# THERMODYNAMICS OF AQUEOUS SOLUTIONS 

KRISTY M. ERICKSON
B.Sc., University of Lethbridge, 2005

A Thesis<br>Submitted to the School of Graduate Studies of the University of Lethbridge<br>in Partial Fulfillment of the Requirements for the Degree

[MASTER OF SCIENCE]

Department of Chemistry and Biochemistry University of Lethbridge
LETHBRIDGE, ALBERTA, CANADA
© Kristy M. Erickson, 2007

# A STUDY OF THE THERMODYNAMICS OF AQUEOUS RARE EARTH ELEMENT 

 CONTAINING TRIFLATE SALT SYSTEMS
## KRISTY M. ERICKSON

Approved:
(Print Name) (Signature) (Rank) (Highest Date Degree)

Supervisor

Thesis Examination Committee
Member

Thesis Examination Committee
Member

External Examiner

Chair, Thesis Examination Committee
"Thermodynamics is not difficult if you can just keep track of what it is you are talking about."
-William F. Giauque, Nobel Laureate 1949
(as cited in Bent, 1972)


#### Abstract

Relative densities and relative massic heat capacities have been measured for aqueous solutions of triflic acid $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\right)$, sodium triflate $\left(\mathrm{NaCF}_{3} \mathrm{SO}_{3}\right)$, gadolinium triflate $\left(\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)$, dysprosium triflate $\left(\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)$, neodymium triflate $\left(\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)$, erbium triflate $\left(\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)$, ytterbium triflate $\left(\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)$, and  $p=0.1 \mathrm{MPa}$. The resulting densities and massic heat capacities have been used to calculate out apparent molar volume and apparent molar heat capacity data for each of the investigated aqueous systems. The concentration dependencies of the apparent molar volumes and apparent molar heat capacities have been modeled using Pitzer-ion interaction equations. Single ion volumes and heat capacities have been calculated using estimates of the apparent molar properties at infinite dilution obtained from the Pitzer-ion interaction equations. These single ion values have, where possible, been compared with those previously reported in the literature.

Also, relative densities have been measured for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, $\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15,373.15$, and 423.15) K and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$. The resulting densities have been used to calculate apparent molar volumes. The concentration dependences of these properties have also been modeled using Pitzer-ion interaction equations. The apparent molar volumes have been used to calculate single ion volumes which, in turn, have been compared with those previously reported in the literature.

This thesis also attempts to model the temperature, pressure, and concentration dependencies of the reported apparent molar properties of each system investigated using


an equation of state commonly referred to as the density model. Where possible, the results of this model have been compared with those results from models previously reported in the literature.

## Acknowledgements

I would first like to thank my parents, Neil and Wanda, and my brother, Jeremy, for all their love and support over the last 20 years of my education and their continuing support for my work in the future. I would also like to thank my friends Allison, Warren, Scott, Troy, Jennifer, and all the Chemistry and Biochemistry graduate students at the University of Lethbridge. Without their help and support, I never would have made it this far, and with so many wonderful memories.

I am greatly indebted to my supervisor, Dr. Andrew Hakin, who allowed me to work in his lab as an undergraduate and subsequently as a graduate student. Without his guidance and support, I surely never would have accomplished all that I have in these past two years. I am also grateful for his trust in my abilities to represent his research at the International Conference on Chemical Thermodynamics (ICCT 2006) gathering in August, 2006. The experience was truly eye opening and it has been a pleasure working with Andy these last two years.

I would like to thank my committee members, Dr. Marc Roussel and Dr. Kenneth Vos for their continuing support and assistance throughout my graduate degree. I would also like to thank Dr. Lee Wilson (University of Saskatchewan) for acting as my external examiner. Appreciation should also be given to Heinz Fischer and Frank Klassen, who helped me modify and reconstruct the high temperature and pressure vibrating tube densimeter that will be discussed in Chapters 3 and 5. They are life savers. Dr. Rene Boeré and Dr. John Vokey also deserve acknowledgements for their enlightening classes on lanthanide chemistry and statistical design. Furthermore, I would like to thank

Dr. Peter Tremaine (University of Guelph) for his words of encouragement at the ICCT 2006 gathering and his interest in my future research.

I am deeply grateful to the current and past members of the Hakin research group: Jin Lian Liu's assistance with data collection, data analysis, and her continuing concern about my healthy eating got me through these past two years. Stephanie Jones', Sharmeen Zahir's, and Benjamin Ireland's continuing assistance with data collection and analysis also helped me greatly. I am also grateful to Sharmeen and Stephanie for their continuous runs to the Dairy Queen for ice cream and to Ben for his humor and hilarious impressions of cartoon characters. Finally, I am thankful to Michael Lukacs for the help and guidance he gave me as an undergraduate student that allowed me to pursue this graduate degree.

## Table of Contents

Chapter Page
1 INTRODUCTION ..... 1
2 THE THERMODYNAMICS OF AQUEOUS SOLUTIONS ..... 4
2.1 Introduction ..... 4
2.2 Activity Coefficients ..... 6
2.3 Partial and Apparent Molar Properties ..... 8
2.4 Debye-Hückel Theory and Pitzer-ion Interaction ..... 14
2.5 The "Density" Model ..... 19
2.6 Young's Rule. ..... 19
3 EXPERIMENTAL EQUIPMENT. ..... 22
3.1 Introduction ..... 22
3.2 The Picker. ..... 23
3.2.1 The Sodev O2D Vibrating Tube Densimeter. ..... 23
3.2.2 The Picker-flow Microcalorimeter. ..... 28
3.3 The High Temperature and Pressure Vibrating Tube Densimeter. ..... 34
4 THERMOCHEMICAL STUDY OF AQUEOUS SOLUTIONS OF THE RARE EARTH ELEMENT (REE) TRIFLATES AT AMBIENT PRESSURE AND NEAR AMBIENT TEMPERATURES ..... 45
4.1 Introduction ..... 45
4.2 Trifluoromethanesulfonic Acid in Aqueous Solution. ..... 46
4.2.1 Experimental ..... 46
4.2.2 Results and Conclusions. ..... 47
$4.3 \mathrm{NaCF}_{3} \mathrm{SO}_{3}$ in Aqueous Solution ..... 56
4.3.1 Experimental ..... 56
4.3.2 Results and Conclusions. ..... 57
4.4 The REE Triflates in Aqueous Solution. ..... 66
4.4.1 Experimental ..... 66
4.4.2 Results and Conclusions ..... 68
5 A THERMOCHEMICAL STUDY OF AQUEOUS SOLUTIONS OF SELECTED REE TRIFLATES OVER AN EXTENDED SURFACE OF TEMPERATURE AND PRESSURE ..... 94
5.1 Introduction ..... 94
5.2 Trifluoromethanesulfonic Acid in Aqueous Solution. ..... 95
5.3 The REE Triflates in Aqueous Solution. ..... 105
6 THE MODELING OF APPARENT MOLAR PROPERTIES OF AQUEOUS SOLUTIONS OF THE REE TRIFLATES OVER THE TEMPERATURE RANGE $T=(288.15,298.15,313.15,323.15,328.15$, $348.15,373.15$, AND 423.15) K AND PRESSURE RANGE $p=(0.1$, $5.00,10.00$, and 15.00 ) MPa. ..... 126
6.1 Introduction ..... 126
6.2 Modeling of Apparent Molar Volumes and Apparent Molar Heat Capacities of Aqueous Solutions of the REE Triflates Over the Temperature Range $288.15 \leq T /(\mathrm{K}) \leq 328.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$. ..... 126
6.3 Modeling of the Apparent Molar Volumes of Aqueous Solutions of the REE Triflates over the Temperature Range $288.15 \leq T /(\mathrm{K})$ $\leq 423.15 \mathrm{~K}$ and the Pressure Range $0.1 \leq p /(\mathrm{MPa}) \leq 15.00$.134

## List of Tables

Table ..... Page
3.1 A comparison of apparent molar volume values at infinite dilution, $V_{2}{ }^{0}$, for $\mathrm{NaCl}_{(\text {(qq) }}$ solutions at $T=(288.15,298.15,313.15$, and 328.15) K and $p=0.1 \mathrm{MPa}$. ..... 27
3.2 A comparison of apparent molar heat capacity values at infinite dilution, $C_{p 2}{ }^{0}$, for $\mathrm{NaCl}_{(\mathrm{aq})}$ solutions at $T=(288.15,298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$ ..... 34
3.3 Comparison of $\rho_{\text {expt }}$ and $V_{2 \phi}$ of $\mathrm{NaBr}_{(\mathrm{aq})}$ determined using the modified vibrating tube densimeter with values that were calculated using Archer's (1991) program for $\mathrm{NaBr}_{(\mathrm{aq})}$. ..... 41
4.1 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15) K and $p=0.1 \mathrm{MPa}$ ..... 53
4.2 Estimates of parameters of parameters to the Pitzer-ion interaction model equations, shown as equations (2.37) and (2.38), for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$. ..... 55
4.3 Estimates of parameters to equations (4.1) to (4.8) that model the temperature dependences of $V_{3 \phi}$ and $C_{p, 3 \phi}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $p=0.1 \mathrm{MPa}$ ..... 56
4.4 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$. ..... 63
4.5 Estimates of parameters to the Pitzer-ion interaction model equations, shown as equations (2.37) and (2.38), for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ ..... 64
4.6 Estimates of parameters to equations (4.9) to (4.14) that model the temperature dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ at $p=0.1 \mathrm{MPa}$. ..... 65
4.7 Standard partial molar volumes and heat capacities for $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}{ }^{-}$(aq) calculated from the apparent molar volumes and heat capacities of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{\text {(aq) }}$ reported in this study and $\mathrm{Na}^{+}{ }_{(\mathrm{aq})}$ values reported by Hovey et al. (1988); compared to those reported by Xiao et al. (2001). ..... 66
4.8 Calculated of relative densities, relative massic heat capacities, apparentmolar volumes, and apparent molar heat capacities of aqueous solutionsof $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$,and 328.15 ) K and $p=0.1 \mathrm{MPa}$.78
4.9 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$ ..... 80
4.10 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15) K and $p=0.1 \mathrm{MPa}$ ..... 82
4.11 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$ ..... 84
4.12 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$ ..... 86
4.13 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$. ..... 88
4.14 Estimates of parameters to the Pitzer-ion interaction model equations, shown as equations (2.37) and (2.38), for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ ..... 90
4.15 A comparison of literature and calculated $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ;\right.$ aq $)$ and $C_{p 2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ values for $\mathrm{R}^{3+}{ }_{(\mathrm{aq})}=\left(\mathrm{Gd}^{3+}, \mathrm{Dy}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Er}^{3+}, \mathrm{Yb}^{3+}\right.$, and $\left.\mathrm{Y}^{3+}\right)$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ ..... 92
5.1 Calculated relative densities and apparent molar volumes of aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ of known concentration at $T=(323.15,348.15$, 373.15 , and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$. ..... 99
5.2 Estimates of the parameters to the Pitzer-ion interaction equation, shown as equation (2.37), for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $T=(323.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00) MPa. ..... 104
5.3 Estimated parameters for equations (5.1) to (5.4) that model the temperature and pressure dependences of $V_{3 \phi}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $T=(288.15,298.15,313.15,323.15,328.15$, $348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(0.1,5.00,10.00$, and 15.00) MPa ..... 104
5.4 The relative densities and apparent molar volumes of aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=(323.15$, $348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$. ..... 108
5.5 The relative densities and apparent molar volumes of aqueous solutions of $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=(323.15$, 348.15 , and 373.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$ ..... 114
5.6 The relative densities and apparent molar volumes of aqueous solutions of $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=(323.15$, 348.15 , and 373.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$ ..... 119
5.7 Estimation and comparison of parameters to the Pitzer-ion interaction model equation, shown as equation (2.37), for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$ ..... 124
5.8 Estimation and comparison of parameters to the Pitzer-ion interaction model equation, shown as equation (2.37), for aqueous solutions of $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p=(5.00$, 10.00 , and 15.00 ) MPa ..... 124
5.9 Estimation and comparison of parameters to the Pitzer-ion interaction model equation, shown as equation (2.37), for aqueous solutions of $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p=(5.00$, 10.00 , and 15.00 ) MPa. ..... 125
5.10 A comparison of literature and calculated $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ values for $\mathrm{R}^{3+}{ }_{(\mathrm{aq})}=\left(\mathrm{Gd}^{3+}, \mathrm{Nd}^{3+}\right.$, and $\left.\mathrm{Yb}^{3+}\right)$ at $T \approx(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p \approx(5.00,10.00$, and 15.00$) \mathrm{MPa}$. ..... 125
6.1 Estimated values of the parameters to equations (6.1) through (6.6), that model the temperature dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $p=0.1 \mathrm{MPa}$ ..... 132
6.2 Estimated values of the parameters to equations (6.1) through (6.6), that model the temperature dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for aqueous solutions of $\operatorname{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $p=0.1 \mathrm{MPa}$ ..... 133
6.3 Estimated values for the parameters to equations (6.7) through (6.9), that model the temperature and pressure dependence of $V_{2 \phi}$ values for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ over the temperature range $288.15 \leq T / \mathrm{K} \leq 423.15$ and the pressure range $0.1 \leq p / \mathrm{MPa} \leq 15.00$ ..... 137

## List of Figures

Figure Page
2.1 The determination of the $K_{s p}$ for $A B_{(s)}$ in order to explain the concept of activity coefficients. ..... 7
2.2 A diagram to assist in the explanation of a molar volume ..... 9
2.3 A diagram to assist in the explanation of a partial molar volume. ..... 10
3.1 Schematic of the Sodev O2D vibrating tube densimeter. ..... 25
3.2 A plot of time period of vibration against time for the Sodev O2D vibrating tube densimeter. ..... 26
3.3 Schematic diagram of the Picker-flow microcalorimeter. ..... 29
3.4 A typical output signal of $\Delta w$ against time for the Picker-flow microcalorimeter. ..... 31
3.5 A plot of time period of vibration against time for the high temperature and pressure vibrating tube densimeter ..... 35
3.6 Schematic of the high temperature and pressure vibrating tube densimeter ..... 37
3.7 Deviations in the experimental densities, $\rho_{\text {expt }}$, for $\mathrm{NaBr}_{(\mathrm{aq})}$ (those obtained experimentally using the modified vibrating tube densimeter compared to those calculated using the values reported by Archer ( $\rho_{\text {(archer) }}, 1991$ )). ..... 40
4.1 Comparison of the ionic strength dependence of $V_{3 \phi}-D H L L$ values obtained from equation (2.37) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ with those calculated from the study by Xiao et al. (2001) ..... 49
4.2 Comparison of $V_{3 \phi}$ values (as a function of molality) calculated using equation (2.19) ( $V_{3 d}$ (calc)) with those calculated using equation (2.37) and the fitting parameters to equations (4.1) to (4.4) ( $V_{3 \phi}$ (global)) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ ..... 51
4.3 Comparison of $C_{p, 3 \phi}$ values (as a function of molality) calculated using equation (2.20) ( $C_{p, 3 d}(\mathrm{calc})$ ) with those calculated using equation (2.38) and the fitting parameters to equations (4.5) to (4.8) ( $C_{p, 3 \phi}$ (global)) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ ..... 52
4.4 A comparison of the ionic strength dependence of $V_{2 \phi}$ values calculated from equation (2.19) for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$ with the $V_{2 \phi}$ values reported by Xiao and Tremaine (1997b) ..... 58
4.5 Comparison of $V_{2 \phi}$ values (as a function of molality) calculated using equation (2.19) ( $V_{2 d}($ calc $)$ ) with those calculated using equation (2.37) and the fitting parameters to equations (4.9) to (4.11) ( $V_{2 \phi}($ global $)$ ) for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$. ..... 60
4.6 Comparison of $C_{p, 2 \phi}$ values (as a function of molality) calculated using equation (2.20) ( $C_{p, 2 \text {, }}$ (calc)) with those calculated using equations (2.38) and the fitting parameters to equations (4.12) to (4.14) ( $C_{p, 2 d}$ (global)) for $\mathrm{NaCF}_{3} \mathrm{SO}_{3 \text { (aq) }}$ ..... 61
4.7 Trends in apparent molar volumes, $V_{2 \phi}-$ DHLL, for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at $T=(288.15,198.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ as a function of ionic strength ..... 70
4.8 Trends in apparent molar heat capacities, $C_{p, 2 \phi}-D H L L$, for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at $T=(288.15,198.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ as a function of ionic strength ..... 71
$4.9 \quad V_{2 \phi}-V_{2}^{0}$ against $I^{1 / 2}$ at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$ for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (this study), $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ (Hakin et al., 2004b), $\mathrm{GdCl}_{3}$ (Hakin et al., 2003b), and $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}$ (Hakin et al., 2005) ..... 72
$4.10 \quad C_{p, 2 \phi}-C p_{2}{ }^{0}$ against $I^{1 / 2}$ at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$ for aqueous solutions of: $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (this study), $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ (Hakin et al., 2004b), $\mathrm{GdCl}_{3}$ (Hakin et al., 2003b), and $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}$ (Hakin et al., 2005). ..... 73
4.11 The temperature dependences of $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)-V_{2}{ }^{0}\left(\mathrm{ClO}_{4}{ }^{-}\right)$values for the REE systems ..... 75
4.12 The temperature dependence of $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)-C_{p 2}{ }^{0}\left(\mathrm{ClO}_{4}{ }^{-}\right)$values for the REE systems ..... 76
5.1 The temperature dependences of $V_{3}{ }^{0}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, calculated, using equations (2.19) and (2.37), at each experimental pressure of interest ..... 96
5.2 Comparison of $V_{3 \phi}$ values (as a function of molality) calculated using equation (2.19) ( $V_{3 d}($ calc $)$ ) with those calculated using equations (2.37) and (5.1) to (5.4) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}\left(V_{3 \phi}(\right.$ global $)$ ) over the temperature and pressure surface of interest ..... 97
5.3 Values of $V_{2}{ }^{0}$ for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, calculated from equation (2.37), and plotted as a function of temperature over the pressure surface of interest ..... 106
6.1 Comparison of $V_{2 \phi}$ values (as a function of molality) calculated using equation (4.17) ( $V_{2 d}($ calc $)$ ) with those calculated using equations (2.37) and (6.1) to (6.3) ( $V_{2 \text { d }}$ (global)) for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$. ..... 128
6.2 Comparison of $C_{p, 2 \phi}$ values (as a function of molality) calculated using equation (4.18) ( $C_{p, 2}$ (calc)) with those calculated using equations (2.38) and (6.4) to (6.6) ( $\left.C_{p, 2 \phi}(\mathrm{global})\right)$ for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$. ..... 129
6.3 The apparent molar volumes at infinite dilution, $V_{2}{ }^{0}$, against temperature for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ ..... 130
6.4 The apparent molar heat capacities at infinite dilution, $C_{p 2}{ }^{0}$, against temperature for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ ..... 131
6.5 Comparison of $V_{2 \phi}$ values (as a function of molality) calculated using equation (4.17) ( $\left.V_{2(\text { (calc })}\right)$ with those calculated using equations (2.37) and (6.1) to (6.3) ( $V_{2 \text { d }}$ (global))for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq })}$ ..... 135
6.6 Values of $V_{2}{ }^{0}$ for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ calculated from equation (2.37) as a function of temperature and the pressures of interest ..... 136

## 1) INTRODUCTION

Thermodynamic properties can be used as a means of probing various solute-solvent and solute-solute interactions within a solution. Until recently, such studies were restricted to near ambient conditions because of instrumental limitations. However, with recent technical advances, investigations of thermodynamic properties over extended temperature and pressure surfaces have begun to increase; and the result is an increased understanding of aqueous solutions removed from ambient conditions. In order to obtain the thermodynamic properties necessary to probe solute-solvent and solute-solute interactions, the techniques of densimetry and calorimetry are employed. These densimetric and calorimetric measurements have been conducted on aqueous rare earth element (REE) containing solutions over an extended range of temperatures and pressures.

Chapter 2 discusses the thermodynamics of aqueous solutions. Various thermodynamic properties and their relationships are presented. These properties and relationships may be used to provide an increased understanding of solute-solvent and solute-solute interactions within solutions. Partial and apparent molar properties are discussed in detail, with reference to the volumetric and calorimetric properties of aqueous salt solutions. Chapter 2 also includes a discussion of Young's rule; that has been used in order to estimate thermodynamic properties for aqueous solutions in which more than one solute is present (such as those presented in this thesis for acidified aqueous salt solutions).

Chapter 3 provides a detailed overview of the experimental equipment and techniques used to make the measurements reported in this thesis. These measurement techniques are described for a Picker-flow microcalorimeter ("Picker" system) and a home-designed and purpose-built high temperature and pressure vibrating tube densimeter. Estimations and calculations of experimental uncertainties associated with the measurements on each instrument are also discussed in detail in this chapter.

Chapter 4 introduces the aqueous REE systems, which are the subject of this study. This chapter contains a detailed analysis of volumetric and calorimetric properties for several aqueous REE triflate salts, trifluoromethanesulfonic (triflic) acid, and sodium triflate using the Picker system at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$. These studies compare the calculated volumes and heat capacities of the REE triflates with other such data for REE salts that have been previously studied and presented within the literature. Such comparisons provide a means of looking at the internal consistency of the measurements presented in this study. This chapter also provides an analysis of triflate anion speciation in aqueous solution. This is achieved by comparing the concentration dependences on the apparent molar properties of the investigated REE triflate salts with those previously reported for the REE perchlorate, chloride, and nitrate salt systems.

An extension of the volumetric studies reported in Chapter 4 is provided in Chapter 5. In this chapter a high temperature and pressure vibrating tube densimeter is used to measure the relative densities of aqueous solutions of triflic acid and several REE triflates at $T=(323.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and
15.00) MPa. These volumetric studies are compared with those previously reported in the literature. The comparison is completed in order to probe the internal consistency of the volumetric measurements of the REE triflates over an extended temperature and pressure surface.

Chapter 6 describes the modeling of the volumetric and calorimetric properties calculated in Chapters 4 and 5 using an equation of state commonly referred to as the density model. The results of this model have been compared to other density model results that have been previously reported for the REE triflates.

Chapter 7 provides a concise summary of the new information presented within this thesis. It also presents some possible future directions for research in this fascinating area of thermodynamics.

## 2) THE THERMODYNAMICS OF AQUEOUS SOLUTIONS

### 2.1 Introduction

Investigations of thermodynamic properties of solutions are important because they provide valuable insights into the nature of solute-solvent and solute-solute interactions (Robinson and Stokes, 1965). In solution, the change in the standard state Gibbs energy, $\Delta \bar{G}^{0}$, is a central property that is related to the equilibrium constant, $K$, of a reaction or process (Anderson and Crerar, 1993):

$$
\begin{equation*}
\Delta \bar{G}^{0}=-R \cdot T \cdot \ln K \tag{2.1}
\end{equation*}
$$

where $T$ is the temperature in Kelvin (K), $R$ is the ideal gas constant that has a value of $8.31451 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$, the symbol $\Delta$ represents a change, and the superscript " 0 " represents a standard (fixed) state under specific conditions (the most important fixed conditions being the state and the concentration, or the amount, of substance). The equilibrium constant is perhaps more appropriately known as the activity product (Anderson and Crerar, 1993), where the activity of a species is directly related to a measure of its ability to interact with other species in solution (known as an activity coefficient). Therefore, the change in standard state Gibbs energy can be used to obtain an understanding of solute-solvent and solute-solute interactions that occur within a solution (Robinson and Stokes, 1965).

Measurements of the change in the Gibbs function, $\Delta G$, of a system are limited to studies involving reversible transformations in an electric cell. $\Delta G$ values are calculated from these measurements through the Nernst equation and often cannot be adapted to investigations involving solutions (Klotz and Rosenberg, 1972; Anderson and Crerar,
1993). Therefore, experimental investigations turn to higher derivative thermodynamic properties which are more easily measured. Two such properties are volume, $V$, and isobaric (constant pressure) heat capacity, $C_{p}$. The total differential of the Gibbs function, $d G$, is defined as:

$$
\begin{equation*}
d G=\left(\frac{\partial G}{\partial T}\right)_{p} \cdot d T+\left(\frac{\partial G}{\partial p}\right)_{T} \cdot d p \tag{2.2}
\end{equation*}
$$

where,

$$
\begin{equation*}
\left(\frac{\partial G}{\partial p}\right)_{T}=V \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial G}{\partial T}\right)_{p}=-S \tag{2.4}
\end{equation*}
$$

Therefore, the differential of the Gibbs function is directly related to the volume and entropy, $S$, of a system through minute changes ( $\partial$ ) in temperature, $T$, and pressure, $p$ (Anderson and Crerar, 1993; Klotz and Rosenberg, 1972):

$$
\begin{equation*}
d G=V \cdot d p-S \cdot d T \tag{2.5}
\end{equation*}
$$

Entropy is also a difficult property to measure. In order to deal with this issue, attention is turned to another measurable higher derivative property, $C_{p}$, where:

$$
\begin{equation*}
C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p} \tag{2.6}
\end{equation*}
$$

Therefore, with a temperature dependent description of $C_{p}$ and a pressure dependent description of $V$, the equilibrium constant can be described. Methods by which the volumes and heat capacities of solutions can be precisely measured are described in detail in Chapter 3.

### 2.2 Activity Coefficients

Figure 2.1 illustrates a simple example that introduces the concept of activity coefficients. In both beakers (1) and (2), the temperature and pressure of the solutions are constant and equal (and the solvent is water). In beaker (1), the sparingly soluble salt, $A B_{(s)}$, undergoes a limited amount of dissociation into its ions, $A^{+}{ }_{(a q)}$ and $B_{(a q)}^{-}$such that a saturated solution is formed. To a first approximation, the solubility constant, $K_{s p}$, at equilibrium is:

$$
\begin{equation*}
K_{s p}=\left[A^{+}(a q)\right] \cdot\left[B_{(a q)}^{-}\right] . \tag{2.7}
\end{equation*}
$$

One could initially assume that the same equation could be used to estimate the $K_{s p}$ of the sparingly soluble salt in beaker (2), but this would not be the case. When $C^{+}(a q)$ and ${D^{-}}_{(a q)}$ are present in beaker (2), the solubility of $A B_{(s)}$ increases, relative to that of beaker (1). As the concentration of both $C^{+}{ }_{(a q)}$ and $D_{(a q)}^{-}$is increased in beaker (2), the solubility of $A B_{(s)}$ in beaker (2) increases even more. An explanation of this observation exploits the concept of "ionic atmospheres". In beaker (2), there is, on average, an excess of negatively charged ions, $D_{(a q)}^{-}$, situated around each $A^{+}{ }_{(a q)}$ ion and an excess of positively charged ions, $C_{(a q)}^{+}$, around each ${B_{(a q)}^{-}}^{\text {ion, causing the net forces of ionic attraction }}$ between the ions $A^{+}{ }_{(a q)}$ and $B_{(a q)}^{-}$to decrease. Therefore, the solubility of $A B_{(s)}$ in beaker (2) relative to beaker (1) increases (Harris, 2002). To explain this observation, the concept of activity is introduced. In beaker (2), the activities of the ions $A^{+}{ }_{(a q)}$ or ${B^{-}}_{(a q)}$ have been decreased by the presence of the ions $C^{+}{ }_{(a q)}$ and $D_{(a q)}^{-}$. The activity, $a_{i}$, of each ion, $i$ (either $A^{+}{ }_{(a q)}$ or $B_{(a q)}^{-}$), is defined by the following equation:

$$
\begin{equation*}
a_{i}=[i] \cdot \gamma_{i}, \tag{2.8}
\end{equation*}
$$




(2)


Figure 2.1 The determination of the $K_{s p}$ for $A B_{(s)}$ in order to explain the concept of activity coefficients: beaker (1), a saturated solution of a sparingly soluble electrolyte, $A B_{(s)}$; and beaker (2), a saturated solution containing a sparingly soluble electrolyte, $A B_{(s)}$, and an inert electrolyte which is very soluble and has completely dissociated into its ions, $C^{+}{ }_{(a q)}$ and $D_{(a q)}^{-}$(the dots at the bottom of the beakers represent $A B_{(s)}$ that is not dissolved).
where the activity coefficient, $\gamma_{i}$, is described as a measure of an ion's effectiveness to influence an equilibrium in which it is involved. For beaker (2), equation (2.7) should be written as:

$$
\begin{align*}
K_{s p} & =a_{A^{+}(a q)} \cdot a_{B^{-}(a q)} \\
& =\left[A_{(a q)}^{+}\right] \cdot\left[B_{(a q)}^{-}\right] \cdot \gamma_{A^{+}(a q)} \cdot \gamma_{B^{-}(a q)} . \tag{2.9}
\end{align*}
$$

As the concentration of ions in an aqueous solution lowers, activity coefficients for these ions approach a value of 1.0. However, with increasing concentration, the activity
coefficients decrease from 1.0. Also, as the charge on an ion is increased, its activity coefficient decreases more rapidly with respect to increasing concentration. Therefore, activity coefficients are known to be dependent upon the ionic strength, $I$, of a system, which is a measure of the amount of charged species (or ions) within a solution:

$$
\begin{equation*}
I=\left(\frac{1}{2}\right) \cdot \sum_{i} c_{i} \cdot z_{i}^{2}, \tag{2.10}
\end{equation*}
$$

where $c_{i}$ is the concentration of species $i$ and $z_{i}$ is the corresponding charge. In the example presented in Figure 2.1, the $A B_{(s)}$ salt in beaker (2) is only sparingly soluble; therefore $I$ is directly related to the concentrations of $C^{+}{ }_{(a q)}$ and $D_{(a q)}^{-}$. With increasing ionic strength, the tendency of the $A^{+}{ }_{(a q)}$ and $B_{(a q)}^{-}$ions to come together to form a solid is decreased, as are the activity coefficients of $A^{+}{ }_{(a q)}$ and ${B^{-}}_{(a q)}$. Therefore, the overall solubility of the salt, $A B_{(s)}$, increases. An example of this ionic strength dependence is the Debye-Hückel Limiting Law:

$$
\begin{equation*}
\log \gamma_{ \pm}=-A_{Y} \cdot\left|z_{+} \cdot z_{-}\right| \cdot \sqrt{I}, \tag{2.11}
\end{equation*}
$$

where $\gamma_{ \pm}$is defined as a mean ion activity coefficient, which will be dealt with in more detail, along with the Debye-Hückel Limiting Law, in Section 2.4.

### 2.3 Partial and Apparent Molar Properties

A molar property of a solute, where the solute will be designated by a subscripted " 2 ", is defined as a change in the property, $Y_{2}$, of a solution when 1 mole of a solute is added to a solution. The easiest way to think of this is in terms of the molar volume, $V_{m}$, shown in Figure 2.2, where the volume of the solution increases with respect to the amount of solute added (Anderson and Crerar, 1993). A dissolved solute has its own


Figure 2.2 A diagram to assist in the explanation of a molar volume (this figure is based on the one presented by Anderson and Crerar, 1993).
property, referred to as a partial molar property, $\overline{Y_{2}}$. Consider Figure 2.3, where there is an extremely large tank containing a $1.00 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ solution of a solute with a certain volume, shown at position (1). If 1.00 mole of solute is added to this tank of water, the volume will increase to (2), however, the concentration of the other species of the solution will not change by any detectable amount. Therefore, for a two component system, where one component is the solvent and the other is the solute, the total volume of the system can be represented as the sum of the partial molar volumes of the solvent, $\overline{V_{1}}$, and the solute, $\overline{V_{2}}$ :


Figure 2.3 A diagram to assist in the explanation of a partial molar volume (this figure is based on the one presented by Anderson and Crerar, 1993).

$$
\begin{equation*}
V=n_{1} \cdot \bar{V}_{1}+n_{2} \cdot \bar{V}_{2}, \tag{2.12}
\end{equation*}
$$

where $n_{1}$ and $n_{2}$ are the number of moles of solvent and solute, respectively, in the solution. The molar volume of the solution is defined by:

$$
\begin{equation*}
V_{m}=x_{1} \cdot \bar{V}_{1}+x_{2} \cdot \bar{V}_{2}, \tag{2.13}
\end{equation*}
$$

where $x_{1}$ and $x_{2}$ represent the mole fraction of the solvent and solute, respectively. The partial molar property of a solute is defined as the change in the total property of the system with respect to the change in the number of moles of solute added, with all other variables ( $T, p$, and the amount of solvent) held constant:

$$
\begin{equation*}
\bar{Y}_{2}=\left(\frac{\partial Y}{\partial n_{2}}\right)_{T, p, n_{1}} \tag{2.14}
\end{equation*}
$$

A common thermodynamic term is a partial molar Gibbs energy, $\overline{G_{2}}$, that is based on the activity of the solute in the solution with $T, p$, and the other constituents of the solution being held constant. This value is known as the chemical potential, $\mu_{2}$ :

$$
\begin{equation*}
\bar{G}_{2}=\mu_{2}=\left(\frac{\partial G}{\partial n_{2}}\right)_{T, p, n_{1}}, \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{2}=\mu_{2}^{0}+R \cdot T \cdot \ln a_{2} \tag{2.16}
\end{equation*}
$$

and $\mu_{2}{ }^{0}$ is the chemical potential of the solution in its standard state.
An alternative, widely used property of the solute is the apparent molar property. The apparent molar volume (for example) is the volume that should be attributed to the solute in solution if it is assumed that the solvent contributes the exact same volume it would if it was in its pure state. Under this assumption, the apparent molar volume of the solute ( $V_{2 \phi}$ ) becomes the difference between the total volume (or total molar volume) and the partial molar volume of the pure solvent $\left(\bar{V}_{1}^{0}\right)$ divided by the number of moles (or mole fraction) of solute present:

$$
\begin{align*}
& V_{2 \phi}=\frac{V-n_{1} \cdot \bar{V}_{1}^{0}}{n_{2}}  \tag{2.17}\\
& V_{2 \phi}=\frac{V_{m}-x_{1} \cdot \bar{V}_{1}^{0}}{x_{2}} . \tag{2.18}
\end{align*}
$$

In experimentation, $\bar{V}_{1}^{0}$ is generally considered to be constant over the range of solute concentration at constant temperature and pressure (Klotz and Rosenberg, 1972). Hence,
$V_{2 \phi}$ can be easily calculated using equation (2.17) or (2.18) when the total volume or molar volume, respectively, is obtained.

Equation (2.17) can be modified in order to find the apparent molar volume of a solute using the density of the solution containing the solute and the density of the pure solvent, $\rho_{2}$ and $\rho_{l}$, respectively. Assuming there is 1 kilogram ( kg ) of solvent:

$$
n_{1}=\frac{1}{M_{1}}, \text { therefore } V=\frac{\bar{V}_{1}^{0}}{M_{1}}+m_{2} \cdot V_{2 \phi},
$$

where $M_{l}$ is the molar mass of the solvent. Since:

$$
\rho_{1}=\frac{M_{1}}{\bar{V}_{1}^{0}}
$$

equation (2.17) becomes:

$$
V=\frac{1}{\rho_{1}}+m_{2} \cdot V_{2 \phi},
$$

where $m_{2}$ is the molality of the solute (which is equivalent to $n_{2}$ if 1 kg of solvent is present). The entire mass of the solution will be composed of the mass of the solvent $(1 \mathrm{~kg})$ and the mass of the solute $\left(m_{2} \cdot M_{2}\right)$. Since volume is defined as the mass divided by the density, the equation for $V$ becomes:

$$
\frac{1+m_{2} \cdot M_{2}}{\rho_{2}}=\frac{1}{\rho_{1}}+m_{2} \cdot V_{2 \phi} .
$$

By rearranging this equation and solving for $V_{2 \phi,}$ an equation for the apparent molar volume of the solute is found:

$$
\begin{equation*}
V_{2 \phi}=\frac{\rho_{2}-\rho_{1}}{m_{2} \cdot \rho_{2} \cdot \rho_{1}}+\frac{M_{2}}{\rho_{2}} . \tag{2.19}
\end{equation*}
$$

Since there is also interest in the calculation of heat capacities, an equation for the
apparent molar heat capacity, $C_{p, 2 \phi}$ is also needed. The equation for $C_{p, 2 \phi}$ is similar to equation (2.19):

$$
\begin{equation*}
C_{p, 2 \phi}=M_{2} \cdot c_{p 2}+\frac{c_{p 2}-c_{p 1}}{m_{2}}, \tag{2.20}
\end{equation*}
$$

where $c_{p 2}$ is the massic (specific) heat capacity of the solution and $c_{p 1}$ is the massic heat capacity of the solvent.

Using equations (2.12) and (2.14), the apparent molar property of a solute is related to its partial molar property through equation (2.21):

$$
\begin{equation*}
\bar{Y}_{2}=Y_{2 \phi}+\left(\frac{\partial Y_{2 \phi}}{\partial n_{2}}\right)_{n_{1}} \cdot n_{2} . \tag{2.21}
\end{equation*}
$$

As $n_{2}$ approaches $0,\left(\frac{\partial Y_{2 \phi}}{\partial n_{2}}\right)_{n_{1}}$ also approaches 0 . Therefore, at infinite dilution (a theoretical point at which only 1 mole of solute exists in an extremely large volume of water, and where only solute-solvent interactions are present within the aqueous solution) this apparent molar property, known as $Y_{2}{ }^{0}$, of the solute equals the partial molar property of the solute ( $V_{2}{ }^{0}$ is the standard term used to represent the apparent molar volume at infinite dilution and $C_{p 2}{ }^{0}$ is the standard term used to represent the apparent molar heat capacity at infinite dilution (Anderson and Crerar, 1993; Klotz and Rosenberg, 1972)). This becomes important in order to obtain a value for the partial molar volume or heat capacity of a system (which normally cannot be calculated directly from experimentation) that represents solute-solvent interactions within a solution.

### 2.4 Debye-Hückel Theory and Pitzer-ion Interaction

When considering the formation of an ionic atmosphere, $\gamma_{i}$ becomes an important variable to represent the deviation from equilibrium and hence, the degree of various interactions between ions within a solution. For aqueous electrolytes, the positive and negative ions of the electrolyte cannot be dealt with separately; therefore a mean ion activity coefficient, $\gamma_{ \pm}$, is used to represent the activity of the parent electrolyte solute dissolved within water:

$$
\begin{equation*}
\gamma_{ \pm}=\left(\gamma_{+}^{v_{+}} \cdot \gamma_{-}^{v_{-}}\right)^{\frac{1}{v}}, \tag{2.22}
\end{equation*}
$$

where $v_{+}$and $v_{-}$represent the stoichiometric number of positively and negatively charged species and $v$ is the sum of $\nu_{+}$and $v_{.} \gamma_{+}$and $\gamma_{-}$are the activity coefficients of the positive and negative ions, respectively.

Combining equations (2.1) and (2.16) (Robinson and Stokes, 1965), an equation is obtained that describes the chemical potential of a simple 1:1 electrolyte salt, designated as $A B$ :

$$
\begin{align*}
\mu_{A B} & =\mu_{A B}^{0}+v \cdot R \cdot T \cdot \ln \left(a_{A B}\right) \\
& =\mu_{A B}^{0}+v \cdot R \cdot T \cdot \ln \left([A B] \cdot \gamma_{ \pm(A B)}\right) . \tag{2.23}
\end{align*}
$$

Using equations (2.3), (2.6), and (2.23), the partial molar volume, $\bar{V}_{2}$, and partial molar heat capacity, $\bar{C}_{p 2}$, of a solute can be presented in terms of $\gamma_{ \pm}$:

$$
\begin{align*}
\bar{V}_{2} & =\left(\frac{\partial \mu_{2}}{\partial p}\right)_{T} \\
& =V_{2}^{0}-v \cdot R \cdot T \cdot\left(\frac{\partial \ln \gamma_{ \pm}}{\partial p}\right)_{m, T} \tag{2.24}
\end{align*}
$$

$$
\begin{align*}
\bar{C}_{p_{2}} & =T \cdot\left(\frac{\partial S}{\partial T}\right)_{p} \\
& =C_{p 2}^{0}-v \cdot R \cdot T \cdot\left(T \cdot \frac{\partial^{2} \ln \gamma_{ \pm}}{\partial T^{2}}+2 \cdot \frac{\partial \ln \gamma_{ \pm}}{\partial T}\right)_{m, p} \tag{2.25}
\end{align*}
$$

where the " $m$ " represents a constant composition for the partial derivative.
Debye and Hückel $(1923,1924)$ attempted to derive a way of calculating the mean ionic activity coefficient of an electrolyte in very dilute aqueous solutions (Anderson and Crerar, 1993). The result was that the mean ionic activity coefficient was represented in terms of the unit charge, $z_{i}$, of each ion (represented as $z_{+}$for a positive ion and $z$. for a negative ion) in the solute, the ionic strength, and the average effective diameter, $\stackrel{o}{a}$ (in angstroms), of the solute ions (Robinson and Stokes, 1965; Klotz and Rosenberg, 1972):

$$
\begin{equation*}
\log \gamma_{ \pm}=\frac{-A_{\gamma} \cdot\left|z_{+} \cdot z_{-}\right| \cdot \sqrt{I}}{I+\stackrel{o}{a \cdot B_{\gamma}} \cdot \sqrt{I}} . \tag{2.26}
\end{equation*}
$$

$A_{\gamma}$ and $B_{\gamma}$ are constants based on the charge of an electron, $e$, the dielectric constant of water, $\varepsilon$, Avogadro's number, $N_{a}$, Boltzman's constant, $k, \rho_{l}$, and $T$ :

$$
\begin{align*}
& A_{\gamma}=\sqrt{\frac{2 \cdot \pi \cdot N_{a} \cdot \rho_{1}}{1000}} \cdot \frac{e^{3}}{(k \cdot \varepsilon \cdot T)^{\frac{3}{2}}}  \tag{2.27}\\
& B_{\gamma}=\sqrt{\frac{8 \cdot \pi \cdot N_{a} \cdot \rho_{1}}{1000 \cdot k \cdot \varepsilon \cdot T}} \tag{2.28}
\end{align*}
$$

If $I$ is sufficiently small, equation (2.26) simplifies such that it becomes independent of long-range coulombic interactions between the solute species. This equation is known as the Debye-Hückel Limiting Law (DHLL), as shown in equation (2.11), and indicates that
there is a linear ionic strength dependence on $\gamma_{ \pm} . A_{Y}$ (in equation (2.11)) is a temperature and pressure dependent Debye-Hückel constant and takes on the following forms in the studies of the molar volume (known as $A_{V}$ ) and molar heat capacity (known as $A_{J}$ ), respectively:

$$
\begin{align*}
& A_{V}=2 \cdot R \cdot T \cdot\left(\frac{\partial A_{\gamma}}{\partial p}\right)_{T}  \tag{2.29}\\
& A_{J}=2 \cdot R \cdot T^{2} \cdot\left(\frac{\partial^{2} A_{\gamma}}{\partial T^{2}}\right)_{p} \tag{2.30}
\end{align*}
$$

Values of $A_{V}$ and $A_{J}$ used in this thesis have been reported by Archer (1990) over large temperature and pressure ranges. $A_{\gamma}$ is equal to $3 \cdot A_{\phi}$ (Pitzer, 1971; Stokes in Pytcowicz, 1979), where $A_{\phi}$ is the Debye-Hückel constant for the osmotic coefficient of water (which is a measure of the activity for water) that has also been reported by Archer (1990) over large temperature and pressure ranges.

