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Abstract

Forest disturbances significantly affect snowmelt dominated watersheds.

Given that snowmelt from mountain regions provides up to 80% of the

annual streamflow in the North American west, disturbances in these wa-

tersheds will impact water availability for downstream users. This study

used field data from stand-scale studies to represent forest disturbances in

a hydrological model in order to quantify the potential snow hydrology re-

sponse to varying spatial extent of disturbance. The sensitivity of snow ac-

cumulation and ablation response increased with disturbance severity and

extent of disturbance. Results may provide water resource management

with a greater understanding of the potential impact on post-disturbance

snowmelt runoff.
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Chapter 1

Introduction

1.1 Introduction

Snow is an important component of both regional climate and hydrometeorology

on most continents. The accumulation and extent of snow are major contributors

to global climate while snowmelt is the dominant hydrologic event of the annual

hydrograph for many watersheds worldwide (Elder et al., 1998). Snowmelt replen-

ishes reservoirs for water storage, hydropower generation, irrigation and recreation,

recharges soil moisture that is depleted throughout the previous summer and fall, and

is used for urban consumption (Steppuhn, 1981; Black, 1996). It is estimated that

approximately one billion people worldwide depend on melting snow and ice for their

basic needs (Barnett et al., 2005; Stern, 2007), thus understanding the factors that

influence the timing and volume of snowmelt runoff is a key objective in hydrology.

Snow processes, such as the timing and magnitude of snowmelt, are strongly af-

fected by climate change. Studies in western North America show that a warmer cli-

mate has resulted in reduced winter snow accumulation and earlier spring snowmelt

peaks, which has led to higher streamflow during the winter (December, January and

February), an earlier flood season and lower flow during the summer months (June,

July and August) (Cayan, 2001; Groisman and Davies, 2001; Leung, 2005; Stewart

et al., 2005).

Forest cover is also an important factor determining the timing and volume of

snowmelt runoff available not only for downstream human use, but for ecosystem

services such as timing of aquatic species life stages, dispersal mechanisms, migration

routes, and nutrition provision (Poff and Ward, 1989; Postel and Carpenter, 1997;

Winkler, 2001; Chang, 2003; Murray and Buttle, 2003; Rutter et al., 2009; Birkinshaw

et al., 2010). Snowmelt from forested mountainous regions provides up to 80% of the

annual streamflow in the North American west (Cayan, 2001), while forests in general
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provide nearly 65% of the clean water supply in the United States (Jones et al., 2009).

On a global scale, forested headwaters that are hydrologically dominated by snowmelt

produce 60% of the total runoff (Chang, 2003).

Given the importance of forests in streamflow, understanding the interaction be-

tween forests and hydrological processes is essential to the study of hydrology. The for-

est canopy intercepts snow that would otherwise reach the ground surface (Schmidt,

1991; Veatch et al., 2009). Forest canopy creates a platform for snow interception

which increases the surface-area-to-mass ratio of intercepted snow, exposing more

snow to wind (Schmidt, 1991) and increasing the amount of snow lost to the at-

mosphere by sublimation (López-Moreno et al., 2008). Sublimation of intercepted

snow may be one of the most important processes contributing to snow water equiva-

lent (SWE) loss in mid-latitude, continental climates because most seasonally snow-

covered areas are forested (Schmidt, 1972). A forest canopy also reduces net radiation

received at the snow surface, and acts to absorb and re-radiate both short-wave and

long-wave radiation (Pomeroy and Granger, 1997; Link and Marks, 1999; Ellis et al.,

2010). The canopy also reduces the turbulent energy transfers at the snow surface

by increasing surface roughness (Gelfan et al., 2004). Areas without forest cover ac-

cumulate more snow and have greater net radiation and turbulent transfers at the

snow surface relative to forested regions (Schmidt and Troendle, 1989; Winkler et al.,

2009), resulting in increased volume of melt runoff and more rapid liberation of water

from non-forested watersheds (Stednick and Troendle, 2004; Winkler et al., 2009).

Given the importance of forest cover to snow processes, both natural and an-

thropogenic forest disturbances significantly affect snow accumulation and melt. The

forest disturbances can result from logging, wildfire, drought, insect infestation, and

disease. Natural forest disturbance has increased with climate change, as a result of

drier, warmer conditions that increase drought stress and make trees more suscepti-

ble to disease, insect infestation, and wildfire (Westerling et al., 2006; Littell et al.,
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2009). Disturbances often result in forest canopy loss, altering the balance between

incoming short-wave and outgoing long-wave radiation as the forest canopy opens

(Link and Marks, 1999; Dale et al., 2001; Boon, 2009). Reductions in forest canopy

increase ground snow accumulation by decreasing snow interception. A lower forest

density can also enhance the snow ablation energy balance, increasing the timing

and magnitude of melt production, affecting water yield, and increasing the potential

for flooding (Gelfan et al., 2004; Winkler et al., 2004; Boon, 2009). The response of

snow processes to clearcutting is well known as water managers have clearcut forests

for decades to increase the amount of water produced from headwater watersheds

(Hibbert, 1967; Bethlalmy, 1974; Ziemer et al., 1991; Wigmosta and Burges, 2001).

However, the effects of disturbances such as mountain pine beetle (Dendroctonus

ponderosae Hopkins, Coleoptera: Curculionidae, Scolytinae; MPB) infestation and

wildfire have only recently been studied, thus our current understanding of these pro-

cesses is limited (Winkler et al., 2009; Bewley et al., 2010; Pugh and Small, 2011;

Schnorbus, 2011). Recent research suggests that MPB reduces the forest canopy suf-

ficiently to enhance snow accumulation and increase melt, but the nature of incident

snowfalls is a major driver of canopy interception even with a dead canopy (Boon,

2007, 2011). In terms of wildfire, reduction of the forest canopy by 75% of original

leaf area index (LAI) can result in greater energy fluxes and up to 30% more energy

available for snowmelt (Burles and Boon, 2011).

Freshwater supplies around the world have declined rapidly in the second half

of the twentieth century and are expected to decline further (Shiklomanov, 2000).

In southern Canada, average annual water yield declined at a rate of 3.52 km3 y−1

between 1971 and 2004 (Bemrose et al., 2010). As climate change and associated

forest disturbances continue, it is imperative to quantify the vulnerability of water

resources to these changes through detailed understanding of physical processes that

affect water resources (Dale et al., 2001). Our capacity to adapt to predicted changes
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in our water supply is limited without a clear understanding of the effects of natural

and anthropogenic disturbances on these water supplies (IPCC, 2007; Parry et al.,

2008).

Assessing the response of snow-dominated hydrology to forest change requires

an understanding of hydrological and ecological processes within a catchment and

the interactions between them. Field studies are often conducted to quantify the

dynamics of interrelated and often complex processes that govern water movement

into, through and out of a watershed. These are conducted at a range of scales,

including the sample-scale (e.g., sublimation of snow on a conifer branch), plot-scale

(e.g., runoff generation from a hillslope), and watershed scale (e.g., snowmelt runoff

generation following forest harvest) (Pomeroy et al., 1998a, 2012; Clark et al., 2009).

However, drawing conclusions regarding the effects of forest change on basin-

scale hydrology from field data alone is challenging. First and foremost are issues of

scale, as field data at the plot scale may not easily scale up to the watershed, while

watershed scale data fail to tell us what processes are operating at smaller scales to

drive total runoff. The second issue is one of transferability, in that field data may not

be appropriate for field studies beyond the watershed in which they were collected

due to specific hydrologic processes unique to that watershed. Finally, there are some

hydrologic processes that may not be measured because of a meteorological station

installation with few measurement instruments (Sidle, 2006).

To address these difficulties, paired watershed experiments are often used. This

experimental approach is designed to assess pre- and post-disturbance hydrology at

the watershed scale using high quality field-based observations of changing runoff pat-

terns (Reid, 1993). However, this study design is limited by the lack of experimental

replication across a full range of natural conditions (DeFries and Eshleman, 2004),

and uncertainty regarding which internal processes are driving changes in observed

outflow (e.g., peak flows and low flows) (Reid, 1993; DeFries and Eshleman, 2004).
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Additionally, our ability to recreate natural disturbance effects on watershed hydrol-

ogy in a field setting is limited given its difficulty, time requirement, and cost. As an

alternative, hydrologic modelling allows hydrologists to test and understand interac-

tions between hydrological processes and the factors that control them over time and

space in a simulated environment (Dunne, 2001). The integration of field data from

stand-scale studies with hydrological modelling is a highly effective process-based ap-

proach for quantifying and predicting snow hydrology response to forest disturbances

(Ziemer et al., 1991; Beckers et al., 2009).

Models have previously been applied to quantify the impact of MPB and wildfire

on snowmelt runoff response (van de Vosse, 2008; Bewley et al., 2010; Seibert et al.,

2010). Generally, these studies agree that disturbance affects the timing and mag-

nitude of snow accumulation and melt. However, these modelling studies either use

simplified representations of forest cover (Carver et al., 2009), a significant driver of

snow accumulation and melt, or analyze the effect of post-disturbance forest manage-

ment via salvage logging, rather than focusing solely on the disturbance itself (Alila

and Luo, 2007). Thus, the use of models to simulate snow accumulation and melt re-

sponse to forest disturbance remains limited despite its importance of this information

for sound forest and water management (Seidl et al., 2010).

1.2 Objectives

The goal of this thesis research is to quantify the effects of natural disturbance on

snowmelt generated water supplies in a forested upland catchment. This research has

two main objectives:

1. Initialize and validate a numerical watershed model for a highly instrumented,

forested, and snowmelt-dominated catchment.

2. Quantify the sensitivity of snow accumulation and ablation at the catchment
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scale to varying spatial extents of moderately severe wildfire and mountain pine

beetle infestation.

This thesis has eight chapters, the first of which is this introduction chapter.

Chapter 2 (Background), describes the biophysical and hydrological effects of forest

disturbance on forest canopy and snow hydrology; outlines the basics of hydrologic

modelling and simulation of watershed hydrology over varying temporal and spatial

scales, and describes how to select a hydrologic model. Chapter 3 (Study Area), de-

scribes the research watershed selected for this project, including the biophysical and

hydrological characteristics of this location, and the datasets used to parameterize and

validate model runs. Chapter 4 (Methods), describes the methodology for sensitivity

analyses and outlines the techniques used to initialize and validate the model, apply

the forest disturbance scenarios, and quantifying hydrologic response to disturbance.

Chapter 5 (Sensitivity Analyses and Model Performance), presents and discusses the

results of the sensitivity analyses and model performance tests to assess potential

model uncertainties. Chapter 6 (Snowcover Response to Forest Disturbance), quan-

tifies differences in modelled snow accumulation and ablation after simulated forest

disturbances. Chapter 7 (Discussion), explains response differences and identifies the

driving processes, links to other research, and defines possible sources of error. Chap-

ter 8 (Summary and Conclusions), summarizes the main research findings, and makes

recommendations for future research.
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Chapter 2

Background

2.1 Snow Accumulation and Melt in Forests

In forested, snow melt-dominated environments, snow hydrology is governed largely

by the forest canopy given its effects on interception, sublimation, and snow melt

runoff (Varhola et al., 2010) (Fig. 2.1).

Figure 2.1: Conceptual representation of the hydrologic cycle for an individual tree and for a forest
stand (from Smerdon and Redding, 2007).

2.1.1 Snow Accumulation

Coniferous canopies, which typically dominate mountain headwater basins, can in-

tercept and store up to 60% of incoming snowfall (Fig. 2.2) (Pomeroy et al., 1998b).

Thus sub-canopy accumulation is generally inversely proportional to canopy density.

However, studies show that snowfall interception differences between stands also vary

with the size and frequency of snowfall (Satterlund and Haupt, 1967; Satterlund,
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Figure 2.2: Conceptual representation of the process of snowfall interception in a coniferous forest
canopy (reproduced from Pomeroy and Gray, 1995).

1970). Snow interception is a function of the leaf area index (LAI) and branch elas-

ticity, which varies with air temperature, tree species and stand health (Schmidt

and Pomeroy, 1990; Schmidt, 1991; Hedstrom and Pomeroy, 1998; Boon, 2011). Dur-

ing large snowfall events, snow accumulation in the canopy can quickly increase be-

yond the interception capacity, and snow is unloaded from the canopy. Small snowfall

events, however, can accumulate snow within the canopy over longer timeframes, as

more time is required to reach the interception capacity. Thus snowfall size and fre-

quency may play a greater role in mediating snow transfer to the ground surface than

total canopy interception capacity (Satterlund, 1970; Schmidt and Pomeroy, 1990;

Schmidt, 1991; Varhola et al., 2010).

8



Loss of snow from the canopy occurs via unloading (as outlined above), melt,

and sublimation. Schmidt (1991) suggested that melt of intercepted snow is relatively

insignificant in North America, as it is more likely to unload than melt (Gubler and

Rychetnik, 1991). Loss of intercepted snow is also governed by wind speed during

snowfalls: high wind speeds (> 2 m s−1) reduce interception and minimize differences

in snow accumulation between forested and cleared sites (Miller, 1964; Wheeler, 1987;

Schmidt and Troendle, 1989).

While snow is in the canopy, the ratio of snow surface area to mass is larger than

for ground surface snow, increasing rates of turbulent transfer which can sublimate

intercepted snow back to the atmosphere (Bailey et al., 1997). Measurements of boreal

forest sublimation suggest that 10–40% of intercepted snow is sublimated (Hedstrom

and Pomeroy, 1998), while studies in alpine regions suggest that 15–32% is sublimated

(Hood et al., 1999; MacDonald et al., 2010). At wind-exposed alpine ridges devoid

of forest cover, removal of snow due to sublimation may be between 10 and 90%

(Strasser et al., 2007). High wind speeds at these locations have greater potential to

suspend snow particles, exposing them to greater latent heat fluxes (Bailey et al.,

1997; Pomeroy and Essery, 1999).

2.1.2 Snow Melt

Snow melt occurs via three phases (Dingman, 2002):

1. Warming : average snowpack temperature increases until reaching isothermality

at 0 ◦C.

2. Ripening : melting occurs but meltwater is retained within the snowpack. The

pack is ripe when it is saturated with liquid water and no more can be retained.

3. Output : continued inputs of energy produce water output from the pack.
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Snowcover may accumulate and melt more than once during the accumulation and

melt period so snowpack may go through the three phases of melt repeatedly (Male

and Granger, 1981; Dingman, 2002). The net energy exchanges (S) that determine

the progress of snow melt can be described by the following processes (all units in

W m−2) (Dingman, 2002):

S = K∗ + L∗ +QH +QE +QP +QG (2.1)

where, K∗ is net shortwave radiation, L∗ is net longwave radiation, QH is turbulent

exchange of sensible heat with the atmosphere, QE is turbulent exchange of latent

heat with the atmosphere, QP is heat input by rain, and QG is conductive exchange

of sensible heat with the ground. K∗ and L∗ are composed of incoming and outgoing

fluxes:

K∗ + L∗ = Lin −Kout + Lin −Kout (2.2)

Here, K∗ is related to Kin through

K∗ = Kin −Kout = (1− αs) (2.3)

where αs is the snow albedo. Forest-cover has a limiting effect on radiation to

snow by reducing incident shortwave radiation from reflection and absorption while

increasing incident longwave radiation from vegetation thermal emissions (Link and

Marks, 1999; Black et al., 1991; Reifsnyder and Lull, 1965). Shortwave radiation in

forests is reduced as follows:

τ =
Kin

Kout

(2.4)
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where τ is the forest shortwave transmittance. Reductions in incident shortwave

radiation to the snow surface are often offset by canopy longwave emission, which is

enhanced when snow albedo is high, and in high latitudes or altitudes where atmo-

spheric longwave emissions are comparatively low (Sicart et al., 2004; Jeffrey, 1970).

In forested environments, the dominant component (60-90%) of the snowmelt

energy balance is radiation, which has both short- (K) and longwave (L) components

(Pomeroy and Gray, 1995). The percentage of diffuse and direct incident K and

L at the snow surface is determined by cloudiness, day length, solar angle, sky-view

factor (the degree to which sky-view is obstructed by terrain) and canopy transmission

(McGaughey, 1984; Oke, 1987; Pomeroy and Dion, 1996; Bailey et al., 1997; Dingman,

2002). Diffuse K input ranges from 10% of net shortwave under clear-sky, up to 100%

under overcast conditions or under dense canopies (Oke, 1987; Bailey et al., 1997;

Lawler and Link, 2011). L is largely influenced by sky-view factor, atmosphere and

canopy temperature, and atmosphere and forest emissivities (Essery et al., 2008;

Lawler and Link, 2011). Turbulent heat fluxes (QH , QE) are reduced under forest

canopies relative to non-forested surfaces, given that increased land surface roughness

reduces wind speeds (Marks and Winstral, 2001; Boon, 2009). QP enhances snowmelt

by transferring heat to the snowpack and QG is the conduction of heat between the

snowpack and ground surface (Oke, 1987; Dingman, 2002). Given forest cover effects

on radiative and turbulent fluxes, sub-canopy snow melt rates are lower than melt

rates in open areas (Storck et al., 1999; Spittlehouse and Winkler, 2004), and are

inversely proportional to canopy density given its control on radiation transmission

to the snow surface (Molchanov, 1963; McKay and Adams, 1981). Changes to forest

canopy structure will thus alter the energy available to melt snow.
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2.2 Climate Change and Snow

Given the strong relationship between snow cover and climate, snow hydrology is

highly sensitive to climate change. Global Circulation Model (GCM) predictions for

North America indicate a range of air temperature and precipitation shifts in both

the winter and summer seasons under standard climate change scenarios (Fig. 2.3)

(IPCC, 2007).

Predictions for western North America indicate an increase in winter air tempera-

ture and an increase in the proportion of precipitation that falls as rain (IPCC, 2007)

which has already been observed (Mote, 2006). Warming is expected to be greater

at higher altitudes as a result of snow-albedo feedback effects: as snow covered area

decreases and the snowpack duration declines, more dark land area is exposed to ab-

sorb and re-emit incoming radiation, with subsequent effects on warming the lower

atmosphere (Beniston, 2003). Given the changing proportion of rain versus snow,

SWE will be reduced and snow melt will peak earlier in the season. This has already

led to higher flows during winter months, an earlier flood season and less flow during

summer months (Stewart et al., 2005; Mote, 2006; IPCC, 2007).

2.3 Forest Disturbance

Forests are highly susceptible to natural disturbances driven by changing climate

(Dale et al., 2001; Walther et al., 2002; Beniston, 2003; Carroll et al., 2006; Soja

et al., 2007). The increase in average summer air temperature and decrease in summer

precipitation has subjected forests to drought, leaving them increasingly susceptible

to insect infestation, disease and wildfire (Mattson and Haack, 1987; Adams et al.,

2009; Littell et al., 2009). A changing climate is thus likely to simultaneously affect

snow cover and forest cover, with poorly understood impacts.

The two disturbances of particular importance in western North America are
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Figure 2.3: Temperature and precipitation changes over North America from GCM simulations.
Top row: Annual mean, December January February and June July August temperature change
between 1980 to 1999 and 2080 to 2099, averaged over 21 models. Middle row: same as top but for
fractional change in precipitation. Bottom row: number of models out of 21 that project increases
in precipitation (IPCC, 2007).
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mountain pine beetle mountain pine beetle (Dendroctonus ponderosae; MPB) and

wildfire. MPB has reached epidemic proportions in recent years as air temperatures

at higher elevations and in more northerly latitudes have increased, expanding the

insect’s range into regions where cold winter air temperatures previously restricted

establishment (Bentz et al., 1991; Shore and Safranyik, 1992; Carroll et al., 2006).

Additionally, changes in snow-dominated hydrology as a result of climate change have

increased wildfire severity, intensity and the length of wildfire season (Johnson and

Larsen, 1991; Westerling et al., 2006). Studies show that forest canopy change due

to disturbance (pine beetles, wildfire, harvesting) can alter both interception and

the energy balance, altering ground snow processes (Koivusalo and Kokkonen, 2002;

Boon, 2009; Burles and Boon, 2011).

