
DETECTING INACCURATE STACK TRACES IN BUG REPORTS

MEHER KIRAN BHEREE
Bachelor of Technology, GITAM University, 2015

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Meher Kiran Bheree, 2022

DETECTING INACCURATE STACK TRACES IN BUG REPORTS

MEHER KIRAN BHEREE

Date of Defence: August 16, 2022

Dr. J. Anvik Associate Professor Ph.D.
Thesis Supervisor

Dr. W. Osborn Associate Professor Ph.D.
Thesis Examination Committee Member

Dr. H. Cheng Associate Professor Ph.D.
Thesis Examination Committee Member

Dr. J. Sheriff Assistant Professor Ph.D.
Chair, Thesis Examination Committee

Dedication

A thesis is written in honour of my late father, Subhadhra Rao Bheree, who constantly

encouraged and supported me in my academic endeavours.

iii

Abstract

The generally held opinion in the software engineering community is that incorrect in-

formation in bug reports is often found in non-structural fields such as bug descriptions

and steps to reproduce. However, structural information such as software stack traces can

be inaccurate, increasing the project costs due to wasted time in fixed faults. Regarding

the occurrence of inaccurate stack traces in bug reports, there is little empirical evidence.

Therefore, we seek to provide such evidence by conducting an empirical study on the bug

reports containing stack traces from the Eclipse and Apache projects.

We propose an approach to classify the stack traces as either “Accurate” or “Inaccurate”

by comparing the file names found in a stack trace in a bug report and the corresponding

commit history for its fix. Thus, we determine the occurrence of inaccurate stack traces and

identify the frequently occurring exception types that appears in the inaccurate stack traces

for each project.

Finally, we investigate training three supervised machine learning algorithms (Naive

Bayes, Support Vector Machines and Logistic Regression), on features extracted from stack

traces to create recommender that labels stack traces in bug reports as either ”Accurate” or

”Inaccurate”. The Logistic Regression algorithm was found to perform better with a F1-

score up to 87% for the investigated Eclipse projects and 96% for the investigated Apache

projects.

iv

Acknowledgments

I express my sincere gratitude to my supervisor Dr. John Anvik, whose guidance, support

and encouragement have been priceless throughout my research. I also want to thank my

committee members, Dr. Wendy Osborn and Dr. Howard Cheng for their constant support

and motivation.

Many thanks to Dr. John Sheriff for being the Examination chair of my thesis defence.

I am extremely grateful to the School of Graduate Studies (SGS) and its member staff for

helping me financially throughout my Master’s in Canada.

It is a great pleasure to thank my parents, Jyothi Yedla (sister), Shiva Amireddy (brother)

and other family members, who guided me positively and made me feel confident in my

abilities. Special thanks to my wife Sudha Atti for her unconditional support and under-

standing.

To conclude, I had a great experience with everyone in the Sibyl lab for all the virtual

conversations and social gatherings. And I would like to thank Ajay Tedlapu, Abha Goel,

Shahul Shaik, Manvitha Pandiri, Vaishnavi Alluri, Mrudula Bangaru, Jaya Peddinti and

Prashanth Chinthapalli for all the support in this very intense Master’s journey.

v

Contents

Dedication iii

Abstract iv

Acknowledgments v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivating Example . 2
1.2 Research Questions . 5

1.2.1 RQ 1: How often do inaccurate stack traces occur in bug reports? . 5
1.2.2 RQ 2: What exceptions are more likely to occur in inaccurate stack

traces? . 5
1.2.3 RQ 3: What is the effectiveness of using different machine learning

algorithms in tagging stack traces as accurate or inaccurate? 6
1.3 Contributions . 6
1.4 Thesis Organization . 6

2 Background 8
2.1 Bug Reports . 8

2.1.1 Components of Bug Reports . 9
2.2 Version Control System . 12

2.2.1 Commit History . 12
2.3 Infozilla Tool . 12
2.4 Machine Learning Algorithms . 13

2.4.1 Naive Bayes classifier . 14
2.4.2 Support Vector Machines . 15
2.4.3 Logistic Regression . 16

2.5 Metrics . 17
2.5.1 Precision . 18
2.5.2 Recall . 18
2.5.3 Accuracy . 18
2.5.4 F1-Score . 19

2.6 Summary . 19

vi

CONTENTS

3 Related Work 20
3.1 Research About Bug Report Structure . 20
3.2 Research using Bug Report Information for Prediction 21
3.3 Research Managing Crash Reports . 22
3.4 Summary . 23

4 An Approach to Detecting and Predicting Inaccurate Stack Traces 24
4.1 Data Source and Preparation . 25
4.2 Extracting Features and Committed File Names Extraction 26

4.2.1 Extracting features from stack traces 26
4.2.2 Extracting filenames from the commit history 28

4.3 Labelling Stack Traces . 28
4.3.1 Walk-through Example . 29

4.4 Training a Machine Learning Classifier 30

5 Evaluation and Results 31
5.1 Data Sets . 32

5.1.1 Eclipse Data Set . 32
5.1.2 Apache Data Set . 33
5.1.3 Extracting Stack Traces . 34

5.2 RQ 1 : How often do inaccurate stack traces occur in bug reports? 34
5.3 RQ 2 : What exceptions are more likely to occur in inaccurate stack traces? 36
5.4 RQ 3 : What is the effectiveness of using different machine learning algo-

rithms in tagging stack traces as accurate or inaccurate? 37
5.4.1 AspectJ Project . 38
5.4.2 Birt Project . 41
5.4.3 Eclipse Platform UI Project . 43
5.4.4 JDT Project . 46
5.4.5 Cassandra Project . 48
5.4.6 Hadoop Project . 52
5.4.7 Hbase Project . 54
5.4.8 Spring Project . 58

5.5 Summary . 61

6 Discussion 63
6.1 How deep should stack traces be in bug reports? 63
6.2 Which exceptions should developers be most suspicious? 64
6.3 Which feature combination and machine learning algorithm should be used? 66
6.4 Summary . 67

7 Conclusion 68
7.1 Limitations . 69
7.2 Future Work . 69

Bibliography 71

vii

List of Tables

2.1 Sample data set . 14

5.1 Eclipse Data Set. 33
5.2 Apache Data Set. 33
5.3 Accurate/Inaccurate stack traces of all the bug reports for the Eclipse projects. 35
5.4 Accurate/Inaccurate stack traces of all the bug reports for the Apache projects. 35
5.5 The percentage of the exception types occurring in inaccurate stack traces

using data from all of the projects in the Eclipse data set. 37
5.6 The percentage of the exception types occurring in inaccurate stack traces

using data from all of the projects in the Apache data set. 37
5.7 Evaluation metrics for the AspectJ Top-N Stack depths. 38
5.8 Evaluation metrics for the Birt Top-N Stack depths. 41
5.9 Evaluation metrics for the Eclipse Platform UI Top-N Stack depths. 44
5.10 Evaluation metrics for the JDT Top-N Stack depths. 47
5.11 Evaluation metrics for the Cassandra Top-N Stack depths. 49
5.12 Evaluation metrics for the Hadoop Top-N Stack depths. 52
5.13 Evaluation metrics for the Hbase Top-N Stack depths. 55
5.14 Evaluation metrics for the Spring Top-N Stack depths. 58

6.1 The percentage of the exception types in inaccurate stack traces (Top-10
stack depth) for each project in the Eclipse data set. 64

6.2 The percentage of the exception types in inaccurate stack traces(Top-10
stack depth) for each project in the Apache data set. 65

viii

List of Figures

1.1 Example of a bug report with an inaccurate stack trace from Eclipse 4
1.2 Example of a bug report with an inaccurate stack trace from Cassandra. . . 5

2.1 An example bug report from JDT project. 9
2.2 An example Stack Trace. 10
2.3 An example patch. 10
2.4 An example of source code snippet in a bug report. 11
2.5 An example of steps to reproduce. 11
2.6 Naive Bayes calculations. 15
2.7 Support Vector Machine. 15
2.8 Logistic Regression. 17

4.1 Design for training and detecting Accurate / Inaccurate Stack traces 25
4.2 An example of extracted stack trace using Infozilla tool 27
4.3 Commit History for Cassandra Bug # 10909 28
4.4 Stack trace from AspectJ Bug # 100227 29
4.5 Commit History for the AspectJ Bug # 100227 29

5.1 F1-score Measure for Top-N stack depth for AspectJ Project with File name
as feature. 39

5.2 F1-score Measure for Top-N stack depth for AspectJ Project with File name,
Method name as features. 39

5.3 F1-score Measure for Top-N stack depth for AspectJ Project with File name,
Exception as features. 40

5.4 F1-score Measure for Top-N stack depth for AspectJ Project with File name,
Method name , Exception as features. 40

5.5 F1-score Measure for Top-N stack depth for Birt Project with Filename as
feature. 42

5.6 F1-score Measure for Top-N stack depth for Birt Project with File name,
Method name as features. 42

5.7 F1-score Measure for Top-N stack depth for Birt Project with File name,
Exception as features. 43

5.8 F1-score Measure for Top-N stack depth for Birt Project with File name,
Method name, Exception as features. 43

5.9 F1-score Measure for Top-N stack depth for Eclipse Platform UI Project
with Filename as feature. 44

5.10 F1-score Measure for Top-N stack depth for Eclipse Platform UI Project
with File name, Method name as features. 45

ix

LIST OF FIGURES

5.11 F1-score Measure for Top-N stack depth for Eclipse Platform UI Project
with File name, Exception as features. 45

5.12 F1-score Measure for Top-N stack depth for Eclipse Platform UI Project
with File name, Method name, Exception as features. 46

5.13 F1-score Measure for Top-N stack depth for JDT Project with Filename as
feature. 47

5.14 F1-score Measure for Top-N stack depth for JDT Project with File name,
Method name as features. 48

5.15 F1-score Measure for Top-N stack depth for JDT Project with File name,
Exception as features. 48

5.16 F1-score Measure for Top-N stack depth for JDT Project with File name,
Method name, Exception as features. 49

5.17 F1-score Measure for Top-N stack depth for Cassandra Project with File-
name as feature. 50

5.18 F1-score Measure for Top-N stack depth for Cassandra Project with File
name, Method name as features. 50

5.19 F1-score Measure for Top-N stack depth for Cassandra Project with File
name, Exception as features. 51

5.20 F1-score Measure for Top-N stack depth for Cassandra Project with File
name, Method name, Exception as features. 51

5.21 F1-score Measure for Top-N stack depth for Hadoop Project with Filename
as feature. 52

5.22 F1-score Measure for Top-N stack depth for Hadoop Project with File name,
Method name as features. 53

5.23 F1-score Measure for Top-N stack depth for Hadoop Project with File name,
Exception as features. 53

5.24 F1-score Measure for Top-N stack depth for Hadoop Project with File name,
Method name, Exception as features. 54

5.25 F1-score Measure for Top-N stack depth for Hbase Project with Filename
as feature. 55

5.26 F1-score Measure for Top-N stack depth for Hbase Project with File name,
Method name as features. 56

5.27 F1-score Measure for Top-N stack depth for Hbase Project with File name,
Exception as features. 56

5.28 F1-score Measure for Top-N stack depth for Hbase Project with File name,
Method name, Exception as features. 57

5.29 F1-score Measure for Top-N stack depth for Spring Project with Filename
as feature. 59

5.30 F1-score Measure for Top-N stack depth for Spring Project with File name,
Method name as features. 59

5.31 F1-score Measure for Top-N stack depth for Spring Project with File name,
Exception as features. 60

5.32 F1-score Measure for Top-N stack depth for Spring Project with File name,
Method name, Exception as features. 60

x

Chapter 1

Introduction

Many large software companies rely on issue tracking systems (e.g., Bugzilla1, Jira2) to

manage feature requests and bug reports. A feature request directly or indirectly relates to

a user requirement, such as upgrading software or adding new functionality to the existing

software. Bug reports are created by a user or tester when they perceive that the software is

no longer delivering the desired outcome with the specified input values, which is referred

to as a software failure. Depending on the degree of the failure, the “bug reporter” or “bug

submitter” may need to report the failure and classify the failure in the issue tracking sys-

tem. As a result, more flaws in the software projects may be discovered and repaired. Often

bug reports are comprised of a variety of information like bug descriptions, stack traces,

patches, steps to reproduce, screenshots and code samples [2]. They include a detailed

explanation of the failure and, on rare occasions, a pointer to where the error in the code

might be found. This allows users to alert developers to issues they discovered while using

a piece of software.

According to Boehm and Basili, up to 70% of the cost of software is spent on debugging

and maintenance, whereas 30% is spent on development [3]. Software debugging is a

complex process, and it frequently necessitates searching through millions of lines of code

to find the source of an issue. Thus, developers often spend their time debugging the issue

rather than developing a new piece of code to add or change functionality. Some bug

reports contain incomplete or incorrect information provided by the end-user in the bug

1https://www.bugzilla.org/
2https://www.atlassian.com/software/jira

1

1.1. MOTIVATING EXAMPLE

report. This can lead to delays in the debugging process, thereby increasing software project

maintenance costs.

A previous study by Bettenburg et al. [2] examined different sections in the bug report

and interviewed 156 Developers from three different software projects. Their study shows

that the steps to reproduce are the essential piece of information, and stack traces are the

next most important. Steven et al. [5] investigated bug reports from Facebook, Apache, and

Eclipse and noticed that users provide screenshots, stack traces and test cases in less than

10% of all the bug reports. Therefore, bug reports should evolve to contain more structural

information. In another research, Chaparro et al. [4] focused on the steps to reproduce in

bug reports, identifying and assessing the quality of these steps automatically and providing

feedback to the reporters, which they can use to improve the bug report.

In short, previous studies have focused on the bug description and steps to reproduce

and determined that they often contain incorrect information, but little prior work has in-

vestigated the accuracy of stack traces. Thus, in this work, we downloaded the bug reports

and commit history for eight open source Java-based projects. We compare the names of

committed files from the commit history to the names of stack trace files. If the file names

match, we consider the stack trace to be Accurate; otherwise, it is Inaccurate.