As a system approaches infinite dilution, the partial and apparent molar properties become equal and $\gamma_{ \pm}$values in equations (2.24) and (2.25) approach unity. Therefore the general DHLL equation for an apparent molar property, $Y_{2 \phi,}$, becomes:

$$
\begin{equation*}
Y_{2 \phi}=Y_{2}^{0}+\frac{v}{2} \cdot A_{Y} \cdot\left|z_{+} \cdot z_{-}\right| \cdot \sqrt{I} \tag{2.31}
\end{equation*}
$$

if the DHLL slopes are accepted in the dilute region.
Pitzer (Pitzer, 1991; Stokes in Pytkowicz, 1979) elaborated on the work of Debye and Hückel by including higher order interaction terms (that represent solute-solute interactions in solution, also referred to as virial expansion coefficients). These terms
account for various interactions independent of $T$ and $p$ and are assumed to be an average of clusters over the entire system.

Since activities are a representation of solute-solvent and solute-solute interactions in solution, it makes sense to discuss Pitzer's work in terms of the Gibbs function. The excess Gibbs function, $G^{E X}$, is a representation of the non-ideal contributions (the contributions associated with solute-solute interactions) in a solution with respect to the Gibbs function:

$$
\begin{equation*}
G=G^{E X}+G^{0}, \tag{2.32}
\end{equation*}
$$

where $G^{0}$ is a representation of the ideal contributions (the contributions associated with solute-solvent interactions) in a solution. Since the solvent is in abundance, the solute-solute interactions are described by the various potentials of force present in the solvent, and not the interactions between individual solute molecules (Pitzer, 1991). $G^{E X}$ has been defined by:

$$
\begin{align*}
\frac{G^{E X}}{R \cdot T}=n_{1} \cdot f(I) & +\frac{I}{n_{w}} \cdot \sum_{i} \cdot \sum_{j} \lambda_{i j} \cdot n_{i} \cdot n_{j} \\
& +\frac{1}{n_{1}^{2}} \cdot \sum_{i} \cdot \sum_{j} \cdot \sum_{k} \mu_{i j k} \cdot n_{i} \cdot n_{j} \cdot n_{k} \tag{2.33}
\end{align*}
$$

where $\lambda_{i j}$ and $\mu_{i j k}$ represent the virial coefficients for short range doublet and triplet interactions for the dissolved electrolyte solute within the solvent, and:

$$
\begin{equation*}
f(I)=\frac{\left[1-\left(1+\alpha \cdot I^{1 / 2}\right) \cdot \exp \left(-\alpha \cdot I^{1 / 2}\right)\right]}{\left(\alpha^{2} \cdot I\right)} \tag{2.34}
\end{equation*}
$$

$\alpha=2.0 \mathrm{~kg}^{1 / 2} \cdot \mathrm{~mol}^{-1 / 2}$ and $f(I)$ is used to define the long-range interaction effects within a solution (Pitzer, 1991; Stokes in Pytkowicz, 1979).

Looking back to the equations for $V$ and $C_{p}$ (equations (2.3) and (2.6)), the volume and isobaric heat capacity, respectively, can be represented in terms of $G^{E X}$ :

$$
\begin{align*}
& V=V_{2}^{0}+\left(\frac{\partial G^{E X}}{\partial p}\right)_{T, m}  \tag{2.35}\\
& C_{p}=C_{p 2}^{0}+\left(\frac{\partial\left(-T^{2} \cdot\left(\frac{\partial\left(G^{E X} / T\right)}{\partial T}\right)_{p, m}\right)}{\partial T}\right)_{p, m} \tag{2.36}
\end{align*}
$$

Using the definition for an apparent molar property (equation (2.17)) and the relationship between an apparent and partial molar property (equation (2.21)), the apparent molar volume and apparent molar heat capacity of a solute can subsequently be modeled as a function of solute molality, $m_{2}$ using equations (2.37) and (2.38), respectively:

$$
\begin{align*}
V_{2 \phi}= & V_{2}^{0}+\frac{v \cdot\left|z_{+} \cdot z_{-}\right| \cdot A_{V} \cdot \ln (1+b \cdot \sqrt{I})}{2 \cdot b} \\
& +2 \cdot\left(v_{+} \cdot v_{-}\right) \cdot R \cdot T \cdot m_{2} \cdot\left(\beta^{(0) V}+2 \cdot \beta^{(1) V} \cdot f(I)\right)+C^{V} \cdot m_{2}  \tag{2.37}\\
C_{p, 2 \phi}= & C_{p 2}^{0}+\frac{v \cdot\left|z_{+} \cdot z_{-}\right| \cdot A_{J} \cdot \ln (1+b \cdot \sqrt{I})}{2 \cdot b} \\
& -2 \cdot\left(v_{+} \cdot v_{-}\right) \cdot R \cdot T^{2} \cdot m_{2} \cdot\left(\beta^{(0) J}+2 \cdot \beta^{(1) J} \cdot f(I)\right)+C^{J} \cdot m_{2} \tag{2.38}
\end{align*}
$$

where $b=1.2 \mathrm{~kg}^{1 / 2} \cdot \mathrm{~mol}^{-1 / 2} \cdot \beta^{(0) V}, \beta^{(1) V}, \beta^{(0) J}$, and $\beta^{(1) J}$ are all fitting parameters related to the second and third virial activity coefficients. $C^{V}$ and $C^{J}$ do not have to be considered as long as the molality of the solute stays below $1.0 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ (Pitzer, 1991). Through least squares multiple regression analyses, the values of $V_{2}{ }^{0}$ and $C_{p 2}{ }^{0}$ can be determined using equations (2.37) and (2.38) (for solutes of interest over temperature and pressure surfaces).

### 2.5 The "Density" Model

Marshall (1970) observed that the natural $\log$ of an equilibrium constant has a linear dependence with respect to the isothermal compressibility coefficient of water, $\beta$, where:

$$
\begin{align*}
\beta & =-\frac{1}{V} \cdot\left(\frac{\partial V}{\partial p}\right)_{T} \\
& =\frac{1}{\rho_{1}} \cdot\left(\frac{\partial \rho_{1}}{\partial p}\right)_{T} \tag{2.39}
\end{align*}
$$

According to equation (2.1), the standard state change in Gibbs energy is related to $K$. Hence, equations (2.35) and (2.36) can be used to find equations for $V_{2}{ }^{0}$ and $C_{p 2}{ }^{0}$ in terms of $\beta$. This method (referred to as the density model) has been exploited by Xiao et al. (1997b), Tremaine et al. (1997), Mesmer et al. (1988), Gates et al. (1982), and Simonson et al. (1994) using a variety of different equations in order to describe solute-solvent interactions within a solution over large surfaces of temperatures and pressures.

The general assumption is that the property of the solute dissolved within a certain solvent will behave in a similar manner as the property of the solvent itself over the temperature and pressure surface. Therefore, the property of the solvent is mapped over the conditions of interest and the resulting equation (referred to as a global fit) is applied to the calculated thermodynamic property of the solute in order to probe the temperature and pressure dependences of the solute's property.

### 2.6 Young's Rule

In the studies presented in this thesis, the salt solutions investigated need to be acidified in order to ensure that the salt remains in a fully dissociated state (to prevent
hydrolysis). Hence, the solutions contain more than one solute. As a result, thermodynamic investigations of these solutions are not that simple when compared to those described above. Since an additional solute is present within the solution (the acid), it must be dealt with in order to investigate the actual dissolved solute of interest.

Young's additivity rule (Young and Smith, 1954) permits the experimental apparent molar property of a multi-solute containing solution to be estimated as the sum of the apparent molar properties of each of the two solutes (referred to as " 2 " and " 3 " in this thesis, where solute " 2 " is the solute of interest):

$$
\begin{equation*}
Y_{\phi, \exp t}=\left(\frac{m_{2}}{m_{2}+m_{3}}\right) \cdot Y_{2 \phi}+\left(\frac{m_{3}}{m_{2}+m_{3}}\right) \cdot Y_{3 \phi}+\delta \tag{2.40}
\end{equation*}
$$

where,

$$
\begin{equation*}
\delta=k_{2,3} \cdot\left(\frac{m_{2} \cdot m_{3}}{m_{2}+m_{3}}\right) \cdot I . \tag{2.41}
\end{equation*}
$$

$Y_{2 \phi}$ is the property value of solute " 2 " if only it were in solution (assuming that this pure solute in solution exists at the same ionic strength as the solution under investigation). $Y_{3 \phi}$ is the property values for solute " 3 ", if only it were in solution. Variables $m_{2}$ and $m_{3}$ represent the corresponding molalities of solutes " 2 " and " 3 ", respectively, while $k_{2,3}$ is a binary interaction term. In the systems studied in this thesis, a common anion exists in solutes " 2 " and " 3 ". Therefore, in solution, it is assumed that the interaction of the positive ion from solute " 2 " with the negative ion from solute " 2 " will be the same as the interaction of the positive ion from solute " 2 " with the negative ion from solute " 3 ". Therefore $k_{2,3}$ becomes negligible, especially when $m_{2}>m_{3}$ (as is the case for the systems investigated in this thesis). From equation (2.40), $Y_{2 \phi}$ values may be calculated (if $m_{2}$ and
$m_{3}$ are known, and $Y_{3 \phi}$ and $Y_{\phi, \text { expt }}$ are measured). These measurement techniques will be explained in detail in Chapters 3, 4, and 5.

## 3) EXPERIMENTAL EQUIPMENT

### 3.1 Introduction

Density and heat capacity measurements are important because they can be used to provide information on bulk solute-solvent and solute-solute interactions within a system. As described in Chapter 2, entropies, which provide information on the order of a system, may be obtained from the integration of the temperature dependences of isobaric heat capacity data. Density measurements can be used to determine the pressure and temperature dependences of a volume of a system. A current push within the field of solution thermodynamics is to make precise density and heat capacity measurements at higher temperatures and pressures. Such measurements can provide thermodynamic information that is necessary to increase the understanding of the nature of solute-solvent and solute-solute interactions under extreme temperature and pressure conditions.

Two instruments were used to make the thermodynamic measurements reported in this thesis. One of these is an instrument that is generally referred to as the "Picker". The Picker consists of a Sodev O2D vibrating tube densimeter connected in series with a Picker-flow microcalorimeter. The instrument measures relative densities and massic heat capacities at ambient pressure ( $p=0.1 \mathrm{MPa}$ ) and temperatures in the range $T=288.15 \mathrm{~K}$ to $T=328.15 \mathrm{~K}$. Such measurements can be used in the manner presented in Chapter 2 to calculate apparent molar volumes and apparent molar heat capacities of both aqueous and non-aqueous solutions. The other instrument featured in this study is a recently modified (within the last year) and purpose-built high temperature and pressure vibrating tube densimeter. This instrument is capable of measuring precise relative
densities for aqueous solutions in a temperature range from ambient to $T=623.15 \mathrm{~K}$ and a pressure range from ambient to $p=15.00 \mathrm{MPa}$.

### 3.2 The Picker

### 3.2.1 The Sodev O2D Vibrating Tube Densimeter

Due to their high sensitivity and precision, vibrating tube densimeters have become the instrument of choice with respect to the measurement of solution densities (Picker et al., 1974). The motion of the vibrating tube within the densimeter resembles that of a harmonic oscillator:

$$
\begin{equation*}
\omega_{u}=\sqrt{\frac{K}{m}} \tag{3.1}
\end{equation*}
$$

where $\omega_{u}$ is the un-damped resonance frequency of a harmonic oscillator, $K$ is the spring constant, and $m$ is the mass of both the vibrating tube and the system it contains.

Variable " $m$ " is the only variable that can cause a change in $\omega_{u}$ since the volume of the tube is constant under constant temperature and pressure conditions. Therefore, a change in $m$ will cause a change in the period of vibration, $\tau$, of the tube, where $\tau$ is defined by:

$$
\begin{equation*}
\tau=\frac{2 \cdot \pi}{\omega_{u}} \tag{3.2}
\end{equation*}
$$

The density $\left(\rho_{2}\right)$ of a system of interest may be determined from the density of water $\left(\rho_{l}\right)$ and the measured periods of vibration of the vibrating tube when it contains either the system of interest $\left(\tau_{2}\right)$ or water $\left(\tau_{1}\right)$ :

$$
\begin{equation*}
\rho_{2}-\rho_{1}=k \cdot\left(\tau_{2}^{2}-\tau_{1}^{2}\right) \tag{3.3}
\end{equation*}
$$

To determine the densimeter constant, $k$, at a particular temperature and pressure of
interest, a calibration experiment is performed. In this calibration, water and air are used as reference systems. The period of oscillation of the vibrating tube is measured when it contains pure water (referred to as $\tau_{1}$ in the calibration) and air (referred to as $\tau_{2}$ in the calibration). The densities of pure water ( $\rho_{l}$ in the calibration; values reported in Kell, 1967) and air ( $\rho_{2}$ in the calibration) are either well known to high precision over the surface of temperatures and pressures of study $(T=(288.15,298.15,313.15$, and 328.15) K and $p=0.1 \mathrm{MPa}$ ) or can easily be calculated. With known values of $\rho_{1}$ and $\rho_{2}$, and measured values of $\tau_{1}$ and $\tau_{2}$, the densimeter constant can be easily calculated by appropriately arranging equation (3.3). Once $k$ has been calculated at the temperature and pressure of interest, the unknown density of a system of interest (now referred to as $\rho_{2}$ ) may be obtained by measuring the time period of oscillation of the tube containing the system of interest, $\tau_{2}$, relative to that of pure water, $\tau_{1}$, using equation (3.3). In order to ensure that any small deviations in the set temperature or pressure of the system are accounted for, an average value of $k$ is determined from two calibration experiments.

A schematic for the Sodev O2D vibrating tube densimeter is shown in Figure 3.1. At the core of the densimeter is a vibrating tube that is positioned within a temperature regulated environment. Temperature is maintained to within several thousandths of a Kelvin with the use of a TechnoEurop closed loop thermostat (a). A U-shaped tube (b) is soldered onto a brass plate (c). A magnetic pickup (d) is used to keep the tube vibrating with the use of a detector drive circuit system that locks to the frequency of the tube and triggers a resonant vibration (Picker et al., 1974; Lukacs, 2003). A Phillips PM 6611 universal counter that averages every 10000 counts is used to measure the time period of oscillation of the tube. These measurements are transferred to a PC for storage via a


Figure 3.1 Schematic of the Sodev O2D vibrating tube densimeter: (a), circulating thermostat bath; (b), vibrating tube; (c), brass plate; (d), magnetic pickup (This schematic is re-drawn from the one presented in Picker et al., 1974).
serial interface. The time periods collected in this manner are used within equation (3.3) to calculate relative densities with an uncertainty estimated to be $\delta \rho= \pm 5 \times 10^{-6} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ (Marriott, 1999).

When performing a measurement, gravity feed is used to transfer the solvent and solution of interest into the vibrating tube densimeter. An output similar to the one shown in Figure 3.2 is obtained. The solvent is allowed to run both before and after (see


Figure 3.2 A plot of time period of vibration against time for the Sodev O2D vibrating tube densimeter: (a) solvent flow before system of interest; (b) system of interest flow; (c) solvent flow after system of interest.
areas labeled as (a) and (c) in Figure 3.2) the solution of interest, the area labeled (b), in order to compensate for any slow drift in the period of vibration of the tube over the course of the experiment. Densities determined in this manner are used to calculate apparent molar volumes for the system of interest (as shown in equation (2.19)).

Uncertainties in the calculation of apparent molar volumes are determined through the standard propagation of error method. In this method, the overall uncertainty in an apparent molar volume is related to the uncertainties associated with the density and the concentration of the solution of interest:

Table 3.1 A comparison of apparent molar volume values at infinite dilution, $V_{2}{ }^{0}$, for $\mathrm{NaCl}_{(\mathrm{aq})}$ solutions at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ : those calculated in this study ${ }^{\text {a }}$ with those reported by Marriott (1999) ${ }^{\text {b }}$, Archer (1992) ${ }^{\text {c }}$, Millero (1970) ${ }^{\text {d }}$, and Dessauges et al., (1980) ${ }^{\text {e }}$

| $T$ | $V_{2}{ }^{0 \mathrm{a}}$ | $V_{2}{ }^{0 \mathrm{~b}}$ | $V_{2}{ }^{0 \mathrm{c}}$ | $V_{2}{ }^{0 \mathrm{~d}}$ | $V^{{ }^{0 \mathrm{e}}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $/(\mathrm{K})$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |
| 288.15 | $15.64(0.04)$ | $15.49(0.07)$ | $15.551(0.004)$ | $15.57(0.01)$ | 15.63 |
| 298.15 | $16.644(0.002)$ | $16.62(0.01)$ | $16.64(0.01)$ | 16.62 | 16.62 |
| 313.15 | $17.31(0.02)$ | $17.54(0.01)$ | $17.58(0.02)$ |  |  |
| 328.15 | $17.75(0.04)$ | $17.72(0.02)$ | $18.03(0.02)$ | 17.91 |  |

$$
\begin{equation*}
\left(\delta V_{2 \phi}\right)^{2}=\left(\frac{\partial V_{2 \phi}}{\partial \rho_{2}}\right)^{2} \cdot \delta \rho_{2}{ }^{2}+\left(\frac{\partial V_{2 \phi}}{\partial m_{2}}\right)^{2} \cdot \delta m_{2}^{2} \tag{3.4}
\end{equation*}
$$

Combining equations (2.19) and (3.4), the calculation for $\delta V_{2 \phi}$ simplifies to:

$$
\begin{equation*}
\delta V_{2 \phi}=\left(M_{2}+\frac{1000}{m_{2}}\right) \cdot \frac{\delta \rho_{2}}{\rho_{2}{ }^{2}}+\left(1000 \cdot \frac{\left(\rho_{2}-\rho_{1}\right)}{m_{2}{ }^{2} \cdot \rho_{2} \cdot \rho_{1}}\right) \cdot \delta m_{2} . \tag{3.5}
\end{equation*}
$$

To track the precision of the vibrating tube densimeter over the course of this study, calibrations were routinely performed using reference $\mathrm{NaCl}_{(\mathrm{aq})}$ solutions. Apparent molar volumes for $\mathrm{NaCl}_{(\mathrm{aq})}$ were calculated as a function of molality using equation (2.19) at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$. These values were subsequently used to calculate apparent molar volumes at infinite dilution, $V_{2}{ }^{0}$, using equation (2.37), which then were compared to $V_{2}{ }^{0}$ values previously reported by Marriott (1999), Archer (1992), Millero (1970), and Dessauges et al. (1980). This comparison is presented in Table 3.1. As can be seen, the $V_{2}{ }^{0}$ values calculated in this study are in good agreement with those $V_{2}{ }^{0}$ values reported in previous studies. Due to this agreement, a high degree of confidence is placed in the precision of measurements obtainable from the Sodev O2D vibrating tube densimeter used in the studies presented in this thesis.

### 3.2.2 The Picker-flow Microcalorimeter

Connected in series to the Sodev O2D vibrating tube densimeter is the Picker-flow microcalorimeter. The Picker-flow microcalorimeter is used to determine the relative heat capacities of aqueous and non-aqueous solutions with high precision.

In flow calorimetry (Picker et al., 1971; Desnoyers et al., 1976) a temperature gradient is established through the continuous heating of a system of interest (a liquid) as it is allowed to flow through the instrument. The system of interest is pre-thermostated to a set temperature of interest and a volumetric heat capacity, $\sigma_{s}$, is calculated based on an applied power required to add thermal energy to the system, $w_{o}$, the change in temperature resulting from the applied power, $\Delta T$, and the flow rate of the liquid, $f$ :

$$
\begin{equation*}
\sigma_{s}=\frac{w_{o}}{f \cdot \Delta T} \tag{3.6}
\end{equation*}
$$

The massic heat capacity of a solute of interest is related to the volumetric heat capacity of that system and its corresponding density:

$$
\begin{equation*}
c_{p 2}=\frac{\sigma_{s}}{\rho_{2}} . \tag{3.7}
\end{equation*}
$$

In the case of the Picker-flow microcalorimeter, a twin cell approach is used to establish the temperature gradient. A schematic diagram of the Picker-flow microcalorimeter is shown in Figure 3.3. In an initial calibration, the two thermistor detectors (d), $D_{1}$ and $D_{2}$, are nulled such that their temperature readings, $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$, are equal to the temperature of interest, $\mathrm{T}_{0} . \mathrm{T}_{0}$ is the temperature that the solvent (water, in these studies) and the system of interest attain once they have entered the thermostated calorimeter. The calorimeter is thermostated by a water jacket (a) using a TechnoEurop thermostat bath. During the experiment, thermal energy is added to the solvent by supplying power, $w_{o}$, to the two


Figure 3.3 Schematic diagram of the Picker-flow microcalorimeter: (a), prethermostated water jacket; (b), flattened parts of the stainless-steel tubing; (d), thermistor
detectors; (e) un-flattened stainless steel tubing; (h), HP3456A digital voltmeter; (i), feedback circuit; (j), IBM computer; (z), zener diode (Schematic is a re-drawing from the schematic presented in Picker et. al, 1971).
cells, $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, via two zener diodes $(\mathrm{z}), \mathrm{Z}_{1}$ and $\mathrm{Z}_{2} . \mathrm{Z}_{1}$ and $\mathrm{Z}_{2}$ are Germanium chips that are soldered onto flattened parts of the stainless-steel tubing (b) of the calorimeter in order to allow maximum thermal contact (Picker et al., 1971). Through a feedback circuit (i), power is supplied either to $Z_{1}$ or $Z_{2}$ in order to ensure that $D_{1}$ and $D_{2}$ have identical readouts. When solvent is flowing through the un-flattened stainless steel
tubing (e) in both $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, the power supplied to $\mathrm{Z}_{1}$ and $\mathrm{Z}_{2}$ are almost identical. If a solution of a higher heat capacity enters $\mathrm{C}_{1}$ but not $\mathrm{C}_{2}$, then the power supplied to $\mathrm{Z}_{1}$ will be increased in order to ensure that both $D_{1}$ and $D_{2}$ have the same readouts. The difference in power supplied to $\mathrm{Z}_{1}$ with respect to $\mathrm{Z}_{2}($ known as $\Delta w)$ is measured as a voltage change by a HP3456A digital voltmeter (h) and subsequently recorded using an IBM computer (j). In the experiments, the flow rate of liquid through the cells is kept constant via gravity feed and careful adjustment of the liquid levels. Therefore:

$$
\begin{equation*}
w_{s}=w_{o}+\Delta w \tag{3.8}
\end{equation*}
$$

where $w_{s}$ is the total power supplied to $\mathrm{Z}_{1}$ in order to add thermal energy to the solution such that $D_{1}$ and $D_{2}$ have the same readout. Since the voltage change is proportional to the relative heat capacity of the solution, the volumetric heat capacity therefore becomes:

$$
\begin{equation*}
\frac{\sigma_{s}}{\sigma_{1}}=1+\frac{\Delta w}{w_{o}} \tag{3.9}
\end{equation*}
$$

where $\sigma_{l}$ is the volumetric heat capacity of pure water. Using equation (3.8), the massic heat capacity of the system may be calculated using the following equation:

$$
\begin{align*}
\frac{c_{p 2}}{c_{p 1}} & =\frac{\sigma_{s} \cdot \rho_{1}}{\sigma_{1} \cdot \rho_{2}} \\
& =\frac{\rho_{1}}{\rho_{2}} \cdot\left(1+\frac{\Delta w}{w_{o}}\right) . \tag{3.10}
\end{align*}
$$

A diagram of a typical readout obtained from the Picker-flow microcalorimeter is shown as Figure 3.4. Initially, the baseline, $w_{o}$, is obtained with the reference solution (solvent) running through both cells, $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ (a). At this point, approximately the same amount of power is supplied to $Z_{1}$ and $Z_{2}$ to ensure that $D_{1}$ and $D_{2}$ have identical readouts. Therefore, the $\Delta w$ is approximately 0 . As a solution with a higher heat capacity


Figure 3.4 A typical output signal of $\Delta w$ against time for the Picker-flow microcalorimeter.
enters $\mathrm{C}_{1}(\mathrm{~b})$, the power supplied to $\mathrm{Z}_{1}$ is raised in order to maintain the same readout from $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$. This can be seen as a deflection along the $\Delta w$ axis. Eventually, cell $\mathrm{C}_{2}$ is filled with the solution and the power supplied to $\mathrm{Z}_{1}$ is reduced in order to ensure that $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ again, have the same readout. At this point (c), the $\Delta w$ goes back to approximately 0 as both cells contain the solution of interest. At this stage, the solvent is reintroduced into $\mathrm{C}_{1}$ and the $\Delta w$ profile is reversed (d-e). An electrical calibration is performed by subtracting a given power from $w_{o}$ for each zener ( $\mathrm{f}-\mathrm{i}$ ). A measurement of
the $\Delta w$ deflections associated with the calibration enables the calculation of a constant. This constant can then be used along with the $\Delta w$ deflections seen in (b) and (d) to determine the massic heat capacity of the solution using equation (3.10).

To ensure a precise calculation of the calibration constant, an optimal flow rate must be used within the system. At this optimal flow rate, the calibration peaks, (f) and (h) in Figure 3.4 rapidly approach maxima and then plateau. When such peaks exist, the $\Delta w$ deflection is easy to determine, as is the calibration constant.

Although, as shown in Figure 3.3, the calorimeter chamber containing the cells is evacuated (to $p=2 \times 10^{-3} \mathrm{mbar}$, using a D4A direct drive vacuum pump and Edwards E50 Air-cooled diffusion pump), there remains a small amount of thermal transfer from the cells $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ to the surroundings. Therefore, a constant, known as an $F$-factor, is calculated to account for this heat loss. By using an agreed upon set of heat capacities for the aqueous sodium chloride system, a comparison is made between the selected volumetric heat capacities (Perron et al., 1975) and those measured with the Picker system (Desnoyers et al., 1976). The value of this Picker system's $F$-factor has been determined to be $1.01609 \pm 0.0076$ and has been calculated using equation (3.11):

$$
\begin{equation*}
F=\left(\frac{w_{o}^{*}}{w_{s}^{*}}\right) \cdot \frac{w_{s}}{w_{o}}, \tag{3.11}
\end{equation*}
$$

where the variables containing an "*" represent the standard data of Perrron et al. (1975). The uncertainty in massic heat capacities associated with the Picker instrument is estimated to be $\delta c_{p}= \pm 7 \times 10^{-5} \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ (Marriott, 1999).

A continuous flow of solvent and solution through the Picker is ensured with the use of a four-way liquid chromatography valve. This is done to avoid the introduction of
air pockets between the introduction of solvent and the sample into the instrument that could cause a rapid increase in power supplied to either $Z_{1}$ or $Z_{2}$. Such power surges could potentially cause damage to the feedback circuit.

The massic heat capacity data for a solution of interest, calculated from the measured voltages, equation (3.10), and the massic heat capacity of water, can be used to calculate the apparent molar heat capacity, $C_{p, 2 \phi}$, of the solution (as shown in equation (2.20)), where values for $c_{p 1}$ were taken from Stimson (1955). Relative uncertainties for the apparent molar heat capacities may be calculated using equation (3.12):

$$
\begin{align*}
& \left(\delta C_{p, 2 \phi}\right)^{2}=\left(\frac{\partial C_{p, 2 \phi}}{\partial c_{p 2}}\right)^{2} \cdot \delta c_{p 2}^{2}+\left(\frac{\partial C_{p, 2 \phi}}{\partial m_{2}}\right)^{2} \cdot \delta m_{2}^{2} \\
& \delta C_{p, 2 \phi}=\left(M_{2}+\frac{1000}{m_{2}}\right) \cdot \delta c_{p 2}+\left(1000 \cdot \frac{c_{p_{2}}-c_{p 1}}{m_{2}^{2}}\right) \cdot \delta m_{2} . \tag{3.12}
\end{align*}
$$

Similar to the Sodev O2D vibrating tube densimeter, periodic calibrations were performed using aqueous solutions of NaCl in order to show the continued precision of the calorimeter. Calculated apparent molar heat capacities, $C_{p, 2 \phi,}$ of $\mathrm{NaCl}_{(\mathrm{aq})}$ (calculated using equation (2.20)) were used in equation (2.38) to calculate apparent molar heat capacities at infinite dilution, $C_{p 2}{ }^{0}$, at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and at $p=0.1 \mathrm{MPa}$. These $C_{p 2}{ }^{0}$ values have been compared with those $C_{p 2}{ }^{0}$ values reported by Marriott (1999), Archer (1992), and Desnoyers et al. (1976). This comparison is shown in Table 3.2 and indicates that there is good agreement between the calculated $C_{p 2}{ }^{0}$ values reported in this study and those previously reported at each temperature of interest. Such agreements provide a high degree of confidence in the precision of measurements for the calorimeter over the course of the studies presented in this thesis.

Table 3.2 A comparison of apparent molar heat capacity values at infinite dilution, $C_{p 2}{ }^{0}$, for $\mathrm{NaCl}_{(\mathrm{aq})}$ solutions at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ : those calculated in this study ${ }^{\text {f }}$ using a Picker-flow microcalorimeter compared to those reported by Marriott (1999) ${ }^{\mathrm{g}}$, Archer (1992) ${ }^{\mathrm{h}}$, and Desnoyers et al. (1976) ${ }^{\mathrm{i}}$

| $\begin{aligned} & T \\ & /(\mathrm{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0 \mathrm{ff}} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0 \mathrm{~g}} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0 \mathrm{~h}} \\ & \quad /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0 \mathrm{i}} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 288.15 | -107.5(0.5) | -107(2) | -108.3(0.2) |  |
| 298.15 | -85.33(0.08) | -85.7(0.4) | -84.6(0.2) | -84.4 |
| 313.15 | -67.4(0.8) | -68.9(0.4) | -65.8(0.3) |  |
| 328.15 | -59.1(0.3) | -59(1) | -58.92(0.09) |  |

### 3.2 The High Temperature and Pressure Vibrating Tube Densimeter

A high temperature and pressure vibrating tube densimeter was recently modified to measure densities for selected solutions, relative to those of the solvent. Such measurements were performed over an extended range of temperatures and pressures, significantly larger than those that can be provided by the Sodev O2D densimeter described previously. The general design of the instrument has been previously reported (Lukacs, 2003; Marriott, 1998; Hakin et al., 2004a; Hakin et al., 1998), but this new model offers enhanced temperature control.

Like the Sodev O2D vibrating tube densimeter, the high temperature and pressure vibrating tube densimeter makes use of equations (3.1), (3.2), and (3.3) to obtain the relative density of a solution. Solutions of $\mathrm{NaCl}_{(\mathrm{aq})}$ of precisely known molalities are used as the calibrating system together with pure water. The densities of $\mathrm{NaCl}_{(\mathrm{aq})}$ and pure water have been well modeled over the temperature and pressure ranges of interest by Archer (1992). Using Archer's (1992) equation of state program for $\mathrm{NaCl}_{(\mathrm{aq})}$, the densities of solutions of $\mathrm{NaCl}_{(\mathrm{aq})}$ at selected temperatures, pressures, and molalities can be calculated. Archer's program also yields density data for pure water. Using the


Figure 3.5 A plot of time period of vibration against time for the high temperature and pressure vibrating tube densimeter (at $T=373.15 \mathrm{~K}$ and $p=5.00 \mathrm{MPa}$ for $\left.\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{qq})}\right)$.
method described above for the Sodev O2D vibrating tube densimeter, the relative density of a solution of interest can be determined using equation (3.3). To minimize errors associated with temperature and pressure differences experienced, the densimeter constant is determined several times throughout an experimental run and is averaged. A typical readout from an experimental run is shown in Figure 3.5. The peaks (a) and (d) are those for a solution of $\mathrm{NaCl}_{(\mathrm{aq})}$ of precisely known molality (in this case $m=5.3322 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ ) and peaks (b) and (c) are associated with the solution of interest (in
this case, $\left.\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, m=0.06638 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)$. The relative uncertainty in the density measurements of the vibrating tube densimeter is described by equation (3.13):

$$
\begin{equation*}
\delta \Delta \rho_{e}=\left(\delta \Delta \rho_{r}^{2}+\delta \Delta \rho_{s}^{2}\right)^{1 / 2} \tag{3.13}
\end{equation*}
$$

where $\delta \Delta \rho_{e}$ is the probable random error of the density calculation based on the deviation between two peaks of the same type (either $\mathrm{NaCl}_{(\mathrm{aq})}$ calibration peaks or system peaks, as shown in Figure 3.5). $\delta \Delta \rho_{r}$ is the difference between the calibration peaks and $\delta \Delta \rho_{s}$ is the difference between the two system of interest peaks. The calculation of the relative uncertainty of the apparent molar volume for each system of interest, using equation (3.14) (Hakin et al., 1998; Marriott, 1998), is:

$$
\begin{equation*}
\delta V_{2 \phi}=-\left(M_{2}+\frac{1000}{m_{2}}\right) \cdot \frac{\delta \Delta \rho_{e}}{\rho_{2}{ }^{2}}+\left(1000 \cdot \frac{\left(\rho_{2}-\rho_{1}\right)}{m_{2}{ }^{2} \cdot \rho_{2} \cdot \rho_{1}}\right) \cdot \delta m_{2} . \tag{3.14}
\end{equation*}
$$

A schematic of the high temperature and pressure vibrating tube densimeter is shown as Figure 3.6. Purified and degassed water (a) is used as a reference solvent and is pumped (at a constant rate of $0.4 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ ) into the densimeter using a Waters 501 HPLC pump (b). A set of two Rheodyne 7125 manual injection valves (c) connected with 316 stainless steel tubing permits the solvent to flow into the densimeter and also allows for the introduction of solution samples through sample loops of precisely known volume. When an injection valve is in the load position (1), a solution can be loaded into the sample loop and the solvent is allowed to pass through into the densimeter. In the inject position (2), the loaded sample solution travels into the densimeter. The actual vibrating tube is housed within a Varian 3700 gas chromatograph oven (d) capable of reaching temperatures of $T=623.15 \mathrm{~K}$ whilst maintaining that temperature to


Figure 3.6 Schematic of the high temperature and pressure vibrating tube densimeter: (a), flask of reference polished and de-gassed $\mathrm{H}_{2} \mathrm{O}_{(1)}$; (b), Waters 501 HPLC pump; (c), Rheodyne 7125 injection valves; (d), Varian 3700 gas chromatography oven; (e), pre-heater coil; (f), brass block; (g), LED source; (h), glass rods; (i), LED detector; (j), permanent magnet; (k), Optoelectronics 8040 multifunction counter/timer; (1), PC; (m), RS232 interface; (n), IEEE 488 serial interface board; (o), Omega 940714 pressure transducer; (p), Swagelok SS-SS2 low-flow needle valve; (q), Intelligent Motion
Systems, Inc. M2-2232-D stepping motor; (r), platinum resistance probe; (s), waste; (t), Hewlett Packard 34401A multimeter.
$T= \pm 0.1 \mathrm{~K}$ with the use of a circulating fan. Stainless steel tubing that carries either the solvent or the solution enters the oven and a pre-heater coil (e) in order to allow the system of interest to come to thermal equilibrium. The vibrating tube is connected to a
brass block (f) that is designed to float freely within the oven. This is necessary because the fan within the oven causes additional vibration that interferes with the vibration of the tube. The period of vibration of the tube is determined using an optical LED source (g), two glass rods (h), and an optical detector (i). Light from the LED light source travels down the curved glass source rod and then up the straight glass detector rod to the optical detector. An alternating current is passed through the vibrating tube and creates a magnetic field. A permanent magnetic pickup (j) ensures the continuous vibration of the tube throughout the experiment. When the tube vibrates in and out of the path of the light traveling along the glass rods, the amount of light that reaches the optical detector varies. The resulting signal takes the form of a sine wave that is electronically transformed into a square wave. The square wave is the signal that is inputted to an Optoelectronics 8040 multifunction counter/timer (k). The counter and software program constantly averages multiples of 1000 counts which are subsequently stored in a PC (1) via an RS232 (m) serial interface. The temperature within the oven is monitored using a platinum resistance probe (r) that is connected to an HP 33401A multimeter $(\mathrm{t})$ that in turn is IEEE 488 interfaced (n) to the PC. Once the solution or solvent has passed through the oven, it heads past an Omega 940714 pressure transducer (o) that forms part of a home-built electronic pressure control system, which also contains a feedback circuit connected to a Swagelok SS-SS2 low-flow needle valve (p). The operation of the needle valve is controlled by an Intelligent Motion Systems, Inc. M2-2232-D stepping motor (q). The pressure control system permits pressure regulation of $\delta p= \pm 0.01 \mathrm{MPa}$ up to pressures of $p=15.00 \mathrm{MPa}$. After passing through the pressure control system, all fluids are discarded into a waste container (s).

The precision of this recently modified vibrating tube densimeter has been determined by measuring the densities of aqueous NaBr solutions of precisely known molalities, and comparing these densities with those which may be calculated using Archer's program for $\mathrm{NaBr}_{(\mathrm{aq})}$ (Archer, 1991). A comparison of measured relative densities, $\rho_{\text {expt }}$, and calculated apparent molar volumes, $V_{2 \phi}($ calculated using equation (2.19)), with those reported by $\operatorname{Archer}\left(\rho_{(\text {archer })}\right.$ and $\left.V_{2 \phi(a r c h e r)}, 1991\right)$ for $\operatorname{NaBr}_{(\mathrm{aq})}$ is provided in Table 3.3. The maximum deviation from the expected density is approximately $\delta \rho= \pm 5 \times 10^{-5} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, but generally lies within the part per million range. The main exception appears to be a point for $\mathrm{NaBr}_{(\mathrm{aq})}$ at $T=348.15 \mathrm{~K}$ and $p=15.00 \mathrm{MPa}$, with a molality $m=0.4188 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ (shown in Table 3.3). Reasons for this single discrepancy are not known. Figure 3.7 provides an additional visual aid to show these maximum deviations presented in Table 3.3, at all temperatures and pressures of interest.


Figure 3.7 Deviations in the experimental densities, $\rho_{\text {expt }}$, for $\mathrm{NaBr}_{(\mathrm{aq})}$ (those obtained experimentally using the modified vibrating tube densimeter compared to those calculated using the values reported by Archer $\left(\rho_{\text {(archer })}, 1991\right)$ ): $\bullet, T=323.15 \mathrm{~K}$, $p=5.00 \mathrm{MPa} ; \times, T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ;+, T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa} ;$ ㅁ, $T=348.15 \mathrm{~K}, p=5.00 \mathrm{MPa} ; \stackrel{\rightharpoonup}{ }, T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ; \square, T=348.15 \mathrm{~K}$, $p=15.00 \mathrm{MPa} ; \Delta, T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa} ; \Delta, T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ; \rho$, $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$; and $\bullet, T=423.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$.