2.3.1 Mountain Pine Beetle

Mountain pine beetle is endemic to forests in the Western Cordillera, but since 1996

has reached epidemic proportions. Infestation of mountain pine beetle occurs when

there is an abundance of large, old (> 80 years) lodgepole pine (Pinus contorta),

which are most susceptible to infestation (Safranyik, 1978; Shore and Safranyik, 1992;

Taylor and Barton, 2003; Safranyik and Carroll, 2006). Pine beetles pierce the bark of

the tree to feed on the cambium, and then lay eggs in this layer. A blue stain fungus

carried on the beetles mouthparts attacks the phloem, starving the tree of nutrients;

within approximately two weeks, the tree dies (Ballard et al., 1984). Once the tree

dies, the canopy begins to change colour; typically green needles turn bright red, fade

to brown and eventually become grey as needles and small branches are lost (Mitchell

and Preisler, 1998). The rate of change is dependent on weather in subsequent years:

hot, dry weather withdraws any remaining moisture and results in more rapid colour

change. Needles can remain in the canopy for 3-5 years after trees are killed, but as

they are lost, the canopy opens and dense stands thin (Safranyik and Carroll, 2006).
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Depending on the initial forest structure, beetle-killed stands may retain or release

live understory vegetation which can in some cases offset the effects of overstory loss

(Uunila et al., 2006).

The reduction in canopy density following MPB reduces interception, thus in-

creasing snow reaching the ground. This snow then melts sooner as more radiation

reaches the snowpack through the less-dense canopy (Boon, 2007, 2009; Bewley et al.,

2010; Boon, 2011; Pugh and Small, 2011). Reduced canopy density also reduces sur-

face roughness, increasing wind speeds and subsequent turbulent heat transfers. This

increases the role of sensible and latent heat in snow melt (Koivusalo and Kokko-

nen, 2002; Boon, 2009). These changes can result in increased peak-flow magnitudes,

which increases proportionally with disturbance severity (Schnorbus and Bennett,

2010). Additionally, soil moisture increases in beetle killed stands as a result of re-

duced canopy evapotranspiration and enhanced retention in accumulated litter can

also increase the volume of overland flow (Clow et al., 2011; Penna et al., 2011).

2.3.2 Wildfire

Wildfire activity has increased and intensified due to increasing air temperatures

and decreased summer precipitation (Flannigan et al., 2005; Shakesby and Doerr,

2006; Littell et al., 2009; Westerling et al., 2011). Depending on wildfire intensity,

forest canopy is either largely or completely removed, with trunks and few branches

remaining. The severity of wildfire is ranked by the amount and rate of heat release,

which affects post-wildfire forest structure (Seidl et al., 2010).

While the effect of fire on snow-dominated hydrological systems is not well known,

recent studies indicate that the loss of forest canopy reduces interception, thus more

snow accumulates (Winkler, 2011). It also increases radiation reaching the snowpack

and can decrease land surface roughness, consequently increasing wind speeds and

sublimation (Burles and Boon, 2011). Longwave radiation incident on the snow surface
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declines, but the reduction is balanced by the increase in shortwave radiation (Burles

and Boon, 2011; Winkler, 2011). This results in greater peak flows: up to 120% greater

after wildfire compared to pre-wildfire conditions (Stonesifer, 2007; Seibert et al.,

2010).

2.3.3 Limitations of Previous Studies

Most of the post-disturbance studies outlined above have been conducted at the

stand scale, thus the effects of MPB and wildfire at larger watershed scales is not well

understood. The few previous watershed-scale MPB studies have focused largely on

the cumulative effects of MPB and salvage harvesting, a management approach that

involves complete removal of beetle killed stands (Alila and Luo, 2007; Alila et al.,

2009; Schnorbus and Bennett, 2010; Schnorbus, 2011). Stonesifer (2007) and Seibert

et al. (2010) looked at the watershed-scale effect of wildfire on streamflow; however,

these studies either used undocumented parameters or simplistic representations (not

physically based) of post-wildfire forest canopy.

Watershed-scale studies that assume complete disturbance of the entire water-

shed do not incorporate spatiotemporal variability in forest disturbances. The forest

landscape is composed of a mosaic of stand types with varying structure due to in-

terspecific competition and past disturbance effects (Halpern and Spies, 1995; Brown

et al., 1999; Coulson et al., 1999). Current disturbances affect the forest landscape

in varying ways: pine beetle is more likely to attack stands in close proximity, while

wildfire effects are a function of fire intensity and topography (Amman and Baker,

1972; Nelson et al., 2003; Westerling et al., 2006; Aukema et al., 2008; de la Giroday,

2010). These varying patterns of disturbance will result in varying snow accumulation

and melt responses which, when summed at the watershed scale, will have different

effects depending on the disturbance distribution across the watershed.

Studies generally agree that the response of snow accumulation and melt in dis-
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turbed forest stands is intermediate to these processes in undisturbed versus and

cleared forests. Snow is intercepted less, accumulates more, and melts faster and

sooner in beetle-killed and burned stands (Boon, 2007; Stonesifer, 2007; Boon, 2009,

2011; Burles and Boon, 2011; Pugh and Small, 2011; Winkler, 2011). However, given

the rapid expansion of MPB-related forest disturbances and the episodic nature of

wildfire, the traditional method of studying pre- and post-disturbance effects on hy-

drology has not been feasible for most studies (Winkler and Boon, 2010). Without

sufficient pre-disturbance data, analyzing the impact of the difference between post-

disturbance and undisturbed forest, and the transitional phase between them, is chal-

lenging.

Numerical modelling provides an alternative approach to conducting pre- and

post- disturbance studies, as it allows us to digitally modify undisturbed forest stands

based on field data. We can then represent a mosaic of these stands at the water-

shed scale, to test the sensitivity of snow accumulation and melt processes to post-

disturbance forest change (Winkler, 2011). Data from undisturbed stands can be used

as a baseline against which disturbance scenarios are compared, allowing for predic-

tion of the hydrological impacts of forest disturbances in regions that have not yet

been physically disturbed (Winkler and Boon, 2010; Pomeroy et al., 2011; Schnorbus,

2011). This is one of the first watershed-scale studies of beetle and wildfire distur-

bance in snowmelt dominated watersheds, and focuses on the snow accumulation and

ablation processes that drive runoff given a mosaic of forest disturbance across a

watershed.

2.4 Hydrological Modelling

Hydrologic models provide simplified, conceptual representations of the hydrologic

cycle, and are used for both hydrologic prediction and to better understand hydro-

logic processes. Models range in complexity and functionality depending on their
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application, and the research question to be answered.

2.4.1 Spatial Representation

Hydrologic models represent a watershed in model space in one of three ways (Fig.

2.4):

1. Lumped models represent watersheds by lumping the average spatial distribu-

tion of input/output variables and physical process parameters of the watershed

into a single unit (Clarke, 1973). This single unit represents a generalization of

the modelled extent, and thus has a low spatial resolution. These models are

unable, for example, to account for water movement from steep mountainous

terrain to slopes of lower relief (Carpenter and Georgakakos, 2006). The Water

Resources Evaluation of Non-point Silvicultural Sources (WRENSS) model is

an example of a lumped model. It calculates all hydrological processes for an

entire watershed based on one input dataset and assumes the whole watershed

responds uniformly (Swanson, 2004).

2. Semi-distributed models use physiographic basin properties such as soil type,

vegetation cover and topography to divide a watershed into discrete, homoge-

nous regions with common hydrologic properties (e.g., Hydrologic Response

Unit; HRU) (Singh, 1989). It assumes that each HRU responds in a hydrologi-

cally similar fashion to external forcings. The Cold Regions Hydrological Model

(CRHM) is an example of a semi-distributed model. It defines HRUs across

the landscape and calculates the individual hydrologic response for each HRU,

which is then aggregated into a basin-wide response.

3. Fully-distributed models explicitly account for the spatial variability of input

variables, usually by partitioning the watershed into a network of equally sized

grid cells (Kampf and Burges, 2007). The Distributed Hydrology Soil Vegeta-
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tion Model (DHSVM) is an example of a fully-distributed hydrological model

because it calculates all hydrological processes for each cell in a digital eleva-

tion model (DEM) grid that covers the entire watershed, and also calculates the

interaction of hydrological processes between grid cells.

Figure 2.4: Simplified examples of spatial representation in hydrological modelling: (A) lumped
model, (B) semi-distributed, and (C) fully-distributed.

Selecting a model with simple or complex spatial representation is usually de-

pendant on data availability. A lumped model is generally selected for watersheds

with limited hydrological and topographical data, while a fully-distributed model is

applied to watersheds with greater data availability. In the past, basin size and com-

puter processing speed may have driven model selection, but this is much less of an

issue today.

2.4.2 Process Representations

Models typically incorporate one of three approaches when defining the numerical

equations used to simulate hydrologic processes.

1. Empirical approaches are based on mathematical equations derived from evalua-

tion of experimental observations (Refsgaard and Knudsen, 1996). For example,
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the temperature index method of calculating snow melt assumes an empirical

relationship between air temperature and melt rate (Hock, 2003):

∆w = (K + L)/(pw × λf ) +Mr × Ta (2.5)

where, ∆w is daily snow melt (cm day−1), K is shortwave radiation input, L

is longwave radiation exchange, pw is liquid water content (1000 kg m3), λf

is latent heat of fusion (0.334 MJ kg−1), Mr is restricted melt factor (2.0 mm

day−1 ◦C), Ta is air temperature (◦C).

2. Analytical models are run using a series of known functions that solve simplified

mass and energy conservation equations used to describe change in hydrologic

systems (Kampf and Burges, 2007). The Regional Hydro Ecological Simulation

System (RHESSys), a GIS based watershed model that calculates snow melt

from simulated daily shortwave radiation, is an example of analytical modelling

(Coughlan and Running, 1997):

qmelt = αs(Sf/k) (2.6)

where, qmelt is snow melt, αs is snow surface albedo, Sf is amount of simulated

daily shortwave radiation reaching forest floor (MJ m−2 day−1), and k is latent

heat of fusion (3.5 x 105 MJ mm−1 m−2)

3. Physically based models are built upon the conservation equations of mass,

momentum and/or energy (Kavvas et al., 2004). For example, the Distributed

Hydrology Soil Vegetation Model (DHSVM) uses a physically-based snowpack

energy balance model to calculate snow melt from input variables measured
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directly in the field (Anderson, 1968; Wigmosta et al., 1994):

csW

(
dTs
dt

)
= Rns+Qs +Qt +Qp +Qm +Qg (2.7)

where, cs is standardized reference evapotranspiration rate from a vegetated

surface (mm h−1), W is net radiation at the vegetated surface (MJ m−2 h−1),

Ts is temperature of the snowpack (◦C), t is time (h), Rns is energy exchange

at the snow-air surface (MJ m−2 h−1), Qs is sensible heat transfer by turbulent

convection (MJ m−2 h−1), Qt is energy lost to evaporation and sublimation or

energy gained through release of latent heat during condensation (MJ m−2 h−1),

Qp is heat advected to the pack by rainfall (MJ m−2 h−1), Qm is internal latent

heat lost by melting, or heat gained by refreezing liquid water (MJ m−2 h−1), Qg

is heat transfer by conduction from the snow-ground interface (MJ m−2 h−1).

Selecting the appropriate process representation in a hydrologic model depends

largely on data type and availability. Empirical models can run simulations with

minimal and easy to acquire data, such as simulating snow melt from air temperature.

Analytical models allow for simulation of snow melt but first require a GIS to simulate

the incoming solar radiation on a particular slope. Physically-based models typically

require extensive field datasets at an hourly time step.

Regardless of the model representation (empirical, analytical, or physical), hy-

drological processes can be calculated either at a point or over an area. In order to

simulate hydrological processes over space, however, the results of each calculation

must be routed from one model region to another. Individual hydrological processes

are thus interconnected between HRUs or grid cells. In CRHM, once a threshold

condition is exceeded, snow is moved from one HRU to another, and is subject to

processes in this HRU. For example, once wind speed is sufficient to enable suspen-

sion and transport, snow may blow from a clearcut and be deposited in a forest. Once
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deposited in the forest, the forest canopy acts upon the newly deposited snow whereas

in the clearcut HRU there was no snow-vegetation interaction.

2.4.3 Models Used in Forest Hydrology

While there are many hydrologic models in existence, several key models are regularly

used by the forest hydrology community. RHESSyS is a semi-distributed, analytically-

based GIS-modelling framework that has been used to quantify land use change im-

pacts on runoff generation (Whitaker et al., 2003; Tague and Band, 2004). DHSVM is

a fully-distributed, physically-based forest hydrology model developed to simulate the

effects of vegetation, soil and topography on the energy and water balance and has

been applied to many forest hydrology scenarios in Canada and the United States, in-

cluding land use change and the hydrologic effects of logging and wildfire (Wigmosta

et al., 1994; Storck et al., 1998; Alila and Beckers, 2001; Stonesifer, 2007). Hydrol-

ogiska Byrns Vattenbalansavdelning (HBV) is a semi-distributed, empirically-based

hydrologic model that has been applied globally. Examples of applications of HBV

include modelling the effects of both land use change and future climate scenarios

on runoff generation (Bergstrom, 1995; Lindstrom et al., 1997; Liden and Harlin,

2000; Andreasson et al., 2004; Jasper et al., 2004). Topography based hydrological

model (TOPMODEL) is commonly used for overland and subsurface flow in the

United States and Europe, and has strong groundwater and water table components

(Beven and Kirkby, 1979; Lamb et al., 1998; Cameron et al., 1999; Gunter et al.,

1999). Finally, the University of British Columbia Watershed Model (UBCWM) is a

semi-distributed, empirically-based watershed model that has previously been used

to model the effects of MPB on streamflow characteristics (Quick and Pipes, 1977;

Alila and Luo, 2007).

When selecting a model to examine the effect of forest disturbances on snow

processes, the model must be able to represent the forest canopy, as well as the
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processes that govern sub-canopy snow accumulation and ablation. The canopy must

be able to be modified by adjusting key model parameters. Additionally, given the

complex spatial distributions of soil types, land cover, and meteorological conditions

particular to the study site, the model selected must be able to incorporate spatial

complexity.

RHESSyS has previously been applied to land use change scenarios, but these

studies were of simple forest cover change (e.g. clearcutting) as the model does not

have a strong interception module (Tague and Band, 2001). DHSVM is a useful model

for simulating the impact of forest cover change on snowmelt hydrology, given that

forest disturbance studies have successfully been completed previously, and it al-

lows for complex representations of spatially distributed physical processes. However,

DHSVM is highly parameterized, requiring parameter values well beyond the scope

of data available at the study site. While it has been applied to the study site in the

past (Alila and Beckers, 2001), this study application focused largely on the effect

of logging roads on streamflow. As a semi-distributed model, HBV has good repre-

sentation of spatial complexity in soils, topography and climate. However, because

this model uses empirical representations of watershed processes and forest canopy,

its ability to represent forest disturbances is limited.

2.5 The Cold Regions Hydrological Model

2.5.1 Model Description

This study applies the Cold Regions Hydrological Model (CRHM), a physically based ,

semi-distributed modular software platform for building hydrological models (Pomeroy

et al., 2007) that uses a Microsoft Windows interface and is written in the C++ pro-

gramming language. Users select modules from a process module library that CRHM

links to physical measurement data to simulate basin hydrology. As a semi-distributed

model (capable of lumped modelling by using one HRU), CRHM can represent spa-
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tially complex basins (Pomeroy et al., 2007), and uses a range of empirical, analytical

and process-based algorithms that the user can select based on the type and range

of available input data. Each process module uses parameters and state variables

to simulate hydrologic response for each homogeneous HRU. Additionally, CRHM

can process interactions between HRUs to simulate intra-basin hydrological processes

such as flow and runoff between HRUs, and runoff out of a basin and can be run with

minimal calibration (Abbot et al., 1986; Beven, 1989; Grayson et al., 1992).

2.5.2 Model Selection Justification

Selection of an appropriate hydrologic model is based on the particular watershed

characteristics, research questions, and time, data, expertise and funding constraints

of a given project (Beckers et al., 2009). The study watershed is small (< 5 km2),

relatively uniform in aspect and slope, and has largely homogeneous forest density

(see Chapter 3); therefore, a semi-distributed model is appropriate for representing

spatial variability in watershed physiographic characteristics (Beckers et al., 2009).

Given that the study watershed is affected by snow processes, a model that can ac-

curately simulate these processes is required. CRHM is capable of representing most

hydrologic processes in a watershed that are critical for forest disturbance simula-

tion (Fig. 2.5) and was found to be one of the most capable models for simulating

forest management scenarios that require manipulation of forested and clearcut en-

vironments (Beckers et al., 2009). An extensive dataset from the study site allows

for use of a physically-based modelling approach and the ability of CRHM to modify

internal algorithms based on available data is highly useful. The model is moderately

parameterized, and field data are available to assist in selecting parameter values.
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Figure 2.5: Conceptual diagram of individual modules and interactions between them in CRHM
(from Pomeroy et al., 2007). The Green-Ampt Infiltration module determines the surface infiltration
rate.
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2.5.3 Previous CRHM Applications

CRHM is primarily a prairie/tundra model with a strong focus on cold regions hydrol-

ogy (i.e. blowing snow, frozen soils) (Pomeroy et al., 2007). As such, it has largely been

applied outside of the western Cordillera. However, CRHM was able to successfully

simulate both snow melt runoff from a small alpine basin in the Front Ranges of the

Canadian Rocky Mountains (DeBeer and Pomeroy, 2010), and to simulate snow accu-

mulation and melt in coniferous forest environments (Ellis et al., 2010). This indicates

that it is a useful analytical and/or predictive tool to quantify the mass and energy

balance of snow in forests and clearings. A recent model inter-comparison found that

CRHM simulated snow accumulation and melt well in both clearcut and forested sites

relative to 33 other snowpack models (Rutter et al., 2009). While this study did not

directly compare individual model performance, CRHM was reported to have a low

normalized root mean square error (RMSE) and no outliers when simulating SWE in

both site types (Fig. 2.6) (Rutter et al., 2009).

Ellis (2011) found that CRHM was able to capture the timing and magnitude

of snow accumulation and melt both under forest canopy and in forest clearings.

The poorest simulations of SWE occurred when accumulation was significantly lower

in forest sites relative to other sites, which may be expected given that shallower

snowpacks are highly sensitive to model errors in energy and mass balance. Mod-

elled SWE was good at the beginning and peak of winter accumulation but poorer

towards the melt period, suggesting a melt rate lag. Substantial late season snowfall

may result in particularly large lags in snow melt, likely due to an overestimation of

the additional energy deficit to the snowpack (Ellis, 2011). Thus changing the snow

energetic algorithms within CRHM during large snowfalls may improve snow melt

timing. Representation of daily and cumulative mass loss to sublimation was satisfac-

tory; however, sensitivity analysis has shown that sublimation estimates within the

model are highly responsive to errors in canopy interception. This may be indicative
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Figure 2.6: Box plot summaries illustrating the performance of individual models for all years at
open and forested sites, from the SnowMIP2 model comparison study. CRHM is represented by CRH
in this figure and a box is drawn around both open and forest model performance. Solid horizontal
lines on each box are lower and upper quartile, and median values. Dashed vertical lines extend from
box ends to 1.5 times the interquartile range; outliers beyond the dashed lines are omitted (from
Rutter et al., 2009).

27



of CRHM’s rigorous method of representing snow unloading from forest canopy. At a

single paired clearing-forest site, CRHM was able to accurately represent the energy

balance in both an open and sub-canopy snow surface (Ellis, 2011). Errors in esti-

mating short and longwave radiation were small but generally increased under forest

canopy, likely due to the increasing number of combined energy terms. Collective

errors in simulating the sum of energy available for snow melt were small and likely

due to miscalculations from individual energy terms cancelling each other out (Ellis,

2011).

