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Abstract

Core genome multilocus sequence typing is a next generation typing method for the

long-term tracking of pathogenic bacteria. Although such methods provide the very

high discriminatory power required by public health agencies, they are prone to di�-

culties relating to data loss intrinsic to current DNA sequencing technologies.

This thesis describes a framework for developing conservative, but powerful core

genome multilocus sequencing systems. To this end, I developed a prototype scheme

for Campylobacter jejuni consisting of 697 core genome loci identified through the anal-

ysis of 5,693 C. jejuni whole genome sequences. I surveyed the extent of missing data

in the dataset, and studied optimizing number of genes to include in such a scheme.

Using the information learned in the survey of missing data, I developed a system

for predicting unknown alleles from core genome typing data. The principles learned

through my research can be applied to develop robust methods of pathogen surveil-

lance.
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Chapter 11

A Review of Current Literature2

1.1 Molecular Typing and Public Health3

In the aftermath of a devastating earthquake, Haiti experienced an outbreak of4

cholera beginning in October 2010. Vibrio cholerae — the bacterium responsible for5

cholera — had not been recorded in the small Caribbean nation for nearly a century.6

At the time of writing, the epidemic is ongoing and has claimed the lives of nearly7

10,000 Haitians and has spread into the neighbouring Dominican Republic.8

In October of 2010, journalists noted the unsanitary conditions in a military en-9

campment inhabited by United Nations peacekeepers in the Artibonite River Valley10

in rural Haiti. Notably, a pipe drained untreated sewage from the camp into the river.11

To relieve Bangladeshi troops, Nepalese peacekeepers rotated into the area in early12

October.13

Soon after the arrival of the Nepalese troops, Haitian public health o�cials noted a14

sharp increase in dysenteric illness. Laboratory assays identified V. cholerae serogroup15

O1, serotype Ogawa, biotype El Tor as the causative agent of the outbreak. Retro-16

spective analysis of hospital records revealed cholera cases beginning inland near the17

UN camp on 17 October and spreading downstream along the Artibonite River until18

reaching the coast on 22 October [1].19

Though epidemiological evidence implicated the UN troops, other hypotheses,20

such as an increase in temperature and salinity had allowed endemic Vibrio to prolifer-21

ate, had not been excluded. In 2011, Hendriksen et al. characterized V. cholerae strains22

1



1.1. MOLECULAR TYPING AND PUBLIC HEALTH

isolated from confirmed Haitian cholera cases along with strains isolated from a con-23

current epidemic in Nepal. This study showed that the Haitian cholera strains were24

closely related to one another and shared a recent single common ancestor. Moreover,25

the group sharing the recent common ancestor in the Haitian isolates also included26

V. cholerae strains isolated in Bangladesh and Nepal. A 2013 study by Katz et al. us-27

ing whole genome sequencing confirmed these results. The evidence was deemed28

to be strong support of the hypothesis that cholera was introduced inadvertently by29

Nepalese UN peacekeepers deployed to the area [2–4].30

Though this investigation came too late to prevent the Haiti outbreak, it was an31

e�ective illustration of the power of molecular typing and whole genome sequencing32

in determining the source of a catastrophic epidemic.33

Public health is, at its core, the science of improving health at the scale of popula-34

tions. Public health agencies take a wide variety of approaches to reduce the burden of35

illness upon their citizens. Infectious diarrhœal illness caused by pathogenic bacteria36

are amongst the largest sources of loss of disability-adjusted life years for all ages and37

sexes in both developing and advanced economies [5].38

In the context of epidemiologic investigations, molecular typing is the di�erentia-39

tion of microbial strains on the basis of di�erences at the molecular level [6]. These40

di�erences may be between expressed amino acid sequences, the nucleotide sequences41

that encode them, or even non-coding genetic regions. These di�erences may be de-42

tected indirectly, such as through immunologic reactivity or oligonucleotide hybridiza-43

tion, or directly through DNA sequencing. The two main measures of a typing system44

are typability and discriminatory power. Typability is the reliability with which a type45

can be assigned to a subject organism, and discriminatory power is the capacity for a46

typing system to distinguish between two similar strains.47

E�ective public health interventions rely on accurate and timely identification of48

microbial isolates. Molecular typing data can provide the discriminatory power nec-49

2



1.2. BIOCHEMICAL & ANTIGENIC TYPING METHODS

essary to answer key questions about the strains of interest. In the abstract, all such50

questions ask, “Is this strain the same as that strain?” More concretely, we can derive51

practical information like whether a given strain is included in an outbreak or is part52

of the background of sporadic cases, or the likelihood of a particular isolate having53

originated from a particular source.54

1.2 Biochemical & Antigenic Typing Methods55

1.2.1 Biotyping56

Biotyping includes a broad spectrum of typing systems that compare biochemical57

di�erences amongst bacterial isolates. Biotyping methods focus on colony morphol-58

ogy; chemical resistances, including antibiotic sensitivity/resistance patterns; environ-59

mental resistances; and isolate metabolic processes, such as substrate catabolism and60

metabolites produced. Biotyping methods are able to provide discriminatory power61

ranging from the genus level to the subspecies level, depending upon the organism and62

panel of tests employed. To be useful, these traits must vary significantly amongst the63

organism to be typed [7–9].64

Biotyping methods are generally fast, technically forgiving, and inexpensive to65

perform. Typability is usually very high. These features make biotyping attractive66

for processing large numbers of strains and, despite the problems discussed below,67

biotyping is often su�cient for identification of bacterial isolates to the species level.68

Unfortunately, classical biotyping methods are moderately reproducible at best,69

and, unless a large number of traits are investigated, su�er from poor discriminatory70

power [7–9]. Additionally, biotyping has a demonstrated capacity to lead investigators71

to incorrect conclusions as to the identity of the organism in question. Maslow et72

al. described a case in which two separate Klebsiella isolates were drawn from the73

same patient and biotyped as K. pneumoniae and K. oxytoca. Later analysis showed that74

the two isolates belonged to the same clone and di�ered only in their production of75

3



1.2. BIOCHEMICAL & ANTIGENIC TYPING METHODS

indole [10]. Similarly, the biotyping scheme for Campylobacter distinguishes between76

Campylobacter jejuni and Campylobacter coli on the basis of their respective positive and77

negative hippurate production [11]. However, it has since been shown that some strains78

of C. jejuni are hippurate-negative, and that di�erentiation between these species based79

on this trait is not always supported by genetic evidence [12].80

Though it was largely rendered obsolete by later advances in microbial typing, bio-81

typing is being modernized through large, high-throughput phenotypic assays. Often82

automated, these modern cousins of classical biotyping have many aspects in common,83

and can assess dozens-to-hundreds of phenotypic traits, particularly growth substrates84

and antibiotic resistances. These systems have been successfully used for a variety of85

purposes, ranging from serotype and virulence prediction to national public health86

surveillance programmes [13–15].87

1.2.2 Lysis Typing: Bacteriophages & Bacteriocins88

Amongst the earliest typing systems were two methods di�erent in origin, but89

similar in interpretation: bacteriophage, or simply ‘phage’ typing, and bacteriocin90

typing. Both methods operate on the variable and binary nature of susceptibility to91

the inhibitory agent in question.92

Phages that have host ranges below the species level and are obligately lytic are93

candidates for use in a phage typing system. The bacterial strain being studied is94

co-incubated with di�erent variants of the typing phage, and sensitivity is observed as95

plaques on a bacterial lawn, or clearing if a liquid medium is used [16].96

Bacteriocins are toxic proteins and small peptides produced by some bacteria that97

have extremely narrow spectra of target strains, and a high specific activity. These98

toxins are employed by a bacterium to kill closely related strains for a competitive99

advantage [17]. As with phage typing, a panel of representative bacteriocins is added to100

a lawn of the strain being tested, and growth inhibition, if any, is noted after incubation101

4



1.2. BIOCHEMICAL & ANTIGENIC TYPING METHODS

[18–20].102

Phage typing was first developed by Craigie and Yen for Salmonella enterica sub-103

species enterica serovar Typhi* [16]. In their experiments with the Type II Vi phage,104

they made two important observations: the phage often reacted weakly, or not at all,105

with a given S. enterica Typhi strain; and if phage particles were isolated after weakly106

reacting and added to a fresh culture of the same S. enterica strain, an aggressively107

lytic reaction would be observed. These features were exploited to create a standard-108

ized panel of phage types that could be used in a binary typing scheme. The Type II109

Vi phage was co-incubated with each of a set of reference strains. Subsequent strains110

being phage typed were assigned a phage type based on the pattern of sensitivity to111

the adapted reference phages.112

Bacteriocin typing has a similar history, beginning with the work of Abbott and113

Shannon in 1957. The investigators developed a typing system based upon the in-114

hibition patterns of Shigella sonnei by seven variants of the bacteriocin colicine. In115

their pilot study, the authors were able to group 367 of 537 S. sonnei strains into seven116

colicine types, with the balance untypable. This study laid the groundwork for later117

bacteriocin typing systems [18]. Some later schemes combined phage typing with bac-118

teriocin typing into a single assay. In combination, the increased number of possible119

types improves discrimination with little additional technical challenge [19].120

The principal advantage of lysis typing is its quick turnaround time, which allows121

large numbers of isolates to be processed quickly, making it a valuable technique for122

reference laboratories [7, 8]. However, phage typing is considered to be very tech-123

nically demanding. The need to cultivate extensive libraries of standardized phage124

cultures also keeps this typing method practical only for large reference laboratories125

[7, 8]. Phage typing and bacteriocin typing have poor discriminatory power when com-126

pared to modern typing systems, though this can be ameliorated somewhat by using127

*The authors use the now-obsolete name Bacillus typhosus

5



1.3. POLYMERASE CHAIN REACTION-BASED METHODS

them in conjunction with one another [7, 8, 19].128

1.2.3 Serotyping129

Serotyping is based on the di�erential reaction between known antibodies and un-130

known proteinaceous or carbohydrous antigens on the surface of a bacterial cell [21–131

23]. The specific pattern of agglutination reactions between a panel of known antibod-132

ies and an isolate form the serotype, which is synonymously referred to as the serovar.133

In the event an isolate does not react to any of the antibodies of a given serotyping134

scheme, it is first considered untypable, though it may prove to be a candidate for a135

novel serotype.136

Serotyping was first described as a technique by Lancefield in 1933, which she137

developed during her study of human- and food-associated Staphylococcus haemolyticus.138

