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Abstract

We apply the Galerkin method to solve the linear momentum description (LMD) of the

dynamics of the Earth’s layers and expand the Galerkin formulation of the LMD to include

the first order ellipticity using the Clairaut coordinate system in order to study the Earth’s

normal modes. We show that the computed frequencies of the inertial modes may be sig-

nificantly affected by the elasticity of the mantle and inner core. Traditionally, a liquid

core with rigid boundaries is considered to study these modes. Our computed periods of

the Chandler wobble (CW) and the free core nutation (FCN) are not affected by the density

stratification of the fluid core. The computed period of the FCN, 432.28 sd, is almost identi-

cal to the observed value. This indicates that the Earth is indeed in hydrostatic equilibrium

which is in contrast to previous work suggested that the Earth deviated from hydrostatic

equilibrium. The great advantage of our method is that we can ensure the frequencies are

converged.
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Chapter 1

Introduction

1.1 Overview

The Earth’s interior consists of four major layers, the crust, the mantle (MT), the fluid

outer core (OC) and the inner core (IC), based on their chemical composition and material

properties. The main structural components, which are distinguished by the sharp discon-

tinuities at the boundary interface, of the Earth are shown in Fig 1.1. The solid IC with

radius of about 1221.5 km is the deepest region from the Earth’s surface, the OC with a

mean thickness of about 2258.5 km is a spheroidal shell contained between the IC and MT,

and the crust is the thinnest layer of the Earth [1]. S- and P-waves are generated when an

Earthquake occurs. The P-wave arrives first to seismometers and then the S-wave. The

S-wave is only detected up to an angular distance of about 104◦ from the epicenter of an

Earthquake and the P-wave is not detected between 104◦ and 140◦. This area is called

the shadow zone with no waves at all in between. In 1914, Gutenberg figured out that all

this was due to the existence of the fluid core because the S-wave cannot transmit through

fluids, and also discovered that the solid mantle gives way to the fluid core at a depth of

about 2,900 km from the Earth’s surface where the P wave decreases in speed while the S

wave disappears. This discontinuity is called the Gutenberg discontinuity. This boundary

is also referred to the core mantle boundary (CMB). Lehmann [3] analyzed the Earthquake

record especially after a 1929 earthquake that occurred in New Zealand, and showed some

reflected P-waves in the shadow zone. Previously, seismologists assumed that some faint

P-waves in the shadow zone were the result of error of seismometers. She gave an idea that

1



1.1. OVERVIEW

Figure 1.1: Schematic diagram of the Earth’s layers. P- and S-wave travel in-
side the Earth’s interior when an Earthquake occurs. Source of this Figure is
https://www.iris.edu/hq/inclass/animation/seismic/shadow/zone/basic/introduction

a solid inner core, which would reflect some P-waves in the shadow zone, existed inside

the fluid outer core. The boundary between the outer core and inner core is known as the

Lehmann discontinuity or the inner core boundary (ICB). In 1954, Lehmann noticed that

seismic waves in the Earth’s upper mantle (about 200 km from the Earth’s surface) travel

faster. That region is also known as the Lehmann discontinuity. The boundary between the

mantle and crust is called the Mohorovicic’ discontinuity or the Moho. Table 1.1 shows

the chemical composition and material properties of the Earth’s layers. In 1981, Dziewon-

ski and Anderson [1] established the preliminary reference Earth model (PREM) from a

compilation of seismic, free oscillation and nutation data. This model provides a basic ref-

erence state for many Earth parameters for consistent studies of the Earth, and is widely

accepted as a reference Earth model (see details in the section 2.5).

It is well known that the Earth’s deep interior is not directly accessible for study and

many of its properties are still poorly known. Although the observational and theoretical

studies of ray seismology have established accurate profiles for properties such as density,

the P-wave and S-wave velocities, some properties such as density stratification parameter

and liquid viscosity may not be firmly established because short-period body waves data are

2



1.1. OVERVIEW

Table 1.1: The chemical composition and material properties of the Earth’s layers [1, 2]

Layer Radius Density Pressure Temperature Composition

km kg m−3 GPa ◦C

Crust 25 1020-2900 0-1 27-227 Mostly oxygen,

silicon and aluminum

Mantle 2866 3381-5566 1-136 227-3426 Iron- and magnesium-

rich silicate minerals

Outer core 2259 9903-12166 136-329 3426-4227 Molten iron and nickel

Inner Core 1221 12763-13088 329-364 4227-7728 Solid iron-nickel alloys

not directly sensitive to those properties [1, 4, 5]. These parameters play an important role

in determining the mantle’s heterogeneity and mantle flow [6, 7, 8]. In order to establish

more accurate Earth models, the theory of ray seismology is complemented by the normal

mode theory [9, 10]. The normal modes are the Earth’s oscillations which may be excited

as a result of a large earthquake, a mass displacement within the Earth or the gravitational

pull of secondary bodies (e.g., the sun, the moon and other planets) [11, 12, 13, 14, 15].

The spectrum of the Earth’s normal modes consists of:

(i) the short-period free oscillations or the seismic modes which have periods shorter

than an hour, and have elasticity as their primary restoring force;

(ii) the intermediate-period (4 hr < T < 7 hr) oscillations such as the Slichter modes

which are the translational modes of the IC [16] and which mainly depend on the

dynamics of the IC and density jump at the inner core boundary (ICB) [17, 18];

(iii) the long-period, longer than half a day, free oscillations which are considerably af-

fected by the Earth’s rotation.

The Earth’s possible long-period free oscillations are:

(i) the wobble and nutation modes, which depend on the rotation, composition and shape

of the Earth;

3



1.2. INERTIAL MODES

(ii) the inertial-gravity modes which have the Coriolis force and the radial component of

gravitational force as their restoring force [19];

(iii) the gravity modes with negative buoyancy as their restoring force;

(iv) and the inertial modes, which depend on the Coriolis force as their restoring force.

1.2 Inertial modes

The inertial modes of a rotating, incompressible, homogeneous, inviscid contained fluid

with rigid boundaries are described by the Poincaré equation. Among the first who inves-

tigated these modes are Bryan [20], Hough [21] and Poincaré [22]. The Poincaré equation

is a hyperbolic partial differential equation subject to boundary conditions, a condition

that makes the problem ill-posed [23, 24]. The existence of analytical solutions, therefore,

depends on the geometry of the container. For example, these solutions exist for a cylin-

der [25], a sphere [20, 26], a tri-axial ellipsoid [27, 28, 29] and a spheroid of any tilted angle

with rotation axis [30]. These solutions do not exist, except for purely toroidal modes, for

a spheroidal shell geometry such as the Earth’s fluid core. The experimental results, how-

ever, suggests that such modes exist in a thick shell [31, 24, 32, 33]. Rieutord [34] used

an iterative procedure [see also [35]] to numerically solve the Poincaré problem for a fluid

shell of small viscosity. Rieutord and Valdettaro [36] also showed that the axisymetric in-

ertial modes in a spherical shell may be determined by a web of characteristics that reflect

at the boundaries. They observed that the web of rays (or characteristics) are formed in

the intersection of these surfaces with a meridional plane. They showed that the pattern of

rays bifurcates as viscosity moves toward zero and concluded that no asymptotic smooth

solutions exist for the limit of zero viscosity.

Seyed Mahmoud et al. [37] considered a compressible and a neutrally stratified fluid to

study the inertial modes of rotating and self-gravitating fluid spherical and spherical shell

geometries using the Three Potential Description (3PD) of the fluid core dynamics [38].

4



1.2. INERTIAL MODES

Their results show that the frequencies of the inertial modes may be affected by such prop-

erties as the fluid compressibility and the shape of the container. They also pointed out

that the eigenfunctions of these modes are almost identical to those of the Poincaré model.

The interactions of inertial-gravity modes of the OC on the wobble and nutation modes

for a realistic Earth model was investigated by Rogister and Valette [39]. They truncated

the field variables at degree 4 of the spherical harmonics, and their computed modes of

the OC were termed pseudo-modes. They show that the frequencies of pseudo-modes of

OC depend on the square of the Brunt-Väisälä frequency and the Earth’s rotation rate.

However, except for the frequency of the SOM (spin over mode), truncation at degree 4

of the spherical harmonics is not sufficient when solving for the frequencies of the inertial

modes (see table 2 in [37]). Seyed Mahmoud et al. [37] show that the spherical harmonics

of degree up to 20 are needed for the free inner core nutation (FICN) of a simple Earth

model to converge to a mean value [40]. Recently, Seyed Mahmoud et al. [41] (see also

Kamruzzaman [42]) used the 3PD to investigate the influence of density stratification on

the frequencies of the inertial modes for several fluid core models with different stratifica-

tion parameters. They show that the frequency of an inertial mode is a linear function of

the stratification parameter. The inertial modes of a contained fluid with elastic boundaries

have been first studied by Kamruzzaman and Seyed Mahmoud [43]. They show that the

computed dimensionless frequencies of the inertial modes may be significantly affected by

the elasticity of the mantle and inner core. For example, the frequencies of the (2,1,1) or

the spin-over mode (SOM), (4,1,1), (4,2,1) and (4,3,1) modes are changed from 0.5000,

-0.4100, 0.3060 and 0.8540 for a Poincaré model to 0.4995, -0.4208, 0.3150 and 0.8587,

respectively. The change in the frequency of the SOM may seem small but it is consistent

with the change in the frequency of the free-core nutation (FCN), which is the same mode

as the SOM of a wobbling Earth, which changes from ≈ 0.50144 for an Earth model with

rigid mantle and inner core to ≈ 0.50116 for an elastic Earth model (see details in part I of

the chapter 5). Recently, existing and improving technology was able to detect the gravity

5



1.3. WOBBLE AND NUTATION MODES

Figure 1.2: Schematic description of the Earth’s wobble and nutation. The xyz refers to an
inertial reference frame, a solid line depicts the Earth’s geographic/rotation axis which is
inclined to about 23.5◦ to the direction of the normal to the Earth’s orbital plane around the
Sun, and a dotted line is the instantaneous rotation axis.

modes from the time of the Big Bang, and the inertial modes may be detected soon.

1.3 Wobble and Nutation Modes

In astrophysical and geophysical studies, knowledge of the variations in the Earth’s

orientation, namely wobble/nutation, plays an important part. The oscillatory motion of

the rotation axis measured from the inertial reference frame is called nutation, whereas

wobble is the oscillatory motion of the rotation axis measured from the rotating reference

frame (see Fig. 1.2).