1.1 Motivating Example

Stack traces in bug reports can be helpful as they assist the developers in the debugging

process [13]. A stack trace can narrow down the list of files likely to contain the defect.

Also, software vendors, including Microsoft, Apple, and Mozilla, are improving built-in

support to send stack traces back to developers when the software crashes.

Although stack traces have several advantages and disadvantages. When we examined

specific bug reports from some open-source projects, specifically those from the Eclipse

and Apache projects, we found that the stack traces could be inaccurate regarding the files

indicating where the code will need to be fixed.

2

1.2. RESEARCH QUESTIONS

Take, for example, bug report #397872 from the Eclipse project [8], as shown in Figure

1.1. This bug report was filed in January 2013, with a description reporting that there is

an NullPointerException in the RCP application3 User interface. Figure 1.1 shows that

the reporter provided steps to reproduce, normal severity and attached a stack trace. On

checking the comments, it is clear that the developer focused on the WorkbenchPage.java

file as specified in the stack trace. However, later in November 2013, a different project

developer figured out that the actual cause was because of the addpart() method from Part-

ServiceImpl.java file and provided a fix to it. Finally, this bug report was verified and closed

in December 2013, meaning it took the project a year to resolve the issue because of the

inaccurate stack trace.

Another example is bug report #15358 from the Cassandra project [9] in October 2019.

The report describes a software failure migrating from Cassandra version 3.11.4 to version

4.0-alpha1. The client discovered this fault and reported this bug with normal severity,

giving a potentially inaccurate stack trace to the problem. As shown in Figure 1.2, the stack

trace displays an exception type IllegalArgumentException and an ordered list of class trace-

backs for the problem. The developer focused on the IllegalArgumentException as shown

by the comments in the bug report and investigated the classes in the stack trace making

code changes. Seven months later, in April 2020, the project determined that this defect was

the heapbuffer() method in the DistributedReadWritePathTest class, which is not referred

to in the stack trace, leading to the project taking 183 days to close the bug report.

The above examples show how an inaccurate stack trace can result in extended fixing

times, in these cases six months to a year, thereby causing additional costs to the software

project’s development.

3https://www.eclipse.org/articles/Article-RCP-1/tutorial1.html

3

1.2. RESEARCH QUESTIONS

Figure 1.1: Example of a bug report with an inaccurate stack trace from Eclipse

4

1.2. RESEARCH QUESTIONS

Figure 1.2: Example of a bug report with an inaccurate stack trace from Cassandra.

1.2 Research Questions

In this thesis, we examine the frequency of inaccurate stack traces in bug reports and

the use of machine learning classifiers to alert developers to their presence. This leads to

the following research questions.

1.2.1 RQ 1: How often do inaccurate stack traces occur in bug reports?

During the debugging process, it is common for a developer to begin debugging with

the files that appear in a stack trace. If a stack trace is inaccurate, the developer might lose

time examining unnecessary files. In this research, we investigate how often stack traces

reference files which are not part of the eventual fix.

1.2.2 RQ 2: What exceptions are more likely to occur in inaccurate stack traces?

While implementing a feature in a software project, a developer may or may not catch

thrown exceptions. If the exceptions are not catched, the software will crash, and the thrown

exception will appear in the stack trace, indicating at which point the exception was thrown

5

1.4. THESIS ORGANIZATION

in the execution. Analyzing the stack traces in a project’s bug reports to find what type

of exceptions occur commonly in inaccurate stack traces can help developers to be more

cautious in their investigations. If a particular exception is frequently associated with an

inaccurate stack trace, then if that exception occurs, the developer will know to be more

skeptical about the information and look more carefully when debugging.

1.2.3 RQ 3: What is the effectiveness of using different machine learning algorithms

in tagging stack traces as accurate or inaccurate?

We investigate using a machine learning classifier to flag stack traces as potentially

inaccurate. We examined classifiers created using a variety of machine learning algorithms,

specifically classifiers trained using Naive Bayes (NB), Support Vector Machine (SVM) and

Logistic Regression (LogR), to discover which machine learning algorithm produces better

results.

1.3 Contributions

This thesis makes the following contributions:

1. An approach to identifying inaccurate stack traces in bug reports.

2. The results of an investigation as to the frequency of inaccurate stack traces in bug

reports.

3. Identification of the commonly occurring exception types in inaccurate bug reports.

4. The results of an investigation into using machine learning to create a classifier to

identify inaccurate stack traces.

1.4 Thesis Organization

This thesis proceeds as follows. In the second chapter, we covered a few background

concepts crucial to understanding this work.

6

1.4. THESIS ORGANIZATION

In Chapter 3, we discuss related work researching bug report structure, use of bug re-

ports for prediction, and managing crash reports. In Chapter 4, we explain our overall

approach.

In Chapter 5, we performed experimental evaluations and present results to our three

research questions. In Chapter 6, we discuss the significance of our results. The thesis

concludes in Chapter 7 with ideas for future directions and limitations from this work.

7

Chapter 2

Background

Understanding our approach requires background knowledge about the information found

in bug reports, version control systems, the Infozilla tool, the machine learning algorithms

used in our investigation and the metrics used to evaluate our recommenders.

2.1 Bug Reports

A sample bug report for JDT4 that was recorded in Bugzilla is shown in Figure 2.1. Spe-

cific content such as free-form text, attachments, and dependencies may be included in each

bug report. Various categorical information regarding the bug report is provided through

the pre-defined fields such as reporter, creation date, and report identification number. The

data for these pre-defined fields is provided when the report is created. Other parameters,

including those for the product, component, operating system, version, priority, and sever-

ity, are chosen by the reporter when the report is submitted but may also be modified during

the report’s existence. The assignee i.e., to whom the report is to be assigned, and its current

status, either open or closed, often change over time.

The report’s title, a thorough explanation of the defect, and other comments are all

included in the free-form text. The complete description includes a detailed explanation of

the bug’s impact and the steps required for a developer to reproduce the bug. The additional

comments may contain further information about the issue such as describing potential bug

fixes and include links to other bugs that appear to be duplicate reports.

4JDT offers the tool plug-ins necessary to construct a Java IDE to support any Java application’s develop-
ment.

8

2.1. BUG REPORTS

Figure 2.1: An example bug report from JDT project.

Developers and reporters may include structural information in reports, such as screen-

shots in the form of attachments and stack traces, patches and source code, either in text

form or as attachments. The activity log of a bug report offers a historical account of how

the report has changed over time, including any reassignments or changes in priority.

2.1.1 Components of Bug Reports

Stack traces:

A typical stack trace, as shown in Figure 2.2, consists of an ordered list of methods

or stack frames5 that were active on the call stack before an exception or error occurred.

Each frame contains the fully-qualified name of the method and the exact location of the

execution inside the source code through a file name and line number.

Thus, a stack trace holds all the filenames and method names involved in the program

flow, from the point of an exception arising back to the start of execution.

5A stack frame represents a single function call containing file path, class name and a method name.

9

2.1. BUG REPORTS

Figure 2.2: An example Stack Trace.

Patches:

A patch is a set of changes to the project files (e.g. source code, configuration) that

fixes a defect in a software product. These changes are most often given as a collection of

differences between two versions of a file as shown in Figures 2.3.

Figure 2.3: An example patch.

10

2.1. BUG REPORTS

Source Code:

A source code is used to demonstrate an issue, indicate the programming context in

which a problem originated, describe the environment in which it occurred or even offer a

prototype solution to the problem detailed in the bug report. An example is shown in Figure

2.4.

Figure 2.4: An example of source code snippet in a bug report.

Steps to reproduce:

Steps to reproduce are used to describe a chain of causality, or give a set of actions to

reproduce or fix a problem as shown in Figure 2.5.

Figure 2.5: An example of steps to reproduce.

11

2.3. INFOZILLA TOOL

These steps are the procedures that any other user must follow to encounter the same

bug. They should be as detailed as feasible, with pictures or test data to make it easier to

read and comprehend.

2.2 Version Control System

A version control system (VCS) is a repository that allows the developer to track code

changes, track who made the changes. Also make a copy of the project by forking it, edit

it and then merging the changes with the original project. Technically, it signifies a set

of commits where a commit is a saving point for code changes made by the developer.

Commits provide a point in the project where a developer can go back and fix a bug or

modify the code.

2.2.1 Commit History

A project’s commit history is a log of commits that allows someone to see the changes

that have occurred for every commit made in a specific branch. This allows teams to swiftly

follow the evolution of design work over time, as well as revert to or past states of develop-

ment.

Ideally for bug fixes, the developers mention the bug id in their commit message as a

good practice. This practice helps the developers to figure out the location of changes made

to fix a particular bug.

2.3 Infozilla Tool

There are two sorts of information extracted from bug reports. The first type is structural

information, which includes patches, source code, and stack traces that have a specific

structure depending on the programming language and can be retrieved or filtered using

regular expression or string operations. The second category, includes unstructured textual

content such as summaries and descriptions within bug reports. In contrast to structural

12

2.4. MACHINE LEARNING ALGORITHMS

information, it is difficult to determine where the descriptions end and start again.

Unstructured data requires significant work to pre-process to be ready for natural lan-

guage processing, primarily dependent on the quality of the information provided by user-

s/developers. Structural information, such as stack traces, is generated automatically with-

out human intervention and appears to include more verifiable information.

In this work, we are using the Infozilla tool [13] to extract structural data from bug

reports. The Infozilla tool is an open-source project developed by A. Schroter, N. Betten-

burg, and R. Premraj [13]. It is designed to extract structural and non-structural software

engineering data from unstructured data sources like e-mails, discussions, bug reports, and

wiki pages. This tool extracts structural information like stack traces, patches, and source

code from the bug reports and produces an XML format output of this information. It can

also extract non-structural data like descriptions and comments.

2.4 Machine Learning Algorithms

Machine learning algorithms use computational techniques to maximize a performance

criterion based on sample data. These machine learning models have specific parameters

and learn information from data to optimize the model’s parameters. As more samples are

provided for learning, the models learn more from the data and perform better predictions.

There are two types of machine learning: supervised learning and unsupervised learning

[10].

A supervised learning algorithm uses a set of known input and output data. The model

learns a function to map from the input data to output and function is appropriately fitted to

produce accurate predictions for the outcome of new data.

An unsupervised learning algorithm is employed to infer predictions from data sets

having input data but no labelled responses. These algorithms identify hidden patterns or

data clusters or have the capacity to find similarities and differences in information.

In this work, unsupervised learning is not an option because the algorithm cannot clas-

13

2.4. MACHINE LEARNING ALGORITHMS

sify or categorise stack traces into multiple classes using only their features. We chose

the labels for the stack traces based on the commit history. Because of this, we employ

supervised learning methods and discuss about the following classifiers.

2.4.1 Naive Bayes classifier

A Naive Bayes classifier is based on the Naive Bayes algorithm [10]. In order to find

the probability for a label, this algorithm uses the Bayes rule as shown in Equation 2.1.

P(label| f eatures) =
P(label)∗P(f eatures|label)

P(f eatures)
(2.1)

Given the label, the algorithm then makes the ‘naive’ assumption that all features are

independent. Rather than computing P(features) explicitly, the algorithm calculates the

numerator for each label and normalizes them to the sum of one.

Table 2.1: Sample data set

Features Labels
Filename Method name Exception

classOne.java methodOne exceptionOne Accurate
classTwo.java methodTwo exceptionTwo Accurate

classThree.java methodThree exceptionThree Inaccurate
classTwo.java methodTwo exceptionOne Inaccurate
classOne.java methodOne exceptionThree Accurate
classTwo.java methodTwo exceptionOne Accurate

Consider the sample data set provided in Table 2.1, which has features and labels.

Assume we trained a Naive Bayes classifier with this sample data. Let’s see how the

Naive Bayes classifier can predict the label for a new instance with the features classTwo,

methodTwo and exceptionThree.

As shown in the calculations of Figure 2.6, the classifier finds the probability of the

labels given the sample data and found probabilities for P(Accurate) and P(Inaccurate) as

4/6 and 2/6 respectively. Also, the probability of the features (classTwo, methodTwo and

exceptionThree) given a specific label (i.e. Accurate or Inaccurate) are calculated and found

14

2.4. MACHINE LEARNING ALGORITHMS

the probability that the instance has the Accurate label is 0.08 and Inaccurate label is 0.04.

Thus, the Naive Bayes classifier predicts the label for the new features as Accurate.

Figure 2.6: Naive Bayes calculations.

2.4.2 Support Vector Machines

Support Vector Machine (SVM) is a supervised machine learning algorithm for data

classifications. SVM creates a hyper-plane6 to separate various classes in a given data set;

however, the main principle is to find the optimum maximum margin separator7 that best

classifies the data [10].

Figure 2.7: Support Vector Machine.

6A hyperplane is a plane with one less dimension than its dimensional space.
7A decision boundary that is farthest from the training point possible.

15

2.4. MACHINE LEARNING ALGORITHMS

In the example shown in Figure 2.7, there are two classes of data (Black and Gray dots).

To classify them, SVM finds linear separators (the slim lines) close to the training points

and builds a maximum margin separator (the solid line) at the midpoint of the two linear

separators. This line provides the greatest distance from the data points of the different

classes to classify outliers with greater confidence in the future. The Support Vectors (data

points inside the boxes) are the points that are close to the separator, and these points play

an essential role in deciding the maximum margin separator.

Unlike above, in non-linear separation problems, SVM produces a linear separation hy-

perplane, but by applying the kernel trick, they can embed the data in a higher-dimensional

space. Here, the kernel trick is SVM using the kernel functions that can be applied to pairs

of input data to evaluate dot products in some corresponding feature space. So, we can find

linear separators in the higher-dimensional feature space.

2.4.3 Logistic Regression

Logistic Regression is a classification algorithm used to predict the probability of a

categorical variable [10]. Logistic Regression is most used when the data in question has

binary output.

y = w0 +w1.x1 + ..+wn.xn (2.2)

In the above linear equation, Equation 2.2, y is the dependent variable and x1,x2, . . . ,xn

are the independent variables. Independent variables are used to predict or model the depen-

dent variables. As they can take on any value, they are considered independent variables.