2.5.4 Model Limitations

CRHM is able to simulate complex hydrological processes for watersheds of different

scales and across varying time scales; however, complexity is not without difficulty

(Beckers et al., 2009). As model complexity increases, the number of qualified users

with model experience and expertise decreases. Fewer qualified modellers increase the

resources and time required for model initialization and validation. Additionally, few

studies have applied CRHM to forest disturbance scenarios (Pomeroy et al., 2012);

therefore, the supporting literature is limited. Physically based models also require

significant discussions with field personnel and other researchers to define appropriate

parameter values and determine internal processes specific to the watershed, and

extensive field data to run and validate the model. However, this study was able to

capitalize on a long record of snow, meteorological and streamflow data that were

readily available for this study site. Additionally, the site has been under study for

20 years, so field personnel were able to provide detailed information on watershed-

specific processes, data collection and field observations that are often not be available

in other watershed modelling projects.
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2.6 Summary

Snow processes are strongly influenced by the presence of a forest canopy at the stand

and watershed scale. Forest disturbances open the canopy, increasing snow accumula-

tion and changing the rate and timing of snowmelt compared to undisturbed stands.

To date, stand scale studies of forest disturbances have improved our understanding

of snow accumulation and ablation below disturbed forest canopy; however, studies

of forest disturbances, and a mosaic of forest disturbances at the watershed scale are

deficient and require further examination.
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Chapter 3

Study Area

3.1 Introduction

Research for this thesis was conducted at the Upper Penticton Creek watershed

(UPCr) in the Okanagan Basin, British Columbia (BC), Canada. This chapter out-

lines the UPCr watershed experiment, then describes the hydrologic significance of

the study area within the Okanagan Basin, defines its biogeoclimatic characteristics

and outlines the meteorological, snow and hydrological research program underway

as part of the UPCr experiment.

3.2 Okanagan Basin

The Okanagan Basin is located in south-central BC with a small southern portion

located in northeast Washington (WA), USA (Fig. 3.1). The basin is approximately

160 km in length, (8, 200 km2), and feeds water south to the Columbia River. The

elevation range of the landscape surrounding the Basin is approximately 1,100 m,

with valley bottom elevation at approximately 340 m asl (Toews and Allen, 2007).

The basin lies largely within the Thompson Plateau region which consists of volcanic,

sedimentary and metamorphic rocks that were uplifted and subsequently eroded by

glacial and fluvial processes (Roed and Greenough, 2004).

Due to the rain-shadow effect of the Coast and Cascade Mountain Ranges, the

Okanagan has a dry continental climate. Average annual air temperatures at Okana-

gan Lake level are approximately 6 ◦C, while winter (December, January and Febru-

ary) air temperatures average −3.5 ◦C and summer (June, July and August) air tem-

perature average 15 ◦C (Cohen and Kulkarni, 2001). Annual precipitation averages

approximately 600 mm y−1 and varies with elevation and location within the basin

(Brewer et al., 2001; Toews and Allen, 2007). According to the National Climate
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Figure 3.1: Location of the Okanagan Basin. Dot represents location of Upper Penticton Creek.
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Data Archives, the proportion of precipitation that falls as snow is approximately

25% (2011). Between April and mid-July, high elevation snowpacks above 1,200 m

melt to produce peak flows, of which approximately 120 mm of water reaches Okana-

gan Lake (Neilson-Welch and Allen, 2007). Approximately 85% of precipitation is

lost through evapotranspiration and evaporation from lakes (Cohen and Kulkarni,

2001). Mean annual groundwater recharge rates are estimated to be (22 mm y−1)

and (40 mm y−1) in the valley bottom and upland areas, respectively (Summit Envi-

ronmental Consultants Ltd, 2005).

The dominant land uses in the Okanagan Basin are agriculture and urban/rural

residential uses; this region is home to most of the orchards and vineyards in the

province (Cohen and Kulkarni, 2001). Agriculture in this semi-arid region relies on

irrigation, thus freshwater supply is essential for sustaining the local agricultural econ-

omy (Cohen and Kulkarni, 2001). The urban population will be affected by changing

water supply, which may be a challenge for water management planners given that

population in the Basin was 310,000 in 2001, and is predicted to reach 450,000 by

2031 (Cohen and Kulkarni, 2001; Demographics Analysis Section: BC Stats, 2009).

Predicted climate change will substantially affect water supply and demand in the

Okanagan Basin (Taylor and Barton, 2003). Global circulation models (GCM) predict

warmer and wetter winters relative to the 1961-1990 climate normal; scenarios suggest

that by the 2050s there will be an increase in winter air temperature of approximately

0.5–2.5 ◦C, a 10% increase in early winter precipitation and a 0–5% decrease in mid-

winter to early spring precipitation (Spittlehouse, 2006). In summer, drought-like

conditions are likely to increase as the scenarios suggest an increase in summer air

temperatures of 2–4 ◦C, and a decrease in precipitation of 0–35%. These changes will

likely increase the susceptibility of forested areas in the region to natural disturbances

(Overpeck et al., 1990; Westerling et al., 2006; Hicke and Jenkins, 2008; Littell et al.,

2009).
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3.3 Upper Penticton Creek

The study is focused on the Upper Penticton Creek (UPCr) watershed, located 26 km

northeast of Penticton, British Columbia (Fig. 3.2). UPCr consists of two headwater

tributaries: 240 Creek and 241 Creek, which feed Penticton Creek. The 240 Creek and

241 Creek watersheds flow south; each is approximately (5 km2) in size, with gentle

slopes that range in elevation from 1,600 to 2,000 m (Winkler et al., 2004). Mean

annual air temperature is 1.9 ◦C, mean minimum temperature is −7.2 ◦C and mean

maximum temperature is 12.6 ◦C. Mean annual precipitation is 690 mm, about 50%

of which falls as snow with peak snowpacks 1-1.5 m deep (Winkler et al., 2008). Total

annual flow from each watershed ranges from (0.8–3 million km3), totaling approx-

imately 30–60% of annual precipitation (Winkler et al., 2004). The watersheds are

forested with lodgepole pine (Pinus contorta), Engelmann spruce (Picea engelmannii)

and subalpine fir (Abies lasiocarpa). In the lodgepole pine stands, tree spacing is fairly

homogeneous, while the spruce and fir stands have a more clumped tree distribution

(Winkler et al., 2008). Trees are > 100 years old, up to 26 m tall, with canopy density

ranging from 35–50% depending on location in the watershed. Forest floor soils are

thin (< 4 cm) and well drained, as all soil horizons are low in clay and high in coarse

fragments. Past glacial activity is evidenced by coarse-grained granitic rocks that are

covered by glacial till and glacio-fluvial sand and gravel (Winkler et al., 2008).

The Upper Penticton Creek Watershed Experiment was established in 1982 to

monitor the long-term effects of natural and anthropogenic forest disturbances on hy-

drologic processes in the semi-arid Okanagan basin. This experiment follows a paired

watershed design, for which pre- and post-logging measurements were collected in

the logged and unlogged (control) watersheds. One watershed served as a control

while the other was clearcut in increments up to 50% over an eight year period (Win-

kler et al., 2008). Investigations of stand-scale and site-specific hydrologic processes
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Figure 3.2: Stream network, monitoring stations, and harvested regions in the Upper Penticton
Creek watershed; including 240 Creek, 241 Creek and Dennis Creek watersheds (from Winkler et
al., 2004). This study focuses on 241 Creek watershed.
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include measurements of net precipitation, interception, evaporation, transpiration,

soil moisture and ground water at six meteorological stations and six snow courses.

Streamflow is measured at a Water Survey of Canada gauge site at the outlet of

each watershed. The long-term dataset at UPCr also includes measurements from

specific experiments, including: watershed delineation, soil and vegetation classifica-

tion, snow surveys, water quality, channel surveys and climate stations with hourly

measurements of wind speed and direction, relative humidity, air temperature, solar

radiation and precipitation. This study uses data from two meteorological stations

in 241 Creek where hourly meteorological data (solar radiation, air temperature and

humidity, wind speed, soil and snow temperature) were collected between 1999 and

2009 (Table 3.1). Measurements of snow depth and precipitation were collected over

11 snow accumulation and melt periods (1997-2008) in the 241 Creek catchment.

Table 3.1: Input data, including duration of record for data collected at UPCr and applied to
CRHM

Dataset Duration of record

Solar radiation (W m−2) 10 Oct 1999–1 Aug 2009 (Hourly)
Air temperature (◦C) 10 Oct 1999–1 Aug 2009 (Hourly)
Relative humidity (%) 10 Oct 1999–1 Aug 2009 (Hourly)
Wind (m s−1) 10 Oct 1999–1 Aug 2009 (Hourly)
Precipitation (mm) 10 Oct 1999–1 Aug 2009 (Hourly)
SWE (mm) Feb–May 2000–2009 (Bi-weekly surveys during snowmelt)

Extensive meteorological and topographic measurements of the watershed have

allowed for an understanding of how the watershed responds hydrologically pre- and

post-harvesting. The data from UPCr can be used to parameterize a hydrological

model for current forest conditions (mature forest and clearcut), and by applying

known or theoretical parameters from forest disturbances (i.e. mountain pine beetle

and wildfire), Upper Penticton Creek can be used as an experiment for modelling

forest disturbances in the Okanagan region.
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Chapter 4

Methods

4.1 Introduction

This chapter outlines the methods used to model the response of snow accumulation

and ablation to forest disturbances in 241 Creek (241Cr) (a sub-basin of the Up-

per Penticton Creek (UPCr) watershed) using the Cold Regions Hydrological Model

(CRHM). The specific objectives of this chapter are to: 1) describe the field data used

for this study, and the pre-processing of this data for model runs; 2) define the equa-

tions used by CRHM, the parameters and variables required to run the equations,

and the assumptions implicit within CRHM; 3) define the methods for validation of

model output using (1); and 4) outline forest disturbance scenario development and

application, and analysis of model output.

4.2 Field Data

Meteorological data used in this study were collected at the lower meteorological

station at 241Cr (P1; Fig. 4.1), using a Campbell Scientific CR1000 data-logger and

the instruments listed in Table 4.1. Average hourly data was recorded based on 60

second measurements of incoming solar radiation, air temperature, relative humidity,

wind speed, and precipitation (Table 4.1, Table 4.2). While this station is not located

within the watershed, conditions are similar to those at the lowest elevations of 241Cr.

Snow survey data have been collected annually at 241Cr since 1999 in two forested

and clearcut site pairs. The lower elevation pair is out of the watershed but repre-

sents within-watershed conditions (Fig. 4.1, Table 4.2). Snow surveys were conducted

weekly or bi-weekly from February or early March until late May or early June, de-

pending on snow accumulation conditions and funding availability. Snow water equiv-

alent (SWE) was measured using the Standard Federal snow sampler and weighed
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on a spring scale that provides direct values of SWE (Goodison et al., 1981). The

following values were calculated annually from the field dataset: April 1 SWE, maxi-

mum SWE, date of 0 SWE, average melt rate, day of year of maximum SWE, day of

year when continuous melt started, SWE at onset of continuous melt, day of year of

onset of maximum melt, and maximum melt rate. Average melt rate was calculated

as the average SWE lost per day between peak SWE and snow disappearance. The

maximum melt rate was defined as the maximum melt rate of SWE loss between peak

SWE and snow disappearance.

Figure 4.1: 241Cr meteorological stations and snow survey locations.
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Table 4.1: Instruments and measurement height

Variable Instrument model Instrument
accuracy

Height
above
ground
(m)

Incoming solar
radiation (W m−2)

LiCor LI200 pyranometer ± 5% 3

Air temperature,
relative humidity (◦C)

Campbell Scientific HMP35C;
in multi-plate radiation shield

±0.4 ◦C, ± 3% 2.5

Wind speed (m s−1) MetOne 013 wind speed sensor ± 2% 4
Precipitation (rain;
mm)

Texas Electronic TR525i
tipping bucket

± 1% 0.5

Snow depth Campbell Scientific UDG01
ultrasonic depth gauge

± 1 cm 2

Table 4.2: Meteorological and snow survey collected at 241Cr and used in this study

Dataset Duration of record

Solar radiation (W m−2) 10 Oct 1999–1 Aug 2009 (hourly)
Air temperature (◦C) 10 Oct 1999–1 Aug 2009 (hourly)
Relative humidity (%) 10 Oct 1999–1 Aug 2009 (hourly)
Wind speed (m s−1) 10 Oct 1999–1 Aug 2009 (hourly)
Precipitation (mm) 10 Oct 1999–1 Aug 2009 (hourly)
Snow surveys Weekly and bi-weekly in 1995–2008

(survey grids in both clearcut and mature forest)

4.3 GIS Data

To characterize the vegetation and topographic properties of 241Cr, spatial input

data were obtained from the British Columbia Ministry of Forests, Lands, and Nat-

ural Resource Operations (Fig. 4.2). These data were part of the Terrain Resource

Information Management (TRIM) program to catalogue vegetation and elevation

data (Government of British Columbia, 2010). Vegetation data, including leaf area

index (LAI ), canopy cover (area of the ground covered by a vertical projection of the

canopy (%)), vegetation distribution, species, age and stem density shape files were

created through a combination of aerial photo and satellite imagery analyses, and
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ground sampling. A 25 m digital elevation model (DEM) was created by the TRIM

program using aerial photography and stereoscopic air photo interpretation. Using

Raster Calculator and Spatial Analyst in ArcGIS 9.3.1, watershed boundaries, slope,

aspect and elevation ranges were derived from the DEM.

4.4 Structure and Application of CRHM

CRHM functions through interaction between observations, parameters, and mod-

ules. Observations are measured meteorological data used to drive the model at each

timestep (hourly for this study). The data in Table 4.3 are required at each timestep.

Table 4.3: Input variables

Input variable

Incident solar radiation (Qsi, in W m−2)
Air temperature (T ∗

a, in ◦C)
Relative humidity (RH, in %)

Wind speed (u, in m s−1)
Precipitation (P, in mm)

The model uses meteorological data from a single station and extrapolates it across

the watershed for distributed modelling. Ta, RH, and P were distributed across the

watershed using a lapse rate calculated from measured meteorological data (-2.87

◦C km−1): the lapse rate was calculated as the average (1999–2008) change in air

temperature with elevation between the low and high elevation meteorological stations

(P1 and PB, respectively) (Fig. 4.2). The low lapse rate value relative to the mean

adiabatic lapse rate of -6 ◦C km−1 is noted, and may be affected by local influences

at one or both stations. Incident shortwave radiation is corrected for slope and aspect

across the basin based on Granier and Ohmura (1970).

Two sets of parameters were defined based on a combination of measured field

data and values from the literature. First, parameters were defined for topography

and hydrological response units (HRUs) which serve to represent the physiographic

39



Figure 4.2: Forest cover and topographic characteristics of 241Cr: canopy cover (A), elevation (B),
slope aspect (C), and slope angle (D).
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characteristics of the watershed. HRUs divide the watershed into discrete units of

homogeneous elevation, slope, aspect, and LAI, each of which is assumed to have

a homogenous hydrological response (Table 4.4) (Winkler, 2001). Parameters were

also defined for calculation of specific hydrological processes at each timestep. The

user determines the initial model setup by selecting individual modules and specific

algorithms within each module based on data availability, quality, and the purpose of

the modelling exercise (Fig. 4.3).

Table 4.4: User defined parameters

User defined parameter

HRU area (km2)
HRU aspect (o)
Elevation (m)

Ground slope (◦)
HRU latitude (◦)

Maximum snow load per branch area (Sbar, in kg m−2)
Leaf area index (LAI, m2 m−2)

Snow surface albedo (αs, dimensionless)
Fresh snow adjustable albedo (αf , dimensionless)

Adjustable albedo decay time constant for melting snow (τ , in s)

LAI is defined as the needle area per ground unit area, and is often used as a

canopy interception parameter in forest studies. However, this term does not include

the total surface area available to collect snowfall. Values for LAI in this study were

measured by the LI-COR LAI-2000 Plant Canopy Analyzer (Gower and Norman,

1991). The LAI-2000 measures the effective leaf area index (LAI ’), which includes

the total horizontal area of stems, needles and leaves per unit of ground, and is

calculated by LAI (Ω), where Ω is the stand clumping index. Disregard for clumping

may result in an underestimation of LAI by up to 62%, and subsequent decrease in

amount of snow retained in the canopy. Therefore, LAI ’ is more applicable for snow

interception studies than the physical leaf area of the canopy (Hedstrom and Pomeroy,

1998) because all surfaces of the canopy are incorporated in its calculation. While
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more accurately defined as LAI ’, LAI is the parameter label for canopy calculations

in CRHM, and will be referred to as such throughout this document.

Modelling snow accumulation and ablation in a forest must incorporate two im-

portant factors: 1) the interception of snow by the canopy, and 2) the transmission

of radiation through the canopy. CRHM uses LAI to define the canopy closure, de-

fined as the amount of canopy covering the ground surface, which then provides a

surface for snow interception. Transmission of radiation through the forest canopy is

a function of forest-cover density, which is quantified using the forest sky view factor

(v). In this study, v is the amount of sky visible from the ground through gaps in

the canopy. The value may be specified explicitly, or as in this study is estimated by

CRHM from LAI.

In CRHM, forest-cover density is estimated by the optical depth of the forest (L‘ )

and the forest sky view factor (v):

τf = e−L′
(4.1)

where L‘ is produced as the negative logarithm of the vertical radiation transmit-

tance (τf ) through the forest layer. L‘ may be alternately specified as the radiation

extinction coefficient of the forest layer (m−1). Subsequently, L‘ relates only to the

canopy vegetation influencing radiation transfer through the forest layer, and exempts

vegetation that is self-shaded (Chen and Black, 1992). The forest sky view factor (v)

may be evaluated by integrating Eq. 4.1 as follows:

v = 2

∫ π
2

0

e−
L′
sinΘ cosθsinθ · δθ = 2

∫ π
2

0

τf (θ)cosθsinθ · δθ (4.2)

where Θ is the solar elevation angle above the horizon (radians). Accordingly,

the overlying hemisphere not occupied by v is covered by forest (canopy-closure; 1-

v), which neglects radiation transmittance. As a result, the equation permits for an
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overlying hemisphere with two components, one of which transmits radiation, while

the other is non-transmitting, in magnitudes defined by v and (1-v), respectively

(Ellis, 2011).

Model output includes hourly calculated values of: snow albedo, incoming short-

and long-wave radiation, incident short- and long-wave radiation at snow surface,

sensible and latent heat transfer, and daily snow ablation (Fig. 4.3). Model output is

exported to Microsoft Excel for analysis.

4.4.1 Snow Mass Balance

The snow mass balance module of CRHM represents mass fluxes at the snow surface.

In non-forested environments (i.e. clearcut), mass balance is calculated as:

SWE = SWEo + (Ps + Pr +Hin +Hout − S −M)t (4.3)

where SWEo is the antecedent SWE; Ps is the rate of snowfall; Pr is the rate of

rainfall; Hin and Hout are the incoming and outgoing horizontal and lateral snow

transport rates, respectively; S is the rate of sublimation loss; M is the melt loss rate

(all units in kg m−2 h−1); and t is the model calculation timestep (all rates calculated

at this timestep).

In forested environments we must consider the role of the canopy in trapping and

retaining snow until it is either sublimated or unloaded. Thus, the mass balance is

expressed as:

SWE = SWEo + (Ps − (Is − Ul) + P r − (Ir −Rd)−M)t (4.4)

where Is and Ul are the canopy snow interception and unloading rate, respectively; Ir

is the canopy rainfall interception rate; and Rd is the canopy rain drip rate (all units

kg m−2 h−1). Rain is considered negligible in Equations 4.1 and 4.2, as observations
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Figure 4.3: Diagram of the mass and energy balance calculations and interactions in CRHM (re-
produced from Ellis, 2011).
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indicate rain is insignificant in this region during the winter and spring period (R.

Winkler, unpub. data).

Interception and unloading processes for a single tree are modelled following Hed-

strom and Pomeroy (1998):

I = P − PFC =
∑

L ↑ −
∑

L ↓ (4.5)

where I is the canopy interception (mm); P is the clearing snowfall (mm); PFC is the

sub-canopy snowfall (mm);
∑
L ↑ is the sum of increases in canopy load; and

∑
L ↓

is the sum of unloading to the ground (all units in mm of SWE per unit area for the

model timestep).

The maximum snow canopy load (Ls, kg m−2), is calculated from the leaf area

index (LAI) and the maximum snow load per unit branch area (Sbar, kg m−2):

Ls = Sbar × LAI (4.6)

Sbar is defined based on Schmidt and Gluns (1991) using a mean value based on tree

species that fluctuates with snow density:

Sbar = Sbar

(
0.27
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ps

)
(4.7)

where Sbar is the mean snow load for the tree species; and ps (kg m−3) is the density

of fresh snow.