The variation in the Earth’s orientation is caused by many factors: the gravitational

pull of the secondary bodies (e.g., sun, moons and other planets), Earth’s internal structure

and shape, Earth’s deformations (dynamical effects), ocean tides, and other geophysical

impacts such as redistribution of currents, masses, winds, magnetism, hydrology, earth-

quakes, isostatic rebound, etc [44]. The terms free and forced wobble/nutation refer to the

movement of the rotation axis driven by different factors. Free wobble/nutation is due to

any internal redistribution of the angular momentum, whereas forced wobble/nutation is

caused by the external forces. The periods of the forced nutations have a range from less

6



1.3. WOBBLE AND NUTATION MODES

than a sidereal day (sd) to thousands of years. The sidereal day is a unit time scale of mag-

nitude, 1 sd = 23 hr, 56 min and 4.0916 seconds, which measures the rotation rate of the

Earth with respect to a fixed star, whereas the solar day measures the rotation rate of the

Earth with respect to the Sun. The longer periods are 26,000 years, 18.6 years, 9.3 years,

annual, semi-annual, and 13.66 sd (fortnightly) nutations. On the other hand, five possi-

ble free rotational normal modes exist: the Chandler Wobble (CW), the Tilt-Over Mode

(TOM), the Nearly Diurnal Free Wobble (NDFW) or the Free Core Nutation (FCN), the

Inner Core Wobble (ICW) and the Free Inner Core Nutation (FICN). The periods of CW,

TOM, and FCN depend mainly on the dynamics of the mantle and partly of the fluid core,

the whole Earth, and the fluid and inner cores, respectively, while the periods of ICW and

FICN depend primarily on the dynamics of the inner core [45]. The CW and ICW are long

period prograde motions in the terrestrial (rotating) reference frame, whereas the retrograde

FCN and the prograde FICN are long period in the inertial reference frame. The terms pro-

grade and retrograde refer to an object that spins in the same direction as its orbit and an

object that spins in the opposite direction as its orbit respectively. Several space geodetic

techniques, Global Positioning Systems (GPS), Very Long Baseline Interferometry (VLBI)

and Lunar Laser Ranging (LLR), are used to obtain the observed periods of these modes.

The observed periods of five possible free rotational normal modes is shown on the Table

1.2. The identification of these modes helps our understanding about the Earth’s interior

and also to predict the future state of our planet [46, 47, 48, 49].

1.3.1 History of Normal Modes Calculations

Euler first assumed the Earth as a rigid body with a uniform mass distribution, and

predicted the period of the free wobble as 306 sd [53]. This is known as a free Eulerian

wobble. Subsequently, the Chandler wobble of the Earth with a period of about 435 sd

was discovered in 1891 by S. C. Chandler from available astronomical data [50]. The

Earth is not rigid; it consists of the solid inner core, fluid outer core, viscous mantle, solid

7



1.3. WOBBLE AND NUTATION MODES

Table 1.2: The observed periods (sd) of five possible free rotational normal modes

Modes Period (sd)

CW [50] 435

FCN [51] −429.07±0.07

FICN [51] 929±31

ICW Not yet

TOM [21, 52] 1

crust, oceans and atmosphere. Newcomb explained the discrepancy, which is caused by

the elasticity of the Earth’s solid parts, between the observed and predicted periods [54].

Hough [21] and Poincaré [22] also took into account the presence of the fluid core, and

Love considered the elasticity of the Earth to explain the difference [55]. If the presence of

the fluid core is considered, the period of the Eulerian wobble is about of 270 sd for a rigid

Earth model and the model also yields the free core nutation period of about 350 sd.

In order to establish more realistic Earth models, the variational formulation for the

two layers Earth model, a homogeneous fluid core and an elastic, radially inhomogeneous

mantle, was given by Jeffreys and Vicente [56]. They calculated the periods of CW at 392.4

sd and NDFW at 0.9978 sd. Molodensky extended this model to add the compressibility

of the fluid core (neutral stratification), and computed the periods of CW at 400.87 sd and

NDFW at 0.9978 sd [57]. Molodensky’s theory was modified by Shen and Mansinha to

include non-neutral, both stable and unstable stratification of the fluid core [58]. They

showed that the computed periods, both short- and long-periods, of free core oscillations

of order 1 and degree 2 depend on the stratification of the core, but the period of NDFW at

0.9978 sd is independent on the core stratification. The NDFW is well known now as the

FCN.

Smith [59] derived the set of coupled ordinary differential equations, which describe the

dynamics of elastic gravitational motion for a elliptical and rotating Earth in a hydrostatic

equilibrium reference frame, based on the linear momentum description (LMD). In this

8



1.3. WOBBLE AND NUTATION MODES

description, the displacement is represented in the form of two coupling chains in terms of

the spheroidal and toroidal components [see equation (2.18)]. The advantage of the LMD

is that the dynamics of the fluid core is not pre-assumed to be mainly solid body rotation,

which is in contrast to the semi-analytical angular momentum description (AMD) [60]. He

applied this theory to compute the periods of the CW as 403.5 sd, and NDFW as 0.9978

sd [52]. He only truncated at harmonics T3 for these modes, and did not compute the period

of ICW accurately.

Wahr extended the normal modes theory [61, 62] based on Smith’s formulation [59],

and studied the Earth’s free and forced nutation. He considered an Earth model in hydro-

static equilibrium. Herring et al. [63] showed that the difference of the observed amplitude,

which has been found from the VLBI data of the forced nutations, for the annual nutation

with the IAU adopted theory is 2 mas (milliarcsecond). Note that the VLBI method of data

analysis makes it possible to find the amplitudes of the nutations at various tidal frequencies

with standard errors under 0.1 mas. To minimize the discrepancies of the observed and pre-

dicted results, several authors have taken into account the extra dynamical ellipticity (5%

higher than PREM) of the core-mantle boundary (CMB) [64, 63], ocean tides [65], energy

dissipation and anelasticity of the mantle [66], and atmosphere and oceans [67, 68]. Under

these considerations, significant discrepancies of the observed and predicted values still

remain, particularly at the semi-annual and fortnightly prograde frequencies [63, 69, 70].

Mathews et al. [71] developed a semi-analytical normal mode theory, based on the

AMD, for the Earth model which is a rotating, ocenless, elastic mantle, fluid outer and

elastic inner core. In the AMD, they included the dynamical role of an inner core on the

fluid core and mantle, whereas the outer core was considered as a predominantly solid body

rotation [see their equation (15b) in [71]]. They applied this theory, and computed the peri-

ods of the CW, FCN and ICW [72] which are significantly different from the corresponding

results of Wahr [61]. They used Sasao’s approximation. Recently, Seyed-Mahmoud and

Rogister [73] showed that Sasao’s approximation is equivalent to ignoring the dynamics
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of the mantle when calculating periods of the FICN and ICW. Their work (Mathews et

al. [71]) also showed the smaller discrepancies between the predicted and observed values

using the modified dynamical ellipticity (about 4.6% higher than PREM) of the PREM,

e.g. at the prograde semi-annual and annual, and retrograde 18.6 year and annual nutation

series. Even after using the modified ellipticity, the amplitude of the prograde fortnightly

nutation still has an uncertainty of about 1 mas. In order to minimize the uncertainties

of the amplitudes of forced nutations series; Mathews et al. [74], Herring et al. [75] and

Buffett et al. [76] reformulated the model of [71] to include the effects of ocean tides,

anelasticity of mantle and electromagnetic couplings, between the fluid core and the solid

inner core [i.e. at inner core boundary, (ICB)] and the fluid core and mantle (i.e. at CMB),

and using better precision of 20 years of VLBI observed data. The modified model is called

MHB2000. In MHB2000, they used the dynamical ellipticities of a fluid core and the Earth,

an anelasticity of the mantle, and the electromagnetic coupling constants at ICB and CMB

which are determined by a least squares fit. The International Union of Geodesy and Geo-

physics (IUGG) 2003 nutation series and the IAU 2000 nutation series have adopted this

new MHB2000 model. However, the largest uncertainty of the amplitude for the prograde

18.6 year nutation in this model is about 72 µas (microarcsecond), and the period of FCN

is 460 sd which is significantly different from the observed value [77].

Rochester and Crossley [78] derived a Lagrangian formulation of the Liouville equa-

tions for elastic deformations of an inner core and mantle by combining the analytical fea-

tures of the AMD in a hydrostatic equilibrium reference frame for low frequency modes.

They found the CW period of about 400.3 sd and the ICW period of about 7.5 yr. However,

they were not able to compute the periods of inertial-gravity modes of the OC such as the

FCN because they omitted the inertial term of the momentum equation. The previous com-

puted period of ICW was about 6.6 yr [72, 74]. Their works [72, 74] took into account the

inner core as a solid, but Rochester and Crossley [78] considered the elastic deformations of

the Earth’s solid parts. Also, Dumberry [79] implemented the theory of [71] by considering
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the elastic deformation of an inner core, and found the ICW period as about 7.4 yr. Note

that the ICW mode was not still detected by the space geodetic techniques (GPS, VLBI

and LLR). Recently, Rochester et al. [60] developed a new mathematical description based

on the LMD for the theory of free wobble/nutation modes to include the second order el-

lipticity using a non-orthogonal (Clairaut) coordinate system. Using this description [60],

Crossley and Rochester identified four wobble and nutation modes, the FCN at -456 sd,

FICN at 468 sd, CW at 402 sd and ICW at 2842 sd, for a neutrally stratified PREM [45].

They were able to extend the truncation to T5 rather than the previous T3 [e.g., [52, 62]], but

they were not able to show that the periods of these modes had converged. For example,

the period of CW for a 1066A model is 403.17 sd when truncated at T3 and 416.04 sd at

T5 [45].

1.4 Thesis Outline

The objective of this thesis is to compute the eigenfrequencies and eigenfunctions of

the normal modes such as the Slichter modes, the spheroidal modes, the inertial modes

and wobble/nutation modes of an Earth model which consists of an elastic IC, a fluid OC

and an elastic MT. This thesis is organized into six chapters. In chapter 2, we discuss

the governing equations with representation of the field variables of the Earth’s layers,

including the boundary conditions. In order to study the Earth’s normal modes, we consider

the Earth models that consist of three layers, the MT, the fluid OC and the IC. We treat the

P-, S-wave speed and the density profiles of the MT as one layer.

In chapter 3, we introduce the Galerkin method applicable to a system of simultaneous

partial differential equations subject to boundary conditions. This method is then applied,

based on the work of Kamruzzaman and Seyed Mahmoud [43], to the dynamical equations.

We show that this method may be used to take advantage of the natural boundary condition,

and to remove the singularity of the dynamical equations. Then, the matrix representation

of the dynamical equations is discussed.

11



1.4. THESIS OUTLINE

In chapter 4, we discuss the Clairaut coordinate system, and solve the Clairaut equation

to find the Earth’s ellipticity profile using the Runge-Kutta integration method. We derive

the vector and scalar operations, which involve the Galerkin formulation of the dynamical

equations, by applying this coordinate system. Then, we expand the Galerkin formulation

of the dynamical equations to include the first order ellipticity in the Earth model.