The method was later adapted to many other bacteria, notably Salmonella enterica, Es-139

cherichia coli, and Campylobacter species. The Kau�mann-White scheme for S. enterica140

and classification of E. coli by their O- and H- antigens continue to be of particular141

importance to the modern terminology for these organisms [22, 24, 25].142

Though it revolutionized bacterial typing, traditional agglutination-based serotyp-143

ing is not without its disadvantages. It is exceptionally demanding of a technician’s144

time, labour, and skills. Moreover, the monoclonal antibodies comprising the antisera145

are di�cult and expensive to produce [7, 26, 27].146

1.3 Polymerase Chain Reaction-based Methods147

Typing methods based upon the polymerase chain reaction (PCR) are many and148

varied. Three broad categories of PCR-based methods are discussed here: analysis of149

variable numbers of tandem repeats, random amplification, and binary presence/ab-150

sence surveys.151

6



1.3. POLYMERASE CHAIN REACTION-BASED METHODS

1.3.1 Variable Number of Tandem Repeats152

Within genomes, there regions where short, repetitive patterns of nucleotides called153

tandem repeats are known to exist. Analysis of the variable number of tandem repeats154

(VNTR) uses this number as a characteristic fingerprint of the strain. During bacterial155

chromosome replication, these regions are prone to slipped strand mispairing, which156

can lead to the gain or loss of these repeat units [28]. The number of repeats can157

be inferred from amplicon mobility following electrophoresis. VNTR analysis can be158

enhanced by using multiple target loci, and is known as multiple locus VNTR anal-159

ysis, or MLVA. Because this method yields relatively high resolution, is inexpensive,160

and is easy to perform and analyze; MLVA was once considered to be a potential161

‘gold standard’ assay for molecular typing of certain pathogenic bacteria, including162

Staphylococcus aureus and Mycobacterium tuberculosis [29–31]. However, because tandem163

repeats can evolve quickly, the rate of change in these regions may outpace the overall164

evolution of the strain, sometimes giving incongruous relationships between strains165

[8].166

1.3.2 Random Ampli�cation167

Random amplification PCR uses a solitary short primer pair of arbitrary sequence.168

When amplified under low-stringency conditions, a banding pattern that is character-169

istic of the genome appears [32, 33]. Visualized by gel electrophoresis, random amplifi-170

cation can provide relatively high discriminatory power, surpassing that of Multilocus171

Enzyme Electrophoresis, which will be discussed in Section 1.5.1 [34]. Random am-172

plification also benefits from being a quick and inexpensive procedure to perform.173

However, results cannot be easily compared between laboratories, as they fluctuate174

and are sensitive to small variations between technicians, reagents, and hardware [6].175

7



1.4. RESTRICTION FRAGMENT LENGTH POLYMORPHISM

1.3.3 Binary Typing176

PCR can be used to query for the existence of a particular locus, or at least the177

existence of its primer binding sites. When this is applied to a panel of genes, a178

characteristic pattern of locus presence/absence can be described. When selecting179

target loci for a binary PCR typing system, two general approaches may be taken.180

The first is to prioritize selection of loci that are predictive of the organism’s epi-181

demicity, pathogenicity, or other features of interest. P-BIT, and its successor method182

MBiT, both embody this philosphy of binary PCR typing [35, 36].183

The second approach to developing a binary PCR typing system is to select mark-184

ers on the basis of discriminatory power. Typifying this approach is Comparative185

Genomic Fingerprinting (CGF), which has been developed for use in C. jejuni, E. coli,186

and Arcobacter butzleri [37–40]. In the C. jejuni scheme, a panel of forty target genes187

were selected on the premise of their approximately 50% carriage in the population.188

The profiles generated lend themselves to hierarchical clustering, and the method it-189

self is rapid and low-cost. More importantly, CGF produces epidemiologically useful190

clusters and profiles are readily portable between laboratories [37, 38].191

1.4 Restriction Fragment Length Polymorphism192

Restriction fragment length polymorphism (RFLP) methods assess diversity within193

a species by using restriction endonucleases to cut DNA into smaller, variably-sized194

fragments. The frequency with which a restriction enzyme digests the subject DNA195

is governed by the length of its recognition site; short recognition sites will cut more196

frequently and produce shorter DNA fragments than long recognition sites. These197

chromosomal segments are electrophoresed and the diversity of the resultant banding198

patterns are used as a fingerprint with which to compare di�erent isolates.199

Ribotyping is a variant of RFLP which uses relatively frequent-cutting (4 bp target)200

enzymes to cut ribosomal DNA. Following digestion and electrophoresis, Southern201

8



1.4. RESTRICTION FRAGMENT LENGTH POLYMORPHISM

blot hybridization is used to clarify polymorphisms within ribosomal operons.202

Though ribotyping is easily outmatched in terms of discriminatory power by its203

contemporaries and modern methods alike, its limited diversity of signal was also a204

strength in the context of outbreak investigations. Two strains of the same outbreak205

almost surely had identical ribotypes, and so having di�ering signals would likely206

indicate that two strains were not closely related. Outside of outbreak scenarios, ribo-207

typing often has limited utility for distinguishing between members of a single species208

[8].209

Pulsed-field gel electrophoresis (PFGE) is a RFLP technique which combines infrequently-210

cutting restriction enzymes (≥ 6 bp target) with an alternating electric field, as op-211

posed to the constant electric field used in most electrophoretic methods. By alternat-212

ing the polarity of the electric field, PFGE is better able to resolve subtle di�erences in213

mobility of large chromosomal DNA molecules than other electrophoretic methods.214

By resolving these di�erences, PFGE is able to make use of a greater range of fragment215

sizes than other methods, and is thus more e�ective at distinguishing between similar216

strains [41].217

Pulsed-field gel electrophoresis was developed by Schwartz and Cantor in 1984 to218

overcome the inability of previous gel electrophoresis methods to adequately resolve219

large DNA fragments (i.e. >50 kilobases) [41]. Though the authors developed PFGE220

with the intention of karyotyping yeast, the method was later adapted to incorporate221

restriction endonucleases, as is the case in other RFLP methods. The combination of222

very high resolution and readily comparable electrophoretic band patterns lead to the223

adoption of PFGE as the ‘gold standard’ typing method for many di�erent bacteria.224

In 1995, the United States Centers for Disease Control and Prevention in conjunction225

with a number of state-level public health laboratories implemented PulseNet, a PFGE-226

based national surveillance programme for E. coli O157:H7, nontyphoidal Salmonella,227

Listeria monocytogenes, and Shigella [42]. The PulseNet protocol was later exported228
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internationally and expanded to other organisms [43].229

In contrast to ribotyping, PFGE exhibits very high resolution between strains, has230

been successfully used to characterize bacterial strains within an outbreak, and yields231

reproducible fingerprints for routine surveillance that can be easily shared between232

labs [42–44].233

As with all gel electrophoresis methods, restriction endonuclease based typing is234

both costly and challenging. PFGE in particular is well known for long turnaround235

times and the need for careful analysis [7, 8].236

1.5 Allele Typing237

1.5.1 Multilocus Enzyme Electrophoresis238

Multilocus Enzyme Electrophoresis (MEE or MLEE) is a molecular typing tech-239

nique which exploits variability in the degree of electrophoretic mobility for a collec-240

tion of hydrophilic intracellular housekeeping enzymes [45]. Non-synonymous muta-241

tions in the underlying gene change the amino acid sequences of the enzymes, and thus242

alter their molecular weight and net electrostatic charge. After being electrophoresed243

on a cold potato starch gel, enzyme mobilities are visualized by adding the relevant244

substrate to each. Coloured products generated by enzymatic catabolism of the sub-245

strates indicates the position of each enzyme. The specific rate of travel for each246

enzyme is its electromorph. Each unique combination of individual electromorphs is247

known as an electromorph type [45].248

MLEEwas first developed in 1966 for studying the population structure ofDrosophila249

pseudoobscura, and separately, the polymorphism of blood enzymes in Homo sapiens [46,250

47]. The method later found exploratory use as a typing system for pathogenic bac-251

teria, pioneered in E. coli by Caugant, Ochman, Achtman, and their respective col-252

leagues [48–50]. When compared to preceding typing methods, MLEE o�ered high253

discrimination between strains. In particular, MLEE was successfully used to dis-254
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cover diversity within serotypes and to characterize population structure in E. coli and255

Helicobacter pylori, amongst other bacterial species [51–53].256

While MLEE was a powerful tool in the past for investing microbial diversity257

and population structure, it inherits the di�culties of any gel electrophoresis-based258

method: it is slow to perform and requires the labour and care of a skilled laboratory259

technician to generate reproducible results. Post-transcriptional modification of tar-260

get enzymes can further complicate interpretation of MLEE data, and is considered261

a source of error [54, 55]. Finally, an electromorph may be degenerate for several262

underlying alleles whose translation products have indistinguishable mobilities [45].263

Together, these factors prevented MLEE from being used in clinical settings or for264

outbreak investigations [56].265

The most important legacy of MLEE was to lay the conceptual groundwork for the266

later nucleotide-based system of multilocus sequence typing, which quickly superseded267

it [8, 57].268

1.5.2 Single Locus Sequence Typing269

Single Locus Sequence Typing involves the analysis of a single highly variable gene270

or gene region within the organism of interest. The locus of interest is amplified by271

PCR before Sanger sequencing [27, 58, 59]. Once the nucleotide sequence has been272

determined, a multiple sequence alignment of all investigated variants of the locus is273

performed, and pairwise distances are calculated [60].274

Two historically important intraspecies single locus sequence typing schemes were275

emm typing of Streptococcus pyogenes, and �a typing of C. jejuni. Each investigates a276

hypervariable region of their namesake gene. Occasionally, single gene schemes, such277

as porA typing for C. jejuni, were used to enhance the resolving power of more recently278

developed multiple locus typing systems (see below) [61].279

On a grander scale, the gene encoding the 16S small ribosomal subunit shared by280
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all prokaryotic life has been used to establish phylogenetic relationships. Originally281

characterized by the banding given by digestion with T1 RNase (see ribotyping above),282