Table 3.3 Comparison of $\rho_{\text {expt }}$ and $V_{2 \phi}$ of $\mathrm{NaBr}_{(\mathrm{aq})}$ determined using the modified vibrating tube densimeter with values that were calculated using Archer's (1991) program for $\mathrm{NaBr}_{(\mathrm{aq})}$

| $T$ | $p$ | $m_{2}$ | $\rho_{\text {expt }}$ | $V_{2 \phi}$ | $10^{6}\left(\rho_{\text {expt }}-\rho_{\text {(archer })}\right)$ | $\left.V_{2 \phi-} V_{2 \phi(\text { archer }}\right)$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $/(\mathrm{K})$ | $/(\mathrm{MPa})$ |  |  |  |  |  |
| $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ |  |  |  |  |  |  |
| $/\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ |  |  |  |  |  |  |
| $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ |  |  |  |  |  |  |

Table 3.3 (continued)


Table 3.3 (continued)

| $\begin{aligned} & \hline T \\ & /(\mathrm{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3}\right. \\ & \hline \end{aligned}$ | $\begin{array}{r} 10^{6}\left(\rho_{\text {expt }}-1\right. \\ ) \quad /\left(\mathrm{g}^{-\mathrm{cm}^{-3}}\right) \\ \hline \end{array}$ | $\begin{aligned} & V_{2 \phi-} V_{2 \phi(a r c h e r)} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.10 | 5.012 | 0.0824 | 0.96619 | 25.27 | -1.80582 | 0.02 |
| 374.10 | 5.011 | 0.0824 | 0.96619 | 25.24 | 0.74309 | 0.00 |
| 374.10 | 5.010 | 0.1545 | 0.97155 | 25.58 | -2.64102 | 0.03 |
| 374.11 | 5.010 | 0.1545 | 0.97156 | 25.54 | 5.14414 | -0.01 |
| 374.12 | 5.011 | 0.3019 | 0.98240 | 25.94 | 6.71470 | -0.02 |
| 374.12 | 5.012 | 0.3019 | 0.98239 | 25.97 | 0.75062 | 0.01 |
| 374.12 | 5.012 | 0.3784 | 0.98796 | 26.14 | -6.27979 | 0.02 |
| 374.12 | 5.011 | 0.3784 | 0.98797 | 26.12 | 2.90901 | 0.00 |
| 374.12 | 5.012 | 0.4661 | 0.99431 | 26.27 | 7.63784 | -0.01 |
| 374.12 | 5.009 | 0.4661 | 0.99431 | 26.28 | 5.91048 | 0.00 |
| $T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.16 | 10.017 | 0.0812 | 0.96837 | 25.37 | 3.89253 | -0.05 |
| 374.15 | 10.024 | 0.0812 | 0.96837 | 25.41 | 0.84275 | -0.01 |
| 374.15 | 10.019 | 0.1923 | 0.97662 | 25.85 | 0.30770 | 0.00 |
| 374.16 | 10.023 | 0.1923 | 0.97662 | 25.85 | 0.52846 | 0.00 |
| 374.15 | 10.022 | 0.2649 | 0.98195 | 26.10 | -12.3824 | 0.05 |
| 374.15 | 10.025 | 0.2649 | 0.98196 | 26.06 | -1.22766 | 0.01 |
| 374.16 | 10.022 | 0.3854 | 0.99074 | 26.30 | 1.88608 | 0.00 |
| 374.16 | 10.022 | 0.3854 | 0.99074 | 26.29 | 5.34098 | -0.01 |
| 374.16 | 10.022 | 0.4716 | 0.99694 | 26.54 | -40.3372 | 0.09 |
| 374.16 | 10.021 | 0.4716 | 0.99697 | 26.46 | -0.48039 | 0.01 |
| $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.60 | 15.020 | 0.1794 | 0.97763 | 25.97 | 13.7914 | 0.00 |
| 374.59 | 15.025 | 0.1794 | 0.97763 | 25.98 | -0.79835 | 0.01 |
| 374.58 | 15.014 | 0.2948 | 0.98610 | 26.30 | -7.40006 | 0.03 |
| 374.59 | 15.020 | 0.2948 | 0.98610 | 26.26 | 3.99878 | -0.01 |
| 374.58 | 15.027 | 0.3931 | 0.99327 | 26.45 | 4.97403 | -0.01 |
| 374.57 | 15.027 | 0.3931 | 0.99327 | 26.45 | 5.11057 | -0.01 |
| 374.59 | 15.029 | 0.4919 | 1.00039 | 26.62 | 2.78765 | -0.01 |
| 374.58 | 15.027 | 0.4919 | 1.00040 | 26.63 | 2.85859 | 0.00 |

Table 3.3 (continued)

| $T$ <br> $/(\mathrm{K})$ | $p$ <br> $/(\mathrm{MPa})$ | $m_{2}$ <br> $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ | $\rho_{\text {expt }}$ <br> $/\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $V_{2 \phi}$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $10^{6}\left(\rho_{\text {expt }}-\rho_{(\text {archer })}\right)$ <br> $/\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $V_{2 \phi-} V_{2 \phi(\text { archer })}$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $T=423.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 423.88 | 10.025 | 0.0996 | 0.92926 | 22.07 | 1.91207 | -0.02 |
| 423.91 | 10.019 | 0.0996 | 0.92923 | 22.06 | 2.54658 | -0.02 |
| 423.92 | 10.024 | 0.1946 | 0.93631 | 22.71 | -6.29275 | 0.04 |
| 423.92 | 10.020 | 0.1946 | 0.93632 | 22.64 | 5.74889 | -0.03 |
| 423.92 | 10.027 | 0.2928 | 0.94355 | 23.11 | -1.50971 | 0.01 |
| 423.91 | 10.021 | 0.2928 | 0.94355 | 23.12 | -4.89092 | 0.02 |
| 423.90 | 10.025 | 0.3854 | 0.95032 | 23.44 | -4.71557 | 0.02 |
| 423.91 | 10.023 | 0.3854 | 0.95032 | 23.42 | -1.13566 | 0.01 |
| 423.91 | 10.018 | 0.5069 | 0.95910 | 23.75 | 3.30165 | 0.00 |
| 423.89 | 10.018 | 0.5069 | 0.95909 | 23.81 | -23.9129 | 0.05 |

## 4) THERMOCHEMICAL STUDY OF AQUEOUS SOLUTIONS OF THE RARE EARTH ELEMENT (REE) TRIFLATES AT AMBIENT PRESSURE AND NEAR AMBIENT TEMPERATURES

### 4.1. Introduction

As discussed in Chapter 2, volume and heat capacity data can provide information which can be used to understand the nature of solute-solvent and solute-solute interactions within a solution. The ultimate goal of this thesis is to provide such data, with a focus on aqueous rare earth element (REE) containing salt solutions.

Previous work on aqueous REE metal containing salt systems has focused on the volumetric and calorimetric studies of aqueous perchlorates, nitrates, chlorides, and sulfates (Hakin et al., 2003a, 2003b, 2004b, 2005; Marriott et al., 2001) at $T=(288.15$, $298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$. Additional studies on $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ have been completed at $T=(323.15,348.15,373.15,398.15$, and 423.15$) \mathrm{K}$ and $p=(10.0,20.0$, and 30.0) MPa (Hakin et al., 2004a). The earlier work of Spedding et al. (1966a, 1966b, 1975a, 1975b, 1979) also reported apparent molar volumes and heat capacities for a variety of aqueous REE salt solutions. However, much of Spedding's previous work was restricted to the temperature and pressure conditions $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$. Therefore, one aim of the work presented in this chapter is to compare the single ion volumes and heat capacities obtained from studies of aqueous REE triflate systems with those previously reported in the literature (Hakin et al., 2003a, 2003b, 2004b, 2005; Marriott et al., 2001; Xiao et al., 1996a, 1996b, 1997a). In addition, another goal is to extend the temperature surface of the volumetric and calorimetric
properties of aqueous REE salt systems to temperatures and pressures that may be more suited to their growing commercial and industrial importance.

The REEs have a wide variety of important industrial applications. They are commonly used in the manufacture of high field strength magnets, as glazes in ceramics, as neutron absorbers in nuclear reactors, and as phosphors in cathode ray tubes. Despite the name, the natural abundances of these elements in the earth's crust (with the exception of promethium) surpass that of mercury (Cotton and Wilkinson, 1988; Lide, 1999-2000). However, they have proven difficult to extract from their ores. Therefore, fundamental thermodynamic data for the aqueous REE metal ions are of significant importance in order to assist in the extraction processes commonly used (Sabot and Maestro, 1995). To further explore the properties of the REE salts, this thesis has focused on the triflate salts. The triflate (trifluoromethanesulfonate) anion is not prone to oxidation at higher temperatures or speciation in aqueous solutions that commonly affects the $\mathrm{Cl}^{-}, \mathrm{NO}_{3}{ }^{-}$, and $\mathrm{SO}_{4}{ }^{2-}$ anions (Marriott et al., 2001; Rard et al., 1977, 1979, 1981, 1982). Hence, volumetric and calorimetric measurements on the aqueous REE triflates $\left(\mathrm{R}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)$ should, in theory, yield more precise single ion data for the trivalent REE metal cations (Erickson et al., 2007).

### 4.2. Trifluoromethanesulfonic Acid in Aqueous Solution

### 4.2.1. Experimental

Trifluoromethanesulfonic acid (triflic acid, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ ) was obtained from Aldrich Chemical Company (98\%, Catalog No. 15853-4). In order to reduce any hazards
associated with the concentrated acid, stock samples were diluted to $6.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ using water that was polished to a resistance of $18.3 \mathrm{M} \Omega$ using an Osmotics model Aries high-purity D.I. loop. Gravimetric analysis (Skoog and West, 1982) determined the sulfate ion content of the $6.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ triflic acid to be less than $0.05 \mathrm{~mol} \%$ (through precipitated $\left.\mathrm{BaSO}_{4(\mathrm{~s})}\right)$. The $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\text {aq })}$ was further diluted to a molarity of $c=0.22 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ using the polished water and was standardized against tris(hydroxymethylamino)methane (THAM) obtained from the Fisher Scientific Company ( 0.9999 mol fraction, Catalog No. T-395). Stock solutions of THAM were made by mass to $\pm 0.00001 \mathrm{~g}$ using a Mettler Toledo AT201 analytical balance. Methyl red was used as an endpoint indicator in these titrations. The titrations were repeated at least three times to ensure a higher degree of precision (less than $0.5 \mathrm{~mol} \%$ deviation). All subsequent solutions of the acid used for thermodynamic measurements were made by mass to $\pm 0.00001 \mathrm{~g}$ on the molality concentration scale by dilution with polished water. The solutions were placed in securely sealed volumetric flasks and used within 24 hours of their preparation.

### 4.2.2. Results and conclusions

Density and heat capacity measurements were obtained using the Picker instrument described in Chapter 3. Apparent molar volumes, $V_{3 \phi}$, and apparent molar heat capacities, $C_{p, 3 \phi}$, for triflic acid (previously defined as $V_{2 \phi}$ and $C_{p, 2 \phi}$ in Chapter 2) were calculated using equations (2.19) and (2.20), respectively, using measured relative densities, $\rho_{\text {expt }}$, and massic heat capacities, $c_{p, \text { expt }}$ (where $\rho_{\text {expt }}$ and $c_{p, \text { expt }}$ are synonymous with $\rho_{2}$ and $c_{p 2}$, previously identified in Chapter 2). $M_{3}$ is the molar mass of triflic acid,
which was identified as $M_{2}$ in equations (2.19) and (2.20). Calculated values of $\rho_{\text {expt }}-\rho_{1}$, $V_{3 \phi,}\left(\left(c_{p, \text { expt }} . \rho_{\text {expt }}\right) /\left(c_{p l} . \rho_{l}\right)\right)-1$, and $C_{p, 3 \phi}$ for each investigated solution of known concentration are reported in Table 4.1 along with their calculated relative uncertainties (reported in parentheses, and calculated using the standard propagation of error method described in Chapter 3).

It was necessary to determine the apparent molar properties of aqueous triflic acid for two reasons. First, the apparent molar properties are required in the use of Young's rule that permits the calculation of apparent molar properties of aqueous REE salt systems from solutions of the acidified REE salt solution. Second, the apparent molar properties of triflic acid can be used to obtain single ion information for the aqueous triflate anion.

Although the apparent molar properties for triflic acid, and therefore the triflate anion, were determined, the ionic strength range used in this study was not sufficient over the temperature range $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$. Therefore, a combination of the apparent molar properties of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ presented in this thesis and those reported by Xiao et al. (2001) were combined and subjected to least squares regression analyses at each temperature. Equations (2.37) and (2.38) were used to model the concentration dependences of the apparent molar volume and apparent molar heat capacity sets, respectively. The appropriately calculated Debye-Hückel term (the term in equation (2.37) or (2.38) containing either $A_{V}$ or $A_{J}$, respectively) was subtracted from the apparent molar volume or heat capacity in order to form the dependent variable for each regression. Estimates of the apparent molar properties at infinite dilution for the acid, $V_{3}{ }^{0}$ and $C_{p 3}{ }^{0}$ (previously identified as $V_{2}{ }^{0}$ and $C_{p 2}{ }^{0}$ in equations (2.37) and (2.38),


Figure 4.1 Comparison of the ionic strength dependence of $V_{3 \phi}-D H L L$ values obtained from equation (2.37) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ with those calculated from the study by Xiao et al. (2001): •, current study at $T=298.15 \mathrm{~K}$; O Xiao et al. (2001) at $T=298.15 \mathrm{~K}$; , current study at $T=313.15 \mathrm{~K}$; ㅁ, Xiao et al. (2001) at $T=313.15 \mathrm{~K}$; $\uparrow$, current study at $T=328.15 \mathrm{~K}$; ॰ Xiao et al. (2001) at $T=328.15 \mathrm{~K}$.
respectively), and values for the parameters $\beta^{(0) V}, \beta^{(1) V}, \beta^{(0) J}, \beta^{(1) J}, C^{V}$, and $C^{J}$ were obtained from the regression analyses and are reported, along with their standard errors, in Table 4.2. Table 4.2 also compares the values obtained in this study with those reported by Xiao et al. (2001). Figure 4.1 presents a comparison of the ionic strength dependences of $V_{3 \phi}-D H L L$ values obtained from measurements conducted in this study at $T=(298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ with those
previously reported by Xiao et al. (2001). The figure indicates good agreement between data sets. The same is true for the $C_{p 3}{ }^{0}$ values, although they are not shown in this thesis.

Subsequent global modeling was conducted in order to determine the temperature dependences of the factors $V_{3}{ }^{0}, C_{p 3}{ }^{0}, \beta^{(0) V}, \beta^{(1) V}, \beta^{(0) J}, \beta^{(1) J}, C^{V}$, and $C^{J}$ within equations (2.37) and (2.38). The following equations were utilized:

$$
\begin{align*}
& V_{3}^{0}=a_{1}+\frac{a_{2}}{(T-\theta)}+a_{3} \cdot T,  \tag{4.1}\\
& \beta^{(0) V}=a_{4}+a_{5} \cdot T,  \tag{4.2}\\
& \beta^{(1) V}=a_{6},  \tag{4.3}\\
& C^{V}=a_{7},  \tag{4.4}\\
& C_{p 3}^{0}=c_{1}+\frac{c_{2}}{(T-\theta)^{2}}+c_{3} \cdot T,  \tag{4.5}\\
& \beta^{(0) J}=\frac{c_{4}}{T}+c_{5}+c_{6} \cdot T,  \tag{4.6}\\
& \beta^{(1) J}=\frac{c_{7}}{T}+c_{8}+c_{9} \cdot T,  \tag{4.7}\\
& C^{J}=c_{10}, \tag{4.8}
\end{align*}
$$

where $\theta$ is equal to 228 K . The model is based on the equations reported by Xiao et al. (1997b) for aqueous solutions of triflic acid and its sodium salt. Values for the $a_{i}$ parameters ( $i=1$ to 7 ) and $c_{j}$ parameters $(j=1$ to 10$)$ for equations (4.1) to (4.8) are reported in Table 4.3. It was found that the parameters $\beta^{(l) V}, C^{V}$, and $C^{J}$ were independent of temperature, whereas $V_{3}{ }^{0}, C_{p 3}{ }^{0}, \beta^{(0) V}, \beta^{(0) J}$, and $\beta^{(1) J}$ were all well modeled well using equations (4.1) to (4.2) and (4.5) to (4.7) over the investigated temperature range. The $V_{3 \phi}$ and $C_{p, 3 \phi}$ values calculated for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ using equations (4.1) to (4.2)


Figure 4.2 Comparison of $V_{3 \phi}$ values (as a function of molality) calculated using equation (2.19) ( $V_{3 \phi}($ calc $)$ ) with those calculated using equation (2.37) and the fitting parameters to equations (4.1) to (4.4) ( $V_{3}$ ( global)) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ at: $\bullet, T=288.15 \mathrm{~K}$; $\times, T=298.15 \mathrm{~K} ;+, T=313.15 \mathrm{~K}$; and $\quad$,,$T=328.15 \mathrm{~K}$; and $p=0.1 \mathrm{MPa}$ (the dashed lines represent the standard error).
and (4.5) to (4.7) over the investigated temperature range. The $V_{3 \phi}$ and $C_{p, 3 \phi}$ values calculated for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{\text {(aq) }}$ using equations (2.19) and (2.20) ( $V_{3 \phi}\left(\right.$ calc) and $C_{p, 3 \phi}($ calc $)$ ) have been compared to those $V_{3 \phi}$ and $C_{p, 3 \phi}$ values for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ calculated using equations (2.37) and (2.38) and the calculated fitting parameters $a_{1}$ to $a_{7}$ and $c_{1}$ to $c_{10}$ for equations (4.1) to (4.8) ( $V_{3 \phi}$ (global) and $C_{p, 3 \phi}$ (global)), respectively, in Figures 4.2 and


Figure 4.3 Comparison of $C_{p, 3 \phi}$ values (as a function of molality) calculated using equation (2.20) ( $C_{p, 3( }$ (calc)) with those calculated using equation (2.38) and the fitting parameters to equations (4.5) to (4.8) ( $C_{p, 3}($ global $)$ ) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ at: $\bullet, T=288.15 \mathrm{~K}$; $\times, T=298.15 \mathrm{~K} ;+, T=313.15 \mathrm{~K}$; and $\quad$, $T=328.15 \mathrm{~K}$; and $p=0.1 \mathrm{MPa}$ (the dashed lines represent the standard error).
4.3. As can be seen, there is good agreement between these values over the temperature range of study. Therefore, the temperature dependent models presented above used to describe the apparent molar properties of the triflic acid were subsequently used in combination with Young's rule in order to determine the apparent molar properties for the aqueous REE triflate salts presented in this thesis.

Table 4.1 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$

| $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{aligned}$ | $\begin{aligned} & V_{3 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{gathered} \left(c_{p, \text { expt }} \rho_{\text {expt } t}\right)-1 \\ c_{p 1} \cdot \rho_{l} \end{gathered}$ | $\begin{aligned} & C_{p, 3 \phi} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T=288.15 \mathrm{~K}$ |  |  |  |  |
| 0.0222 | 0.00167 | 74.9(0.7) | -0.00082 | 156(3) |
| 0.0444 | 0.00333 | 74.8(0.6) | -0.00164 | 156(2) |
| 0.0667 | 0.00499 | 74.8(0.6) | -0.00249 | 154(2) |
| 0.0882 | 0.00659 | 74.9(0.6) | -0.00326 | 156(2) |
| 0.1109 | 0.00826 | 74.9(0.5) | -0.00410 | 156(2) |
| 0.1339 | 0.00996 | 75.0(0.5) | -0.00488 | 158(2) |
| 0.1574 | 0.01168 | 75.0(0.5) | -0.00580 | 156(2) |
| 0.1799 | 0.01333 | 75.0(0.5) | -0.00658 | 157(2) |
| 0.2026 | 0.01499 | 75.0(0.5) | -0.00736 | 158(2) |
| 0.2259 | 0.01669 | 74.9(0.5) | -0.00824 | 156(2) |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |
| 0.0222 | 0.00163 | 76.6(0.7) | -0.00088 | 156(4) |
| 0.0427 | 0.00315 | 76.0(0.6) | -0.00149 | 165(2) |
| 0.0659 | 0.00485 | 76.0(0.6) | -0.00232 | 167(2) |
| 0.0878 | 0.00646 | 76.1(0.6) | -0.00306 | 168(2) |
| 0.1112 | 0.00816 | 76.1(0.5) | -0.00385 | 168(2) |
| 0.1338 | 0.00980 | 76.1(0.5) | -0.00465 | 168(2) |
| 0.1548 | 0.01131 | 76.1(0.5) | -0.00535 | 169(2) |
| 0.1794 | 0.01309 | 76.1(0.5) | -0.00624 | 168(2) |
| 0.1994 | 0.01454 | 76.1(0.5) | -0.00691 | 169(2) |
| 0.2259 | 0.01644 | 76.1(0.5) | -0.00786 | 168(2) |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |
| 0.0211 | 0.00153 | 77.3(0.7) | -------- | ------- |
| 0.0438 | 0.00317 | $77.5(0.6)$ | -0.00149 | 177(2) |
| 0.0658 | 0.00476 | 77.4(0.6) | -0.00221 | 177(2) |
| 0.0883 | 0.00637 | 77.4(0.6) | -0.00295 | 177(2) |
| 0.1121 | 0.00807 | $77.5(0.5)$ | -0.00377 | 178(2) |
| 0.1343 | 0.00966 | $77.5(0.5)$ | -0.00449 | 178(2) |
| 0.1568 | 0.01125 | $77.5(0.5)$ | -0.00525 | 178(2) |
| 0.1808 | 0.01295 | $77.5(0.5)$ | -0.00605 | 178(2) |
| 0.2034 | 0.01454 | $77.5(0.5)$ | -0.00686 | 177(2) |
| 0.2259 | 0.01613 | $77.5(0.5)$ | -0.00756 | 177(2) |

Table 4.1 (continued)

| $m_{3}$ | $\rho_{\text {expt }}-\rho_{l}$ | $V_{3 \phi}$ | $\left(c_{p, \text { expt }} \cdot \rho_{\text {expt }}\right)-1$ <br> $c_{p 1} \cdot \rho_{l}$ | $C_{p, 3 \phi}$ <br> $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ |  |  |  |  |

Table 4.2 Estimates of parameters to the Pitzer-ion interaction model equations, shown as equations (2.37) and (2.38), for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $T=(288.15,298.15$, 313.15 , and 328.15 ) K and $p=0.1 \mathrm{MPa}$

| $\begin{aligned} & V_{3}^{0} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{4}\left(\beta^{(0) V}\right) \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} .\right. \end{aligned}$ | $\begin{gathered} 10^{3}\left(\beta^{(1) V}\right) \\ /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{n}\right. \end{gathered}$ | $\begin{aligned} & C^{V} \\ & /\left(\mathrm{kg}^{2} \cdot \mathrm{~cm}^{3} \cdot \mathrm{~m}\right. \end{aligned}$ | concentration range <br> $\left.{ }^{3}\right) /\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $T=288.15 \mathrm{~K}$ |  |  |  |  |
| 74.61(0.01) | -0.7(0.6) | -1.9(0.1) | 4.9(0.7) | 0.0222-0.2259* |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |
| 75.40(0.06) | -0.8(0.2) | -1.0(0.1) | 0.022(0.007) | 0.0222-9.4636 |
| $75.00^{\text {i }}$ | $-1.113^{j}$ | -0.6501 ${ }^{\text {j }}$ | $0.03348^{\text {j }}$ |  |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |
| 76.71(0.05) | -0.7(0.2) | -1.1(0.1) | 0.016(0.007) | 0.0222-9.4636 |
| $76.60^{\text {j }}$ | $-0.8897{ }^{\text {a }}$ | $-0.9100^{\text {j }}$ | $0.02297{ }^{\text {j }}$ |  |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |
| 77.6(0.2) | -1.1(0.5) | -0.8(0.3) | 0.03(0.02) | 0.0222-9.4636 |
| $76.8^{\text {j }}$ | $-1.802^{\mathrm{j}}$ | $-0.05681^{\mathrm{j}}$ | $0.05630^{\text {j }}$ |  |
| $\begin{aligned} & C_{p 3}{ }^{0} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{5}\left(\beta^{(0) J}\right) \\ & 1 /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-2}\right) \end{aligned}$ | $\begin{gathered} 10^{5}\left(\beta^{(1) J}\right) \\ /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1}\right. \\ \hline \end{gathered}$ | $\begin{aligned} & C^{J} \\ & /\left(\mathrm{Jkg}^{2} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~m}\right. \end{aligned}$ | concentration range <br> $\left.{ }^{-3}\right) /\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ |
| $T=288.15 \mathrm{~K}$ |  |  |  |  |
| 152.3(0.1) | -19(1) | 38(2) | -209(22) | 0.0222-0.2259* |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |
| 155.9(0.6) | 0.90(0.06) | 4.6(0.4) | 0.49(0.08) | 0.0222-9.4636 |
| $153.10^{\text {j }}$ | $1.065^{\mathrm{j}}$ | $3.210^{\text {j }}$ | $0.6650^{\text {j }}$ |  |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |
| 164.3(0.6) | 0.89(0.06) | 5.2(0.4) | 0.54(0.08) | 0.0222-9.4636 |
| $161.20^{\text {j }}$ | $1.031^{\text {j }}$ | $3.906^{\text {j }}$ | $0.7136^{\text {j }}$ |  |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |
| 163(3) | 0.8(0.3) | 4(2) | 0.5(0.4) | 0.0222-9.4636 |
| $152.90^{\text {j }}$ | $1.044^{\mathrm{j}}$ | $2.125^{\text {j }}$ | $0.7832^{\mathrm{j}}$ |  |

${ }^{\mathrm{j}}$ Xiao et. al, (2001)
*no values were reported by Xiao, et al., (2001) at $T=288.15 \mathrm{~K}$. Therefore, global fitting using equations (2.37) and (2.38) were performed using only values reported in this chapter.

Table 4.3 Estimates of parameters to equations (4.1) to (4.8) that model the temperature dependences of $V_{3 \phi}$ and $C_{p, 3 \phi}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $p=0.1 \mathrm{MPa}$

| $V_{2 \phi}$ |  |
| :--- | :--- |
| Parameter: | Value: |
| $a_{1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $67.8(2)$ |
| $a_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-291(29)$ |
| $a_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1}\right)$ | $4.0 \times 10^{-2}\left(5 \times 10^{-3}\right)$ |
| $a_{4} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $6 \times 10^{-5}\left(2 \times 10^{-5}\right)$ |
| $a_{5} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-4.5 \times 10^{-7}\left(7 \times 10^{-8}\right)$ |
| $a_{6} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{Jol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-1.06 \times 10^{-3}\left(6 \times 10^{-5}\right)$ |
| $a_{7} /\left(\mathrm{J} \cdot \mathrm{kg} \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-3}\right)$ | $2.0 \times 10^{-2}\left(4 \times 10^{-3}\right)$ |
|  |  |
| Standard error $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 0.13 |
| $C_{p, 2 \phi}$ |  |
| Parameter: | Value: |
| $c_{1} /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | $262(30)$ |
| $c_{2} /\left(\mathrm{J} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | $-1.8 \times 10^{5}\left(2 \times 10^{4}\right)$ |
| $c_{3} /\left(\mathrm{J} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | $-0.2\left(9 \times 10^{-2}\right)$ |
| $c_{4} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-5 \times 10^{-1}\left(1 \times 10^{-2}\right)$ |
| $c_{5} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $3.4 \times 10^{-4}\left(7 \times 10^{-5}\right)$ |
| $c_{6} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | $-6 \times 10^{-7}\left(1 \mathrm{x} 10^{-7}\right)$ |
| $c_{7} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-0.4(0.2)$ |
| $c_{8} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $2 \times 10^{-3}\left(1 \times 10^{-3}\right)$ |
| $c_{9} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | $-3 \times 10^{-6}\left(2 \times 10^{-6}\right)$ |
| $c_{10} /\left(\mathrm{J} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-3}\right)$ | $3.3 \times 10^{-1}\left(6 \times 10^{-2}\right)$ |
|  |  |
| Standard error $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | 1.53 |

## 4.3 $\mathbf{N a C F}_{3} \mathrm{SO}_{3}$ in Aqueous Solution

### 4.3.1 Experimental

The preparation of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Na}_{(\text {aq) }}$ (sodium triflate) followed the procedure outlined previously by Xiao et al. (1997b, 2001). A $0.35 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ solution of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ was prepared from $98 \% \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ obtained from the Aldrich Chemical Company and standardized as described above. An approximately $1.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ solution of NaOH (standardized against potassium hydrogen phthalate, KHP) was prepared from a concentrated stock solution of $\mathrm{NaOH}_{(\text {aq })}$ from the Fisher Scientific Company (Catalog

No. SS22-7). The KHP was obtained from EM Science ( 0.995 mol fraction, Catalog No. B10207-34) and was previously dried at $T=383.15 \mathrm{~K}$ for 1 hour before use. The density of the standardized $\mathrm{NaOH}_{(\mathrm{aq})}$ solution was measured using the Sodev O2D vibrating tube densimeter. This density was subsequently used to calculate the exact mass of the standardized base required to neutralize the standardized $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ solution and create a $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$ stock solution. The resulting aqueous stock solution of sodium triflate of known concentration was diluted (by mass) as required to prepare solutions of aqueous sodium triflate of various known concentrations. These solutions were subsequently passed through the Picker system in order to measure their relative densities and relative massic heat capacities.

### 4.3.2 Results and conclusions

Apparent molar volumes and apparent molar heat capacities for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ were calculated (using equations (2.19) and (2.20)) using the measured relative density and heat capacity data, respectively, described above. Values for $\left(\rho_{\text {expt }}-\rho_{I}\right), V_{2 \phi,}\left(\left(c_{p, \text { expt }} \cdot \rho_{\text {expt }}\right) /\left(c_{p 1} . \rho_{I}\right)\right)-1$, and $C_{p, 2 \phi}$ for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$ solutions of known concentration are reported at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ in Table 4.4. The values reported in parentheses are the relative uncertainties which have been calculated using the standard propagation of error procedure described in Chapter 3.

The apparent molar volumes and heat capacities for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ were modeled using the same modified Pitzer-ion interaction equations that were used in the modeling of the apparent molar properties of aqueous solutions of the


Figure 4.4 A comparison of the ionic strength dependence of $V_{2 \phi}$ values calculated from equation (2.19) for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\text { aq) }}$ with the $V_{2 \phi}$ values reported by Xiao and Tremaine
(1997b): •, current study at $T=298.15 \mathrm{~K}$; O, Xiao and Tremaine (1997b) at $T=298.15 \mathrm{~K}$; $\quad$, current study at $T=313.15 \mathrm{~K}$; ㅁ, Xiao and Tremaine (1997b) at
$T=313.15 \mathrm{~K} ; *$, current study at $T=328.15 \mathrm{~K} ; \stackrel{\bullet}{ }$, Xiao and Tremaine (1997b) at $T=328.15 \mathrm{~K}$ (the solid lines are for visualization purposes only).
parent acid. Due to a lower molality range studied for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$, the $C^{V}$ and $C^{J}$ terms of equations (2.37) and (2.38) were found to be unnecessary. Values for $V_{2}{ }^{0}, C_{p 2}{ }^{0}, \beta^{(0) V}, \beta^{(l) V}, \beta^{(0) J}$, and $\beta^{(l) J}$ were obtained using least squares multiple regression analyses and have been reported in Table 4.5, where they have also been
compared to those values reported by Xiao et al. (2001). Figure 4.4 reports the dependence of $V_{2 \phi}$ values on ionic strength at $T=(298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$. Due to the large initial concentration of the $\mathrm{NaOH}_{\text {(aq) }}$ (approximately $1.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ ) used in the preparation of the $\mathrm{NaCF}_{3} \mathrm{SO}_{3 \text { (aq) }}$, the relative uncertainties associated with the $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$ are significantly larger than those reported for the parent acid. However, the reported $V_{2 \phi}$ values are in good agreement with those reported by Xiao and Tremaine (1997b).

The temperature dependences of the $V_{2}{ }^{0}, C_{p 2}{ }^{0}, \beta^{(0) V}, \beta^{(1) V}, \beta^{(0) J}$, and $\beta^{(1) J}$
parameters were modeled using the equations:

$$
\begin{align*}
& V_{2}^{0}=b_{1}+\frac{b_{2}}{(T-\theta)}+b_{3} \cdot T,  \tag{4.9}\\
& \beta^{(0) V}=\frac{b_{4}}{T}+b_{5}+b_{6} \cdot T,  \tag{4.10}\\
& \beta^{(1) V}=\frac{b_{7}}{T}+b_{8}+b_{9} \cdot T .  \tag{4.11}\\
& C_{p 2}^{0}=d_{1}+d_{2} \cdot T,  \tag{4.12}\\
& \beta^{(0) J}=\frac{d_{3}}{T}+d_{4}+d_{5} \cdot T,  \tag{4.13}\\
& \beta^{(1) J}=\frac{d_{6}}{T}+d_{7}+d_{8} \cdot T . \tag{4.14}
\end{align*}
$$

Estimated values of the fitting coefficients $b_{i}(i=1$ to 9$)$ and $d_{j}(j=1$ to 8$)$ were determined using regression analyses and have been reported in Table 4.6 along with their estimated standard errors. Figure 4.5 shows a comparison between $V_{2 \phi}$ values at each concentration (those calculated using equation (2.19) and those calculated using equation (2.37)). The $V_{2 \phi}$ values in equation (2.37) were determined using the


Figure 4.5 Comparison of $V_{2 \phi}$ values (as a function of molality) calculated using equation (2.19) ( $V_{2 \phi}($ calc $)$ ) with those calculated using equation (2.37) and the fitting parameters to equations (4.9) to (4.11) ( $V_{2 \text { d }}$ (global)) for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$ at: $\bullet, T=288.15 \mathrm{~K}$; $\times, T=298.15 \mathrm{~K} ;+, T=313.15 \mathrm{~K}$; and $\quad$, $T=328.15 \mathrm{~K}$; and $p=0.1 \mathrm{MPa}$ (the dashed lines represent the standard error).
temperature dependent fitting coefficients of equations (4.9) to (4.11). A similar comparison is shown in Figure 4.6 for $C_{p, 2 \phi}$ values calculated using equations (2.20) and (2.38), where the calculated $C_{p, 2 \phi}$ values for equations (2.38) were determined using the calculated fitting coefficients for equations (4.12) to (4.14). $V_{2 \phi}$ and $C_{p, 2 \phi}$ values calculated using equations (2.19) and (2.20) ( $V_{2 \phi}(\mathrm{calc})$ and $\left.C_{p, 2 \phi}(\mathrm{calc})\right)$ indicate good


Figure 4.6 Comparison of $C_{p, 2 \phi}$ values (as a function of molality) calculated using equation (2.20) ( $C_{p, 2 d}(\mathrm{calc})$ ) with those calculated using equations (2.38) and the fitting parameters to equations (4.12) to (4.14) ( $C_{p, 2 \phi}($ global $)$ ) for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}$ at: $\bullet$, $T=288.15 \mathrm{~K} ; \times, T=298.15 \mathrm{~K} ;+, T=313.15 \mathrm{~K}$; and $\quad$,,$T=328.15 \mathrm{~K}$; and $p=0.1 \mathrm{MPa}$ (the dashed lines represent the standard error).
agreement when compared to those $V_{2 \phi}$ and $C_{p, 2 \phi}$ values calculated using equations (2.37) and (2.38) and ( $V_{2 \nmid}($ global $)$ and $C_{p, 2 \phi}($ global $)$ ).

In order to further ensure that the properties of the parent acid are sufficient to be used in the subsequent study of the aqueous REE triflates, the properties of the parent acid must first be compared to those for aqueous sodium triflate. In the limit
$m_{2} \rightarrow 0 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$, the apparent molar volumes and heat capacities at infinite dilution of aqueous triflic acid solutions, $V_{2}{ }^{0}$ and $C_{p 2}{ }^{0}$, respectively, are equal to the partial molar properties. Utilizing the convention that $Y_{2}{ }^{0}\left(\mathrm{H}^{+} ; \mathrm{aq}\right)=0$, the single ion properties of the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$(aq) anion may be obtained directly from the properties of the parent acid:

$$
\begin{equation*}
Y_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-} ; a q\right)=Y_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H} ; \mathrm{aq}\right) . \tag{4.15}
\end{equation*}
$$

In addition, the single ion properties, $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right.$; aq) and $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ;\right.$aq $)$, may be estimated using the $V_{2}{ }^{0}\left(\mathrm{Na}^{+} ; \mathrm{aq}\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{Na}^{+} ;\right.$aq) values reported by Hovey et al. (1988) and the calculated values of $V_{2}{ }^{0}$ and $C_{p 2}{ }^{0}$ for $\mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq)}}$ :

$$
\begin{equation*}
Y_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-} ; a q\right)=Y_{2}^{0}\left(\mathrm{NaCF}_{3} \mathrm{SO}_{3} ; a q\right)-Y_{2}^{0}\left(\mathrm{Na}^{+} ; a q\right) \tag{4.16}
\end{equation*}
$$

Values for $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ; \mathrm{aq}\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ;\right.$aq) calculated using equations (4.15) and (4.16) are reported in Table 4.7, as are those reported by Xiao et al. (2001). The $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}(\mathrm{aq})\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}{ }_{(\mathrm{aq})}\right)$ values calculated in this study using both equations (4.15) and (4.16) are in close agreement. Values for $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ; \mathrm{aq}\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ; \mathrm{aq}\right)$ calculated in this study using equations (4.15) and (4.16) are in good agreement when compared with those reported by Xiao et al. (2001) at all temperatures with the possible exception of values for $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right.$; aq) at $T=328.15 \mathrm{~K}$. Xiao et al. (2001) report maxima in their values for $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right.$aq) at $T=313.15 \mathrm{~K}$ which are not observed in this study. This comparison confirms that the $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ; \mathrm{aq}\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} ; \mathrm{aq}\right)$ values obtained in this study from the parent acid are reasonable to use in combination with Young's rule in the calculation of apparent molar properties of the aqueous REE triflate salt solutions (presented next).