The initial snow canopy load, L0 (kg m−2), is calculated by Hedstrom and Pomeroy

(1998) using:

L0 = N ×Mt (4.8)

where N is the ratio of increased canopy intercepted load to increased tree intercepted

load (mm kg−1 m−2); and Mt is snow weight (kg) on the tree. The weight of snow on
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a single tree is upscaled to the entire canopy using a scaling parameter, N , defined

as:

N =

∑
L ↑∑
Mt ↑

(4.9)

where N is the ratio of increased canopy intercepted load to increased tree intercepted

load (mm kg−1 m−2); and
∑
Mt ↑ is the cumulative increase in snow weight (Mt, kg)

on the tree. Therefore, tree canopy interception is related to the increase in canopy

load and the increase in snow weight. Snow that is intercepted in the canopy can

be sublimated to the atmosphere. The rate of unloading intercepted snow from the

canopy (dI/dt) is calculated as:

dI

dt
= −UI (4.10)

where U (s−1) is the unloading rate coefficient. To calculate an exponential decay in

unloading over time, t, Hedstrom and Pomeroy (1998) use:

I = I1e
−Ut (4.11)

where I1 is the intercepted canopy load at the start of unloading, and t is the timestep.

Sublimation of intercepted snow is calculated from Pomeroy (1998c) as:

qe = ViIs (4.12)

where qe is the canopy sublimation flux (kg m−2 s−1); and Vi is the sublimation rate

coefficient for intercepted snow (s−1), expressed as:

Vi = VsCe (4.13)

where Vs is the adjusted sublimation flux for a 500 m radius ice sphere (s−1) (assumes

snow is uniform radius sphere); and Ce is the intercepted snow exposure coefficient
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(dimensionless) which is calculated as:

Ce = k

(
Is
I∗s

)−0.4

(4.14)

where I∗s is the maximum intercepted load for the conifer (6.6 kg for mature forest),

k is a coefficient indexing the age/structure of snow on the conifer (k = 0.0001099

and 0.0000545 for fresh and aged snow, respectively) (Pomeroy and Schmidt, 1993).

4.4.2 Snow Ablation Energy Balance

The snow ablatation energy balance is calculated in CRHM as the sum of radiative,

advective, conductive, and turbulent energy fluxes at the snow-ground and snow-

atmosphere interfaces (all in W m−2):

Q∗ = K∗ + L∗ +QH +QE +QP +QG =
dU

dt
+QM (4.15)

where Q∗ is the total energy input to the snow; K∗ and L∗ are net shortwave and

longwave radiation, respectively; QH and QE are the sensible and latent heat fluxes,

respectively; QG is the net ground heat flux; QP is the energy advected from rainfall;

dU
dt

is the change in internal (stored) energy of the snow pack; and QM is the energy

available for snowmelt. Positive and negative values represent energy gains and losses

in energy to snow, respectively.

Calculation of net all-wave radiation to snow (R∗) requires the sum of K∗ and L∗,

each made up of incoming and outgoing fluxes:

R∗ = K∗ + L∗ = Kin −Kout + Lin − Lout (4.16)

Net shortwave radiation to the snow surface (K* ) is calculated as the amount of

radiation transmitted through the forest canopy less the amount reflected by the
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snow surface:

K∗ = Ko τ(1− αs) (4.17)

where Ko is the incident above-canopy shortwave radiation; τ is shortwave radiation

transmittance through the canopy; and αs is the snow surface albedo. τ is estimated

using Pomeroy (2009), expressed here as:

τ = e−
0.081θcos(θ)LAI

sin(θ) (4.18)

where θ is the solar angle above the horizon (radians). Thus radiation transmittance

is a function of both canopy structure (LAI ) and incident shortwave radiation (sun

angle).

Incoming longwave radiation to sub-canopy snow (Lin) can be greater than in-

coming longwave radiation in a clearcut (Lo) given the thermal energy emitted from

the canopy (Link and Marks, 1999; Sicart et al., 2004; Pomeroy et al., 2009), and is

calculated as:

Lin = vLo + (1− v)εfσT
4
f (4.19)

where v is the forest sky view factor; εf is the forest thermal emissivity; σ is the

Stefan-Boltzmann constant (5.67 × 10−8 W m−2 K−4); and Tf is the forest canopy

temperature (K). Outgoing longwave radiation from the snow surface (Lout) is calcu-

lated as:

Lout = εsσT
4
s (4.20)

where εs is the thermal emissivity of snow (0.98) (Oke, 1987) and Ts is the snow

surface temperature (K).

Fresh snow is given an adjustable albedo αf , that decays exponentially to a mini-

mum value = 0.5. For each model time step, albedo is updated using Essery (Essery
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et al., 2001):

αs → (αs − 0.5) e−
4t
τ + 0.5 (4.21)

where ∆t is the model timestep (h) and τ (s) is the adjustable albedo decay time

constant for melting snow (parameter value set by user). When snow is falling, albedo

is increased by:

αs → αs + (αf − αs)
Ps4t

10
(4.22)

where Ps is the snowfall rate (h). In this case, 10 mm of snowfall depth resets albedo

to αf .

Sensible (QH) and latent (QE) heat fluxes (both in MJ m−2) are calculated from a

method adapted by Marks and Dozier (1992) from Brutsaert (1982) using a sequence

of nonlinear equations to solve for the Minin-Obukhov stability length scale L (m),

the friction velocity (u∗; m s−1), QH , and the mass flux of sublimation (condensation)

from (or to) the snow surface (E; kg m−2 s−1):

L =
u∗3ρ

kg( QH
TaCp

+ 0.61E)
(4.23)

u∗ =
uk

ln( zu−d0

z0
)−Ψsm( zu

L
)

(4.24)

QH =
(Ta − Ts,0)aHku∗ρCp

ln( zu−d0

z0
)−Ψsh( zT

L
)

(4.25)

E =
(q − qs,0)aEku∗p

ln( zu−d0

z0
)−Ψsv(

zq
L

)
(4.26)

where ρ is the density of air (1.225 kg m−3 at sea level); k is the dimensionless

von Kármán constant (∼0.40); g is the acceleration due to gravity (9.81 m s−2); Ta

is the air temperature (K); Cp is the specific heat of dry air at constant pressure
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(1005 J kg−1 K−1); u is the wind speed (m s−1); zu, zT , and zq are the measurement

heights (m) for wind, temperature and humidity, respectively; and d0 is the zero-plane

displacement height (m; (2/3) 7.35 (where z0 is the roughness length in m)). In each

of Equations 4.21-4.24, Ψsm,Ψsh and Ψsv are the stability functions for mass, heat

and water vapour, respectively (positive, negative and zero for stable, unstable and

neutral stability); Ts,0 is the snow surface layer temperature (K); aH and aE are the

ratio of eddy diffusivity for heat and water vapour to eddy viscocity, respectively

(both set to 1.0); and q is the specific humidity (g kg−1) (Marks et al., 2008).

QE is calculated as LvE where Lv is the latent heat of vapourization or sublimation

(J kg−1) which varies with temperature and the state of water (liquid or solid) from

2.501 x 106 J kg−1 for liquid water at 0◦C (vapourization) to 2.834–2.839 x 106 J kg−1

for ice between 0 and -30◦C (sublimation) (Marks et al., 2008).

When rain falls on melting snow, the energy transfer from rainfall advection to the

snowpack, Qp (MJ m−2 h−1) is calculated as suggested by Gray and Landine (1988):

QP = 4.2 × 10−3 (Pr − It)Tr (4.27)

where Tr is the rainfall temperature (◦C), which is approximated by T a at the time

of rainfall.

The amount of melt (M ) is calculated from:

M =
QM

pWBhf
(4.28)

where pW is the density of water (1000 kg m−3); B is the fraction of ice in wet snow

(∼0.95–0.97); and hf is the latent heat of fusion for ice (333.5 kJ kg−1).
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4.4.3 Blowing Snow

Removal of snow is not limited to canopy sublimation or melt. Blowing snow can occur

if sufficient wind speed occurs, lifting snow particles from the ground and transporting

them within or out of the basin. In CRHM, blowing snow is handled via the blowing

snow module and is useful for snow ablation calculations. However, based on field

measurements and observations, these processes are not prevalent in the 241Cr basin

and thus this module was not used for SWE calculations.

4.5 Model Sensitivity

Sensitivity tests were conducted to determine which of the key parameters used to

calculate snow accumulation and ablation had the greatest effect on model output

(Table 4.5). The parameter values selected for this study were chosen to represent a

range of potential over- or under-estimations. Results were plotted as the iterative

change in each parameter value versus the average accumulation and average ablation

rates. Average accumulation rate was calculated as the average daily amount of snow

accumulation between the first day of continuous snow accumulation and the date of

peak SWE. The average ablation rate was calculated as the average amount of snow

ablation between the date of peak SWE and the first date when snow was completely

melted. This information was used when parameterizing module variables, as sensitive

parameters require highly accurate values given their effect on model output. The year

2001 was selected for the sensitivity test because early model runs suggested CRHM

was able to represent snow accumulation and ablation well during this year. 2001 has

the lowest peak SWE compared with years in the range of 2000–2008.
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Table 4.5: Range, number of iterations, and iterative change used for sensitivity analysis of each
parameter during the 2001 snow accumulation and snowmelt period (1 October to 1 July) in the
mature and clearcut stand. NOTE: Maximum intercepted canopy snow load, and leaf area index are
not included for clearcut sensitivity tests.

Parameter Range Number of iterations
(Iterative change)

Albedo decay time constant
for cold snow (a1; s)

9 x 102 to 9 x 107

1 x 104 to 1 x 107*
6 (1 x 101)
7 (1.5 x 101)*

Albedo decay time constant
for melting snow (a2; s)

10 x 102 to 10 x 107

5 x 102 to 1.5 x 103*
6 (1 x 101)
10 (1 x 102)*

Maximum albedo
for fresh snow (amax)

0.5 to 0.95 10 (0.05)

Minimum albedo
for aged snow (amin)

0.3 to 0.8
0.2 to 0.7*

6 (0.01)
6 (0.01)*

Maximum intercepted canopy
snow load (Sbar; kg m−2)

1 to 8 8 (1)

Leaf Area Index (LAI; m2 m−2) 0.25 to 3.0 12 (0.25)

* = Denotes sensitivity test values used only in the clearcut.

4.6 Baseline Run

Before disturbance modelling was conducted, a baseline run was completed to ensure

that CRHM was accurately representing observed conditions in both mature forest

and clearcut stands. Parameter values to represent mature and clearcut forests at

241Cr were derived from both field data and the literature, and were kept constant

throughout a nine year simulation period (1 October 1999 to 1 July 2008) (Table

4.6). The snow accumulation period is defined from 1 October to peak SWE (early

April), while the snowmelt period is defined from peak SWE to the complete removal

of snowpack (late June to early July). Model runs were labelled according to the year

in which they end; for example, the 2001 model run refers to 1 October 2000–1 July

2001. The model was set up for the baseline with two HRUs: one to represent 241Cr

as completely clearcut and the other to represent 241Cr as completely mature forest.

Each HRU had the same topographic characteristics (average elevation, slope angle,

aspect).
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Table 4.6: Baseline parameter values for mature and clearcut forests.

Parameter Mature
forest

Clearcut Reference

Area (km2)*ˆ 4.82 4.82
Elevation (m)*ˆ 1753 1753
Slope (◦)*ˆ 10 10
Aspect (◦)*ˆ 180 180
Latitude (◦)*ˆ 49.39 49.39
Albedo decay time constant
for cold snow (a1; s)

9 x 105 1 x 108 (D. Spittlehouse,
unpub. data)

Albedo decay time constant
for melting snow (a2; s)

1 x 103 1 x 106 (D. Spittlehouse,
unpub. data)

Initial albedo for bare ground
(abare)

0.17 0.17 (D. Spittlehouse,
unpub. data)

Initial albedo for snow cover
(asnow)

0.9 0.9 (Gray and Prowse,
1993)

Maximum albedo for fresh snow
(amax)

0.84 0.84 (Wiscombe and War-
ren, 1980)

Minimum albedo for aged snow
(amin)

0.36 0.72 (D. Spittlehouse,
unpub. data)

Minimum snowfall to refresh
snow albedo (smin; mm h−1)

10 10 (D. Spittlehouse,
unpub. data)

Leaf Area Index (LAI; m2 m−2) 2.2 n/a (R. Winkler,
unpub. data)

Maximum intercepted canopy snow
load (Sbar; kg m−2)

6.6 n/a (Schmidt and Gluns,
1991)

* = Derived from field data (Government of British Columbia, 2010)
ˆ = HRU definition
n/a = Not applicable

Four statistical metrics were used to assess model performance. Each compared

daily average observed SWE with the daily average of hourly simulated SWE: root

mean squared error (RMSE ), mean absolute error (MAE ), coefficient of determination

(R2), and linear regression. These metrics were calculated for each individual year in

the 9-year dataset, as well as for the dataset as a whole.

RMSE is a widely used metric of model accuracy that is calculated in the same

units as the dataset. As errors are squared before being averaged, the RMSE gives
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more weight to large errors (Legates and McCabe Jr., 1999). RMSE is calculated as:

RMSE =
1

n

√√√√ n∑
i=1

(Xsi −Xoi)2 (4.29)

where n is the number of samples; Xs are the simulated values; and Xo are the

observed values. Lower RMSE values indicate better model performance.

Mean absolute error (MAE ) measures the proximity of predicted to measured

values using an average of the absolute errors (Zar, 1999), thus all the individual

differences are weighted equally in the average. MAE is calculated as:

MAE =
1

n

n∑
i=1

|Xsi −Xoi| (4.30)

The coefficient of determination (R2), is the proportion of variance explained by

the regression model (Nagelkerke, 1991). This metric is useful to determine the good-

ness of fit between measured and modelled data, and to calculate ouliers and residuals.

R2 is expressed as:

R2 =

 ∑n
i=1

(
Xo −Xo

) (
Xs −Xs

)√∑n
i=1

(
Xo −Xo

)√∑n
i=1

(
Xs −Xs

)2


2

(4.31)

The relationship between the independent and dependent variables was defined

by fitting a linear regression to the observed data:

y = ax+ b (4.32)

where y is the dependent variable, a is the slope of the line, x is the independent

variable, and b is the y-intercept. A positive or negative y-intercept suggests that

simulated data is of higher or lower magnitude than measured data. The slope of a
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line refers to the rate at which y increases proportionately to x. A steep slope (> 1)

suggests that y values increase at a greater rate than x values, while shallow slopes

(< 1) suggest that the x values increase at a greater rate than y values.

The outcomes of these statistical tests were used to select years for which distur-

bance scenarios were run. As the mature forest was modified for the forest disturbance

scenarios, it was most important to select years with the best goodness of fit in the

mature forest. Two years were selected for forest disturbance scenarios, based first on

model performance in the mature forest, and second on the clearcut performance of

the baseline runs. It was also important to select years with different snow conditions

to assess a potential disturbance response.

4.7 Forest Disturbance Scenarios

HRUs were created in ArcGIS 9.3.1 by selecting homogeneous units from the 20

m DEM with similar slope, aspect, and elevation (Fig. 4.4). The average of each

variable was then applied as a single value in each HRU (Table 4.7). Average LAI

show minimal change across the watershed, thus the same parameter value was used

in each HRU to describe vegetation. HRUs were labelled 1 to 4 from low to high

average elevation, respectively.

Table 4.7: Topographic parameter values for HRUs.

Variable HRU 1
(Low
Elevation)

HRU 2
(Mid-Low
Elevation)

HRU 3
(Mid-High
Elevation)

HRU 4
(High
Elevation)

Area (km2) 1.16 1.05 2.09 0.52
Elevation (m) 1637 1682 1825 1950
Slope (◦) 5 8 12 14
Aspect (◦) 231 193 195 192
Latitude (◦) 49.39 49.39 49.39 49.39

Two disturbance scenarios were represented: 1) mountain pine beetle (MPB) at

the red-attack stage, and 2) immediately following moderately severe wildfire (WF).
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Figure 4.4: Hydrologic response units (HRUs) for 241Cr derived from average slope, aspect, eleva-
tion and forest cover characteristics (1 is the lowest elevation while 4 is the highest).
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These particular scenarios represent the key disturbances currently affecting forests in

western North America (Dale et al., 2001). By comparing the snow accumulation and

ablation response of these disturbance types with mature forest and clearcut snow

processes, we were able to analyze the hydrological response of increasing disturbance

severity: mature forest to MPB to WF and to clearcut.

Given that each disturbance type has a range of severities, the simulated dis-

turbance was selected to represent the most common current disturbance severity.

For example, MPB killed trees go through three stages of decline (green, red, grey-

attack). Green and red-attack trees have all or most needles remaining in the canopy,

whereas grey attack trees have the least LAI as most or all needles have been shed

(Winkler et al., in review). Of the three stages, current literature is mostly limited to

red-attack.

Wildfire severity can range from minimal, where undergrowth is damaged or re-

moved, to severe, where the undergrowth and canopy are completely removed (Keeley,

2009). This rapid forest disturbance requires many years to regenerate, so hydrological

processes are modified for many years. Moderately severe wildfires were selected for

this study because the existing literature on post-wildfire forest structure is limited

to this severity type.

For each of the two years selected from the baseline run, 241Cr meteorological data

were used to parameterize and run CRHM for mature and clearcut forests, as well as

for MPB and WF disturbances (Tables 4.8, 4.9). To parameterize CRHM for MPB

disturbance, parameters values were drawn from the literature and/or calculated from

field data collected at other sites (Table 4.9). As discussed in Section 4.4, all mea-

sured values for LAI were collected by the LI-COR LAI-2000 Plant Canopy Analyzer

(Gower and Norman, 1991). LAI decreases when forest canopy is disturbed by MPB

(R. Winkler, unpub. data), therefore parameter values were set as a percent change

to baseline LAI values at 241Cr based on the difference between undisturbed and
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beetle-killed canopy at Mayson Lake, British Columbia (R. Winkler, unpub. data),

and may not represent actual MPB conditions at 241Cr. However, Mayson Lake is

an established study site, is relatively close (approximately 200 km northwest) and

has similar forest structure to 241Cr (R. Winkler, unpub. data). No values of Sbar

exist for disturbed canopies so disturbed values used in this study were calculated as

a percent change of disturbed LAI–Sbar relative to mature forestLAI–Sbar ; mature

forest LAI was 2.5 and Sbar was 6.6, so the post MPB LAI was reduced by 40%,

thus Sbar was also reduced by 40%). Confidence in derived post-MPB LAI value

were high given the close proximity and similar forest structure of Mayson Lake to

241Cr, but confidence in the Sbar value is lower as there were no measured values

in the literature, and the mass of snow held in the canopy may change in MPB dis-

turbed stands. Litter from MPB killed forests can strongly affect snow surface albedo

relative to that in a mature forest or clearcut (Winkler et al., 2010; Boon et al., in

review). Winkler et al. (2010) provided values of post-MPB snow albedo, amax and

amin; these values were lower than mature forest because of observed litter in the

MPB-killed sub-canopy snowpack. Maximum and minimum snow albedo values were

adjusted based on the literature to represent these values. Albedo decay time con-

stants for cold (a1 ) and melting (a2 ) snow are not available in the literature. Values

defined by Spittlehouse (unpub. data) were used as initial starting points, after which

these parameters were used to tune the model and improve model fit while remaining

within a reasonable range of values (+/- 1000 s).
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Table 4.8: Parameters used for mature and clearcut forest at 241Cr.

Parameter Mature
forest

Clearcut Referenced in literature
or calculated

LAI 2.2 (R. Winkler, unpub. data)
Sbar (kg m−2) 6.6 (Schmidt and Gluns, 1991)
a1 (s) 9× 106 9× 106 (D. Spittlehouse, unpub. data)
a2 (s) 100,000 1,000 (D. Spittlehouse, unpub. data)
αmax 0.84 0.84 (D. Spittlehouse, unpub. data)
αmin 0.36 0.72 (D. Spittlehouse, unpub. data)

Table 4.9: Parameters used for mountain pine beetle and wildfire killed forest at 241Cr.