Woese and Fox studied 16S ribosomal RNA to discover Archaea and establish our283

current understanding of the three domain system [62]. Later, researchers used the284

nucleotide sequences of the 16S ribosomal DNA to identify and infer relationships285

amongst bacteria. This type of analysis was facilitated by storage of 16S sequences in286

curated publicly accessible databases [63, 64].287

Single locus sequence typing methods were often able to place organisms into288

epidemiologically or phylogenetically useful groups [58, 60, 61]. Amongst sequence-289

based typing methods, these are arguably the simplest to perform.290

Later multiple locus methods categorically eclipsed their single locus antecedents,291

excepting their occasional use as an additional enhancing locus. These multiple locus292

methods were only incrementally more di�cult, but o�ered a much higher resolution293

alternative. In some cases, it was possible for single hypervariable genes to mutate294

faster than the actual spread of a pathogen. In an outbreak investigation, this could295

distort the apparent number of sources [8].296

1.5.3 Multilocus Sequence Typing297

Multilocus sequence typing (MLST) considers the allelic diversity of a small num-298

ber — typically five to ten — ‘housekeeping’ genes. These housekeeping genes carry299

out functions essential to cell survival, and thus evolve slowly and exhibit universal300

carriage within a species. In MLST, each novel allele is assigned a number correspond-301

ing to the order of its discovery and characterization, i.e. allele 1 of a target gene was302

its first described variant, allele 2 its second, and so on. Alleles were generally deter-303

mined by Sanger sequencing of the target loci [59]. Typically, loci are approximately304

500 bp long regions within the target genes, flanked by highly conserved primer bind-305

ing sites. The definition of each allele is subject to manual curation and submitted to306
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and stored in a centralized database, thereby guaranteeing that a given allele name307

always refers to the same underlying nucleotide sequence, and vice versa [57]. Per-308

haps the largest such database is PubMLST, maintained by the University of Oxford309

(http://pubmlst.org) [65]. Each unique combination of alleles is considered a Sequence310

Type (ST), and related STs may be further grouped into Clonal Complexes (CC).311

Analysis and clustering of MLST results is straightforward; the pairwise Hamming312

distance of allele calls at each target gene, i.e. the number of di�erences between two313

allele profiles, is taken as the phylogenetic distance between two strains [66].314

MLST was published by Maiden et al. in 1998, with a pilot study conducted using315

Neisseria meningitidis. This prototype scheme consisted of six loci ranging in length316

from 433 to 501 bp [57]. This general methodology was later applied to other or-317

ganisms, and there are currently 125 di�erent MLST schemes hosted on PubMLST318

[65]. The core idea of using a small number of housekeeping genes was adapted from319

MLEE. While MLEE attempts to infer the allele from changes in electrophoretic mo-320

bility stemming from changes in peptide charge or length, MLST interrogates the321

underlying nucleotide sequence. The use of housekeeping genes was essential to the322

design of MLST; besides ensuring their presence, and thereby the typability of the323

strain, the slow evolution of these genes made MLST an appropriate tool for studying324

the long term evolution of the population structure of a species on a global scale [57,325

67].326

The principal advantage of MLST is portability. Many earlier methods su�ered327

from poor reproducibility within a laboratory, or lacked a means of sharing data in328

such a way that the assigned type meant the same thing irrespective of time, location,329

or interpretation. MLST holds particular advantage for analysis of highly recombino-330

genic organisms. Because any genetic change will define a new allele, instances of331

both vertically-inherited point mutations and horizontal homologous recombination332

are abstracted as equivalent genetic events. Without this consideration, a recombina-333
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Table 1.1: Reagent costs and turnaround time from pure culture for selected molecular
typing methods.

Method Reagent Cost Turnaround Time Citation

CGF $6.75 5 h [70]
MALDI-TOF $0.50 5.1 m [71]
MLEE €6 Several days [72, 73]
MLST €18–50 9 d [6, 74]
MLVA €8 3 h [6, 75]
PFGE €20 24–30 h [6, 76, 77]
Phage Typing $10 15–18 h [78, 79]
Serotyping $15.30–42.79 2–3 d [80, 81]

tion event can distort apparent distance by instantaneously introducing a large number334

of pairwise nucleotide di�erences relative to a strain’s closest neighbour [68].335

The use of housekeeping genes makes MLST a largely inappropriate choice for336

outbreak or short term epidemiological investigation [6, 8, 69]. STs change too slowly337

to reflect evolution within the short time frame of an outbreak. However, MLST can be338

used to provide evidence that a strain at least belongs to an outbreak, as opposed to a339

coincidental sporadic case, as outbreak members are likely to share a ST [38]. Because340

generation of the allelic profiles is generally performed via Sanger sequencing, MLST341

can be a costly and laborious a�air [6, 8, 59].342

MLST remains popular for genetic analysis of bacterial populations. Since the343

invention of the original MLST schemes, there has been interest in extending the344

MLST concept to greater numbers of genes in the pursuit of enhanced discriminatory345

power. The advent of inexpensive whole genome sequencing has driven development346

of MLST-like systems which attempt to target all genes which exhibit universal carriage347

within a species. Such e�orts are discussed in greater depth in Section 1.6.3.348
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1.6 Genomics and Proteomics349

1.6.1 Matrix-assisted Laser Desorption/Ionization350

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) is a mass351

spectrometry technique which has recently found use for the typing of pathogenic352

microorganisms. In its simplest form, MALDI-TOF works on a sample of raw, unpro-353

cessed bacterial cells, either placed directly on the target plate, or in liquid suspension.354

Some protocols instead use a solution of extracted proteins rather than whole cells [82].355

The biological sample is vapourized by a laser beam and passed through a powerful356

electric field. Analogously to mobilities observed during an agarose gel electrophore-357

sis, small ions arrive at the detector more quickly than large ones. Complex spectra358

are generated, which may be used as characteristic fingerprints of a particular bacterial359

type [8, 82, 83].360

Perhaps MALDI-TOF’s greatest advantage is its extraordinarily fast turnaround361

time from sample to answer. A fingerprint can be generated in minutes using this362

method. In clinical settings or in the midst of an outbreak, where time is of the essence,363

this advantage cannot be overstated. Because very small quantities are required of364

the biological input, MALDI-TOF can avoid selection bias in cases where the act of365

culturing a microbe distorts the apparent diversity of a sample [83]. The method may366

also be used to determine the presence or absence of bacterial toxins and antibiotic367

resistance factors in the sample [84].368

Although MALDI-TOF can very rapidly identify microbial samples in a clinical set-369

ting, its utility is limited for identification below the species level, and lags significantly370

behind contemporary methods with respect to resolution. In E. coli and S. enterica,371

MALDI-TOF has been used to successfully determine serotype. In Pseudomonas putida,372

Streptococcus pyogenes, Streptococcus agalactiae, and other bacterial species, MALDI-TOF373

achieves discriminatory power similar to single locus typing methods, such as 16S or374

gyrB discussed above [84]. Additionally, while the reagent cost per isolate is on the or-375
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der of one dollar, the capital cost of the apparatus is hundreds of thousands of dollars376

[71, 84].377

Today, MALDI-TOF is used primarily for identifying the species and serotype of a378

sample in a clinical setting. It is not widely employed for subtyping below the species379

level.380

1.6.2 Single Nucleotide Polymorphism Typing381

Single nucleotide polymorphism (SNP) typing is the categorization of an organ-382

ism based on the observed nucleotide at specific positions along the chromosome [85].383

SNP typing only investigates relatively rare polymorphisms resulting from vertically-384

inherited mutations, and so nucleotide diversity arising from homologous recombina-385

tion is not generally considered. Due to this, SNP typing is generally only used in386

organisms with low recombination rates. Many SNP typing methods compare subject387

genomes against one or more reference genomes [85, 86].388

Due to its very high discriminatory power, SNP typing is an e�ective means of389

distinguishing between strains with limited genetic or genomic diversity [87]. Because390

SNPs may be assigned definite locations within the genome, SNP typing methods391

permit easy interchange of data between laboratories. In some cases, SNPs are of phe-392

notypic or epidemiologic relevance. In S. aureus and other species, a point mutation393

in the DNA gyrase subunit gyrA gene can impart resistance to ciprofloxacin and other394

quinolone-class antibiotics [88].395

SNP typing relies upon the availability of high-quality reference genomes. In cases396

where these are not available, incomplete draft genomes may be used as a substitute,397

though extra care must be taken to exclude genome sequence regions known to be398

of low quality from the analysis [87]. Homologous recombination events have the399

potential to import a large number of SNPs simultaneously, and may increase the400

apparent distance between closely related strains when that relationship is measured401
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using SNP typing [68]. One approach to limit the e�ect of homologous recombination402

on SNP phylogenies is to ignore cases where multiple SNPs are found within a certain403

distance of one another. For example, SNVPhyl ignores instances of two or more404

SNPs within a sliding window [89].405

SNP typing is widely used for typing of highly clonal organisms, particularly for406

outbreak investigations. Outbreak strains often have too little genetic diversity to be407

resolved by typical molecular surveillance methods such as PFGE. In these scenarios,408

SNP typing may distinguish between strains. Modern SNP typing methods employ409

whole genome sequencing for both SNP discovery and SNP calling [90].410

1.6.3 Genome-scale Multilocus Sequence Typing411

Ribosomal MLST, or rMLST, was an early e�ort to extend the MLST concept412

beyond the original scheme size of approximately seven loci. This derivative method413

of MLST targets 53 ribosomal rps genes. Because these genes are shared by all bacteria,414

rMLST aims to be a universal system for classifying bacterial species [67, 91].415

As whole genome DNA sequencing becomes increasingly accessible, interest has416

grown in two genome-scale extensions of the MLST approach: whole genome MLST417

(wgMLST), which considers every gene available to a target organism; and core418

genome MLST (cgMLST), which restricts itself to only those genes shared by all419

members of the species. As their names imply, these new approaches increase the420

number of target loci from fewer than ten to hundreds or thousands. The key di�er-421

ence between these two systems is how faithfully they adhere to the original MLST422

concepts. A cgMLST scheme may be seen as a direct extension of classical MLST,423

while wgMLST deliberately deviates from that pattern. The inclusion of target genes424

which are not conserved in all members of the species increases discriminatory power,425

but can complicate interpretation and analysis. One example of these challenges is426

the case of a typing locus that appears to be absent. It can be di�cult to determine427
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whether that locus does not appear in sequencing data because it is absent from the or-428

ganism’s genome, or it was merely lost in one of the many gaps found in draft genome429

sequences.430

Prototype cgMLST schemes have been developed for several species. An inter-431

national consortium led by Institut Pasteur developed a wgMLST system targeting432

L. monocytogenes for population biology and public health surveillance purposes [92].433

Cody, Maiden, and colleagues at Oxford University have developed low-stringency434

cgMLST and wgMLST schemes that jointly target C. jejuni and C. coli [93, 94]. De-435

velopment of robust cgMLST schemes that preserve the principles of classical MLST436

is an area of active research. Current challenges in cgMLST design concern stable437

definitions of the core genome and the loss of allele data due to the limitations of438

genome sequencing technology.439

1.7 Bacterial Genomics440

One of the key fields of study in modern biology is that of the genome. The genome441

is the collection of all genetically encoded information within a single organism. Every442

organism is the expression of its genome.443

All of the above-described typing methods in some way exploit or reveal some444

information about the target bacterial genome. An early example of this is the use of445

