterium in diarrheic and non-diarrheic stools 

obtained from people living in SWA (230). Arcobacter butzleri was prevalent in both diarrheic 

and non-diarrheic individuals, but A. butzleri cell densities were greater in diarrheic individuals. 

Thus, I reject my hypothesis that A. butzleri is detected more frequently in diarrheic individuals, 

although the component of my hypothesis stating that the bacterium will be present in greater 

densities was supported by my results and warrants further investigation. Aside from the 

validation of a reliable detection method for A. butzleri in complex matrices, the number of A. 

butzleri strains that were whole genome sequenced and the sequence data made available for 

future studies was tripled. This is important because development of molecular tools for the 

study of A. butzleri pathogenicity has been hindered by the lack of WGS data that is responsible 

for the poor current understanding of its genomic variability, and specifically, variability among 

A. butzleri strains isolated from different sources. Thus, my sequence data will facilitate the 

identification of conserved and variable regions within the A. butzleri genome, which is a critical 

component of the molecular biology of this bacterium. 

6.2.2. Hypothesis 2. I hypothesized that A. butzleri pathogenicity is strain-specific and that non-
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pathogenic A. butzleri strains are able to colonize human beings as a commensal bacterium. I 

developed and applied a CGF assay to subtype and compare A. butzleri isolates from diarrheic 

and non-diarrheic human beings (81). Arcobacter butzleri subtypes were shared by multiple 

diarrheic people in SWA during the same week, which suggests that clinically relevant strains of 

this bacterium exist. In addition, the same A. butzleri subtype was isolated from two fecal 

samples from a healthy individual that were collected 6 months apart; thus, some strains of A. 

butzleri may persistently colonize people as commensal members of the microbiota. These 

findings support my hypothesis that A. butzleri pathogenicity is strain specific and is able to 

colonize human hosts as a commensal. The putative pathogenic and commensal A. butzleri 

strains identified as part of this study may advance the validation of animal models for A. butzleri 

pathogenicity, and also contribute to future studies to elucidate the pathobiology of the 

bacterium (e.g. via whole genome comparison, virulence factor expression, and host response).  

6.2.3. Hypothesis 3. I hypothesized that A. butzleri infection of people in SWA is part of a 

complex web of transmission pathways between human beings and the environment. The 

quantitative detection method and CGF assay developed were applied to characterize the 

population structure of A. butzleri in SWA as a model ecosystem (247, 248). Findings provided 

strong evidence that A. butzleri is highly prevalent in environmental waters as a result of 

contamination from municipal and agricultural wastewaters, and that the presence of A. butzleri 

in environmental waters poses a risk to human health. These findings support my hypothesis 

that A. butzleri transmission occurs among human beings via contamination of the local 

environment. The comparison of A. butzleri prevalence and density in diarrheic and non-

diarrheic human cohorts, and wastewaters and surface waters in the same time and space is an 

unprecedented step in the elucidation of A. butzleri epidemiology. This is notable because 

human stool samples are difficult to obtain, especially in a manner that allows for 
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epidemiological comparison with healthy cohorts and their environment. For example, studies of 

A. butzleri prevalence in diarrheic patients often do not include a healthy control group (6, 41). 

This makes it difficult to determine whether the prevalence of A. butzleri in diarrheic sample 

groups is greater that the prevalence that would be expected in non-diarrheic individuals. The 

samples used in my project were obtained from a centralized medical laboratory that process all 

clinical samples for SWA, and my healthy cohort treatment group consisted of stools from non-

diarrheic individuals in the same geographical space and time as the diarrheic samples. Results 

showed that A. butzleri prevalence and densities in both human and environmental sources vary 

over time, and that some strains are source-specific while others are present in both human 

beings and their environment. 

6.3. REMAINING KNOWLEDGE GAPS AND FUTURE RESEARCH 

6.3.1. Elucidation of the contribution of livestock to the population dynamics of A. butzleri. 

During the course of my thesis research it became apparent that environmental waters and 

retail meats contaminated with feces from cattle, chicken, and pigs are a likely mechanism of A. 

butzleri transmission (52, 55). In addition, river waters and irrigation canals downstream from 

CFOs have increased levels of fecal contamination. However, samples were only collected at one 

location downstream from an area of high CFO irrigation/wastewater input, and in this case, no 

samples were obtained upstream of potential input sources. Considering the high density of 

CFOs in close proximity to surface waters in SWA, appropriate application of my CGF subtyping 

method may demonstrate a relationship between animal-associated A. butzleri subtypes with 

human diarrheic illness. An ideal scenario would be to temporally collect livestock, surface 

water, and human fecal samples (diarrheic and non-diarrheic) during the same time period. 