Parameter Mountain
pine beetle

Wildfire Referenced in literature
or calculated

LAI 1.8 0.4 (Burles, 2010; R. Winkler, unpub.
data)

Sbar (kg m−2) 5.8 2.0 Calculated from (Schmidt and
Gluns, 1991)

a1 (s) 9× 106 9× 106 (D. Spittlehouse, unpub. data)
a2 (s) 100,000 1,000 (D. Spittlehouse, unpub. data)
αmax 0.80 0.84 (Wiscombe and Warren, 1980; Con-

way et al., 1996; Winkler et al.,
2010)

αmin 0.35 0.50 (Wiscombe and Warren, 1980; Con-
way et al., 1996; Winkler et al.,
2010; Burles and Boon, 2011)

Wildfire parameter values were also drawn from the literature and/or calculated

from field data collected at other sites (Table 4.9). Forest canopy removal following

a moderately severe wildfire was represented by modifying LAI values based on the

measured percent difference in canopy between a mature and burned forest canopy

in the Crowsnest Pass, Alberta (Burles, 2010). There is less confidence in the wildfire

LAI given the distance between study sites (approximately 350 km), and the value is

based on fewer measurements and different pre-disturbance forest structure. As with

MPB, Sbar was set as a percent change of disturbed LAI–Sbar relative to mature
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forest LAI–Sbar, assuming that disturbed canopy Sbar declines proportionally with

LAI. Again, similar to MPB, the Sbar value may not transfer between study sites,

and should be quantified in field studies, so confidence in the value is reduced. Soot

from burned forests can also strongly affect snow surface albedo relative to that in a

mature forest or clearcut (Rouse, 2009). Minimal data on post-wildfire snow albedo are

available, with the exception of anecdotal evidence. Values were therefore calculated

from Conway et al. (1996) and Wiscombe and Warren (1980) who found that carbon

can reduce snow albedo by up to 30% relative to fresh snow to represent this changed

caused by soot. This study assumes uniform reduction of snow albedo throughout the

simulation period, but may be subject to temporal and spatial variation. Therefore,

confidence in these values is low, thus the amount and timing of soot that falls from

the trees should be measured in future field studies.

Based on the baseline run results, two years were selected for this study: 2002

and 2007. These years had the best model fit for mature forest, which is the most

important given we adjusted mature forest to represent forest disturbances. Selecting

years based on model fit in clearcut conditions was less important because the model

represented clearcut conditions well in all years.

For each year, four disturbance types were simulated: 1) mature undisturbed,

2) red attack mountain pine beetle, 3) moderately severe wildfire, and 4) clearcut.

For each year and each disturbance type, the watershed was incrementally disturbed

from the least to greatest elevational extent (lowest elevation HRU (1) to the highest

(4)) (Table 4.7). Thus for the first run, the lowest elevation HRU was represented

as a disturbed forest while the three higher HRUs remained undisturbed mature

forest. Next, the lowest and mid-low HRUs were disturbed while the mid-high and

high HRUs remained undisturbed mature forest. Then the low, mid-low and mid-

high HRUs (1 to 3) were disturbed while the highest remained a mature undisturbed

forest, and finally all HRUs were simulated as disturbed. By incrementally disturbing
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the watershed from low to high HRUs, there may be a threshold at which disturbance

greatly changes SWE. Additionally, dividing the watershed into HRUs allows us to

test the hydrologic response of individual HRUs to forest disturbance.

4.8 Analysis of Model Output

The following variables were calculated from the ouput from each scenario in each

year: maximum amount of SWE (mm), date of maximum SWE (days since January

1), date of 0 SWE (date of complete snowpack removal; days since 1 January), average

ablation rate (mm d−1), and duration of ablation period (number of days between date

of maximum SWE and date of 0 SWE). To quantify differences between scenarios, the

following metrics were calculated: percent change in maximum SWE, differences in

timing of maximum SWE and total SWE removal, average rates of SWE accumulation

and ablation, and ratio of scenario to clearcut SWE. The accumulation of SWE in

clearcuts is the theoretical maximum of SWE, thus the ratio of scenario to clearcut

SWE to forested SWE allows for comparison of scenarios to the porportion of snow

lost to interception and/or sublimation. In most cases, the disturbance response was

compared to the undisturbed forest baseline. However, some standard metrics are

used in the literature that compare forested with clearcut sites, so these metrics were

used to allow for comparison with these other studies. To determine the total amount

of SWE at the watershed scale in response to forest forest disturbance, the peak SWE

for each combination of elevational extent forest disturbance was multiplied by the

percent of total watershed area, and summed.
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Chapter 5

Sensitivity Analyses and Model Performance

5.1 Introduction

This chapter presents and discusses the results of the sensitivity analyses and model

performance tests to assess potential model uncertainties. The objectives of this chap-

ter are to: 1) define and discuss model sensitivity to parameters outlined in Chapter

4; and 2) quantify model performance in the two forest types for which field data are

available at the 241 Creek, and discuss the results.

5.2 Sensitivity Analysis

Sensitivity tests were conducted from 1 October 2000 to 1 July 2001. Results from

the following sensitivity analyses were compared to the length of the measured accu-

mulation and ablation periods, and peak snow water equivalent (SWE) for mature

forest (MF) and clearcut (CC) in 2001: accumulation period of 160 days for both MF

and CC; 75 and 45 ablation days for MF and CC, respectively; and 217 mm and 284

mm of peak SWE for MF and CC, respectively.

5.2.1 Albedo Decay Time Constant for Cold Snow

SWE accumulation rates under mature forest conditions were relatively insensitive to

changes in albedo decay time constant for cold snow (a1 ) (Fig. 5.1). The accumulation

rate increased by only 0.2 mm d−1 from the lowest to the highest rate across the

range of a1 values. A change in 0.2 mm d−1 was equivalent to 25.6 mm over the

entire accumulation period, or 11.8% of peak SWE. The ablation rate was slightly

more sensitive with a decrease of 0.8 mm d−1, but only beyond a threshold value of

a1 > 9.0× 106 s. An ablation rate change of 0.8 mm d−1 was equivalent to 60.0 mm

(27.6% of peak SWE) over the entire ablation period. The increase in ablation rate

is likely due to the importance of albedo in snow ablation, and its limited effect on
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snow accumulation (Wiscombe and Warren, 1980; Veatch et al., 2009; Winkler et al.,

in review).

The SWE accumulation rate under clearcut conditions was relatively insensitive

to changes in a1, as the rate increased by only 0.2 mm d−1 when a1 was changed from

1.0×107 to 1.0×108 s (Fig. 5.1). This was equivalent to 32.0 mm over the accumulation

period, or 11.2% of peak SWE. The SWE ablation rate was more sensitive, with a

decrease of 1.5 mm d−1 with a1 = 1.0×107 – 1.0×108 s (Fig. 5.1). This was equivalent

to 67.5 mm over the entire ablation period, or 23.8% of peak SWE. The ablation rate

was greater at higher values of a1 due to the concurrent increase in accumulation

rate, which resulted in a later date of peak SWE, and subsequently shorter ablation

period.

5.2.2 Albedo Decay Time Constant for Melting Snow

SWE accumulation rates under mature forest conditions were relatively insensitive to

changes in albedo decay time constant for melting snow (a2 ), as the rate decreased

by only 0.3 mm d−1 between a2 = 1.0 × 106 and 1.0 × 107 s (Fig. 5.2). This was

equivalent to 48 mm over the entire accumulation period, or 22.1% of peak SWE.

The rate decreased because the date of peak SWE occurred 25 days later than in the

first five iterations. SWE ablation rate was more sensitive to a2, particularly at a2 =

1.0× 107 s, where it increased from 6.5 mm d−1 to a maximum of 11.0 mm d−1 (Fig.

5.2). This 4.5 mm d−1 change was equivalent to 337.5 mm over the entire ablation

period, or 155.5% of peak SWE. The ablation rate was greater at higher values of a2

because the decreased rate of accumulation resulted in a later date of peak SWE, and

subsequently shorter ablation period. Compared with a1, higher values of a2 had more

effect on snow ablation rate because the snow was likely warm during the ablation

period, so a change in a1 only affected time periods when snow is not melting. Thus

a2 applies over a longer time period that incorporated the entire melt season.
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Figure 5.1: Sensitivity results for albedo decay time constant for cold snow (s) with (A) mature
forest and (B) clearcut conditions. The solid line represents snow water equivalent (SWE) accumula-
tion rate (mm d−1), the dashed line represents snow ablation rate (mm d−1), and the dotted vertical
line represents the value used for simulations. Note that the figure axes are not standardized.
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Figure 5.2: Sensitivity results for albedo decay time constant for melting snow (s) with (A) mature
forest and (B) clearcut conditions. The solid line represents snow water equivalent (SWE) accumula-
tion rate (mm d−1), the dashed line represents snow ablation rate (mm d−1), and the dotted vertical
line represents the value used for simulations. Note that the figure axes are not standardized.
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SWE accumulation rates were also relatively insensitive to a2 in clearcut condi-

tions as there was only a difference of 0.3 mm d−1 between the lowest to highest rate

across the range of a2 values (Fig. 5.2). This change was 48.0 mm over the accu-

mulation period, or 16.9% of peak SWE. The SWE ablation rate was more sensitive

throughout the entire range of a2 values, where the greatest increase in ablation rate

(2.2 mm d−1) occurred within the range of a2 = 1.0× 106 – 1.0× 107 s (Fig. 5.2). A

change in 2.2 mm d−1 represents 99.0 mm over the entire ablation period, or 34.9%

of peak SWE. Snow albedo decays at an exponential rate during the ablation period,

so increasing a2 subsequently reduced the ablation rate. Results were similar to stud-

ies that indicate ablation rates were more sensitive to snow albedo in areas without

canopy cover than in sub-canopy snowpacks (Wiscombe and Warren, 1980; Colbeck,

1988; Blöschl et al., 1991).

5.2.3 Maximum Albedo for Fresh Snow

SWE accumulation and ablation rates in the mature forest were insensitive to itera-

tive change in the values for maximum albedo for fresh snow (amax) used in this test

(Fig. 5.3). In theory, the accumulation rate should show little response to change in

amax because albedo is less important for snow accumulation than for snow ablation.

Therefore, the ablation rate would be more likely to change with amax: as amax in-

creases, the ablation rate should decrease. As expected, the accumulation rate was

not affected by amax; however, the ablation rate was also not affected. This was likely

due to the speed at which fresh snow albedo decays. During the ablation season, pre-

cipitation events do not fully reset the albedo to amax, and since the decay rate was

exponential during the ablation period, new snow is rapidly converted to old snow

(US Army Corps of Engineers, 1956).

SWE accumulation rates under clearcut conditions were much more sensitive to

changes in amax than in the mature forest (Fig. 5.2). Across the range of amax values
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Figure 5.3: Sensitivity results for maximum albedo for fresh snow with (A) mature forest and (B)
clearcut conditions. The solid line represents snow water equivalent (SWE) accumulation rate (mm
d−1), the dashed line represents snow ablation rate (mm d−1), and the dotted vertical line represents
the value used for simulations. Note that the figure axes are not standardized.
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between 0.5 – 0.95, the accumulation rate increased by approximately 0.8 mm d−1

(Fig. 5.3). This was equivalent to 128.0 mm over the entire accumulation period,

or 45.1% of peak SWE. At amax > 0.8, the rate of accumulation declined and then

increased relative toamax values between 0.55 – 0.75. Ablation rates were very sensitive

to changes in amax as evidenced by a decrease of 9.0 mm d−1 from the lowest to highest

rate across the range of amax values (Fig. 5.3). This was equivalent to approximately

405.0 mm over the entire accumulation period, or 142.6% of peak SWE. The rate of

snow ablation was faster in the lower values of amax because the date of peak SWE

and date of complete snowpack removal occurred earlier than highest amax values.

The lower amax values also permit more radiation to be absorbed by the snow pack,

therefore increasing the rate of ablation.

5.2.4 Minimum Albedo for Aged Snow

SWE accumulation rates under mature forest conditions were relatively insensitive

to incremental change to the minimum albedo for aged snow (amin), with a decrease

of only 0.3 mm d−1 at the highest amin value (Fig. 5.4). This was equivalent to 48.0

mm over the entire accumulation period, or 22.1% of peak SWE. SWE ablation rate

was more sensitive (increase of 4.5 mm d−1) but only beyond a threshold value (amin

= 0.7) (Fig. 5.4). A 4.5 mm d−1 change was equivalent to 337.5 mm over the entire

ablation period or 155.5% of peak SWE. Since peak SWE occurred later in the year

at the highest value of amin, but the date of 0 SWE remained constant, the ablation

rate increased.

Under clearcut conditions, SWE accumulation rates were sensitive to amin as there

was an increase of 0.7 mm d−1 but only beyond the threshold value of amin = 0.4

(Fig. 5.4). A change of 0.7 mm d−1 was equivalent to 112.0 mm over the entire

accumulation period or 0.39% of peak SWE. The decrease in accumulation rate was

the result of a peak SWE threshold: at αmin = 0.5, both peak SWE and the date of
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Figure 5.4: Sensitivity results for minimum albedo for aged snow with (A) mature forest and (B)
clearcut conditions. The solid line represents snow water equivalent (SWE) accumulation rate (mm
d−1), the dashed line represents snow ablation rate (mm d−1), and the dotted vertical line represents
the value used for simulations. Note that the figure axes are not standardized.
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peak SWE increased, thus the rate of accumulation decreased. Peak SWE increased

between amin = 0.5 – 0.7, subsequently the rate of accumulation also increased. The

SWE ablation rate were much more sensitive where the greatest increase (almost 9.0

mm d−1) occurred at amin = 0.5 (Fig. 5.4). This was equivalent to 405.0 mm over

the entire ablation period or 142.6% of peak SWE. At amin = 0.5, a threshold exists

where peak SWE occurred later in the year, which decreases the rate of accumulation

and increases the rate of melt.

5.2.5 Maximum Intercepted Canopy Snow Load

SWE accumulation rates were moderately sensitive to changes in the maximum inter-

cepted snow load (Sbar) as there was a decrease of only 0.5 mm d−1 from the lowest

to highest rate across the range of Sbar values (Fig. 5.5). This was equivalent to

∼80.0 mm over the entire accumulation period, or 36.9% of peak SWE. This decrease

was caused by an increase in the mass of snow held within the canopy so less snow

was able to accumulate on the ground. SWE ablation rates were relatively insensitive

to changes in Sbar as the rate decreased only 0.5 mm d−1 throughout the range of

values for Sbar = 1 – 4 kg m−2. A change of 0.5 mm d−1 was equivalent to 37.5

mm over the entire ablation period, or 17.3% of peak SWE. The snow ablation rate

decreased throughout the first four iterations of Sbar because less snow reached the

ground and the date on which snowpack was completely removed remained constant.

At Sbar values = 4 kg m−2, ablation rates remain relatively unchanged. Sensitivity

analyses were run during a low snow year, thus the mass of snow in the canopy was

lower than the maximum retained by increasing Sbar values.
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Figure 5.5: Sensitivity results for maximum intercepted canopy snow load (kg m−2) with mature
forest conditions. The solid line represents SWE accumulation rate (mm d−1), the dashed line
represents snow ablation rate (mm d−1), and the dotted vertical line represents the value used for
simulations.

5.2.6 Leaf Area Index

SWE accumulation rates were very sensitive to changes in the leaf area index (LAI ),

with a decrease of 1.3 mm d−1 from the lowest to highest rate across the range of LAI

values used in the test (Fig. 5.6). This represents a cumulative effect of 208.0 mm

over the entire accumulation period, or 95.9% of peak SWE. The increase in SWE

accumulation rate between LAI = 0.25 – 1 occurred because peak SWE occurred up

to two months earlier than peak SWE simulated at LAI > 1.25; therefore, there were

fewer days between the first day of continuous snow cover and peak SWE. In theory,

the rate of accumulation should decrease with an increase in LAI because ground

snow accumulation occurred more rapidly and reaches higher peaks with reduced

forest cover (Stanton, 1966; Toews and Gluns, 1986). The increase in accumulation

from LAI = 0.25 – 1 suggests that mass and energy balance equations within CRHM

were overly sensitive to low LAI input values. The stepped response in accumulation

rate at higher LAI values (1.5 – 2) resulted from a slight increase in the amount
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of peak SWE relative to lower LAI values and consequently increased the rate of

accumulation.

Figure 5.6: Sensitivity results for leaf area index (LAI ) with mature forest conditions. The solid
line represents SWE accumulation rate (mm d−1), the dashed line represents snow ablation rate
(mm d−1), and the dotted vertical line represents the value used for simulations.

SWE ablation rates were also very sensitive to changes in LAI as evidenced by

the increase of nearly 9.0 mm d−1 from the lowest to highest rate across the range

of LAI values (Fig. 5.6). This was equivalent to 675.0 mm over the entire ablation

period, or 311.1% of peak SWE. In the LAI = 0.25 – 2 range, the snow ablation rate

decreased steadily: as LAI increased, less incoming shortwave radiation was able to

penetrate the canopy, thus less energy was available for ablation. At LAI in the 2 –

3 range, however, the snow ablation rate response was most sensitive, which suggests

that there may be an error internal to the model. It is likely that the increase in

LAI in this range reduced both sub-canopy accumulation and radiation transmission

to the snow surface. Subsequently, the thin snowpack was likely protected by the

canopy until a threshold was passed where a slight increase in radiation and/or air

temperature late in the melt season was able to remove the thin snowpack.

72



5.2.7 Discussion

Under mature forest conditions, modelled accumulation rates were most sensitive to

Sbar and LAI, and least sensitive to a1, a2, and amax. Ablation rates were most

sensitive to a1, a2, amin, and LAI, and least sensitive to amax, and Sbar. Under

clearcut conditions, accumulation rates were most sensitive to a1, amax, and amin,

and least sensitive to a2. Ablation rates were sensitive to a1, a2, amax, and amin.

Given the variable response to parameter values in both forest types, it was im-

portant to carefully select parameter sets for each forest condition. Accurate values

of LAI are fundamental for simulating accumulation and melt given the importance

of canopy for interception and radiation transmission, so measured and/or literature-

derived values were used to ensure they were appropriate. Values for amax and amin

were also initially selected from 241Cr field data, then modified within the range of

measured values to improve model fit (Spittlehouse, unpub. data). Values for the dis-

turbance types were selected from Mayson Lake field data and the literature (Winkler,

unpub. data).

Values of amax and amin, and LAI were based on field measurements so confidence

in their selection was high. The value of Sbar for the MF was derived from experimen-

tal measurements collected by Schmidt and Gluns (1991) who calculated a value of

6.6 kg m−2 for mature pine trees with an LAI of 2.5. No values of Sbar exist for dis-

turbed canopies, thus disturbed values used in this study were calculated as a percent

change of the disturbed LAI-Sbar ratio relative to the mature forest LAI-Sbar ratio.

While this not scale directly with reduction in forest canopy following disturbance,

it represents a first approximation of shifts in Sbar in relation to post-disturbance

canopy change (Schmidt and Pomeroy, 1990; Schmidt, 1991; Pomeroy and Schmidt,

1993; Pomeroy et al., 1998b). No specific values of a1 and a2 exist in the literature,

so values were used as tuning parameters.

The large increase in SWE ablation rate under the three highest LAI values was
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most likely the result of reduced radiation penetration through the canopy, which

extended snowcover period until later in the year when high solar angle and air

temperatures rapidly ablated the snow. The model may have been developed for a

certain range of values and produces erroneous output past a threshold; however, the

LAI values selected for this study were not within the range that resulted in rapid

SWE ablation.

The reduction in LAI permitted an increase in both the amount of sub-canopy

accumulation, because there was less canopy available for interception of snow, and

the amount of incoming radiation as a result of greater sky view factor due to reduced

forest density.

SWE accumulation and ablation rates were sensitive to iterative changes in LAI

parameter values. This parameter was a key factor in representing the forest canopy

in this study, and together with Sbar, is the most altered between the CC and MF. Re-

sults from the baseline indicate that without forest canopy representation, the model

was able to simulate measured values well, but presence of canopy as represented by

LAI and Sbar parameter values decreased goodness of fit. The selected values were

kept constant throughout model runs, so this indicates that there may be an internal

model issue decreasing the ability of the model to simulate measured values. CRHM is

known to oversimulate the energy available for ablation when snowfall is both above

and below average, but the energy available for ablation is not the only factor chang-

ing the amount of SWE. For example, since the storage and unloading of snow in and

from the canopy can play an important role in the amount of accumulation and the

timing of ablation, the model incorporates these considerations.