On the other hand, dependent variables are the variables we want to predict using the in-

dependent variables. Independent variables are commonly referred to as characteristics or

qualities, whereas dependent variables are target variables or labels.

Logistic(y) =
1

1+ e−y
(2.3)

16

2.5. METRICS

Figure 2.8: Logistic Regression.

Logistic Regression predicts the probability of an occurrence of a binary event utilizing

a logit or sigmoid function as shown in Equation 2.3. The process of fitting the weights of

this model to minimize a loss on a data set is achieved by the Maximum Likelihood Es-

timation (MLE) approach. Maximizing the likelihood function determines the parameters

most likely to produce the observed data.

The logistic function, often known as the sigmoid function, generates an ”S”-shaped

curve that may convert any real-valued integer to a number between 0 and 1, as shown

in the Figure 2.8. As the curve advances toward positive infinity, the expected value of y

becomes 1, and if it moves toward negative infinity, the predicted value of y becomes 0. If

the sigmoid function output is more significant than 0.5, the outcome is 1; otherwise, the

result is 0.

2.5 Metrics

One of the most important steps in developing an effective machine learning model is

evaluating the performance of the machine learning model. Different metrics are used to

evaluate the model’s performance or quality, and these metrics are known as performance

17

2.5. METRICS

metrics or evaluation metrics. These performance metrics allow us to see how well our

model performed with the given data. By adjusting the hyper-parameters 8, we can enhance

the model’s performance. Each machine learning model strives to generalize well on pre-

viously unseen/new data, and performance metrics aid in determining how well the model

generalizes on the new data set. Metrics are frequently designed for a specific type of ma-

chine learning problem or model. Among the most important and widely used metrics are:

Precision, Recall, F1-Score and Accuracy.

2.5.1 Precision

The number of positive class predictions that actually belong to the positive class is

determined by precision as shown in Equation 2.4.

Precision =
TruePositive(T P)

TruePositive(T P)+FalsePositive(FP)
(2.4)

2.5.2 Recall

The number of positive class predictions made out of all positive class in the data set is

measured by recall as shown in Equation 2.5.

Recall =
TruePositive(T P)

TruePositive(T P)+FalseNegative(FN)
(2.5)

2.5.3 Accuracy

The ratio of the overall number of right predictions to the total number of predictions

for a model is known as accuracy as shown in Equation 2.6.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.6)

8A measurement whose value is used to control the learning process

18

2.6. SUMMARY

2.5.4 F1-Score

The F1-score is defined as the harmonic mean of precision and recall as shown in Equa-

tion 2.7. When compared to the Accuracy Metric, it provides a more accurate measurement

of cases that were incorrectly classified.

F1Score =
(2∗Precision∗Recall)

Precision+Recall
(2.7)

2.6 Summary

In this chapter, we described the contents of bug reports, the Infozilla tool used to ex-

tract structural information from bug reports, the machine learning techniques we employed

in our investigation to create recommendations, and the metrics we used to rate the perfor-

mance of our recommenders.

19

Chapter 3

Related Work

Several prior studies have examined bug reports and proposed approaches to improve their

quality and use in recommendation systems. Many recommendation systems rely on bug

report descriptions as the primary feature source in prediction. Little research has been

focused on using the structural information of a bug report in prediction.

This chapter presents research on bug report structure and the use of bug report compo-

nents for predicting bug report severity, performing bug report triage, and detecting dupli-

cate bug reports. Finally, we cite research related to crash report management.

3.1 Research About Bug Report Structure

Bettenburg et al. [2] studied the quality of bug reports and showed a significant gap

between what reporters provide and what developers require to fix a bug. Several param-

eters, such as the length of descriptions, formatting, and the existence of stack traces and

attachments, were found to influence the quality of bug reports. Researchers polled 872

developers from the Apache, Eclipse, and Mozilla projects to find out what information

matters most to them. The researchers invited the developers to fill out a survey about the

most relevant details in bug reports and the issues they had with them. Also, the researchers

asked the developers to rank the bug report quality from very poor to very good. Accord-

ing to their findings, the most valuable elements in bug reports are steps to reproduce and

stack traces. The researchers also developed a prototype called Cuezilla, which measures

the quality of new bug reports and recommends which element to be added to improve the

20

3.2. RESEARCH USING BUG REPORT INFORMATION FOR PREDICTION

quality.

Schroter et al. [13] examined nearly 3,940 Eclipse bug reports containing stack traces.

Their research results show that the mean lifetime for fixing bugs with a stack trace is 2.73

days, whereas for bugs without a stack trace, it is 26.44 days. Also, the researchers found

that bug reports containing multiple stack traces might have a higher rate of fixing. The

researchers produced these results by considering a small data set of the Eclipse project.

Another research by Shah et al. [6] looked at the issues surrounding exception handling

from the human perspective. The researchers devised a study to assess different perspec-

tives of software developers to understand better how developers perceive exception han-

dling, the methods they use to deal with exception handling constructs, and the utility of a

visualization tool researchers developed for exception handling. Based on the researchers’

findings, they proposed a new role for the software development process: the exception

engineer, who collaborates closely with software engineers throughout the process.

3.2 Research Using Bug Report Information For Prediction

As indicated by developers and recorded by researchers, the quality of the provided

steps to reproduce in the bug reports is a crucial concern with user-written bug reports. In

assessing the bug report quality, Chaparro et al. [4] focused on steps to reproduce. They

proposed an Euler approach, which automatically identifying and assessing the quality of

the steps to replicate in a bug report and offered comments to the reporters so that they could

improve the problem report. External evaluators evaluated Chaparro’s approach feedback.

The results show that the approach accurately recognized 98% of the existing steps to re-

produce and 58% of the missing ones, and 73% of bug report quality annotations.

Korosh et al. [7] builds on earlier research by looking at how categorical features, in

addition to stack traces, might be used to predict the severity of issues. According to the

researchers, developers usually prioritize defects that need to be fixed based on severity, and

bug submitters frequently enter an incorrect severity level for various reasons, prolonging

21

3.3. RESEARCH MANAGING CRASH REPORTS

the bug resolution process. As a result, they implemented a technique that can automat-

ically forecast the bug severity. They experimented on bug reports submitted to Eclipse

between 2001 and 2015 and Gnome between 1999 and 2015 to demonstrate that including

categorical information in addition to stack traces improves the accuracy of the severity

prediction approach from 5% to 20%.

In another research by Korosh et al. [12], they investigated using stack traces and cat-

egorical aspects (system version, severity, and platform) of bug reports to improve bug

report accuracy over bug report descriptions. Their technique uses past bug reports to pre-

dict faulty components and products of newly submitted bug reports. They used TF-IDF 9

to weight historical bug report stack traces to feature vectors. These vectors are then sent

into a classification algorithm with a subset of bug report category data. This technique

also addresses the issue of imbalanced data. When forecasting faulty components, their

approach has a 58% accuracy rate on the Eclipse data set and 70% on the Gnome data set.

3.3 Research Managing Crash Reports

Paila et al. [14] focused on crash reports that are reported numerous times each day,

which causes the development team to put a lot of time into reviewing the crash reports.

To solve this issue, the researchers have created an automated technique to evaluate a crash

report and locate the incorrect module. The researchers built this approach using a cutting-

edge algorithm that analyzes crash reports for exception-based patterns and maps reference

assemblies. Several thousand crash reports from four different industrial automation appli-

cations have been subjected to this methodology. Results show that the algorithm achieved

a high level of accuracy in identifying the incorrect module and subsystem responsible for

a crash.

Bergel et al. [1] presented methods for automatically creating tests to reproduce stack

traces as manually replicating crashes can be costly and time-consuming. According to the

9Term frequency–inverse document frequency, it is a natural language processing technique to represent a
word in a corpus or collection of documents as numerical statistic.

22

3.4. SUMMARY

study, search-based approaches are more difficult since the algorithms have less information

to work with, and type checking in dynamic languages without explicit type declarations

can only be accomplished during runtime. So, they proposed a genetic algorithm approach

for reproducing crashes in Python using only the information given in the stack trace of

the fault. An empirical assessment of three distinct trials yielded largely positive outcomes,

with great precision and repeatability of the desired crashes.

In another research, Wang et al. [11] offered five guidelines for automatically identify-

ing linked crash types. A crash correlation group is a collection of crash categories linked

to similar or related bug reports. Using crash correlation groups, the researchers present

an approach for locating and ranking problematic files. A mechanism to identify duplicate

and related bug reports is also proposed. To discover and resolve associated crash types,

developers can combine the suggested crash correlation rules with the new bug localiza-

tion approach. Triagers can reduce their burden by automatically screening duplicate bug

reports using the duplicate bug report identification approach.

3.4 Summary

In this chapter, we discussed prior research on bug report structure in which researchers

investigated the significance of components in bug reports. We also talked about research

on recommenders using bug report information, such as assessing steps to reproduce, issue

severity, and predicting faulty components. Finally, we discussed crash report research,

which involves evaluating a crash report to locate the incorrect module and ranking prob-

lematic files.

23

Chapter 4

An Approach to Detecting and
Predicting Inaccurate Stack Traces

Our approach to identifying accurate/inaccurate stack traces uses supervised machine learn-

ing techniques to predict if a stack trace might help or mislead the developer during the fix-

ing process. We make recommendations based on bug reports that developers have fixed,

which contain stack traces, and their corresponding commit history. To create the accu-

rate/inaccurate classifier, we download bug reports and commit history from a software

project and extract stack traces from the bug reports. A machine learning algorithm is

trained on features extracted from the stack traces in bug reports, and instance labels for a

given stack trace are assigned depending on the commit history for a given bug report as

shown in Figure 4.1.

Our approach consists of the following steps:

1. Gathering bug reports and commit history from a software project.

2. Mapping the bug reports with commit history.

3. Extracting stack traces from bug reports.

4. Feature extraction from the stack traces.

5. Extraction of file names from the commit history.

6. Assigning accurate/inaccurate labels to the extracted stack traces.

24

4.1. DATA SOURCE AND PREPARATION

Figure 4.1: Design for training and detecting Accurate / Inaccurate Stack traces

7. Training a supervised machine learning algorithm to create a classifier for identifying

inaccurate stack traces.

4.1 Data Source and Preparation

For our approach, we require bug reports containing stack traces that we can link to

commits in the project’s commit history. From the project commit history, we need the

filenames of the committed files where the developer modified the code to solve the defect

for a bug report.

Two possible situations exist in linking the bug reports with commits for any software

project. First, if the project’s version control system is integrated with the project’s issue

tracking system (e.g. GitHub), then adding the issue number or bug id in the commit

message will automatically link the committed files with the bug report.

Second, consider the issue tracking system (e.g. Bugzilla) and version control system

which are separate systems (e.g. CVS). In that case, the bug id establishes references to

25

4.2. EXTRACTING FEATURES AND COMMITTED FILE NAMES EXTRACTION

three different systems, including the issue tracking system, version control system, and

wiki 10. This bug id can be used as an identifier while writing a wiki article, bug report,

or VCS commit message and are then instantly transformed into hyperlinks pointing to the

tools mentioned. This makes it possible to navigate easily between bug reports and code

modifications.

We must distinguish the bug reports that include stack traces from the all the down-

loaded bug reports. Since stack traces have a start line and a trace line, regular expressions

can be used to find and separate them. In this work, we used the Infozilla tool to filter stack

traces from bug reports and extracts the reports into an XML file.

4.2 Extracting Features and Committed File Names Extraction

4.2.1 Extracting features from stack traces

As shown in Figure 2.2, a stack trace contains an exception at the beginning, method

names, and file names within the frames of the call stack. These stack trace attributes may

be helpful for a machine learning algorithm to understand their hidden patterns in predicting

the stack traces as accurate or inaccurate. As a result, we decided to extract these attributes

from stack traces and pass them as features to train a machine learning algorithms. We can

use feature-specific regular expressions or string operations to extract these features.

1 tree = ET.parse(#path_to_bug_report_with_stack_trace)

2 root = tree.getroot()

3 for child in root:

4 exception_with_path = child.iter(’Exception’).text

5 exception=exception_with_path

6 [exception_with_path.rindex(’.’)+1:]

Listing 4.1: Exception extraction from a Stack trace

10A kind of website that allows users to update its content directly from the browser and maintains a version
history for each editable page, https://en.wikipedia.org/wiki/Wiki.

26

4.2. EXTRACTING FEATURES AND COMMITTED FILE NAMES EXTRACTION

Figure 4.2: An example of extracted stack trace using Infozilla tool

In our work, the extracted stack traces from Infozilla are in XML format, as shown in

Figure 4.2. We use xml.etree.ElementTree11 library for parsing the stack trace.

This code child.iter(’Exception’).text at line #4 in 4.1, gives the whole exception along

with the path as we must pass the exception’s start and end indexes to parse the exception

name from exception with path. On the exception with path string, we use the rindex string

operation to find the index of the first period (.) from the right side and increment it by one.

That incremented index is the start of the exception name, and the end is the last index, i.e.

’-1’ as after the colon, it will be ’-1’ by default. Thus we get the exception name.

1 for subchild in child.iter(’Frame’):

2 frame = subchild.text

3 file_name = frame[frame.find(’(’)+1:frame.find(’:’)]

4 method_with_path = frame[:frame.find(’(’)]

5 method_name = method_with_path

6 [method_with_path.rindex(’.’)+1:]

Listing 4.2: File name and Method name extraction from a Stack trace

In this code 4.2, child.iter(’Frame’) at line #1, returns a list of frames found in stack

traces. To obtain the file name, the expression frame[frame.find(’(’)+1:frame.find(’:’)] is
11A Python library for parsing and creating XML data, https://docs.python.org/3/library/xml.etree.elementtree.html

27

4.3. LABELLING STACK TRACES

used, which includes the start and end indexes. Where the start index is determined by

finding the first open parenthesis in the frame and incrementing it by one, and the end index

is determined by the presence of a colon in the frame.

To obtain the method name, we first used the find string operation (frame[:frame.find(’(’)])

at line #3, to parse the frame up until the open parenthesis, which provides the method name

along with the path.