16S ribosomal DNA to infer phylogenetic relationships between clades of prokaryotes,446

which helped develop a tree of life for bacteria and archaea [62].447

Concrete observations of phenotype led us to genetics, and our aggregate knowl-448

edge of genetics in turn led to genomics. As an increasing number of genomes were449

studied in depth, a new field — pangenomics — has emerged.450
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1.7.1 The Bacterial Pangenome451

The pangenome is a concept that describes the sum of all genes available to a452

particular group of organisms, i.e. one might speak generically of the Campylobacter453

pangenome or specifically C. jejuni pangenome. It is the collective genome of a pop-454

ulation. The pangenome may itself be divided into two categories: a core genome455

composed of all the genes found in every group member, and an accessory or ‘dis-456

pensable’ genome consisting of all the genes that are not. Core genes are definitional457

to a species, and many core genes are essential to survival [95, 96]. The fraction of an458

individual cell’s genome that belongs to the core genome is variable between species.459

A large majority of genes in a C. jejuni or S. agalactiae cell are core genes, whereas the460

genome of an E. coli cell has only a minority of core genes [95, 97, 98].461

Selective pressure is exerted on genome content. The limiting factor on bacterial462

growth rates, and as a consequence their fitness, is the time it takes to replicate the463

chromosome [99]. As additional genes enlargen the chromosome, they slow replica-464

tion. As such, these accessory genes must provide an adaptive advantage to justify465

their carriage.466

One of the oldest methods for generating a bacterial pangenome involves an all-467

versus-all comparison of all genetic elements, typically using blast to determine ho-468

mology [100–102]. While this family of methods will e�ectively cluster homologous469

genes, it su�ers from algorithmic complexity, and can become extraordinarily demand-470

ing on CPU and memory resources as the number of genomes increases [103].471

panseq was written to assess the question of pangenome definition while striving to472

avoid the additional complexity that arises when sequence data are treated as a series473

of genes. panseq first aligns all query sequences usingMUMmer [104]. Having aligned474

the input genomes, they are each divided into k-length fragments. These fragments475

are treated as the basic elements of the pangenome. Fragment homology is compared476

using blast, and the presence or absence of a particular fragment in a given genome477

19



1.8. CAMPYLOBACTER JEJUNI : A TESTBED FOR CGMLST DESIGN

is determined [105].478

While panseq is agnostic to the biological role of the nucleotide sequence, roary479

uses open reading frames as the fundamental units of the pangenome. roary takes480

gene annotations created by annotation software such as prokka as input [106]. Ho-481

mology searches are coordinated by roary using a combination of blastp and cd-hit482

[100, 103, 107]. To resolve a common di�culty encountered in pangenomics, roary483

uses cd-hit to consolidate paralogous genes to a single representative. It then uses484

this information to, upon the users preference, treat gene paralogues as alleles of one485

another, treat them as discrete genes, or to exclude them from the pangenome entirely486

[103, 107].487

As can been seen, there are a variety of approaches to calculating a bacterial488

organism’s pangenome. The most important consideration, besides accuracy, is the489

pragmatic requirement that the algorithm finish in a timely manner. Methods such as490

PanOCT and pgap were valuable tools for working on a small number of genomes,491

but given that modern draft genome datasets often are comprised of hundreds or492

thousands of individuals, tools like panseq or roary are now essential.493

Methods like MLST and its derivatives — particularly cgMLST— have their foun-494

dation in a well described pangenome. Because MLST is predicated on the idea of495

allelic variation in genes shared by all members, inclusion of any accessory genes in496

such a scheme will lead to spurious pairwise distances, and give the appearance of497

poor data quality when actual biological absence is truly to blame.498

1.8 Campylobacter jejuni: A Testbed for cgMLST Design499

The population structure of a bacterial species can determine which WGS-based500

typing approach is most appropriate. SNP typing in theory provides the highest pos-501

sible resolution between strains, but is susceptible to distortion through mass import502

of SNPs during a single recombination event. This makes SNP typing useful primarily503
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in highly clonal organisms with low recombination rates, such as L. monocytogenes or504

Bacillus anthracis. Conversely and as discussed above, cgMLST and other sequence505

typing systems treat vertical mutation and horizontal recombination as equivalent506

events within a locus, and are useful in highly recombinogenic organisms.507

The population structure of C. jejuni makes it a particularly suitable subject for508

cgMLST development and analysis. The species is weakly clonal, has high homolo-509

gous recombination rates, and many strains are naturally competent [108]. This aspect510

of its biology is reflected in the molecular typing systems currently in use for public511

health surveillance of C. jejuni: MLST and �a typing discussed on pages 11 – 14 con-512

sider variation on the level of alleles rather than SNPs, and CGF compares C. jejuni513

strains only on the presence or absence of accessory genes (p. 8). Continuing this evo-514

lution from a single locus sequencing typing system to a multilocus sequence typing515

system, the next step is to develop a core genome MLST scheme.516

C. jejuni is a small, motile Gram-negative bacterium in the class Epsilonproteobac-517

teria [109]. These bacteria are thermophilic, microaerophilic, and pathogenic in hu-518

mans. Symptomatic of C. jejuni infection is watery diarrhœa with low mortality. In rare519

cases, Guillain-Barré Syndrome, a rapid paralysis of the peripheral nervous system,520

may follow infection.521

C. jejuni resides in a wide variety of hosts and environments, including domestic522

and wild birds, cattle, aquatic ecosystems, pigs, and sheep. It is a zoonotic pathogen,523

and the disease caused by infection of a human host is called campylobacteriosis.524

Human infection occurs via the fæcal-oral route, typically following contact with con-525

taminated animals or animal products, particularly chicken and cattle [110, 111].526

Besides being a good subject for cgMLST development in the technical sense,527

improved typing and public health surveillance of C. jejuni may yield real dividends in528

the form of prevention through a better understanding of transmission dynamics and529

source attribution.530
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Campylobacteriosis is the leading cause of bacterial diarrhœal gastroenteritis world-531

wide [110, 112]. It is exceedingly prevalent — the reported annual incidence in Eng-532

land and Wales is 105 / 100,000 people, though rural areas can have much high inci-533

dence rates [110]. In New Zealand, annual incidences as high as 578 / 100,000 in small534

children and 470 / 100,000 in adults have been reported [113]. Morbidity is known to535

be greater in males than females [110, 113]. Campylobacteriosis is believed to be a536

widely underreported disease, and true incidence rates may be significantly higher537

than is recorded [110, 112]. Setting aside human misery, and looking instead from an538

economic perspective, C. jejuni is the cause of an enormous drag on human productiv-539

ity. Campylobacter costs the United Kingdom’s National Health Service £50 million per540

year in direct costs of treatment [114]. Each case of Campylobacter -associated Guillain-541

Barré Syndrome costs hundreds of thousands of dollars to treat [115]. The United542

States spends tens of billions of dollars every year on medical costs and productivity543

lost to absenteeism as a result of Campylobacter infection [116].544

E�ective surveillance is essential to any coherent public health e�ort. A detailed545

view into the population dynamics of a pathogen such as C. jejuni is key to predicting546

its behaviour and preventing its spread. Surveillance e�orts rely on accurate informa-547

tion, and modern programmes use molecular typing data to this end. As the cost of548

whole genome sequencing continues to fall, typing methods which interrogate genome549

sequence data become increasingly viable. As interest grows in typing methodologies550

such as cgMLST, C. jejuni is emerging as the ideal candidate for the development of551

such a scheme due to its recombinogenic population and open genome [95, 117].552

1.9 An Overview of this Thesis553

Core genome multilocus sequence typing schemes have seen active development554

for several di�erent bacterial species, including C. jejuni; however, such schemes are555

in their early days, and are encountering challenges unforeseen from experience with556
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classical MLST. In particular, where classical MLST required complete sequence data557

at a fixed set of prescribed loci, many extant cgMLST schemes have comparatively558

looser requirements. A scheme for Campylobacter spp. published by Cody et al. avoided559

incomplete nucleotide sequence data by using ad hoc subsets of 1,667 loci [93]. A560

related 1,343 locus cgMLST system published by the same research group called for561

a fixed set of loci to be analyzed, though allowing for up to a 5% absence rate for562

their definition of core genes [94]. Allowing incomplete typing data in any of these563

ways prevents the unambiguous assignment of a nomenclature, which was one of the564

principal advantages of classical MLST for public health surveillance programmes.565

This thesis addresses some of the problematic aspects of current cgMLST sys-566

tems. Taken together, the research presented here is a set of rules and remedies for567

developing robust cgMLST schemes.568

The first objective of this thesis is to design a prototype cgMLST scheme. Due to its569

recombination-prone genome, frequency of analysis by classical MLST, and multiple570

competing cgMLST against which to compare, C. jejuni is an ideal model organism571

for cgMLST development. To create a robust cgMLST scheme for C. jejuni that572

minimizes systemic biases, the scheme will be defined with as much genomic and573

provenantial diversity as possible. The scheme will also only be defined for C. jejuni.574

Although it is included in other schemes, C. coli will be excluded from this analysis, as575

will other Campylobacter species [93, 94]. By excluding other non-C. jejuni Campylobacter576

species, a more stable cgMLST scheme can be created. This allows the inclusion of577

the full core genome of C. jejuni and does not limit the scheme to the Campylobacter578

core genome, which is intersect of the core genomes of each of its component species.579

Having defined a cgMLST scheme, it is important to assess its performance along580

two key criteria: the number of missing or untypable loci, and discriminatory power.581

These are used together to test the e�ciency of locus inclusion in the scheme. E�-582

ciency is important in cgMLST design as every locus that is included increases dis-583
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criminatory power for the scheme, it also raises the probability of an error and thus584

di�culty of unambiguous assignment to a nomenclature system.585

Though the research in this thesis proposes methods to mitigate the risks of miss-586

ing data presented by the inclusion of each locus, having missing loci is inevitable587

given the large numbers of draft genome sequences involved. If missing data cannot588

be prevented in these cases, the research here suggests that it may be reversed. A589

combination of three sources of data tangent to the missing allele call may be used to590

predict the identity of the missing locus: the allele possessed by the subject genome’s591

closest relative, the relative abundances of alleles in the population, and matching any592

partially recovered sequence data to known alleles.593

By mitigating the problems stemming from data loss, a stable and unambiguous594

nomenclature becomes a possibility. A robust nomenclature system allows cgMLST595

to maximize the key benefits of genome-scale MLST while retaining the key benefits of596

classical MLST: portability between laboratories and the ability to monitor evolution597

over time.598
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Chapter 2599

Systematic Design of Core Genome600

Multilocus Sequence Typing Schemes601

2.1 Introduction602

E�ective public health control of C. jejuni relies upon the ability to infer phyloge-603

netic relationships between strains through the use of various molecular typing sys-604

tems. Multilocus sequence typing (MLST) has been one of the most common such605

typing methods employed by public health surveillance programmes targeting C. je-606

juni. MLST considers the allelic profile of internal gene fragments of seven conserved607

housekeeping genes. These genes belong to the C. jejuni core genome, and are thus608

known to be present in all members of the species [118]. The nucleotide sequence609

of each MLST locus is determined and an allele designation is assigned [57]. The610