LAI includes the trunks, branches, stems, needles, and any other surface that

may retain snow. While the stems are more rigid than the needles, they are spaced

far apart from each other so there is less opportunity for bridging. This bridging

of snow is essential for development of snow clumps. The density of snowfall will
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also govern the development of snow clumping in the forest canopy, and is more

likely to develop into clumps with greater snow density. Given the methodology and

results from the sensitivity test, where iterative change to one parameter value likely

also requires a change in another parameter in order to maintain the appropriate

representaiton of physical processes (e.g., LAI and Sbar). In such cases, the model

output may be affected by the failure to change additional values, which then has

cascading effects throughout the simulation. One example could include interception

and unloading occurring too often or not frequently enough. Another possibility is

that the interception surface for snow is not properly defined when values of LAI

are low (0 – 1.5), which may result in miscalculation of intercepted and throughfall

snow. Further investigation of the relationship between LAI and Sbar within the

model should be considered in future studies. Also, while model sensitivity analyses

indicated potential sources of uncertainty and model errors, future studies may benefit

from applying sensitivity tests to multiple years to better understand model response

to a range of meteorological conditions.

The year 2001 was selected for these tests as it was a dry year with the lowest

average SWE (25.3% lower), and should be most sensitive to parameter value changes.

Further studies may find it useful to perform sensitivity tests on all years to analyze

the response to a range of conditions, and average selected values for model runs.

5.3 Model Performance

The selected model fit methods are used commonly in the literature and provide

robust analysis of model fit (Rutter et al., 2009). The highest emphasis was placed

on R2 and RMSE when selecting the best fit years because these are commonly used

methods in snow modelling studies (Pomeroy et al., 2012; Singh and Woolhiser, 2002).

Model fit over the nine year period was moderate under mature forest conditions.

From 1 October 1999 – 1 July 2008, mean hourly SWE was over-simulated (Fig. 5.7;
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Table 5.1). High RMSE and mean error values indicated a large predictive error. The

average coefficient of determination for all years shows that the simulation explained

29.0% of the variance in the measured data, while a positive y-intercept suggests that

simulated SWE was higher than measured SWE for most years. A low slope value

suggested modelled values increased at a slower rate than observed values.

The clearcut simulation showed excellent fit over the nine year simulation period,

given the absence of complicating factors from forest canopy (Fig. 5.7; Table 5.1).

Mean hourly SWE was slightly under-simulated, while RMSE and mean error values

indicated a small predictive error. The average coefficient of determination for all

clearcut years shows that the simulation explained over 79.0% of the variance in the

measured data. A low y-intercept value suggested a slight oversimulation of SWE

for most years, while a slope value of close to unity indicated that modelled values

increased at a very similar rate to observed values.

High inter-annual variability of model fit in mature forest conditions was an indi-

cator of difficulties associated with modelling snow processes in forests, as evidenced

by the low inter-annual variability in model fit under clearcut conditions. Simulation

under mature forest conditions add complexity due to the interaction between canopy

and incoming precipitation, and the role of the canopy in attenuating meteorological

conditions. In this study, parameters were kept constant throughout the baseline runs

but the inputs changed annually. The model should be able to generate acceptable

model fit in all years regardless of interannual variability in meteorological changes.

Results from the MF baseline suggest that model limitations in the representation

of canopy, interception and radiation transmission properties are unable to account

for inter-annual differences in the magnitude and timing of precipitation events, pre-

cipitation phase, and meteorological conditions. Thus, model fit under mature forest

conditions may be improved through annual adjustment of model parameters.

Regeneration of trees in the clearcut may reduce the model fit between measured
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Table 5.1: Comparison of goodness of fit statistics for observed (Upper Penticton Creek snow
surveys; 2000-2008) versus simulated snow water equivalent (SWE) in a clearcut and mature forest.

Clearcut Mature
forest

No. of values 66 66
Mean of observed SWE (mm) 182.4 198.8
Mean of simulated SWE (mm) 182.3 252.8
% difference between observed and simulated mean SWE -1% 27%
Standard deviation of observed SWE (mm) 115.4 77.0
Standard deviation of simulated SWE (mm) 119.3 57.3
RMSE (mm) 55.7 85.1
Mean error (mm) 0.1 -53.2
Coefficient of determination (R2) 0.79 0.29
Regression coefficient (slope) 0.9 0.4
Regression intercept (mm) 15.3 173.2

and modelled SWE, but there was no consistent decline in fit from the beginning to

the end of the model period, which suggests that regeneration has no effect.

Evaluation of model performance for individual years in both MF and CC indi-

cated that the model fit was poorest in 2001 and 2006 (Fig. 5.8). In MF, 2001 had a

high RMSE (130.8 mm), a large negative mean error (-124.4 mm), and low R2 value

(0.5), while 2006 had a moderate mean error (61.7 mm), low R2 value (0.5), low slope

of the regression line (0.4), and a high y-intercept (215.2). In CC, 2001 had a high

RMSE (109.0 mm), a large negative mean error (-106.3 mm), while 2006 had a mod-

erate mean error (18.1 mm), and the slope of the regression line was close to unity

(1.01).

The poor model fit in 2001 was partially a function of the annual snowfall amount.

Average SWE for 2001 was 25.3% lower than average annual (2000-2008) SWE. A

previous CRHM study found that the poorest model fit occurred at sites where accu-

mulation was substantially lower than other sites, and was likely the result of shallower

snowpack increasing the sensitivity of simulation to errors in mass and energy balance

calculations (Ellis, 2011). The poor model fit in 2006 was likely a function of late-
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Figure 5.7: Modelled hourly snow water equivalent (SWE; mm) and measured average daily SWE
from 1 October 1999 to 1 July 2008 under (A) mature forest and (B) clearcut conditions.
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Figure 5.8: Yearly and average (A) RMSE, (B) mean error, (C) R2, (D) y-intercept, and (E) slope
of regression line for mature forest and clearcut conditions.
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season snowfalls. Another CRHM study suggested that late-season SWE simulations

are poor and likely result in a lag in simulated melt rates (Ellis et al., 2010). In 2006,

late snowfalls pushed the date of complete snowpack removal to late May, approxi-

mately two weeks later than the average (2000-2008) date; this may have resulted in

overestimation of energy available to melt the snowpack (Ellis, 2011).

Model fit was best in 2002 and 2007 (Fig. 5.8), as the baseline parameter values

did a good job of representing MF. For 2002, the good model fit was evidenced by

low RMSE (52.2 mm) and mean error (-24.3 mm), and high R2 values (0.9). For 2002

under CC, model fit was good as indicated by low RMSE (42.1 mm) and mean error

(16.4 mm), and high R2 values (0.9). For 2007, MF model fit was good according to

low RMSE (51.7 mm) and mean error (-24.8 mm), and high R2 value (0.9). The 2007

CC model fit was also good: low RMSE (40.6 mm) and mean error (32.3 mm), and

high R2 value (0.9).

Since this study focused on modifying forest canopy parameters to represent forest

disturbance, simulation years were selected primarily on the best model fit for MF.

While good model fit was also required for clearcut conditions, fit was much less

variable between years than in MF, and the model well represented snow in most

years. Thus 2002 and 2007 represent the best model fit for both MF and CC.

5.4 Conclusion

Results from sensitivity analyses of model parameter values emphasize the importance

of parameter selection to represent mature forest and clearcut conditions. Addition-

ally, this chapter highlights model performance in mature forest and clearcut condi-

tions, and underscores the challenges inherent in modelling different forest canopy

types and years. Although the model was unable to simulate mature forest and

clearcut conditions well in all years of the baseline run, overall CRHM was able

to represent these conditions well in multiple individual years.
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Chapter 6

Snowcover Response to Forest Disturbance

6.1 Meteorological Conditions

Of the precipitation that fell between 1 October and 1 July during 2002 and 2007

(480 and 551 mm), rain accounted for a small percentage (18% and 25%, respectively)

(Table 6.1) of the total precipitation so the remainder of this chapter will focus on

snowfall events. Snowfall events were on average larger and more frequent in 2007

than 2002. In 2007, large snowfall events (>10 mm) occurred in late November, mid-

December, late May and throughout June. However, the largest individual snowfall

event occurred in 2002 (28.0 mm), even though 2002 snowfall events were on average

smaller than in 2007. A slightly higher standard deviation of precipitation event size

in 2007 indicates greater variability in event size than in 2002.

Measured maximum snow water equivalent (SWE) was greater in the clearcut

(CC) (284 and 316 mm) than mature forest (MF) (284 and 279) in both 2002 and 2007

(Table 6.2). More snow fell in 2007 than 2002, but maximum SWE was 5 mm higher

under the mature forest in 2002 than 2007. The date of maximum SWE occurred on

the same day of year (DOY 87) in CC and MF in both years, while the date of 0 SWE

occurred 12-14 days later in 2002 than 2007 for both stands. The average ablation

Table 6.1: Characteristics of precipitation events (1 October to 1 July) in 2002 and 2007.

2002 2007

Total # of events 59 75
# of rainfall events 8 12
# of snowfall events 51 63
Maximum snowfall event size (mm) 28.0 18.6
Minimum snowfall event size (mm) 0.3 0.3
Average snowfall event size (mm) 3.6 5.2
Standard deviation of snowfall event size 0.6 0.9
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rate in CC was slightly lower in 2002 than 2007, but in MF was higher in 2002 than

2007. In both years, the average ablation rate was higher in CC than MF by ∼30%.

Table 6.2: Measured maximum snow water equivalent (SWE) timing and magnitude, and ablation
duration and rate, at Upper Penticton Creek (UPCr) in a clearcut and mature forest during 2002
and 2007.

Clearcut Mature forest
2002 2007 2002 2007

Maximum SWE (mm) 304 320 284 279
Date of maximum SWE (DOY) 87 87 87 87
Date of 0 SWE (DOY) 147 133 154 142
Average ablation rate (mm d−1) 6.9 7.0 5.1 4.7

Hourly air temperatures had a slightly greater range in 2007 than 2002 (53.6◦C ver-

sus 50.9◦C, respectively), but averages and standard deviations were similar between

years (Table 6.3). Average incoming solar radiation was also similar between years,

as was relative humidity. The main difference in meteorological variables was wind

speed. The maximum, average, and standard deviation of wind speed were higher in

2002 than 2007 by an average of 38%.

Table 6.3: Hourly meteorological conditions (1 October to 1 July) in 2002 and 2007.

Minimum Maximum Average Standard
deviation

2002 2007 2002 2007 2002 2007 2002 2007

Temperature
(◦C)

-24.2 -28.8 26.7 24.8 -1.6 -1.3 7.4 7.7

Wind speed
(m s−1)

0.0 0.0 8.8 6.4 2.0 1.5 1.3 0.9

Incoming solar
radiation
(W m−2)

0.0 0.0 1130.0 1039.0 116.8 118.1 203.3 206.0

Relative
humidity (%)

19.3 15.3 100.0 100.0 82.0 76.4 18.4 19.9
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6.2 Modelled Snow Response to Forest Disturbance

6.2.1 Seasonal Cycle of Snow Accumulation and Ablation

In 2002, modelled snowpack for all disturbance scenarios accumulated from mid-

October until maximum in the last week of March, and complete snowpack removal

occurred between the third week of April and first week of June (Fig. 6.1). SWE

ablated in late October, with complete removal of snowpack under all disturbances

at low and mid-low elevational extents that lasted for approximately one week. SWE

then accumulated until a small ablation event (< 5 mm of SWE) in the last week of

December, then accumulated until peak during the third week of March.

In 2007, modelled snowpack began to accumulate in mid-October as in 2002, but

peaked in the first week of March, with complete snowpack removal occurring in the

same period as 2002 (third week of April and first week of June) (Fig. 6.2). In mid-

February, an ablation event decreased SWE under the wildfire (WF) disturbance, and

under the most severe disturbance (CC) at the low and mid-low elevational extents.

SWE accumulation resumed after this ablation event until peak SWE in the first

week of March.

In 2002 and 2007, both the accumulation and ablation seasons were affected by

disturbance severity and extent of disturbance. Although there was a small increase

in accumulation with disturbance severity and extent, the increase was greatest at

the lowest elevational extent. This change was greatest in 2002 (∼90 mm), while

in 2007 there was less difference in accumulation between disturbance extents (∼50

mm). Effects on ablation were greatest under the greatest extent of the most severe

disturbances, as melt rates were higher than those at the lowest elevational extents.

This effect on ablation rates increased with disturbance extent in 2002, but showed

minimal extent gradient in 2007.
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Figure 6.1: Simulated 2002 snow water equivalent (SWE) for all disturbance scenarios under all
elevations (HRUs 1-4 (lowest to highest)). Disturbance scenarios: mature forest (MF), mountain
pine beetle (MPB), wildfire (WF) and clearcut (CC).
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Figure 6.2: Simulated 2007 snow water equivalent (SWE) for all disturbance scenarios under all
elevations (HRUs 1-4 (lowest to highest)). Disturbance scenarios: mature forest (MF), mountain
pine beetle (MPB), wildfire (WF) and clearcut (CC).
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6.2.2 Snow Response to Forest Disturbance

6.2.2.1 Maximum SWE

Maximum SWE increased with the severity and extent of forest disturbance in both

years and was of lower magnitude under all forest disturbance scenarios and extents

in 2002 (260 mm) compared with 2007 (351 mm) (Fig. 6.3). In 2002, the greatest dif-

ference in maximum SWE occurred under the MF scenario at all elevations, followed

by the MPB scenario (28–39% change in maximum SWE), with the least difference

between the WF and CC scenarios (7–9% maximum SWE). In 2007, maximum SWE

overall increased with disturbance severity, and was greatest under the CC scenario

at up to 350 mm. The greatest difference in maximum SWE between disturbance

scenarios and extents occurred under the MF and MPB scenarios (up to 75 mm), and

the least difference occurred under the WF and CC scenarios (up to 50 mm).

6.2.2.2 Date of Maximum SWE

The date of peak SWE was overall earlier in 2002 than 2007 by approximately three

to five days (Fig. 6.3). In 2002, maximum SWE occurred two to three days earlier

with increasing forest disturbance, but only at the greatest extents under the most

severe disturbance scenarios (WF and CC). In 2007, the date of maximum SWE

remained constant under all disturbance scenarios and extents, except at the three

lowest extents under the WF scenario, where the date of maximum SWE occurred 18

days earlier.

6.2.2.3 Percent Change in Maximum SWE

Overall, the percent change in maximum SWE of individual disturbance scenarios

relative to maximum SWE in the clearcut was more variable in 2002 than 2007 (Fig.

6.4). The percent change in maximum SWE in 2002 decreased both with increasing
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Figure 6.3: Simulated snow accumulation and ablation metrics for 2002 (left) and 2007 (right), for
forest disturbance scenarios (mature forest (MF), mountain pine beetle (MPB), wildfire (WF) and
clearcut (CC)) and disturbance extents (lowest to highest elevation (HRU 1-4)): maximum snow
water equivalent (SWE) (mm), date of maximum SWE, date of 0 SWE, average ablation rate (mm
d−1), and duration of ablation period (days).
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severity of forest disturbance (MF to MPB to WF) and extent of disturbance. It

was greatest under the MF, followed by MPB and WF (average change of 28%) at

the lowest extent. The least percent change occurred at the highest extent, where

maximum SWE decreased with forest disturbance severity from MF to MPB and to

WF (average change of 10%). In 2007, the percent change in maximum SWE also

decreased with increasing extent of all disturbances. While the percent change in

maximum SWE at low and mid-low extents decreased overall with increasing forest

disturbance severity, the two highest extents had a different response. At these eleva-

tions, the percent change in maximum SWE either decreased or remained relatively

similar between the MF and MPB scenarios, but increased under the WF scenario.

6.2.2.4 Ratio of Scenario to Clearcut Peak SWE

The calculation of ratio of peak SWE in the clearcut to peak SWE under MF, MPB,

and WF scenarios allows for comparison with other studies that use this method.

Overall the ratio of peak SWE between disturbances and clearcut (F:O ratio) was

less variable in 2007 than 2002 (Fig. 6.5). This trend was the same between years

(increasing with extent under the least disturbed scenarios (MF and MPB)), although

the WF scenario resulted in an increase in F:O at the highest extent in 2007, but a

decrease in 2002. The F:O ratio was very similar between disturbance severities in

2007, although slightly higher under the WF scenario. The magnitude of difference

in the F:O ratio between severity and extent of disturbance was larger in 2002 than

2007 (0.58-0.93 versus 0.79-0.87, respectively).

6.2.2.5 Date of 0 SWE

Overall, the date of complete snowpack removal between disturbance severities, ex-

tents, and years occurred earlier in 2002 by approximately 10 days, except for mid-high

and high extents under the least severe scenarios (MF and MPB), where snow was
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Figure 6.4: Percent change in simulated maximum snow water equivalent (SWE) for all disturbance
scenarios (mature forest (MF), mountain pine beetle (MPB), wildfire (WF) relative to clearcut (CC)
for all extents (lowest to highest elevation (HRU 1-4)) in 2002 (left) and 2007 (right).

Figure 6.5: The ratio of simulated maximum snow water equivalent (SWE) under each forest
disturbance scenario (mature forest (MF), mountain pine beetle (MPB), wildfire (WF)) relative to
that under the clearcut (CC) scenario, for each elevational extent of disturbance (LO: low; ML:
middle-low; MH: middle-high; H: high) in 2002 and 2007.
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removed 3 to 7 days later in 2002 than 2007 (Fig. 6.3). Between scenarios in 2002,

an increase in disturbance severity resulted in an earlier date of snowpack removal

by up to 50 days, the earliest date occurring under the WF scenario. The greatest

difference in date of snowpack removal between low and high elevation disturbance

extents occurred in 2002 under both MF and MPB scenarios (27 days), with the

smallest difference also occurring in 2002 under the CC scenario (4 days). In 2007,

an increase in disturbance severity resulted in snowpack removal occurring up to 40

days earlier, and as observed in 2002 was earliest under the WF scenario. The date of

snowpack removal between extents was generally later (∼5 days) at high versus low

elevation extent.

6.2.2.6 Average Ablation Rate

The daily average ablation rate between severities and extents was lower in 2002

(3.0 mm d−1 to 7.1 mm d−1) than in 2007 (4.0 mm d−1 to 8.6 mm d−1) (Fig. 6.3).

Overall, the ablation rate in 2002 increased with forest disturbance severity (3-6

mm d−1), except for under the WF scenario where the rate was higher than all other

scenarios (∼7.5 mm d−1). Between disturbance extents in 2002, the largest differences

in ablation rate occurred under the MPB scenario (∼1 mm d−1). While the maximum

ablation rate also generally increased with forest disturbance severity in 2007, the

highest extent was almost 4 mm d−1 higher than the three lower extents under the

WF scenario (Fig. 6.3). This occurred because the ablation rate was calculated from

a later date at the highest extent than lower elevations, as the date of maximum

SWE occurred on DOY 84, compared with lower disturbance extents where the date

of maximum SWE occurred on DOY 65.
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6.2.2.7 Duration of the Ablation Period

The duration of the ablation period overall was 15-20 days shorter in 2002 than 2007

(Fig. 6.3). The duration of the ablation period decreased with forest disturbance

severity by an average of ∼20 days, except for the WF scenario which had the short-

est duration at 30-36 days, and decreased with extent of disturbance (4-50 days).

Overall, the duration of the ablation period also decreased with an increase in forest

disturbance severity in 2007. However, the shortest ablation period occurred at the

highest extents under the WF disturbance due to the same issue with double peak

SWE noted in 6.2.2.2.