Table 4.4 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$

| $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \end{aligned}$ |  | $\begin{aligned} & \left(c_{p, \text { expt }} \cdot \rho_{\text {expt }}\right)-1 \\ & c_{p 1} \cdot \rho_{l} \end{aligned}$ | $\begin{aligned} & C_{p, 2 \phi} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T=288.15 \mathrm{~K}$ |  |  |  |  |
| 0.0212 | 0.00211 | 73(1) | -0.00064 | 175(7) |
| 0.0352 | 0.00350 | 73(1) | -0.00103 | 180(6) |
| 0.0499 | 0.00495 | 73(1) | -0.00145 | 180(6) |
| 0.0706 | 0.00699 | 73(1) | -0.00202 | 183(6) |
| 0.0865 | 0.00855 | 73(1) | -0.00247 | 185(6) |
| 0.1080 | 0.01066 | 73(1) | -0.00299 | 187(6) |
| 0.1253 | 0.01233 | 73(1) | -0.00348 | 189(6) |
| 0.1437 | 0.01414 | 73(1) | -0.00391 | 190(6) |
| 0.1778 | 0.01745 | 73(1) | -0.00474 | 192(6) |
| 0.1805 | 0.01771 | 73(1) | -0.00483 | 193(6) |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |
| 0.0155 | 0.00152 | 74(1) | -0.00041 | 198(8) |
| 0.0313 | 0.00305 | 74(1) | -0.00084 | 197(6) |
| 0.0469 | 0.00457 | 74(1) | -0.00121 | 200(6) |
| 0.0630 | 0.00612 | 74(1) | -0.00159 | 200(6) |
| 0.0792 | 0.00768 | 74(1) | -0.00196 | 202(6) |
| 0.0959 | 0.00929 | 74(1) | -0.00236 | 204(6) |
| 0.1116 | 0.01080 | 74(1) | -0.00270 | 206(6) |
| 0.1285 | 0.01242 | 74(1) | -0.00305 | 207(6) |
| 0.1447 | 0.01396 | 74(1) | -0.00342 | 210(6) |
| 0.1805 | 0.01736 | 75(1) | -0.00419 | 211(6) |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |
| 0.0171 | 0.00163 | 77(1) | -0.00040 | 217(7) |
| 0.0362 | 0.00344 | 77(1) | -0.00068 | 223(6) |
| 0.0560 | 0.00532 | 77(1) | -0.00126 | 222(6) |
| 0.0754 | 0.00715 | 77(1) | -0.00170 | 222(6) |
| 0.0919 | 0.00870 | 77(1) | -0.00200 | 224(6) |
| 0.1111 | 0.01050 | 77(1) | -0.00236 | 225(6) |
| 0.1277 | 0.01204 | 77(1) | -0.00273 | 226(6) |
| 0.1324 | 0.01248 | 77(1) | -0.00282 | 227(6) |
| 0.1718 | 0.01615 | 77(1) | -0.00361 | 230(5) |
| 0.1805 | 0.01696 | 77(1) | -0.00378 | 230(5) |

Table 4.4 (continued)

| $m_{2}$ | $\rho_{\text {expt }}-\rho_{l}$ | $V_{2 \phi}$ | $\left(c_{p, \text { expt }} \cdot \rho_{\text {expt }}\right)-1$ <br> $c_{p l} \cdot$$\rho_{l}$ | $C_{p, 2 \phi}$ |
| :--- | :---: | :---: | :---: | :--- |
| $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ | $/\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $T=328.15 \mathrm{~K}$ |  |
| 0.0175 | 0.00164 | $78(1)$ | -0.00040 | $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ |
| 0.0356 | 0.00333 | $78(1)$ | -0.00084 | $218(7)$ |
| 0.0531 | 0.00495 | $78(1)$ | -0.00121 | $222(6)$ |
| 0.0714 | 0.00665 | $78(1)$ | -0.00160 | $225(6)$ |
| 0.0894 | 0.00831 | $78(1)$ | -0.00197 | $227(6)$ |
| 0.1073 | 0.00996 | $78(1)$ | -0.00233 | $229(6)$ |
| 0.1244 | 0.01152 | $78(1)$ | -0.00262 | $230(6)$ |
| 0.1417 | 0.01310 | $78(1)$ | -0.00299 | $231(5)$ |
| 0.1610 | 0.01486 | $78(1)$ | -0.00337 | $233(5)$ |
| 0.1805 | 0.01662 | $78(1)$ | -0.00372 | $234(5)$ |
|  |  |  |  | $235(5)$ |

Table 4.5 Estimates of parameters to the Pitzer-ion interaction model equations, shown as equations (2.37) and (2.38), for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$

| $\begin{aligned} & V_{2}^{0} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{4}\left(\beta^{(0) V}\right) \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{3}\left(\beta^{(1) V}\right) \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: |
| $T=288.15 \mathrm{~K}$ |  |  |
| 72.35(0.03) | 27(4) | -4.9(0.6) |
| $T=298.15 \mathrm{~K}$ |  |  |
| 74.05(0.04) | 17(6) | -3.3(0.9) |
| $T=313.15 \mathrm{~K}$ |  |  |
| 76.30(0.02) | 13(3) | -3.1(0.5) |
| $T=328.15 \mathrm{~K}$ |  |  |
| 77.580(0.007) | 17(1) | -3.2(0.2) |
| $\begin{aligned} & C_{p 2}{ }^{0} \\ & \left(\left(\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)\right. \end{aligned}$ | $\begin{aligned} & 10^{5}\left(\beta^{(0) J}\right) \\ & /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-2}\right) \end{aligned}$ | $\begin{aligned} & 10^{5}\left(\beta^{(1))}\right) \\ & /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-2}\right) \end{aligned}$ |
| $T=288.15 \mathrm{~K}$ |  |  |
| 172.6(0.5) | -10(3) | 11.3(4) |
| $T=298.15 \mathrm{~K}$ |  |  |
| 194.7(0.8) | -38(5) | 54(8) |
| $193.6{ }^{\text {k }}$ | -0.7408 ${ }^{\text {k }}$ | $-3.194^{k}$ |
| $T=313.15 \mathrm{~K}$ |  |  |
| 213.6(0.6) | -13(3) | 20(4) |
| $206.3^{\text {k }}$ | $-2.288^{\mathrm{k}}$ | $-3.908^{\text {k }}$ |
| $T=328.15 \mathrm{~K}$ |  |  |
| 211.97(0.06) | 0.3(0.2) | -1.2(0.5) |
| $202.1{ }^{\text {k }}$ | $5.403^{\mathrm{k}}$ | -87.82 ${ }^{\text {k }}$ |

${ }^{\mathrm{k}}$ Xiao et al. (2001)

Table 4.6 Estimates of parameters to equations (4.9) to (4.14) that model the temperature dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for aqueous solutions of $\mathrm{NaCF}_{3} \mathrm{SO}_{3}$ at $p=0.1 \mathrm{MPa}$

| $V_{2 \phi}$ |  |
| :--- | :--- |
| Parameter: |  |
| $b_{1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | Value: |
| $b_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $69(3)$ |
| $b_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1}\right)$ | $-533(48)$ |
| $b_{4} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $4.1 \times 10^{-2}\left(8 \times 10^{-3}\right)$ |
| $b_{5} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $160(27)$ |
| $b_{6} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-1.0(0.2)$ |
| $b_{7} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $1.7 \mathrm{x} 10^{-3}\left(3 \times 10^{-4}\right)$ |
| $b_{8} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-281(50)$ |
| $b_{9} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $1.8(0.3)$ |
|  | $-3.0 \times 10^{-3}\left(5 \times 10^{-4}\right)$ |
| Standard error $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  |
| $C_{p, 2 \phi}$ | 0.03 |
| Parameter: |  |
| $d_{1} /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | Value: |
| $d_{2} /\left(\mathrm{J} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | $-100(36)$ |
| $d_{3} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $0.9(0.1)$ |
| $d_{4} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $-21(4)$ |
| $d_{5} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | $0.14\left(3 \times 10^{-2}\right)$ |
| $d_{6} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-2.2 \times 10^{-4}\left(4 \times 10^{-5}\right)$ |
| $d_{7} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $40(6)$ |
| $d_{8} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | $-0.26(0.04)$ |
|  | $4.3 \times 10^{-4}\left(7 \times 10^{-5}\right)$ |
| Standard error $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ |  |

Table 4.7 Standard partial molar volumes and heat capacities for $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}{ }_{(\mathrm{aq})}$ calculated from the apparent molar volumes and heat capacities of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ reported in this study and $\mathrm{Na}^{+}{ }_{\text {(aq) }}$ values reported by Hovey et al. (1988); compared to those reported by Xiao et al. (2001)

| $\begin{aligned} & T \\ & /(\mathrm{K}) \end{aligned}$ | $\begin{aligned} & V_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3-}^{-}(\mathrm{aq})\right)^{1} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}-(\mathrm{aq})\right)^{\mathrm{m}} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}(\mathrm{aq})\right)^{1} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}{ }^{-}(\mathrm{qq})\right)^{\mathrm{m}} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 288.15 | 74.32(0.01) |  | 145.3(0.1) |  |
| 298.15 | 75.40(0.06) | 75.0 | 156.5(0.6) | 153.1 |
| 313.15 | 76.73(0.05) | 76.6 | 165.1(0.6) | 161.2 |
| 328.15 | 77.8(0.2) | 76.8 | 168(3) | 152.9 |
| T $/(\mathrm{K})$ | $\begin{aligned} & V_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}(\mathrm{aq})\right)^{\mathrm{n}} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}-(\mathrm{aq})\right)^{0} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2}{ }^{0}\left(\mathrm{Na}^{+}(\mathrm{aqq})\right)^{\mathrm{p}} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |  |
| 288.15 | 74.1(0.3) |  | -1.75(0.3) |  |
| 298.15 | 75.3(0.3) | 74.7(0.8) | -1.27(0.3) |  |
| 313.15 | 76.7(0.3) | 76.2(1.0) | -0.44(0.3) |  |
| 328.15 | 77.5(0.3) | 77(1.5) | 0.12(0.3) |  |
| $\begin{aligned} & T \\ & /(\mathrm{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}(\mathrm{aq})\right)^{\mathrm{n}} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}(\mathrm{aq})\right)^{0} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & C_{p 2}\left(\mathrm{Na}^{+}{ }_{(\mathrm{aq})}\right)^{\mathrm{p}} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |  |
| 288.15 | 141(1) |  | 31.8(1.3) |  |
| 298.15 | 153(1) | 151(2) | 42.2(1.3) |  |
| 313.15 | 161(1) | 154(7) | 52.8(1.3) |  |
| 328.15 | 162(3) | 153(1) | 49.5(1.3) |  |

${ }^{1}$ Single ion values calculated and reported in the current study using equation (4.15)
${ }^{\mathrm{m}}$ Single ion values calculated using equation (4.15) and reported in Xiao et al. (2001)
${ }^{\mathrm{n}}$ Single ion values calculated and reported in the current study using $\mathrm{Na}^{+}{ }_{(\text {aq) }}$ single ion parameters from Hovey et al. (1988) and equation (4.16)
${ }^{\circ}$ Single ion values calculated using equation (4.16) reported in Xiao et al. (2001)
${ }^{\mathrm{p}}$ Single ion values for $\mathrm{Na}^{+}{ }_{(\text {aq) }}$ reported in Hovey et al. (1988)

### 4.4 The REE Triflates in Aqueous Solution

### 4.4.1 Experimental

Preparation of acidified aqueous REE triflate salt solutions followed the procedure previously outlined by Spedding et al. (1966b) in which the REE oxides were dissolved in approximately $1.20 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ triflic acid with stirring and warming at $T=353 \mathrm{~K} . \mathrm{Gd}_{2} \mathrm{O}_{3(\mathrm{~s})}$ (Gadolinium oxide, 0.999 mol fraction), $\mathrm{Dy}_{2} \mathrm{O}_{3(\mathrm{~s})}$ (Dysprosium oxide, 0.999 mol fraction), $\mathrm{Nd}_{2} \mathrm{O}_{3(\mathrm{~s})}$ (Neodymium oxide, 0.999 mol fraction), $\mathrm{Er}_{2} \mathrm{O}_{3(\mathrm{~s})}$
(Erbium oxide, 0.999 mol fraction), $\mathrm{Yb}_{2} \mathrm{O}_{3(\mathrm{~s})}$ (Ytterbium oxide, 0.999 mol fraction), and $\mathrm{Y}_{2} \mathrm{O}_{3(\mathrm{~s})}$ (Yttrium oxide, 0.9999 mol fraction) were obtained from the Aldrich Chemical Company (Catalog Numbers 27581-3, 28926-4, 22865-6, 28924-8, 24699-9, and 20516-8, respectively). After the oxide appeared to be completely dissolved, a 10 mL aliquot of each REE triflate stock solution was titrated with approximately $3.00 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ triflic acid to identify an equivalence point pH (all of which were found to be above $\mathrm{pH}=3.0$ and below $\mathrm{pH}=3.4$ ). The pH of the stock solution was brought below the equivalence point pH by drop-wise addition of $6.0 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$. The resulting solution was re-heated to approximately $T=353 \mathrm{~K}$ for several hours and allowed to cool. This pH adjustment procedure was repeated until no change in pH was noted between successive pH adjustment and heating cycles.

Titrimetric analyses were performed using ethylenediaminetetraacetic acid (EDTA) to determine the concentration of the $\operatorname{REE}_{(\mathrm{aq})}, \mathrm{R}^{3+}{ }_{(\mathrm{aq})}$, in each acidified REE triflate stock solution. Xylenol orange was used as the endpoint indicator and an acetic acid buffer was used to maintain a $\mathrm{pH}=5.5$. In all cases, at least three consecutive titrations were performed in order to increase precision (less than $0.5 \mathrm{~mol} \%$ deviation). Stock solutions of EDTA were prepared from the disodium salt of EDTA $\left(\mathrm{Na}_{2} \mathrm{EDTA} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ that was obtained from BDH Chemicals ( 0.99 mol fraction, Catalog No. JT8993-1). The disodium EDTA salt was oven-dried and prepared using the procedure described by Skoog and West (1982), in which the EDTA was weighed to $\pm 0.00001 \mathrm{~g}$. The molalities of the excess acid in the acidified REE triflate stock salt solutions were determined by titration against THAM. Samples of THAM used in each acidimetric titration were weighed to $\pm 0.00001 \mathrm{~g}$. Methyl red was used as the endpoint
indicator in these titrations. Diluted solutions of the acidified aqueous REE triflate salts were prepared by mass on the molality concentration scale by dilution of the standardized solutions using deionized, degassed water. The dilute solutions were stored in sealed volumetric glass flasks and their densities and massic heat capacities were measured within 24 hours of their preparation.

### 4.4.2 Results and conclusions

Apparent molar volumes and heat capacities for each of the acidified rare earth triflate salts were calculated using equations (4.17) and (4.18):

$$
\begin{align*}
& V_{\phi, \text { exp } t}=\left(\frac{\left(1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}\right)}{\rho_{\text {exp } t}}-\frac{\left(1 / \rho_{1}\right)}{\left(m_{2}+m_{3}\right)}\right)  \tag{4.17}\\
& C_{p \phi, \text { expt } t}=\left(\frac{\left(1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}\right) \cdot c_{p, \text { exp } t}-c_{p 1}}{\left(m_{2}+m_{3}\right)}\right), \tag{4.18}
\end{align*}
$$

where equations (4.17) and (4.18) are similar to equations (2.19) and (2.20), but for a system where more than one solute is present. These apparent molar properties were subjected to Young's rule to determine the apparent molar volumes and heat capacities of the aqueous REE triflate salt solutions. $\left(\rho_{\text {expt }}-\rho_{l}\right), V_{\phi, \text { expt }}, V_{2 \phi,}\left(\left(c_{p, \text { expt }} . \rho_{\text {expt }}\right) /\left(c_{p l} . \rho_{I}\right)\right)-1$, $C_{p \phi, e x p t,}$ and $C_{p, 2 \phi}$ values are reported at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (Gadolinium triflate), $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (Dysprosium triflate), $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) 3$ (Neodymium triflate), $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (Erbium triflate), $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\left(\mathrm{Ytterbium}\right.$ triflate), and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}(\mathrm{Yttrium}$ triflate) of known concentration in Tables 4.8 to 4.13, respectively. The values in parentheses are the estimated uncertainties that have been calculated using the standard propagation of error method:

$$
\begin{align*}
& \left(\delta V_{\phi, \exp t}\right)^{2}=\left(\frac{M_{2}}{\rho_{\exp t} \cdot\left(m_{2}+m_{3}\right)}-\frac{\left(1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}\right) / \rho_{\exp t}-1 / \rho_{1}}{\left(m_{2}+m_{3}\right)^{2}}\right)^{2} \cdot \delta m_{2}^{2} \\
& \\
& +\left(\frac{M_{3}}{\rho_{\exp t} \cdot\left(m_{2}+m_{3}\right)}-\frac{\left(1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}\right) / \rho_{\exp t}-1 / \rho_{1}}{\left(m_{2}+m_{3}\right)^{2}}\right)^{2} \cdot \delta m_{3}{ }^{2}  \tag{4.19}\\
& \\
& +\left(\frac{1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}}{\rho_{\exp t}{ }^{2} \cdot\left(m_{2}+m_{3}\right)}\right)^{2} \cdot \delta \rho_{\exp t}{ }^{2} \\
& \left(\delta C_{p \phi, \exp t}\right)^{2}=\left(\frac{M_{2} \cdot c_{p, \exp t}}{\left(m_{2}+m_{3}\right)}-\frac{\left(1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}\right) \cdot c_{p, \exp t}-c_{p 1}}{\left(m_{2}+m_{3}\right)^{2}}\right)^{2} \cdot \delta m_{2}{ }^{2}  \tag{4.20}\\
& \quad+\left(\frac{M_{3} \cdot c_{p, \exp t}}{\left(m_{2}+m_{3}\right)}-\frac{\left(1+m_{2} \cdot M_{2}+m_{3} \cdot M_{3}\right) \cdot c_{p, \exp t}-c_{p 1}}{\left(m_{2}+m_{3}\right)^{2}}\right)^{2} \cdot \delta m_{3}^{2} \\
&
\end{align*}
$$

where equations (4.19) and (4.20) follow the same form as those of equations (3.5) and (3.12), but coincide with equations (4.17) and (4.18).

The apparent molar volumes and heat capacities of aqueous solutions of the REE triflate salts were modeled using modified Pitzer-ion interaction equations (Pitzer, 1991; Hakin et al., 2003a, 2003b, 2004a, 2005; Marriott et al., 2001). These Pitzer equations have been previously reported (for a general electrolyte) as equations (2.37) and (2.38) and were found to successfully model the concentration dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values at all the investigated temperatures. Estimated values of $V_{2}{ }^{0}, C_{p 2}{ }^{0}, \beta^{(0) V}, \beta^{(l) V}, \beta^{(0) J}$, and $\beta^{(1) J}$ were obtained using least squares multiple regression analyses and are reported in Table 4.14, where they have also been compared with those values previously reported by Xiao et al. (1996a). Figures 4.7 and 4.8 show the dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ on


Figure 4.7 Trends in apparent molar volumes, $V_{2 \phi}-D H L L$, for $\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at $T=(288.15,198.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ as a function of ionic strength at: $\bullet, T=288.15 \mathrm{~K} ;$ ㅁ, $T=298.15 \mathrm{~K} ; \square, T=313.15 \mathrm{~K}$; and $\odot, T=328.15 \mathrm{~K}$ (the solid lines are for visualization purposes only).
ionic strength at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ for aqueous acidified $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ solutions. As can be seen, the temperature dependence on the $C_{p, 2 \phi}$ values for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ is more pronounced than that observed for the corresponding $V_{2 \phi}$ values. This trend is also consistent for all aqueous REE systems investigated.

A primary concern in the calculation of partial molar properties of aqueous REE


Figure 4.8 Trends in apparent molar heat capacities, $C_{p, 2 \phi}-D H L L$, for $\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at $T=(288.15,198.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$ as a function of ionic strength at: $\bullet, T=288.15 \mathrm{~K} ;$ ㅁ, $T=298.15 \mathrm{~K} ; \square, T=313.15 \mathrm{~K}$; and $\odot, T=328.15 \mathrm{~K}$ (the solid lines are for visualization lines only).
salt solutions at infinite dilution is the degree of complex formation between the $\mathrm{R}^{3+}$ cation and the counter ion used in the salt. Previous studies (Marriott et al., 2001; Rard et al., 1977, 1979, 1981, 1982) have shown that mean molal activity coefficients for aqueous REE salts solutions and water activity trends differ as a function of molality for aqueous solutions of the REE chlorides, nitrates, and perchlorates. Such differences are believed to be the result of various degrees of speciation. In previous studies (Hakin et al., 2005; Marriott et al., 2001) the concentration dependences of apparent molar


Figure 4.9 $V_{2 \phi}-V_{2}{ }^{0}$ against $I^{1 / 2}$ at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$ for aqueous solutions of: $\bullet, \operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (this study); $\times, \mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ (Hakin et al., 2004b); +, $\mathrm{GdCl}_{3}$ (Hakin et al., 2003b); and $\quad, \operatorname{Gd}\left(\mathrm{NO}_{3}\right)_{3}$ (Hakin, et al., 2005).
volumes and heat capacities, $V_{2 \phi}-V_{2}^{0}$ and $C_{p, 2 \phi}-C_{p 2}{ }^{0}$, respectively, have been used as an indication of complex formation within aqueous REE salt solutions. As such, Figures 4.9 and 4.10 compare $V_{2 \phi}-V_{2}{ }^{0}$ and $C_{p, 2 \phi}-C_{p 2}{ }^{0}$ values for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ (this study), $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$, (Hakin et al., 2004b), $\mathrm{GdCl}_{3(\mathrm{aq})}$ (Hakin et al., 2003b), and $\mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}$ (Hakin et al., 2005) at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$ against $I^{1 / 2}$. The trends in Figures 4.9 and 4.10 indicate that the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$(aq) anion is less prone to speciation with $\mathrm{R}^{3+}{ }_{\text {(aq) }}$ than


Figure 4.10 $C_{p, 2 \phi}-C p_{2}{ }^{0}$ against $I^{1 / 2}$ at $T=298.15 \mathrm{~K}$ and $p=0.1 \mathrm{MPa}$ for aqueous solutions of: •, $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (this study); $\times, \mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ (Hakin et al., 2004b); +, $\mathrm{GdCl}_{3}$
(Hakin et al., 2003b); and $\quad$, $\operatorname{Gd}\left(\mathrm{NO}_{3}\right)_{3}$ (Hakin et al., 2005).
the $\mathrm{ClO}_{4}^{-}{ }^{-}$(aq), $\mathrm{Cl}^{-}{ }_{(\text {aq) }}$, and $\mathrm{NO}_{3}{ }^{-}$(aq) anions at $T=298.15 \mathrm{~K} . V_{2 \phi}-V_{2}{ }^{0}$ and $C_{p, 2 \phi}-C_{p 2}{ }^{0}$ values for all the systems investigated at the temperatures of interest show similar behavior. Such trends add support to the contention that the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}(\mathrm{aq})$ anion engages in speciation with $\mathrm{R}^{3+}{ }_{(\text {aq })}$ to a limited degree. Therefore, the triflate salts are good candidates for determining reliable single ion values for aqueous trivalent REE cations over the temperature range $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$.

The values for the apparent molar volumes and apparent molar heat capacities at infinite dilution reported in Table 4.14 can be used to calculate the single ion contributions of the trivalent REE metal cations within the aqueous salt solutions investigated. Using the previously identified convention that $Y_{2}{ }^{0}\left(\mathrm{H}^{+} ; \mathrm{aq}\right)=0$ (equation (4.15)), the single ion volumes and heat capacities of the aqueous trivalent REE cations, $Y_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ have been calculated using equation (4.21) at each investigated temperature:

$$
\begin{equation*}
Y_{2}^{0}\left(R^{3+} ; a q\right)=Y_{2}^{0}\left(R\left({C F_{3}}^{2} \mathrm{SO}_{3}\right)_{3} ; a q\right)-3 \cdot\left\{Y_{2}^{0}\left(C F_{3} \mathrm{SO}_{3}^{-} ; a q\right)\right\}, \tag{4.21}
\end{equation*}
$$

The calculated single ion values are compared with values previously derived from the REE sulfates, chlorides, nitrates, and perchlorates (Hakin et al., 2003a, 2003b, 2004b, 2005; Marriott et al., 2001). These single ion values have also been compared with values reported by Xiao et al. (1997a, 1996b, 2001) and are shown in Table 4.15.

The single ion volumes and heat capacities calculated in this study and reported in Table 4.15 shows a high degree of consistency with previous studies. This consistency may be verified by looking at the temperature dependences of calculated values of $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)-V_{2}{ }^{0}\left(\mathrm{ClO}_{4}^{-}\right)$and $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)-C_{p 2}{ }^{0}\left(\mathrm{ClO}_{4}{ }^{-}\right)$for aqueous solutions obtained from the parent acids in comparison with those calculated for pairs of REE salts containing a common cation, shown in Figures 4.11 and 4.12. For example, with respect to the parent acids:

$$
\begin{equation*}
V_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)-V_{2}^{0}\left(\mathrm{ClO}_{4}^{-}\right)=V_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\right)-V_{2}^{0}\left(\mathrm{HClO}_{4}\right), \tag{4.22}
\end{equation*}
$$

whereas for the gadolinium salts:


Figure 4.11 The temperature dependences of $V_{2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)-V_{2}{ }^{0}\left(\mathrm{ClO}_{4}^{-}\right)$values for the REE systems: $\bullet, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ (current study) and $\mathrm{HClO}_{4(\mathrm{aq})}$ (Hovey, 1988);

- , $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq)}}$ (current study) and $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ (Hakin et al., 2004b); ■, $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ (current study) and $\mathrm{Dy}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aqq})}$ (Hakin et al., 2003a); , $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ (current study) and $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}($ Hakin et al., 2003a); and $\boldsymbol{\perp}$, $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ (current study) and $\mathrm{Y}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}($ Hakin et al., 2003a) (the solid line is for visualization purposes only).


Figure 4.12 The temperature dependence of $C_{p 2}{ }^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)-C_{p 2}{ }^{0}\left(\mathrm{ClO}_{4}{ }^{-}\right)$values for the REE systems: $\bullet, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{\text {(aq) }}$ (current study) and $\mathrm{HClO}_{4(\mathrm{aq})}$ (Hovey, 1988);

- , $\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq)}}\left(\right.$ current study ) and $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ (Hakin et al., 2004b); ■ , $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ (current study) and $\mathrm{Dy}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ (Hakin et al., 2003a); O , $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ (current study) and $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\text { aq) }}($ Hakin et al., 2003a); and $\boldsymbol{\perp}$, $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ (current study) and $\mathrm{Y}\left(\mathrm{ClO}_{4}\right)_{3(\text { aq) }}($ Hakin et al., 2003a) (the solid line is for visualization purposes only).

$$
\begin{align*}
& V_{2}^{0}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)-V_{2}^{0}\left(\mathrm{ClO}_{4}^{-}\right)= \\
&  \tag{4.23}\\
& \frac{V_{2}^{0}\left(\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right)-V_{2}^{0}\left(\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}\right)}{3} .
\end{align*}
$$

With the exception of $\mathrm{Dy}^{3+}{ }_{(\text {aq })}$ and $\mathrm{Gd}^{3+}{ }_{(\text {aq })}$ at $T=288.15 \mathrm{~K}$, it appears that the single ion properties obtained from the study of the trivalent REE perchlorates (Hakin et al., 2003a,

2004b) are in better agreement with the REE triflates presented in the current study than those obtained using chloride (Hakin et al., 2003b), nitrate (Hakin et al., 2005), and sulfate (Marriott et al., 2001) as the counter ion. These various levels of agreement observed in Table 4.15 are consistent with the apparent degrees of speciation present within the salts (as described above and presented in Figures 4.9 and 4.10). Also, the single ion values previously obtained by Hakin et al. (2003b) for the aqueous REE perchlorates are in closer agreement with the REE triflate salt calculated values obtained in this study than the perchlorate derived values previously reported by Xiao and Tremaine (1997b, 1996b).

The $V_{2 \phi}$ values for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ reported by Xiao and Tremaine (1997b and 2001, respectively) at $T=298.15 \mathrm{~K}$ have been used in the manner presented in equation (4.21) to produce a singe ion volume for $\mathrm{Gd}^{3+}{ }_{(\text {aq })}$ that has been reported in Table 4.15. This single ion value for $\mathrm{Gd}^{3+}{ }_{(\mathrm{aq})}$ is significantly higher than those reported in this thesis and in the past (Hakin et al., 2003a, 2003b, 2004a, 2005; Marriott et al., 2001). It is speculated that the results reported for $\mathrm{Gd}_{( }\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ by Xiao and Tremaine (1996a) could be in question.

From the compilation of the single ion values for the aqueous $\mathrm{R}^{3+}$ ions in past studies, it can be seen that there is a high degree of internal consistency for the aqueous $\mathrm{R}^{3+}$ ions derived in this study. Given the identified lack of speciation within aqueous REE triflate salt solutions, it is suggested that these systems are capable of providing precise values for the single ion volumes and heat capacities for aqueous REE trivalent metal cations. Therefore, it is suggested that the single ion values derived in this chapter from the aqueous REE triflate salts should be recommended for use.

Table 4.8 Calculated of relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$


Table 4.8 (continued)

| $m_{2}$ | $m_{3}$ | $\rho_{\text {expt }}-\rho_{l}$ | $V_{\phi, \text { expt }}$ | $V_{2 \phi}$ | $\left(c_{p, \text { expt }} \cdot \rho_{\text {expt }}\right)-1 C_{p \phi, \text { expt }} \quad C_{p, 2 \phi}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right) /\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right) /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ |  |  | $/\left(\mathrm{cm}^{3} \cdot \mathrm{mo}\right.$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  | $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right) /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ |  |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |  |  |  |
| 0.0177 | 0.00098 | 0.00723 | 191.8(0.5) | 195.8(0.5) | -0.00150 | 432(4) | 458(5) |
| 0.0349 | 0.00194 | 0.01420 | 191.8(0.4) | 195.8(0.4) | -0.00258 | 476(3) | 502(4) |
| 0.0536 | 0.00297 | 0.02170 | 192.0(0.4) | 195.9(0.4) | -0.00398 | 474(2) | 499(4) |
| 0.0715 | 0.00397 | 0.02886 | 192.1(0.4) | 196.0(0.4) | -0.00524 | 476(2) | 502(4) |
| 0.0913 | 0.00507 | 0.03669 | 192.3(0.4) | 196.1(0.4) | -0.00668 | 478(2) | 504(4) |
| 0.1108 | 0.00615 | 0.04435 | 192.5(0.4) | 196.2(0.4) | -0.00808 | 481(2) | 504(4) |
| 0.1302 | 0.00723 | 0.05191 | 192.6(0.4) | 196.3(0.4) | -0.00938 | 481(2) | 506(4) |
| 0.1504 | 0.00835 | 0.05972 | 192.6(0.4) | 196.3(0.4) | -0.01075 | 483(2) | 508(4) |
| 0.1709 | 0.00949 | 0.06762 | 192.9(0.3) | 196.4(0.4) | $-0.01212$ | 486(2) | 511(4) |
| 0.1919 | 0.01065 | 0.07556 | 193.0(0.3) | 196.4(0.4) | -0.01351 | 489(2) | 512(4) |

Table 4.9 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$


Table 4.9 (continued)

|  |  | $\rho_{\text {expt }}-\rho_{l}$ |  |  | $\begin{aligned} & \left(c_{p, \text {,expt }} \cdot \rho_{\text {expt }}\right)-1 C_{p \phi, \text { expt }} \\ & c_{p 1} \cdot \rho_{l} \end{aligned}$ |  | $C_{p, 2 \phi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $/(\mathrm{mol} \cdot \mathrm{kg}$ | /(mol $\mathrm{kg}^{-1}$ | / $\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right.$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  | $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~m}\right.$ | (J'K |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |  |  |  |
| 0.0167 | 0.00607 | 0.00729 | 167.3(0.6) | 193.9(0.6) | -0.00147 | 319(5) | 482(6) |
| 0.0355 | 0.01293 | 0.01542 | 168.8(0.5) | 194.9(0.6) | -0.00303 | 339(3) | 498(5) |
| 0.0531 | 0.01934 | 0.02297 | 169.4(0.5) | 195.0(0.6) | -0.00439 | 346(3) | 503(4) |
| 0.0707 | 0.02576 | 0.03044 | 170.3(0.5) | 195.5(0.5) | -0.00576 | 352(3) | 507(4) |
| 0.0909 | 0.03311 | 0.03893 | 170.9(0.5) | 195.7(0.5) | -0.00733 | 357(3) | 509(4) |
| 0.1106 | 0.04029 | 0.04716 | 171.4(0.5) | 195.7(0.5) | -0.00886 | 360(3) | 509(4) |
| 0.1279 | 0.04658 | 0.05433 | 171.8(0.5) | 195.7(0.5) | -0.01018 | 364(2) | 512(4) |
| 0.1506 | 0.05485 | 0.06361 | 172.6(0.5) | 196.1(0.5) | -0.01192 | 366(2) | 511(4) |
| 0.1693 | 0.06169 | 0.07125 | 173.0(0.5) | 196.1(0.5) | -0.01335 | 370(2) | 513(4) |
| 0.1928 | 0.07023 | 0.08072 | 173.4(0.4) | 196.0(0.5) | -0.01502 | 373(2) | 513(4) |

Table 4.10 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$


Table 4.10 (continued)


Table 4.11 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\operatorname{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$

| $m_{2}$ | $m_{3}$ | $\rho_{\text {expt }}-\rho_{l}$ | $V_{\phi, \text { expt }}$ | $V_{2 \phi}$ | $\begin{aligned} & \left(c_{p, \text { expt } t} \cdot \rho_{\text {expt }}\right)-1 C_{p \phi, \text { expt }} \\ & c_{p 1} \cdot \rho_{l} \end{aligned}$ |  | $C_{p, 2 \phi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $/(\mathrm{mol} \cdot \mathrm{k}$ | $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right.$ | ) $\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}\right.$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  | $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~m}\right.$ | /(J.K $\mathrm{K}^{-1}$ |
| $T=288.15 \mathrm{~K}$ |  |  |  |  |  |  |  |
| 0.0200 | 0.00120 | 0.00869 | 177.5(0.8) | 181.9(0.8) | -0.00164 | 394(5) | 422(5) |
| 0.0389 | 0.00234 | 0.01685 | 178.1(0.8) | 182.5(0.8) | -0.00311 | 404(4) | 431(4) |
| 0.0583 | 0.00350 | 0.02512 | 178.7(0.8) | 183.0(0.8) | -0.00449 | 415(4) | 442(4) |
| 0.0789 | 0.00474 | 0.03385 | 179.0(0.8) | 183.2(0.8) | -0.00603 | 421(4) | 447(4) |
| 0.0991 | 0.00596 | 0.04235 | 179.3(0.8) | 183.5(0.8) | $-0.00749$ | 424(4) | 451(4) |
| 0.1198 | 0.00720 | 0.05097 | 179.6(0.8) | 183.7(0.8) | -0.00901 | 426(4) | 452(4) |
| 0.1408 | 0.00846 | 0.05965 | 179.9(0.7) | 183.9(0.7) | -0.01050 | 429(4) | 455(4) |
| 0.1612 | 0.00969 | 0.06802 | 180.1(0.7) | 184.0(0.7) | -0.01192 | 431(4) | 457(4) |
| 0.1864 | 0.01120 | 0.07827 | 180.3(0.7) | 184.1(0.7) | -0.01356 | 436(4) | 461(4) |
| 0.2092 | 0.01257 | 0.08744 | 180.5(0.7) | 184.3(0.7) | -0.01511 | 438(4) | 462(4) |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |  |  |  |
| 0.0208 | 0.00124 | 0.00894 | 181.4(0.8) | 185.8(0.8) | -0.00158 | 434(5) | 461(5) |
| 0.0380 | 0.00226 | 0.01629 | 181.9(0.8) | 186.2(0.8) | -0.00274 | 446(4) | 472(4) |
| 0.0577 | 0.00344 | 0.02464 | 182.3(0.8) | 186.5(0.8) | $-0.00415$ | 453(4) | 479(4) |
| 0.0779 | 0.00464 | 0.03313 | 182.5(0.8) | 186.7(0.8) | $-0.00551$ | 458(4) | 484(4) |
| 0.0975 | 0.00581 | 0.04129 | 182.8(0.8) | 186.9(0.8) | -0.00692 | 460(4) | 485(4) |
| 0.0991 | 0.00590 | 0.04192 | 182.8(0.8) | 186.9(0.8) | -0.00693 | 461(4) | 486(4) |
| 0.1192 | 0.00711 | 0.05025 | 183.1(0.7) | 187.1(0.8) | -0.00829 | 463(4) | 488(4) |
| 0.1406 | 0.00838 | 0.05897 | 183.3(0.7) | 187.3(0.7) | -0.00965 | 467(4) | 491(4) |
| 0.1852 | 0.01104 | 0.07705 | 183.5(0.7) | 187.3(0.7) | -0.01256 | 468(4) | 492(4) |
| 0.2092 | 0.01247 | 0.08672 | 183.3(0.7) | 187.0(0.7) | -0.01393 | 469(4) | 493(4) |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |  |  |  |
| 0.0186 | 0.00112 | 0.00793 | 184.6(0.8) | 189.0(0.8) | -0.00137 | 452(5) | 479(5) |
| 0.0379 | 0.00228 | 0.01607 | 185.5(0.8) | 189.7(0.8) | -0.00268 | 468(4) | 494(4) |
| 0.0571 | 0.00343 | 0.02412 | 185.9(0.8) | 190.1(0.8) | -0.00395 | 476(4) | 501(4) |
| 0.0776 | 0.00466 | 0.03263 | 186.2(0.8) | 190.3(0.8) | $-0.00531$ | 479(4) | 504(4) |
| 0.0953 | 0.00572 | 0.03988 | 186.6(0.8) | 190.6(0.8) | -0.00646 | 482(4) | 507(4) |
| 0.1186 | 0.00713 | 0.04941 | 186.9(0.7) | 190.9(0.8) | -0.00787 | 489(4) | 513(4) |
| 0.1408 | 0.00846 | 0.05835 | 187.2(0.7) | 191.2(0.7) | -0.00926 | 491(4) | 515(4) |
| 0.1632 | 0.00981 | 0.06734 | 187.4(0.7) | 191.2(0.7) | -0.01066 | 493(4) | 517(4) |
| 0.1864 | 0.01120 | 0.07656 | 187.6(0.7) | 191.4(0.7) | -0.01212 | 494(3) | 517(4) |
| 0.2092 | 0.01257 | 0.08551 | 187.9(0.7) | 191.6(0.7) | -0.01347 | 496(3) | 520(3) |

Table 4.11 (continued)


Table 4.12 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$


Table 4.12 (continued)


Table 4.13 Calculated relative densities, relative massic heat capacities, apparent molar volumes, and apparent molar heat capacities of aqueous solutions of $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at known concentration at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$


Table 4.13 (continued)

| $m_{2}$ |  | $\rho_{\text {expt }}-\rho_{l}$ |  |  | $\left(c_{p, \text { expt }} \cdot \rho_{\text {expt }}\right)-1 C_{p \phi, \text { expt }} \quad C_{p, 2 \phi}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $/\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right)$ |  |  | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{1}\right.$ | $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  | $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right) /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ |  |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |  |  |  |
| 0.0196 | 0.00061 | 0.00670 | 192.1(0.4) | 194.3(0.4) | $-0.00142$ | 492(4) | 506.3(5) |
| 0.0388 | 0.00121 | 0.01319 | 193.0(0.3) | 195.3(0.3) | -0.00275 | 502(2) | 516.1(4) |
| 0.0583 | 0.00183 | 0.01974 | 193.5(0.3) | 195.7(0.3) | -0.00404 | 506(2) | 519.4(4) |
| 0.0790 | 0.00247 | 0.02658 | 194.0(0.3) | 196.1(0.3) | $-0.00546$ | 512(2) | 525.2(4) |
| 0.1001 | 0.00313 | 0.03351 | 194.3(0.3) | 196.4(0.3) | -0.00688 | 513(1) | 526.8(3) |
| 0.1210 | 0.00379 | 0.04034 | 194.5(0.2) | 196.5(0.3) | -0.00829 | 514(1) | 527.3(3) |
| 0.1419 | 0.00444 | 0.04708 | 194.7(0.2) | 196.7(0.3) | $-0.00962$ | 517(1) | 530.0(3) |
| 0.1655 | 0.00518 | 0.05465 | 194.8(0.2) | 196.8(0.3) | -0.01104 | 521(1) | 534.0(3) |
| 0.1816 | 0.00569 | 0.05980 | 194.8(0.2) | 196.8(0.3) | -0.01208 | 521(1) | 533.9(3) |
| 0.2119 | 0.00664 | 0.06934 | 195.0(0.2) | 197.0(0.3) | -0.01396 | 523(1) | 535.6(3) |

Table 4.14 Estimates of parameters to the Pitzer-ion interaction model equations, shown as equations (2.37) and (2.38), for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(288.15,298.15$, 313.15 , and 328.15 ) K and $p=0.1 \mathrm{MPa}$

| REE salt | $\begin{aligned} & V_{2}^{0} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{4}\left(\beta^{(0) V}\right) \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{3}\left(\beta^{(I) V}\right) \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $T=288.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 182.42(0.07) | -2.9(0.8) | -3.5(0.3) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 179.83(0.09) | 13(1) | -9.1(0.5) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 179.77(0.07) | -2.8(0.9) | -3.1(0.4) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{qq)}}$ | 179.41(0.08) | -3.1(0.8) | -1.7(0.4) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ | 179.94(0.08) | -3.1(0.8) | -1.6(0.4) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 181.78(0.04) | -2.9(0.4) | -2.9(0.2) |
| $T=298.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 185.77(0.09) | -5(1) | -2.4(0.4) |
|  | $189.57^{\text {a }}$ |  | $-2.166^{\text {q }}$ |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 185.4(0.1) | -8(1) | -1.7(0.5) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 183.2(0.1) | 4(1) | -5.7(0.5) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq }}$ | 183.2(0.2) | -6(2) | -2.2(0.8) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 183.5(0.1) | -8.4(0.8) | 1.2(0.4) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 184.52(0.08) | -1.5(0.8) | -3.2(0.4) |
| $T=313.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 190.4(0.5) | 10(5) | -9(2) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 189.2(0.2) | -2(1) | -4.6(0.6) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 185.68(0.02) | -9.8(0.3) | -0.2(0.1) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq }}$ | 186.18(0.09) | -1.5(0.9) | -3.7(0.4) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ | 187.1(0.2) | -8(1) | -0.9(0.6) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 188.1(0.1) | -2(1) | -3.9(0.5) |
| $T=328.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 193.4(0.2) | 4(2) | -9.6(0.8) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 190.8(0.2) | -6(2) | -3.6(0.7) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 188.4(0.1) | -7(1) | -2.4(0.6) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{qq})}$ | 187.7(0.3) | -6(2) | -2(1) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 189.5(0.5) | -5(3) | -3(2) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 190.71(0.06) | -6.9(0.6) | -2.2(0.3) |

Table 4.14 (continued)

| REE salt | $\begin{aligned} & C_{p 2}{ }^{0} \\ & /\left(\mathrm{J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{5}\left(\beta^{(0) J}\right) \\ & /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-2}\right) \end{aligned}$ | $\begin{aligned} & 10^{5}\left(\beta^{(1) J}\right) \\ & /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-2}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $T=288.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 378.0(0.8) | 2.3(0.3) | 17(1) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ | 386(4) | 3(2) | -36(6) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ | 343(1) | -0.7(0.6) | 23(3) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 380(2) | 2.8(0.8) | 5(4) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 412(3) | -1.4(0.9) | 28(4) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 392.2(0.9) | 0.4(0.3) | 17(1) |
| $T=298.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 421(2) | -0.6(0.5) | 31(3) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 417(5) | -3(1) | -9(6) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ | 365(2) | 2.4(0.6) | 9(3) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { (aq) }}$ | 415(1) | 3.8(0.5) | 9(2) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 439(2) | 2.9(0.6) | 9(3) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 421(2) | 1.1(0.7) | 19(3) |
| $T=313.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 449(2) | 1.7(0.8) | -41(3) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 447(5) | -2(1) | -23(6) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ | 395(2) | 4.3(0.7) | 9(3) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { (aq) }}$ | 429(2) | 2.8(0.6) | 14(3) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 455(4) | 3.9(0.6) | 12(4) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 448(2) | 1.5(0.5) | 26(2) |
| $T=328.15 \mathrm{~K}$ |  |  |  |
| $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq)}}$ | 448(3) | -1.0(0.5) | 43(3) |
| $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 430(2) | -3.9(0.7) | -17(3) |
| $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 410(2) | 2.2(0.6) | 23(3) |
| $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 421(4) | 2.9(0.8) | 16(4) |
| $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 452(5) | 2.6(0.9) | 22(5) |
| $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ | 456(2) | 0.8(0.5) | 30(2) |

${ }^{9}$ Xiao and Tremaine (1996a)