In chapter 5, we discuss the results of this work. This chapter is separated into two

parts. In part I, we consider a rotating spherical Earth model with a compressible, inviscid,

stratified fluid OC with an elastic MT. Also, we consider a rotating spherical fluid shell

contained between an elastic IC and an elastic MT. The procedures for computing non-

dimensional frequencies of the normal modes such as the Slichter modes, the spheroidal

modes, the inertial modes of both a spherical OC with an elastic MT and spherical shell

OC with an elastic IC and MT models are presented. We then present and describe the

non-dimensional frequencies and displacement eigenfunctions of these inertial modes, and

investigate the effect of the elasticity of the mantle and inner core. Traditionally, a liquid

core with rigid boundaries is considered to study these modes. In part II, we consider

a rotating spheroidal fluid shell contained between an elastic IC and an elastic MT, and

compute the period of the Earth’s wobble/nutation modes which are the independent of the

density stratification of the OC. Our computed period of the FCN, 432.28 sd, is almost

identical to the observed value. The great advantage of our method is that we can ensure

the frequencies are converged. Finally, chapter 6 contains conclusions of this work and

future direction of possible projects.
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Chapter 2

Formulation

In this chapter, we will discuss the governing equations of the Earth’s interior including

the representation of the field variables of these equations. In section 2.4, the boundary

conditions at the geocentre, at the solid-fluid interfaces, and at the Earth’s surface will

be discussed. Next, we will discuss the Earth models that will be used to investigate the

eigenfrequencies and eigenfunctions of the normal modes such as the Slichter modes, the

spheroidal modes, the inertial modes, and the wobble/nutation modes of the Earth.

2.1 Governing Equations of the Earth’s Interior

In order to study the free oscillation of the Earth’s interior, we take the reference state as

being one of hydrostatic equilibrium in a coordinate system which rotates with a constant

angular velocity Ω about a fixed axis defined by the unit vector ê3. In this reference state,

the equilibrium pressure p0, density ρ0, gravity potential W0 and the gravity g0 are related

by:

∇p0 = ρ0g0, (2.1)

g0 = ∇W0, (2.2)

∇
2W0 =−4πGρ0 +2Ω

2, (2.3)

where G is the gravitational constant.

Any small disturbance of the Earth’s interior gives rise to the free oscillations. The free

oscillations of the Earth are described by the conservation laws for mass, linear momentum,
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2.1. GOVERNING EQUATIONS OF THE EARTH’S INTERIOR

angular momentum and gravitational flux. Smith [59] derived the set of coupled ordinary

differential equations which describe the linear dynamics of elastic gravitational motion for

a elliptical and rotating Earth in a hydrostatic equilibrium reference frame. These equations

can be written as

ρ0
∂2uk

∂t2 +2ρ0Ωê3×
∂uk

∂t
+ρ0Ω

2ê3× (ê3×uk)−∇ · (τ̃)k +∇(p0∇ ·uk)−ρ0∇(V1)k

−ρ0uk ·∇∇(V0)k−∇ · [p0(∇uk)
T ] = 0, (2.4)

∇
2(V1)k−4πG∇ · (ρ0uk) = 0, (2.5)

where uk, V0k, V1k and τ̃k are respectively the Lagrangian displacement from equilibrium,

the equilibrium gravitational potential, the Eulerian perturbation in the gravitational poten-

tial and the stress tensor due to deformation in the Earth’s kth region, and k = 1,2,3 is used

as a label for the IC, OC and MT, respectively. Note that the following changes were made

to Smith’s original notation: ρ→ ρ0, s→uk, Dt → ∂

∂t , Ω0→ Ωê3, Te→ τ̃k, φ→−(V0)k,

φ1→−(V1)k and γ→ p0. The equilibrium gravitational potential V0 at r is

V0 =W0−
1
2
|Ωê3× r|2. (2.6)

The stress tensor in the OC takes the form

(τ̃)2 = λ(∇ ·u2)1̃ = (τ̃1)2, (2.7)

and in the elastic IC and MT

(τ̃)k = (τ̃1)k +(τ̃2)k (2.8)

with (τ̃2)k = 2µ
{

∇uk +∇uT
k

}
, where 1̃ is the unit dyadic and the superscript T defines the

transpose of a tensor. Conservation of angular monentum makes sure that the stress tensor

(τ̃)k is a symmetric tensor. The Lamé parameters, µ and λ are related to the P-wave speed
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vp, S-wave speed vs, and the density ρ0 as

vp =

√
λ+2µ

ρ0
, (2.9)

vs =

√
µ
ρ0

. (2.10)

Note that µ = 0 in the OC.

Using equations (2.1), (2.2), and (2.6), the equation (2.4) can be written in a compact

form

∂2uk

∂t2 +2Ωê3×
∂uk

∂t
+g0∇ ·uk−∇(uk ·g0 +(V1)k)−

1
ρ0

∇ · (τ̃)k = 0. (2.11)

We assume that all the field variables have eiωt dependence because we are dealing with

small oscillations, where ω is the angular frequency of a mode which is measured in the

rotating reference frame. Under this assumption and doing some mathematical operations

in equations (2.5) and (2.11), the linearized dynamical equations describing the oscillatory

dynamics of the Earth’s interior become

ω
2uk−2iωΩê3×uk−g0∇ ·uk +∇(uk ·g0 +(V1)k)+

1
ρ0

∇ · (τ̃)k = 0, (2.12)

∇
2(V1)k−4πG∇ · (ρ0uk) = 0. (2.13)

2.1.1 Non-dimensional Form of the Dynamical Equations

For computational purposes, the dimensionless form of the equations (2.12) and (2.13)

are

σ
2u′k− iσê3×u′k−g′0∇

′ ·u′k +∇
′(u′k ·g′0 +(V1)

′
k)+

1
ρ′0

∇
′ · (τ̃′)k = 0, (2.14)

∇
′2(V1)k−4πG′∇′ · (ρ′0u′k) = 0, (2.15)
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with

σ =
ω

2Ω
; u′ =

u
R

; g′0 =
g0

4Ω2R
; ∇

′ = R∇; V ′1 =
V1

4Ω2R2 ; (2.16)

τ̃′ =
τ̃

4Ω2R2〈ρ0〉
; ρ

′
0 =

ρ0

〈ρ0〉
; G′ =

G〈ρ0〉
4Ω2 , (2.17)

where 〈ρ0〉 and R are the Earth’s mean density and mean radius respectively. Note that

equations (2.14) and (2.15) are obtained from equations (2.12) and (2.13) by dividing them

by 4RΩ2 and 4Ω2, respectively. Hereafter, we will drop the notation ()′ from all terms of

equations (2.14) and (2.15) for convenience.

2.2 Representation of the Vector and Scalar Fields

The displacement eigenfunction uk of a normal mode may be expressed as a sum of the

spheroidal Sk and toroidal Tk vector fields

uk =
Nk

∑
n=|m|

[
(Sm

n )k +(Tm
n )k

]
, (2.18)

where

(Sm
n )k =

[
r̂(Um

n )k(r)+ r(V m
n )k(r)∇

]
Y m

n (θ,φ), (2.19)

(Tm
n )k =−(W m

n )k(r)r×∇Y m
n (θ,φ), (2.20)

and the (V1)k is also expanded as

(V1)k =
Nk

∑
n=|m|

(Xm
n )k(r)Y m

n (θ,φ), (2.21)

for any m, as we assume azimuthal symmetry. In the above equations (2.19)-(2.21); Y m
n (θ,φ)=

Pm
n (cosθ)eimφ are the spherical harmonics of degree n and azimuthal order m, Pm

n (cosθ)

are the associated Legendre polynomials, θ is the polar angle (see Fig. 2.1), (Um
n )k(r),
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Figure 2.1: The spherical coordinates (r,θ,φ) system.

(V m
n )k(r), (W m

n )k(r) and (Xm
n )k(r) are the dependent variables which are functions of the

radius, and Nk represents the truncation level along the highest degree spherical harmonics

included in the angular dependence θ. In theory, Nk extends to infinity.

By definition of the associated Legendre functions, the lowest value n can admit is |m|

in equations (2.19) and (2.20). Therefore, the displacement of a normal mode for a rotating

Earth can have one of the following forms:

uk =
Nk

∑
n=|m|

[
(Sm

2n−|m|+1)k +(Tm
2n−|m|)k

]
, (2.22)

or

uk =
Nk

∑
n=|m|

[
(Sm

2n−|m|)k +(Tm
2n−|m|+1)k

]
, (2.23)

[see, for example, equations (46) and (47) in [60]]. Because of rotation, the displacement

of different harmonic degrees couple according to equations (2.22) and (2.23). The corre-

sponding expression for the (V1)k can have

(V1)k =
Nk

∑
n=|m|

(Xm
2n−|m|+1)kY m

2n−|m|+1(θ,φ) (2.24)

or

(V1)k =
Nk

∑
n=|m|

(Xm
2n−|m|)kY m

2n−|m|(θ,φ). (2.25)
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2.3 Representation of the Radially Dependent Variables

The radially dependent functions of equations (2.22) and (2.24) or (2.23) and (2.25) are

also expanded as

{
(Um

n )k(r),(V m
n )k(r),(W m

n )k(r),(Xm
n )k(r)

}
=

Lk

∑
l=0

{
(Cm

n,l)k,(Dm
n,l)k,(Em

n,l)k,(Fm
n,l)k

}
fl(x),

(2.26)

for n = |m|, |m|+ 1, |m|+ 2, · · · ,Nk in each region; where (Cm
n,l)k, (Dm

n,l)k, (Em
n,l)k, (Fm

n,l)k

are constants, Lk is the truncation level for the radial expansion and fl(x) are the Legendre

polynomials of degree l. Note that the subscript n in the equation (2.26) corresponds to the

subscript in the equations (2.22) and (2.24) or (2.23) and (2.25). The argument of x for fl

is −1≤ x≤ 1. Now we choose x as

x =
2r
a
−1 (2.27)

for the IC,

x =
2r−b−a

b−a
(2.28)

for the OC, and

x =
2r−R−b

R−b
(2.29)

for the MT, where a and b are the mean radii of ICB and CMB respectively, R is the mean

radius of the Earth’s outer surface.

2.4 Boundary Conditions

The solutions of equations (2.14) and (2.15) must satisfy the boundary conditions at the

interfaces, i.e., surfaces where one or more material properties such as vp,vs, and ρ0 are

discontinuous. In addition, u1 and (V1)1 must be regular, i.e., their first spatial derivatives
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must vanish at the geocenter.