Next, we used another expression method with path [method with path.rindex(’.’)+1:]

containing the rindex method to get the method name, just like we did with filenames

previously.

4.2.2 Extracting filenames from the commit history

To extract the committed file names from the commit history, we use the regular expres-

sion shown in Equation 4.1 which captures one word that ends with ”.java”.

regex = (\w+\.java){1} (4.1)

Consider the example in Figure 4.3, which displays the commit history for the bug

report #10909 from the Cassandra project. In this example, the name ActiveReportService

would be extracted.

Figure 4.3: Commit History for Cassandra Bug # 10909

4.3 Labelling Stack Traces

To label a stack trace as inaccurate or accurate, we consider the committed file names

associated with a bug report that contains a stack trace. To determine if a stack trace is

accurate, we check for a match between the files using the the Top-N stack frames and the

28

4.4. TRAINING A MACHINE LEARNING CLASSIFIER

files committed to fix the problem. If any file names match the committed file names, we

label that stack trace as ‘Accurate’; otherwise, it is labelled as ‘Inaccurate’.

4.3.1 Walk-through Example

For example, consider bug report #100227 containing a stack trace from the AspectJ

project as shown in Figure 4.4 and related commit history is shown in Figure 4.5.

Figure 4.4: Stack trace from AspectJ Bug # 100227

Figure 4.5: Commit History for the AspectJ Bug # 100227

The stack trace notifies that the error is due to a NullPointerException and the fault

might be traced back as indicated in the stack trace’s file names. From the commit history, it

is evident that developers made changes to the two files EclipseFactory.java and TypeX.java

to fix the bug. If the committed file names are compared to those appearing in the stack

trace, we notice that the file name in the stack trace’s first frame, i.e. EclipseFactory.java

matches with the committed file name. Thus, this stack trace is considered ‘Accurate.’

29

4.4. TRAINING A MACHINE LEARNING CLASSIFIER

4.4 Training a Machine Learning Classifier

For each project, we obtained the filenames, method names and exceptions from bug

reports containing stack traces, using string operations as specified in Section 4.2.1. We

assigned labels to each stack trace after comparing the names of the files in the committed

files and those in the stack frames. These features and their assigned labels for each stack

trace are written to a file in CSV format.

We use the file name as it is crucial in determining if the stack trace is accurate or inac-

curate. Along with file names, we also utilize method names and exception types because

they may be helpful. To make sure that the file names are unique, we run a script to remove

any duplicates using the file path. Likewise, method names can be the same across the

classes. Therefore, we use a script to filter the unique method names based on file names

and paths.

Having processed the data, we used the pandas12 library to read and filter the required

data from the CSV files, and we utilized the Scikit-learn13 library to build the machine

learning models.

In training the machine learning models, we experimented with different combinations

of features (i.e. Filename only, Filename and Method name, Filename and Exception Type,

Filename, Method name and Exception Type). We used pandas to extract the relevant

feature columns from the CSV file as required and mapped the accurate and inaccurate

labels to ”1” and ”0,” respectively, before passing them to the machine learning algorithm.

When training the classifier, we randomized the instances in the data set and used 70% of

it as training data and 30% as testing data.

We experimented with three machine learning models (Naive Bayes, Support Vector

Machines and Logistic Regression) to make predictions on the testing set. We used methods

from Scikit-learn package to get the metrics used to evaluate the predictions.

12A python library for data manipulation and analysis.
13An open source machine learning package that supports both supervised and unsupervised learning

30

Chapter 5

Evaluation and Results

We evaluated 12,865 and 19,247 bug reports downloaded from the Eclipse and Apache

projects. We extracted 1,833 and 2,634 bug reports containing stack traces from the Eclipse

and Apache projects. We used the committed file names from the commit history and stack

traces file names to determine if the bug report containing the stack trace is accurate or

not, and we discovered that 39% of stack traces in Eclipse projects and 14% in Apache

projects are inaccurate for the Top-10 stack depth i.e. looking at the top-10 frames of the

call stack. We experimented with three machine learning algorithms described in Section

2.4 to construct an accurate/inaccurate stack trace recommender: Naive Bayes, Logistic

Regression, and Support Vector Machines. We found that Logistic regression is the best

machine learning algorithm. Furthermore, we investigated different feature combinations

to train the machine learning algorithms and found Filename-Exception Type is the best

feature combination.

This chapter presents the results of applying our approach to eight open-source projects.

First, we present the details of the data sets used in our investigation. Next, we provide

answers to each of our research questions. Recall that our research questions are:

RQ 1: How often do inaccurate stack traces occur in bug reports?

RQ 2: What exceptions are more likely to occur in inaccurate stack traces?

RQ 3: What is the effectiveness of using different machine learning algorithms in tagging

stack traces as accurate or inaccurate?

31

5.1. DATA SETS

5.1 Data Sets

We used data from open source projects that use the Bugzilla and JIRA issue tracking

systems to develop the approach as the data is easily accessible. Specifically, we chose

data from the Eclipse and Apache software communities. These software communities

were chosen because they host a variety of projects from different application sectors, and

previous research has used data from these communities.

5.1.1 Eclipse Data Set

We used data from Xin Ye et al. research [15] for the Eclipse data sets. This data

set contains bug report information (i.e., bug id, summary, report time) for the following

open-source Java projects: AspectJ14, Birt15, Eclipse Platform UI 16 and the JDT17. It also

contains the commit history details for all bug reports, which is crucial for our approach.

This is one of the reasons we chose this data set, as the collected commit histories saves us

time from not having to collect the commit history for these projects ourselves.

However, Xin’s data set does not contain the bug report descriptions. Therefore, we

downloaded this information using the Bugzilla API. As Table 5.1 shows, the data set con-

tains a total of 12,865 bug reports, with JDT having the most (4,893) and AspectJ having

the least (543).
14The AspectJ is an extension of the Java programming language to support aspect-oriented programming.

This project provides Eclipse IDE integration.
15The Business Intelligence Reporting Tool (Birt) supports the creation of data visualizations, dashboards

and reports.
16The Eclipse Platform UI provides the fundamental building blocks for Eclipse-built user interfaces.
17JDT offers the tool plug-ins necessary to construct a Java IDE to support any Java application’s develop-

ment.

32

5.1. DATA SETS

Table 5.1: Eclipse Data Set.

Projects Bug Reports Bug Reports
with Stack Traces

File Names Method Names Exception
Types

AspectJ 543 158 481 1049 27
Birt 3530 458 1773 3309 60

Eclipse UI 3899 532 1983 3954 49
JDT 4893 685 2373 4794 42
Total 12865 1833 6610 13106 178

5.1.2 Apache Data Set

We downloaded the Apache data from the following four projects: Cassandra18, Hadoop19,

Hbase20 and Spring 21. We choose these projects because of their vast bug reports size. We

downloaded the bug report details (i.e. bug id, comments, description, report time). As

shown in Table 5.2, all four Apache projects’ bug reports totalled 19,247, with Hbase hav-

ing the most (8,152) and Hadoop having the fewest (2,395).

To collect the commit history of the projects, we cloned the source code repository for

each project and used a git command22 to search the commit logs for bug ids and collect

the corresponding file names.

Table 5.2: Apache Data Set.

Projects Bug Reports Bug Reports
with Stack Traces

File Names Method Names Exception
Types

Cassandra 4748 903 1702 3272 104
Hadoop 2395 36 202 311 18
Hbase 8152 1264 2483 5345 161
Spring 3952 431 1931 3076 96
Total 19247 2634 6318 12004 379

18The Cassandra is a NoSQL database management system designed to handle massive amounts of data.
19The Hadoop is a framework that enables the distributed processing of massive data volumes across com-

puter clusters.
20The HBase is an open-source, NoSQL, distributed database for use with Hadoop.
21The Spring framework is an inversion of control container for Java applications.
22git log –grep [regex]

33

5.2. RESEARCH QUESTION #1

5.1.3 Extracting Stack Traces

The Infozilla tool extracts structural information like stack traces from the bug reports.

We wrote a Python script to process all of the bug report information from the Eclipse and

Apache data sets and run the data through Infozilla.

The Infozilla tool identifies the bug reports containing stack traces and extracts the

reports into an XML file. As shown in the Tables 5.1 and 5.2, we found 1,833 and 2,634

bug reports containing stack traces from the Eclipse and Apache data sets.

These extracted stack traces contain an ordered list of class names, methods and types

of exceptions. We filtered these components from the stack traces using a Python script

containing regular expressions.

5.2 RQ 1 : How often do inaccurate stack traces occur in bug reports?

To answer RQ1, we compared the file names in the commit history for a given bug report

with the filenames in the stack traces. We consider a stack trace accurate if a committed

file name matches one of the stack trace file names; otherwise, the stack trace is considered

inaccurate as shown in the Tables 5.3 and 5.4.

Usually, a stack trace contains many frames23, which can be numerous, depending on

the type of crash or error. According to Schröter et al. [13], 40% of bugs were fixed in the

files found in the first frame, and 80% of bugs were fixed in the files found in the first six

stack frames. For files found in the top ten stack frames, about 90% of issues were fixed.

In our work, we investigated varying frame depths: Top-1, Top-3, Top-5 and Top-10 stack

depth.

For the AspectJ project, we found that if only the filename in the first stack frame is

considered, then 46% of the stack traces can be considered accurate and 54% are inaccurate.

However, when examining the top 3, 5 and 10 stack frames, we find 65%, 68%, and 70%

can be considered accurate, respectively.

23A stack frame represents a single function call containing file path, class name and a method name.

34

5.2. RESEARCH QUESTION #1

In the Birt project, we discovered that 76% and 60% of the stack traces could be con-

sidered inaccurate when considering the Top 1 and 3 frames, respectively. In comparison,

when we look at the Top 5 and 10 stack frames, we discover that 46% and 48% are accurate,

and 54% and 52% are inaccurate.

When we looked at the first stack frame for the Eclipse Platform UI project, we found

that 72% were incorrect, and only 28% were accurate. Stack traces were determined to be

almost evenly split between accurate and inaccurate for the Top-3 stack depth. We observed

that 58% and 63% were accurate in the case of Top-5 and Top-10 stack depth, respectively.

We found 74% of stack traces for the JDT to be inaccurate and 26% to be accurate for

the first frame in stack depth. However, we noticed that 62% and 66% were accurate for

Top-5 and Top-10 Stack depths, respectively.

Table 5.3: Accurate/Inaccurate stack traces of all the bug reports for the Eclipse projects.

Projects Bug Reports
with Stack Traces

Top-1 Top-3 Top 5 Top 10
Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate

AspectJ 158 72 86 104 54 107 51 111 47
Birt 458 108 350 183 275 210 248 220 238

Eclipse Platform UI 532 147 385 258 274 307 225 336 196
JDT 685 177 508 359 326 423 262 453 232
Total 1833 504 1329 904 929 1047 786 1120 713

Table 5.4: Accurate/Inaccurate stack traces of all the bug reports for the Apache projects.

Projects Bug Reports
with Stack Traces

Top-1 Top-3 Top 5 Top 10
Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate

Cassandra 903 301 602 393 510 638 265 748 155
Hadoop 36 13 23 16 20 25 11 27 9
Hbase 1264 379 885 621 643 987 277 1169 95
Spring 431 115 316 192 239 293 138 320 111
Total 2634 808 1826 1222 1412 1943 691 2264 370

On considering the Top-1 and Top-3 stack frames for the Cassandra project, 67% and

56% are inaccurate, respectively. In comparison, we discovered that 29% and 17% of stack

traces are inaccurate for the Top-5 and Top-10 stack depths, respectively.

For Hadoop, when considering the first stack frame, we discovered that 36% of stack

traces are inaccurate and 64% are accurate. For the Top-3 frame, accurate and inaccurate

are 44% and 55%, respectively. In contrast, when considering the Top-5 and Top-10 stack

35

5.3. RESEARCH QUESTION #2

depths, we discovered that 69% and 75% of stack traces are accurate, and 31% and 25% of

stack traces are inaccurate.

When considering the first frame in a stack trace for the Hbase project, we identify

30% as accurate and 70% as inaccurate. For the Top-3 frame, accurate and inaccurate are

49% and 51%, respectively. When we examined the Top-5 and Top-10 stack frames, we

noticed that 78% and 92% of stack traces are accurate, respectively, whereas 22% and 8%

are inaccurate.

In the instance of the Spring project, we discovered that 73% and 55% of stack traces

are incorrect when evaluating the first and third stack frames, respectively. However, we

determined that 32% and 26% of the Top-5 and Top-10 stack frames are inaccurate.

In both Eclipse and Apache data sets, we discovered that inaccurate stack traces occur

more often than accurate stack traces for Top 1 and 3 Stack depth. Top 5 and 10 offer nearly

identical results and more accurate stack traces. Overall, 14% of stack traces in the Apache

data set are inaccurate when evaluating Top-10 stack depth, whereas 39% of stack traces in

the Eclipse data set are inaccurate, as shown in the Tables 5.3 and 5.4.

5.3 RQ 2 : What exceptions are more likely to occur in inaccurate

stack traces?

We gathered exception types found in inaccurate stack traces for all four examined stack

depths to answer this question from the collected bug reports. We calculated the percentage

of occurrence in inaccurate stack traces for each exception type and ranked the exceptions

based on their mean percentage values.

Table 5.5 shows the ranked order of exceptions for the Eclipse data set for the top five

most frequently occurring exceptions. In inaccurate stack traces, the NullPointerException

occurred a mean of 35% of time across all stack depths. The next exception that occurred,

IllegalArgumentException, had an average of 9.6%, which issignificantly lower than Null-

PointerException. SWTException and AssertionFailedError are next, with an average of

36

5.4. RESEARCH QUESTION #3

5.8% and 5.6%, respectively. Lastly, ClassCastException occurred an average of 4.4% of

the time in for all stack depths of inaccurate stack traces.

Table 5.5: The percentage of the exception types occurring in inaccurate stack traces using
data from all of the projects in the Eclipse data set.