Hamming distance of MLST calls may be used to compare strains on a pairwise ba-611

sis. Modern advances in DNA sequencing technology have made it feasible to use612

much larger portions of the genome when designing a molecular typing scheme such613

as MLST. Core genome MLST (cgMLST) is a modern extension of the MLST con-614

cept from seven genes to hundreds or thousands in an attempt to exploit as much of615

the core genome as possible. Increasing the number of genes in this way dramatically616

increases the capacity of MLST-like systems to distinguish between similar microbial617

strains [67].618

The high resolution of cgMLST when compared to previous systems, such as619

the classical seven gene MLST scheme, is important in resolving subtle di�erences620
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between highly similar strains, key to tasks including microbial source tracking, routine621

surveillance, and outbreak detection. Developing a cgMLST scheme is a non-trivial622

task, and care must be taken when selecting both the genomes and genes used to623

define the system. Because MLST profiles are not defined when loci are absent, it624

is important to be accurate but conservative when determining inclusion/exclusion625

criteria. Using a set of genes composing the core genome which are known to be626

present in all individuals of a species allows a cgMLST scheme to remain usable627

between projects and across time.628

2.2 Methods629

2.2.1 Dataset De�nition & Assembly630

All available C. jejuni strains as of 2016-11-23 (n = 7,126) were downloaded from631

the Sequence Read Archive (SRA) and the European Nucleotide Archive (ENA) using632

fastq-dump, and the resultant files were split into their forward and reverse FASTQ633

components [119]. Once downloaded, all genomes were assembled using the INNUca634

short read assembly pipeline, structured on SPAdes 3.9.0 [120, 121]. As a component635

of the INNUca pipeline, pilon ‘polished’ the assemblies, improving assembly quality636

by fixing mis-assembled sequence and filling gaps in sequence data [122]. Kraken637

and its MiniKraken database was used to identify non-C. jejuni sequence data, and638

remove it from assemblies [123]. Assemblies that were greater than 2.0 Mbp or less639

than 1.4 Mbp pairs were removed from further analysis (Figure 2.1).640

2.2.2 Annotation & Pangenome Description641

Open reading frame prediction and gene annotations were performed using prokka642

1.12 [106]. These annotated genes were provided to roary 3.7.1 to calculate a pangenome643

for C. jejuni [103]. The core genome here is defined as the set comprising those genes644

which were found to be present in at least 99.9% of the 5,693 strains that survived645
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2.2. METHODS

Figure 2.1: Flowchart describing downloading 7,126 genomes from the Sequence Read
Archive, developing a 697 locus cgMLST scheme, and extracting high quality core
genome profile sets of 5,693 genomes, and a set 5,257 genomes with full typability.

quality and size filtering.646

2.2.3 Core Genome Multilocus Sequence Typing Scheme647

A representative sequence of each gene identified by roarywas taken from ERR083867,648

and named ’allele 1’ for each locus. Using the Microbial In Silico Typer (MIST), these649
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representatives were queried against all other assemblies in the data set [124]. Each650

time a genome in the set of 5,693 genomes that passed quality filtering possessed a651

previously unobserved allele, this new allele was added to the multifasta of allele def-652

initions for that gene, and assigned an allele number designation. When tabulating653

the allele calls, ‘0’ represents cases where the query gene could not be found within654

the subject, and ‘-1’ was used to indicate the presence of a sequencing truncation, i.e.,655

cases where the query was partially found at the end of a contiguous sequence of DNA,656

or “contig”. The processes of assigning allele numbers to novel alleles and tabulating657

MIST’s output data were assisted by two custom Python scripts: update_definitions.py658

and json2csv.py. Unique cgMLST profiles were extracted using awk [125]. These659

scripts are available online at:660

https://github.com/dorbarker/thesis_supporting_scripts.661

The complete workflow from downloading the initial genomes through to defining662

the cgMLST scheme is depicted in Figure 2.1.663

2.3 Results664

From the starting 7,126 C. jejuni draft genomes, a total of 5,693 genomes were of665

su�cient quality to not be excluded in Section 2.2.1 and were included in the analysis666

(Figure 2.2). This became the final set on which subsequent analyses were performed.667

Although creating this set involved removing poor-quality genomes and genes, it still668

had low levels of absent and truncated loci. Within this 5,693 strain cgMLST profiles,669

a subset of 5,257 genomes were identified which contained no instances of truncated670

or absent loci (Figure 2.3). To produce a dataset free of untypable loci by discarding671

loci from the scheme rather than genomes, approximately half of all loci would need672

to be eliminated (Figure 2.4).673

A total of 697 loci were ultimately determined to belong to the C. jejuni core674

genome. One locus identified by roary as a core gene, ‘group_6337’, was manually675
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2.4. DISCUSSION & CONCLUSIONS

Figure 2.2: A histogram showing the number of untypable cgMLST loci in 5,693
C. jejuni draft genomes. The majority (92%) are fully typable at all 697 loci.

removed from the core definition as only partial sequence data could be recovered for676

703 genomes.677

2.4 Discussion & Conclusions678

Developing a robust cgMLST scheme is an important goal for contemporary pub-679

lic health surveillance programs targeting pathogenic microbes. The gene-by-gene680

approach to microbial genomic epidemiology is highly appropriate to recombinogenic681

organisms such as C. jejuni [117]. The additional discriminatory power relative to clas-682

sical MLST a�orded by cgMLST allows investigators to gain a detailed look at the683

relationships amongst strains.684

The cgMLST scheme described here is more conservative in its design than its685

peer schemes, such as those described by Cody, et al. [93, 94]. These combined686

C. jejuni and C. coli cgMLST schemes take di�ering approaches to the problem of687
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Figure 2.3: The proportion of 5,693 genomes which must be excluded from the analysis
to produce 697 fully typable cgMLST loci.

missing data. The earlier scheme begins with a larger set of 1,667 potential loci and688

then uses an ad hoc subset of these comprising those loci which are common to the689

particular strains under investigation [93]. The later scheme uses a lower threshold690

for core inclusion, 95% presence, and missing loci were considered to be a match to691

all other alleles for the purpose of pairwise distance calculations [94]. By doing so,692

these schemes deviate from the original MLST methodology. In turn, this complicates693

interpretation and portability of results.694

This 697 core locus scheme for C. jejuni is a useful testbed for cgMLST develop-695

ment. By minimizing the e�ect of missing data, it allows for a less biased study of696

discriminatory power and population partitioning. As will be described in Chapter 3,697
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Figure 2.4: The proportion of 697 cgMLST loci which must be excluded from the
analysis to produce 5,693 genomes with no missing data.

the number of loci included in a scheme has a direct relationship with both the number698

of missing loci and the overall discriminatory power of that scheme.699
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Chapter 3700

A Subset of cgMLST Genes Can701

Recapitulate the Population Structure702

of the Complete Core Genome703

3.1 Introduction704

A firm knowledge of population structure is of particular interest to public health705

investigators when studying pathogenic bacteria. An accurate, high-resolution descrip-706

tion of an organism’s population structure aids in understanding the transmission707

dynamics, source attribution, and epidemiology of an organism. Currently, such un-708

derstanding is generally achieved through the application of molecular methods dis-709

cussed in Chapter 1.2, particularly those which determine diversity on the basis of710

the genome sequence. Modern whole genome sequencing (WGS) technologies allow711

rapid and inexpensive characterization of nearly the complete nucleotide sequence of712

a given bacterial isolate [126]. The wealth of data already generated and data soon to713

come create new opportunities for analysing the population structures of a range of714

bacteria species at a level of detail greater than was previously possible.715

Historically, multilocus sequence typing (MLST) was a popular molecular method716

for C. jejuni research [67, 118]. The C. jejuni scheme assessed the allelic diversity717

of seven core genes. A major advantage of the MLST approach is that the allele718

definitions are readily portable between laboratories. Additionally, each unique allele719

profile serves as a Sequence Type (ST). An ST must have allele typing data for all loci720

in the scheme. STs are undefined for profiles with missing or truncated loci [57]. To721
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3.2. INTRODUCTION

achieve this portability for STs, having full-length high-quality sequences for all seven722

target loci is a stringent requirement. Allele collections and ST definitions required723

manual curation to ensure quality and portability [57, 65].724

Combining modern high-throughput WGS techniques and a modern understand-725

ing of the bacterial pangenome with the MLST concept leads naturally to the notion726

of a core genome MLST, or cgMLST scheme, in which most or all of the core genome727

is used for generating an allele profile [92–94]. However, due to the inherent incom-728

pleteness of draft genome assemblies, it may not be possible to recover the full length729

of all cgMLST loci from WGS data for every isolate. These di�culties arise when a730

target locus either extends beyond the end of a contig and is truncated, or falls wholly731

between two contigs and is missing entirely. In these scenarios, the allele present at732

the a�ected locus is not directly recoverable without, at minimum, resequencing the733

isolate.734

The two most important attributes of any modern high-throughput typing system735

in public health use are that it reliably produces stable types, and that those types736

be su�ciently discriminatory that very similar strains can be distinguished from one737

another. These attributes are oppositional. As the number of target loci increase, there738

are more points of comparison, and thus more discriminatory power available to the739

scheme. However, each additional locus also represents an opportunity for errors to740

arise.741

Given my hypotheses that, a) the observed number of truncated and missing loci742

scales linearly with the number of loci in the cgMLST scheme, and b) there exists743

a diminishing marginal utility for the number of target loci included in a cgMLST744

scheme with respect to discriminatory power, I attempt in this study to determine an745

optimum number of target genes for a robust cgMLST scheme for C. jejuni which746

balances discriminatory power with typability.747
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3.2 Methods748

3.2.1 Datasets749

The dataset comprised 5,693 C. jejuni draft genome assemblies, as described in750

Chapter 2. The assemblies were constructed from raw sequence reads collected from751