2.4.1 Regularity of the Field Variables at the Geocenter

In order to satisfy the regularity of the dynamical variables at the geocenter, the radial

dependence of dynamical variables in the IC must satisfy

d
dr

{
(Um

n )1(r),(V m
n )1(r),(W m

n )1(r),(Xm
n )1(r)

}
= 0. (2.30)

Now by taking the first derivative of equation (2.26) and using equation (2.30), we get

{
(Cm

n,1)1,(Dm
n,1)1,(Em

n,1)1,(Fm
n,1)1

}
=−

L1

∑
l=2

{
(Cm

n,l)1,(Dm
n,l)1,(Em

n,l)1,(Fm
n,l)1

}
d fl

dx
. (2.31)

Next, using equation (2.31) in (2.26), the radial dependent components of equation (2.26)

have the form

{
(Um

n )1(r),(V m
n )1(r),(W m

n )1(r),(Xm
n )1(r)

}
=

{
(Cn,0)

m
1 ,(D

m
n,0)1,(Em

n,0)1,(Fm
n,0)1

}

+
L1

∑
l=2

{
(Cm

n,l)1,(Dm
n,l)1,(Em

n,l)1,(Fm
n,l)1

}(
fl−

d fl

dx
x
)
, (2.32)

for the IC.

2.4.2 Boundary Conditions at the Solid-Fluid Interfaces

The boundary conditions across the solid-fluid interfaces (at ICB and CMB) require

that:

1. The normal component of the displacement is continuous,

n̂ ·uk = n̂ ·uk+1; (2.33)
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2. The normal component of the stress tensor (the stress vector) is continuous,

n̂ · τ̃k = n̂ · τ̃k+1; (2.34)

3. The gravitational potential is continuous,

(V1)k = (V1)k+1; (2.35)

4. The gravitational flux is continuous,

n̂·(∇(V1)k−4πGρ0uk) = n̂·(∇(V1)k+1−4πGρ0uk+1), (2.36)

where n̂ is the unit vector normal to the undeformed boundary surface.

2.4.3 Boundary Conditions at the Earth’s Surface

At the outer surface of the Earth, the normal component of the stress tensor, n̂ · τ̃4,

vanishes, and the gravitational potential, (V1)4, and gravitational flux, n̂ ·∇(V1)4, outside the

Earth (r > R) are continuous. In the region r > R, Poisson’s equation reduces to Laplace’s

equation and the gravitational potential has the form in spherical coordinates

(V1)4(r) =
Nk

∑
n=|m|

Am
n r−(n+1)Y m

n (θ,φ), (2.37)

where Am
n are constants. Therefore, the gravitational flux in this region is

n̂·∇(V1)4(r) =−
Nk

∑
n=|m|

(n+1)Am
n r−(n+2)Y m

n (θ,φ). (2.38)

At the Earth’s surface,

(V1)3(R−) = (V1)4(R+), (2.39)
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which gives

(Xm
n )3(R−) = Am

n R−(n+1), (2.40)

using equations (2.21) and (2.37), where R− and R+ are the radii just inside and just outside

the Earth’s surface respectively. Hence, using equations (2.38) and (2.40), the gravitational

flux at the Earth’s surface is

n̂·(∇(V1)3−4πGρ0u3)|R− = n̂·∇(V1)4(R+)

=
Nk

∑
n=|m|

−n+1
R

(Xm
n )3(R−)Y m

n (θ,φ). (2.41)

This means that the gravitational flux at the Earth’s surface is written entirely in terms of the

gravitational potential just inside the mantle. Note that equations (2.40) and (2.41) are valid

for a spherical Earth model. The corresponding form of these equations for a spheroidal

Earth model will be shown in section 4.4.

2.5 Earth Models

In this thesis, the Preliminary Reference Earth Model (PREM) [1] is adopted as the

base for our Earth model. PREM is a spherical non-rotating Earth model which is divided

into 13 concentric layers. The material properties such as the P- and S-wave speed and the

density of each layer are a function of the radius. Dziewonski and Anderson [1] constructed

this model by inverting the seismological data such as the P- and S-wave speed, and the

frequencies of the normal modes. Some properties such as density stratification parameter

and liquid viscosity may not be firmly established because short-period body waves data are

not directly sensitive to those properties [1, 4, 5]. These parameters play an important role

in determining the mantle’s heterogeneity and mantle flow [6, 7, 8]. In order to establish

more accurate Earth models, the theory of ray seismology is complemented by the normal

mode theory [9, 10]. The objective of this thesis is to compute the eigenfrequencies and
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eigenfunctions of the normal modes such as the Slichter modes, the spheroidal modes, the

inertial modes and wobble/nutation modes of an Earth model which consists of an elastic

inner core (IC), a fluid outer core (OC) and an elastic mantle (MT). First, we consider

a rotating spherical fluid shell contained between an elastic IC and an elastic MT, and

investigate the effects of mantle and inner core elasticity on the frequencies of the inertial

modes of a fluid core model with elastic boundaries. Recall that the analytical solutions for

the inertial modes of a spherical fluid sphere with rigid boundary are known [80]. Next,

we consider a rotating spheroidal fluid shell contained between an elastic IC and an elastic

MT, and compute the period of the Earth’s wobble/nutation modes.

2.5.1 The S- and P-waves, and the Density Profiles of Inner Core

The P-wave speed vp and S-wave speed vs of the inner core of PREM [1] are given as

vp = 11.2622−6.3640x2 km s−1, (2.42)

and

vs = 3.6678−4.4475x2 km s−1, (2.43)

where x = r
R and R is the mean radius of the surface of the Earth.

The density profile ρ0 of the inner core of PREM [1] is

ρ0 = 13.0885×103−8.8381×103x2 kg m−3. (2.44)

2.5.2 The P-wave, and the Density Profiles of Outer Core

The P-wave speed vp of the fluid core of PREM [1] is given as

vp = (c0 + c1x+ c2x2 + c3x3) km s−1, (2.45)
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where c0 = 11.0487, c1 = −4.0362, c2 = 4.8023, and c3 = −13.5732. The density of the

fluid core of PREM [1] is

ρ0 = (d0 +d1x+d2x2 +d3x3) kg m−3, (2.46)

where d0 = 12.5815×103, d1 =−1.2638×1032, d2 =−3.6426×103, and d3 =−5.5281×

103.

The presence of the elastic inner core is ignored for simplicity. Since the first derivative

of equations (2.45) and (2.46) with respect to r is not zero at r = 0, these profiles can

not be used for this core model. Kamruzzaman [42], following Seyed-Mahmoud [81],

modified the P-wave speed and density profiles for a stratified OC model with no IC. These

profiles [42] are

vp = (10.6776−8.7572x2) km s−1, (2.47)

and

ρ0 =
12

∑
j=1

d jx j−1 kg m−3. (2.48)

In Tables 2.1, we show the coefficients d j of the modified density of the OC for different

values of stability parameter β which is defined by equation (3.33). Column 2 of table 2.1

is the coefficients d j for a neutrally (β = 0.0) stratified OC with no IC model. In columns 3,

4 and 5 of this table, we show the coefficients d j for different values β = 0.0, β =−0.001

and β = +0.001, respectively, of the OC with IC models. Note that the equation (2.45) is

used for the OC with IC models.

2.5.3 The S- and P-waves, and the Density Profiles of Mantle

We consider a one layer ocean-less MT and use the least squares method to modify

density and seismic wave velocity profiles of this region. This is justified for our studies

as the mantle is nearly rigid compared to the liquid core. In modifying PREM’s mantle

we make sure that the profiles for the P- and S-wave speeds and the densities (see Fig 2.2)
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Table 2.1: The coefficients of the density profile (kg m−3) for the different OC models with
no inner core (IC), and with IC

no inner core with inner core

d j β = 0.0 β = 0.0 β =−0.001 β =+0.001

d1 1.2477×104 1.2602×104 1.2602×104 1.2603×104

d2 0.0 −2.8139×103 −2.7581×103 −2.9028×103

d3 −7.7409×103 1.8461×104 1.7636×104 1.9782×104

d4 5.1132×10−2 −1.5804×105 −1.5087×105 −1.6955×105

d5 −2.5078×103 6.4663×105 6.0523×105 7.1363×105

d6 1.6271×101 −1.8694×106 −1.7045×106 −2.1399×106

d7 −9.8071×102 3.7956×106 3.3337×106 4.5678×106

d8 5.4545×102 −5.2895×106 −4.3796×106 −6.8492×106

d9 −1.8448×103 4.7545×106 3.5185×106 6.9384×106

d10 2.7434×103 −2.4150×106 −1.3122×106 −4.4343×106

d11 −2.8131×103 4.4199×105 −1.4001×105 1.5517×106

d12 1.2135×103 6.3590×104 2.0129×105 −2.1104×105
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obey the law of mass conservation and meet the Adams-Williamson condition (2.51) which

assumes that the compression is adiabatic and that the Earth is spherically symmetric, ho-

mogeneous, and in hydrostatic equilibrium. Consistent with PREM, the modified profiles

for the P- and S-wave speed are expressed as polynomials

vp = 36.260−96.918x+143.06x2−74.968x3 km s−1, (2.49)

and

vs = 16.756−44.306x+70.904x2−39.215x3 km s−1. (2.50)

Figure 2.2: The density, P-wave and S-wave speed profiles of the mantle as functions of
radius. Solid lines are for PREM and corresponding dot lines are for the modified PREM.

The Adams-Williamson equation [82] for a spherical Earth is

dρ0

dr
=− g0ρ0

v2
p− 4

3v2
s
. (2.51)
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We choose the density profile as

ρ0 =
N′

∑
j=1

d jx j−1, (2.52)

where x = r
R , N′ is an integer and d j are constants. From Eq. (2.52), we get

dρ0

dr
=

dρ0

dx
dx
dr

=
1
R

N′

∑
j=2

( j−1)d jx j−2. (2.53)

To solve Eq. (2.51) for a best fitting density profile ρ0, we use a Galerkin method with

weight functions xi−1 (i = 1, · · · ,N′−1). Using Eq. (2.53), the Galerkin representation of

Eq. (2.51) is
N′

∑
j=2

( j−1)d j

∫ b
R

a
R

v2
p− 4

3v2
s

ρ0g0R
xi+ j−3dx+

∫ b
R

a
R

xi−1dx = 0, (2.54)

for each i, a is the mean radius of CMB (inner radius of mantle) and b is the mean radius

of the outer mantle. Eq. (2.54) can be written as

N′

∑
j=2

Ai jd j = Fi, (2.55)

where

Ai j ≡ ( j−1)
∫ b

R

a
R

v2
p− 4

3v2
s

ρ0g0R
xi+ j−3dx, (2.56)

and

Fi ≡−
1
i

[(
b
R

)i

−
( a

R

)i
]
. (2.57)

The gravitational acceleration, g0, in the mantle is given as

g0(r) =
GM(r)

r2 , (2.58)
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where M(r) is the total mass of the body enclosed by the shell of radius r, and

M(r) = MIC+MLC+MM, (2.59)

where, MIC = mass of inner core, MLC = mass of liquid core, and MM = mass of mantle

which can be written as

MM(r) = 4π

∫ r2

r1

ρ0r2dr,

= 4πR3
N′

∑
j=1

d j

j+2

[
x j+2

2 − (
a
R
) j+2

]
. (2.60)

In order to find ρ0 [by Eq. (2.52)] and g0 [by Eq. (2.58)] in Eq. (2.56), we set the start-

ing values of the coefficients of the density profile: d1 = 20.6579× 103 kg m−3, d2 =