Rank Exception Type Stack depth Mean
Top-1 Top-3 Top-5 Top-10

1 NullPointerException 33 33.7 36.2 36.9 35
2 IllegalArgumentException 10.2 11 8.8 8.3 9.6
3 SWTException 6.4 7.7 5.1 4.1 5.8
4 AssertionFailedError 7.1 5.4 4.6 5.5 5.6
5 ClassCastException 3.8 4.3 4.7 5 4.4

Table 5.6: The percentage of the exception types occurring in inaccurate stack traces using
data from all of the projects in the Apache data set.

Rank Exception Type Stack depth Mean
Top-1 Top-3 Top-5 Top-10

1 NullPointerException 13.5 11.2 13.2 24.6 15.6
2 AssertionError 11 7.6 13.6 25.4 14.4
3 IOException 8.8 8.1 12.7 23.8 13.4
4 IllegalArgumentException 8.1 7.6 10.4 19.4 11.4
5 IllegalStateException 3.7 3.2 4.9 9.2 5.3

The ranking order of the exceptions in the Apache data set is shown in Table 5.6. Inaccu-

rate stack traces typically showed 15.6% occurrences of the NullPointerException, followed

by AssertionError with 14.4% average. IOExceptionand IllegalArgumentException have an

average of 13.4% and 11.4%, respectively. Finally, IllegalStateException appeared 5.3% of

times in inaccurate stack traces, which is significantly lower than the previous exception.

5.4 RQ 3 : What is the effectiveness of using different machine learn-

ing algorithms in tagging stack traces as accurate or inaccurate?

We use data from the Top-N stack frames (N=1, 3, 5, or 10) to train a classifier that

identifies stack traces as accurate or inaccurate. Specifically, we use the file names, method

37

5.4. RESEARCH QUESTION #3

names and exception types as features. We experimented with different combinations of

these features (i.e. Filename only, Filename and Method name, Filename and Exception

Type, Filename, Method name and Exception Type) as well as different machine learn-

ing algorithms (i.e. Naive Bayes, Logistic Regression, and Support Vector Machine). We

trained the machine learning algorithms by dividing the data into 70% training and 30%

testing sets.

5.4.1 AspectJ Project

We extracted 158 bug reports from the AspectJ project with stack traces containing

481 filenames, 1,049 method names and 27 exception types, as shown in Table 5.1. These

features are used to train all three of the classifier.

As shown in Table 5.7, 92% is recorded as the highest precision using the Naive Bayes

algorithm with the Filename-Exception type as features for the Top-10 stack frames and

50% being the lowest precision using the Naive Bayes algorithm with the Filename feature

for the Top-1 stack frame. The lowest recall (23%) occurred when training the Naive Bayes

algorithm with the Top-3, Top-5 stack frames and the Filename feature set.

As for accuracy, the best result (78%) was found using the Top-3 and Top-10 stack depth

and Filename-Exception Type,Filename-Method Name-Exception Type as feature sets with

the Logistic Regression algorithm. The lowest result (43%) was found using the Top-5 and

Top-10 and Filename feature set with the Naive Bayes algorithm.

Table 5.7: Evaluation metrics for the AspectJ Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.5 0.96 0.66 0.54 0.52 0.93 0.67 0.57 0.59 0.97 0.73 0.67 0.59 0.94 0.72 0.67

Logistic Regression 0.58 0.45 0.51 0.59 0.57 0.46 0.51 0.59 0.7 0.8 0.75 0.75 0.71 0.76 0.73 0.74
SVM 0.54 0.56 0.56 0.58 0.52 0.54 0.53 0.56 0.67 0.76 0.71 0.71 0.64 0.73 0.68 0.68

Top 3
Naive Bayes 0.82 0.23 0.36 0.46 0.78 0.28 0.42 0.47 0.91 0.44 0.6 0.6 0.87 0.44 0.58 0.58

Logistic Regression 0.7 0.93 0.8 0.69 0.71 0.92 0.8 0.7 0.77 0.94 0.84 0.77 0.79 0.93 0.85 0.78
SVM 0.7 0.93 0.8 0.69 0.69 0.94 0.79 0.68 0.77 0.94 0.84 0.77 0.79 0.94 0.81 0.71

Top 5
Naive Bayes 0.84 0.23 0.36 0.43 0.82 0.31 0.45 0.47 0.91 0.41 0.57 0.56 0.89 0.47 0.61 0.58

Logistic Regression 0.72 0.97 0.83 0.72 0.73 0.95 0.83 0.75 0.77 0.95 0.85 0.77 0.79 0.94 0.85 0.77
SVM 0.72 0.94 0.81 0.71 0.73 0.95 0.83 0.72 0.71 0.96 0.82 0.7 0.78 0.93 0.85 0.76

Top 10
Naive Bayes 0.88 0.25 0.38 0.43 0.87 0.34 0.49 0.48 0.92 0.42 0.58 0.56 0.9 0.49 0.63 0.59

Logistic Regression 0.75 0.97 0.85 0.74 0.75 0.96 0.84 0.73 0.79 0.95 0.86 0.78 0.79 0.95 0.87 0.78
SVM 0.76 0.95 0.85 0.75 0.74 0.96 0.84 0.72 0.8 0.94 0.86 0.78 0.75 0.97 0.84 0.74

When considering the different machine learning algorithms, as shown in Figure 5.1,

5.2, 5.3 and 5.4, in all the stack depths and feature combinations, Logistic Regression and

38

5.4. RESEARCH QUESTION #3

Figure 5.1: F1-score Measure for Top-N stack depth for AspectJ Project with File name as
feature.

Figure 5.2: F1-score Measure for Top-N stack depth for AspectJ Project with File name,
Method name as features.

SVM performed similarly. As the stack depth increases, the classifier performance im-

proves. The F1-score for the Logistic Regression with Filename feature increased from

51% to 80% as the stack depth changed from Top-1 to Top-3. In contrast, Naive Bayes

decreased from 66% to 36% as we moved from Top-1 to Top-3 stack depths when using

Filename feature set as shown in Figure 5.1. The best F1-score (87%) was found using the

39

5.4. RESEARCH QUESTION #3

Figure 5.3: F1-score Measure for Top-N stack depth for AspectJ Project with File name,
Exception as features.

Figure 5.4: F1-score Measure for Top-N stack depth for AspectJ Project with File name,
Method name , Exception as features.

Logistic Regression algorithm with the Filename-Method Name-Exception type feature set

and the Top-10 stack frames. The worst F1-score (36%) was found using the Naive Bayes

algorithm with the Filename feature set and for the Top-3, Top-5 stack frames.

40

5.4. RESEARCH QUESTION #3

5.4.2 Birt Project

In the case of the Birt project, we extracted 458 bug reports with stack traces that con-

tained 1,773 filenames, 3,309 method names, and 60 exception kinds.

The Top-1 stack frame has the highest accuracy (82%) using Logistic Regression as

an algorithm with Filename-Exception Type as feature set as shown in the Table 5.8. The

lowest precision of 25% is the recommender using Naive Bayes as an algorithm with the

Filename feature in the Top-1 stack frame.The best precision (75%) was found using the

Logistic Regression and SVM as algorithms with the Filename-Exception Type feature set

and the Top-1 stack frames. The worst precision (25%) was found using the Naive Bayes

algorithm with the Filename feature set and the Top-1 stack frames.

The maximum recall is 97% for the Top-3 stack frame with Filename, Filename-Exception

Type type as features and trained on the Naive Bayes algorithm. When using Filename-

Method Name-Exception Type as features and the SVM as the machine learning algorithm,

the lowest recall, 12%, was recorded in the Top-1 stack frame.

Table 5.8: Evaluation metrics for the Birt Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.25 0.94 0.39 0.37 0.26 0.89 0.4 0.42 0.35 0.94 0.51 0.61 0.36 0.9 0.51 0.63

Logistic Regression 0.76 0.03 0.06 0.79 0.49 0.05 0.09 0.78 0.75 0.23 0.35 0.82 0.69 0.26 0.38 0.81
SVM 0.6 0.08 0.15 0.79 0.47 0.07 0.11 0.78 0.75 0.14 0.24 0.8 0.64 0.12 0.2 0.8

Top 3
Naive Bayes 0.4 0.97 0.56 0.45 0.41 0.94 0.57 0.49 0.45 0.97 0.62 0.57 0.47 0.95 0.63 0.59

Logistic Regression 0.53 0.2 .3 0.64 0.5 0.31 0.38 0.64 0.65 0.71 0.68 0.76 0.65 0.7 0.68 0.76
SVM 0.55 0.23 0.32 0.65 0.52 0.19 0.28 0.64 0.61 0.73 0.67 0.74 0.62 0.59 0.61 0.72

Top 5
Naive Bayes 0.48 0.95 0.64 0.54 0.49 0.95 0.65 0.56 0.54 0.95 0.69 0.63 0.55 0.95 0.69 0.64

Logistic Regression 0.6 0.61 0.61 0.66 0.6 0.63 0.62 0.67 0.69 0.76 0.72 0.75 0.69 0.77 0.72 0.75
SVM 0.6 0.61 0.61 0.66 0.59 0.59 0.59 0.65 0.66 0.79 0.72 0.73 0.66 0.73 0.69 0.72

Top 10
Naive Bayes 0.52 0.93 0.67 0.58 0.55 0.9 0.68 0.62 0.57 0.93 0.71 0.66 0.6 0.91 0.72 0.68

Logistic Regression 0.63 0.69 0.66 0.68 0.63 0.69 0.66 0.68 0.71 0.79 0.75 0.76 0.71 0.8 0.75 0.76
SVM 0.61 0.72 0.66 0.66 0.61 0.7 0.65 0.66 0.68 0.83 0.74 0.74 0.67 0.77 0.72 0.72

All three machine learning algorithms performed similarly for all feature combinations

and stack depth with the Birt project. As the stack depth increased, the F1-score increased,

as indicated in the Figures 5.5, 5.6, 5.7 and 5.8. F1-score ranged between 65% and 68%

for the Top-10 stack depth with either Filename or Filename-Method Name as features, and

71% to 75% for the other two feature combinations. The F1-score for Logistic Regression

with the Top 1 stack frame using the Filename as features started extremely low at 7% and

climbed to 66% as the stack depth increased as shown in Figure 5.5. The highest F1-score

41

5.4. RESEARCH QUESTION #3

Figure 5.5: F1-score Measure for Top-N stack depth for Birt Project with Filename as
feature.

Figure 5.6: F1-score Measure for Top-N stack depth for Birt Project with File name,
Method name as features.

of 75% is reported for the Logistic Regression for Top-10 stack frame with both Filename-

Exception Type and Filename-Method Name-Exception Type feature set.

42

5.4. RESEARCH QUESTION #3

Figure 5.7: F1-score Measure for Top-N stack depth for Birt Project with File name, Ex-
ception as features.

Figure 5.8: F1-score Measure for Top-N stack depth for Birt Project with File name,
Method name, Exception as features.

5.4.3 Eclipse Platform UI Project

As shown in Table 5.1, for the Eclipse Platform UI project, we were able to extract 532

bug reports with stack traces that included 1983 filenames, 3954 method names, and 49

exception types.

According to Table 5.9, the maximum precision of 94% with Filename-Exception Type

43

5.4. RESEARCH QUESTION #3

as features for the Top-10 stack depth and the Naive Bayes as algorithm. In contrast, the

lowest precision of 26% was found to be with the Filename as a feature of the Top-1 stack,

with Naive Bayes as the machine learning algorithm. When using Filename as a feature

and Top-1 stack frame, the highest recall of 98% is recorded for the Naive Bayes algorithm

and the lowest recall of 3% is recorded with Logistic Regression as the machine learning

algorithm.

Table 5.9: Evaluation metrics for the Eclipse Platform UI Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.26 0.98 0.42 0.33 0.27 0.94 0.42 0.37 0.35 0.98 0.52 0.56 0.35 0.94 0.51 0.57

Logistic Regression 0.71 0.03 0.06 0.76 0.55 0.04 0.07 0.76 0.66 0.23 0.35 0.78 0.61 0.3 0.41 0.78
SVM 0.64 0.07 0.13 0.77 0.43 0.04 0.07 0.75 0.76 0.14 0.24 0.78 0.64 0.09 0.16 0.77

Top 3
Naive Bayes 0.47 0.97 0.63 0.49 0.47 0.95 0.63 0.5 0.49 0.96 0.65 0.54 0.49 0.95 0.65 0.53

Logistic Regression 0.62 0.21 0.31 0.59 0.58 0.32 0.41 0.59 0.61 0.75 0.67 0.67 0.61 0.72 0.66 0.67
SVM 0.63 0.2 0.31 0.59 0.6 0.23 0.33 0.59 0.6 0.79 0.68 0.67 0.59 0.71 0.64 0.65

Top 5
Naive Bayes 0.84 0.12 0.21 0.5 0.8 0.15 0.25 0.51 0.9 0.16 0.28 0.53 0.85 0.19 0.31 0.53

Logistic Regression 0.6 7 0.86 0.71 0.61 0.6 0.81 0.69 0.6 0.64 0.85 0.73 0.65 0.64 0.82 0.72 0.65
SVM 0.6 0.88 0.71 0.61 0.59 0.86 0.7 0.59 0.63 0.9 0.74 0.65 0.61 0.9 0.73 0.63

Top 10
Naive Bayes 0.91 0.11 0.2 0.45 0.84 0.15 0.25 0.46 0.94 0.17 0.29 0.49 0.89 0.2 0.32 0.49

Logistic Regression 0.65 0.93 0.76 0.65 0.65 0.9 0.76 0.64 0.68 0.93 0.79 0.69 0.68 0.91 0.78 0.68
SVM 0.65 0.93 0.77 0.65 0.64 0.94 0.76 0.63 0.67 0.94 0.79 0.69 0.66 0.94 0.78 0.67

Figure 5.9: F1-score Measure for Top-N stack depth for Eclipse Platform UI Project with
Filename as feature.

In terms of accuracy, the Top-1 stack frame and Filename-Exception Type, Filename-

Method Name-Exception Type as feature set in combination with the Logistic Regression

and Filename-Exception Type with SVM algorithm produced the best result (78%). Us-

ing the Top-1 and Filename feature set along with the Naive Bayes algorithm, the worst

44

5.4. RESEARCH QUESTION #3

Figure 5.10: F1-score Measure for Top-N stack depth for Eclipse Platform UI Project with
File name, Method name as features.