6.3 Incremental Forest Disturbance Impact on Total Basin SWE

As expected, total simulated basin SWE was lower in 2002 than 2007 for all scenarios

(Fig. 6.6), which corresponds with measured SWE data. In 2002, disturbance severity

and extent noticeably increased watershed-scale SWE. The most severe disturbances

(WF, CC) not only increased total SWE more than less-disturbed scenarios (MF,

MPB), but severe disturbance scenarios also increased total SWE with increasing

elevational extent. The greatest increase in total SWE occurred when the full extent

of 241Cr was disturbed. When the entire extent of 241Cr was simulated as MF, the

total watershed-scale SWE was 187 mm; this increased with disturbance severity by

5% under the complete MPB scenario, 18% under the complete WF scenario, and

with the greatest change under the complete CC scenario at 24%.

In 2007, forest disturbance extent and severity had a minimal effect on watershed-

scale SWE, except under the CC scenario (Fig. 6.6). When the entirety of 241Cr was

simulated as MF or MPB, the total basin SWE was 275 mm. This increased by less

than 1% under complete WF disturbance, but increased by 17% under the most severe

disturbance simulation (CC).
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Figure 6.6: Change in simulated total basin snow water equivalent (SWE) for UPCr under each
disturbance scenario (mountain pine beetle (MPB), wildfire (WF), clearcut (CC)) relative to the
mature forest (MF) for 2002 and 2007. Disturbance extent is the number of HRUs disturbed, from
the lowest to highest elevation. MF-4 indicates that all four HRUs represent mature forest.

6.4 Energy Balance Fluxes

Overall, increasing forest disturbance severity increased the total energy available for

melt during both the accumulation and ablation periods in both years (Fig. 6.7). Dur-
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ing the accumulation period for both years, total energy was more negative at the

greatest extents of the least severe disturbances (MF and MPB), but more positive

under greatest extents of the most severe disturbances (WF and CC), with the ex-

ception of a decreasing trend at the greatest extent under the WF and CC scenarios;

negative total energy signifies a loss of energy from the snowpack to the atmosphere,

while positive total energy is the opposite. Although the total energy was overall

positive under the most severe disturbances (WF and CC) with the greatest increase

near the melting point, the mean energy available (< 10 MJ m−2 h−1) was insufficient

to drive significant ablation during the accumulation season. Thus the remainder of

this section focuses on the energy available for melt during the ablation period.

During the ablation period of 2002, positive net shortwave (K* ) drove the energy

balance under the least severely disturbed scenarios (MF and MPB), but was largely

offset by negative net longwave (L* ) under the scenarios with greatest severity (WF

and CC) (Fig. 6.8). The turbulent fluxes contributed almost an order of magnitude

less energy to the total energy available for melt relative to K* and L*. Positive

contributions from net sensible heat (QH) offset negative latent heat (QE) under

the MF and MPB scenarios, but with increasing disturbance severity (WF, CC),

QH declined and increasingly negative QE dominated the turbulent fluxes (Fig. 6.9).

Ground heat flux was considered zero.

Contributions of each component of the energy balance were similar between 2007

and 2002 (Fig. 6.8). In 2007, slightly more positive K* also dominated the energy

balance under the MF and MPB scenarios, but was offset more by negative L* under

the most severe disturbances (WF and CC) than in 2002. While the radiative fluxes

were slightly larger in 2007, the total energy for melt was offset by smaller contribu-

tions from turbulent fluxes than in 2002, and the differences in between extents of

disturbance was greater in 2002 than 2007. Total energy was notably higher under

CC in mid-low and high elevational extents but occurred only in 2002. Similar to
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Figure 6.7: Total energy available for melt during the accumulation (date of first snow water
equivalent (SWE) accumulation to date of maximum SWE) and ablation (date of maximum SWE
to date of 0 SWE) periods of 2002 and 2007 for all disturbance scenarios (mature forest (MF),
mountain pine beetle (MPB), wildfire (WF), clearcut (CC)) and extents. Positive and negative
values represent the gain or loss of energy to snow, respectively.
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Figure 6.8: Total net shortwave (K* ) and net longwave (L* ) fluxes for the ablation period (date
of maximum snow water equivalent (SWE) to date of 0 SWE) of 2002 (left) and 2007 (right) for all
disturbance scenarios (mature forest (MF), mountain pine beetle (MPB), wildfire (WF), clearcut
(CC)) and all extents of disturbance from the lowest (top) to highest (bottom) (HRU 1-4). Positive
and negative values represent the gain or loss of energy to snow, respectively.
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Figure 6.9: Total sensible (QH) and latent (QE) fluxes for the ablation period (date of maximum
snow water equivalent (SWE) to date of 0 SWE) of 2002 (left) and 2007 (right) for all disturbance
scenarios (mature forest (MF), mountain pine beetle (MPB), wildfire (WF), clearcut (CC)) and
all elevations from the lowest (top) to highest (bottom) (HRU 1-4). Positive and negative values
represent the gain or loss of energy to snow, respectively.
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2002, turbulent fluxes contributed approximately an order of magnitude less energy

to the total available for melt relative to K* andL* (Fig. 6.9). In both years, positive

contributions from QH offset negative QE under the least severe disturbances (MF

and MPB), but with increasing disturbance severity (WF and CC scenarios), QH de-

clined and increasingly negative QE dominated the turbulent fluxes. Total energy was

notably higher under CC in mid-low and high elevational extents but only occurred

in 2002.

Contributions from K* to the total energy available for melt decreased with distur-

bance extent by an average of 7% in 2002 but increased by an average of 1% in 2007.

The largest decrease (16%) occurred under the CC scenario at the highest elevational

extent in 2002. Contributions from L* to total energy were increasingly negative with

disturbance extent in 2002 (27%) than 2007 (5%), but the change was variable with

increase in disturbance severity in 2002; MF scenario decreased with extent by 41%

whereas more severely disturbed scenarios (MPB, WF and CC) decreased with extent

of disturbance by 27%, 9% and 31%, respectively. Contributions from QH increased

with extent under the the least severe disturbances (MF and MPB) (13% and 11%,

respectively), but decreased with extent under the WF scenario by 39% (Fig. 6.9).

Under the most severe disturbance (CC), QH increased in the mid-low extent (9%)

but decreased in the highest elevational extent to a similar energy value as the lowest

extent. QE remained relatively constant under the least severe distuebances (MF and

MPB) for all extents, but increased with extent under the most severe disturbances

(WF and CC) by 22% and 11%, respectively.

6.5 Conclusion

During the accumulation period, an increase in disturbance severity increased the

rates of accumulation, and resulted in higher maximum SWE. An increase in the

extent of disturbance did not change the rates of accumulation, but the difference in
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maximum SWE between disturbance scenarios decreased with increasing extent. The

difference in both maximum SWE and total basin-scale SWE between severities and

extent was less pronounced in 2007, the year with more snow. The energy available

for melt during the accumulation period decreased with extent of disturbance but in-

creased with disturbance severity. However, the total energy available was insufficient

to affect snow accumulation in either year.

During the ablation period, an increase in disturbance severity raised the rates of

ablation, and decreased the duration of the ablation period, but the rate of ablation

did not increase between elevational extents of disturbance. The differences in rate

and duration of ablation between disturbance severities and extents were greater in

the year with less snow (2002). In both years, the energy available for melt during the

ablation period increased both with disturbance severity and extent. The contribution

from individual fluxes varied with extent of disturbance, with the greatest percent

change with extent occurring in the lower snow year (2002). Overall, net shortwave

radiation decreased but was offset by more negative net longwave radiation loss,

sensible heat flux increased under the two least disturbed forests (MF and MPB)

while decreasing under the two most severely disturbed scenarios (WF and CC), and

latent heat flux generally increased with extent of disturbance.
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Chapter 7

Discussion

7.1 Introduction

This study examined snow accumulation and ablation response to increasing forest

disturbance severity and disturbance extent at the watershed scale: the study basin

was 241 Creek (241Cr). In general, the potential response from increases to both

disturbance severity and extent resulted in an increase in the accumulation rate and

in maximum snow water equivalent (SWE), and increased the energy available for

ablation and subsequently increased the rate of ablation. More snow was able to ac-

cumulate under more severe disturbance scenarios because the loss of forest canopy

reduced snow intercepted by the canopy and permitted greater sub-canopy accumula-

tion. For two disturbance scenarios, dead canopy deposited debris on the snow surface

which reduced snow surface albedo and further enhanced ablation.

7.2 Mature Forest

As expected, simulated accumulation rates of snow were lower under the least dis-

turbed forest scenario (mature forest) compared to the two most severely disturbed

scenarios (wildfire and clearcut) and maximum SWE was, on average, 11% lower than

all other disturbance scenarios of greater severity. These results compare well with

other studies that have found 0–40% lower maximum snow accumulation in mature

forest stands relative to adjacent disturbed stands due to increased snowfall inter-

ception by the forest canopy (Golding and Swanson, 1986; Toews and Gluns, 1986;

Spittlehouse and Winkler, 1996; Boon, 2007; Teti, 2008; Boon, 2011; Burles and Boon,

2011).

The rate of accumulation and SWE maximum were lowest under the least dis-

turbed MF scenario because canopy interception resulted in substantial capture and
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subsequent loss of canopy snow to the atmosphere. Comparison of the ratio of max-

imum SWE between the least and most disturbed scenarios (MF and CC) indicate

that approximately 10–40% of total snowfall was intercepted by the canopy and likely

sublimated to the atmosphere. These results are similar to other studies that found

up to 45% of annual snowfall in western Canada is lost to forest canopy sublimation

(Pomeroy et al., 1998b; MacDonald et al., 2010).

Model output of maximum SWE was most sensitive to elevational extent for the

least disturbed scenario. Overall, the difference in maximum SWE between MF and

other scenarios decreased with increasing extent, indicating the increased sensitivity

of interception processes between extents of MF. This effect was greatest under the

MF scenario where the magnitude of difference in maximum SWE from smallest to

largest extent (lowest to highest elevation) was 90 mm and 52 mm in 2002 and 2007,

respectively. The role of the canopy for interception processes decreased at higher

elevations. Thus the canopy played less of a role in ground snow accumulation with

increasing elevation, resulting in less difference between MF and the other scenarios

at these elevational extents. Given that the elevational difference between extents is

minimal, total accumulation differences were likely small, which suggests that model

calculated interception processes are very sensitive. It is likely that the modelled

canopy is more likely to unload snow to the ground at the higher elevational extents,

which may be the result of slightly colder air temperature at this extent causing the

model to unload more snow than lower elevations. The difference in maximum SWE

between the least severely disturbed (MF) and increasingly severe disturbances (MPB,

WF, CC) was smaller in 2007 (high snow year) than in 2002 (low snow year). This

compares well with results from previous studies that show SWE differences between

forested and disturbed stands are reduced in years with high snowfall (Storck et al.,

2002; Stähli and Gustafsson, 2006; Boon, 2011). The higher maximum SWE and

accumulation rate in 2007 was a function of more total precipitation which occurred
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as more frequent and larger snowfall events.

Under the MF scenarios, the average ablation rate was lower than all increasingly

severe disturbance scenarios, ranging from 20% lower than the moderately severe

(MPB) scenario to 46% lower than both the most severe (WF and CC) scenarios.

These values are at the low end of the 30-300% range determined in previous studies

comparing mature forest ablation rates to adjacent disturbed stands (Storck et al.,

1999; Spittlehouse and Winkler, 2004). The relatively low ablation rate resulted in an

average ablation period duration 23 days longer than in the more severely disturbed

scenarios. These results are on the high end of the range of ablation period duration

observed in other studies between mature and disturbed forests (0-25 days) (Spittle-

house and Winkler, 2004; Boon, 2007; Teti, 2008; Boon, 2009; Seibert et al., 2010;

Burles and Boon, 2011). Compared to previous studies, ablation rates under the MF

scenario were not that much less than under disturbed scenarios but the duration

of the ablation period was much different. This may be the result of a documented

issue with the model which produces lag in simulated melt rates, resulting from an

underestimation of energy available for melt which extends the snowmelt period later

into the season when higher sun angles and warmer air temperatures can more rapidly

ablate the sub-canopy snow (Ellis et al., 2010; Ellis, 2011).

As outlined in Chapter 2, ablation rates are inversely proportional to canopy

density given canopy controls on shortwave radiation transmission to the snow surface

(Molchanov, 1963; McKay and Adams, 1981). Relative to the disturbed scenarios, the

total energy available for ablation in the MF scenario was overall an average of 12%

lower due to this scenario having the greatest leaf area index (LAI ). The energy

balance under the MF scenario was driven largely by net shortwave radiation (K* ),

which was an average of 80% lower in the MF scenario than in the increasingly severe

disturbance scenarios. The rate of ablation did not differ with extent of MF which

suggests that the elevation range (∼400 m) was insufficient to significantly change
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ablation processes. This was evident in both the small temperature lapse rate (see

Chapter 4) and energy balance components between elevational extents. Because all

elevational units have a similar aspect and slope, and the elevation range is small,

incoming shortwave radiation and air temperature were similar across extents.

For all disturbance types, it appears that the radiation balance was only impor-

tant near and above the melting point. Within approximately one week of the date

of maximum SWE, differences in accumulation response were greatest in the lower

elevational extents in 2002 and least in 2007. This suggests that the radiation balance

was most important near the point of continuous melt. In the model, the cold content

of the snowpack is gradually removed until remaining energy inputs drive melt rather

than warming, which likely occurred soonest at low elevations because of higher air

temperatures.

Furthermore, variability of energy balance fluxes for all disturbance types may be

a function of the length of the ablation period in each extent of disturbance, and in

each year.

7.3 Mountain Pine Beetle

Red-attack stage of mountain pine beetle disturbance represented the moderately se-

vere disturbance in this study. Dead pine needles fall within 3-5 years following initial

attack, which reduces the interception capacity of MPB-attacked forest relative to the

mature forest (Mitchell and Preisler, 1998). Modelled output of rate of accumulation

under the MPB scenario was relatively insensitive, as it was similar to that under the

least severe (MF) scenario, but maximum SWE was 3% higher because the canopy

needle drop reduced loss of intercepted snow to the atmosphere and allowed for more

ground snow accumulation. The ratio of maximum SWE between CC and MPB was

lower than under the most severe scenario (CC) which suggests that approximately

10-30% of the total snowfall was intercepted by the canopy, and was likely lost to
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the atmosphere through sublimation. These results compare well with Winkler and

Boon (2009), who compiled a synthesis of recent MPB research and found that, on

average, red attack stands have a 25% reduction in maximum SWE. The difference

in accumulation with elevation under MPB was similar to that under MF, thus the

processes are similar to those described under the MF scenarios.

The small 3% increase in modelled maximum SWE compares well with recent

studies, one of which found maximum SWE was similar under both mature forest and

red-stage MPB, but was 15% higher under grey-stage MPB (Pugh and Small, 2011),

while the other measured a 14% increase in maximum SWE relative to undisturbed

forest in a mix of red and grey-attack stands (Biederman et al., 2011). My results also

show that the effect was more pronounced in the year with smaller and less frequent

storms, as evidenced by a 5% higher max SWE in the low versus the high snow year

(2002 and 2007, respectively), and reflect results of similar studies between MPB and

undisturbed forests that found enhanced differences in maximum SWE between high

and low snow years (Biederman et al., 2011; Boon, 2011; Pugh and Small, 2011).

MPB disturbance opened the canopy, which resulted in an increased ablation

rate, shortened ablation period, and thus an earlier date of 0 SWE. In this study,

the average ablation rate was 20% higher under the MPB than the least disturbed

scenario (MF), which is within the 15-25% range found in other studies (Boon, 2007;

Teti, 2008; Pugh and Small, 2011; Winkler et al., in review). While slightly more snow

accumulated under the MPB than the MF scenarios, the disturbed canopy resulted in

enhanced ablation through both greater net short and longwave radiation, turbulent

fluxes, and reduced snow surface albedo as a result of needle drop.

Several stand-scale studies have found an increase in the energy available for

ablation post-MPB (Boon, 2007; Boon, 2009; Pugh and Small, 2011), and recent

studies show that canopy needle loss in the red-attack stage reduces the surface albedo

of the snowpack (Boon, 2007; Winkler and Boon, 2010; Pugh and Small, 2011; Boon
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et al., in review; Winkler et al., in review). The canopy parameterization utilized a

reduced leaf area index LAI for the MPB scenario to represent a slightly more open

canopy relative to the MF scenario and allowed for increased incoming shortwave

radiation. The albedo parameterization for the MPB scenario was also adjusted to

represent higher litter concentration on snowpack than under the least severe MF

scenario; this contributed to the increased ablation rate as K* at the snow surface

was higher. Despite these changes, the model simulated energy available for ablation

under the moderately severe MPB scenario was virtually the same (1% lower) than

under the least severely disturbed MF scenario. Increased K* at the snow surface

was offset by more negative net longwave radiation (L* ) as a consequence of the

opened canopy; this loss of canopy increases emissivity, and results in greater outgoing

longwave radiation. The increasingly negative latent heat (QE) was offset by more

positive sensible heat (QH).

Interestingly, the MPB scenario had the greatest variability in ablation rate with

extent of disturbance. All other scenarios had similar ablation rates across extents, ex-

cept for the greatest extent under the most severely disturbed scenario (WF) which is

described below. This variability in ablation rate under the MPB scenario is likely due

to decreased uniformity or homogeneity of canopy structure, which permits enhanced

ablation where canopy gaps have increased (Boon, 2011).

While the changes in K*, L*, and QE under the MPB scenario relative to the least

severely disturbed MF scenario compare well with field observations from previous

studies (Boon, 2009), the less positive QH is surprising. Disturbance generally reduces

canopy and land surface roughness and typically results in higher wind speeds and

enhanced turbulent fluxes relative to mature forests (Boon, 2009; Winkler et al., in

review). One explanation could be that, while the ablation period was shorter under

moderately severe disturbance than the least disturbed MF scenario, the greater

variability of mean hourly QH under the MPB scenario cancelled any increase in

104



QH .

7.4 Wildfire

Moderately-severe wildfire represented an intermediate disturbance severity between

the moderately severe MPB and most severe CC scenarios. As such, the sensitivity

of modelled snow accumulation was as expected: the substantial loss of canopy as-

sociated with the more severely disturbed WF scenario decreased the interception

capacity relative to less-disturbed MF and MPB scenarios to more closely represent

the rate of accumulation and maximum SWE under the most severely disturbed CC

scenario. The difference in maximum SWE between MF and WF decreased with ex-

tent of disturbance, because the forest canopy was more important for interception

at lower elevations. The 9% average increase in maximum SWE relative to the least

disturbed MF scenario was in the lower range of 9-58% values found in other studies

(Skidmore et al., 1994; Seibert et al., 2010; Burles and Boon, 2011). Results from our

study were much closer to those found in Skidmore et al. (1994) who found an in-

crease of 9% in maximum SWE under both wildfire and clearcut relative to the nearby

undisturbed mature forest, but the mean canopy coverage in the mature forest was

low (42% cover) which suggests that differences in accumulation between disturbed

and undisturbed stands may be lower when forest canopy is less dense. Our modelled

results were lower than the other study sites and these differences likely stem from

study site variations: Burles and Boon’s (2011) study site was more severely burned

and had a greater increase (50-58%) in maximum SWE relative to an undisturbed

site, while Seibert et al. (2010) found an average of 50% greater maximum SWE in

a more severely burned stand with greater area (486 km2), much larger variability

of slope (50% gradient) and elevation range (603-2164 m) than at 241Cr, suggest-

ing that more severely burned forests and site-specific topographic conditions have

greater accumulation response than forests with moderately severe wildfire.
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The ratio of maximum SWE between WF and and the most severe disturbance

(CC) suggests that approximately 6-17% of snow was intercepted by the canopy rela-

tive to the incoming total, and inferred to be lost to sublimation as the snow otherwise

would have dropped off the canopy and increased sub-canopy snow accumulation.

Currently, no published literature has quantified the sublimation loss of snow in post-

wildfire stands, but Burles and Boon (2011) noted higher wind speeds and reduced

stem density in burned stands which would affect sublimation, and should be included

in future studies. As the post-wildfire canopy is characterized by standing dead stems

and branches, model parameterization required low LAI and maximum canopy in-

tercepted snow load (Sbar) values to represent this canopy, and thus allowed some

snow to be retained and sublimated by the canopy. A limitation of this approach may

be that more snow was captured by the canopy than would be in the field because

the model is assuming that LAI is an interception platform with needles, stems,

and branches, much of which is removed by fire, so the accumulation of sub-canopy

snow would be reduced as interception processes are more important than real-world

stands. As with the MPB scenario, there are currently no measured Sbar values for

WF; Sbar was determined in this study for both MPB and WF as a percent change

of literature derived values relative to LAI, but further work is required to deter-

mine appropriate forest canopy parameter values in both MPB and WF scenarios.