−12.9012×104 kg m−3, d3 = 44.7085×104kg m−3, d4 = −65.8279×104 kg m−3, d5 =

−31.7742× 103 kg m−3, and all other d j = 0. The number of terms in the polynomials

representing the aforementioned profiles is arbitrary. We chose 14 for the density because

at this number the Adams-Williamson condition was satisfied the fastest. IMSL (Inter-

national Mathematics and Statistics Library) [83] subroutines DQDAG and DLSARG are

then called to solve Eqs. (2.55) and (2.56) respectively for the coefficients d2, · · · ,dN′ . To

find the value d1, we use the mass conservation of the mantle as a constraint and proceed

as follows: ∫
M

ρ0dV =
4
3

π〈ρ〉(b3−a3), (2.61)

where 〈ρ〉 is the average density of the mantle. Substituting Eq. (2.52) and dV = r2 sin2
θdrdθdφ

in Eq. (2.61), then

4πR3
N′

∑
j=1

d j

∫ b
R

a
R

x j+1dx =
4
3

π〈ρ〉(b3−a3),
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which can be written as

d1 = 〈ρ〉−
3( b

R

)3−
( a

R

)3

N

∑
j=2

d j

j+2

[(
b
R

) j+2

−
( a

R

) j+2
]
. (2.62)

From Eq. (2.51), we get
v2

p− 4
3v2

s

ρ0g0

dρ0

dr
=−1. (2.63)

Once d j are known, we use the equations (2.49), (2.50), (2.52) and (2.53) to solve for
v2

p− 4
3 v2

s
ρ0g0

dρ0
dr . Let Z =

v2
p− 4

3 v2
s

ρ0g0

dρ0
dr . If |Z + 1| > κ, where κ is the desired accuracy, we use

the new d j as the starting values, this process is repeated until |Z + 1| ≤ κ. In this thesis,

we set κ = 10−6, and compute the coefficients of the modified density of the mantle. The

modified density of the mantle is

ρ0 =
14

∑
i=1

dixi−1 kgm−3. (2.64)

In Tables 2.2, we show the coefficients di of the modified density of the mantle. These

modified profiles do not significantly affect the periods of the normal modes such as the

seismic and Slichter modes (see tables 5.1 and 5.2). Note that the periods of the seismic

modes mainly depend on the dynamics of the mantle.
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2.5. EARTH MODELS

Table 2.2: The coefficients of the density profile (kg m−3) for the mantle

d j value

d1 48.877×103

d2 −45.671×104

d3 20.748×105

d4 −51.065×105

d5 70.192×105

d6 −47.512×105

d7 56.739×104

d8 60.499×104

d9 −91.919×103

d10 19.516×105

d11 −40.945×105

d12 31.996×105

d13 −10.849×105

d14 12.301×104
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Chapter 3

The Galerkin Method and its
Application of to the Governing
Equations

In this chapter, following Seyed-Mahmoud [81] and Kamruzzaman [42], we introduce the

Galerkin method applicable to a system of simultaneous partial differential equations sub-

ject to boundary conditions. We use this method, based on the work of Kamruzzaman and

Seyed Mahmoud [43], to solve the dynamical equations and boundary conditions describ-

ing the dynamics of the Earth’s interior for the normal modes of different Earth’s models.

3.1 The Galerkin Method

The Galerkin method was introduced by Russian mathematician Boris Grigoryevich

Galerkin. This method is a tool to approximate the solution of an operator equation in the

form of a linear combination of the elements of a linearly independent system. This method

was applied to the 3PD in [38] for studying the inertial modes of a compressible and strat-

ified fluid core with rigid boundaries in [37, 41, 42], the free wobble/nutation modes of a

simple Earth model with a rotating, inviscid, homogeneous and incompressible fluid core

contained in a spherical shell with rigid boundaries in [40], and the effect of the Earth’s dif-

ferential rotation of the inner core on the period of the FCN in [84]. The computed periods

of wobble/nutation modes in existing methods of previous studies lack proven convergence

and the discrepancies between the observed and predicted values are significant. To solve

the convergence problem, the Galerkin method will be applied to dynamical equations and
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3.1. THE GALERKIN METHOD

boundary conditions describing the dynamics of a realistic Earth model, where all the field

variables are represented by the spherical harmonics. The truncation levels at spherical

harmonic become infinite in theory, but in practice they are truncated once convergence is

achieved (see e.g., [37, 41, 42]).

We consider a set of functions X = (X1,X2,X3, · · · ,XN) which satisfies a set of simulta-

neous PDEs in a region V ,
N

∑
j=1

Li jX j = 0 (3.1)

for every i (i = 1, · · · ,N), where Li j are linear (maybe complex) partial differential opera-

tors.

Suppose that there are a number of associated boundary conditions satisfied on the

boundary S of volume V , such that

N

∑
j=1

Bi jX j = 0 (3.2)

for every i (i = 1, · · · ,N), where Bi j are linear operators. Using a basis set fl , l = 1, · · · ,L,

we introduce trial functions

X j =
L

∑
l=1

C jl fl (3.3)

for every j ( j = 1, · · · ,N), which need not a priori satisfy the boundary conditions. The

Galerkin method tries to make ∑ j Li jX j as nearly null as possible by requiring

N

∑
j=1

L

∑
l=1

∫
V

f ∗l Li jC jl fldV = 0, (3.4)

where l = 1, · · · ,L, and ∗ denotes the complex conjugate. Eq. (3.4) can be written in matrix

form by setting up 1-1 correspondence of m = N(l−1)+ i and n = N(l−1)+ j,

∑
n

Gmnan = 0,(m = 1, · · · ,LN) (3.5)
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3.2. GALERKIN FORMULATION OF THE DYNAMICAL EQUATIONS

with an =C jl , and

Gmn =
∫

V
f ∗l Li j fldV. (3.6)

In general the trial functions do not a priori satisfy the boundary conditions. We choose

a set of basis functions ψl (i.e., weight functions) equal in number to the basis functions

defined in the trial functions X j is used to reconstruct in Eq. (3.4) as

N

∑
j=1

L

∑
l=1

[
∫

V
f ∗l Li jC jl fldV +

∫
S

ψ
∗
l Bi jC jl fldS] = 0, (3.7)

which has a form
N

∑
j=1

L

∑
l=1

Fli jlC jl = 0 (3.8)

with

Fli jl =
∫

V
f ∗l Li j fldV +

∫
S

ψ
∗
l Bi j fldS. (3.9)

The surface integral from the boundary conditions may be removed by applying the di-

vergence theorem. When this is possible with a proper choice of weight functions, the

boundary conditions are called natural.

3.2 Galerkin Formulation of the Dynamical Equations

(This section is based on the work of Kamruzzaman and Seyed Mahmoud [43].)

In this section we develop a Galerkin method to solve equations (2.13) and (2.14)

including the boundary conditions, equations (2.33)-(2.36). Using equations (2.18) and

(2.21) along with equation (2.26) and (2.32) as trial functions and applying the Galerkin

method, the dynamical equations (2.13) and (2.14) are replaced with the functionals

F1k =
∫

Vk

u∗k ·
[

σ
2uk− iσê3×uk−g0∇ ·uk +∇(uk ·g0 +(V1)k)+

1
ρ0

∇ · (τ̃)k

]
dV

(3.10)
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and

F2k =
∫

Vk

(V ∗1 )k

[
∇

2(V1)k−4πG∇ · (ρ0uk)

]
dV, (3.11)

where * indicates the complex conjugate and Vk is the total volume of bounded region by

the ICB for k = 1, by the ICB and CMB for k = 2 and by CMB and the Earth’s surface for

k = 3.

Now, using the identity ∇ · ( f A) = f ∇ ·A+A ·∇ f on the 4th term of the right-hand

side of the equation (3.10) and applying the divergence theorem, we find

∫
Vk

u∗k ·∇(uk ·g0 +(V1)k)dV = −
∫

Vk

(∇ ·u∗k){uk ·g0 +(V1)k}dV

+
∫

Sk

(n̂ ·u∗k){uk ·g0 +(V1)k}dS, (3.12)

where Sk is the total surface area of the ICB for k = 1, the CMB for k = 2 and the Earth’s

surface for k = 3.

Using equation (2.7) on the last term of the right-hand side of equation (3.10), we have

∫
Vk

1
ρ0

∇ · (τ̃)k ·u∗kdV =
∫

Vk

1
ρ0

[∇ · {(τ̃1)k +(τ̃2)k}] ·u
∗
kdV. (3.13)

We expand the 1st term of the right-hand side of the above equation to get:

∇ · ( 1
ρ0

(τ̃1)k ·u
∗
k) =

1
ρ0

∇ · ((τ̃1)k ·u
∗
k)−

∇ρ0

ρ2
0
· (τ̃1)k ·u

∗
k

=
1
ρ0

[
(∇ · (τ̃1)k) ·u

∗
k +(τ̃1)k : ∇u∗k

]
− ∇ρ0

ρ2
0
· (τ̃1)k ·u

∗
k , (3.14)

where : refers to double dot product of two tensors. Therefore

∫
Vk

1
ρ0

∇ · (τ̃1)k ·u∗kdV =
∫

Vk

[
∇ρ0

ρ2
0
· (τ̃1)k ·u∗k−

1
ρ0

(τ̃1)k : ∇u∗k

]
dV +

∫
Sk

1
ρ0

n̂ · (τ̃1)k ·u∗kdS.

(3.15)
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Similarly, we can expand the 2nd term of the right-hand side of equation (3.13). However,

the term (τ̃2)k : ∇u∗k leads to the coefficients of 1/sin2
θ, which present a challenge to

integrate numerically. In order to bypass this difficulty, we have integrated the 2nd term of

the right-hand side of (3.13) directly, and have included the associated boundary condition

of this term the following equation (3.7). The r-, θ- and φ-components of ∇ · (τ̃2)k in the

spherical coordinate system are given by

{
∇ · (τ̃2)k

}
r =

∂(τ2)rr
∂r

+
1
r

∂(τ2)θr
∂θ

+
1

r sinθ

∂(τ2)φr

∂φ
+

2(τ2)rr− (τ2)θθ
− (τ2)φφ

r

+
cotθ

r
(τ2)θr, (3.16)

{
∇ · (τ̃2)k

}
θ

=
∂(τ2)rθ

∂r
+

1
r

∂(τ2)θθ

∂θ
+

1
r sinθ

∂(τ2)φθ

∂φ
+

3(τ2)rθ

r

+
cotθ

r

{
(τ2)θθ

− (τ2)φφ

}
, (3.17)

{
∇ · (τ̃2)k

}
φ

=
∂(τ2)rφ

∂r
+

1
r

∂(τ2)θφ

∂θ
+

1
r sinθ

∂(τ2)φφ

∂φ
+

3(τ2)rφ

r

+
2cotθ

r
(τ2)θφ

, (3.18)

where

(τ2)rr = 2µerr; (τ2)θθ
= 2µeθθ; (τ2)φφ

= 2µeφφ; (3.19)

(τ2)rθ
= 2µerθ; (τ2)θφ

= 2µeθφ; (τ2)φr = 2µeφr. (3.20)

In equations (3.19) and (3.20), we have

err =
∂ur

∂r
, (3.21)

eθθ =
ur

r
+

1
r

∂uθ

∂θ
, (3.22)

eφφ =
1

r sinθ

∂uφ

∂φ
+

ur

r
+

cotθuθ

r
, (3.23)
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2erθ =
∂uθ

∂r
− uθ

r
+

1
r

∂ur

∂θ
, (3.24)

2eθφ =
1
r

∂uφ

∂θ
−

cotθuφ

r
+

1
r sinθ

∂uθ

∂φ
, (3.25)

2eφr =
∂uφ

∂r
−

uφ

r
+

1
r sinθ

∂ur

∂φ
, (3.26)

where ur, uθ and uφ, which are given from the equation (2.18), are the radial, θ and φ

components of the displacement u respectively. Note that erθ = eθr, eθφ = eφθ, and eφr = erφ

because the stress tensor is a symmetric tensor.