Figure 5.11: F1-score Measure for Top-N stack depth for Eclipse Platform UI Project with
File name, Exception as features.

outcome of 33% was discovered.

The F1-score for SVM started at 7% for the Top 1 stack frame using the Filename

and Filename-Method Name feature combinations as shown in Figures 5.9 and 5.10. In

case of the Top-3 stack depth, F1-score for the three machine learning algorithm ranged

between 64% and 68% for both Filename-Exception Type and Filename-Method Name-

45

5.4. RESEARCH QUESTION #3

Exception Type features as shown in Figures 5.11 and 5.12. Regardless of features, all

machine learning algorithms performed similarly for the Top-5 and Top-10 stack depths.

The highest F1-score (79%) is reported for the features Filename-Exception Type in the

Top-10 stack frames as shown in Figure 5.12.

5.4.4 JDT Project

As shown in Table 5.1, we obtained 458 bug reports with stack traces from the JDT

project, including 1,773 filenames, 3,309 method names, and 60 exception types.

The highest precision of 90% was found with Filename-Exception Type as features in

the Top-10 stack frame and the Naive Bayes algorithm, according to Table 5.10. In contrast,

the Top-1 stack frames with Filename feature and the Naive Bayes as the algorithm have

the lowest precision at 24%. When using Filename as a feature and Top-1 stack frame, the

highest recall of 97% is recorded for the Naive Bayes algorithm and the lowest recall of 3%

is recorded with Logistic Regression as the machine learning algorithm.

With regard to both Filename-Exception Type and Filename-Method Name-Exception

Type as features and Logistic Regression as a machine learning algorithm, Top-1 has the

Figure 5.12: F1-score Measure for Top-N stack depth for Eclipse Platform UI Project with
File name, Method name, Exception as features.

46

5.4. RESEARCH QUESTION #3

maximum accuracy (80%). The lowest accuracy (32%) was found using the Top-1 and

Filename feature set with the Naive Bayes algorithm.

The various machine learning methods performed consistently across all stack depths

and feature combinations. For the Top-5 and Top-10 stack frames, the F1-score for the

Naive Bayes algorithm is almost similar for all the features as shown in Figures 5.13,5.14,5.15,

and 5.16. The highest F1-score (77%) is reported for the Top-10 stack frame with Logistic

Regression and Filename-Exception Type, Filename-Method Name-Exception Type as fea-

tures and also in case of SVM as algorithm and Filename-Method Name-Exception Type as

feature.

Table 5.10: Evaluation metrics for the JDT Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.24 0.96 0.39 0.32 0.25 0.93 0.39 0.36 0.34 0.96 0.5 0.57 0.35 0.93 0.51 0.59

Logistic Regression 0.6 0.03 0.06 0.78 0.54 0.04 0.07 0.78 0.62 0.3 0.4 0.8 0.6 0.31 0.41 0.8
SVM 0.59 0.09 0.16 0.78 0.44 0.04 0.08 0.77 0.65 0.11 0.19 0.79 0.52 0.05 0.09 0.78

Top 3
Naive Bayes 0.49 0.97 0.65 0.52 0.5 0.95 0.65 0.53 0.51 0.97 0.67 0.55 0.52 0.95 0.67 0.56

Logistic Regression 0.58 0.51 0.54 0.6 0.58 0.5 0.54 0.6 0.67 0.75 0.71 0.71 0.68 0.71 0.71 0.71
SVM 0.61 0.39 0.48 0.6 0.59 0.39 0.47 0.59 0.67 0.75 0.7 0.71 0.65 0.71 0.68 0.69

Top 5
Naive Bayes 0.81 0.13 0.22 0.49 0.81 0.15 0.25 0.5 0.84 0.15 0.25 0.51 0.84 0.17 0.28 0.52

Logistic Regression 0.63 0.85 0.72 0.64 0.64 0.82 0.72 0.64 0.71 0.78 0.74 0.7 0.71 0.78 0.74 0.7
SVM 0.63 0.85 0.73 0.64 0.62 0.84 0.72 0.63 0.7 0.8 0.75 0.7 0.69 0.79 0.74 0.68

Top 10
Naive Bayes 0.88 0.12 0.22 0.46 0.84 0.15 0.25 0.47 0.9 0.15 0.25 0.48 0.87 0.17 0.28 0.48

Logistic Regression 0.65 0.9 0.76 0.65 0.66 0.88 0.76 0.66 0.71 0.83 0.77 0.7 0.71 0.83 0.77 0.7
SVM 0.66 0.89 0.76 0.66 0.66 0.88 0.75 0.65 0.71 0.83 0.76 0.69 0.69 0.87 0.77 0.68

Figure 5.13: F1-score Measure for Top-N stack depth for JDT Project with Filename as
feature.

47

5.4. RESEARCH QUESTION #3

Figure 5.14: F1-score Measure for Top-N stack depth for JDT Project with File name,
Method name as features.

Figure 5.15: F1-score Measure for Top-N stack depth for JDT Project with File name,
Exception as features.

5.4.5 Cassandra Project

The Cassandra recommenders were trained on 903 bug reports with stack traces and

contained 1,702 file names, 3,272 method names, and 104 exception types as shown in the

Table 5.2.

Precision (89%) is highest for the Naive Bayes and accuracy (79%) is highest for the

48

5.4. RESEARCH QUESTION #3

Figure 5.16: F1-score Measure for Top-N stack depth for JDT Project with File name,
Method name, Exception as features.

SVM with Filename-Exception Type as features for Top-10 stack frames, as demonstrated in

Table 5.11. Lowest Precision (26%) is reported when using the Naive Bayes as algorithm

and Filename, Filename-Method Name as features in the Top-1 stack frame. The lowest

accuracy (36%) was found in the Top-1 stack frame and Filename feature set with the

Naive Bayes algorithm.

Using Filename-Exception Type as the feature, the Naive Bayes model has the maxi-

mum recall (94%) with Top-3 stack frames. The worst recall (3%) occurred when training

the Logistic Regression algorithm with the Top-1 stack frames and the Filename feature set.

Table 5.11: Evaluation metrics for the Cassandra Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.26 0.89 0.4 0.36 0.26 0.79 0.39 0.42 0.29 0.9 0.44 0.46 0.3 0.81 0.43 0.5

Logistic Regression 0.67 0.03 0.06 0.77 0.51 0.05 0.08 0.76 0.65 0.16 0.26 0.78 0.63 0.19 0.29 0.78
SVM 0.55 0.1 0.16 0.77 0.44 0.07 0.12 0.76 0.68 0.18 0.28 0.79 0.55 0.12 0.2 0.77

Top 3
Naive Bayes 0.45 0.93 0.61 0.49 0.46 0.89 0.6 0.49 0.49 0.94 0.64 0.54 0.48 0.9 0.63 0.54

Logistic Regression 0.62 0.32 0.42 0.62 0.6 0.35 0.44 0.62 0.63 0.46 0.53 0.65 0.62 0.5 0.55 0.65
SVM 0.62 0.32 0.42 0.62 0.58 0.25 0.35 0.6 0.66 0.37 0.47 0.64 0.62 0.3 0.41 0.62

Top 5
Naive Bayes 0.71 0.17 0.28 0.52 0.72 0.19 0.3 0.53 0.72 0.39 0.51 0.6 0.75 0.24 0.36 0.55

Logistic Regression 0.6 0.66 0.63 0.58 0.61 0.66 0.63 0.59 0.68 0.7 0.69 0.66 0.67 0.7 0.69 0.66
SVM 0.6 0.66 0.63 0.58 0.59 0.71 0.64 0.58 0.66 0.76 0.71 0.66 0.63 0.74 0.68 0.63

Top 10
Naive Bayes 0.83 0.12 0.2 0.44 0.77 0.2 0.31 0.47 0.89 0.18 0.31 0.48 0.82 0.24 0.38 0.5

Logistic Regression 0.66 0.87 0.75 0.64 0.65 0.85 0.74 0.63 0.72 0.86 0.79 0.71 0.72 0.85 0.78 0.7
SVM 0.65 0.89 0.75 0.64 0.64 0.88 0.74 0.63 0.7 0.9 0.78 0.69 0.67 0.89 0.77 0.67

For higher Top-N stack depths, the F1-score for Naive Bayes dramatically drops. How-

ever, when the stack depth increases, the F1-score for SVM and Logistic Regression also

49

5.4. RESEARCH QUESTION #3

Figure 5.17: F1-score Measure for Top-N stack depth for Cassandra Project with Filename
as feature.

Figure 5.18: F1-score Measure for Top-N stack depth for Cassandra Project with File name,
Method name as features.

increases. Logistic Regression and SVM had F1-Scores between 74% and 79% in the

Top-10 stack frame, while Naive Bayes had F1-Scores between 20% and 38% as shown

in Figures 5.17, 5.18, 5.19 and 5.20.The highest F1-score (79%) is reported for the Top-

10 stack frame with Logistic Regression and Filename-Exception Type as features, and the

lowest F1-score of 5% is found in the Top-1 stack frame when using Logistic Regression as

50

5.4. RESEARCH QUESTION #3

Figure 5.19: F1-score Measure for Top-N stack depth for Cassandra Project with File name,
Exception as features.

Figure 5.20: F1-score Measure for Top-N stack depth for Cassandra Project with File name,
Method name, Exception as features.

machine learning algorithm and Filename-Method Name as features. The worst F1-score

of 6% was found using the Top-1 and Filename feature set with the Logistic Regression

algorithm.

51

5.4. RESEARCH QUESTION #3

5.4.6 Hadoop Project

As shown in Table 5.2, we retrieved only 36 bug reports containing stack traces from

a total of 2,395 bug reports from the Hadoop project. These stack traces contains 202

filenames, 311 method names, and 18 exception types.

The highest accuracy of 98% was found using Filename-Method Name-Exception Type

features in Top-1 stack frames when using the Naive Bayes algorithm, as shown in Table

5.12. The lowest accuracy was 56% with the Filename as a feature and the Naive Bayes as

the machine learning algorithm for the Top-3 stack depth. The Logistic Regression model

records the minimal recall (17%) with Top-1 stack frame for Filename as a feature.

Table 5.12: Evaluation metrics for the Hadoop Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.51 1 0.68 0.73 0.68 0.97 0.8 0.86 0.85 1 0.92 0.95 0.94 0.97 0.96 0.98

Logistic Regression 0.86 0.17 0.29 0.76 1 0.34 0.51 0.81 1 0.77 0.87 0.93 1 0.8 0.89 0.94
SVM 0.79 0.54 0.64 0.83 0.92 0.34 0.5 0.8 0.9 0.77 0.83 0.91 1 0.54 0.7 0.87

Top 3
Naive Bayes 0.49 0.92 0.64 0.56 0.61 0.88 0.72 0.71 0.75 0.92 0.83 0.84 0.82 0.88 0.85 0.87

Logistic Regression 0.75 0.23 0.35 0.64 0.87 0.38 0.53 0.72 0.98 0.87 0.92 0.93 0.96 0.85 0.9 0.92
SVM 0.74 0.44 0.55 0.7 0.81 0.33 0.47 0.68 0.86 0.71 0.78 0.83 0.89 0.48 0.62 0.76

Top 5
Naive Bayes 0.58 0.85 0.69 0.59 0.63 0.92 0.75 0.67 0.95 0.88 0.91 0.91 0.86 0.95 0.91 0.89

Logistic Regression 0.71 0.42 0.52 0.6 0.8 0.62 0.7 0.72 1 0.89 0.94 0.94 1 0.89 0.94 0.94
SVM 0.71 0.42 0.52 0.6 0.84 0.55 0.67 0.71 0.9 0.83 0.86 0.86 0.93 0.85 0.89 0.89

Top 10
Naive Bayes 0.81 0.41 0.54 0.59 0.9 0.51 0.66 0.67 1 0.74 0.85 0.85 0.98 0.74 0.85 0.84

Logistic Regression 0.69 0.82 0.75 0.67 0.77 0.76 0.76 0.72 0.99 0.93 0.96 0.95 0.95 0.93 0.94 0.93
SVM 0.77 0.49 0.6 0.6 0.83 0.54 0.66 0.66 0.91 0.8 0.85 0.83 0.92 0.8 0.86 0.84

Figure 5.21: F1-score Measure for Top-N stack depth for Hadoop Project with Filename as
feature.

When using the Filename as a feature and the Top 1 stack depth, the F1-score for Lo-

52

5.4. RESEARCH QUESTION #3

Figure 5.22: F1-score Measure for Top-N stack depth for Hadoop Project with File name,
Method name as features.

Figure 5.23: F1-score Measure for Top-N stack depth for Hadoop Project with File name,
Exception as features.

gistic Regression started at 29% and increased to 75% in the Top 10 stack depth as shown

in Figure 5.21. For all stack depths and algorithms, the F1-score for Filename-Exception

Type as features ranged from 78% to 96% as shown in Figure 5.23. Logistic Regression

performed well in all stack depths and Filename-Method Name-Exception Type , as shown

in Figure 5.24. The highest F1-score (96%) is reported for the Top-10 stack frame with

53

5.4. RESEARCH QUESTION #3

Figure 5.24: F1-score Measure for Top-N stack depth for Hadoop Project with File name,
Method name, Exception as features.

Logistic Regression and Filename-Exception Type, as features and also in case of Naive

Bayes as algorithm and Filename-Method Name-Exception Type as feature for the Top-1

stack frame.The lowest F1-score (29%) was found using the Top-1 and Filename feature

set with the Logistic Regression algorithm.

5.4.7 Hbase Project

The Hbase project has 1,264 bug reports with stack traces, as seen in 5.2, with which

we trained the machine learning algorithms. These stack traces contains 1,931 filenames,

3,076 method names, and 96 exception types.