Table 4.15 A comparison of literature and calculated $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{R}^{3+} ;\right.$ aq $)$ values for $\mathrm{R}^{3+}{ }_{(\text {aq })}=\left(\mathrm{Gd}^{3+}, \mathrm{Dy}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Er}^{3+}, \mathrm{Yb}^{3+}\right.$, and $\left.\mathrm{Y}^{3+}\right)$ at $T=(288.15,298.15,313.15$, and 328.15) K and $p=0.1 \mathrm{MPa}$

| $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right) /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Gd}^{3+}{ }_{\text {aq) }}$ | $\mathrm{Dy}^{3+}{ }_{(\mathrm{aq})}$ | $\mathrm{Nd}^{3+}{ }_{\text {aq) }}$ | $\mathrm{Er}^{3+}{ }_{\text {aq }}$ | $\mathrm{Yb}^{3+}{ }_{(\mathrm{aq})}$ | $\mathrm{Y}^{3+}{ }_{\text {aq) }}$ |
| ( $T=288.15 \mathrm{~K}$ |  |  |  |  |  |
| -40.54(0.07) ${ }^{\text {r }}$ | $-43.13(0.09)^{\text {r }}$ | -43.18(0.08) ${ }^{\text {r }}$ | $-43.55(0.08)^{r}$ | -43.01(0.08) ${ }^{\text {r }}$ | -41.18(0.05) ${ }^{\text {r }}$ |
| -38.49(0.37) ${ }^{\text {s }}$ | $-39.8(0.8)^{\text {u }}$ |  |  | -44.4(0.8) ${ }^{\text {u }}$ | -41.4(0.4) ${ }^{\text {t }}$ |
| -39.8(0.4) ${ }^{\text {t }}$ | $-39.4(0.4)^{\text {v }}$ |  |  | -43.9(0.4) ${ }^{\mathrm{v}}$ | -41.4(0.8) ${ }^{\text {u }}$ |
| -39.7(0.8) ${ }^{\text {u }}$ |  |  |  |  | -42.1(0.4) ${ }^{\mathrm{v}}$ |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |  |
| -40.5(0.1) ${ }^{\text {r }}$ | -40.8(0.2) ${ }^{\text {r }}$ | -43.0(0.1) ${ }^{\text {r }}$ | -43.1(0.2) ${ }^{\text {r }}$ | -42.7(0.2) ${ }^{\text {r }}$ | -41.7(0.1) ${ }^{\text {r }}$ |
| -40.31(0.39) ${ }^{\text {s }}$ | -40.5(0.8) ${ }^{\text {u }}$ | $-43.49(0.3)^{\text {w }}$ | -42.98(0.3) ${ }^{\text {w }}$ | -44.1(0.8) ${ }^{\text {u }}$ | -41.7(0.4) ${ }^{\text {t }}$ |
| -40.8(0.4) ${ }^{\text {t }}$ | -39.9(0.5) ${ }^{\text {v }}$ | $-43.6^{x}$ | $-42.6^{\text {x }}$ | -45.0(0.4) ${ }^{\mathrm{v}}$ | -42.2(0.8) ${ }^{\text {u }}$ |
| -40.0(0.8) ${ }^{\text {u }}$ | -40.7(0.3) ${ }^{\text {w }}$ |  |  | -44.42(0.3) ${ }^{\text {w }}$ | $-41.9(0.4)^{\mathrm{v}}$ |
| -40.49(0.3) ${ }^{\text {w }}$ |  |  |  | -44.2 ${ }^{\text {x }}$ | -40.21 ${ }^{\text {w }}$ |
| -41.21 ${ }^{\text {y }}$ |  |  |  |  |  |
| -36.72(0.70) ${ }^{\text {z }}$ |  |  |  |  |  |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |  |
| -39.8(0.5) ${ }^{\text {r }}$ | $-41.0(0.2)^{\text {r }}$ | -44.5(0.1) ${ }^{\text {r }}$ | -44.0(0.1) ${ }^{\text {r }}$ | -43.1(0.2) ${ }^{\text {r }}$ | -42.1(0.1) ${ }^{\text {r }}$ |
| $-41.13(0.38)^{\text {s }}$ | $-41.7(0.8)^{u}$ | $-45.1^{x}$ | $-44.3{ }^{\text {x }}$ | $-45.3(0.8)^{\mathrm{u}}$ | $-42.7(0.4)^{t}$ |
| -41.9(0.4) ${ }^{\text {t }}$ | -40.2(0.4) ${ }^{\text {v }}$ |  |  | -44.2(0.4) ${ }^{\mathrm{v}}$ | -42.6(0.8) ${ }^{\text {u }}$ |
| -41.3(0.8) ${ }^{\text {u }}$ |  |  |  | $-45.6{ }^{\text {x }}$ | -43.5(0.4) ${ }^{\text {v }}$ |
| $-42.38^{\text {y }}$ |  |  |  |  |  |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |  |
| -40.1(0.3) ${ }^{\text {r }}$ | $-42.7(0.4)^{\text {r }}$ | -45.1(0.4) ${ }^{\text {r }}$ | -45.8(0.5) ${ }^{\text {r }}$ | -44.0(0.6) ${ }^{\text {r }}$ | -42.8(0.4) ${ }^{\text {r }}$ |
| $-41.65(0.38)^{\text {s }}$ | -44.4(0.8) ${ }^{\text {u }}$ | $-45.6^{\text {x }}$ | $-44.3{ }^{\text {x }}$ | -47.5(0.8) ${ }^{\text {u }}$ | -43.4(0.5) ${ }^{\text {t }}$ |
| -42.4(0.5) ${ }^{\text {t }}$ | -43.3(0.4) ${ }^{\text {v }}$ |  |  | -45.6(0.5) ${ }^{\mathrm{v}}$ | -43.0(0.8) ${ }^{\text {u }}$ |
| -43.2(0.8) ${ }^{\text {u }}$ |  |  |  | $-45.9^{x}$ | -45.5(0.4) ${ }^{\text {v }}$ |
| -42.13 ${ }^{\text {y }}$ |  |  |  |  |  |

Table 4.15 (continued)

| $C_{p 2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right) /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Gd}^{3+}{ }_{\text {aq }}$ | $\mathrm{Dy}^{3+}(\mathrm{aq})$ | $\mathrm{Nd}^{3+}{ }_{\text {aq }}$ | $\mathrm{Er}^{3+}(\mathrm{aq})$ | $\mathrm{Yb}^{3+}{ }_{\text {(aq) }}$ | $\mathrm{Y}^{3+}{ }_{\text {aq }}$ |
| $T=288.15 \mathrm{~K}$ |  |  |  |  |  |
| -58.1(0.8) ${ }^{\text {r }}$ | -50(4) ${ }^{\text {r }}$ | $-93(1)^{\mathrm{r}}$ | -56(2) ${ }^{\text {r }}$ | -24(3) ${ }^{\text {r }}$ | $-43.9(0.9)^{\text {r }}$ |
| -74.8(3.7) ${ }^{\text {s }}$ | -45.4(8.4) ${ }^{\text {u }}$ |  |  | -42.9(8.0) ${ }^{\text {u }}$ | $-57(4)^{t}$ |
| $-58(4)^{\text {t }}$ | -75(6) ${ }^{\text {v }}$ |  |  | $-24(5)^{\text {v }}$ | -71.0(8.4) ${ }^{\text {u }}$ |
| -82.0(7.5) ${ }^{\text {u }}$ |  |  |  |  | -44(4) ${ }^{\text {v }}$ |
| $T=298.15 \mathrm{~K}$ |  |  |  |  |  |
| -48(2) ${ }^{\text {r }}$ | -53(5) ${ }^{\text {r }}$ | -105(2) ${ }^{\text {r }}$ | -54(2) ${ }^{\text {r }}$ | $-30(3)^{\text {r }}$ | -49(2) ${ }^{\text {r }}$ |
| -64.8(4.6) ${ }^{\text {s }}$ | $-50.0(8.4)^{\text {u }}$ | -104.1(5) ${ }^{\text {w }}$ | -60.6(5) ${ }^{\mathrm{w}}$ | -43.5(8.0) ${ }^{\text {u }}$ | -57(4) ${ }^{\text {t }}$ |
| $-70(4){ }^{\text {t }}$ | -55(5) ${ }^{\text {v }}$ | $-111.9^{\text {x }}$ | $-68.3^{\text {x }}$ | -64(4) ${ }^{\text {v }}$ | $-68.4(7.6)^{\text {u }}$ |
| -95.3(7.5) ${ }^{\text {u }}$ | $-69.6(10)^{\text {w }}$ |  |  | -57.2(5) ${ }^{\text {w }}$ | -65(4) ${ }^{\text {v }}$ |
| -67.7(5) ${ }^{\text {w }}$ |  |  |  |  | $-70^{\text {w }}$ |
| $-73.6^{\text {y }}$ |  |  |  |  |  |
| $T=313.15 \mathrm{~K}$ |  |  |  |  |  |
| -46(2) ${ }^{\text {r }}$ | -48(5) ${ }^{\text {r }}$ | $-100(2)^{\text {r }}$ | -66(2) ${ }^{\text {r }}$ | -40(4) ${ }^{\text {r }}$ | -48(2) ${ }^{\text {r }}$ |
| -81.5(3.6) ${ }^{\text {s }}$ | -59.2(8.4) ${ }^{\text {u }}$ | $-96.0^{\text {x }}$ | $-71.0^{\text {x }}$ | -46.3(8.7) ${ }^{\text {u }}$ | -78(4) ${ }^{\text {t }}$ |
| -76(4) ${ }^{\text {t }}$ | -73(4) ${ }^{\text {v }}$ |  |  | $-61(4)^{\text {v }}$ | -64.5(7.6) ${ }^{\text {u }}$ |
| $-94.3(7.8)^{\text {u }}$ |  |  |  | $-63.4^{\text {x }}$ | -76(4) ${ }^{\text {v }}$ |
| $-87.5^{\text {y }}$ |  |  |  |  |  |
| $T=328.15 \mathrm{~K}$ |  |  |  |  |  |
| -58(6) ${ }^{\text {r }}$ | -76(6) ${ }^{\text {r }}$ | $-97(6)^{\text {r }}$ | -85(7) ${ }^{\text {r }}$ | -54(7) ${ }^{\text {r }}$ | -96(6) ${ }^{\text {r }}$ |
| -66.0(5.8) ${ }^{\text {j }}$ | -79.5(8.1) ${ }^{\text {u }}$ | $-111.1^{x}$ | $-91.4^{\text {x }}$ | -54.1(8.7) ${ }^{\text {u }}$ | -79(4) ${ }^{\text {t }}$ |
| $-78(5)^{\mathrm{t}}$ | -75(6) ${ }^{\text {v }}$ |  |  | $-50(4)^{\text {v }}$ | $-75.7(8.3)^{\text {u }}$ |
| $-71.1(7.5)^{\mathrm{u}}$ |  |  |  | $-64.3^{x}$ | $-81(7)^{\text {v }}$ |
| $-87.7^{\text {y }}$ |  |  |  |  |  |

${ }^{\mathrm{r}}$ Current study
${ }^{\text {s }}$ Hakin, et al. (2004b)
${ }^{\mathrm{t}}$ Hakin, et al. (2005)
${ }^{u} H a k i n$, et al. (2003b)
${ }^{\mathrm{v}}$ Hakin, et al. (2003a)
${ }^{w}$ Marriott, et al. (2001)
${ }^{\mathrm{x}}$ Xiao and Tremaine (1997a)
${ }^{\mathrm{y}}$ Xiao and Tremaine (1996b)
${ }^{7}$ Xiao et al. (1996a, 2001)

## 5) A THERMOCHEMICAL STUDY OF AQUEOUS SOLUTIONS OF SELECTED REE TRIFLATES OVER AN EXTENDED SURFACE OF TEMPERATURE AND PRESSURE

### 5.1 Introduction

Despite the significant amount of previous work on aqueous REE salt solutions at near ambient temperatures and ambient pressure (Hakin et al., 2003a, 2003b, 2004b, 2005; Marriott et al., 2001; Spedding et al., 1966a, 1966b, 1975a, 1975b, 1979; Xiao et al., 1996a, 1996b, 1997a; and those presented in Chapter 4), few studies have been conducted at temperatures and pressures removed from these conditions. Hakin et al. (2004a) focused on the volumetric study of $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ at $T=(323.15,348.15,373.15$, 398.15, and 423.15) K and $p=(10.00,20.00$, and 30.00$) \mathrm{MPa}$. In addition, Xiao et al. (1996a, 1999) conducted a volumetric study of aqueous solutions of the REE triflates $\left(\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq })}\right.$ and $\left.\mathrm{La}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aqq}}\right)$ at temperatures above those achievable by the Picker system described in Chapter 3.

Many processes commonly used to extract the REEs from their native ores occur at temperatures and pressures that are far removed from ambient (or near ambient) conditions. One such example is the extraction of lanthanum, cerium, and neodymium from monazite sand, which requires temperatures in the range 413 K to 483 K (Sabot and Maestro, 1995). In addition, the common uses for the REEs described in Chapter 4 do not always exist at near ambient conditions. Therefore, fundamental thermodynamic data for the aqueous REE metal ions are also important at temperatures and pressures far removed from ambient.

### 5.2 Trifluoromethanesulfonic Acid in Aqueous Solution

Trifluoromethanesulfonic acid (triflic acid, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ ) was obtained from Aldrich Chemical Company (98\%, Catalog No. 15853-4). The acid was diluted and standardized using the methods described in Chapter 4.

Relative densities were measured using the high temperature and pressure vibrating tube densimeter described in Chapter 3. Apparent molar volumes, $V_{3 \phi,}$ for triflic acid were calculated using the relative solution densities, $\rho_{\text {expt }}$, using equation (2.19).

In Chapter 4, the need for thermodynamic data for aqueous triflic acid over an extended range of ionic strength was discussed. Since there have been no reported thermodynamic studies of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ at elevated temperatures and pressures, the maximum concentration of the acid used in the measurements described in this chapter was significantly higher $\left(c=1.22 \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ than the concentration used in the studies reported in Chapter 4.

Values for $\left(\rho_{\text {expt }}-\rho_{l}\right)$ and $V_{3 \phi}$ for aqueous triflic acid solutions of known concentration are reported in Table 5.1 along with their relative uncertainties at each temperature and pressure of interest. The relative uncertainties were calculated using the procedure described in Chapter 3. The Pitzer-ion equation (equation (2.37)) was used to model the concentration dependences of the calculated apparent molar volumes of aqueous triflic acid solutions at each investigated temperature in order to determine the apparent molar volumes at infinite dilution, $V_{3}{ }^{0}$, for triflic acid at each temperature and pressure of interest.

Values for the Debye-Hückel limiting slope, $A_{V}$, were determined using the full


Figure 5.1 The temperature dependences of $V_{3}{ }^{0}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, calculated, using equations (2.19) and (2.37), at each experimental pressure of interest: $\bullet, p=0.1 \mathrm{MPa} ; \times, p=5.00 \mathrm{MPa} ;+, p=10.00 \mathrm{MPa}$; and $\quad$, $p=15.00 \mathrm{MPa}$.
compilation of $A_{V}$ values reported by Archer and Wang (1990). Values for $V_{3}{ }^{0}$ and the parameters $\beta^{(0) V}, \beta^{(1) V}$, and $C^{V}$ were determined using least squares multiple regression analyses. These values, along with their estimated uncertainties, are reported in Table 5.2. Figure 5.1 shows the $V_{3}{ }^{0}$ values for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$ as a function of temperature for each investigated pressure, as well as those $V_{3}{ }^{0}$ values reported in Chapter 4 (Table 4.2) at ambient pressure.

The temperature and pressure dependences of the fitting parameters were also


Figure 5.2 Comparison of $V_{3 \phi}$ values (as a function of molality) calculated using equation (2.19) ( $V_{3 \phi}(\mathrm{calc})$ ) with those calculated using equations (2.37) and (5.1) to (5.4) for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\text {aq) }}\left(V_{3 \phi}(\right.$ global $)$ ) over the temperature and pressure surface of interest:

$$
\nabla, T=288.15 \mathrm{~K}, p=0.1 \mathrm{MPa} ; \boxtimes, T=298.15 \mathrm{~K}, p=0.1 \mathrm{MPa} ; \mathbf{\nabla}, T=313.15 \mathrm{~K},
$$

$$
p=0.1 \mathrm{MPa} ; \boxtimes, T=328.15 \mathrm{~K}, p=0.1 \mathrm{MPa} ; \bullet, T=323.15 \mathrm{~K}, p=5.00 \mathrm{MPa} ; \times,
$$

$$
T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ;+, T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa} ; \quad \text {, } T=348.15 \mathrm{~K},
$$

$$
p=5.00 \mathrm{MPa} ; \odot, T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ; \square, T=348.15 \mathrm{~K}, p=15.00
$$

$\mathrm{MPa} ; \Delta, T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa} ; \boldsymbol{\Delta}, T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ; \mathrm{O}, T=373.15$ $\mathrm{K}, p=15.00 \mathrm{MPa}$; and $\bullet, T=423.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ (the dashed lines represent the standard error).
investigated. Such dependences were found to be well modeled by equations of the form:

$$
\begin{align*}
& V_{3}^{0}=f_{1}+f_{2} \cdot \beta \cdot\left(T-T_{m}\right)+f_{3} \cdot \beta \cdot\left(T-T_{m}\right)^{2},  \tag{5.1}\\
& \beta^{(0) V}=f_{4}+f_{5} \cdot\left(T-T_{m}\right)^{2}+f_{6} \cdot\left(p-p_{m}\right) \cdot\left(T-T_{m}\right), \tag{5.2}
\end{align*}
$$

$$
\begin{align*}
& \beta^{(1) V}=f_{7}+f_{8} \cdot\left(T-T_{m}\right)+f_{9} \cdot\left(T-T_{m}\right)^{2}+f_{10} \cdot\left(p-p_{m}\right) \cdot\left(T-T_{m}\right),  \tag{5.3}\\
& C^{V}=f_{11}+f_{12} \cdot\left(T-T_{m}\right)+f_{13} \cdot\left(T-T_{m}\right)^{2} . \tag{5.4}
\end{align*}
$$

The forms of these global fit equations are based on those reported by Simonson et al. (1994) where $p_{m}$ is the mid-point pressure of study ( $p_{m}=7.5 \mathrm{MPa}$ ), $T_{m}$ is the mid-point temperature of study $\left(T_{m}=355.15 \mathrm{~K}\right)$, and $\beta$ is the isothermal compressibility coefficient of water (Archer, 1992) that has been calculated using Hill's (1990) equation of state for water. Estimated values of the fitting coefficients $f_{1}$ to $f_{13}$ were obtained using a regression analysis and are reported in Table 5.3, along with their estimated standard errors. A comparison of $V_{3 \phi}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ calculated using equation (2.19) ( $V_{3 d}($ calc $)$ ) and those calculated using equation (2.37), $V_{3 d}($ global $)$, is shown in Figure 5.2, where $V_{3 \phi}$ (global) at each concentration was calculated using the fitting coefficients for equations (5.1) to (5.4). The comparison indicates good agreement between the $V_{3 \phi}$ values calculated using equation (2.19) and those $V_{3 \phi}$ values calculated using equations (2.37) and (5.1) to (5.4).

Table 5.1 Calculated relative densities and apparent molar volumes of aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ of known concentration at $T=(323.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $T$ | $p$ | $m_{3}$ <br> $/\left(\mathrm{mol} \cdot \mathrm{kg}^{-1}\right)$ | $\rho_{\text {expt } t}-\rho_{l}$ <br> $/\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $V_{3 \phi}$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $/(\mathrm{K})$ | $/(\mathrm{MPa})$ | $T=323.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |
| 324.30 | 5.004 | 0.1104 | 0.00794 | $78(1)$ |
| 324.29 | 5.006 | 0.1104 | 0.00791 | $78(1)$ |
| 324.31 | 5.005 | 0.2226 | 0.01590 | $77(2)$ |
| 324.31 | 5.009 | 0.2226 | 0.01556 | $79(2)$ |
| 324.31 | 5.004 | 0.3342 | 0.02373 | $77.3(0.4)$ |
| 324.31 | 5.008 | 0.3342 | 0.02377 | $77.2(0.4)$ |
| 324.31 | 5.010 | 0.4554 | 0.03221 | $76.94(---)$ |
| 324.30 | 5.014 | 0.5645 | 0.03976 | $76.7(0.2)$ |
| 324.31 | 5.017 | 0.5645 | 0.03979 | $76.6(0.2)$ |
| 324.30 | 5.006 | 0.6813 | 0.04785 | $76.3(0.2)$ |
| 324.31 | 5.011 | 0.6813 | 0.04786 | $76.3(0.2)$ |
| 324.30 | 5.004 | 0.8139 | 0.05690 | $75.9(0.2)$ |
| 324.30 | 5.004 | 0.8139 | 0.05693 | $75.9(0.2)$ |
| 324.30 | 5.005 | 0.9473 | 0.06607 | $75.4(0.1)$ |
| 324.30 | 5.011 | 0.9473 | 0.06605 | $75.4(0.1)$ |
| 324.29 | 5.007 | 1.0764 | 0.07484 | $75.0(0.1)$ |
| 324.30 | 5.005 | 1.0764 | 0.07481 | $75.0(0.2)$ |
| 324.31 | 5.008 | 1.2204 | 0.08468 | $74.4(0.2)$ |
| 324.31 | 5.005 | 1.2204 | 0.08455 | $74.5(0.2)$ |
|  |  | $T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |
| 324.45 | 10.009 | 0.1196 | 0.00851 | $78.34(----)$ |
| 324.45 | 10.011 | 0.2481 | 0.01746 | $78(1)$ |
| 324.45 | 10.011 | 0.2481 | 0.01768 | $78(1)$ |
| 324.45 | 10.009 | 0.3446 | 0.02433 | $77.7(0.4)$ |
| 324.45 | 10.009 | 0.3446 | 0.02436 | $77.6(0.3)$ |
| 324.45 | 10.007 | 0.4544 | 0.03230 | $76.6(0.6)$ |
| 324.46 | 10.009 | 0.4544 | 0.03204 | $77.2(0.6)$ |
| 324.46 | 10.006 | 0.5887 | 0.04117 | $77.0(0.8)$ |
| 324.45 | 10.011 | 0.5887 | 0.04163 | $76.3(0.8)$ |
| 324.46 | 10.009 | 0.7007 | 0.04937 | $75.9(0.6)$ |
| 324.46 | 10.007 | 0.7007 | 0.04899 | $76.5(0.6)$ |
| 324.46 | 10.009 | 0.8079 | 0.05617 | $76(1)$ |
| 324.46 | 10.007 | 0.8079 | 0.05703 | $75(1)$ |
| 324.42 | 10.009 | 0.8819 | 0.06182 | $75.4(0.4)$ |
| 324.41 | 10.009 | 0.8819 | 0.06162 | $75.6(0.4)$ |
| 324.40 | 10.014 | 0.9019 | 0.06628 | $71.8(0.5)$ |
| 324.40 | 10.006 | 0.9019 | 0.06584 | $72.3(0.5)$ |
| 324.40 | 10.006 | 1.2204 | 0.08485 | $74(1)$ |
| 324.39 | 10.006 | 1.2204 | 0.08326 | $76(1)$ |
|  |  |  |  |  |
|  |  |  |  |  |

Table 5.1 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{3 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |
| 324.27 | 15.013 | 0.1120 | 0.00804 | 78(1) |
| 324.27 | 15.013 | 0.1120 | 0.00805 | 78(1) |
| 324.27 | 15.014 | 0.2297 | 0.01645 | $77.2(0.6)$ |
| 324.27 | 15.014 | 0.2297 | 0.01637 | 77.6(0.6) |
| 324.26 | 15.016 | 0.3383 | 0.02416 | 76.8(0.4) |
| 324.26 | 15.014 | 0.3383 | 0.02409 | 77.0(0.4) |
| 324.27 | 15.013 | 0.4569 | 0.03249 | $76.5(0.3)$ |
| 324.27 | 15.014 | 0.4569 | 0.03247 | 76.6(0.8) |
| 324.27 | 15.013 | 0.5785 | 0.04094 | 76.2(0.8) |
| 324.26 | 15.014 | 0.5785 | 0.04109 | 76.0(0.3) |
| 324.27 | 15.016 | 0.6932 | 0.04919 | 75.4(0.4) |
| 324.27 | 15.009 | 0.6932 | 0.04898 | 75.7(0.3) |
| 324.27 | 15.011 | 0.8256 | 0.05805 | 75.4(0.2) |
| 324.27 | 15.013 | 0.8256 | 0.05811 | 75.3(0.2) |
| 324.26 | 15.013 | 0.9523 | 0.06670 | 75.1(0.2) |
| 324.27 | 15.009 | 0.9523 | 0.06685 | 74.9(0.2) |
| 324.27 | 15.011 | 1.0835 | 0.07561 | 74.7(0.1) |
| 324.27 | 15.013 | 1.0835 | 0.07566 | 74.6(0.2) |
| 324.27 | 15.013 | 1.2204 | 0.08492 | 74.2(0.1) |
| 324.27 | 15.013 | 1.2204 | 0.08504 | 74.1(0.1) |
| $T=348.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |
| 349.55 | 5.010 | 0.1086 | 0.00755 | 80(1) |
| 349.54 | 5.006 | 0.1086 | 0.00758 | 80(1) |
| 349.55 | 5.005 | 0.2213 | 0.01536 | 79.7(0.5) |
| 349.55 | 5.008 | 0.2213 | 0.01536 | 79.7(0.6) |
| 349.55 | 5.004 | 0.3320 | 0.02297 | 79.3(0.4) |
| 349.55 | 5.008 | 0.3320 | 0.02298 | 79.3(0.3) |
| 349.55 | 5.014 | 0.4551 | 0.03138 | 78.9(0.3) |
| 349.55 | 5.010 | 0.4551 | 0.03139 | 78.8(0.3) |
| 349.54 | 5.006 | 0.5787 | 0.03971 | 78.5(0.2) |
| 349.54 | 5.005 | 0.5787 | 0.03969 | 78.6(0.2) |
| 349.54 | 5.005 | 0.6952 | 0.04751 | 78.2(0.2) |
| 349.55 | 5.003 | 0.6952 | 0.04750 | 78.2(0.2) |
| 349.54 | 5.008 | 0.8258 | 0.05631 | 77.7(0.2) |
| 349.52 | 5.004 | 0.8258 | 0.05628 | 77.8(0.2) |
| 349.54 | 5.006 | 0.9483 | 0.06430 | $77.5(0.1)$ |
| 349.55 | 5.006 | 0.9483 | 0.06436 | 77.4(0.2) |
| 349.50 | 5.009 | 1.0902 | 0.07362 | 77.1(0.1) |
| 349.49 | 5.012 | 1.0902 | 0.07364 | 77.1(0.2) |
| 349.49 | 5.008 | 1.2204 | 0.08218 | 76.6(0.1) |
| 349.49 | 5.005 | 1.2204 | 0.08227 | 76.6(0.1) |

Table 5.1 (continued)

| $\begin{array}{\|l} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{3 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |
| 349.46 | 10.007 | 0.1127 | 0.00783 | 80(38) |
| 349.46 | 10.009 | 0.1127 | 0.00787 | 80(38) |
| 349.46 | 10.009 | 0.2215 | 0.01547 | 79.2(0.5) |
| 349.46 | 10.008 | 0.2215 | 0.01540 | 79.5(0.6) |
| 349.45 | 10.007 | 0.3377 | 0.02346 | 78.9(0.5) |
| 349.46 | 10.007 | 0.3377 | 0.02348 | 78.9(0.5) |
| 349.46 | 10.007 | 0.4525 | 0.03126 | 78.7(0.3) |
| 349.46 | 10.007 | 0.4525 | 0.03131 | 78.6(0.3) |
| 349.52 | 10.011 | 0.5745 | 0.03963 | 78.2(0.2) |
| 349.46 | 10.006 | 0.5745 | 0.03955 | 78.3(0.3) |
| 349.46 | 10.006 | 0.6940 | 0.04751 | 78.1(0.3) |
| 349.47 | 10.011 | 0.6940 | 0.04765 | 77.9(0.3) |
| 349.46 | 10.006 | 0.8229 | 0.05606 | 77.8(0.2) |
| 349.47 | 10.009 | 0.8229 | 0.05617 | 77.6(0.2) |
| 349.47 | 10.012 | 0.9402 | 0.06378 | $77.5(0.3)$ |
| 349.47 | 10.014 | 0.9402 | 0.06397 | 77.3(0.3) |
| 349.46 | 10.011 | 1.0815 | 0.07309 | 77.0(0.3) |
| 349.46 | 10.009 | 1.0815 | 0.07335 | 76.8(0.3) |
| 349.47 | 10.007 | 1.2204 | 0.08207 | 76.7(0.3) |
| 349.47 | 10.007 | 1.2204 | 0.08246 | 76.4(0.3) |
| $T=348.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |
| 349.60 | 15.040 | 0.1095 | 0.00772 | 79(1) |
| 349.60 | 15.034 | 0.1095 | 0.00767 | 80(1) |
| 349.60 | 15.020 | 0.2233 | 0.01562 | 79.0(0.5) |
| 349.60 | 15.020 | 0.2233 | 0.01558 | 79.2(0.6) |
| 349.59 | 15.024 | 0.3348 | 0.02322 | 79.1(0.8) |
| 349.60 | 15.034 | 0.3348 | 0.02344 | 78.4(0.8) |
| 349.61 | 15.037 | 0.4564 | 0.03177 | 78.1(0.4) |
| 349.60 | 15.034 | 0.4564 | 0.03161 | 78.5(0.4) |
| 349.59 | 15.023 | 0.5757 | 0.03970 | 78.2(0.3) |
| 349.60 | 15.025 | 0.5757 | 0.03985 | 77.9(0.4) |
| 349.61 | 15.035 | 0.6993 | 0.04835 | 77.3(0.4) |
| 349.61 | 15.039 | 0.6993 | 0.04811 | 77.7(0.4) |
| 349.59 | 15.037 | 0.8206 | 0.05620 | 77.4(0.4) |
| 349.59 | 15.042 | 0.8206 | 0.05649 | 77.0(0.4) |
| 349.59 | 15.040 | 0.9523 | 0.06523 | 76.7(0.1) |
| 349.60 | 15.040 | 0.9523 | 0.06523 | 76.7(0.1) |
| 349.58 | 15.032 | 1.0847 | 0.07412 | 76.2(0.2) |
| 349.59 | 15.045 | 1.0847 | 0.07411 | 76.2(0.2) |
| 349.58 | 15.034 | 1.2204 | 0.08307 | 75.8(0.1) |
| 349.59 | 15.028 | 1.2204 | 0.08298 | 75.9(0.1) |

Table 5.1 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{3 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |
| 374.52 | 5.005 | 0.1121 | 0.00761 | 82(1) |
| 374.53 | 5.012 | 0.1121 | 0.00768 | 81(1) |
| 374.53 | 5.008 | 0.2238 | 0.01523 | 81.2(0.5) |
| 374.54 | 5.006 | 0.2238 | 0.01524 | 81.2(0.5) |
| 374.54 | 5.005 | 0.3406 | 0.02306 | 81.0(0.4) |
| 374.54 | 5.003 | 0.3406 | 0.02308 | 80.9(0.3) |
| 374.54 | 5.004 | 0.4577 | 0.03093 | 80.4(0.3) |
| 374.54 | 5.005 | 0.4577 | 0.03084 | 80.6(0.3) |
| 374.54 | 5.004 | 0.5757 | 0.03871 | 80.1(0.2) |
| 374.53 | 5.004 | 0.5757 | 0.03880 | 80.0(0.3) |
| 374.53 | 5.004 | 0.6890 | 0.04621 | 79.7(0.2) |
| 374.53 | 5.003 | 0.6890 | 0.04623 | 79.7(0.2) |
| 374.53 | 5.005 | 0.7682 | 0.05135 | 79.5(0.2) |
| 374.53 | 5.004 | 0.7682 | 0.05141 | 79.5(0.2) |
| 374.51 | 5.007 | 0.9507 | 0.06322 | 79.0(0.1) |
| 374.52 | 5.006 | 0.9507 | 0.06330 | $78.9(0.1)$ |
| 374.51 | 5.007 | 1.0834 | 0.07185 | 78.5(0.2) |
| 374.50 | 5.005 | 1.0834 | 0.07171 | 78.6(0.3) |
| 374.51 | 5.003 | 1.2204 | 0.08048 | 78.2(0.1) |
| 374.50 | 5.005 | 1.2204 | 0.08052 | 78.2(0.1) |
| $T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |
| 374.47 | 10.035 | 0.1127 | 0.00773 | 81(1) |
| 374.47 | 10.040 | 0.1127 | 0.00778 | 81(1) |
| 374.50 | 10.043 | 0.2409 | 0.01665 | 80.0(0.5) |
| 374.49 | 10.033 | 0.2409 | 0.01659 | 80.2(0.6) |
| 374.49 | 10.033 | 0.3646 | 0.02530 | 79(1) |
| 374.49 | 10.035 | 0.3646 | 0.02495 | 80(1) |
| 374.49 | 10.038 | 0.4558 | 0.03167 | 78.4(0.9) |
| 374.50 | 10.040 | 0.4558 | 0.03129 | 79.3(0.9) |
| 374.49 | 10.038 | 0.5856 | 0.04020 | 78.5(0.4) |
| 374.49 | 10.035 | 0.5856 | 0.04045 | 78.1(0.5) |
| 374.49 | 10.035 | 0.6987 | 0.04818 | 78(1) |
| 374.48 | 10.033 | 0.6987 | 0.04766 | 78.4(0.8) |
| 374.49 | 10.035 | 0.8069 | 0.05487 | 78.1(0.6) |
| 374.48 | 10.042 | 0.8069 | 0.05537 | 77.4(0.6) |
| 374.48 | 10.048 | 1.0493 | 0.07058 | 77.6(0.4) |
| 374.48 | 10.038 | 1.0493 | 0.07105 | 77.1(0.4) |
| 374.45 | 10.035 | 1.0871 | 0.07299 | 77.6(0.5) |
| 374.44 | 10.040 | 1.0871 | 0.07348 | 77.1(0.5) |
| 374.43 | 10.033 | 1.2204 | 0.08119 | 77.6(0.4) |
| 374.43 | 10.035 | 1.2204 | 0.08172 | 77.1(0.4) |

Table 5.1 (continued)

| $T$ | $p$ | $m_{3}$ | $\rho_{\text {expt }}-\rho_{l}$ <br> $/\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$ | $V_{3 \phi}$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $/(\mathrm{K})$ | $/(\mathrm{MPa})$ | $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |
|  |  | 0.00787 | $81(1)$ |  |
| 374.55 | 15.020 | 0.1137 | 0.0078 |  |
| 374.54 | 15.020 | 0.1137 | 0.00785 | $81(1)$ |
| 374.54 | 15.025 | 0.2220 | 0.01529 | $80.3(0.5)$ |
| 374.54 | 15.018 | 0.2220 | 0.01531 | $80.2(0.5)$ |
| 374.54 | 15.006 | 0.3371 | 0.02307 | $80.1(0.7)$ |
| 374.53 | 15.011 | 0.3371 | 0.02323 | $79.6(0.6)$ |
| 374.54 | 15.023 | 0.4558 | 0.03131 | $79.2(0.4)$ |
| 374.53 | 15.020 | 0.4558 | 0.03116 | $79.6(0.4)$ |
| 374.53 | 15.016 | 0.5767 | 0.03916 | $79.4(0.6)$ |
| 374.55 | 15.022 | 0.5767 | 0.03944 | $78.9(0.6)$ |
| 374.54 | 15.024 | 0.6961 | 0.04712 | $79.0(0.7)$ |
| 374.54 | 15.027 | 0.6961 | 0.04751 | $78.4(0.7)$ |
| 374.54 | 15.020 | 0.8259 | 0.05581 | $78.4(0.2)$ |
| 374.53 | 15.025 | 0.8259 | 0.05593 | $78.3(0.2)$ |
| 374.49 | 15.011 | 0.9554 | 0.06446 | $77.9(0.3)$ |
| 374.53 | 15.015 | 0.9554 | 0.06423 | $78.1(0.3)$ |
| 374.53 | 15.008 | 1.0559 | 0.07083 | $77.8(0.1)$ |
| 374.54 | 15.018 | 1.0559 | 0.07082 | $77.8(0.2)$ |
| 374.55 | 15.018 | 1.2204 | 0.08146 | $77.3(0.2)$ |
| 374.54 | 15.024 | 1.2204 | 0.08166 | $77.2(0.2)$ |
|  |  | $T=423.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |
| 423.88 | 10.023 | 0.1154 | 0.00774 | $83(1)$ |
| 423.90 | 10.028 | 0.1154 | 0.00777 | $83(1)$ |
| 423.91 | 10.033 | 0.2241 | 0.01493 | $83.0(0.5)$ |
| 423.89 | 10.030 | 0.2241 | 0.01489 | $83.3(0.6)$ |
| 423.91 | 10.029 | 0.3462 | 0.0267 | $83.7(0.5)$ |
| 423.90 | 10.031 | 0.3462 | 0.0276 | $83.4(0.4)$ |
| 423.96 | 10.032 | 0.4390 | 0.02893 | $82.7(0.4)$ |
| 423.91 | 10.034 | 0.4390 | 0.02901 | $82.4(0.4)$ |
| 423.90 | 10.033 | 0.5755 | 0.03782 | $82.1(0.2)$ |
| 423.92 | 10.033 | 0.5755 | 0.03780 | $82.1(0.2)$ |
| 423.90 | 10.036 | 0.6949 | 0.04544 | $81.8(0.3)$ |
| 423.90 | 10.027 | 0.6949 | 0.04556 | $81.6(0.2)$ |
| 423.87 | 10.031 | 0.8224 | 0.05377 | $81.1(0.3)$ |
| 423.89 | 10.029 | 0.8224 | 0.05367 | $81.3(0.3)$ |
| 423.89 | 10.024 | 0.9565 | 0.06217 | $80.9(0.2)$ |
| 423.91 | 10.029 | 0.9565 | 0.06232 | $80.7(0.2)$ |
| 423.90 | 10.022 | 1.0829 | 0.07040 | $80.2(0.2)$ |
| 423.88 | 10.027 | 1.0829 | 0.07025 | $80.4(0.2)$ |
| 423.88 | 10.028 | 1.2204 | 0.07891 | $79.9(0.2)$ |
| 423.90 | 10.021 | 1.2204 | 0.07911 | $79.7(0.2)$ |
|  |  |  |  |  |

Table 5.2 Estimates of the parameters to the Pitzer-ion interaction equation, shown as equation (2.37), for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $T=(323.15,348.15,373.15$, and 423.15) K and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $T$ | $p$ | $V_{3}{ }^{0}$ | $10^{4}\left(\beta^{(0) V}\right)$ <br> $/(\mathrm{K})$ | $/(\mathrm{MPa})$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ |  |  |  |  |  |
| $/\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ | $10^{3}\left(\beta^{(1) V}\right)$ | $\left.\mathrm{kg}^{V} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ <br> $/\left(\mathrm{mol}^{2} \cdot \mathrm{~kg}^{-2}\right)$ |  |  |  |
| 324.30 | 5.01 | $78.0(0.2)$ | $-6.3(0.6)$ | $-0.8(0.1)$ | $-0.4(0.2)$ |
| 324.44 | 10.01 | $78.00(0.09)$ | $-12.2(0.3)$ | $-0.13(0.07)$ | $0.96(0.08)$ |
| 324.27 | 15.01 | $77.9(0.3)$ | $-9(1)$ | $-0.7(0.2)$ | $0.5(0.3)$ |
| 349.53 | 5.01 | $80.5(0.3)$ | $-8.0(0.9)$ | $-1.1(0.2)$ | $0.3(0.2)$ |
| 349.47 | 10.01 | $80.1(0.2)$ | $-5.7(0.5)$ | $-1.2(0.1)$ | $-0.4(0.1)$ |
| 349.60 | 15.03 | $80.1(0.3)$ | $-9.3(0.9)$ | $-1.0(0.2)$ | $0.6(0.3)$ |
| 374.53 | 5.005 | $82.2(0.4)$ | $-10(1)$ | $-1.3(0.2)$ | $0.8(0.4)$ |
| 374.48 | 10.04 | $82.0(0.4)$ | $-14(1)$ | $-1.3(0.3)$ | $2.8(0.4)$ |
| 374.54 | 15.02 | $81.4(0.4)$ | $-8(1)$ | $-1.6(0.3)$ | $0.5(0.4)$ |
| 423.90 | 10.03 | $81.6(0.5)$ | $-14(1)$ | $-0.7(0.3)$ | $1.5(0.4)$ |

Table 5.3 Estimated parameters for equations (5.1) to (5.4) that model the temperature and pressure dependences of $V_{3 \phi}$ values for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ at $T=(288.15,298.15,313.15,323.15,328.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(0.1,5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $V_{3 \phi}$ |  |
| :--- | :--- |
| Parameter: | Value: |
| $f_{1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $64(2)$ |
| $f_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $3.7 \times 10^{4}\left(4 \times 10^{3}\right)$ |
| $f_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $59(8)$ |
| $f_{4} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-2.4(0.2)$ |
| $f_{5} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $1.0 \times 10^{-4}\left(4 \times 10^{-5}\right)$ |
| $f_{6} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ | $-1.3 \times 10^{-7}\left(2 \times 10^{-8}\right)$ |
| $f_{7} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $7 \times 10^{-7}\left(1 \times 10^{-7}\right)$ |
| $f_{8} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-4.6 \times 10^{-3}\left(2 \times 10^{-4}\right)$ |
| $f_{9} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $-2.5 \times 10^{-5}\left(1 \times 10^{-6}\right)$ |
| $f_{10} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ | $6.2 \times 10^{-7}\left(8 \times 10^{-8}\right)$ |
| $f_{11} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1}\right)$ | $-1.4 \times 10^{-6}\left(5 \times 10^{-7}\right)$ |
| $f_{I 2} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-0.07(0.02)$ |
| $f_{13} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $2.4 \times 10^{-5}\left(6 \times 10^{-6}\right)$ |
|  |  |
| Standard error $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 0.30 |

### 5.3 The REE Triflates in Aqueous Solution

The preparation and standardization of acidified aqueous REE triflate salt solutions followed the procedure previously outlined by both Spedding et al. (1966b) and Chapter 4. Relative densities for each of the acidified REE triflate salt solutions $\left(\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq}}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aqq})}\right.$, and $\left.\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}\right)$ were measured using the high temperature and pressure vibrating tube densimeter described in Chapter 3.

Apparent molar volumes for each of the acidified REE salt solutions were calculated using equation (4.17). The resulting apparent molar volumes were subjected to Young's rule to determine the apparent molar volumes of the aqueous REE triflate salt solutions. The values for $\left(\rho_{\text {expt }}-\rho_{l}\right), V_{\phi, \text { expt }}$, and $V_{2 \phi}$ are reported at $T=(323.15,298.15$, 348.15, and 373.15) K and $p=(5.0,10.0$, and 15.0$) \mathrm{MPa}$ for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration in Tables 5.4, 5.5, and 5.6, respectively. Values for $\left(\rho_{\text {expt }}-\rho_{l}\right), V_{\phi, \text { expt }}$, and $V_{2 \phi}$ are also reported for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=423.15 \mathrm{~K}$ and $p=10.0 \mathrm{MPa}$ in Table 5.4. The values reported in the tables in parentheses are the relative uncertainties which were calculated using the procedure described in Chapter 3.