SRA. Sequence assembly and quality control was performed using INNUca [120].752

Using the Microbial In Silico Typer (MIST), genome assemblies passing quality control753

had allele calls generated for 697 cgMLST loci [124].754

A ‘pristine’ dataset of 5,257 genomes was created from the original dataset. The755

pristine dataset was defined as the proper subset of genomes from the original dataset756

in which no cgMLST loci were truncated or missing. All genomes in the pristine data757

must have assignable full length alleles for all loci. A single locus which had contig758

truncations in the majority of genomes was removed from the cgMLST locus set to759

improve the number of genomes recovered.760

3.2.2 Characterization of Missing Data761

Truncated and missing data were identified during allele calling. When a MIST-762

directed blastn alignment of a query cgMLST locus to a subject genome had an763

expect value of at most 10, the query sequence was not found in its entirety, and the764

partial query sequence found found at the end of a contig, it was considered to be an765

instance of a contig truncation. A locus for which no alignment could be found was766

considered to be missing from the assembly.767

For each gene in the 5,693 genome dataset, the number of genomes that were768

truncated or missing that position was empirically quantified. Because measuring the769

distribution of missing data in all k-sized permutations of an n-sized set of core genes770

would run in factorial time, it is necessary to instead estimate the distribution through771

random sampling. To estimate the prevalence of each type of missing data for a given772

sample size, genes were randomly selected using the same algorithm and seeds when773
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sampling from the pristine set. This ensures that the same genes will be drawn when774

comparing rates of absent and truncated loci as when measuring the discriminatory775

power of those genes.776

3.2.3 Monte Carlo Sampling of Gene Subsets777

To assess the performance of various subset sizes of the 697 cgMLST genes, a778

Monte Carlo sampling approach was used to estimate the clustering of n genes. Genes779

were drawn from the 5,257 genome pristine cgMLST typing data. Each n-gene sub-780

set functions as its own cgMLST scheme. The Monte Carlo simulation was imple-781

mented in the R statistical programming language, version 3.3.1 [127]. Pairwise allelic782

Hamming distances between genomes were calculated with the assistance of R’s ape783

package [66, 128].784

For each gene subset size, 10,000 sampling replicates were performed. Each repli-785

cate selected n genes such that there was no replacement within a replicate. To guar-786

antee reproducibility, for replicate number i, the value i was used as the seed for787

pseudo-randomly selecting genes for the subset. The sampling algorithm also ensured788

that for the same i, the selected n genes would be a proper subset of any larger value789

of n. For example, if i = 2 and n = 3, we may select genes [X, K, C]. When instead i = 2790

and n = 4, we would then select genes [X, K, C, D].791

3.2.4 Cluster Comparison792

To compare the gene subsets against the full cgMLST scheme, the cgMLST793

scheme was clustered using single-linkage clustering at all possible thresholds. This794

is to say that these reference clusters were defined for each distance d such that no795

member of a given cluster was less than d pairwise allele di�erences from the most796

closely related member of any other cluster.797

Single-linkage hierarchical clusters were also generated for each subset replicate.798

Reference thresholds are given as the minimum number of pairwise allele di�erences799
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between the two strains before they agglomerate into the same cluster. Due to the800

transitive property of single-linkage clustering, it is possible that two strains in the801

same cluster may have a pairwise distance greater than that of the clustering threshold.802

However, this produces clusters that are unambiguously distinct from one another.803

Cluster agreement between gene subsets and the various reference thresholds was804

calculated using the Adjusted Wallace Coe�cient (AWC) [129]. The clusters formed805

by each subset replicate were compared against the reference thresholds in a pairwise806

manner.807

3.2.5 Locus Partitioning Redundancy808

The genome partitioning created by each locus were compared against those of809

every other locus in order to measure their congruence and redundancy. This was810

accomplished using the Adjusted Wallace Coe�cient [129].811

Loci were clustered by their mutual AWC. For example, if two genes A B had812

AWA→B and AWB→A that were both greater than the threshold, they would be placed in813

the same co-partitioning group. These co-partitioning groups represented collections814

of genes which partitioned the genome dataset at least as similarly as a given AWC815

threshold.816

3.3 Results817

3.3.1 Characterization of Missing Data818

The number of missing and truncated loci for a given selection of cgMLST loci819

has a direct linear relationship to the number of genes selected.820

Truncations made up the majority of untypable loci (Table 3.1). Across all subsets821

and all replicates, the mean and median proportion of missing data stemming from se-822

quencing truncations were 88.9% and 89.6%, respectively. The mean increased slightly823

with sample size, growing from 85.9% at 7 genes to 89.6% at 650 genes. The median824
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Table 3.1: Proportion of missing data caused by sequencing truncations for di�erent
numbers of selected genes drawn from 697 cgMLST genes over 10,000 replicates.

Genes Mean Median Std. Dev.

7 0.859 1.000 0.216
21 0.869 0.909 0.132
50 0.880 0.900 0.085
100 0.887 0.898 0.057
150 0.890 0.897 0.044

200 0.892 0.897 0.037
250 0.893 0.897 0.031
300 0.894 0.896 0.027
348 0.894 0.896 0.023
400 0.895 0.896 0.020

450 0.895 0.896 0.017
500 0.895 0.895 0.015
550 0.895 0.895 0.012
600 0.895 0.895 0.009
650 0.896 0.895 0.006

All 0.889 0.896 0.074

‘

value exhibited the opposite e�ect, with 100% of missing data at 7 genes being due to825

truncations, shrinking to 89.5% at 650 genes (Table 3.2). At locus subset sizes greater826

than 100, all subsets were a�ected by missing data (Table 3.3).827

3.3.2 Pristine Dataset828

Following removal of all genomes containing missing data, the pristine dataset was829

found to contain 5,257 genomes and 697 genes.830

3.3.3 Monte Carlo Simulation of Gene Subsets831

For each subset size, and for each replicate, the single-linkage clusters were com-832

pared to those of every reference cgMLST threshold. The AWC of subset clusters833

versus reference thresholds quickly approach 1.0, the point at any two strains clustered834

together by the subset clusters certainly group together at the relevant reference thresh-835
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Table 3.2: Summary statistics for the observed number of truncated, wholly absent,
and total missing data for 10,000 of randomly sampled 697 genes from 5,693 genomes.

Truncated Absent Total

Genes Median Mean Max. Median Mean Max. Median Mean Max.

7 6.0 11.1 181.0 0.0 1.3 26.0 7.0 12.4 181.0
21 24.0 33.2 235.0 3.0 3.9 29.0 28.0 37.0 237.0
50 67.0 78.6 331.0 8.0 9.2 39.0 77.0 87.8 345.0
100 146.0 157.6 408.0 17.0 18.3 54.0 164.0 175.9 431.0
150 226.0 236.2 530.0 26.0 27.5 64.0 254.0 263.7 562.0

200 307.0 315.2 590.0 35.0 36.6 73.0 344.0 351.8 627.0
250 389.0 393.7 675.0 45.0 45.7 87.0 435.0 439.5 717.0
300 470.0 472.2 737.0 54.0 54.9 93.0 525.0 527.1 810.0
348 548.0 548.3 798.0 64.0 63.8 102.0 613.0 612.0 860.0
400 633.0 630.7 871.0 74.0 73.3 108.0 707.0 704.1 935.0

450 715.0 709.2 933.0 83.0 82.5 114.0 797.0 791.7 1005.0
500 796.0 788.2 978.0 93.0 91.8 120.0 887.0 880.0 1077.0
550 876.0 867.2 1016.0 103.0 101.0 124.0 977.0 968.2 1124.0
600 958.0 946.8 1059.0 112.0 110.2 127.0 1068.0 1057.0 1169.0
650 1038.0 1025.7 1091.0 121.0 119.3 128.0 1156.0 1145.0 1214.0

old, as the reference threshold is relaxed. The 5th percentile of the AWC distribution836

of the replicates for each subset size were examined. This shows that the in 95% of837

cases, an MLST-like scheme of that size would produce AWC at least as large versus838

the 697 gene cgMLST scheme (Figure 3.1).839

As a measure of e�ciency for each gene, the threshold at which the 5th percentile840

of each subset size achieved an AWC of 1.0 versus the complete cgMLST scheme.841

Increasing the number of genes in a subset greatly increased the discriminatory power842

when subset sizes were small. At subset sizes of 200 and above, the rate at which gene843

added discriminatory power to the scheme flattened (Figure 3.2).844

3.3.4 Locus Partitioning Redundancy845

Groups of loci which congruently partitioned the dataset were identified when846

their bidirectional AWC exceeded each of the specified range of AWC thresholds (Fig-847
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Table 3.3: The number of replicates out of 10,000 in which no loci were a�ected by
truncated or missing loci and the number of replicates in which all selected loci were
a�ected. No replicates had all loci or no loci a�ected for sample sizes greater than
100 genes.

No Loci A�ected All Loci A�ected

Genes Truncated Absent Total Truncated Absent Total

7 309 5360 190 10 0 198
21 0 1502 0 0 0 1
50 0 90 0 0 0 0
100 0 1 0 0 0 0
150 0 0 0 0 0 0

ure 3.3). The greatest number of co-partitioning groups were found at AWC thresholds848

of 0.61 to 0.62 (Figure 3.4). Both the number of non-singleton linkage groups and the849

mean number of members declined toward a AWC cuto� of 1.0, at which all groups850

are singletons and no gene perfectly replicates the genome partitioning any other.851

3.4 Discussion & Conclusions852

Choosing the number of loci in a cgMLST scheme involves a balance between853

two competing factors: resolution and reliability. Including a greater number of loci854

will improve the ability for a cgMLST scheme to distinguish between two closely-855

related strains, whilst also adding to the risk of failure due to imperfect whole genome856

sequence data. As such, any locus included in a cgMLST scheme must contribute857

enough discriminatory power to justify its inclusion. The increased discriminatory858

power of each additional locus can be measured by quantifying the degree of redun-859

dancy given by bidirectional AWC between the genome partitioning given by the allele860

distribution of a given pair of loci.861

Single-linkage clustering has a long history of use in describing phylogenetic rela-862

tionships between organisms [130]. An advantage of single-linkage clustering is that863

it guarantees that an individual strain will never be more closely related to a member864
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Figure 3.1: (Main) The 5th percentile of Adjusted Wallace Coe�cient scores of sampled
subsets versus the complete cgMLST scheme across all clustering thresholds. (Inset)
A magnification of the main plot showing the region of high subset AWC at stringent
cgMLST thresholds.

of another cluster than to the most closely related member of its own cluster. This865

ensures that clusters are unambiguously distinct from one another.866

This study demonstrates three key findings pertinent to the development of a robust867

cgMLST scheme. The first is that untypable loci are pervasive, even in a dataset868

consisting of high-quality draft genome assemblies. Even when selecting only 7 loci,869
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Figure 3.2: The marginal discriminatory power of genes as gene subset size increases.
Marginal discriminatory power is given as the number of clustering thresholds per
subset gene by which the cgMLST clusters must be relaxed for the subset to achieve
an AWC of 1.0 versus cgMLST.

just 190 sampling replicates out of 10,000 had complete typing data at all loci for all870

5,693 genomes. Scheme sizes of 21 genes and above had no observed replicates with871

all loci completely typable. The total number of untypable loci, both by truncation872

and absence, demonstrated a linear relationship to the number of loci selected. The873

linearity of this relationship stands in contrast to the non-linear relationship between874

number of loci and discriminatory power.875
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Figure 3.3: A directed graph showing pairs of cgMLST locus genes with an bidi-
rectional Adjusted Wallace Coe�cient greater than 0.78, organized into 12 clusters.
Genes linked either directly or by the transitive property are assigned the same colour.
For a pair of genes A and B, the value given on the edge nearest B represents AWA→B.