Logistic Regression had the highest accuracy with 84% using Top-1 Stack depth, and

Naive Bayes had the highest precision with 94% using Top-10 stack depth with File name-

Exception Type features. In contrast, the Naive Bayes has the lowest precision with 20%

and the lowest accuracy with 32% using Top-1 stack depth with File name features. With

Filename as feature, Logistic Regression has the lowest recall of 1% for Top-1 stack frames,

while Naive Bayes has the best recall of 96% for Top-3 stack frames.

As illustrated in Figure 5.25, the F1-score for Logistic Regression and SVM began very

54

5.4. RESEARCH QUESTION #3

Table 5.13: Evaluation metrics for the Hbase Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.2 0.93 0.33 0.32 0.21 0.83 0.34 0.4 0.24 0.93 0.38 0.46 0.25 0.85 0.39 0.52

Logistic Regression 0.54 0.01 0.02 0.82 0.43 0.02 0.05 0.82 0.7 0.16 0.26 0.84 0.66 0.17 0.27 0.83
SVM 0.47 0.05 0.1 0.82 0.37 0.05 0.09 0.81 0.72 0.14 0.24 0.83 0.63 0.12 0.21 0.83

Top 3
Naive Bayes 0.46 0.96 0.62 0.49 0.47 0.92 0.62 0.51 0.5 0.96 0.66 0.57 0.51 0.92 0.65 0.58

Logistic Regression 0.6 0.38 0.46 0.63 0.61 0.4 0.48 0.63 0.72 0.69 0.7 0.75 0.71 0.68 0.69 0.74
SVM 0.62 0.35 0.45 0.63 0.63 0.29 0.4 0.62 0.68 0.7 0.69 0.73 0.7 0.57 0.63 0.71

Top 5
Naive Bayes 0.58 0.93 0.71 0.6 0.73 0.22 0.33 0.54 0.62 0.94 0.75 0.66 0.81 0.32 0.46 0.59

Logistic Regression 0.66 0.66 0.66 0.63 0.65 0.72 0.68 0.64 0.75 0.78 0.76 0.74 0.75 0.78 0.76 0.74
SVM 0.64 0.74 0.69 0.63 0.63 0.78 0.69 0.63 0.72 0.79 0.75 0.72 0.71 0.78 0.74 0.71

Top 10
Naive Bayes 0.89 0.12 0.21 0.41 0.83 0.19 0.31 0.44 0.94 0.24 0.38 0.49 0.88 0.29 0.44 0.51

Logistic Regression 0.72 0.92 0.8 0.7 0.71 0.9 0.8 0.7 0.79 0.89 0.84 0.77 0.79 0.89 0.84 0.77
SVM 0.71 0.93 0.81 0.7 0.7 0.92 0.8 0.69 0.78 0.92 0.84 0.77 0.75 0.92 0.82 0.74

Figure 5.25: F1-score Measure for Top-N stack depth for Hbase Project with Filename as
feature.

low, at 2% and 1%, respectively, for the Top-1 stack frames using the filename as a feature.

Compared to the other two machine learning algorithms in the Top-3, Naive Bayes did well

with 66%. Logistic Regression and SVM are 76% and 74% with Filename-Method Name-

Exception Type as features for Top-5 stack depth and were 84% and 82% in the Top-10

stack depth respectively as shown in Figure 5.28.

The F1-score for the Naive Bayes falls from Top-5 stack frame for Filename-Method

Name feature set as shown in Figure 5.26, whereas it falls in Top-10 stack depth for

Filename-Exception Type features as shown in Figure 5.27. The highest F1-score (84%)

is reported for Logistic Regression and SVM for Top-10 stack depth and both Filename-

Exception Type, Filename-Method Name-Exception Type as features.

55

5.4. RESEARCH QUESTION #3

Figure 5.26: F1-score Measure for Top-N stack depth for Hbase Project with File name,
Method name as features.

Figure 5.27: F1-score Measure for Top-N stack depth for Hbase Project with File name,
Exception as features.

56

5.4. RESEARCH QUESTION #3

Figure 5.28: F1-score Measure for Top-N stack depth for Hbase Project with File name,
Method name, Exception as features.

57

5.4. RESEARCH QUESTION #3

5.4.8 Spring Project

As shown in Table 5.2, we retrieved 431 bug reports with stack traces containing 1,931

filenames, 3,076 method names, and 96 exception types from the Spring project.

According to Table 5.14, the highest precision of 87% was found using Filename-

Exception Type as features in Top-10 stack depth, while the lowest precision of 19% was

found using the Filename as a feature in Top-1 stack frames using the Naive Bayes as an

algorithm. The highest recall of 96% is found for the Naive Bayes algorithm when using

Filename, Filename-Exception Type as features in Top-3 stack depth and also for Top-5

stack depth with Filename-Exception Type as feature set. When using Filename-Method

Name as a feature set and Logistic Regression as a machine learning algorithm, the lowest

recall (2%) was recorded in Top-1 stack frames.

Accuracy is highest in the case of Top-1 stack frames with 88%, in both Filename-

Exception Type and Filename-Method Name-Exception Type as features using the Logistic

Regression as a machine learning algorithm.

Table 5.14: Evaluation metrics for the Spring Top-N Stack depths.

Stack depth ML Algorithm
Filename Filename, Method name Filename, Exception Filename,Method name, Exception

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Top 1
Naive Bayes 0.19 0.88 0.31 0.38 0.2 0.78 0.32 0.46 0.27 0.92 0.42 0.6 0.28 0.82 0.42 0.64

Logistic Regression 0.78 0.02 0.04 0.84 0.54 0.02 0.04 0.84 0.9 0.29 0.44 0.88 0.82 0.29 0.43 0.88
SVM 0.5 0.1 0.17 0.84 0.3 0.04 0.07 0.83 0.77 0.3 0.43 0.87 0.7 0.24 0.36 0.86

Top 3
Naive Bayes 0.4 0.96 0.56 0.47 0.41 0.91 0.56 0.5 0.45 0.96 0.62 0.58 0.46 0.92 0.61 0.59

Logistic Regression 0.58 0.28 0.37 0.67 0.59 0.39 0.47 0.69 0.73 0.6 0.66 0.78 0.74 0.62 0.67 0.79
SVM 0.63 0.34 0.44 0.7 0.57 0.3 0.39 0.67 0.77 0.49 0.6 0.77 0.73 0.4 0.52 0.74

Top 5
Naive Bayes 0.48 0.95 0.64 0.53 0.5 0.9 0.64 0.56 0.55 0.96 0.7 0.63 0.56 0.92 0.7 0.65

Logistic Regression 0.67 0.49 0.56 0.66 0.64 0.54 0.59 0.66 0.74 0.72 0.73 0.76 0.75 0.72 0.73 0.77
SVM 0.67 0.45 0.54 0.66 0.68 0.5 0.57 0.67 0.77 0.6 0.67 0.74 0.74 0.61 0.67 0.73

Top 10
Naive Bayes 0.8 0.29 0.42 0.61 0.76 0.29 0.42 0.6 0.87 0.44 0.58 0.69 0.84 0.43 0.57 0.68

Logistic Regression 0.62 0.74 0.67 0.65 0.63 0.7 0.66 0.65 0.75 0.77 0.76 0.76 0.75 0.78 0.76 0.76
SVM 0.66 0.57 0.61 0.64 0.65 0.62 0.63 0.64 0.76 0.75 0.75 0.76 0.74 0.72 0.73 0.73

As demonstrated in Figure 5.29 and 5.30, the Naive Bayes classifier dominated the other

two classifiers up to Top-5 stack depths where as Logistic Regression dominated in all stack

depths cases as shown in the Figures 5.31 and 5.32.The Logistic Regression has the highest

F1 scores of 76% using both Filename-Exception Type, Filename-Method Name-Exception

Type as features for the Top-10 stack depth.In contrast, the lowest F1-score (4%) is reported

for the Logistic Regression algorithm for Top-1 stack depth when using both Filename and

Filename-Method Name as features.

58

5.4. RESEARCH QUESTION #3

Figure 5.29: F1-score Measure for Top-N stack depth for Spring Project with Filename as
feature.

Figure 5.30: F1-score Measure for Top-N stack depth for Spring Project with File name,
Method name as features.

59

5.4. RESEARCH QUESTION #3

Figure 5.31: F1-score Measure for Top-N stack depth for Spring Project with File name,
Exception as features.

Figure 5.32: F1-score Measure for Top-N stack depth for Spring Project with File name,
Method name, Exception as features.

60

5.5. SUMMARY

5.5 Summary

According to the research question #1 results, the number of inaccurate stack traces

decreased as the number of stack frames increased. In the Eclipse data set, we observed

72% inaccurate stack traces in the Top-1, 51% in the Top-3 stack depth, 43% in the Top-5

and 39% in the Top-10 stack depth. However, in the Apache data sets, we observed 69%

and 54% inaccurate stack traces for the Top-1 and Top-3 stack depths, respectively. We

discovered 26% and 14% for the Top-5 and Top-10 stack depths, respectively.

From the research question #2 results, the most frequent exception in inaccurate stack

traces across all stack depths was the NullPointerException with the mean percentage of

35% and 15.6% in the corresponding data sets from Eclipse and Apache. Another frequent

occurrence, with 9.6% in the Eclipse and 11.4% in the Apache data set in both the data sets,

is IlleagalArgumentException.

Finally, analysing the research question #3 results, in the Eclipse data sets, the F1-score

for the Naive Bayes classifier improved as the stack depth increased for the Birt project.

Still, it decreased or stayed within a similar range for the rest of the projects after the Top-3

stack frame in all the feature combinations. In contrast, the F1-score for Logistic Regression

and SVM were different for Top-1 and Top-3 stack depths, while they were identical for

Top-5 and Top-10 stack frames regardless of feature combination.

Three projects (AspectJ, Eclipse Platform UI, and JDT) claimed the highest precision

for the feature Filename-Exception Type and the Naive Bayes as machine learning algo-

rithm, while the Birt project reported the highest precision for the Logistic Regression.

Similarly, we found that the Naive Bayes classifier achieves the maximum precision and

recall values when using the Filename-Exception Type as features for the projects in the

Apache data set. Therefore, Filename-Exception Type is the best feature combination for

both the Eclipse and Apache projects.

On the other hand, across all feature combinations for the Apache data sets, the F1-score

for the Naive Bayes classifier either declined significantly or maintained close range after

61

5.5. SUMMARY

the Top-3 stack frames. Except for the Hadoop project, all feature combinations used with

Logistic Regression and SVM showed improved F1 scores as the stack depth increased,

unlike the Eclipse projects. The highest F1-score for all the Apache projects varied from

76% to 96%, and accuracy was between 79% and 98%. While for the Eclipse data sets, the

highest accuracy was obtained using the Logistic Regression algorithm and was between

78% and 82%.

For the Eclipse data sets, the F1-score ranges from 6-75% for the Top-1 stack depth, 28-

85% for the Top-3 stack depth, 21- 85% for the Top-5 stack depth and 20- 87% for the Top-

10 stack depth. Whereas, the F1-score for the Apache data sets falls between 2- 96% for the

Top-1 stack depth, 35- 92% for the Top-3 stack depth, 28- 94% for the Top-5 stack depth

and 20- 96% for the Top-10 stack depth. Therefore, when training a stack trace accuracy

recommender, the Top-5 frames will creating a sufficiently accurate recommender.

Evaluating the machine learning algorithms across on both the data sets, the best F1-

score was found using the Logistic Regression algorithm. We observed that the F1-score

for the Logistic Regression ranged between 4% and 96% , Naive Bayes between 20% and

91%, and SVM fell between 8% and 77%.

62

Chapter 6

Discussion

This chapter discusses the different feature combinations, which stack trace depth is most

beneficial, and the lessons we learned from using machine learning algorithms to recom-

mend inaccurate stack traces.

6.1 How deep should stack traces be in bug reports?

In research question #1, we investigated detecting accurate/inaccurate stack traces by

considering the filenames included in up to 10 stack frames. The results indicate that it

makes little difference whether you utilize the Top-5 or Top-10 stack depths. The Eclipse

data set shows a 2% to 5.5% increase in accurate stack traces, whereas the Apache data

set has a 6% to 14% improvement in accurate stack traces from the Top-5 to the Top-10

stack frames. These relatively minor increases when moving from considering the Top-5

to considering the Top-10 stack frames demonstrates that developers who contribute stack

traces of only up to the Top-5 stack frames in bug reports is usually sufficient to assist

developers in bug fixing.

According to Schröter et al. [13], they examined small data set from the Eclipse projects

and found 90% of bug reports are resolved for the filenames in the Top-10 stack frames.

However, according to our research, the percentage of bug reports that are fixed for the

Top-10 stack depth for the Eclipse data set is significantly lower (AspectJ (70.25%), Birt

(48.03%), Eclipse Platform UI (63.15%), and JDT (66.13%)). In comparison, only the H-

base project outperformed the 90% benchmark for the Apache data set, with a bug report

63

6.2. WHICH EXCEPTIONS SHOULD DEVELOPERS BE MOST SUSPICIOUS?

fix percentage of 92.48% for the Top-10 stack depth, while the others were less (Cassandra

(82.83%), Hadoop (75%), and Spring (74.24%)).

Furthermore, for both the data sets, we experimented with using whole stack traces

to determine accurate/inaccurate labels. When we compared accurate stack traces fre-

quency to the Top-10 Stack depth, we discovered a 6-8% increase in Eclipse projects and a

2-7% increase in Apache projects.Although the increase in accuracy seems attractive, this

improvement comes at higher computational costs that may outweigh the benefits.

6.2 Which exceptions should developers be most suspicious?

In research question #2, we found that the NullPointerException (NPE) occurred the

most in inaccurate stack traces compared to other exceptions for both the Eclipse and

Apache data sets as shown in Tables 5.5 and 5.6. Since NullPointerException is a com-

mon result of many types of faults, regardless of application domain, we do not consider

this to be useful in warning developers about a potentially inaccurate stack trace. Further-

more, for AspectJ Top-10 stack depth, we used the Naive Bayes algorithm to calculate the

probability of NPE for both accurate and inaccurate labels, and discovered that 33% and

11% of the NPE probability fall under accurate and inaccurate labels, respectively. These

findings indicate that the likelihood of NPE occurring in an accurate stack trace is three

times greater than that of the inaccurate label.