Greater focus should also be placed on contrasting densities and population dynamics of A. 

butzleri in animal feces at CFO wastewater discharge sites with those in surface waters upstream 
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and downstream of each site. In the future, my qPCR and CGF methods will be valuable to study 

the potential transmission of A. butzleri from animals and animal products to humans, in order 

to provide evidence that such a pathway constitutes a risk of disease. 

6.3.2. Elucidation of the contribution of crop agriculture to A. butzleri population dynamics. 

Arcobacter species have been detected on ready-to-eat vegetables including carrots (64), lettuce 

(66), and spinach (65), but the manner in which they are contaminated and the risks that such 

contamination poses to human health have not been extensively studied. The results of my 

thesis research support previous findings that A. butzleri remains viable in municipal wastewater 

and solid waste throughout treatment (15, 36, 37, 247, 248). Considering that municipal solid 

waste is routinely applied to fields as fertilizer (249) and that treated wastewater is used as 

irrigation water as part of water reclamation initiatives (250), it is possible that this bacterium is 

transmitted to vegetable crops prior to harvesting or during processing. Similar to the scenario 

presented previously for the contamination of livestock slaughterhouses, it is plausible that 

vegetable crops are contaminated with A. butzleri during fertilization and/or irrigation cause 

widespread contamination of processing facilities (64-66). My direct detection and CGF 

subtyping methods can be applied to screen ready-to-eat vegetables for A. butzleri prevalence 

and density from “farm to fork”, and CGF-based surveillance will facilitate identification the 

source of contamination.  

6.3.3. Coinfection dependent pathogenicity of A. butzleri. As previously presented in section 

1.3.4, detection of A. butzleri in the absence of known pathogens is not sufficient evidence that 

illness is incited by A. butzleri. Despite commonly being co-isolated with known pathogens (10, 

69-71, 230), the possibility that A. butzleri pathogenicity is dependent upon coinfection with 

other microorganisms has not been examined to date. Bacterial-viral coinfections have been 

reported previously (251, 252), but coinfection by two pathogenic bacterial species is poorly 
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understood. The majority of A. butzleri putative pathogenicity factors are genetically similar to 

those of closely related pathogens like C. jejuni, which suggests a common mechanism of 

infection, yet putative virulence factors critical to C. jejuni pathogenicity are missing from the A. 

butzleri genome (56). For example, C. jejuni virulence protein secretion is dependent on its 

flagellar apparatus, which likely functions as a type 3 secretion system (253, 254). However, the 

flagellar apparatus of A. butzleri is evolutionarily distinct from C. jejuni (56), and there is no 

evidence that the A. butzleri flagellar apparatus plays a role in pathogenicity. While the 

association between the presence of these putative virulence genes and A. butzleri adhesion 

and/or invasion is not well characterized (93, 120), A. butzleri has been shown to impair 

epithelial barrier integrity in enterocytes (94, 255). Thus, it is possible that A. butzleri facilitates 

invasion of host cells by a second pathogen such as C. jejuni, and that A. butzleri benefits from 

the resulting C. jejuni infection. Whether A. butzleri instigates, participates in, and/or benefits 

from the pathogenicity of a second microorganism is not currently known, and my molecular 

identification and characterization tools can be applied to test the importance of A. butzleri as 

an accessory and/or opportunistic pathogen.  

6.3.4. Validation of putative pathogenic A. butzleri strains in human beings using enterocyte 

and animal models. Currently, studies examining the infection of mammals by A. butzleri have 

utilized a limited number of A. butzleri strains in cell culture and animal models. However, the 

strains examined were arbitrarily selected without any direct evidence of pathogenicity. The 

majority of strains of closely related pathogens such as C. jejuni that are isolated from livestock 

have not been detected in diarrheic humans, and therefore may not represent a risk of infection 

for human beings (256, 257). In addition, both C. jejuni and A. butzleri have been detected in 

asymptomatic people (72, 258), so it is clear that at least some strains of these bacteria are non-