The reported apparent molar volumes of each of the aqueous REE triflate salt solutions were also modeled using the modified Pitzer-ion interaction equation for a 3:1 electrolyte (equation (2.37)). The Pitzer equation was found to successfully model the concentration dependences of the $V_{2 \phi}$ values for each aqueous REE triflate salt system at each investigated temperature and pressure combination. Estimates of values for the $V_{2}{ }^{0}$, $\beta^{(0) V}, \beta^{(l) V}$, and $\beta^{(1) J}$ parameters were obtained by regression analysis for each aqueous REE triflate salt and are reported, along with their standard errors, in Tables 5.7 to 5.9.


Figure 5.3 Values of $V_{2}{ }^{0}$ for aqueous solutions of $\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, calculated from equation (2.37), and plotted as a function of temperature over the pressure surface of interest: •,

$$
p=0.1 \mathrm{MPa} ; \times, p=5.00 \mathrm{MPa} ;+, p=10.00 \mathrm{MPa} ; \text { and } \square, p=15.00 \mathrm{MPa} .
$$

Figure 5.3 shows the $V_{2}{ }^{0}$ values as a function of temperature for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq })}$, calculated using equation (2.37). This figure indicates that there is a maximum in $V_{2}{ }^{0}$ values at approximately $T=348.15 \mathrm{~K}$. This curvature is typical of electrolyte systems in aqueous solutions. This trend was also shown above in Figure 5.2 for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}$.

Single ion volumes were calculated for each REE, $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ using equation (2.37) and have been compared with those previously reported (Hakin et al., 2004b). These comparisons are shown in Table 5.10. As can be seen, the $V_{2}{ }^{0}\left(\mathrm{Yb}^{3+} ; \mathrm{aq}\right)$ values obtained in this study appear to be consistent with those derived from the perchlorate salt
system (Hakin et al., 2004a). Since there have been so few studies with respect to the calculation of $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ values for the REEs at temperatures and pressures removed from ambient (or near ambient), it is recommended that the values presented in this chapter for $\mathrm{Gd}^{3+}{ }_{(\text {aq) }}, \mathrm{Nd}^{3+}{ }_{(\text {aq })}$, and $\mathrm{Yb}^{3+}{ }_{(\text {aq })}$ should be adopted for use.

Table 5.4 The relative densities and apparent molar volumes of aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=(323.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $\begin{aligned} & \hline T \\ & /(\mathrm{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & ) /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {фexpt }} \\ & /\left(\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)\right. \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.30 | 5.009 | 0.0177 | 0.00043 | 0.00721 | 194(14) | 197(14) |
| 324.30 | 5.008 | 0.0177 | 0.00043 | 0.00748 | 179(14) | 182(14) |
| 324.30 | 5.008 | 0.0359 | 0.00088 | 0.01452 | 194.6(0.6) | 197.6(0.7) |
| 324.30 | 5.008 | 0.0359 | 0.00088 | 0.01447 | 195.9(0.6) | 198.9(0.7) |
| 324.30 | 5.011 | 0.0534 | 0.00130 | 0.02142 | 197.1(0.2) | 200.1(0.3) |
| 324.30 | 5.006 | 0.0534 | 0.00130 | 0.02153 | 195.1(0.1) | 198.0(0.2) |
| 324.29 | 5.009 | 0.0726 | 0.00177 | 0.02913 | 195(1) | 198(1) |
| 324.28 | 5.003 | 0.0726 | 0.00177 | 0.02907 | 196(1) | 199(1) |
| 324.28 | 5.003 | 0.0912 | 0.00223 | 0.03646 | 195.5(0.7) | 198.5(0.7) |
| 324.28 | 5.003 | 0.0912 | 0.00223 | 0.03638 | 196.3(0.7) | 199.3(0.7) |
| 324.27 | 5.005 | 0.1077 | 0.00263 | 0.04287 | 195.8(0.6) | 198.7(0.6) |
| 324.28 | 5.002 | 0.1077 | 0.00263 | 0.04279 | 196.4(0.6) | 199.4(0.6) |
| 324.29 | 5.008 | 0.1313 | 0.00321 | 0.05205 | 195.9(0.7) | 198.8(0.7) |
| 324.28 | 5.004 | 0.1313 | 0.00321 | 0.05193 | 196.8(0.7) | 199.8(0.7) |
| 324.28 | 5.008 | 0.1475 | 0.00360 | 0.05823 | 196.1(0.4) | 199.0(0.4) |
| 324.28 | 5.007 | 0.1475 | 0.00360 | 0.05816 | 196.5(0.4) | 199.5(0.4) |
| 324.28 | 5.006 | 0.1703 | 0.00416 | 0.06687 | 196.6(0.4) | 199.6(0.4) |
| 324.28 | 5.006 | 0.1703 | 0.00416 | 0.06686 | 196.7(0.4) | 199.6(0.4) |
| 324.28 | 5.005 | 0.1929 | 0.00471 | 0.07541 | 197(1) | 199(1) |
| 324.28 | 5.004 | 0.1929 | 0.00471 | 0.07540 | 197(1) | 199(1) |

Table 5.4 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{gathered} \rho_{\text {expt }}-\rho_{l} \\ \\ \hline /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & V_{\phi, \text { expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.27 | 10.016 | 0.0195 | 0.00048 | 0.00787 | 198(4) | 201(4) |
| 324.27 | 10.004 | 0.0195 | 0.00048 | 0.00795 | 194(4) | 196(4) |
| 324.22 | 10.017 | 0.0351 | 0.00086 | 0.01425 | 194(2) | 197(2) |
| 324.22 | 10.014 | 0.0351 | 0.00086 | 0.01425 | 194(2) | 197(2) |
| 324.22 | 10.014 | 0.0539 | 0.00132 | 0.02178 | 194.5(0.2) | 197.2(0.2) |
| 324.22 | 10.016 | 0.0539 | 0.00132 | 0.02177 | 194.5(0.1) | 197.3(0.2) |
| 324.22 | 10.017 | 0.0710 | 0.00173 | 0.02852 | 196(1) | 198(1) |
| 324.22 | 10.017 | 0.0710 | 0.00173 | 0.02858 | 195(1) | 198(1) |
| 324.23 | 10.014 | 0.0912 | 0.00222 | 0.03651 | 195.1(0.3) | 197.8(0.3) |
| 324.23 | 10.017 | 0.0912 | 0.00222 | 0.03654 | 194.8(0.3) | 197.6(0.3) |
| 324.23 | 10.018 | 0.1106 | 0.00270 | 0.04414 | 195(2) | 198(2) |
| 324.23 | 10.016 | 0.1106 | 0.00270 | 0.04414 | 195(2) | 198(2) |
| 324.22 | 10.016 | 0.1283 | 0.00313 | 0.05109 | 195(2) | 198(2) |
| 324.22 | 10.016 | 0.1283 | 0.00313 | 0.05107 | 195(2) | 198(2) |
| 324.22 | 10.017 | 0.1487 | 0.00363 | 0.05896 | 195(1) | 197(1) |
| 324.22 | 10.016 | 0.1487 | 0.00363 | 0.05894 | 195(1) | 198(1) |
| 324.22 | 10.019 | 0.1714 | 0.00418 | 0.06762 | 195(1) | 198(1) |
| 324.22 | 10.017 | 0.1714 | 0.00418 | 0.06773 | 194(1) | 197(1) |
| 324.22 | 10.016 | 0.1929 | 0.00471 | 0.07588 | 194.7(0.2) | 197.4(0.2) |
| 324.22 | 10.017 | 0.1929 | 0.00471 | 0.07592 | 194.5(0.2) | 197.3(0.2) |
| $T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.28 | 15.004 | 0.0178 | 0.00043 | 0.00727 | 193.8(0.3) | 196.6(0.4) |
| 324.28 | 15.001 | 0.0178 | 0.00043 | 0.00726 | 193.9(0.3) | 196.7(0.4) |
| 324.28 | 15.001 | 0.0356 | 0.00087 | 0.01445 | 195.0(0.6) | 197.8(0.7) |
| 324.28 | 15.001 | 0.0356 | 0.00087 | 0.01446 | 194.6(0.6) | 197.3(0.7) |
| 324.28 | 15.001 | 0.0534 | 0.00130 | 0.02154 | 195.2(0.2) | 198.0(0.3) |
| 324.27 | 15.003 | 0.0534 | 0.00130 | 0.02153 | 195.5(0.1) | 198.3(0.3) |
| 324.27 | 15.001 | 0.0726 | 0.00177 | 0.02916 | 196.0(0.2) | 198.7(0.4) |
| 324.28 | 15.001 | 0.0726 | 0.00177 | 0.02918 | 195.7(0.2) | 198.5(0.4) |
| 324.27 | 15.003 | 0.0909 | 0.00222 | 0.03637 | 196.21(0.09) | 199.0(0.3) |
| 324.28 | 15.001 | 0.0909 | 0.00222 | 0.03637 | 196.20(0.09) | 199.0(0.3) |
| 324.29 | 15.001 | 0.1105 | 0.00270 | 0.04396 | 196.6(0.4) | 199.4(0.5) |
| 324.28 | 15.004 | 0.1105 | 0.00270 | 0.04398 | 196.4(0.4) | 199.2(0.5) |
| 324.28 | 15.001 | 0.1293 | 0.00315 | 0.05124 | 196.8(0.3) | 199.6(0.4) |
| 324.28 | 15.003 | 0.1293 | 0.00315 | 0.05125 | 196.7(0.3) | 199.4(0.4) |
| 324.28 | 15.001 | 0.1496 | 0.00365 | 0.05907 | 196.9(0.8) | 199.7(0.9) |
| 324.28 | 15.003 | 0.1496 | 0.00365 | 0.05907 | 196.9(0.8) | 199.7(0.9) |
| 324.28 | 15.001 | 0.1709 | 0.00417 | 0.06717 | 197.0(0.6) | 199.8(0.7) |
| 324.27 | 15.008 | 0.1709 | 0.00417 | 0.06712 | 197.3(0.4) | 200.1(0.5) |
| 324.28 | 15.008 | 0.1929 | 0.00471 | 0.07550 | 197.0(0.6) | 199.8(0.7) |
| 324.28 | 15.003 | 0.1929 | 0.00471 | 0.07540 | 197.5(0.6) | 200.3(0.7) |

Table 5.4 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & \\ & \hline\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {d,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.54 | 5.006 | 0.0177 | 0.00043 | 0.00710 | 198(1) | 200(1) |
| 349.54 | 5.005 | 0.0177 | 0.00043 | 0.00711 | 197(1) | 199(1) |
| 349.53 | 5.008 | 0.0358 | 0.00087 | 0.01427 | 198(2) | 200(2) |
| 349.53 | 5.007 | 0.0358 | 0.00087 | 0.01428 | 197(2) | 200(2) |
| 349.52 | 5.008 | 0.0545 | 0.00133 | 0.02167 | 197.8(0.2) | 200.5(0.3) |
| 349.52 | 5.007 | 0.0545 | 0.00133 | 0.02169 | 197.3(0.1) | 200.0(0.3) |
| 349.52 | 5.005 | 0.0715 | 0.00174 | 0.02834 | 197.5(0.2) | 200.2(0.4) |
| 349.52 | 5.004 | 0.0715 | 0.00174 | 0.02833 | 197.7(0.2) | 200.4(0.4) |
| 349.53 | 5.004 | 0.0916 | 0.00223 | 0.03615 | 197.6(0.7) | 200.3(0.7) |
| 349.52 | 5.004 | 0.0916 | 0.00223 | 0.03613 | 197.8(0.7) | 200.5(0.7) |
| 349.52 | 5.006 | 0.1085 | 0.00265 | 0.04268 | 197.9(0.9) | 200.6(0.9) |
| 349.53 | 5.006 | 0.1085 | 0.00265 | 0.04270 | 197.7(0.9) | 200.5(0.9) |
| 349.53 | 5.007 | 0.1277 | 0.00312 | 0.04983 | 199(2) | 202(2) |
| 349.53 | 5.008 | 0.1277 | 0.00312 | 0.05002 | 198(2) | 201(2) |
| 349.53 | 5.005 | 0.1502 | 0.00366 | 0.05858 | 198(1) | 201(1) |
| 349.53 | 5.005 | 0.1502 | 0.00366 | 0.05856 | 198(1) | 200(1) |
| 349.53 | 5.003 | 0.1706 | 0.00416 | 0.06616 | 199(1) | 201(1) |
| 349.53 | 5.005 | 0.1706 | 0.00416 | 0.06627 | 198(1) | 201(1) |
| 349.49 | 5.007 | 0.1929 | 0.00471 | 0.07463 | 198.1(0.9) | 200.9(0.9) |
| 349.49 | 5.007 | 0.1929 | 0.00471 | 0.07456 | 198.4(0.9) | 201.2(0.9) |
| $T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.44 | 10.004 | 0.0178 | 0.00043 | 0.00716 | 196.1(0.6) | 198.9(0.6) |
| 349.43 | 10.004 | 0.0178 | 0.00043 | 0.00715 | 196.4(0.6) | 199.1(0.6) |
| 349.44 | 10.009 | 0.0355 | 0.00087 | 0.01425 | 196.0(0.9) | 198.7(0.9) |
| 349.43 | 10.009 | 0.0355 | 0.00087 | 0.01422 | 196.8(0.9) | 199.5(0.9) |
| 349.44 | 10.006 | 0.0535 | 0.00131 | 0.02136 | 196.6(0.2) | 199.4(0.2) |
| 349.44 | 10.006 | 0.0535 | 0.00131 | 0.02137 | 196.4(0.1) | 199.1(0.2) |
| 349.44 | 10.006 | 0.0716 | 0.00175 | 0.02846 | 196.7(0.3) | 199.4(0.4) |
| 349.44 | 10.004 | 0.0716 | 0.00175 | 0.02848 | 196.5(0.3) | 199.2(0.4) |
| 349.43 | 10.004 | 0.0911 | 0.00222 | 0.03609 | 196.8(0.2) | 199.5(0.2) |
| 349.44 | 10.004 | 0.0911 | 0.00222 | 0.03608 | 196.9(0.2) | 199.6(0.2) |
| 349.44 | 10.004 | 0.1107 | 0.00270 | 0.04367 | 196.8(0.3) | 199.5(0.4) |
| 349.44 | 10.004 | 0.1107 | 0.00270 | 0.04364 | 197.1(0.3) | 199.8(0.4) |
| 349.44 | 10.004 | 0.1298 | 0.00317 | 0.05082 | 199(2) | 201(2) |
| 349.44 | 10.006 | 0.1298 | 0.00317 | 0.05103 | 197(2) | 200(2) |
| 349.44 | 10.004 | 0.1501 | 0.00366 | 0.05869 | 198(1) | 200(1) |
| 349.44 | 10.004 | 0.1501 | 0.00366 | 0.05882 | 197(1) | 199(1) |
| 349.43 | 10.004 | 0.1677 | 0.00409 | 0.06542 | 197.1(0.6) | 199.9(0.7) |
| 349.44 | 10.006 | 0.1677 | 0.00409 | 0.06532 | 197.8(0.6) | 200.5(0.7) |
| 349.42 | 10.006 | 0.1929 | 0.00471 | 0.07467 | 198(1) | 201(1) |
| 349.42 | 10.004 | 0.1929 | 0.00471 | 0.07486 | 197(1) | 200(1) |

Table 5.4 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & \\ & \hline\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {d,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.58 | 15.034 | 0.0188 | 0.00046 | 0.00760 | 194(3) | 197(3) |
| 349.59 | 15.030 | 0.0188 | 0.00046 | 0.00756 | 196(3) | 199(3) |
| 349.59 | 15.035 | 0.0348 | 0.00085 | 0.01403 | 194.3(0.2) | 197.0(0.5) |
| 349.60 | 15.035 | 0.0348 | 0.00085 | 0.01403 | 194.3(0.2) | 197.0(0.5) |
| 349.60 | 15.037 | 0.0534 | 0.00130 | 0.02132 | 196.8(0.2) | 192(2) |
| 349.57 | 15.030 | 0.0534 | 0.00130 | 0.02138 | 195.6(0.1) | 198(2) |
| 349.52 | 15.042 | 0.0723 | 0.00176 | 0.02882 | 196(1) | 199(1) |
| 349.53 | 15.039 | 0.0723 | 0.00176 | 0.02876 | 197(1) | 200(1) |
| 349.52 | 15.037 | 0.0908 | 0.00222 | 0.03599 | 196.9(0.8) | 199.6(0.9) |
| 349.51 | 15.035 | 0.0908 | 0.00222 | 0.03599 | 196.9(0.8) | 199.6(0.9) |
| 349.52 | 15.040 | 0.1104 | 0.00269 | 0.04366 | 196.4(0.8) | 199.1(0.9) |
| 349.51 | 15.039 | 0.1104 | 0.00269 | 0.04360 | 196.9(0.8) | 199.6(0.9) |
| 349.49 | 15.039 | 0.1301 | 0.00318 | 0.05125 | 196.6(0.7) | 199.3(0.8) |
| 349.50 | 15.034 | 0.1301 | 0.00318 | 0.05118 | 197.2(0.7) | 199.9(0.8) |
| 349.46 | 15.035 | 0.1510 | 0.00368 | 0.05917 | 196.9(0.6) | 199.7(0.7) |
| 349.45 | 15.025 | 0.1510 | 0.00368 | 0.05920 | 196.7(0.6) | 199.4(0.7) |
| 349.45 | 15.024 | 0.1716 | 0.00419 | 0.06707 | 196.6(0.7) | 199.3(0.8) |
| 349.44 | 15.023 | 0.1716 | 0.00419 | 0.06695 | 197.3(0.7) | 200.0(0.8) |
| 349.45 | 15.020 | 0.1929 | 0.00471 | 0.07493 | 197.4(0.6) | 200.1(0.7) |
| 349.45 | 15.018 | 0.1929 | 0.00471 | 0.07500 | 197.0(0.6) | 199.7(0.7) |
| $T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.48 | 5.032 | 0.0213 | 0.00052 | 0.00842 | 198(1) | 201(1) |
| 374.47 | 5.029 | 0.0213 | 0.00052 | 0.00843 | 197(1) | 200(1) |
| 374.48 | 5.028 | 0.0352 | 0.00086 | 0.01394 | 197(4) | 200(4) |
| 374.48 | 5.030 | 0.0352 | 0.00086 | 0.01406 | 194(4) | 196(4) |
| 374.47 | 5.029 | 0.0535 | 0.00131 | 0.02111 | 196.9(0.2) | 199.6(0.4) |
| 374.48 | 5.028 | 0.0535 | 0.00131 | 0.02118 | 195.7(0.1) | 198.3(0.4) |
| 374.48 | 5.026 | 0.0734 | 0.00179 | 0.02891 | 196.4(0.5) | 199.0(0.6) |
| 374.47 | 5.026 | 0.0734 | 0.00179 | 0.02888 | 196.8(0.5) | 199.5(0.6) |
| 374.48 | 5.030 | 0.0920 | 0.00224 | 0.03607 | 196.6(0.6) | 199.2(0.7) |
| 374.48 | 5.024 | 0.0920 | 0.00224 | 0.03608 | 196.5(0.6) | 199.1(0.7) |
| 374.48 | 5.026 | 0.1102 | 0.00269 | 0.04307 | 196.7(0.3) | 199.3(0.5) |
| 374.48 | 5.028 | 0.1102 | 0.00269 | 0.04309 | 196.5(0.3) | 199.1(0.5) |
| 374.48 | 5.029 | 0.1299 | 0.00317 | 0.05056 | 196.9(0.8) | 199.5(0.9) |
| 374.48 | 5.028 | 0.1299 | 0.00317 | 0.05064 | 196.2(0.8) | 198.8(0.9) |
| 374.48 | 5.027 | 0.1525 | 0.00372 | 0.05913 | 197(1) | 199(1) |
| 374.48 | 5.033 | 0.1525 | 0.00372 | 0.05912 | 198(1) | 199(1) |
| 374.49 | 5.030 | 0.1710 | 0.00417 | 0.06608 | 196.8(0.4) | 199.4(0.6) |
| 374.48 | 5.016 | 0.1710 | 0.00417 | 0.06614 | 196.4(0.4) | 199.0(0.6) |
| 374.48 | 5.028 | 0.1929 | 0.00471 | 0.07421 | 196.9(0.4) | 199.5(0.5) |
| 374.48 | 5.029 | 0.1929 | 0.00471 | 0.07426 | 196.7(0.4) | 199.3(0.5) |

Table 5.4 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol}^{2} \cdot \mathrm{~kg}^{-1}\right. \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & \\ & \hline\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {d,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.64 | 10.006 | 0.0195 | 0.00048 | 0.00773 | 198.3(0.5) | 200.9(0.6) |
| 374.64 | 10.004 | 0.0195 | 0.00048 | 0.00772 | 198.6(0.5) | 201.3(0.6) |
| 374.64 | 10.006 | 0.0350 | 0.00086 | 0.01383 | 198.9(0.9) | 202(1) |
| 374.64 | 10.007 | 0.0350 | 0.00086 | 0.01386 | 198.2(0.9) | 201(1) |
| 374.64 | 10.006 | 0.0532 | 0.00130 | 0.02101 | 197.6(0.2) | 200.2(0.5) |
| 374.64 | 10.006 | 0.0532 | 0.00130 | 0.02094 | 198.9(0.1) | 201.6(0.4) |
| 374.64 | 10.003 | 0.0716 | 0.00175 | 0.02808 | 198.8(0.2) | 201.4(0.5) |
| 374.64 | 10.006 | 0.0716 | 0.00175 | 0.02807 | 198.9(0.2) | 201.6(0.5) |
| 374.64 | 10.007 | 0.0883 | 0.00215 | 0.03441 | 199.9(0.9) | 203(1) |
| 374.63 | 10.004 | 0.0883 | 0.00215 | 0.03448 | 199.0(0.9) | 202(1) |
| 374.64 | 10.007 | 0.1088 | 0.00266 | 0.04233 | 199.2(0.2) | 201.9(0.5) |
| 374.64 | 10.006 | 0.1088 | 0.00266 | 0.04233 | 199.2(0.2) | 201.9(0.5) |
| 374.63 | 10.007 | 0.1309 | 0.00320 | 0.05071 | 199.3(0.1) | 202.0(0.4) |
| 374.63 | 10.007 | 0.1309 | 0.00320 | 0.05069 | 199.4(0.1) | 202.1(0.4) |
| 374.63 | 10.004 | 0.1498 | 0.00366 | 0.05777 | 199.7(0.2) | 202.4(0.5) |
| 374.63 | 10.004 | 0.1498 | 0.00366 | 0.05779 | 199.5(0.2) | 202.2(0.5) |
| 374.63 | 10.007 | 0.1710 | 0.00417 | 0.06570 | 199.6(0.2) | 202.3(0.5) |
| 374.63 | 10.006 | 0.1710 | 0.00417 | 0.06569 | 199.7(0.2) | 202.4(0.5) |
| 374.62 | 10.006 | 0.1929 | 0.00471 | 0.07373 | 199.99(0.05) | 202.7(0.4) |
| 374.63 | 10.006 | 0.1929 | 0.00471 | 0.07373 | 200.00(0.05) | 202.7(0.4) |
| $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.54 | 15.020 | 0.0175 | 0.00043 | 0.00698 | 197(1) | 200(1) |
| 374.55 | 15.018 | 0.0175 | 0.00043 | 0.00699 | 197(1) | 199(1) |
| 374.54 | 15.018 | 0.0358 | 0.00087 | 0.01413 | 199(1) | 202(1) |
| 374.55 | 15.024 | 0.0358 | 0.00087 | 0.01416 | 198(1) | 201(1) |
| 374.54 | 15.027 | 0.0537 | 0.00131 | 0.02111 | 199.6(0.2) | 202.3(0.5) |
| 374.54 | 15.022 | 0.0537 | 0.00131 | 0.02116 | 198.6(0.1) | 201.2(0.5) |
| 374.54 | 15.022 | 0.0717 | 0.00175 | 0.02809 | 200(1) | 203(1) |
| 374.54 | 15.024 | 0.0717 | 0.00175 | 0.02817 | 199(1) | 201(1) |
| 374.55 | 15.022 | 0.0908 | 0.00222 | 0.03554 | 199(1) | 201(1) |
| 374.54 | 15.020 | 0.0908 | 0.00222 | 0.03545 | 200(1) | 203(1) |
| 374.53 | 15.020 | 0.1109 | 0.00271 | 0.04310 | 200(1) | 203(1) |
| 374.53 | 15.022 | 0.1109 | 0.00271 | 0.04322 | 199(1) | 202(1) |
| 374.54 | 15.025 | 0.1306 | 0.00319 | 0.05071 | 199(1) | 202(1) |
| 374.54 | 15.016 | 0.1306 | 0.00319 | 0.05058 | 200(1) | 203(1) |
| 374.52 | 15.024 | 0.1509 | 0.00368 | 0.05831 | 199(1) | 202(1) |
| 374.53 | 15.016 | 0.1509 | 0.00368 | 0.05818 | 200(1) | 203(1) |
| 374.55 | 15.006 | 0.1709 | 0.00417 | 0.06565 | 200(1) | 203(1) |
| 374.53 | 15.015 | 0.1709 | 0.00417 | 0.06583 | 199(1) | 202(1) |
| 374.53 | 15.011 | 0.1929 | 0.00471 | 0.07382 | 200.0(0.6) | 202.7(0.8) |
| 374.55 | 15.008 | 0.1929 | 0.00471 | 0.07394 | 199.3(0.6) | 202.0(0.8) |

Table 5.4 (continued)

| $\begin{array}{\|l} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {ф,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=423.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 423.91 | 10.026 | 0.0176 | 0.00043 | 0.00686 | 195(1) | 197(1) |
| 423.89 | 10.031 | 0.0176 | 0.00043 | 0.00685 | 195(1) | 198(1) |
| 423.88 | 10.016 | 0.0364 | 0.00089 | 0.01412 | 196.6(0.6) | 198.7(0.7) |
| 423.89 | 10.032 | 0.0364 | 0.00089 | 0.01414 | 195.9(0.6) | 198.1(0.7) |
| 423.86 | 10.025 | 0.0539 | 0.00132 | 0.02081 | 197.0(0.2) | 199.2(0.5) |
| 423.88 | 10.029 | 0.0539 | 0.00132 | 0.02084 | 196.4(0.1) | 198.5(0.5) |
| 423.89 | 10.031 | 0.0725 | 0.00177 | 0.02787 | 197.1(0.5) | 199.2(0.6) |
| 423.87 | 10.030 | 0.0725 | 0.00177 | 0.02787 | 197.0(0.5) | 199.1(0.6) |
| 423.88 | 10.027 | 0.0909 | 0.00222 | 0.03481 | 197.7(0.9) | 200(1) |
| 423.89 | 10.032 | 0.0909 | 0.00222 | 0.03487 | 196.9(0.9) | 199(1) |
| 423.89 | 10.028 | 0.1105 | 0.00270 | 0.04218 | 197.5(0.6) | 199.6(0.8) |
| 423.86 | 10.030 | 0.1105 | 0.00270 | 0.04218 | 197.5(0.6) | 199.7(0.8) |
| 423.86 | 10.030 | 0.1304 | 0.00318 | 0.04952 | 198(1) | 200(1) |
| 423.85 | 10.037 | 0.1304 | 0.00318 | 0.04962 | 197(1) | 199(1) |
| 423.86 | 10.031 | 0.1508 | 0.00368 | 0.05705 | 198.2(0.4) | 200.3(0.6) |
| 423.86 | 10.026 | 0.1508 | 0.00368 | 0.05710 | 197.8(0.4) | 199.9(0.6) |
| 423.85 | 10.025 | 0.1712 | 0.00418 | 0.06454 | 198.3(0.6) | 200.5(0.7) |
| 423.84 | 10.016 | 0.1712 | 0.00418 | 0.06459 | 198.0(0.5) | 200.1(0.6) |
| 423.85 | 10.012 | 0.1929 | 0.00471 | 0.07233 | 199(1) | 201(1) |
| 423.85 | 10.026 | 0.1929 | 0.00471 | 0.07251 | 198(1) | 200(1) |

Table 5.5 The relative densities and apparent molar volumes of aqueous solutions of $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $\begin{aligned} & T \\ & /(\mathrm{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{gathered} \rho_{\text {expt }}-\rho_{l} \\ \\ \hline /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & V_{\text {ф, expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.26 | 5.026 | 0.0194 | 0.00122 | 0.00781 | 186(1) | 192(1) |
| 324.27 | 5.028 | 0.0194 | 0.00122 | 0.00778 | 187(1) | 194(1) |
| 324.26 | 5.029 | 0.0378 | 0.00237 | 0.01507 | 187.2(0.5) | 193.8(0.6) |
| 324.27 | 5.028 | 0.0378 | 0.00237 | 0.01509 | 186.6(0.5) | 193.2(0.6) |
| 324.26 | 5.028 | 0.0560 | 0.00352 | 0.02230 | 187.1(0.2) | 193.7(0.3) |
| 324.26 | 5.028 | 0.0560 | 0.00352 | 0.02226 | 187.7(0.1) | 194.3(0.2) |
| 324.26 | 5.028 | 0.0760 | 0.00477 | 0.03011 | 187.3(0.6) | 193.9(0.7) |
| 324.26 | 5.033 | 0.0760 | 0.00477 | 0.03006 | 187.9(0.6) | 194.5(0.7) |
| 324.26 | 5.032 | 0.0955 | 0.00600 | 0.03769 | 187.7(0.5) | 194.3(0.5) |
| 324.26 | 5.031 | 0.0955 | 0.00600 | 0.03765 | 188.1(0.5) | 194.8(0.5) |
| 324.26 | 5.029 | 0.1158 | 0.00727 | 0.04547 | 188.0(0.2) | 194.6(0.3) |
| 324.26 | 5.030 | 0.1158 | 0.00727 | 0.04545 | 188.2(0.2) | 194.8(0.3) |
| 324.25 | 5.030 | 0.1364 | 0.00857 | 0.05332 | 188.3(0.4) | 195.0(0.4) |
| 324.26 | 5.026 | 0.1364 | 0.00857 | 0.05338 | 187.9(0.4) | 194.6(0.4) |
| 324.26 | 5.030 | 0.1572 | 0.00988 | 0.06121 | 188.3(0.3) | 195.0(0.3) |
| 324.25 | 5.031 | 0.1572 | 0.00988 | 0.06125 | 188.0(0.3) | 194.7(0.3) |
| 324.26 | 5.032 | 0.1794 | 0.01127 | 0.06958 | 188.4(0.3) | 195.0(0.4) |
| 324.25 | 5.032 | 0.1794 | 0.01127 | 0.06960 | 188.3(0.3) | 194.9(0.4) |
| 324.26 | 5.034 | 0.2022 | 0.01271 | 0.07801 | 188.8(0.4) | 195.5(0.4) |
| 324.26 | 5.034 | 0.2022 | 0.01271 | 0.07809 | 188.5(0.4) | 195.1(0.4) |

Table 5.5 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{gathered} \rho_{\text {expt }}-\rho_{l} \\ \\ \hline /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & V_{\phi, \text { expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.28 | 10.004 | 0.0207 | 0.00130 | 0.00828 | 188(1) | 194(1) |
| 324.28 | 10.004 | 0.0207 | 0.00130 | 0.00829 | 187(1) | 194(1) |
| 324.29 | 10.006 | 0.0378 | 0.00237 | 0.01505 | 188.5(0.7) | 195.2(0.7) |
| 324.28 | 10.006 | 0.0378 | 0.00237 | 0.01507 | 188.0(0.7) | 194.7(0.7) |
| 324.29 | 10.005 | 0.0582 | 0.00366 | 0.02310 | 188.5(0.2) | 195.2(0.2) |
| 324.29 | 10.004 | 0.0582 | 0.00366 | 0.02308 | 188.8(0.1) | 195.5(0.2) |
| 324.29 | 10.006 | 0.0761 | 0.00478 | 0.03004 | 189.3(0.6) | 196.0(0.6) |
| 324.29 | 10.007 | 0.0761 | 0.00478 | 0.03007 | 188.9(0.6) | 195.6(0.6) |
| 324.30 | 10.007 | 0.0754 | 0.00474 | 0.02978 | 189.2(0.3) | 195.9(0.4) |
| 324.30 | 10.006 | 0.0754 | 0.00474 | 0.02981 | 188.9(0.3) | 195.6(0.4) |
| 324.29 | 10.006 | 0.1162 | 0.00730 | 0.04552 | 189.4(0.5) | 196.1(0.5) |
| 324.29 | 10.007 | 0.1162 | 0.00730 | 0.04546 | 189.9(0.5) | 196.7(0.5) |
| 324.29 | 10.004 | 0.1377 | 0.00865 | 0.05378 | 189.1(0.5) | 195.8(0.5) |
| 324.29 | 10.006 | 0.1377 | 0.00865 | 0.05371 | 189.6(0.5) | 196.3(0.5) |
| 324.29 | 10.006 | 0.1579 | 0.00992 | 0.06125 | 190(2) | 197(2) |
| 324.28 | 10.006 | 0.1579 | 0.00992 | 0.06134 | 190(2) | 197(2) |
| 324.25 | 10.006 | 0.1789 | 0.01124 | 0.06906 | 190.6(0.9) | 197.4(0.9) |
| 324.25 | 10.006 | 0.1789 | 0.01124 | 0.06919 | 189.9(0.9) | 196.6(0.9) |
| 324.22 | 10.006 | 0.2022 | 0.01271 | 0.07771 | 191(1) | 198(1) |
| 324.22 | 10.004 | 0.2022 | 0.01271 | 0.07784 | 190(1) | 197(1) |
| $T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.29 | 15.030 | 0.0194 | 0.00122 | 0.00781 | 186(2) | 193(2) |
| 324.29 | 15.029 | 0.0194 | 0.00122 | 0.00777 | 188(2) | 195(2) |
| 324.29 | 15.027 | 0.0378 | 0.00237 | 0.01502 | 190(3) | 196(3) |
| 324.29 | 15.023 | 0.0378 | 0.00237 | 0.01511 | 187(3) | 194(3) |
| 324.29 | 15.030 | 0.0560 | 0.00352 | 0.02231 | 187.8(0.2) | 194.5(0.3) |
| 324.28 | 15.032 | 0.0560 | 0.00352 | 0.02234 | 187.3(0.1) | 194.0(0.3) |
| 324.29 | 15.024 | 0.0760 | 0.00477 | 0.03011 | 188.2(0.6) | 194.8(0.7) |
| 324.28 | 15.023 | 0.0760 | 0.00477 | 0.03013 | 187.9(0.6) | 194.6(0.7) |
| 324.28 | 15.018 | 0.0955 | 0.00600 | 0.03770 | 188.4(0.6) | 195.1(0.7) |
| 324.27 | 15.023 | 0.0955 | 0.00600 | 0.03772 | 188.3(0.6) | 194.9(0.7) |
| 324.27 | 15.030 | 0.1158 | 0.00727 | 0.04550 | 189(1) | 195(1) |
| 324.27 | 15.035 | 0.1158 | 0.00727 | 0.04550 | 189(1) | 195(1) |
| 324.26 | 15.034 | 0.1364 | 0.00857 | 0.05344 | 188.4(0.9) | 195.1(0.9) |
| 324.26 | 15.030 | 0.1364 | 0.00857 | 0.05332 | 189.2(0.9) | 196.0(0.9) |
| 324.26 | 15.018 | 0.1572 | 0.00988 | 0.06124 | 189.0(0.6) | 195.7(0.7) |
| 324.27 | 15.020 | 0.1572 | 0.00988 | 0.06122 | 189.1(0.6) | 195.8(0.7) |
| 324.27 | 15.032 | 0.1794 | 0.01127 | 0.06962 | 189.0(0.3) | 195.7(0.4) |
| 324.27 | 15.032 | 0.1794 | 0.01127 | 0.06956 | 189.3(0.3) | 196.0(0.4) |
| 324.27 | 15.021 | 0.2022 | 0.01271 | 0.07803 | 189.6(0.7) | 196.3(0.8) |
| 324.26 | 15.015 | 0.2022 | 0.01271 | 0.07818 | 188.9(0.7) | 195.5(0.8) |

Table 5.5 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \end{aligned}$ | $\begin{gathered} \rho_{\text {expt }}-\rho_{l} \\ \\ \hline /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & V_{\phi, \text { expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.56 | 5.031 | 0.0186 | 0.00117 | 0.00755 | 170.4(0.5) | 197.2(0.6) |
| 349.57 | 5.028 | 0.0186 | 0.00117 | 0.00757 | 168.8(0.5) | 195.1(0.6) |
| 349.57 | 5.027 | 0.0372 | 0.00234 | 0.01463 | 190.6(0.7) | 197.2(0.8) |
| 349.57 | 5.027 | 0.0372 | 0.00234 | 0.01465 | 190.1(0.7) | 196.6(0.8) |
| 349.55 | 5.030 | 0.0561 | 0.00352 | 0.02198 | 190.3(0.2) | 196.8(0.3) |
| 349.56 | 5.027 | 0.0561 | 0.00352 | 0.02197 | 190.4(0.1) | 197.0(0.3) |
| 349.56 | 5.031 | 0.0748 | 0.00470 | 0.02920 | 190.5(0.1) | 197.0(0.3) |
| 349.56 | 5.032 | 0.0748 | 0.00470 | 0.02921 | 190.4(0.1) | 197.0(0.3) |
| 349.56 | 5.031 | 0.0954 | 0.00600 | 0.03711 | 190.6(0.4) | 197.2(0.5) |
| 349.56 | 5.031 | 0.0954 | 0.00600 | 0.03712 | 190.5(0.4) | 197.0(0.5) |
| 349.56 | 5.030 | 0.1159 | 0.00728 | 0.04489 | 190.6(0.3) | 197.2(0.4) |
| 349.55 | 5.030 | 0.1159 | 0.00728 | 0.04489 | 190.7(0.3) | 197.2(0.4) |
| 349.55 | 5.032 | 0.1357 | 0.00853 | 0.05226 | 191.5(0.5) | 198.1(0.6) |
| 349.55 | 5.029 | 0.1357 | 0.00853 | 0.05233 | 191.0(0.5) | 197.6(0.6) |
| 349.55 | 5.029 | 0.1581 | 0.00993 | 0.06072 | 190.9(0.5) | 197.5(0.5) |
| 349.55 | 5.029 | 0.1581 | 0.00993 | 0.06070 | 191.1(0.5) | 197.6(0.5) |
| 349.56 | 5.032 | 0.1785 | 0.01122 | 0.06824 | 191.3(0.6) | 197.9(0.7) |
| 349.55 | 5.033 | 0.1785 | 0.01122 | 0.06834 | 190.7(0.6) | 197.2(0.7) |
| 349.56 | 5.032 | 0.2022 | 0.01271 | 0.07701 | 191.2(0.5) | 197.7(0.6) |
| 349.56 | 5.035 | 0.2022 | 0.01271 | 0.07692 | 191.6(0.5) | 198.2(0.6) |
| $T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.52 | 10.006 | 0.0175 | 0.00110 | 0.00689 | 191(2) | 197(2) |
| 349.53 | 10.006 | 0.0175 | 0.00110 | 0.00690 | 191(2) | 197(2) |
| 349.54 | 10.004 | 0.0361 | 0.00227 | 0.01420 | 191(2) | 197(2) |
| 349.54 | 10.006 | 0.0361 | 0.00227 | 0.01414 | 192(2) | 199(2) |
| 349.55 | 10.007 | 0.0538 | 0.00338 | 0.02114 | 190.2(0.2) | 196.8(0.2) |
| 349.56 | 10.006 | 0.0538 | 0.00338 | 0.02111 | 190.8(0.1) | 197.4(0.2) |
| 349.56 | 10.004 | 0.0736 | 0.00462 | 0.02875 | 190.8(0.2) | 197.4(0.3) |
| 349.56 | 10.007 | 0.0736 | 0.00462 | 0.02874 | 191.0(0.2) | 197.6(0.3) |
| 349.55 | 10.007 | 0.0958 | 0.00602 | 0.03725 | 191.1(0.3) | 197.7(0.3) |
| 349.56 | 10.004 | 0.0958 | 0.00602 | 0.03724 | 191.2(0.3) | 197.8(0.3) |
| 349.56 | 10.004 | 0.1147 | 0.00721 | 0.04443 | 191.21(0.07) | 197.8(0.2) |
| 349.56 | 10.006 | 0.1147 | 0.00721 | 0.04443 | 191.23(0.07) | 197.9(0.2) |
| 349.56 | 10.006 | 0.1347 | 0.00846 | 0.05196 | 191.3(0.1) | 198.0(0.2) |
| 349.56 | 10.004 | 0.1347 | 0.00846 | 0.05197 | 191.3(0.1) | 197.9(0.2) |
| 349.56 | 10.006 | 0.1572 | 0.00988 | 0.06040 | 191.4(0.4) | 198.0(0.4) |
| 349.56 | 10.007 | 0.1572 | 0.00988 | 0.06037 | 191.6(0.4) | 198.2(0.4) |
| 349.51 | 10.011 | 0.1793 | 0.01127 | 0.06855 | 191.7(0.2) | 198.3(0.3) |
| 349.50 | 10.009 | 0.1793 | 0.01127 | 0.06858 | 191.5(0.2) | 198.2(0.3) |
| 349.49 | 10.004 | 0.2022 | 0.01271 | 0.07692 | 192.0(0.7) | 198.7(0.7) |
| 349.49 | 10.006 | 0.2022 | 0.01271 | 0.07706 | 191.3(0.7) | 197.9(0.7) |