Table 6.1: The percentage of the exception types in inaccurate stack traces (Top-10 stack
depth) for each project in the Eclipse data set.

AspectJ Birt Eclipse Platform UI JDT
Exception Type Percentage Exception Type Percentage Exception Type Percentage Exception Type Percentage

NullPointerException 31.2 NullPointerException 34.9 NullPointerException 48.4 NullPointerException 30.2
BCException 12.8 ClassCastException 7.1 SWTException 9.2 AssertionFailedException 15.9

IllegalStateException 8.5 IllegalArgumentException 6.7 AssertionFailedError 8.7 IllegalArgumentException 13.4
ArrayIndexOutOfBoundsException 6.4 DataException 6.7 IllegalArgumentException 6.1 ArrayIndexOutOfBoundsException 5.6

VerifyError 6.4 ReportServiceException 4.2 ClassCastException 5.6 SWTException 3.9

However, when comparing the occurrence of NPE in the two data sets, we noted a

difference. According to the Tables 6.1 and 6.2, NPE is at the top of the lists for the

projects in the Eclipse data set but this exception falls to second or third place for the

64

6.2. WHICH EXCEPTIONS SHOULD DEVELOPERS BE MOST SUSPICIOUS?

Table 6.2: The percentage of the exception types in inaccurate stack traces(Top-10 stack
depth) for each project in the Apache data set.

Cassandra Hadoop H-Base Spring
Exception Type Percentage Exception Type Percentage Exception Type Percentage Exception Type Percentage
AssertionError 38.1 ClassNotFoundException 33.3 IOException 62.1 IllegalArgumentException 22.5

NullPointerException 27.1 AssertionFailedError 22.2 AssertionError 33.7 NullPointerException 16.2
IOException 16.1 IllegalArgumentException 22.2 NullPointerException 32.6 IllegalStateException 15.3

RuntimeException 14.8 NoSuchMethodException 22.2 IllegalArgumentException 27.4 NoSuchBeanDefinitionException 7.2
IllegalArgumentException 12.2 FileNotFoundException 11.1 ClassNotFoundException 16.8 NoSuchMethodError 5.4

projects in the Apache data sets. Looking beyond the NPE exception, we find that the

next most freqently occuring exception varies between Eclipse projects. The next two most

occurring exceptions are AssertionFailedException occurring in JDT at a rate of 15.9%, and

BCException occurring in the AspectJ project at a rate of 12.8%. As these percentages are

occur in less than 20% of inaccurate stack traces, it makes make it challenging to use the

occurrence of these exceptions as warning signs of inaccurate stack traces for the Eclipse

projects.

In contrast, inaccurate stack traces in the Apache data sets show that IOException oc-

curs in the H-base project at a rate of 62.1%. As Hbase provides real-time read/write access

to Big Data, this IOException occurring most of the time makes it significant because it is

caused by failed or interrupted Input-Output processes.In other words, it is not surprising

that IOException would occur commonly in stack traces for this project. The Assertion-

Error in the Cassandra project occurred at a rate of 38.1%. When any of the program’s

assumptions are violated, an AssertionError is thrown. Cassandra, as we know, is a nosql

database that caches and replicates data across multiple nodes within the same cluster. Typi-

cally, the Cassandra configuration includes assumptions such as disk storage and replication

strategy. If the configuration does not satisfy the assumptions or if any key node runs out of

cache size while operating, the system may crash, throwing an assertion error. This makes

it reasonable that AssertionError is the most frequent in the Cassandra project.

In a batch of stack traces from the Hadoop project, ClassNotFoundException is found

at a rate of 33.3%. Finally, we noticed that IllegalArgumentException occurred at a rate of

22.5 % in the Spring project. When illegal or wrong arguments are passed to a function, the

65

6.3. WHICH FEATURE COMBINATION AND MACHINE LEARNING ALGORITHM
SHOULD BE USED?

IllegalArgumentException is issued. This Java-based framework supports Dependency In-

jection, which allows the Spring container to inject objects into other instances. This could

be one of the reasons why IllegalArgumentException occurs more frequently. The frequen-

cies for these exceptions may mean that identifying exceptions occurring in inaccurate stack

traces may be more useful for developers of Apache projects.

6.3 Which feature combination and machine learning algorithm should

be used?

In research question #3, we experimented with different combinations of features (file-

name, method names, and exception type) with different machine learning algorithms to

create an accurate/inaccurate stack recommender. We found a maximum increase in accu-

racy of 5% for the projects in the Eclipse data set and a maximum increase of 12% for the

projects in the Apache data set when using only the filename as a feature versus using the

filename paired with the method name. The inclusion of the method name to the features

did not result in a significant increase in accuracy for either data set. We believe this is

due to similar method names (viz. init, show, run, build) occurring in both accurate and

inaccurate labels across all the classes, which did not assist machine learning models in

understanding the patterns.

On the other hand, we discovered a maximum accuracy raise of 25% for the projects in

the Eclipse data set and a maximum accuracy raise of 34% for the projects in the Apache

data set when comparing the use of filename and exception type with using the filename

alone. Compared to using the filename and exception type combination, the accuracy when

using all features (filename, method name and exception type) varies by -1% to 2%. As a

result, we conclude that using the filename and exception type as features is the best feature

combination for creating an accurate/inaccurate stack trace recommender.

When we evaluate the performance of all three machine learning algorithms, we dis-

cover that Logistic Regression and SVM performed similarly and better than the Naive

66

6.4. SUMMARY

Bayes algorithm. When the features are correlated, the Logistic Regression Algorithm sep-

arates its features linearly and employs linear classification for data analysis, while SVM

uses non-linear kernels (linear, polynomial, etc.) to partially understand the features’ rela-

tionship. This, we believe, is one of the reasons why the two algorithms produce similar

results. In contrast, in Naive Bayes, the features are assumed to be conditionally indepen-

dent, which is rarely true in real-world data sets. Therefore, classification will not occur as

anticipated if any of the features are correlated. Thus, we assume that Naive Bayes consid-

ering features as independent, when in fact they are not in these data sets, is the reason for

its poor performance.

We believe that training machine learning algorithms on imbalanced data is another

factor that affects these algorithms performance in this domain. We can see from Tables 5.1

and 5.2 that in the Top-1 and Top-3 stack frames, inaccurate stack traces are more numerous

than accurate stack traces, whereas accurate stack traces occur more in the Top-5 and Top-

10 stack frames. This imbalanced data might affect the performance of machine learning

algorithms.

6.4 Summary

We conclude that users merely providing the top five stack frames in bug reports can typ-

ically help developers with bug fixes. Also, information about the frequency of exceptions

occurring in the Apache projects will likely be more beneficial for developers to identify

the inaccurate stack traces than in the Eclipse projects. Finally, the Logistic Regression and

the Filename-Exception type were found to be the best for producing an accurate/inaccurate

stack trace recommender.

67

Chapter 7

Conclusion

In bug reports, providing stack traces can be helpful since they assist developers in debug-

ging. However, certain stack traces may be inaccurate, leading to longer debugging times

and increases to the project cost due to longer bug fixing times. This work investigates

the prevalence of inaccurate stack traces, identifies exceptions commonly occurring in in-

accurate stack traces and explores the use of machine learning to create recommenders for

identifying inaccurate stack traces.

First, we classified stack traces as “Accurate” or “Inaccurate” by comparing the file

names in the commit history for a particular bug report with the filenames in the provided

stack traces. We observed that inaccurate stack traces occurred more often if only the Top-1

stack frame is considered and fell as more stack frames are considered. We found that in

most cases, only considering the Top-5 stack frames is sufficient. We also found that the

Eclipse projects in our data set have a higher frequency of inaccurate stack traces than those

of the projects in our Apache data set.

Second, we calculated the most common exception types occurred in inaccurate stack

traces up to the Top-10 stack frames in both the data sets. We found that NullPointerExcep-

tion is the most common exception. However, after the NPE, the most frequently occurring

exception become more project-dependent with the next most commonly occurring excep-

tion being IllegalArgumentException.

Finally, for creating an accurate/inaccurate stack trace recommender, we explored train-

ing three machine learning algorithms (Naive Bayes, Logistic Regression and Support Vec-

68

7.2. FUTURE WORK

tor Machines) with different combinations of features from stack traces. We observed that

the Logistic Regression performed better than the other two machine learning algorithms for

all the stack depths, although SVM had similar performance. In contrast, the Naive Bayes

algorithm performed poorly on these data sets. Also, we found that the best feature combi-

nation for training an accurate/inaccurate stack trace recommender is Filename-Exception

Type.

7.1 Limitations

We identified the following limitations to our approach:

1. Our approach is only applicable to programming languages that have built-in support

for retrieving or generating a stack trace when a program crashes. Therefore, our

approach may not be applicable for languages, which don’t produce a stack trace

when the program crashes.

2. As a software project evolves, the accurate/inaccurate recommender must be updated

with the changed code or user-specific exceptions. Specifically, the recommender

must be trained on newly obtained stack traces from bug reports in order to be reli-

able.

7.2 Future Work

The results we obtained provide empirical evidence of the inaccurate stack traces occur-

rences in bug reports. We identified some more future improvements based on the results

of this work as follows:

1. Expanding our investigation by studying additional projects with more bug reports

that include stack traces.

2. Increasing the potentiality of our investigation by training recommender on balanced

data.

69

7.2. FUTURE WORK

3. Investigating how deep learning networks can be used to create inaccurate stack trace

recommenders instead of machine learning algorithms.

4. Creating a tool which can be integrated with bug repositories to warn developers by

showing the stack trace inaccuracy level based on either stack trace or the frequent

exception types.

70

Bibliography

[1] A. Bergel and I. Slater Muñoz. Automated test generation for stack-trace reproduction
using genetic algorithms. In Proceedings of the 2021 IEEE/ACM 14th International
Workshop on Search-Based Software Testing (SBST), 2021.

[2] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zimmermann. What
makes a good bug report? In Proceedings of FSE. ACM, 2008, page 308–318, 2008.

[3] B. Boehm and V. Basili. Software defect reduction top 10 list. Computer, pages
135–137, 2001.

[4] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta, D. Poshy-
vanyk, and V. Ng. Assessing the quality of the steps to reproduce in bug reports. In
Proceedings of the 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),, 2019.

[5] R.Marc D. Steven. What’s in a bug report? In Proceedings of the 8th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement, pages
1–10, 2014.

[6] M.J. Harrold H. Shah, C. Görg. Why do developers neglect exception handling? In
Proceedings of the 4th International Workshop on Exception Handling, pages 62–68,
2008.

[7] M. Hamdaqa A. Hamou-Lhadj K. Sabor. Automatic prediction of the severity of bugs
using stack traces and categorical features. Published by Elsevier B.V., 2019.

[8] E. Middleton. Npe in workbenchpage. https://bugs.eclipse.org/bugs/show bug.cgi
?id=397872, 01 2013.

[9] S. K. Ramalingam. Large message connection allocates heap buffer when bufferpool
exhausted. https://issues.apache.org/jira/browse/CASSANDRA-15358, 10 2019.

[10] S. Russell and Peter. N. Artificial Intelligence: A Modern Approach. Prentice Hall, 3
edition, 2010.

[11] F. Khomh S. Wang and Y. Zou. Improving bug management using correlations in
crash reports. In Proceedings of the Empirical Software Engineering, pages 337–367,
2016.

[12] K. Sabor, A. Hamou-Lhadj, A. Trabelsi, and J. Hassine. Predicting bug report fields
using stack traces and categorical attributes. In Proceedings of the 29th Annual Inter-
national Conference on Computer Science and Software Engineering, 2019.

71

BIBLIOGRAPHY

[13] A. Schroter, N. Bettenburg, and R. Premraj. Do stack traces help developers fix bugs?
In Proceedings of the 7th IEEE Working Conference on Mining Software Repositories,
2010.

[14] J. Sebes V. Paila. Automating crash report analysis using exception-based patterns and
reference assembly mapping. In Proceedings of the 8th India Software Engineering
Conference, pages 70–79, 2015.

[15] X. Ye, R. Bunescu, and C. Liu. Learning to rank relevant files for bug reports using
domain knowledge. In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, page 689–699, 2014.

72

	Dedication
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivating Example
	Research Questions
	 RQ 1: How often do inaccurate stack traces occur in bug reports?
	 RQ 2: What exceptions are more likely to occur in inaccurate stack traces?
	 RQ 3: What is the effectiveness of using different machine learning algorithms in tagging stack traces as accurate or inaccurate?

	Contributions
	Thesis Organization

	Background
	Bug Reports
	Components of Bug Reports

	Version Control System
	Commit History

	Infozilla Tool
	Machine Learning Algorithms
	Naive Bayes classifier
	Support Vector Machines
	Logistic Regression

	Metrics
	Precision
	Recall
	Accuracy
	F1-Score

	Summary

	Related Work
	Research About Bug Report Structure
	Research using Bug Report Information for Prediction
	Research Managing Crash Reports
	Summary

	An Approach to Detecting and Predicting Inaccurate Stack Traces
	Data Source and Preparation
	Extracting Features and Committed File Names Extraction
	Extracting features from stack traces
	Extracting filenames from the commit history

	Labelling Stack Traces
	Walk-through Example

	Training a Machine Learning Classifier

	Evaluation and Results
	Data Sets
	Eclipse Data Set
	Apache Data Set
	Extracting Stack Traces

	 RQ 1 : How often do inaccurate stack traces occur in bug reports?
	 RQ 2 : What exceptions are more likely to occur in inaccurate stack traces?
	 RQ 3 : What is the effectiveness of using different machine learning algorithms in tagging stack traces as accurate or inaccurate?
	AspectJ Project
	Birt Project
	Eclipse Platform UI Project
	JDT Project
	Cassandra Project
	Hadoop Project
	Hbase Project
	Spring Project

	Summary

	Discussion
	How deep should stack traces be in bug reports?
	Which exceptions should developers be most suspicious?
	Which feature combination and machine learning algorithm should be used?
	Summary

	Conclusion
	Limitations
	Future Work

	Bibliography