Now, applying the equations (3.12) and (3.15) in equations (3.10), we find

F1k =
∫

Vk

u∗k ·
[

σ
2uk− iσê3×uk−g0∇ ·uk− (∇ ·u∗k){uk ·g0 +(V1)k}

]
dV

+
∫

Sk

(n̂ ·u∗k){uk ·g0 +(V1)k}dS+
∫

Vk

[
∇ρ0

ρ2
0
· (τ̃1)k ·u∗k−

1
ρ0

(τ̃1)k : ∇u∗k

]
dV

+
∫

Sk

1
ρ0

n̂ · (τ̃1)k ·u∗kdS+
∫

Vk

1
ρ0

u∗k · (∇ · (τ̃2)k)dV −
∫

Sk

1
ρ0

n̂ · (τ̃2)k ·u∗kdS.

(3.27)

Again, using the identity ∇ ·( f A)= f ∇ ·A+A ·∇ f on the equation (3.11), and applying

the divergence theorem, we find

F2k =
∫

Sk

(V ∗1 )kn̂ · {∇(V1)k−4πGρ0uk}dS−
∫

Vk

[
∇(V1)k−4πGρ0uk

]
·∇(V ∗1 )kdV.

(3.28)

An important advantage of the Galerkin method is that application of the divergence

theorem replaces the volume integrals involving second order derivatives with surface and

volume integrals involving first order derivatives in the form for which the boundary con-

ditions are natural. Also, the derivatives of the material properties at the boundaries, which

are not well established in the available Earth models, are removed using the divergence
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theorem. The other advantage is that the singularity of the differential equations (2.12) and

(2.13) at r = 0 is removed using this method.

Applying the boundary conditions [i.e., Eqs. (2.33)] - (2.36)), Eqs. (3.27) and (3.28)

become

F11 =
∫

V1

[
u∗1 · {σ2u1− iσê3×u1−g0∇ ·u1}− (∇ ·u∗1){u1 ·g0 +(V1)1}

]
dV

+
∫

S1

(n̂ ·u∗1){u2 ·g0 +(V1)2}a+dS+
∫

V1

[
∇ρ0

ρ2
0
· (τ̃1)1 ·u∗1−

1
ρ0

(τ̃1)1 : ∇u∗1

]
dV

+
∫

S1

1
ρ0
{n̂ · (τ̃1)2}a+ ·u∗1dS+

∫
V1

1
ρ0

u∗1 · (∇ · (τ̃2)1)dV, (3.29)

F21 =
∫

S1

(V ∗1 )1n̂ · {∇(V1)2−4πGρ0u2}a+dS−
∫

V1

[
∇(V1)k−4πGρ0uk

]
·∇(V ∗1 )1dV,

(3.30)

for the IC, and

F12 =
∫

V2

[
u∗2 · {σ2u2− iσê3×u2−g0∇ ·u2}− (∇ ·u∗2){u2 ·g0 +(V1)2}

]
dV

−
∫

S1

(n̂ ·u∗2){u1 ·g0 +(V1)1}a−dS+
∫

S2

(n̂ ·u∗2){u3 ·g0 +(V1)3}b+dS

+
∫

V2

[
1−β

ρ0v2
p

g0 · (τ̃1)2 ·u∗2−
1
ρ0

(τ̃1)2 : ∇u∗2

]
dV −

∫
S1

1
ρ0
{n̂ · (τ̃1)1}a− ·u∗2dS

+
∫

S2

1
ρ0
{n̂ · (τ̃1)3}b+ ·u∗2dS+

∫
S1

1
ρ0
{n̂ · (τ̃2)1}a− ·u∗2dS

−
∫

S2

1
ρ0
{n̂ · (τ̃2)3}b+ ·u∗2dS, (3.31)
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F22 = −
∫

S1

(V ∗1 )2n̂ · {∇(V1)1−4πGρ0u1}a−dS+
∫

S2

(V ∗1 )2n̂ · {∇(V1)3−4πGρ0u3}b+dS

−
∫

V2

[
∇(V1)2−4πGρ0u2

]
·∇(V ∗1 )2dV, (3.32)

for the OC, where subscripts − and + refer to the respective radius just inside or outside a

respective boundary interface, and we apply the relation

∇ρ0 = (1−β)ρ0
g0

v2
p
, (3.33)

into the equation (3.31). The stability parameter β of the OC measures the deviation of

the equilibrium density from neutral stratification. The stability parameter is related to the

square of the local Brunt-Väisälä frequency N2, rendered dimensionless by dividing it by

4Ω2, as

N2 =−
βg2

0
4Ω2v2

p
. (3.34)

A positive value of N2 (i.e., N is real) would permit a parcel of fluid slightly displaced

parallel (or anti-parallel) to g0 and compressed (or expanded) by the change in pressure, to

be lighter (or denser) than the fluid surrounding it, and therefore to perform small oscilla-

tions about its original position with frequency N. On the other hand, a negative value of

N2 (i.e., N is imaginary) would result in the displaced parcel as being denser (or lighter)

than its new surrounding, and leads to sinking (or rising). Thus one says that if N2 > 0

(β < 0) then the density profile is stably stratified, if N2 < 0 (β > 0) then the density profile

is unstably stratified and if N2 = 0 (β = 0) then the density profile is neutrally stratified

(i.e., satisfying the Adams-Williamson equation).
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Using equations (2.33) - (2.36), equations (3.27) and (3.28) become for the MT

F13 =
∫

V3

[
u∗3 · {σ2u3− iσê3×u3−g0∇ ·u3}− (∇ ·u∗3){u3 ·g0 +(V1)3}

]
dV

−
∫

S2

(n̂ ·u∗3){u2 ·g0 +(V1)2}b−dS+
∫

S3

(n̂ ·u∗3){u3 ·g0 +(V1)3}R−dS

+
∫

V3

[
∇ρ0

ρ2
0
· (τ̃1)3 ·u∗3−

1
ρ0

(τ̃1)3 : ∇u∗3

]
dV −

∫
S2

1
ρ0
{n̂ · (τ̃1)2}b− ·u∗3dS

+
∫

S3

1
ρ0
{n̂ · (τ̃1)3}R− ·u∗3dS+

∫ 1
ρ0

u∗3 · (∇ · (τ̃2)3)dV

−
∫

S3

1
ρ0
{n̂ · (τ̃2)3}R− ·u∗3dS, (3.35)

F23 = −
∫

S2

(V ∗1 )3n̂ · {∇(V1)2−4πGρ0u2}b−dS−
∫

V3

[
∇(V1)3−4πGρ0u3

]
·∇(V ∗1 )3dV

+
∫

S3

(V ∗1 )3n̂ · {∇(V1)3−4πGρ0u3}R−dS. (3.36)

Application of the Galerkin method on functionals F1k and F2k requires that

∂F1k

∂(Cm∗
q, j)k

= 0;
∂F1k

∂(Dm∗
q, j)k

= 0;
∂F1k

∂(Em∗
q, j )k

= 0;
∂F2k

∂(Fm∗
q, j )k

= 0, (3.37)

where j = 0,2,3,4, · · · ,L1 for k = 1 and j = 0,1,2,3,4, · · · ,Lk for otherwise, and q =

0,1,2, ...,Nk for all k’s.

3.3 Matrix Representation of the Galerkin Formulation and Eigenval-

ues

Conditions (3.37) lead to 4{(N1 + 1)L1 +∑
3
k=2(Nk + 1)(Lk + 1)} = h linear homoge-

neous equations with the same number of coefficients (Cm∗
q, j)k, (Dm∗

q, j)k, (Em∗
q, j )k and (Fm∗

q, j )k,
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k = 1,2,3. These linear equations can then be written as a matrix form

Aψ = 0, (3.38)

where A is a h× h matrix, and ψ is a 1× h matrix (column matrix) representing the coef-

ficients (Cm
n,l)k, (Dm

n,l)k, (Em
n,l)k and (Fm

n,l)k. Non-trivial solutions of equation (3.38) exist

only if the determinant of A vanishes. The non-dimensional frequencies σ of the normal

modes then correspond to the roots of the determinant of A.

39



Chapter 4

Clairaut Coordinate and their
Application to the Galerkin Formulation

In this chapter, we will first discuss the Clairaut coordinate system. Next, we will solve the

Clairaut equation to find the Earth’s ellipticity profile using the Runge-Kutta integration

method. We will derive the vector and scalar operations, the divergence of stress tensor and

the boundary conditions at the Earth’s surface in this coordinates system. Then, we will

expand the Galerkin formulation of dynamical equations to include the first order ellipticity

in the Earth model.

4.1 Clairaut Coordinate System

In section 2.1, the reference Earth model is considered in hydrostatic equilibrium which

gives the material properties, the Lamé parameters and density, as constant on the equipo-

tential surfaces. The radius of the equipotential surfaces [85] is

r = r0

[
1− 2

3
ε(r0)P2(cosθ)

]
, (4.1)

where r0 is the average equipotential surface’s radius, P2 is the Legendre polynomial of

degree 2, r is the magnitude of position vector r, and ε(r0) is the ellipticity. The ellipticity

profile is given by the Clairaut equation [86]

d2ε

dr2
0
+

6
r0

ρ0(r0)

ρm(r0)

dε

dr0
− 6

r2
0

[
1− ρ0(r0)

ρm(r0)

]
ε = 0, (4.2)
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4.1. CLAIRAUT COORDINATE SYSTEM

with the boundary conditions [78]:

dε

dr0
= 0 at r0 = 0, (4.3)

2ε =
5Ω2R3

2GM
− r0

dε

dr0
at r0 = R, (4.4)

where M is the mass of the Earth, R is the Earth’s surface radius, ρ0 is the density on the

equipotential surface of r0, and ρm is the mean density bounded by the same equipoten-

tial surface. The ordinary differential equation (4.2) has a singular point at r0 = 0 which

presents a challenge to stating numerical integration from r0 = 0. To avoid this diffi-

culty, the Runge-Kutta integration of ordinary differential equation is applied from nearly

(r0 = 10−24) the geocenter using the PREM’s density profile [1], as if it were valid at some

small radius r0 = 10−24 (equal to the first step in integration): i.e. because the ε have zero

derivatives at r0 = 0, the Runge-Kutta routine sets ε(10−24) = ε(0). To increase accuracy,

we make sure to reduce the step size r0, and the higher number of steps in integration.