The second major finding is that in genome assemblies produced by current DNA876

sequencing technologies, contig truncation is by far the more common cause of incom-877

plete sequence data versus the sequence being wholly missing. This can be interpreted878

as strong evidence that the loci selected for inclusion in the cgMLST scheme are879

indeed part of the core genome, and most missing data is due to insu�cient read880

coverage and not due to biological absence.881

The third major finding is the relatively small number of loci required to recapit-882

ulate the complete locus set at a high clustering threshold. Beyond 200 genes, the883

amount of additional discriminatory power per gene diminished dramatically. The884

available evidence suggests that each locus included in a cgMLST-like scheme has885

diminishing marginal utility with respect to discriminatory power. Additionally, col-886

lections of genes exist which have a high bidirectional Adjusted Wallace Coe�cient,887

indicating that these groups of loci partition a diverse genome dataset in a largely888
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Figure 3.4: (Red) The number of groups of genes linked by bidirectional AWC. (Blue)
The mean number of members of linkage groups.

redundant manner. Linkage disequilibrium between the genes used in this cgMLST889

would be a plausible explanation for observed partitioning redundancy.890

Accurate assessment of these factors demands a large and diverse genome set.891

Failure to do so can lead to overly optimistic estimates of core genome size. In a re-892

cent paper, Cody et al. describe a joint cgMLST scheme for C. jejuni and C. coli. A893

much smaller number (n = 2,472) of human clinical isolates isolates from a geographi-894

cally restricted area comprised the scheme development dataset. This scheme defined895

1,343 loci as core genes at a much less stringent threshold of ≥ 95% presence within896

a dataset of only 2,472 genomes, all of which were isolated in the United Kingdom897
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[94]. A larger core genome calculated from a smaller, multi-species but epidemiologi-898

cally homogeneous dataset will necessarily su�er from more missing loci than a more899

conservative set of loci drawn from a larger, epidemiologically diverse single-species900

genome collection. It is likely that a cgMLST scheme defined with the parameters of901

the Cody Campylobacter cgMLST scheme will include loci which are not truly core,902

and instead belong to the accessory genome of the genus.903

The fundamental trade-o� between discriminatory power and reliability of results904

should be in the mind of anyone undertaking the task of designing a robust core905

genome multilocus sequence typing scheme. A greater number of target loci better906

resolves highly similar strains, but will also introduce uncertainty when loci are in-907

evitably rendered unassignable by incomplete sequence data. Further, a diverse but908

single-species genome collection is an essential starting point for designing a cgMLST909

scheme.910
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Chapter 4911

crowBAR: Bayesian Allele Recovery912

for Missing Typing Data913

4.1 Introduction914

Sequence based typing systems such as multilocus sequence typing (MLST) are915

an important component of modern public health epidemiology and surveillance pro-916

grammes. MLST and its derived typing systems consider any modification to the917

nucleotide sequence of a target locus to be a new sequence type. This is equally true918

for a single nucleotide variant arising from mutation, or the mass import of variable919

positions following a homologous recombination event. A consequence of this sys-920

tem is that for a novel allele to be described, loci must have complete sequence data921

available. As such, the loss of even a single base renders the locus untypable for the922

purposes of MLST [57].923

A major problem for current implementations of core genome multilocus sequence924

typing systems is their inherent susceptibility to data loss by sequencing truncation.925

As described in Chapter 3, as the number of loci in a scheme increases, the risk926

of untypable loci increases proportionally. As the size of the dataset expands, data927

loss becomes a certainty. Because most untyped loci are the result of contig trunca-928

tion, partial sequence data are often available. Additionally, we found that di�erent929

cgMLST loci often generated congruent partitions. These facts open the door to the930

possibility of probabilistically inferring untypable locus calls. In many cases, even931

when a core genome locus is entirely missing, evidence may exist by which one may932
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infer the identity of the untyped locus.933

It is possible to take these lines of evidence — partially recovered sequence data,934

syntenic relationships between loci, and allele data from the most closely related935

genome sequence — and use them to inform predictions of the identity of untypable936

cgMLST alleles.937

Here I present crowBAR, a system for probabilistically recovering missing allelic938

typing data lost due to technical error. This system improves upon MLST-like systems939

by overcoming their principal drawback at scale: the necessity for complete data at940

all loci.941

4.2 Methods942

4.2.1 Fragment Matching943

When a locus is untypable due to a sequencing truncation, a partial sequence for944

that locus is often still recoverable. Though the partial match cannot be used for945

positive identification of the missing allele, it can be used to assign probabilities to946

possible identities of the allele. Fragment matching is particularly useful for setting947

that probability to zero.948

When a partial match is returned for a given locus, that match and its reverse com-949

plement are queried against all known alleles for that locus. Alleles not containing950

either form of the query sequence as a substring can be eliminated from subsequent951

consideration for allele recovery. Alleles that do contain the query substring are as-952

signed a probability based upon their relative abundances within the cgMLST dataset953

defined in Chapter 2. Matches are only attempted at the beginning and end of each954

known allele sequence.955
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4.2.2 Allelic Abundance & Novel Allele Probability956

To estimate the probability of a novel allele, we perform a Monte Carlo simulation957

of allele discovery rates. First, we shu�e a list of allele types for the population. Then,958

for each element in the list, we test whether the allele present at that element has so959

far been observed or not. This process is repeated for n iterations, and the proportion960

of times that a new allele is observed at that element is calculated. The mean value961

of the last percentile of observations is taken as the probability of a new allele on the962

next observation.963

Allelic abundance in the population is calculated as a simple fraction of the popu-964

lation size. After fragment matching determines which alleles are possible, the abun-965

dances are adjusted and probabilities are reallocated by adjusting the denominator to966

reflect the removal of any alleles which have been excluded by fragment matching,967

and accounting for the probability of a novel allele.968

4.2.2.1 Linkage Disequilibrium969

Linkage disequilibrium between loci is exploited to probabilistically identify a miss-970

ing or incomplete locus. The position of each locus is determined within a reference971

genome selected by the user. The table of allele calls for all loci is sorted to reflect this972

order. For each locus, we study a triplet comprising the centre gene and its flanking973

pair of genes. A contingency table of the alleles of the centre gene versus the alleles974

of the gene pair of its neighbours is constructed.975

Given a particular allele a and v, an N-length vector of allele calls for a particular976

gene, let v′ be a logical vector of the same length as v such that v′i is given by:977

v
′
i =


1 vi = a

0 otherwise
(4.1)

We construct the logical vectors l, c, and r in the same manner as v′ from the978
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allele vectors of the left, centre, and right genes of the triplet, and using the alleles of979

the query strain’s left flank, the hypothesis allele, and the query strain’s right flank,980

respectively.981

Our flanking allele likelihood for our hypothesis allele, h, is then given by:982

P( f lank|h) =

N

∑
i=0

l∧ c∧ r

N

∑
i=0

l∧ r

(4.2)

4.2.2.2 Closest Neighbour983

Because the closest relative of a strain necessarily shares more alleles with the984

query strain than is average, an additional source of evidence as to the identity of the985

missing locus is that of its nearest neighbour. If multiple strains are equidistant to the986

query strain, all observations are considered equally.987

For each hypothesized allele, h, if h is observed amongst neighbouring strains988

within the dataset, we determine its probability of being present in the query strain989

as:990

D = (1−abundanceh
N)∗dneighbour (4.3)

D′ = (1−dneighbour)∗abundanceh (4.4)

neighbour =


D N > 0

D′ otherwise
(4.5)

where N is the number of observations of h, and dneighbour is the distance between991

the query strain and its closet neighbour expressed as the number of di�ering loci992

divided by the total number of loci.993
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4.2.3 Allele Recovery994

The various likelihoods described above are combined using Bayes’ Theorem to995

return a probability for each hypothesis allele [131]. Each allele is tested as a hypothesis996

independently. The relative abundances of each allele, updated to reflect the outcome997

of fragment matching, are used as the prior probabilities of each hypothesis.998

P(E|H) = neighbour ∗ f lank (4.6)

P(H|E) = P(E|H)P(H)

P(E)
(4.7)

where neighbour and f lank are found using Equations (4.5) and (4.2), and P(E) is999

the sum of the likelihoods given by Equation (4.6) for all hypothesis alleles.1000

4.2.4 Implementation1001

The crowBAR system is implemented in Python 3, and makes use of the NumPy1002

and Pandas libraries to assist with numerical calculations and handling tabular data1003

[132–134].1004

The first steps taken by crowBAR are to ensure that the table of cgMLST calls are1005

placed in the same relative order as they are found in a user-selected reference genome.1006

This is accomplished by using blastn to locate a representative of each gene in the1007

reference and reordering the table by the genome locations of the alignments [100].1008

Next, a Hamming distance matrix is calculated [66]. A pre-calculated matrix may1009

also be provided. From this matrix, the closest relatives of each strain are determined.1010