The accumulation differences between disturbance extents were, like the less-severe

disturbances (MPB and MF), smaller in the high snow year (2007).

Results indicate that the potential response of moderately-severe wildfire distur-

bance may alter the rate, timing and duration of ablation to more closely represent

most severe clearcut than less severe MF and MPB scenarios. The increase in ablation

rate and decreased the duration of the ablation period relative to the MF and MPB

scenarios is not unexpected. Previous studies have shown that wildfire opens the

canopy which permits greater sub-canopy radiation transmittance to more rapidly
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ablate snowpack (Seibert et al., 2010; Burles and Boon, 2011). However, modelled

ablation was sensitive under this disturbance scenario, as evidenced by the notably

high ablation rate which is the result of increased incoming shortwave and outgoing

longwave radiation which in turn enhanced the energy available for ablation coupled

with low snow surface albedo. This was caused by soot falling from the remaining

branches and trunks to the snow surface, resulting in greater absorption of shortwave

radiation and greater availability of energy for ablation (Conway et al., 1996). This is

the first study to examine post-wildfire snow processes, thus there is no previous work

against which to compare these results. However, given the high model sensitivity to

low albedo values (see Chapter 5), the model may be overly sensitive to the combina-

tion of soot deposition on the snow (low albedo values) and loss of canopy (reduced

LAI ), resulting in rapid ablation and large reduction in the duration of the ablation

period. The ablation rate remained relatively constant with extent of disturbance,

except for the highest elevational extent under WF in 2007 where a second SWE

peak occurred later in the year at lower elevational extents, thus extending the snow

season later in the year when sun angle is higher and air temperatures are increasing,

and subsequent rapid ablation.

7.5 Clearcut

The CC scenarios were the most severe disturbance and consequently had the greatest

impact on snow accumulation. Maximum SWE was greatest under this scenario,

increasing by an average of 20% compared to the least severe disturbance (MF), which

is in the low range of the 20-40% values noted in the literature (Golding and Swanson,

1986; Faria et al., 2000; Spittlehouse and Winkler, 2004). This variation is likely due to

differences in both snowfall magnitude and timing, and mature forest canopy closure

and density across sites. Similar to the other disturbances, interannual differences in

total snowfall resulted in different percent change in maximum SWE relative to the
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least severe MF scenario. In the lower snow year (2002), average maximum SWE was

25% higher under the most severe disturbance (CC) relative to the least severe MF

scenario, but was only 17% higher in the higher snow year (2007). Between disturbance

extents, the difference in maximum SWE relative to the least severely disturbed MF

scenario decreased with increasing disturbance extent as the role of the canopy in

interception decreased. These differences were also a function of the less frequent and

smaller snow events of 2002 that were retained in the canopy at lower elevations.

Given the lack of canopy in the CC scenario, accumulation here is assumed to be

the maximum incoming SWE. This provided a baseline against which the maximum

SWE under each remaining disturbance severity (MF, MPB and WF) was compared.

It is important to note, however, that clearcut forests often lose snow to sublima-

tion. The removal of forest canopy decreases surface roughness, resulting in greater

wind speeds, and subsequently increased turbulent fluxes with subsequent redistribu-

tion and loss of snow due to blowing snow and sublimation (Toews and Gluns, 1986;

Spittlehouse and Winkler, 2004; Winkler et al., 2005). However, these processes have

been observed to have minimal impact on CC stands at the UPCr study site (Win-

kler, unpub. data; Spittlehouse, pers. comm.). Although the blowing snow module

was tested during the model simulations, loss of snow from this process was negligible

and thus confirmed field observations.

As expected, the rate and timing of snow ablation was altered under the most

severely disturbed scenario (CC). Ablation under the CC scenario was faster than

under either of the least severe disturbances (MF and MPB), but the rate and timing

of complete ablation fell between the MPB and WF scenarios. Ablation rates under

the CC scenario were on average 86% greater than under the least disturbed MF

scenario. These results are within the higher range of typical ablation rates (30% to

> 100%) found in the literature, but compare well with measured values at the study

site (e.g., Toews and Gluns, 1986; Berris and Harr, 1987; Spittlehouse and Winkler,
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2004; Winkler et al., 2005).

The complete removal of forest canopy under the CC scenario resulted in the

greatest increase in average total energy available for ablation (26%) relative to least

disturbed MF scenario. Differences in rate of ablation between extents of CC distur-

bance were minimal, with the date of complete snowpack removal occurring only 3-5

days later in greatest extent of disturbance. Since the change in energy available for

ablation was minimal with elevational extent, more days were required to completely

ablate the higher SWE at higher elevations.

7.6 Total Basin-Scale SWE

Greater forest disturbance severity increased total basin-scale SWE in both years, but

the response was more notable in the lower snow year (2002). The greatest difference

between disturbance severities was in 2002 was because the interception capacity of

the forest is more important in a low than in a high snow year (Jost et al., 2007; Boon,

2011). In high-snowfall years such as 2007, differences between disturbances and be-

tween disturbance extent were reduced as heavy snowfalls exceeded the interception

capacity of the canopy (Schmidt, 1991; Hedstrom and Pomeroy, 1998; López-Moreno

and Latron, 2008). There was a noticeable increase in basin SWE with both distur-

bance extent and severity. Under all scenarios of disturbance severity, the greatest

response in total basin SWE occurred when the disturbance extent spread from the

mid-low to mid-high elevation, and the least response occurred when the disturbance

moved into the highest elevational extent.

Under the MPB scenarios, total basin-scale SWE increased by 0-5% with increas-

ing disturbance extent relative to the MF scenarios. These results agree well with

Biederman et al. (2011) who observed no change in maximum SWE at the small

catchment scale, but differs from the results of Bewley et al. (2010) who found a 12–

19% increase in basin-scale SWE post grey-attack MPB disturbance, and Pomeroy
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et al. (2012) who found that 15% of basin area disturbed by a mix of red and grey

attack MPB resulted in approximately 5% increase in basin SWE.

These differences are likely a function of variations between study sites. The basin

in Biederman et al. (2011) was of similar size to 241Cr, but received almost double

the snowfall amount which may have led to the canopy being less important in driving

SWE. Bewley et al. (2010) studied a large (>1251 km2) basin with a greater elevation

range (400-1600 m), where elevation likely played a larger role in basin-scale SWE

than in 241Cr. Pomeroy et al. (2012) studied a basin with an 1100 m elevation range,

while that in 241Cr is only 400 m. Additionally, their watershed contained a com-

bination of southerly and northerly aspects, whereas 241Cr is largely south facing.

While both Bewley et al. (2010) and Pomeroy et al. (2012) reduced LAI to represent

disturbance, neither study incorporated changes in snow surface albedo due to needle

drop.

Total basin-scale SWE was much more responsive to disturbance extent under

increasingly severe WF disturbance than the less severe MPB scenario (0-5%), in-

creasing by up to 21% relative to least severe MF disturbance scenario. Greater loss

of forest canopy under the WF scenario relative to MPB scenario increased the rate of

accumulation and the maximum SWE. Few studies have examined basin-scale SWE

response to wildfire. Results from this study found an increase of 10–21% in total

basin SWE under the WF scenario with 24–100% of the basin area disturbed, which

was much smaller than results from Pomeroy et al. (2012) who found an increase of

18% and 47% in basin SWE with 35% and 60%, respectively, of the total basin area

subject to wildfire. A moderately-severe wildfire was simulated in this study, whereas

Pomeroy et al. (2012) selected parameters to represent a more severe disturbance with

in some cases no canopy or trunk retained. When combined with a larger elevation

range, this likely resulted in much higher SWE accumulation than in this study. As

with MPB, the total basin-scale SWE did not increase with disturbance extent in the
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higher snow year (2007) relative to that under least severely disturbed MF scenarios.

Basin-scale SWE response to disturbance extent was greatest under the most

severely disturbed CC scenario, with an increase of 31% under complete basin extent

of disturbance relative to the least severely disturbed MF scenario. When 24-46% of

the basin was disturbed under the CC scenario, total basin SWE increased by 13–22%.

This was lower than results from Pomeroy et al. (2012), who calculated an increase

in basin SWE of 18–32% when 15-37% of the watershed was clearcut. The range

of meteorological and topographic conditions between studies makes comparison of

results difficult; however, results from this study fall within the lower range of post-

CC maximum SWE percent change relative to MF (5–70%) from stand-scale studies

in British Columbia (Toews and Gluns, 1986; Winkler and Moore, 2006; Jost et al.,

2007; Teti, 2008; Winkler et al., in review).

Although runoff was not modelled in this study, results provide information based

on process knowledge and hydrologic theory that form the basis for future stud-

ies. Understanding the response of total basin-scale SWE to forest disturbances of

increasing severity and extent is required to quantify the amount of melt water avail-

able for runoff. Results from this study suggest that large changes in runoff volume

post red-attack MPB may not occur at 241Cr as observed in other studies due to a

slight increase in snow water equivalent (0–5 mm) relative to MF (Alila et al., 2009;

Schnorbus and Bennett, 2010). The large increase in rate of ablation under the wild-

fire scenario suggests that runoff may occur soonest of all the disturbances examined

in this study, which - when coupled with an increase in total basin-scale SWE rela-

tive to the least disturbed MF scenario - could result in substantial changes to spring

snowmelt. Results from the most severely disturbed clearcut scenario indicate that

extent of disturbance may increase the total amount of snow water equivalent in the

basin regardless of snowfall events. Small difference in ablation rates between years

or between extent of disturbance suggests that melt across the watershed may be
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synchronized, and if the date of complete snowpack removal becomes similar across

elevations, melt timing may also be synchronized across the watershed resulting in

greater runoff response relative to desynchronized melt across the watershed. Between

disturbance severity scenarios, the ablation rate under the moderately severe MPB

scenario was similar to the least severely disturbed MF scenario, but under increas-

ingly severe disturbances (WF and CC), higher ablation rates suggest a greater runoff

response relative to those under the less disturbed scenarios (MF and MPB).

7.7 Conclusion

Results from this study indicate that total basin SWE increased with disturbance

severity, as loss of forest canopy resulted in less loss of snow to interception and

greater sub-canopy accumulation. Disturbance extent also increased the response of

basin-scale SWE as more disturbed area permitted greater accumulation of snow.

In the year with less snow, the response to both disturbance severity and extent was

greater than the year with more snow, where only the most severely disturbed clearcut

scenario resulted in more total basin-scale snow water equivalent. Disturbance severity

also increased SWE ablation as the loss of canopy increased the amount of total energy

available for ablation. The two disturbances with greatest severity resulted in more

snow water equivalent and significantly increased rates of ablation which is likely to

enhance the timing and magnitude of snowmelt runoff from 241Cr.
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Chapter 8

Summary and Conclusions

The purpose of this thesis was to initialize and validate a hydrological model for a

forested, snowmelt-dominated catchment in south central British Columbia, and to

use field data from stand-scale studies to parameterize the model to represent forest

disturbances in order to quantify the potential snow hydrology response to varying

spatial extent of disturbance.

Forest disturbances can have severe and long term implications for water resources.

For example, dramatic reduction in forest canopy closure and density as a result of

disturbances may reduce water quality, increase flooding and potentially damage in-

frastructure, and alter fresh water availability for downstream users (Overpeck et al.,

1990; Dale et al., 2001; Silins et al., 2009; Haughian et al., 2012). Water resource

management often develops strategies for dealing with forest disturbance by either

reducing vulnerability to disturbances, or enhancing subsequent recovery (Dale et al.,

2001). Thus, greater understanding of post-disturbance hydrologic response can aid

in developing risk assessments for water resource management. Vose (2011) identi-

fied several high-priority areas for future forest ecohydrological research, including

understanding the impacts of accelerated natural disturbances, such as wildfire and

mountain pine beetle (MPB), that have the potential to reduce the capacity of forested

watersheds to provide abundant water (Buttle et al., 2000; Ellison et al., 2005; Lodge

et al., 2006). The National Research Council of the United States (2012) also suggest

that a greater understanding of the hydrologic response to abrupt landcover change is

necessary for future water management. This understanding is critical for providing

key information of hydrologic variability as a result of forest disturbances in order to

predict its future range and response.

This study was conducted in 241 Creek, a sub-basin of the Upper Penticton Creek

(UPCr) watershed located in the Okanagan Basin of British Columbia. UPCr was
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established as a research watershed in the early 1980s to monitor the long-term effects

of natural and anthropogenic forest disturbances on hydrological processes. Created

as a paired watershed experiment, pre- and post-clearcut treatments were applied at

UPCr in adjacent sub-basins with predominantly lodgepole pine forest cover. The 241

Creek sub-basin was clearcut in increments up to 50%, while 240 Creek was left as a

control.

Modelling of current and disturbed forest scenarios was performed with the Cold

Regions Hydrological Model (CRHM) (Pomeroy et al., 2007). CRHM was parame-

terized with UPCr data describing current forest cover (mature forest and clearcut)

and with measured and literature-based forest disturbance (mountain pine beetle and

wildfire) parameters, quantify the sensitivity of snow accumulation and ablation at

the catchment scale to varying spatial extents of disturbance. CRHM was run with

9 years of input meteorological data from the UPCr experiment. This study is one

of the first applications of this model in British Columbia, and one of the first to

quantify watershed-scale snow response to wildfire and MPB.

Sensitivity tests were conducted to determine the effect of key model parameters

on model output. Results suggested that, under mature forest conditions, the model

tends to oversimulate accumulation and ablation, while under clearcut conditions

the response is more variable. Model output was very sensitive to parameter values

exclusive to the mature forest, particularly leaf area index (LAI) and maximum

canopy intercepted snow load (Sbar). Output was also sensitive to albedo values

under both forest conditions. Results were used to calibrate the model with parameter

values within a reasonable range of field and literature values.

Results from the model validation baseline indicated that model performance was

better in clearcut than mature forest conditions due to complex interactions between

forest canopy and snow processes, and indicated that customization of parameters for

individual years may increase model accuracy. Given that disturbance scenarios were
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based on modified mature forest conditions, two years were selected for simulations

that best represented observed snow conditions in both mature forest and clearcut.

To represent 241 Creek spatially, the watershed was divided into four homoge-

neous hydrologic response units (HRU). The four HRUs were incrementally disturbed

from the lowest to the highest elevation HRU to represent varying spatial extent of

disturbance through a continuum of increasing disturbance severity: mature forest,

red-attack mountain pine beetle, moderately severe wildfire, and clearcut. Overall,

results indicate that the response of snow accumulation and ablation increases with

disturbance severity. Accumulation of snow increased with disturbance severity as

greater loss of canopy reduced interception losses and permitted more snow to accu-

mulate under the canopy. Ablation was enhanced by disturbance in general as the

less dense canopy allowed for greater incoming solar radiation to reach the snowpack

which enhanced the energy available for melt. These results compare well with recent

stand-scale studies of forest disturbances that found canopy loss from disturbance

increased the maximum amount of accumulation and enhanced ablation (Winkler

et al., 2005; Boon, 2009, 2011; Burles and Boon, 2011; Pomeroy et al., 2011). How-

ever, results from this study were within the lower range of accumulation response as

found in other studies (Golding and Swanson, 1986; Biederman et al., 2011; Burles

and Boon, 2011), which suggests that disturbances may have relatively small im-

pact in basins or sub-basins with similar topographic and meteorological conditions.

Differences between accumulation/ablation response and disturbance types were re-

duced both by elevation, and large and more frequent snowfall events, indicating the

greater importance of canopy both at lower elevations and years with smaller and less

frequent snowfall events.

The total basin-scale accumulation of snow increased with forest disturbance sever-

ity and extent of disturbance. Loss of forest canopy from disturbance resulted in

greater accumulation at the basin scale, which increased as disturbance extended
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into higher elevations. In general, total accumulation in the watershed was increased

with disturbance severity relative to the mature forest, but the difference between

disturbance scenarios and extent decreased in the year with more frequent and larger

snowfall events. This again indicates that the importance of canopy varies with snow-

fall regimes.

While basin-scale response to clearcutting is well documented (e.g.,Troendle and

King, 1985; Jones, 2000; Jost et al., 2007), this study is one of the first to examine the

response to mountain pine beetle and wildfire disturbances. When compared with the

few studies that do exist, results are within the lower range of values (Bewley et al.,

2010; Pomeroy et al., 2012); this difference is likely associated with differences in

meteorological and topographic characteristics between study sites.

The results presented in this study provide water resource management with po-

tential response to snow accumulation and ablation post forest disturbance. The

mountain pine beetle-killed forest response was similar to that of the mature for-

est, with a small increase in snow water equivalent and the rate of snow ablation,

which results in an earlier snow removal. The extent of pine beetle disturbance re-

sulted in gradients in snow water equivalent, ablation rate, and date of snow removal.

The wildfire response was similar to the clearcut, with a large increase in snow water

equivalent and the highest rate of rate of ablation. The extent of wildfire disturbance

had minimal to no extent gradient in snow water equivalent, ablation rate, and date

of snow removal, which suggests that runoff response may be synchronized across the

watershed. Given these results, water resource management should be more concerned

with the potential for greater impact on runoff post wildfire, whereas the pine beetle

killed impact may be less severe.

While the model applied in this thesis was able to simulate snow accumulation

and ablation effectively, and presented fundamental information on the differences

in snow response between forest disturbances at the watershed scale, the following
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recommendations and considerations are presented to improve post-disturbance hy-

drological modelling at the watershed scale.

1. Data were quality assured and checked before application to the model, the

study site was visited, and communication was maintained with those who col-

lected the data. There was no personal involvement in data collection, and as a

result, a knowledge gap exists between the collection and application of data.

2. As with all modelling studies, the methodology, parameter values, and model

output have explanatory power but may always be limited in their interpretation

of real world processes. However, we should expect that greater understanding of

hydrological processes will improve the development and application of models.

(a) The model applied in this study divided the watershed into lumped, ho-

mogeneous HRUs that assume uniform hydrological response and subse-

quently do not account for spatial distribution of input variables or param-

eters. Delineating lumped units for this study was generally simple given

the relatively uniform topography and forest closure, but may have av-

eraged processes that would have otherwise influenced model results. For

example, the average aspect values were mostly south-facing, while small

areas of the watershed were slightly west or north-facing and would not

receive the same solar radiation as the averaged value. Increasing the num-

ber of HRUs to incorporate local processes driving snow accumulation and

ablation may increase the accuracy of model output across space. Further-

more, sensitivity tests to determine relative sensitivity of HRU selection

and parameterization on model output may improve the spatial represen-

tation of the watershed within the model.

(b) The model was driven by parameter values from field studies and the lit-

erature that may vary between specific watersheds and at different loca-
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tions within the watershed, and therefore may not be representative of

site-specific conditions.

(c) Meteorological conditions give leaf area index, maximum intercepted snow

load, and albedo differing importance between years, therefore annual pa-

rameterization of these values may improve model output.

3. Although the conclusions derived from results may be valid for similar snowmelt

dominated and forested watersheds in the southern interior of British Columbia,

transfer of results to other regions with dissimilar meteorological conditions, for-

est cover, and topographical characteristics augments uncertainty. Additional

studies are required in different regions to evaluate the impact of forest distur-

bances on snow processes in a range of conditions.

4. While this study focused on post-disturbance snow processes and total basin-

scale snow water equivalent, a link needs to be established with surface runoff

and groundwater to increase the understanding of post-disturbance hydrology.

This thesis presented the application of a hydrological model to simulate forest

disturbance effects on the watershed-scale accumulation and ablation of snow. Results

from this study may help water resource management determine future risk assess-

ments. The total basin-scale accumulation of snow water equivalent increased with

disturbance severity and extent of disturbance, but differences between disturbance

types were reduced in the year with greater snowfall. Therefore, when developing

future risk assessments, it is important for water resource management to consider

forest disturbance severity and extent, and to incorporate these considerations within

a range of snowfall regimes to gain a greater understanding of potential basin-scale

response.
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