virulent under appropriate conditions (e.g. an immunologically competent host). Thus, there is a 
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significant chance that arbitrarily selected A. butzleri strains are non-pathogenic. To guard 

against this and to ensure the selection of appropriate strains, it is important to use high-

throughput genotyping methods such as CGF to identify A. butzleri strains that are present in 

both livestock and diarrheic humans, which either suggests transmission from one host to the 

other or a similar point of infection (242). Pathogenic strains of C. jejuni have been shown to 

possess unique virulence factors (130) and to modify gene expression (259) during infection, and 

similar A. butzleri studies would serve to elucidate its pathobiology. It would be beneficial to 

sequence the genomes of prospective pathogenic and commensal strains of A. butzleri, and to 

comparatively examine their pathobiology in enterocyte and animal models. Whole genome 

comparison of candidate pathogenic and non-pathogenic A. butzleri strains would allow for the 

identification and quantification of putative virulence factors and their expression during 

infection. As animal models of disease do not currently exist for A. butzleri (e.g. germ-free and 

gnotobiotic ASF mice), research should examine the use of alternative models in combination 

with rationale-based strain selection. For example, intestinal xenografts (i.e. an immunologically 

naïve model) (260) and intestinal loops (261) may be appropriate. My quantitative direct 

detection method will be of value in assessing evaluations of pathogenesis (e.g. measuring 

change in A. butzleri density over the course of the infection). 

6.3.5. Targeted temporal and geographic study design to increase statistical validity. The high 

genetic diversity of A. butzleri within and between reservoirs and host species necessitates 

comparison of a large number of isolates in order to draw conclusions regarding the local and 

global population dynamics of this bacterium. In addition, little is known about the changes in A. 

butzleri population structure that occur over time, so “snapshot” sampling cannot be considered 

representative of the diversity of subtypes within an ecosystem. Therefore, future studies should 

focus on isolating A. butzleri more frequently (i.e. daily) and in greater numbers (i.e. more 



 

100 
 

colonies per sample). At the same time, isolation methods should be tested for comprehensive 

isolation of a large number of diverse A. butzleri genotypes in order to mitigate the potential 

effects of culture condition bias on population structure analysis (262) .   

 Although methodological constraints remain a limiting factor because the costs involved 

(i.e. money and time) increase with longer sampling period, greater sampling frequency, number 

of sites sampled, number of isolation methods applied per sample, and number of isolates 

processed per isolation method. Many of these constraints can be mitigated via the 

implementation of an appropriate project design. For example, the sample period could be 

trimmed by focussing on summer months, during which my research findings indicate A. butzleri 

prevalence peaks in both environmental waters and diarrheic people. An emphasis on sampling 

sites closer to municipal wastewater outfall sites (i.e. directly upstream and downstream) and 

CFO irrigation canals should be prioritized because they provide high frequencies of A. butzleri 

isolation (36, 37). Finally, the lack of an effective standard culture-based isolation procedure may 

be circumvented by pre-screening water samples for A. butzleri DNA using my direct detection 

PCR primers to mitigate false-negative detection results based on the application of a limited 

number of isolation methods.  

6.3.6. Establishment of an international database for isolated A. butzleri CGF profiles. Access to 

a large number of subtypes is critical in order to understand and compare A. butzleri genetic 

diversity within and between populations. During my thesis research, I generated CGF profiles 

for 1150 A. butzleri isolates from humans, non-human animals, wastewaters and environmental 

waters. My findings, and those of others, indicated that A. butzleri is extremely genetically 

diverse (36, 81, 99). The establishment of an online database for A. butzleri CGF subtypes would 

facilitate characterization of A. butzleri genetic diversity using the largest number of isolates 

from many sample sets and sources. Although such a database exists for the MLST subtyping 
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method, only 598 isolates have been added to the A. butzleri pubMLST website (as of 20 March 

2016) since it was published in 2009 (138). The disparity between the sum of A. butzleri isolates 

that have been contributed to the MLST database and number of CGF isolates that were profiled 

as part of this thesis is likely due to a combination of the high-throughput nature of CGF and the 

relative impracticality of sequence-based methods such as MLST. A Canadian CGF profile 

database already exists for C. jejuni (263), which allows members of the scientific community to 

contribute to and benefit from this typing method, and a similar database for A. butzleri would 

further efforts to understand the molecular genetics and pathogenicity of this emerging 

pathogen. 
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