For any given pairwise comparison, loci in which a truncation or missing locus is1011

present are excluded from that comparison. This distance matrix is used to deter-1012

mine the closest relative of the strain under examination, and the degree of similarity1013

between the two strains.1014
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Allele abundances are determined, and then adjusted to reflect the probability of1015

a previously undescribed allele being observed. If partial sequence data are available1016

for a locus, it can be used to eliminate alleles which are not possible because they1017

do not contain the observed partial sequence. After alleles have been removed from1018

consideration, the relative abundance of alleles is calculated, including the probability1019

of discovering a novel allele.1020

Flank linkage likelihoods are determined as discussed above. In the event that the1021

hypothesis allele is never observed with the query strain’s flanking gene alleles, or if1022

the flanking gene alleles are also untypable, the novel allele probability is returned1023

instead.1024

For each truncated or absent allele, the likelihoods of each line of evidence are1025

calculated as described above. Bayes’ Theorem combines these with the prior for1026

each hypothesis allele — the allele’s abundance adjusted for fragment matching —1027

and returns their probabilities given the evidence.1028

The source code for crowBAR is freely available at:1029

https://github.com/dorbarker/crowbar.git1030

4.2.5 Validation1031

To validate crowBAR and measure its success rate, we designed a second script1032

to manage creation and checking artificially truncated and missing data. A table of1033

allele calls for 697 loci in 5257 C. jejuni genomes with complete allele typing data at1034

all loci was used to generate test data for this experiment. To reorder the calls table,1035

we used C. jejuni NCTC11168, a common reference genome for the species [109]. Loci1036

were randomly truncated or rendered absent with probabilities of 0.3% and 0.035%,1037

respectively. These probabilities were selected to reflect the empirical rates of trunca-1038

tion observed in Chapter 3. Truncations were created such that fragments were never1039

less than 50 bp in length. For reproducibility, the algorithm which controls error intro-1040
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duction proceeds deterministically from a seed value set by the user. Estimating the1041

probability of a novel allele ran for 1,000 Monte Carlo iterations. For each synthetic1042

error, crowBAR was used to recover the underlying allele and returns the most prob-1043

able candidate. Because the errors are synthetic, their true identities are known and1044

can be compared against the recovered allele.1045

4.3 Results1046

Table 4.1: Recovery rates using crowBAR for ten replicates of synthetic errors in
5,257 genomes and 697 genes. Truncations and absent loci were randomly applied at
rates of 0.03% and 0.0035%. False Novel indicates the percentage of errors which were
not successfully recovered that were determined to be a novel allele by crowBAR.

False Success False
Replicate Truncations Absent Successes Novel Rate Novel Rate

1 1122 132 1147 49 91.47 45.79
2 1081 134 1118 44 92.02 45.36
3 1113 133 1139 42 91.41 39.25
4 1117 147 1178 38 93.20 44.19
5 1077 119 1109 33 92.73 37.93

6 1079 135 1141 32 93.99 43.84
7 1105 140 1161 35 93.25 41.67
8 1096 133 1140 34 92.76 38.20
9 1088 123 1118 39 92.32 41.94
10 1127 111 1160 41 93.70 52.56

Overall 11005 1307 11411 387 92.68 42.95

Table 4.1 shows the performance of crowBAR over ten replicates of randomly1047

applied synthetic truncations and missing loci to the pristine dataset described in1048

Chapter 3. Success rate gives the proportion of recovery attempts which successfully1049

induced the identity of the underlying allele. On average, 92.68% of attempts were1050

successful. The worst performing replicate had a success rate of 91.41%. Amongst the1051

cases in which the allelic identity of the locus was not correctly ascertained, 42.9% of1052

these failures resulted from the spurious reporting of a novel allele.1053
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Figure 4.1: The apparent lack of e�ect of increasing the number of Monte Carlo
iterations in estimating the probability that a untypable locus is an undescribed allele.
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I observed no e�ect from varying the number of Monte Carlo iterations during the1054

estimation of novel allele probability. Figure 4.1 shows fully overlapping box plots of1055

the distribution of success rates for 10 replicates each of 10, 35, 100, 350, and 1,0001056

Monte Carlo iterations.1057

The number of genomes available to crowBAR determines the e�ectiveness of the1058

algorithm. Figure 4.2 shows the results of a Monte Carlo simulation of 1,000 iterations1059

sampling a number of genomes in the interval [100, 5,257). The number of genomes,1060

g, appears to be related to the recovery success rate S by S = log(g).1061

4.4 Discussion & Conclusions1062

While calculating allele abundance, crowBAR repeatedly shu�es the list of alleles1063

for that locus. The intent of this process is to provide an unbiased estimate for the1064

probability of the missing locus being a novel allele. By using the mean allele discovery1065

rate of the last percentile of observations, this approximates the probability that the1066

next observation will be a previously unobserved allele. Surprisingly, the number of1067

shu�ing steps does not appear to be important to the accuracy of the results given this1068

experimental dataset. However, several factors necessitate the inclusion of this step.1069

Though we can estimate the total number of alleles for a locus using nonparametric1070

estimators such as the Chao 1 Estimator, even in a closed population, loci are mutable1071

and novel alleles can arise at any time [135]. Thus, the probability of an untyped locus1072

possessing a novel allele must never be zero. As sequencing e�orts continue and allelic1073

diversity is more fully explored, the rate of allele discovery may fall to a point such1074

that without a shu�ing step, the probability of a novel allele may incorrectly be set to1075

zero.1076

In the 7.32% of cases where crowBAR failed to recover the allele, nearly half1077

were falsely predicted to be novel alleles. This raises a quandary. As a control, this1078

particular experiment uses synthetic errors introduced to perfect data. Because the1079
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Figure 4.2: The relationship between the number of genomes analyzed and its e�ect
on the success rate of crowBAR. The blue line indicates the fit line for S = log(g) and
the grey shaded area is the 99% confidence interval for the standard error of the fit.

identity of every locus in every strain is known, no novel alleles exist to be found.1080

However, failure to consider the possibility of a novel allele existing at a untyped1081
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locus in a real world dataset would be irresponsible. The probability of a novel allele1082

is always present. However, the frequency with which missing loci are falsely reported1083

to have a novel allele is an obvious target for future improvements to the algorithm.1084

Traditionally, allelic typing systems like MLST and its derivatives require complete1085

typing data at all loci. Though a system like crowBAR cannot truly replace high1086

quality whole genome sequence data, it can be used to repair errors in typing data1087

and avoid having to discard otherwise-useful genomes. Completing the set of typing1088

calls allows for a nomenclature to be applied to allele profiles, which is of benefit for1089

inter-laboratory communication and long-term monitoring of strains of interest.1090

As a fundamental aspect of its operation, crowBAR implicitly assumes that there is1091

a locus to recover. This experiment uses genes which previous work strongly suggests1092

are core genes. Loci which are truncated or missing are presumed to be so due to1093

technical rather than biological reasons. If crowBAR is given accessory rather than1094

core genes, it will return a spurious result.1095

Core genome multilocus sequence typing systems are becoming increasingly preva-1096

lent in public health surveillance programmes and microbial source tracking. Though1097

modern sequence platforms are impressive, they cannot be relied upon to generate1098

perfect WGS data, even if current cgMLST doctrine demands it. Though crowBAR1099

already recovers missing or trucated loci with greater than 90% accuracy, additional1100

genome data will further improve the accuracy of the statistical model used to recover1101

these loci. Continuing global whole genome sequencing e�orts will be a ready source1102

of this data. Additional finesse to the model may additionally improve results by re-1103

ducing over-estimation of novel allele discovery rates. By building a simple but robust1104

statistical model, crowBAR o�ers an accurate and reproducible system for recovering1105

loci lost or damaged by sequencing errors.1106
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Chapter 51107

Conclusions1108

As genome sequencing is more widely adopted for characterization of bacterial pathogens,1109

cgMLST has increasingly been put forward as the preferred method for the long term1110

tracking of strains of interest. The majority of historical molecular typing methods1111

used to infer relationships between microbial strains were developed before the ad-1112

vent of inexpensive and reliable DNA sequencing technology, and are described in1113

Chapter 1. These methods had been designed to exploit di�erences between strains1114

in their macromolecular structure. Detection of these di�erences typically relied upon1115

susceptibility stressors, electrophoretic mobility, chemical or immunological reactiv-1116

ity, or PCR amplification. All of these are ultimately abstractions of the underlying1117

variation between nucleotide sequences. Classical MLST was developed to type the1118

DNA of conserved core genes directly whilst also controlling for distortions caused by1119

homologous recombination events. With the advent of high-throughput whole genome1120

sequencing, cgMLST emerged as a natural extension of the MLST concept.1121

As the number of draft genome sequences available in public repositories and pri-1122

vate collections continues to increase, so too does the potential utility of a cgMLST1123

scheme. However, as the work presented in Chapter 3 describes, the severity of the1124

problem posed by absent or truncated loci is proportional to the number of loci incor-1125

porated into a given scheme. Classical MLST required that there be complete typing1126

data at all loci before a profile could be assigned a Sequence Type in the nomenclature1127

system. Any prototype cgMLST should therefore attempt to minimize the number of1128
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untypable loci to ensure both the reliability of the data and the assignment of the1129

profile to an unambiguous nomenclature which represents subpopulations of closely1130

related genomes which maintain a nomenclature designation stably over time.1131

The work presented in this thesis tackled this in three ways. Chapter 2 describes1132

a methodology for conservatively designing cgMLST schemes. This hinges upon1133

selecting only genes which have higher rates of carriage than competing cgMLST def-1134

initions, e.g., 99.9% versus 95% presence. In doing so, we can be more confident that1135

all loci included in the scheme are core genes and do not belong to the accessory1136

genome. Also, by eliminating genes with empirically greater than average rates of1137

sequencing truncations, we can improve confidence that all loci will be typable. Chap-1138

ter 3 describes using subsets of this cgMLST scheme to produce allele profiles which1139

are concordant with the superset. This work involved identifying groups of genes1140

which partition the dataset such that they produce high bidirectional Adjusted Wal-1141

lace Coe�cients. By identifying groups of loci that partition the dataset congruently,1142

genes which can be dropped from the scheme while minimally impacting discrimina-1143

tory power can be identified. Doing so can further optimize the cgMLST scheme1144

by reducing the probability of a future sequencing truncation occurring within the1145

scheme’s selected loci. Defining highly conservative subsets which sacrifice the least1146

discriminatory power in exchange for the greatest reduction in missing loci achieves1147

a desirable attribute in a typing system. Finally, in Chapter 4, I present a system for1148

inferring the identities of cgMLST loci rendered untypable due to technical, rather1149

than biological, reasons. This system is implemented as a tool, crowBAR, which1150

draws its predictions from partial sequence matches to known alleles, to allelic pro-1151

files of closely related strains, and from patterns of gene linkage disequilibrium. In1152

combination, these factors are highly e�ective at predicting known alleles. It is also1153

capable of identifying cases where the locus is likely to be a previously unknown allele,1154

although at present crowBAR currently overestimates the likelihood of this scenario.1155
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Improving the estimation of the likelihood of novel alleles is a promising avenue for1156

future work in improving the model.1157

Taken together, this research can be used to develop and deploy robust cgMLST1158

systems. This thesis provides rules and good practices to use these schemes in sup-1159

port of public health surveillance programmes. This work represents an important1160

advancement in cgMLST design as we enter the genomic era.1161

v1162
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