Table 5.5 (continued)

| $\begin{array}{\|l} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & ) /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline V_{\text {ф,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.54 | 15.039 | 0.0187 | 0.00117 | 0.00739 | 190(1) | 196(1) |
| 349.54 | 15.045 | 0.0187 | 0.00117 | 0.00740 | 189(1) | 195(1) |
| 349.55 | 15.049 | 0.0369 | 0.00232 | 0.01458 | 189.4(0.6) | 195.9(0.7) |
| 349.56 | 15.044 | 0.0369 | 0.00232 | 0.01460 | 188.8(0.6) | 195.3(0.7) |
| 349.55 | 15.040 | 0.0558 | 0.00351 | 0.02198 | 189.2(0.2) | 195.7(0.3) |
| 349.55 | 15.018 | 0.0558 | 0.00351 | 0.02196 | 189.4(0.1) | 196.0(0.3) |
| 349.54 | 15.025 | 0.0747 | 0.00470 | 0.02932 | 189.5(0.1) | 196.1(0.3) |
| 349.53 | 15.029 | 0.0747 | 0.00470 | 0.02931 | 189.6(0.1) | 196.1(0.3) |
| 349.53 | 15.029 | 0.0951 | 0.00598 | 0.03713 | 190.0(0.5) | 196.6(0.6) |
| 349.54 | 15.039 | 0.0951 | 0.00598 | 0.03717 | 189.6(0.5) | 196.1(0.6) |
| 349.53 | 15.037 | 0.1147 | 0.00721 | 0.04461 | 189.9(0.6) | 196.5(0.7) |
| 349.54 | 15.039 | 0.1147 | 0.00721 | 0.04454 | 190.5(0.6) | 197.1(0.7) |
| 349.54 | 15.040 | 0.1361 | 0.00855 | 0.05262 | 190.9(0.5) | 197.5(0.6) |
| 349.54 | 15.034 | 0.1361 | 0.00855 | 0.05268 | 190.4(0.5) | 196.9(0.6) |
| 349.54 | 15.039 | 0.1579 | 0.00992 | 0.06080 | 191.0(0.7) | 197.6(0.7) |
| 349.54 | 15.030 | 0.1579 | 0.00992 | 0.06086 | 190.6(0.7) | 197.2(0.7) |
| 349.55 | 15.029 | 0.1794 | 0.01127 | 0.06858 | 192.2(0.4) | 198.9(0.5) |
| 349.54 | 15.027 | 0.1794 | 0.01127 | 0.06862 | 192.0(0.4) | 198.7(0.5) |
| 349.50 | 15.022 | 0.2022 | 0.01271 | 0.07704 | 191.8(0.7) | 198.5(0.7) |
| 349.45 | 15.035 | 0.2022 | 0.01271 | 0.07708 | 191.7(0.7) | 198.3(0.7) |
| $T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.60 | 5.019 | 0.0191 | 0.00120 | 0.00738 | 194.8(0.3) | 201.5(0.4) |
| 374.59 | 5.020 | 0.0191 | 0.00120 | 0.00737 | 195.6(0.3) | 202.3(0.4) |
| 374.59 | 5.018 | 0.0369 | 0.00232 | 0.01434 | 191(4) | 198(4) |
| 374.58 | 5.019 | 0.0369 | 0.00232 | 0.01422 | 195(4) | 201(4) |
| 374.57 | 5.017 | 0.0557 | 0.00350 | 0.02142 | 194.4(0.2) | 201.0(0.3) |
| 374.58 | 5.018 | 0.0557 | 0.00350 | 0.02151 | 192.8(0.1) | 199.3(0.3) |
| 374.58 | 5.021 | 0.0752 | 0.00473 | 0.02882 | 194(2) | 201(2) |
| 374.58 | 5.020 | 0.0752 | 0.00473 | 0.02865 | 197(2) | 204(2) |
| 374.58 | 5.021 | 0.0951 | 0.00597 | 0.03629 | 194(1) | 201(1) |
| 374.58 | 5.022 | 0.0951 | 0.00597 | 0.03636 | 194(1) | 200(1) |
| 374.57 | 5.020 | 0.1149 | 0.00722 | 0.04372 | 194.3(0.7) | 200.9(0.8) |
| 374.58 | 5.019 | 0.1149 | 0.00722 | 0.04374 | 194.2(0.7) | 200.7(0.8) |
| 374.57 | 5.018 | 0.1359 | 0.00854 | 0.05158 | 193.86(----) | 200.38(----) |
| 374.57 | 5.018 | 0.1587 | 0.00997 | 0.05958 | 196(2) | 203(2) |
| 374.57 | 5.019 | 0.1587 | 0.00997 | 0.05986 | 195(2) | 201(2) |
| 374.57 | 5.018 | 0.1790 | 0.01125 | 0.06740 | 193.8(0.6) | 200.3(0.7) |
| 374.57 | 5.018 | 0.1790 | 0.01125 | 0.06739 | 193.9(0.6) | 200.4(0.7) |
| 374.58 | 5.018 | 0.2022 | 0.01271 | 0.07579 | 194.0(0.4) | 200.5(0.5) |
| 374.59 | 5.021 | 0.2022 | 0.01271 | 0.07573 | 194.3(0.4) | 200.8(0.5) |

Table 5.5 (continued)

| $\begin{array}{\|l} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & \text { /(MPa) } \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & \\ & \hline /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline V_{\text {фexpt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.32 | 10.037 | 0.0358 | 0.00225 | 0.01386 | 193(1) | 200(1) |
| 374.31 | 10.040 | 0.0358 | 0.00225 | 0.01389 | 192(1) | 199(1) |
| 374.31 | 10.037 | 0.0548 | 0.00344 | 0.02115 | 193.3(0.2) | 199.8(0.5) |
| 374.32 | 10.038 | 0.0548 | 0.00344 | 0.02127 | 191.0(0.1) | 197.4(0.4) |
| 374.31 | 10.035 | 0.0722 | 0.00453 | 0.02789 | 191.6(0.3) | 198.1(0.5) |
| 374.31 | 10.037 | 0.0722 | 0.00453 | 0.02791 | 191.3(0.3) | 197.7(0.5) |
| 374.32 | 10.038 | 0.0929 | 0.00584 | 0.03579 | 191.5(0.4) | 197.9(0.6) |
| 374.34 | 10.040 | 0.0929 | 0.00584 | 0.03579 | 191.6(0.4) | 198.0(0.6) |
| 374.31 | 10.037 | 0.1151 | 0.00723 | 0.04414 | 191.7(0.3) | 198.1(0.5) |
| 374.32 | 10.037 | 0.1151 | 0.00723 | 0.04411 | 191.9(0.3) | 198.3(0.5) |
| 374.34 | 10.040 | 0.1342 | 0.00843 | 0.05126 | 191.8(0.3) | 198.2(0.5) |
| 374.34 | 10.037 | 0.1342 | 0.00843 | 0.05123 | 192.0(0.3) | 198.4(0.5) |
| 374.33 | 10.038 | 0.1552 | 0.00975 | 0.05900 | 192.3(0.5) | 198.8(0.6) |
| 374.34 | 10.038 | 0.1552 | 0.00975 | 0.05905 | 192.0(0.5) | 198.4(0.6) |
| 374.33 | 10.035 | 0.1740 | 0.01093 | 0.06593 | 192.2(0.8) | 198.7(0.9) |
| 374.32 | 10.040 | 0.1740 | 0.01093 | 0.06590 | 192.4(0.8) | 198.9(0.9) |
| 374.32 | 10.040 | 0.2022 | 0.01271 | 0.07614 | 193(1) | 199(1) |
| 374.32 | 10.038 | 0.2022 | 0.01271 | 0.07590 | 194(1) | 200(1) |
| $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.54 | 15.015 | 0.0184 | 0.00116 | 0.00717 | 192.6(0.3) | 199.2(0.5) |
| 374.54 | 15.022 | 0.0184 | 0.00116 | 0.00717 | 193.0(0.3) | 199.6(0.5) |
| 374.55 | 15.020 | 0.0372 | 0.00234 | 0.01447 | 192.8(0.6) | 199.3(0.8) |
| 374.54 | 15.020 | 0.0372 | 0.00234 | 0.01448 | 192.5(0.6) | 199.0(0.8) |
| 374.53 | 15.022 | 0.0560 | 0.00352 | 0.02164 | 193.3(0.2) | 199.9(0.5) |
| 374.55 | 15.024 | 0.0560 | 0.00352 | 0.02169 | 192.3(0.1) | 198.9(0.5) |
| 374.54 | 15.020 | 0.0759 | 0.00477 | 0.02925 | 193.0(0.3) | 199.6(0.5) |
| 374.54 | 15.018 | 0.0759 | 0.00477 | 0.02926 | 192.9(0.3) | 199.4(0.5) |
| 374.53 | 15.018 | 0.0949 | 0.00596 | 0.03648 | 193(1) | 199(1) |
| 374.54 | 15.020 | 0.0949 | 0.00596 | 0.03640 | 194(1) | 200(1) |
| 374.55 | 15.024 | 0.1150 | 0.00723 | 0.04394 | 193.8(0.8) | 200.4(0.9) |
| 374.54 | 15.020 | 0.1150 | 0.00723 | 0.04403 | 193.0(0.8) | 199.5(0.9) |
| 374.54 | 15.020 | 0.1364 | 0.00857 | 0.05189 | 193.7(0.7) | 200.3(0.8) |
| 374.53 | 15.022 | 0.1364 | 0.00857 | 0.05197 | 193.1(0.7) | 199.6(0.8) |
| 374.55 | 15.018 | 0.1580 | 0.00993 | 0.05985 | 193.8(0.6) | 200.4(0.7) |
| 374.53 | 15.022 | 0.1580 | 0.00993 | 0.05989 | 193.5(0.6) | 200.1(0.7) |
| 374.54 | 15.020 | 0.1762 | 0.01107 | 0.06654 | 193.9(0.6) | 200.5(0.8) |
| 374.53 | 15.022 | 0.1762 | 0.01107 | 0.06659 | 193.6(0.6) | 200.1(0.8) |
| 374.53 | 15.024 | 0.2022 | 0.01271 | 0.07589 | 194(1) | 201(1) |
| 374.54 | 15.025 | 0.2022 | 0.01271 | 0.07608 | 193(1) | 200(1) |

Table 5.6 The relative densities and apparent molar volumes of aqueous solutions of $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ of known concentration at $T=(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\phi, \operatorname{expt} t} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.26 | 5.036 | 0.0170 | 0.00536 | 0.00766 | 165(2) | 192(2) |
| 324.27 | 5.032 | 0.0170 | 0.00536 | 0.00769 | 164(2) | 189(2) |
| 324.27 | 5.032 | 0.0322 | 0.01015 | 0.01450 | 164.5(0.9) | 191(1) |
| 324.27 | 5.030 | 0.0322 | 0.01015 | 0.01448 | 165.3(0.9) | 192(1) |
| 324.27 | 5.030 | 0.0486 | 0.01532 | 0.02183 | 164.7(0.2) | 190.8(0.3) |
| 324.26 | 5.031 | 0.0486 | 0.01532 | 0.02180 | 165.2(0.1) | 191.4(0.2) |
| 324.26 | 5.031 | 0.0655 | 0.02064 | 0.02934 | 164.5(0.9) | 190.4(0.9) |
| 324.26 | 5.031 | 0.0655 | 0.02064 | 0.02929 | 165.3(0.9) | 191.5(0.9) |
| 324.26 | 5.030 | 0.0826 | 0.02602 | 0.03685 | 165.0(0.8) | 191.1(0.8) |
| 324.26 | 5.031 | 0.0826 | 0.02602 | 0.03680 | 165.6(0.8) | 191.9(0.8) |
| 324.26 | 5.031 | 0.1008 | 0.03178 | 0.04494 | 164.3(0.3) | 190.1(0.3) |
| 324.26 | 5.029 | 0.1008 | 0.03178 | 0.04494 | 164.3(0.3) | 190.1(0.3) |
| 324.25 | 5.032 | 0.1191 | 0.03752 | 0.05272 | 165.8(0.7) | 192.1(0.7) |
| 324.25 | 5.030 | 0.1191 | 0.03752 | 0.05281 | 165.1(0.7) | 191.1(0.7) |
| 324.26 | 5.032 | 0.1373 | 0.04327 | 0.06064 | 165.6(0.6) | 191.8(0.6) |
| 324.27 | 5.031 | 0.1373 | 0.04327 | 0.06072 | 165.0(0.6) | 191.1(0.6) |
| 324.26 | 5.031 | 0.1564 | 0.04928 | 0.06889 | 165.4(0.7) | 191.5(0.7) |
| 324.26 | 5.027 | 0.1564 | 0.04928 | 0.06878 | 166.1(0.7) | 192.5(0.7) |
| 324.27 | 5.027 | 0.1755 | 0.05532 | 0.07712 | 165.3(0.6) | 191.3(0.6) |
| 324.27 | 5.027 | 0.1755 | 0.05532 | 0.07702 | 165.8(0.6) | 192.0(0.6) |

Table 5.6 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{gathered} \rho_{\text {expt }}-\rho_{l} \\ \\ \hline /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & V_{\phi, \text { expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.20 | 10.038 | 0.0156 | 0.00493 | 0.00706 | 165.2(0.2) | 191.6(0.3) |
| 324.21 | 10.035 | 0.0156 | 0.00493 | 0.00706 | 165.0(0.2) | 191.3(0.3) |
| 324.21 | 10.038 | 0.0325 | 0.01024 | 0.01463 | 165(3) | 191(3) |
| 324.21 | 10.038 | 0.0325 | 0.01024 | 0.01472 | 162(3) | 188(3) |
| 324.21 | 10.040 | 0.0480 | 0.01511 | 0.02154 | 165.2(0.2) | 191.5(0.2) |
| 324.23 | 10.037 | 0.0480 | 0.01511 | 0.02154 | 165.2(0.1) | 191.5(0.2) |
| 324.26 | 10.038 | 0.0655 | 0.02066 | 0.02937 | 165.0(0.3) | 191.2(0.3) |
| 324.26 | 10.038 | 0.0655 | 0.02066 | 0.02935 | 165.2(0.3) | 191.5(0.3) |
| 324.27 | 10.037 | 0.0825 | 0.02601 | 0.03687 | 165.1(0.3) | 191.3(0.3) |
| 324.27 | 10.038 | 0.0825 | 0.02601 | 0.03686 | 165.3(0.3) | 191.5(0.3) |
| 324.27 | 10.040 | 0.1011 | 0.03188 | 0.04504 | 165.1(0.4) | 191.3(0.4) |
| 324.27 | 10.038 | 0.1011 | 0.03188 | 0.04505 | 165.0(0.4) | 191.2(0.4) |
| 324.26 | 10.038 | 0.1189 | 0.03748 | 0.05282 | 165.0(0.2) | 191.1(0.2) |
| 324.27 | 10.038 | 0.1189 | 0.03748 | 0.05281 | 165.2(0.2) | 191.3(0.2) |
| 324.27 | 10.035 | 0.1367 | 0.04309 | 0.06052 | 165.4(0.4) | 191.5(0.4) |
| 324.27 | 10.040 | 0.1367 | 0.04309 | 0.06057 | 165.0(0.4) | 191.1(0.4) |
| 324.27 | 10.037 | 0.1561 | 0.04920 | 0.06896 | 164.9(0.7) | 190.9(0.7) |
| 324.26 | 10.032 | 0.1561 | 0.04920 | 0.06885 | 165.6(0.7) | 191.8(0.7) |
| 324.21 | 10.035 | 0.1755 | 0.05532 | 0.07713 | 165.8(0.4) | 192.0(0.4) |
| 324.21 | 10.038 | 0.1755 | 0.05532 | 0.07718 | 165.5(0.4) | 191.6(0.4) |
| $T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 324.29 | 15.029 | 0.0167 | 0.00526 | 0.00755 | 165.0(0.7) | 191.3(0.7) |
| 324.28 | 15.021 | 0.0167 | 0.00526 | 0.00756 | 164.4(0.7) | 190.6(0.7) |
| 324.29 | 15.020 | 0.0327 | 0.01031 | 0.01477 | 165(1) | 191(1) |
| 324.28 | 15.024 | 0.0327 | 0.01031 | 0.01479 | 164(1) | 190(1) |
| 324.28 | 15.016 | 0.0488 | 0.01539 | 0.02201 | 164.3(0.2) | 190.3(0.4) |
| 324.28 | 15.015 | 0.0488 | 0.01539 | 0.02201 | 164.2(0.1) | 190.2(0.3) |
| 324.28 | 15.027 | 0.0658 | 0.02075 | 0.02959 | 164.3(0.7) | 190.2(0.8) |
| 324.28 | 15.034 | 0.0658 | 0.02075 | 0.02961 | 163.9(0.7) | 189.8(0.8) |
| 324.28 | 15.017 | 0.0830 | 0.02616 | 0.03719 | 164.4(0.8) | 190.4(0.9) |
| 324.28 | 15.018 | 0.0830 | 0.02616 | 0.03725 | 163.6(0.8) | 189.3(0.9) |
| 324.28 | 15.025 | 0.1005 | 0.03167 | 0.04496 | 163.7(0.4) | 189.4(0.5) |
| 324.27 | 15.032 | 0.1005 | 0.03167 | 0.04492 | 164.1(0.4) | 190.0(0.5) |
| 324.27 | 15.032 | 0.1182 | 0.03724 | 0.05271 | 163.8(0.7) | 189.6(0.8) |
| 324.28 | 15.023 | 0.1182 | 0.03724 | 0.05272 | 163.8(0.7) | 189.5(0.8) |
| 324.28 | 15.013 | 0.1368 | 0.04312 | 0.06087 | 163.7(0.4) | 189.4(0.5) |
| 324.27 | 15.030 | 0.1368 | 0.04312 | 0.06082 | 164.0(0.4) | 189.8(0.5) |
| 324.28 | 15.040 | 0.1558 | 0.04911 | 0.06903 | 164.2(0.9) | 190.1(0.9) |
| 324.27 | 15.035 | 0.1558 | 0.04911 | 0.06916 | 163.4(0.9) | 189.0(0.9) |
| 324.27 | 15.018 | 0.1755 | 0.05532 | 0.07747 | 164.5(0.6) | 190.3(0.7) |
| 324.27 | 15.004 | 0.1755 | 0.05532 | 0.07751 | 164.2(0.6) | 190.0(0.7) |

Table 5.6 (continued)

| $\begin{array}{\|l\|} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right. \\ & \hline \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & \\ & \hline\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {d,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.57 | 5.033 | 0.0171 | 0.00538 | 0.00756 | 170(2) | 197(2) |
| 349.57 | 5.031 | 0.0171 | 0.00538 | 0.00757 | 169(2) | 195(2) |
| 349.57 | 5.031 | 0.0332 | 0.01046 | 0.01466 | 169.4(0.9) | 196(1) |
| 349.56 | 5.031 | 0.0332 | 0.01046 | 0.01468 | 169.1(0.9) | 195(1) |
| 349.56 | 5.030 | 0.0495 | 0.01560 | 0.02187 | 168.0(0.2) | 193.9(0.3) |
| 349.56 | 5.031 | 0.0495 | 0.01560 | 0.02193 | 166.6(0.1) | 192.0(0.3) |
| 349.57 | 5.030 | 0.0656 | 0.02068 | 0.02887 | 169(1) | 195(1) |
| 349.56 | 5.031 | 0.0656 | 0.02068 | 0.02888 | 169(1) | 195(1) |
| 349.56 | 5.030 | 0.0830 | 0.02616 | 0.03642 | 169(4) | 195(4) |
| 349.57 | 5.030 | 0.0830 | 0.02616 | 0.03675 | 165(4) | 189(4) |
| 349.56 | 5.031 | 0.1008 | 0.03176 | 0.04422 | 167(2) | 193(2) |
| 349.57 | 5.029 | 0.1008 | 0.03176 | 0.04407 | 169(2) | 195(2) |
| 349.56 | 5.030 | 0.1174 | 0.03700 | 0.05120 | 169(2) | 195(2) |
| 349.56 | 5.028 | 0.1174 | 0.03700 | 0.05141 | 167(2) | 193(2) |
| 349.57 | 5.025 | 0.1374 | 0.04329 | 0.05981 | 168(1) | 194(1) |
| 349.57 | 5.027 | 0.1374 | 0.04329 | 0.05986 | 168(1) | 193(1) |
| 349.57 | 5.026 | 0.1553 | 0.04893 | 0.06746 | 167.8(0.5) | 193.5(0.5) |
| 349.56 | 5.027 | 0.1553 | 0.04893 | 0.06750 | 167.6(0.5) | 193.1(0.5) |
| 349.57 | 5.028 | 0.1755 | 0.05532 | 0.07606 | 168(2) | 193(2) |
| 349.57 | 5.029 | 0.1755 | 0.05532 | 0.07569 | 170(2) | 196(2) |
| $T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.48 | 10.040 | 0.0166 | 0.00522 | 0.00735 | 169(2) | 196(2) |
| 349.50 | 10.040 | 0.0166 | 0.00522 | 0.00734 | 170(2) | 197(2) |
| 349.50 | 10.042 | 0.0317 | 0.01000 | 0.01407 | 168.3(0.6) | 194.4(0.5) |
| 349.50 | 10.040 | 0.0317 | 0.01000 | 0.01407 | 168.2(0.6) | 194.4(0.5) |
| 349.50 | 10.037 | 0.0486 | 0.01533 | 0.02156 | 167.4(0.2) | 193.1(0.5) |
| 349.50 | 10.040 | 0.0486 | 0.01533 | 0.02154 | 167.8(0.1) | 193.7(0.5) |
| 349.50 | 10.040 | 0.0653 | 0.02057 | 0.02890 | 166.8(0.6) | 192.2(0.6) |
| 349.50 | 10.038 | 0.0653 | 0.02057 | 0.02886 | 167.3(0.6) | 193.0(0.6) |
| 349.50 | 10.038 | 0.0816 | 0.02571 | 0.03598 | 167.3(0.9) | 192.8(0.9) |
| 349.50 | 10.040 | 0.0816 | 0.02571 | 0.03605 | 166.5(0.9) | 191.7(0.9) |
| 349.50 | 10.040 | 0.1000 | 0.03152 | 0.04400 | 167.2(0.3) | 192.6(0.4) |
| 349.50 | 10.040 | 0.1000 | 0.03152 | 0.04397 | 167.4(0.3) | 192.9(0.4) |
| 349.50 | 10.043 | 0.1198 | 0.03775 | 0.05251 | 167.3(0.6) | 192.7(0.6) |
| 349.50 | 10.040 | 0.1198 | 0.03775 | 0.05252 | 167.2(0.6) | 192.5(0.6) |
| 349.50 | 10.040 | 0.1355 | 0.04270 | 0.05927 | 167(1) | 192(1) |
| 349.50 | 10.040 | 0.1355 | 0.04270 | 0.05914 | 168(1) | 194(1) |
| 349.50 | 10.043 | 0.1549 | 0.04880 | 0.06753 | 167(1) | 192(1) |
| 349.49 | 10.040 | 0.1549 | 0.04880 | 0.06734 | 168(1) | 194(1) |
| 349.49 | 10.040 | 0.1755 | 0.05532 | 0.07605 | 168.2(0.2) | 193.2(0.3) |
| 349.49 | 10.040 | 0.1755 | 0.05532 | 0.07602 | 168.4(0.2) | 193.1(0.3) |

Table 5.6 (continued)

| $\begin{array}{\|l} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol}^{2} \cdot \mathrm{~kg}^{-}\right. \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & ) /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline V_{\text {ф,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=348.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 349.48 | 15.025 | 0.0166 | 0.00524 | 0.00741 | 168(2) | 194(2) |
| 349.48 | 15.022 | 0.0166 | 0.00524 | 0.00742 | 167(2) | 193(2) |
| 349.47 | 15.022 | 0.0328 | 0.01035 | 0.01458 | 168(2) | 194(2) |
| 349.48 | 15.022 | 0.0328 | 0.01035 | 0.01464 | 166(2) | 192(2) |
| 349.49 | 15.016 | 0.0491 | 0.01547 | 0.02180 | 166.8(0.2) | 192.6(0.3) |
| 349.49 | 15.015 | 0.0491 | 0.01547 | 0.02182 | 166.5(0.1) | 192.1(0.3) |
| 349.49 | 15.020 | 0.0661 | 0.02083 | 0.02932 | 166.2(0.3) | 191.7(0.4) |
| 349.49 | 15.020 | 0.0661 | 0.02083 | 0.02931 | 166.5(0.3) | 192.0(0.4) |
| 349.48 | 15.018 | 0.0836 | 0.02636 | 0.03697 | 167(1) | 192(1) |
| 349.48 | 15.025 | 0.0836 | 0.02636 | 0.03700 | 166(1) | 192(1) |
| 349.48 | 15.024 | 0.1007 | 0.03175 | 0.04441 | 166.6(0.7) | 192.1(0.8) |
| 349.47 | 15.024 | 0.1007 | 0.03175 | 0.04448 | 165.9(0.7) | 191.2(0.8) |
| 349.47 | 15.030 | 0.1188 | 0.03743 | 0.05220 | 167(1) | 192(1) |
| 349.47 | 15.023 | 0.1188 | 0.03743 | 0.05232 | 166(1) | 191(1) |
| 349.48 | 15.025 | 0.1371 | 0.04322 | 0.06019 | 166(1) | 191(1) |
| 349.47 | 15.022 | 0.1371 | 0.04322 | 0.06005 | 167(1) | 192(1) |
| 349.47 | 15.027 | 0.1561 | 0.04920 | 0.06814 | 167.0(0.8) | 192.5(0.8) |
| 349.47 | 15.023 | 0.1561 | 0.04920 | 0.06827 | 166.2(0.8) | 191.5(0.8) |
| 349.47 | 15.024 | 0.1755 | 0.05532 | 0.07615 | 168.3(0.4) | 194.2(0.5) |
| 349.47 | 15.025 | 0.1755 | 0.05532 | 0.07622 | 167.9(0.4) | 193.7(0.5) |
| $T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.59 | 5.018 | 0.0161 | 0.00506 | 0.00696 | 175(6) | 198(6) |
| 374.59 | 5.022 | 0.0161 | 0.00506 | 0.00704 | 169(6) | 191(6) |
| 374.57 | 5.023 | 0.0324 | 0.01020 | 0.01422 | 167.1(0.6) | 188.5(0.7) |
| 374.56 | 5.021 | 0.0324 | 0.01020 | 0.01422 | 167.1(0.6) | 188.6(0.7) |
| 374.57 | 5.025 | 0.0490 | 0.01543 | 0.02137 | 168.7(0.2) | 190.4(0.4) |
| 374.58 | 5.021 | 0.0490 | 0.01543 | 0.02128 | 170.5(0.1) | 192.8(0.4) |
| 374.57 | 5.021 | 0.0664 | 0.02091 | 0.02884 | 169.3(0.3) | 191.0(0.5) |
| 374.59 | 5.023 | 0.0664 | 0.02091 | 0.02884 | 169.3(0.3) | 191.0(0.5) |
| 374.57 | 5.021 | 0.0827 | 0.02607 | 0.03595 | 168.0(0.5) | 189.3(0.6) |
| 374.57 | 5.021 | 0.0827 | 0.02607 | 0.03592 | 168.5(0.5) | 189.8(0.6) |
| 374.56 | 5.024 | 0.1007 | 0.03173 | 0.04377 | 167(2) | 187(2) |
| 374.58 | 5.023 | 0.1007 | 0.03173 | 0.04356 | 169(2) | 190(2) |
| 374.57 | 5.024 | 0.1188 | 0.03743 | 0.05147 | 167(2) | 187(2) |
| 374.57 | 5.025 | 0.1188 | 0.03743 | 0.05129 | 168(2) | 189(2) |
| 374.58 | 5.026 | 0.1368 | 0.04312 | 0.05892 | 168.4(0.8) | 189.4(0.9) |
| 374.57 | 5.024 | 0.1368 | 0.04312 | 0.05901 | 167.6(0.8) | 188.4(0.9) |
| 374.57 | 5.023 | 0.1562 | 0.04923 | 0.06700 | 168.8(0.8) | 189.9(0.9) |
| 374.57 | 5.025 | 0.1562 | 0.04923 | 0.06711 | 168.1(0.8) | 188.8(0.9) |
| 374.58 | 5.023 | 0.1755 | 0.05532 | 0.07513 | 168.4(0.4) | 189.2(0.5) |
| 374.59 | 5.021 | 0.1755 | 0.05532 | 0.07507 | 168.7(0.4) | 189.6(0.5) |

Table 5.6 (continued)

| $\begin{array}{\|l} \hline T \\ /(\mathrm{K}) \\ \hline \end{array}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & m_{2} \\ & /\left(\mathrm{mol} \cdot \mathrm{~kg}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & m_{3} \\ & /\left(\mathrm{mol}^{2} \cdot \mathrm{~kg}^{-1}\right. \end{aligned}$ | $\begin{aligned} & \rho_{\text {expt }}-\rho_{l} \\ & ) /\left(\mathrm{g} \cdot \mathrm{~cm}^{-3}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline V_{\text {ф,expt }} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{2 \phi} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.37 | 10.040 | 0.0161 | 0.00507 | 0.00710 | 167(6) | 192(6) |
| 374.38 | 10.040 | 0.0161 | 0.00507 | 0.00702 | 172(6) | 199(6) |
| 374.38 | 10.035 | 0.0323 | 0.01017 | 0.01410 | 170(4) | 196(4) |
| 374.38 | 10.037 | 0.0323 | 0.01017 | 0.01420 | 167(4) | 192(4) |
| 374.39 | 10.040 | 0.0487 | 0.01536 | 0.02127 | 169.5(0.2) | 195.0(0.5) |
| 374.39 | 10.040 | 0.0487 | 0.01536 | 0.02132 | 168.5(0.1) | 193.7(0.4) |
| 374.39 | 10.038 | 0.0654 | 0.02060 | 0.02851 | 168.4(0.3) | 193.4(0.5) |
| 374.39 | 10.038 | 0.0654 | 0.02060 | 0.02850 | 168.5(0.3) | 193.6(0.5) |
| 374.39 | 10.040 | 0.0821 | 0.02589 | 0.03577 | 168(2) | 193(2) |
| 374.39 | 10.040 | 0.0821 | 0.02589 | 0.03593 | 166(2) | 190(2) |
| 374.39 | 10.037 | 0.0990 | 0.03121 | 0.04302 | 168.0(0.6) | 192.8(0.7) |
| 374.38 | 10.038 | 0.0990 | 0.03121 | 0.04306 | 167.5(0.6) | 192.2(0.7) |
| 374.38 | 10.040 | 0.1172 | 0.03693 | 0.05075 | 167.9(0.8) | 192.6(0.9) |
| 374.38 | 10.038 | 0.1172 | 0.03693 | 0.05080 | 167.5(0.8) | 192.1(0.9) |
| 374.38 | 10.038 | 0.1376 | 0.04336 | 0.05934 | 168(1) | 193(1) |
| 374.39 | 10.038 | 0.1376 | 0.04336 | 0.05945 | 168(1) | 192(1) |
| 374.39 | 10.037 | 0.1553 | 0.04896 | 0.06687 | 168.0(0.8) | 192.6(0.9) |
| 374.39 | 10.040 | 0.1553 | 0.04896 | 0.06676 | 168.7(0.8) | 193.6(0.9) |
| 374.38 | 10.040 | 0.1755 | 0.05532 | 0.07482 | 171(3) | 196(3) |
| 374.39 | 10.038 | 0.1755 | 0.05532 | 0.07534 | 168(3) | 192(3) |
| $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$ |  |  |  |  |  |  |
| 374.56 | 15.037 | 0.0162 | 0.00512 | 0.00710 | 172(2) | 198(2) |
| 374.56 | 15.045 | 0.0162 | 0.00512 | 0.00712 | 170(2) | 196(2) |
| 374.56 | 15.047 | 0.0321 | 0.01011 | 0.01405 | 169.9(0.9) | 196(1) |
| 374.57 | 15.047 | 0.0321 | 0.01011 | 0.01403 | 170.4(0.9) | 196(1) |
| 374.56 | 15.047 | 0.0492 | 0.01550 | 0.02149 | 169.6(0.2) | 195.1(0.5) |
| 374.57 | 15.042 | 0.0492 | 0.01550 | 0.02153 | 168.8(0.1) | 194.2(0.4) |
| 374.57 | 15.045 | 0.0654 | 0.02060 | 0.02854 | 168.7(0.7) | 194.0(0.8) |
| 374.54 | 15.045 | 0.0654 | 0.02060 | 0.02855 | 168.6(0.7) | 193.8(0.8) |
| 374.56 | 15.044 | 0.0822 | 0.02591 | 0.03585 | 168.1(0.9) | 193(1) |
| 374.56 | 15.045 | 0.0822 | 0.02591 | 0.03581 | 168.6(0.9) | 194(1) |
| 374.57 | 15.024 | 0.1005 | 0.03168 | 0.04368 | 168.3(0.5) | 193.3(0.6) |
| 374.56 | 15.035 | 0.1005 | 0.03168 | 0.04370 | 168.0(0.5) | 193.0(0.6) |
| 374.55 | 15.030 | 0.1188 | 0.03742 | 0.05148 | 168(1) | 193(1) |
| 374.57 | 15.037 | 0.1188 | 0.03742 | 0.05150 | 168(1) | 193(1) |
| 374.56 | 15.027 | 0.1370 | 0.04319 | 0.05930 | 167.5(0.4) | 192.2(0.6) |
| 374.56 | 15.034 | 0.1370 | 0.04319 | 0.05924 | 168.0(0.4) | 192.8(0.6) |
| 374.56 | 15.035 | 0.1359 | 0.04283 | 0.05870 | 168(1) | 193(1) |
| 374.57 | 15.034 | 0.1359 | 0.04283 | 0.05883 | 167(1) | 192(1) |
| 374.56 | 15.034 | 0.1755 | 0.05532 | 0.07542 | 167.95(0.05) | 192.7(0.4) |
| 374.56 | 15.037 | 0.1755 | 0.05532 | 0.07542 | 168.00(0.05) | 192.7(0.4) |

Table 5.7 Estimation and comparison of parameters to the Pitzer-ion interaction model equation, shown as equation (2.37), for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15,373.15$, and 423.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $T$ | $p$ | $V_{2}{ }^{0}$ | $10^{4}\left(\beta^{(0) V}\right)$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $(\mathrm{K})$ | $/(\mathrm{MPa})$ | $10^{3}\left(\beta^{(1) V}\right)$ <br> $/\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ |  |  |
| 324.29 | 5.01 | $194.06(0.07)$ | $-5.4(0.7)$ | $-2.0(0.3)$ |
| 324.23 | 10.02 | $193.1(0.1)$ | $-13(1)$ | $-1.4(0.5)$ |
| 324.28 | 15.00 | $193.28(0.03)$ | $-4.5(0.3)$ | $-1.4(0.1)$ |
| 349.52 | 5.01 | $196.03(0.08)$ | $-1.2(0.7)$ | $-8.4(0.3)$ |
| 349.44 | 10.01 | $195.9(0.1)$ | $4(1)$ | $-10.4(0.5)$ |
| 349.52 | 15.03 | $195.69(0.09)$ | $-3.1(0.8)$ | $-8.0(0.4)$ |
| 374.48 | 5.03 | $196.9(0.1)$ | $16(6)$ | $9(2)$ |
| 374.64 | 10.01 | $196.85(0.08)$ | $5.3(0.7)$ | $-13.0(0.3)$ |
| 374.54 | 15.02 | $194.9(0.3)$ | $-15(2)$ | $-3(1)$ |
| 423.87 | 10.03 | $189.91(0.09)$ | $1.2(0.7)$ | $-17.1(0.3)$ |

Table 5.8 Estimation and comparison of parameters to the Pitzer-ion interaction model equation, shown as equation (2.37), for aqueous solutions of $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $T$ | $p$ | $V_{2}{ }^{0}$ | $10^{4}\left(\beta^{(0) V}\right)$ <br> $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $1\left(\mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $(\mathrm{K})$ | $/(\mathrm{MPa})$ | $10^{3}\left(\beta^{(1) V}\right)$ <br> $/\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{MPa}^{-1}\right)$ |  |  |
| 324.26 | 5.03 | $189.7(0.2)$ | $-3(1)$ | $-3.7(0.7)$ |
| 324.28 | 10.01 | $190.50(0.06)$ | $-4.5(0.5)$ | $-2.2(0.3)$ |
| 324.28 | 15.03 | $189.26(0.05)$ | $-5.9(0.5)$ | $-1.0(0.2)$ |
| 349.56 | 5.03 | $194.1(0.1)$ | $9(1)$ | $-13.3(0.5)$ |
| 349.54 | 10.01 | $194.3(0.1)$ | $5(1)$ | $-11.3(0.5)$ |
| 349.54 | 15.03 | $193.4(0.2)$ | $19(2)$ | $-15.1(0.7)$ |
| 374.58 | 5.02 | $198.0(0.3)$ | $5(2)$ | $-17(1)$ |
| 374.32 | 10.04 | $197.8(0.6)$ | $25(4)$ | $-25(2)$ |
| 374.54 | 15.02 | $195.5(0.3)$ | $8(2)$ | $-14(1)$ |

Table 5.9 Estimation and comparison of parameters to the Pitzer-ion interaction model equation, shown as equation (2.37), for aqueous solutions of $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$

| $\begin{aligned} & T \\ & /(\mathrm{K}) \\ & \hline \end{aligned}$ | $\begin{aligned} & p \\ & /(\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{2}{ }^{0} \\ & /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{4}\left(\beta^{(0) V}\right) \\ & /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{MPa}^{-1}\right) \end{aligned}$ | $\begin{aligned} & 10^{3}\left(\beta^{(1) V}\right) \\ & /\left(\mathrm{kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{MPa}^{-1}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 324.26 | 5.03 | 189.8(0.2) | 11(2) | -13.1(0.8) |
| 324.24 | 10.04 | 189.7(0.4) | 6(5) | -12(2) |
| 324.28 | 15.02 | 190.0(0.2) | 19(2) | -18.2(0.8) |
| 349.56 | 5.03 | 195.7(0.4) | 12(5) | -22(2) |
| 349.50 | 10.04 | 194.8(0.3) | 28(4) | -27(2) |
| 349.48 | 15.02 | 193.7(0.3) | 38(4) | -28(2) |
| 374.57 | 5.02 | 198.7(0.7) | 54(6) | -48(3) |
| 374.38 | 10.04 | 198.8(0.4) | 47(4) | -41(2) |
| 374.56 | 15.04 | 197.0(0.4) | 32(4) | -33(2) |

Table 5.10 A comparison of literature and calculated $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ values for $\mathrm{R}^{3+}{ }_{(\text {aq })}=\left(\mathrm{Gd}^{3+}, \mathrm{Nd}^{3+}\right.$, and $\left.\mathrm{Yb}^{3+}\right)$ at $T \approx(323.15,348.15$, and 373.15$) \mathrm{K}$ and $p \approx(5.00$, 10.00 , and 15.00$) \mathrm{MPa}$

| $T /(\mathrm{K})$ | $p /(\mathrm{MPa})$ | $\mathrm{Gd}^{3+}{ }_{(\mathrm{aq})}$ | $\mathrm{Nd}^{3+}{ }^{3+}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right) /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | $\mathrm{Yb}^{3+}{ }_{(\mathrm{aq})}$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  | $-40.0(0.3)$ | $-44.4(0.3)$ |  |
| 323.15 | 5.00 | $-40.9(0.2)$ | $-43.5(0.2)$ | $-44.3(0.3)$ |
| 323.15 | 10.00 |  |  | $-44.3(0.4)$ |
|  |  | $-40.5(0.5)$ | $-44.4(0.5)$ | $-44.4(0.9)^{\alpha}$ |
| 323.15 | 15.00 | $-45.6(0.5)$ | $-47.5(0.5)$ | $-43.7(0.5)$ |
| 348.15 | 5.00 | $-44.4(0.3)$ | $-46.0(0.3)$ | $-45.9(0.6)$ |
| 348.15 | 10.00 |  |  | $-45.5(0.8)$ |
|  |  | $-44.6(0.5)$ | $-46.9(0.5)$ | $-45.8(0.9)^{\alpha}$ |
| 348.15 | 15.00 | $-49.7(0.7)$ | $-48.6(0.8)$ | $-46.6(0.6)$ |
| 373.15 | 5.00 | $-49.1(0.7)$ | $-48(1)$ | $-47.9(0.9)$ |
| 373.15 | 10.00 |  |  | $-47.1(0.8)$ |
|  |  | $-49.4(0.8)$ | $-48.8(0.8)$ | $-48.8(0.9)^{\alpha}$ |
| 373.15 | 15.00 | $-55.0(0.8)$ |  | $-47.3(0.9)$ |
| 423.15 | 10.00 |  |  |  |

${ }^{\alpha}$ Hakin et al. (2004a)
6) THE MODELING OF APPARENT MOLAR PROPERTIES OF AQUEOUS SOLUTIONS OF THE REE TRIFLATES OVER THE TEMPERATURE RANGE $T=(288.15,298.15,313.15,323.15,328.15,348.15,373.15$, AND 423.15) K AND PRESSURE RANGE $\boldsymbol{p}=(\mathbf{0 . 1}, 5.00,10.00$, and 15.00) MPa

### 6.1 Introduction

The apparent molar volumes and heat capacities of aqueous solutions of the REE triflates show a strong temperature and pressure dependence. However, there is less of a dependence on pressure than on temperature, at least over the range investigated in this study. This phenomenon has been observed in the past for other REE salts (Hakin et al., 2004a; Xiao et al., 1999) and also for several acids (Hovey, 1988) and in general holds for many aqueous electrolytes. Such dependences have also been discussed in Chapters 4 and 5 (and shown in Figures 4.4, 4.7, 4.8, 5.1, and 5.3). Although calculations of $V_{2 \phi,}$ $C_{p, 2 \phi,} V_{2}{ }^{0}$, and $C_{p 2}{ }^{0}$ at various temperatures and pressures presented so far in this thesis provide information pertaining to the thermodynamic behavior of $\mathrm{R}^{3+}{ }_{(\text {aq })}$ ions in aqueous solution, they are limited to set temperature and pressure conditions. The density model, described in Chapter 2, has been found to be suitable for probing the temperature and pressure dependences of $V_{2}{ }^{0}$ and $C_{p 2}{ }^{0}$ values for REE triflates over the larger temperature and pressure surfaces investigated in this thesis.