The ellipticity does not change significantly from the center to ICB, therefore, it is justi-

fied that we started integration from near the center rather than the center (see Fig. 4.1).

This ellipticity profile gives the ellipticities ε(a) = 2.422×10−3, ε(b) = 2.548×10−3 and

ε(R) = 3.337×10−3 at the ICB, CMB and Earth’s surface, respectively. The periods of the

wobble and nutation modes are sensitive to the values of ε(a), ε(b) and ε(R) [72].

The equipotential surfaces are spherical in the non-rotating Earth model, whereas these

surfaces become spheroidal in the rotating Earth model. In order to study a spheroidal Earth

model, Seyed-Mahmoud and Moradi [87] studied the effect of first order ellipticity of some

low-order inertial modes of the fluid core using a non-orthogonal (Clairaut) coordinate

system (r0,θ,φ) for the 3PD. Kopal [88] also applied this coordinate system, and derived

the ordinary differential equations governing the freely oscillating star. Wu [89] used a

similar coordinate system to explore the dynamics of the fluid core, and studied the wobble

and inertia-gravity modes. The transformation from a spherical polar (r,θ,φ) coordinate
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4.1. CLAIRAUT COORDINATE SYSTEM

Figure 4.1: The ellipticity profile of the Earth as a function of x = r/R.

system to Clairaut coordinates (r0,ψ = θ,φ) system is given by the equations

r0 = r
[

1+
2
3

ε(r0)P2(cosθ)

]
, (4.5)

∂

∂r
=

∂r0

∂r
∂

∂r0
=

[
1+

2
3

d
dr0

(r0ε)P2(cosθ)

]
∂

∂r0
, (4.6)

∂

∂θ
=

∂r0

∂θ

∂

∂r0
+

∂

∂θ
=

2
3

r0εP1
2 (cosθ)

∂

∂r0
+

∂

∂θ
. (4.7)

The volume element dV in Clairaut coordinate is given as

dV = r2 ∂r
∂r0

sinθdr0dθdφ

=

[
r2

0−
2
3

d
dr0

(r3
0ε)P2

]
sinθdr0dθdφ (4.8)

correct to the first order in ε [87].

The unit vector normal to the equipotential surfaces is

n̂ = r̂+
2
3

ε(r0)P1
2 (cosθ)θ̂ (4.9)
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4.1. CLAIRAUT COORDINATE SYSTEM

correct to the order ε [87]. The argument of cosθ for the associated Legendre polynomials

Pm
n (cosθ) is−1≤ cosθ≤ 1. We will write Pm

n instead of Pm
n (cosθ) for convenience below.

The equilibrium gravity of the Earth’s interior is given by

g0 =−
{[

1+
2
3

d
dr0

(r0ε)P2

]
g0(r0)−

2
3

r0Ω
2
}

r̂− 2
3

εP1
2 g0(r0)θ̂ (4.10)

correct to the order ε [87]. The non-dimensional form of the gravity is

g
′
0 =−

{[
1+

2
3

d
dr0

(r0ε)P2

]
g
′
0(r0)−

1
6

r
′
0

}
r̂− 2

3
εP1

2 g
′
0(r0)θ̂, (4.11)

where g′0 =
g0

4Ω2R , and r
′
0 =

r0
R . Note that equations (4.11) is obtained from equation (4.10)

by dividing by 4RΩ2. Hereafter, we will drop the notation ()′ from all terms of equation

(4.11) for convenience.

The surface element dS in Clairaut coordinate is

dS = r2 sinθdθdφ

=

[
r2

0−
4
3

εP2

]
sinθdθdφ (4.12)

to the first order in ε.

43



4.2. VECTOR AND SCALAR OPERATORS IN CLAIRAUT COORDINATE SYSTEM

4.2 Vector and Scalar Operators in Clairaut Coordinate System

Recall that equations (3.27) and (3.28)

F1k =
∫

Vk

u∗k ·
[

σ
2uk− iσê3×uk−g0∇ ·uk− (∇ ·u∗k){uk ·g0 +(V1)k}

]
dV

+
∫

Sk

(n̂ ·u∗k){uk ·g0 +(V1)k}dS+
∫

Vk

[
∇ρ0

ρ2
0
· (τ̃1)k ·u∗k−

1
ρ0

(τ̃1)k : ∇u∗k

]
dV

+
∫

Sk

1
ρ0

n̂ · (τ̃1)k ·u∗kdS+
∫

Vk

1
ρ0

u∗k · (∇ · (τ̃2)k)dV −
∫

Sk

1
ρ0

n̂ · (τ̃2)k ·u∗kdS

(4.13)

and

F2k =
∫

Sk

(V ∗1 )kn̂ · {∇(V1)k−4πGρ0uk}dS−
∫

Vk

[
∇(V1)k−4πGρ0uk

]
·∇(V ∗1 )kdV.

(4.14)

Next, we will first derive the vector and scalar operations, which involve the above equa-

tions (4.13) and (4.14), in the Clairaut coordinate system. Then we will find the functionals

F1k and F2k. Hereafter, we will drop the subscript k of the field variables in equations (4.13)

and (4.14).

4.2.1 Dot Product of Two Vectors

The displacement eigenfunction u in the spherical coordinate system is given in (2.18)

u =
N

∑
n=|m|

[
r̂Um

n Pm
n + θ̂

(
dPm

n
dθ

V m
n +

im
sinθ

W m
n Pm

n

)
+ φ̂

(
im

sinθ
V m

n Pm
n −

dPm
n

dθ
W m

n

)]
eimφ.

(4.15)
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By applying equation (4.7) in equation (4.15), then we get the displacement in the Clairaut

coordinate system

u =
N

∑
n=|m|

[
r̂Um

n Pm
n + θ̂

(
2
3

r0εP1
2

dV m
n

dr0
Pm

n +V m
n

dPm
n

dθ
+

im
sinθ

W m
n Pm

n

)

+ φ̂

(
im

sinθ
V m

n Pm
n −

2
3

r0εP1
2

dW m
n

dr0
Pm

n −W m
n

dPm
n

dθ

)]
eimφ. (4.16)

The complex conjugate of the displacement is

u∗ =
N

∑
q=|m|

[
r̂Um

q Pm
q + θ̂

(
2
3

r0εP1
2

dV m
q

dr0
Pm

q +V m
q

dPm
q

dθ
− im

sinθ
W m

q Pm
q

)

+ φ̂

(
− im

sinθ
V m

q Pm
q −

2
3

r0εP1
2

dW m
q

dr0
Pm

q −W m
q

dPm
q

dθ

)]
e−imφ. (4.17)

Hence, the dot product of u and u∗ is

u∗ ·u =
N

∑
q=|m|

N

∑
n=|m|

[
Um

q Um
n Pm

q Pm
n +

(
V m

q V m
n +W m

q W m
n

)(
dPm

n
dθ

dPm
q

dθ
+

m2

sinθ
Pm

q Pm
n

)

+ im
(

V m
q W m

n −W m
q V m

n

)(
Pm

q

sinθ

dPm
n

dθ
+

Pm
n

sinθ

dPm
q

dθ

)
+

2
3

r0ε

(
V m

q
dV m

n
dr0

+W m
q

dW m
n

dr0

)
P1

2
dPm

q

dθ
Pm

n +
2
3

r0ε

(
dV m

q

dr0
V m

n +
dW m

q

dr0
W m

n

)
P1

2
dPm

n
dθ

Pm
n

+
2im
3

r0ε

(
V m

q
dW m

n
dr0

+
dV m

q

dr0
W m

n −W m
q

dV m
n

dr0
−

dW m
q

dr0
V m

n

)
P1

2
sinθ

Pm
q Pm

n

]
. (4.18)

Now, we derive u · g0, u∗ · g0, n̂ ·u and n̂ ·u∗ from equations (4.9), (4.11), (4.16) and

(4.17) to get

u ·g0 =
N

∑
n=|m|

[
−
{[

1+
2
3

d
dr0

(r0ε)P2

]
g0−

1
6

r0

}
Um

n Pm
n

− 2
3

εP1
2 g0

(
V m

n
dPm

n
dθ

+
im

sinθ
W m

n Pm
n

)]
eimφ, (4.19)
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u∗ ·g0 =
N

∑
q=|m|

[
−
{[

1+
2
3

d
dr0

(r0ε)P2

]
g0−

1
6

r0

}
Um

q Pm
q

− 2
3

εP1
2 g0

(
V m

q
dPm

q

dθ
− im

sinθ
W m

q Pm
q

)]
e−imφ, (4.20)

n̂ ·u =
N

∑
n=|m|

[
Um

n Pm
n +

2
3

εP1
2

(
V m

n
dPm

n
dθ

+
im

sinθ
W m

n Pm
n

)]
eimφ, (4.21)

n̂ ·u∗ =
N

∑
q=|m|

[
Um

q Pm
q +

2
3

εP1
2

(
V m

q
dPm

q

dθ
− im

sinθ
W m

q Pm
q

)]
e−imφ (4.22)

to the first order in ε.