### 6.2 Modeling of Apparent Molar Volumes and Apparent Molar Heat Capacities of Aqueous Solutions of the REE Triflates Over the Temperature Range $288.15 \leq$ $T /(K) \leq 328.15 \mathrm{~K}$ and $\boldsymbol{p}=0.1 \mathrm{MPa}$

For each of the REE triflates investigated at close to ambient temperature and ambient pressure conditions (presented in Chapter 4), the temperature dependences of the
values for the $V_{2}{ }^{0}, C_{p 2}{ }^{0}, \beta^{(0) V}, \beta^{(l) V}, \beta^{(0) J}$, and $\beta^{(1) J}$ parameters to equations (2.37) and (2.38) have been modeled over the temperature range $T=(288.15,298.15,313.15$, and 328.15) K and $p=0.1 \mathrm{MPa}$. The model selected for use is the density model that has been previously used by Xiao and Tremaine (1997b). The equations utilized within the density model take the form:

$$
\begin{align*}
& V_{2}^{0}=v_{1}+\frac{v_{2}}{(T-\theta)}+v_{3} \cdot T+v_{4} \cdot \beta \cdot T,  \tag{6.1}\\
& \beta^{(0) V}=\frac{v_{5}}{T}+v_{6} \cdot \beta+v_{7} \cdot \beta \cdot T,  \tag{6.2}\\
& \beta^{(1) V}=\frac{v_{8}}{T}+v_{9}+v_{10} \cdot T+v_{11} \cdot \beta+v_{12} \cdot \beta \cdot T^{2},  \tag{6.3}\\
& C_{p 2}^{0}=e_{1}+\frac{e_{2}}{(T-\theta)^{2}}+e_{3} \cdot T+e_{4} \cdot \beta+e_{5} \cdot \beta \cdot T,  \tag{6.4}\\
& \beta^{(0) J}=\frac{e_{6}}{T}+e_{7}+e_{8} \cdot \beta+e_{9} \cdot \beta \cdot T,  \tag{6.5}\\
& \beta^{(1) J}=\frac{e_{10}}{T}+e_{11}+e_{12} \cdot T+e_{13} \cdot \beta \cdot e_{14} \cdot \beta \cdot T^{2}, \tag{6.6}
\end{align*}
$$

where $\theta$ is equal to 228 K . Estimates of the parameters, $v_{l}$ to $v_{12}$ and $e_{1}$ to $e_{14}$, have been obtained using multiple regression analyses and are reported for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq })}$, $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ in Tables 6.1 and 6.2, along with their associated standard errors (in parentheses). Figure 6.1 shows a comparison of the $V_{2 \phi}$ values calculated using equation (4.17) along with Young's rule (equation (2.40)), $V_{2 \phi}(\mathrm{calc})$, and those $V_{2 \phi}$ values calculated using equation (2.37) and the calculated fitting parameters for equations (6.1) to (6.3), $V_{2 ф}$ (global), for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$. A similar comparison is made between the


Figure 6.1 Comparison of $V_{2 \phi}$ values (as a function of molality) calculated using equation (4.17) ( $V_{2 \phi}($ calc $)$ ) with those calculated using equations (2.37) and (6.1) to (6.3) $\left(V_{2}\right.$ (global)) for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { (aq })}$ at: $\bullet, T=288.15 \mathrm{~K} ; \times, T=298.15 \mathrm{~K} ;+, T=313.15 \mathrm{~K}$; and $\square, T=328.15 \mathrm{~K}$; and $p=0.1 \mathrm{MPa}$ (the dashed lines represent the standard error).
$C_{p, 2 \phi}($ calc) values (calculated using equation (4.18) in conjunction with Young's rule) and $C_{p, 2 \phi}$ (global) values (calculated using equation (2.38) and the fitting parameters for equations (6.4) to (6.6)) for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ in Figure 6.2. As can be seen, equations (6.1) to (6.6) provide an adequate estimation of the $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for
$\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ over the temperature range $T=288.15 \mathrm{~K}$ to $T=328.15 \mathrm{~K}$ at the pressure $p=0.1 \mathrm{MPa}$. Further verification of this consistency is seen in Figures 6.3 and 6.4. In


Figure 6.2 Comparison of $C_{p, 2 \phi}$ values (as a function of molality) calculated using equation (4.18) ( $C_{p, 2 d}$ (calc)) with those calculated using equations (2.38) and (6.4) to (6.6) $\left(C_{p, 2 \downarrow}(\mathrm{global})\right)$ for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at: $\bullet, T=288.15 \mathrm{~K} ; \times, T=298.15 \mathrm{~K} ;+$, $T=313.15 \mathrm{~K}$; and $\quad$, $T=328.15 \mathrm{~K}$; and $p=0.1 \mathrm{MPa}$ (the dashed lines represent the standard error).

Figure 6.3, the $V_{2}{ }^{0}$ (calc) values (reported in Table 4.14) are compared to the $V_{2}{ }^{0}$ (global) values (calculated using equation (6.1)) for $\mathrm{Gd}_{( }\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$. Figure 6.4 shows a comparison between the $C_{p 2}{ }^{\circ}(\mathrm{calc})$ values (reported in Table 4.14) and the $C_{p 2}{ }^{0}$ (global) values (calculated using equation (6.4)) for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$. Similar agreements are


Figure 6.3 The apparent molar volumes at infinite dilution, $V_{2}{ }^{0}$, against temperature for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}: \bullet$, reported in Table 4.14 ; __, calculated using equation (6.1) and the parameters reported in Table 6.1.
also observed for $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, but are not shown in this thesis.


Figure 6.4 The apparent molar heat capacities at infinite dilution, $C_{p 2}{ }^{0}$, against temperature for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}: \bullet$, reported in Table 4.14; -_, calculated using equation (6.4) and the parameters reported in Table 6.1.

Table 6.1 Estimated values of the parameters to equations (6.1) through (6.6), that model the temperature dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $p=0.1 \mathrm{MPa}$

| Parameter | Value: $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ | $\mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ | $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ |
| :---: | :---: | :---: | :---: |
| $V_{2 \phi}$ |  |  |  |
| $v_{l} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 240(11) | 293(9) | 138(1) |
| $v_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1}\right)$ | $-2.1 \times 10^{3}(168)$ | $-2 \times 10^{3}\left(1 \times 10^{3}\right)$ | ------ |
| $v_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | -0.08(0.03) |  | $0.300\left(8 \times 10^{-3}\right)$ |
| $v_{4} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | -------- | -530(56) | -333(20) |
| $v_{5} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-7 \times 10^{4}\left(2 \times 10^{4}\right)$ | -------- | $9 \times 10^{-3}\left(2 \times 10^{-3}\right)$ |
| $v_{6} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | 431(148) | 17(6) | -------- |
| $v_{7} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right.$ | -0.7(0.2) | $-2.4 \times 10^{-5}\left(8 \times 10^{-6}\right)$ | -0.07(0.01) |
| $v_{8} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | 1.5(0.7) |  |  |
| $v_{9} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-0.01\left(5 \times 10^{-3}\right)$ | $1.8(0.2)$ | $-1.8 \times 10^{-2}\left(5 \times 10^{-3}\right)$ |
| $v_{10} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $1.7 \times 10^{-5}\left(9 \times 10^{-6}\right)$ | $-5.6 \times 10^{-3}\left(6 \times 10^{-4}\right)$ | $5 \times 10^{-5}\left(1 \times 10^{-5}\right)$ |
| $v_{11} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | -5x10-3 | $-1.98 \times 10^{4}(220)$ | -------- |
| $v_{12} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $-5 \times 10^{-3}\left(4 \times 10^{-3}\right)$ | $0.020\left(2 \times 10^{-3}\right)$ | -------- |
| Standard error $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 0.05 | 0.20 | 0.10 |
| $C_{p, 2 \phi}$ |  |  |  |
| $e_{1} /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | $1.08 \times 10^{3}(71)$ | 750(64) | 137(45) |
| $e_{2} /\left(\mathrm{J} \cdot \mathrm{K} \cdot \mathrm{mol}^{-1}\right)$ | $-7.8 \times 10^{5}\left(4 \times 10^{4}\right)$ | -------- | -------- |
| $e_{3} /\left(\mathrm{J} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | -1.7(0.2) | 4.4(0.2) | 3.2(0.2) |
| $e_{4}\left(\right.$ ( $\left.\mathrm{J} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | -------- | -------- ${ }^{4}$ (828) | -------- |
| $e_{5} /\left(\mathrm{J} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | -------- | $-1.2 \times 10^{4}(828)$ | $-5.3 \times 10^{3}(604)$ |
| $e_{6} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | ----- | -5.0(0.7) | 0.4(0.2) |
| $e_{7} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $-6 \times 10^{-4}\left(2 \times 10^{-4}\right)$ | $0.015\left(2 \times 10^{-3}\right)$ | $-2 \times 10^{-3}\left(1 \times 10^{-3}\right)$ |
| $e_{8} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | 1.4(0.4) | 36(5) | ------ |
| $e_{9} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | -------- | -0.11(0.01) | $8 \times 10^{-3}\left(4 \times 10^{-3}\right)$ |
| $e_{10} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ $e_{11} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | --------- | ------------ | $-40(33)$ |
| $e_{11} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ $e_{12} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | $7 \times 10^{-6}\left(2 \times 10^{-6}\right)$ | ----- | $5(3)$ $1.7 \times 10^{-6}\left(8 \times 10^{-7}\right)$ |
| $e_{13} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $-3.2(0.9)$ | 1.6(0.6) | $-1.3 \times 10^{4}\left(6 \times 10^{3}\right)$ |
| $e_{14} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-4}\right)$ | $-1.1 \times 10^{-5}\left(8 \times 10^{-6}\right)$ | $-1.1 \times 10^{-5}\left(7 \times 10^{-6}\right)$ | -------- |
| Standard error $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | 1.12 | 2.23 | 1.46 |

Table 6.2 Estimated values of the parameters to equations (6.1) through (6.6), that model the temperature dependences of $V_{2 \phi}$ and $C_{p, 2 \phi}$ values for aqueous solutions of $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $p=0.1 \mathrm{MPa}$

| Parameter | Value: $\mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ | $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ | $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ |
| :---: | :---: | :---: | :---: |
| $V_{2 \phi}$ |  |  |  |
| $v_{l} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 214(4) | 153(3) | 184(13) |
| $v_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1}\right)$ | $-1.43 \times 10^{3}(38)$ | -------- | $-1.0 \times 10^{3}(190)$ |
| $v_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ |  | $0.44\left(8 \times 10^{-3}\right)$ | 0.05(0.03) |
| $v_{4} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | -80(25) | -753(38) | ----- |
| $v_{5} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~K} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | -0.6(0.2) | -0.14(0.02) | $9 \times 10^{-3}\left(\times 10^{-3}\right)$ |
| $v_{6} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | ----- | -------- | -------- |
| $\nu_{7} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | -------- | -------- | -0.07(0.02) |
| $v_{8} /\left(\mathrm{cm}^{3} \cdot \mathrm{~K} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | 18(13) | -------- | 85(28) |
| $v_{9} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | -0.11(0.08) | 570(16) | -0.6(0.2) |
| $v_{10} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $1.4 \times 10^{-4}\left(1.3 \times 10^{-4}\right)$ | $-1.85(0.05)$ | $9 \times 10^{-4}\left(3 \times 10^{-4}\right)$ |
| $v_{1 I} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | -------- | $-6.2 \times 10^{5}\left(2 \times 10^{4}\right)$ | 9 x |
| $v_{12} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | -- | $6.5(0.2)$ | -------- |
| Standard error $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 0.09 | 0.06 | 0.13 |
| $C_{p, 2 \phi}$ |  |  |  |
| $e_{1} /\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | $1.17 \times 10^{3}(56)$ | 538(89) | 230(26) |
| $e_{2} /\left(\mathrm{J} \cdot \mathrm{K} \cdot \mathrm{mol}^{-1}\right)$ | $-7.4 \times 10^{5}\left(3 \times 10^{4}\right)$ | -------- | -------- |
| $e_{3} /\left(\mathrm{J} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | -2.0(0.2) | 3.0(0.4) | 3.11(0.08) |
| $e_{4}\left(\right.$ ( $\left.\mathrm{J} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | -------- | -------- ${ }^{3}\left(1 \times 10^{3}\right)$ | -------- ${ }^{3}$ |
| $e_{5} /\left(\mathrm{J} \cdot \mathrm{MPa} \cdot \mathrm{K}^{-2} \cdot \mathrm{~mol}^{-1}\right)$ | $1.8(0.5)$ | $-7 \times 10^{3}\left(1 \times 10^{3}\right)$ | $-5.5 \times 10^{3}(283)$ |
| $e_{6} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $1.8(0.5)$ | 2(1) | -1.8(0.3) |
| $e_{7} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $3 \times 10^{-4}\left(1 \times 10^{-4}\right)$ | $-7 \times 10^{-3}\left(5 \times 10^{-3}\right)$ | $5.7 \times 10^{-3}\left(8 \times 10^{-4}\right)$ |
| $e_{8} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | -26(7) | -23(13) | 13(2) |
| $e_{9} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | 88(23) | 0.06(0.04) | $-0.042\left(6 \times 10^{-3}\right)$ |
| $e_{10} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | -42(10) | -------- | -34(9) |
| $e_{11} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | -------- | -0.10(0.02) | -------- |
| $e_{12} /\left(\mathrm{kg} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-3}\right)$ | $1.9 \times 10^{-6}\left(3 \times 10^{-7}\right)$ | $2.9 \times 10^{-4}\left(6 \times 10^{-5}\right)$ | -------- |
| $e_{13} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | -------- | $112(23)$ |  |
| $e_{14} /\left(\mathrm{kg} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-4}\right)$ | -------- | $-1.0 \times 10^{-3}\left(2 \times 10^{-4}\right)$ | $4.4 \times 10^{-3}\left(7 \times 10^{-4}\right)$ |
| Standard error $/\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$ | 1.24 | 1.18 | 1.01 |

6.3 Modeling of the Apparent Molar Volumes of Aqueous Solutions of the REE Triflates over the Temperature Range $288.15 \leq T /(K) \leq 423.15 \mathrm{~K}$ and the Pressure Range $0.1 \leq p /(\mathbf{M P a}) \leq \mathbf{1 5 . 0 0}$

The apparent molar volumes of aqueous solutions of the REE triflates are dependent upon both temperature and pressure. In Section 6.2, an isobaric model was described ( $p=0.1 \mathrm{MPa}$ ). However, for the systems investigated in Chapter 5, the model may be extended to higher pressures. To achieve this goal, equations (6.1) to (6.6) must be modified to account for both pressure and temperature changes.

For each of the aqueous REE triflate salt solutions investigated over the extended temperature and pressure surface (presented in detail in Chapter 5), the forms of the equations follow those presented by Simonson et al. (1994):

$$
\begin{align*}
& V_{2}^{0}=g_{1}+g_{2} \cdot \beta+g_{3} \cdot \beta \cdot\left(T-T_{m}\right)+g_{4} \cdot \beta \cdot\left(T-T_{m}\right)^{2},  \tag{6.7}\\
& \begin{aligned}
& \beta^{(0) V}=g_{5}+g_{6} \cdot\left(T-T_{m}\right)+g_{7} \cdot\left(T-T_{m}\right)^{2}+g_{8} \cdot\left(p-p_{m}\right) \cdot\left(T-T_{m}\right) \\
& \quad+g_{9} \cdot\left(p-p_{m}\right) \cdot\left(T-T_{m}\right)^{2},
\end{aligned} \\
& \begin{aligned}
& \beta^{(1) V}=g_{10}+g_{11} \cdot\left(T-T_{m}\right)+g_{12} \cdot\left(T-T_{m}\right)^{2}+g_{13} \cdot\left(p-p_{m}\right) \cdot\left(T-T_{m}\right) \\
& \quad+g_{14} \cdot\left(p-p_{m}\right) \cdot\left(T-T_{m}\right)^{2} .
\end{aligned} \tag{6.8}
\end{align*}
$$

$T_{m}$ is the mid-point temperature of study (where $T_{m}=353.15 \mathrm{~K}$ for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq)}}$ and $T_{m}=330.15 \mathrm{~K}$ for both $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{qq)}}$ and $\left.\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{qq)}}\right) . p_{m}=7.5 \mathrm{MPa}$ for all the aqueous REE triflates studied. Estimates of the parameters $g_{1}$ to $g_{14}$ were obtained using least squares multiple regression analyses and are reported together with their standard errors in Table 6.3 for the systems $\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$. Figure 6.5 shows a comparison between $V_{2 \phi}(\mathrm{calc})$ values (calculated using equation (4.17) in conjunction with Young's rule) and $V_{2 d}$ (global) values


Figure 6.5 Comparison of $V_{2 \phi}$ values (as a function of molality) calculated using equation (4.17) ( $V_{2 \phi}(\mathrm{calc})$ ) with those calculated using equations (2.37) and (6.7) to (6.9) $\left(V_{2 \phi}(\right.$ global $\left.)\right)$ for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at: $\nabla, T=288.15 \mathrm{~K}, p=0.1 \mathrm{MPa} ; ~ \boxtimes, T=298.15 \mathrm{~K}$, $p=0.1 \mathrm{MPa} ; \boldsymbol{\nabla}, T=313.15 \mathrm{~K}, p=0.1 \mathrm{MPa} ; \boxtimes, T=328.15 \mathrm{~K}, p=0.1 \mathrm{MPa} ; \bullet, T=323.15$ $\mathrm{K}, p=5.00 \mathrm{MPa} ; \times, T=323.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ;+, T=323.15 \mathrm{~K}, p=15.00 \mathrm{MPa} ;$,,
$T=348.15 \mathrm{~K}, p=5.00 \mathrm{MPa} ; \stackrel{\rightharpoonup}{ }, T=348.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ; ~ ■, T=348.15 \mathrm{~K}$, $p=15.00 \mathrm{MPa} ; \Delta, T=373.15 \mathrm{~K}, p=5.00 \mathrm{MPa} ; \Delta, T=373.15 \mathrm{~K}, p=10.00 \mathrm{MPa} ; \mathrm{O}$, $T=373.15 \mathrm{~K}, p=15.00 \mathrm{MPa}$; and $\bullet, T=423.15 \mathrm{~K}, p=10.00 \mathrm{MPa}$
(The dashed lines represent the standard error).
(calculated using equation (2.37) and the fitting parameters for equations (6.7) to (6.9)) for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$. Figure 6.5 shows that there is good agreement between $V_{2 d}$ (calc) and $V_{2,}$ (global) values. This agreement is confirmed in Figure 6.6, where the $V_{2}{ }^{0}$ values calculated using equation (2.37) (which are reported in Table 5.7) are compared with


Figure 6.6 Values of $V_{2}{ }^{0}$ for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ calculated from equation (2.37) as a function of temperature and the pressures of interest: $\bullet, p=0.1 \mathrm{MPa} ; \times$, $p=5.00 \mathrm{MPa} ;+, p=10.00 \mathrm{MPa}$; and $\quad$,,$p=15.00 \mathrm{MPa}$ and equation (6.7):

$$
\longrightarrow, p=0.1 \mathrm{MPa} ;-\cdots-\cdots---, p=5.00 \mathrm{MPa} ; \cdots+* * * * * * * * *, p=10.00 \mathrm{MPa} ;
$$

$$
\text { and }-, p=15.00 \mathrm{MPa} \text {. }
$$

those calculated using equation (6.7) over the temperature and pressure ranges investigated in this thesis. Similar trends are seen for $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$ and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$.

A similar global fit for $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ has been reported by Xiao et al. (1999) over an extended temperature and pressure surface. Xiao et al. (1999) report $V_{2 \phi}($ calc $)-V_{2 \phi}($ global $)$ differences from $1.5 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ to $3.0 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$ for

Table 6.3 Estimated values for the parameters to equations (6.7) through (6.9), that model the temperature and pressure dependence of $V_{2 \phi}$ values for aqueous solutions of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}, \mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$, and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ over the temperature range $288.15 \leq T$ $/(\mathrm{K}) \leq 423.15$ and the pressure range $0.1 \leq p /(\mathrm{MPa}) \leq 15.00$

| Parameter | Value: $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ | $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ | $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ |
| :---: | :---: | :---: | :---: |
| $V_{2 \phi}$ |  |  |  |
| $g_{1} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 232(8) | 237(5) | 112(6) |
| $\mathrm{g}_{2} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1}\right)$ | $-8 \times 10^{4}\left(2 \times 10^{4}\right)$ | $-1.1 \times 10^{5}\left(1 \times 10^{4}\right)$ | $1.8 \times 10^{5}\left(1.4 \times 10^{4}\right)$ |
| $g_{3} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | 257(36) | 454(22) | 445(25) |
| $g_{4} /\left(\mathrm{cm}^{3} \cdot \mathrm{MPa} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | -1.9(0.5) | 2.0(0.8) | -11.9(0.9) |
| $g_{5} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | -------- | -------- | $1.8 \times 10^{-3}\left(3 \times 10^{-4}\right)$ |
| $g_{6} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $3 \times 10^{-5}\left(1 \times 10^{-5}\right)$ | $3 \times 10^{-5}\left(1 \times 10^{-5}\right)$ | $6 \times 10^{-5}\left(1 \times 10^{-5}\right)$ |
| $g_{7} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-2}\right)$ |  | $-7 \times 10^{-7}\left(3 \times 10^{-7}\right)$ |  |
| $\mathrm{g}_{8} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1} \cdot \mathrm{MPa}^{-1}\right) 1.2 \times 10^{-2}\left(6 \times 10^{-3}\right)$ |  | $7 \times 10^{-6}\left(1 \times 10^{-6}\right)$ | $-3 \times 10^{-6}\left(2 \times 10^{-6}\right)$ |
| $\mathrm{g}_{9} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-2} \cdot \mathrm{MPa}^{-1}\right)-4 \times 10^{-5}\left(2 \times 10^{-5}\right)$ |  | -------- | -------- |
| $g_{10} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1}\right)$ | $-9.6 \times 10^{-3}\left(4 \times 10^{-4}\right)$ | $-5.3 \times 10^{-3}\left(3 \times 10^{-4}\right)$ | $-1.8 \times 10^{-2}\left(1 \times 10^{-3}\right)$ |
| $g_{11} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1}\right)$ | $-7 \times 10^{-2}\left(2 \times 10^{-2}\right)$ | $-3.0 \times 10^{-4}\left(4 \times 10^{-5}\right)$ | $-5.3 \times 10^{-4}\left(5 \times 10^{-5}\right)$ |
| $\mathrm{g}_{12} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-2}\right)$ | $-6 \times 10^{-7}\left(3 \times 10^{-7}\right)$ | $2 \times 10^{-6}\left(1 \times 10^{-6}\right)$ | $-7 \times 10^{-7}\left(5 \times 10^{-7}\right)$ |
| $g_{13} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-1} \cdot \mathrm{MP}\right.$ | $1.7 \times 10^{-5}\left(7 \times 10^{-6}\right)$ | $-3.5 \times 10^{-5}\left(4 \times 10^{-6}\right)$ | $1.6 \times 10^{-5}\left(5 \times 10^{-6}\right)$ |
| $g_{14} /\left(\mathrm{cm}^{3} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~K}^{-2} \cdot \mathrm{MP}\right.$ | ) $1.8 \times 10^{-4}\left(6 \times 10^{-5}\right)$ | $2.0 \times 10^{-7}\left(4 \times 10^{-8}\right)$ | $3.1 \times 10^{-7}\left(4 \times 10^{-8}\right)$ |
| Standard error $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$ | 0.77 | 0.55 | 0.62 |

$\operatorname{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq) }}$. In Figure 6.5, the maximum $V_{2 \phi}($ calc $)-V_{2 d}$ (global) difference for this study is no greater than $1.5 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$, and many are within the $0.77 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} 95 \%$ standard error limit. Similar trends are also seen for $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq })}$ and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$ over the surface of temperatures and pressures studied. As of this time, this study has presented the most thorough set $V_{2 d}($ calc $)-V_{2 d}$ global) calculations for any aqueous solutions of the REE triflates.

## 7) CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS

The REEs are very important from a socioeconomic perspective. A complete thermodynamic investigation of the REEs in aqueous solution is essential in order to understand how these trivalent ions behave in a solvent such as water. This thesis has provided such a study on the REE triflates in aqueous solution over an extended surface of temperature and pressure. Such studies were conducted in order to provide detailed volumetric and calorimetric information regarding these salts.

The triflate anion was used because of its apparent minimal speciation and oxidation concerns in aqueous solution (which commonly affect the nitrate, chloride, sulfate, and perchlorate ions). These concerns regarding the lack of speciation were discussed in Chapter 4 (and presented in Figures 4.9 and 4.10). As a result, the thermodynamic studies reported in this thesis have provided precise volumetric and calorimetric data for $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}, \mathrm{NaCF}_{3} \mathrm{SO}_{3(\mathrm{aq})}, \mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Dy}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { aq })}, \mathrm{Er}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3 \text { (aq) }}$, and $\mathrm{Y}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at $T=(288.15$, $298.15,313.15$, and 328.15 ) K and $p=0.1 \mathrm{MPa}$ by measuring relative densities and massic heat capacities on the Picker system described in Chapter 3. The internal consistency of calculated single ion volumes and heat capacities, $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$ and $C_{p 2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$, has been checked by comparing values obtained in this study with those values previously reported in the literature (presented in Table 4.15 and Figures 4.11 and 4.12).

In addition to the volumetric and calorimetric studies at ambient pressure and near ambient temperature reported in Chapter 4, volumetric studies have been performed at
higher temperatures and pressures (reported in Chapter 5). These measurements were made on a home and purpose-built high temperature and pressure vibrating tube densimeter (described in Chapter 3). The precision of the instrument was verified by a comparison with precise $\mathrm{NaBr}_{(\mathrm{aq})}$ volumetric data reported by Archer (1991). Chapter 5 reported density data for aqueous solutions of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}_{(\mathrm{aq})}, \mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, $\mathrm{Nd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$, and $\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\text { (aq })}$ over the temperature range $T=(323.15,348.15$, 373.15, and 423.15) K and the pressure range $p=(5.00,10.00$, and 15.00$) \mathrm{MPa}$. These measurements provided single ion volume data, $V_{2}{ }^{0}\left(\mathrm{R}^{3+} ; \mathrm{aq}\right)$, for $\mathrm{Gd}^{3+}{ }_{(\text {aq })}, \mathrm{Nd}^{3+}{ }_{\text {(aq) }}$, and $\mathrm{Yb}^{3+}{ }_{(\text {aq })}$ at all the temperatures and pressures investigated for each aqueous REE salt. The $V_{2}{ }^{0}\left(\mathrm{Yb}^{3+} ; \mathrm{aq}\right)$ values have been compared with values previously reported in the literature. Such comparisons indicated a high degree of internal consistency across the temperature and pressure surface of interest between the current study and previous work conducted by Hakin et al. (2004a).

Equations of state have been determined for aqueous solutions of each of the REE triflate salts. These equations permit the calculation of apparent molar volumes and heat capacities over the entire temperature and pressure surface investigated for each system. Comparisons with data in the literature indicate that the equations of state presented in this thesis are the most precise at the current time for calculating estimates of the volumetric and calorimetric properties of aqueous REE triflate salt solutions.

Although the thermodynamic studies presented in this thesis are thorough, they have not been extensive enough to fully probe the nature of solute-solvent and solute-solute interactions for aqueous REE solutions at near ambient conditions. Additional work is required for a complete understanding of the behavior of the
thermodynamic properties of REE systems in aqueous solutions. Further studies (using the Picker system) can be conducted on other REE systems that have not been explored in detail; such as Cerium (Ce), Samarium (Sm), Europium (Eu), Terbium (Tb), Thulium (Tm), and Lutetium (Lu). Volumetric and calorimetric measurements on these systems can complete the analysis of the REE ions in aqueous solution, thus providing potential information relating to their hydration properties at near ambient conditions.

To investigate solute-solvent and solute-solute interactions at conditions removed from ambient, additional information is needed on the volumetric and calorimetric properties of the REEs over extended surfaces of temperature and pressure. Precise density measurements obtained using the high temperature and pressure vibrating tube densimeter can also be used to probe the temperature and pressure dependences of volume data (expansibilities and compressibilities) for aqueous solutions of the REE triflates. Precise heat capacity measurements are also required at elevated temperatures and pressures for the aqueous REE triflates. Such measurements will be possible using a high temperature and pressure transitiometer recently obtained by the Hakin laboratory group. After a set-up and extensive calibration of this new piece of equipment, the required heat capacity measurements will be completed.

Finally, the temperature and pressure dependences of volumetric and calorimetric data of the REEs in aqueous solution can be further subjected to global modeling. These models will provide further expressions to represent solute-solvent and solute-solute interactions within aqueous solution.

These continued studies and models over a large surface of temperatures and pressures will provide opportunities to expand the comprehensive database of
thermodynamic data for aqueous REE salt solutions which is still being constructed by the Hakin research group.

## REFERENCES

Anderson, G. M., \& Crerar, D. A. (1993) Thermodynamics in geochemistry: The equilibrium model, Oxford university press, New York.

Archer, D. G. (1991) Thermodynamics properties of the $\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$ system. J. Phys. Chem. Ref. Data, 20, 793-829

Archer, D. G. (1992) Thermodynamics properties of the $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ system II:
Thermodynamic properties of $\mathrm{NaCl}_{(\mathrm{aq})}, \mathrm{NaCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{cr})}$, and phase eqiulibria.
J. Phys. Chem. Ref. Data, 21, 793-829

Archer, D. G., \& Wang, P. (1990) The dielectric constant of water and Debye-Hückel limiting law slope. J. Phys. Chem. Ref. Data, 19, 371-411

Bent, H. A. (1972) A note on the notation and terminology of thermodynamics. J. Chem. Education, 49, 44-46

Cotton, F. A., \& Wilkinson, G. (1988) Advanced Inorganic Chemistry, $5^{\text {th }}$ Ed. Wiley-Interscience Publication, New York

Debye, P., \& Hückel, E. (1923) The theory of electrolytes 1. Lowering the freezing point and related phenomena. Phys. Z, 24, 185-206

Debye, P., \& Hückel, E. (1924) Remarks on a theorm on the cataphorical migration velocity of suspended particles. Phys. Z, 25, 49-52

Desnoyers, J. E., Visser, C., Perron, G., \& Picker P. (1976) Reexamination of the heat capacities obtained by flow microcalorimetry. Recommendation for the use of a chemical standard. J. Soln. Chem, 5, 605-616

Dessauges, G., Mljevic, N., \& Van Hook, A. (1980) Isotope effects in aqueous systems 9. Partial molar volumes of $\mathrm{NaCl} / \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaCl} / \mathrm{D}_{2} \mathrm{O}$ solutions at 15,30 , and $45^{\circ} \mathrm{C}$. J. Phys. Chem, 84, 2587-2595

Erickson, K. M., Hakin, A. W., Jones, S. N., Liu, J. L., \& Zahir, S. N. (2007) Thermodynamics of selected aqueous rare earth element containing triflate salts at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa} . J$. Soln. Chem., currently in press

Gates, J. A., Wood, R. H., \& Quint, J. R. (1982) Experimental evidence for the remarkable behavior of the partial molar heat capacity at infinite dilution of aqueous electrolytes at the critical point. J. Phys. Chem, 86, 4948-4951

Hakin, A. W., Daisley, D. C., Delgado, L., Liu, J. L., Marriott, R. H., Marty, J. L. et al. (1998) Volumetric properties of glycine in water at elevated temperatures and pressures measured with a new optically driven vibrating-tube densimeter. J. Chem. Thermodynamics, 30, 583-606

Hakin, A. W., Lukacs, M. J., Liu, J. L., Erickson, K., \& Madhavji, A. (2003a) The volumetric and thermochemical properties of $\mathrm{Y}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}, \mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$, $\mathrm{Dy}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$, and $\mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa} . J$ Chem. Thermodynamics, 35, 775-802

Hakin, A. W., Lukacs, M. J., Liu, J. L., \& Erickson, K. (2003b) The volumetric and thermochemical properties of $\mathrm{YCl}_{3(\text { aq) }}, \mathrm{YbCl}_{3(\text { aq) }}, \mathrm{DyCl}_{3(\mathrm{aq})}, \mathrm{SmCl}_{3(\mathrm{aq})}$, and $\mathrm{GdCl}_{3(\mathrm{aq)}}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$. J. Chem. Thermodynamics, 35, 1861-1895

Hakin, A. W., Lukacs, M. J., \& Liu J. L. (2004a) Densities and apparent molar volumes of $\mathrm{HClO}_{4(\mathrm{aq})}$ and $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ at elevated temperatures and pressures. J. Chem. Thermodynamics, 36, 759-772

Hakin, A. W., Liu, J. L., Erickson, K., \& Munoz, J-V. (2004b) Apparent molar heat capacities and apparent molar volumes of $\operatorname{Pr}\left(\mathrm{ClO}_{4}\right)_{3(\text { aq })}, \mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3_{(a q)}}$, $\mathrm{Ho}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$, and $\mathrm{Tm}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa}$. . Chem. Thermodynamics, 36, 773-786

Hakin, A. W., Liu, J. L., Erickson, K., Munoz, J-V., \& Rard J. A. (2005) Apparent molar volumes and apparent molar heat capacities of $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}, \mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}$, $\mathrm{Ho}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}$, and $\mathrm{Y}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}$ at $T=(288.15,298.15,313.15$, and 328.15$) \mathrm{K}$ and $p=0.1 \mathrm{MPa} . J$. Chem. Thermodynamics, 37, 153-167

Harris, D. C. (2002) Quantitative chemical analysis, $6^{\text {th }}$ Ed., W. H. Freeman and Company, New York, 150

Hill, P. G. (1990) A unified fundamental equation for the thermodynamic properties of $\mathrm{H}_{2} \mathrm{O}$. J. Phys. Chem. Ref. Data, 19, 1233-1274

Hovey, J. K. (1988) Thermodynamics of aqueous solutions, Ph.D. thesis, University of Alberta

Hovey, J. K., Hepler, L. G., \& Tremaine, P. R. (1988) Thermodynamics of aqueous Aluminate ion: Standard partial molar heat capacities and volumes of $\mathrm{Al}(\mathrm{OH}) 4^{-}(\mathrm{aq})$ from 10 to $55^{\circ} \mathrm{C}$. J. Phys. Chem, 92, 1323-1332

Kell, G. S. (1967) Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data, 12, 66-69

Klotz, I. M., \& Rosenberg, R. M. (1972) Chemical thermodynamics: Basic theory and methods, W. A. Benjamin Inc, Menlo Park, California

Lukacs, M. J. (2003) Thermodynamics of $3+$ metal cation containing systems, M.Sc. thesis, University of Lethbridge

Lide, D. R. (1999-2000) Handbook of Chemistry and Physics. $80^{\text {th }}$ Ed., Chemical Rubber Publishing Co., Clevland, OH, 14-14

Marriott, R. M. (1999) Thermodynamic investigations of some aqueous solutions through calorimetry and densimetry, M.Sc. thesis, University of Lethbridge

Marriott, R. M., Hakin, A. W., \& Rard, J. A. (2001) Apparent molar heat capacities and apparent molar volumes of $\mathrm{Y}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}, \mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}, \mathrm{Pr}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}, \mathrm{Nd}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}$, $\mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}, \mathrm{Dy}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{qq})}, \mathrm{Ho}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}$, and $\mathrm{Lu}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}$ at $T=298.15 \mathrm{~K}$ and $p=0.1$ MPa. J. Chem. Thermodynamics, 33, 643-687

Marshall, W. L. (1970) Complete equilibrium constants, electrolyte, equilibria, and reaction rates. J. Phys. Chem, 74, 346-355

Mesmer, R. E., Marshall, W. L., Palmer, D. A., Simonson, J. M., \& Holmes, H. F. (1988) Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures. J. Soln. Chem, 17, 699-718

Millero, F. J. (1970) The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures. J. Phys. Chem, 74, 356-360

Perron, G., Fortier, J.-L., \& Desnoyers, J. E. (1975) the apparent molar heat capacities and volumes of aqueous NaCl from 0.01 to $3 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$ in the temperature range 274.15 to 318.15 K. J. Chem. Thermodynamics, 7, 1177-1184

Picker, P., Leduc, P-A., Philip, P. R., \& Desnoyers, J. E. (1971) Heat capacity of solutions by flow microcalorimetry. J. Chem. Thermodynamics, 3, 631-642

Picker, P., Tremblay, E., \& Jolicoeur, C. (1974) A high-precision digital readout flow densimeter for liquids. J. Soln. Chem, 3, 377-384

Pitzer, K. S. (1991) Activity coefficients in electrolyte solutions. $2^{\text {nd }}$ Ed., CRC press, Boca Ranton

Pytkowicz, R. M. (1979) Activity coefficients in electrolyte solutions. $1^{\text {st }}$ Ed., CRC press, Boca Ranton

Rard, J.A., Shiers, L. E., Heiser, D. J., \& Spedding, F. H. (1977) Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at $25^{\circ} \mathrm{C} .3$. The rare earth nitrates. J. Chem. Eng. Data, 22, 337-347

Rard, J. A., Miller, D. G., \& Spedding, F. H. (1979) Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at $25^{\circ} \mathrm{C} .4$. $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}, \operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3}$, and $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}$. J. Chem. Eng. Data, 24, 348-354

Rard, J. A., \& Spedding, F. H. (1981) Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at $25^{\circ} \mathrm{C} .5 . \mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Ho}\left(\mathrm{NO}_{3}\right)_{3}$, and $\mathrm{Lu}\left(\mathrm{NO}_{3}\right)_{3}$. J. Chem. Eng. Data, 26, 391-395

Rard, J. A., \& Spedding, F. H. (1982) Isopiestic determination of the activity coefficients of some aqueous rare-earth electrolyte solutions at $25^{\circ} \mathrm{C} .6 . \mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Y}\left(\mathrm{NO}_{3}\right)_{3}$, and $\mathrm{YCl}_{3}$. J. Chem. Eng. Data, 27, 454-461

Robinson, R. A., \& Stokes, R. H. (1965) Electrolyte solutions. $2^{\text {nd }}$ Ed. revised, Butterworths, London

Sabot, J-L., \& Maestro, P. (1995) in: Howe-Grant M. (Ed.) Kirk-Othermer Encyclopedia of Chemical Technology. 14, $4^{\text {th }}$ Ed. Wiley-Interscience, New York, 1091-1115

Simonson, J. M., Oakes, C. S., \& Bondar, R. J. (1994) Densities of $\mathrm{NaCl}_{(\mathrm{aq})}$ to the temperature 523 K and pressures to 40 MPa measured with a new vibrating tube densimeter. J. Chem. Thermodynamics, 26, 345-359

Skoog, D. A., \& West. (1982) Fundamentals of analytical chemistry. $4^{\text {th }}$ Ed., Saunders College Publishing, Harcourt Inc.

Spedding, F. H., \& Jones, K. C. (1966a) Heat capacities of aqueous rare earth chloride solutions at $25^{\circ}$. J. Phys. Chem, 70, 2450-2455

Spedding, F. H., Rikal, M. J., \& Ayers, B. O. (1966b) Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at $25^{\circ}$. J. Phys. Chem, 70, 2440-2449

Spedding, F. H., Baker, J. L., \& Walters, J. P. (1975a) Apparent and partial molal heat capacities of aqueous rare earth perchlorate solutions at $25^{\circ} \mathrm{C}$. J. Chem. Eng. Data, 20, 189-195

Spedding, F. H., Walters, J. P., \& Baker, J. L. (1975b) Apparent and partial molar heat capacities of some aqueous rare earth chloride solutions at $25^{\circ} \mathrm{C} . J$. Chem. Eng. Data, 20, 438-443

Spedding, F. H., Baker, J. L., \& Walters, J. P. (1979) Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at $25^{\circ}$ C. J. Am. Chem. Soc, 24, 298-305

Stimson, H. F. (1955) Heat units and temperature scales for calorimetry. J. Am. Phys. 23, 614-622

Xiao, C., \& Tremaine, P. R. (1996a) Apparent molar volumes of $\mathrm{La}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ and $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3(\mathrm{aq})}$ at $278 \mathrm{~K}, 298 \mathrm{~K}$, and 318 K at pressures to 30.0 MPa . J. Chem. Eng. Data, 41, 1075-10787

Xiao, C., \& Tremaine, P. R. (1996b) Apparent molar heat capacities and volumes of $\mathrm{LaCl}_{3(\mathrm{aq})}, \mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$, and $\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ between temperatures 283 K and 338 K . J. Chem. Thermodynamics, 28, 43-66

Xiao, C., \& Tremaine, P. R. (1997a) The thermodynamics of aqueous trivalent rare earth elements. Apparent molar heat capacities and volumes of $\mathrm{Nd}\left(\mathrm{ClO}_{4}\right)_{3(\text { aq })}$, $\mathrm{Eu}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}, \mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$, and $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3(\mathrm{aq})}$ from the temperatures 283 K to 328 K. J. Chem. Thermodynamics, 29, 827-852

Xiao, C., \& Tremaine, P. R. (1997b) Apparent molar volumes of sodium trifluoromethane sulfonate and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa . J. Soln. Chem, 26, 277-294

Xiao, C., Simonson, J. M., \& Tremaine, P. R. (1999) Densities and apparent molar volumes of $\mathrm{Gd}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ at $T=(373,423$, and 472$) \mathrm{K}$ and $p=(7$ and 26$) \mathrm{MPa}$. J. Chem. Thermodynamics, 31, 1055-1065

Xiao, C., Pham, T., Xie, W., \& Tremaine, P. R. (2001) Apparent molar volumes and heat capacities of aqueous trifluoromethanesulfonic acid and its sodium salt from 283 to 328 K. J. Soln. Chem, 30, 201-211

Young, T. F., \& Smith, M. B. (1954) Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem, 58, 716-724