4.2.2 Cross Product of the Unit Vector ê3 and the Displacement Vector

The cross product of the unit vector ê3 and the displacement eigenfunction u is

ê3×u =

∣∣∣∣∣∣∣∣∣∣∣
r̂ θ̂ φ̂

cosθ −sinθ 0

ur uθ uφ

∣∣∣∣∣∣∣∣∣∣∣
which is equal to

− sinθuφr̂− cosθuφθ̂+(cosθuθ + sinθur)φ̂. (4.23)
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Now using equations (4.16) and (4.17), and doing some algebra, we get

u∗ · ê3×u =
N

∑
q=|m|

N

∑
n=|m|

[
− im

(
Um

q V m
n +V m

q Um
n

)
Pm

q Pm
n +

(
V m

q W m
n −W m

q V m
n

)

× cosθ

(
dPm

n
dθ

dPm
q

dθ
+

m2

sinθ
Pm

q Pm
n

)
− im

(
V m

q V m
n +W m

q W m
n

)
× cosθ

(
Pm

q

sinθ

dPm
n

dθ
+

Pm
n

sinθ

dPm
q

dθ

)
+Um

q W m
n sinθ

dPm
n

dθ
Pm

q −W m
q Um

n sinθ
dPm

q

dθ
Pm

n

+
2
3

r0ε

(
V m

q
dW m

n
dr0
−W m

q
dV m

n
dr0

)
cosθP1

2
dPm

q

dθ
Pm

n +
2
3

r0ε

(
dV m

q

dr0
W m

n −
dW m

q

dr0
V m

n

)
× cosθP1

2
dPm

n
dθ

Pm
n +

2
3

r0ε

(
Um

q
dW m

n
dr0
−

dW m
q

dr0
Um

n

)
sinθP1

2 Pm
n Pm

q −
2im
3

r0ε

×
(

V m
q

dV m
n

dr0
+

dV m
q

dr0
V m

n +W m
q

dW m
n

dr0
+

dW m
q

dr0
W m

n

)
cosθ

sinθ
P1

2 Pm
q Pm

n

]
. (4.24)

4.2.3 Divergence of the Displacement Vector

The divergence of the displacement in the spherical coordinate system is given by

∇ ·u =
1
r2

∂

∂r
(r2ur)+

1
r sinθ

∂

∂θ
(sinθuθ)+

1
r sinθ

∂

∂φ
(uφ). (4.25)

Using equations (4.5)-(4.7) and (4.16) in (4.25), the divergence of u in the Clairaut

coordinate system is

∇ ·u =
N

∑
n=|m|

[(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
Pm

n +
2
3

ε

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n

+
2
3

r0
dε

dr0

dUm
n

dr0
P2Pm

n +
4
3

ε
dV m

n
dr0

P1
2

dPm
n

dθ
−4ε

dV m
n

dr0
P2Pm

n

]
eimφ (4.26)

correct to the first order in ε, where we use the associated Legendre differential equation

d2Pm
n

dθ2 +
cosθ

sinθ
+

[
n(n+1)− m2

sin2
θ

]
Pm

n = 0. (4.27)
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Similarly, we get

∇ ·u∗ =
N

∑
q=|m|

[(
dUm

q

dr0
+

2Um
q −q(q+1)V m

q

r0

)
Pm

q +
2
3

ε

(
dUm

q

dr0
+

2Um
q −q(q+1)V m

q

r0

)
P2Pm

q

+
2
3

r0
dε

dr0

dUm
q

dr0
P2Pm

q +
4
3

ε
dV m

q

dr0
P1

2
dPm

q

dθ
−4ε

dV m
q

dr0
P2Pm

q

]
e−imφ (4.28)

correct to the first order in ε.

4.2.4 Gradient of a Scalar Field

The gradient of the gravitational potential V1 in the spherical coordinate system is

∇V1 = r̂
∂V1

∂r
+ θ̂

1
r

∂V1

∂θ
+ φ̂

1
r sinθ

∂V1

∂φ
. (4.29)

Using equation (2.21) in equation (4.29), we get

∇V1 =
N

∑
n=|m|

[
r̂

dXm
n

dr
Pm

n + θ̂
1
r

dPm
n

dθ
Xm

n + φ̂
im

r sinθ
Xm

n Pm
n

]
eimφ. (4.30)

Again, using equations (4.5)-(4.7) in (4.30), the Clairaut form of equation (4.30) is

∇V1 =
N

∑
n=|m|

[
r̂
{

1+
2
3

d
dr0

(r0ε)P2

}
dXm

n
dr0

Pm
n + θ̂

1
r0

{
Xm

n
dPm

n
dθ

+
2
3

εXm
n P2

dPm
n

dθ

+
2
3

r0ε
dXm

n
dr0

P1
2 Pm

n

}
+ φ̂

im
r0 sinθ

(
1+

2
3

εP2

)
Xm

n Pm
n

]
eimφ (4.31)

to the first order in ε. Similarly,

∇V ∗1 =
N

∑
q=|m|

[
r̂
{

1+
2
3

d
dr0

(r0ε)P2

}
dXm

q

dr0
Pm

q + θ̂
1
r0

{
Xm

q
dPm

q

dθ
+

2
3

εXm
q P2

dPm
q

dθ

+
2
3

r0ε
dXm

q

dr0
P1

2 Pm
q

}
− φ̂

im
r0 sinθ

(
1+

2
3

εP2

)
Xm

q Pm
q

]
e−imφ (4.32)

to the first order in ε.
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Since the density, ρ0, is a function of r only, therefore the gradient of density in the

Clairaut coordinate system is

∇ρ0 = r̂
{

1+
2
3

d
dr0

(r0ε)P2

}
dρ0

dr0
+ θ̂

2
3

εP1
2

dρ0

dr0
(4.33)

to the first order in ε.

4.3 Divergence of the Stress Tensor in the Clairaut Coordinate System

In section 3.2, the Galerkin formulation of divergence of the stress is separated into

two parts i.e., ∇ · τ̃1 and ∇ · τ̃2 [see equation (3.13)]. In this section, we will show the

implementation of these two parts in the Clairaut Coordinates System.

4.3.1 Divergence of τ̃1

The Galerkin formulation of 1
ρ 0

∇ · τ̃1 leads the three terms: ∇ρ0
ρ2

0
· τ̃1 ·u∗, 1

ρ0
τ̃1 : ∇u∗, and

1
ρ0

n̂ · τ̃1 ·u∗. Next, we will derive these terms in the Clairaut coordinate system as follows.

From equation(2.7), we get

τ̃1 = λ(∇ ·u)1̃ = λ(∇ ·u)(r̂r̂+ θ̂θ̂+ φ̂φ̂), (4.34)

which gives

(τ1)rr = (τ1)θθ = (τ1)φφ = λ(∇ ·u). (4.35)

The dot product of τ̃1 and u∗ is

τ̃1 ·u∗ = (τ1)rru∗r r̂+(τ1)θθu∗θθ̂+(τ1)φφu∗φφ̂. (4.36)
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Using equations (4.33), (4.35) and (4.36), we get

∇ρ0

ρ2
0
· τ̃1 ·u∗ =

1
ρ2

0

{
1+

2
3

d
dr0

(r0ε)P2

}
dρ0

dr0
λ(∇ ·u)u∗r +

1
ρ2

0

2
3

εP1
2

dρ0

dr0
λ(∇ ·u)u∗θ

=
λ

ρ2
0

dρ0

dr0
(∇ ·u)

[{
1+

2
3

d
dr0

(r0ε)P2

}
u∗r +

2
3

εP1
2 u∗θ

]
(4.37)

to the first order in ε, where u∗r , u∗
θ

and ∇ ·u are given from equations (4.17) and (4.26).

Therefore, we get

∇ρ0

ρ2
0
· τ̃1 ·u∗ =

λ

ρ2
0

dρ0

dr0

N

∑
q=|m|

N

∑
n=|m|

[
Um

q

{(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
Pm

n +
2
3

ε

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n +
2
3

r0
dε

dr0

dUm
n

dr0
P2Pm

n +
4
3

ε
dV m

n
dr0

P1
2

dPm
n

dθ

−4ε
dV m

n
dr0

P2Pm
n +

2
3

d
dr0

(r0ε)

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n

}
Pm

q

+
2
3

εV m
q

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P1

2
dPm

q

dθ
Pm

n

− 2im
3

εW m
q

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P1

2
sinθ

Pm
n Pm

q

]
. (4.38)

The double dot product of τ̃1 and ∇u∗ in the spherical coordinate system is given by

τ̃1 : ∇u∗ = (τ1)rr
∂u∗r
∂r

+(τ1)θθ

(
1
r

∂u∗
θ

∂θ
+

u∗r
r

)
+(τ1)φφ

(
1

r sinθ

∂u∗
φ

∂φ
+

u∗r
r
+

u∗
θ

cotθ

r

)
.

Since (τ1)rr = (τ1)θθ = (τ1)φφ = λ(∇ ·u), then we get

τ̃1 : ∇u∗ = λ(∇ ·u)
[

∂u∗r
∂r

+

(
1
r

∂u∗
θ

∂θ
+

u∗r
r

)
+

(
1

r sinθ

∂u∗
φ

∂φ
+

u∗r
r
+

u∗
θ

cotθ

r

)]
,

= λ(∇ ·u)λ(∇ ·u∗). (4.39)

Substituting equations (4.26) and (4.28) into equation (4.39), then we get the τ̃1 : ∇u∗ in
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the Clairaut coordinate system

τ̃1 : ∇u∗ = λ

N

∑
q=|m|

N

∑
n=|m|

[(
dUm

q

dr0
+

2Um
q

r0

){(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
Pm

n

+
4
3

ε

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n +
2
3

r0
dε

dr0

dUm
n

dr0
P2Pm

n

+
4
3

ε
dV m

n
dr0

P1
2

dPm
n

dθ
−4ε

dV m
n

dr0
P2Pm

n

}
Pm

q −V m
q

(
q(q+1)

r0

)
×
{(

dUm
n

dr0
+

2Um
n −n(n+1)V m

n
r0

)
Pm

n +
4
3

ε

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n

+
2
3

r0
dε

dr0

dUm
n

dr0
P2Pm

n +
4
3

ε
dV m

n
dr0

P1
2

dPm
n

dθ
−4ε

dV m
n

dr0
P2Pm

n

}
Pm

q

+
2
3

r0
dε

dr0

dUm
q

dr0

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n Pm
q

+
4
3

ε
dV m

q

dr0

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P1

2
dPm

q

dθ
Pm

n

−4ε
dV m

q

dr0

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n Pm
q

]
. (4.40)

Again, we get from equations (4.9) and (4.36)

n̂ · τ̃1 ·u∗ =
(

r̂+
2
3

εP1
2 θ̂

)
·
(
(τ1)rru∗r r̂+(τ1)θθu∗θθ̂+(τ1)φφu∗φφ̂

)
,

= (τ1)rru∗r +
2
3

εP1
2 (τ1)θθu∗θ. (4.41)

Using equation (4.35) in (4.41), therefore, we get

n̂ · τ̃1 ·u∗ = λ(∇ ·u)
(

u∗r +
2
3

εP1
2 u∗θ

)
(4.42)

to the first order in ε, where u∗r , u∗
θ

and ∇ ·u are given from equations (4.17) and (4.26).
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Therefore, we get

n̂ · τ̃1 ·u∗ = λ

N

∑
q=|m|

N

∑
n=|m|

[
Um

q

{(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
Pm

n +
2
3

ε

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P2Pm

n +
2
3

r0
dε

dr0

dUm
n

dr0
P2Pm

n +
4
3

ε
dV m

n
dr0

P1
2

dPm
n

dθ

−4ε
dV m

n
dr0

P2Pm
n

}
Pm

q +
2
3

εV m
q

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P1

2
dPm

q

dθ
Pm

n

− 2im
3

εW m
q

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n

r0

)
P1

2
sinθ

Pm
n Pm

q

]
. (4.43)

Hence, we see from equation (4.43) [also see Eq. (4.70)] that the derivatives of material

properties at the boundaries, which are not well established in the available Earth models,

are removed. This is one of the advantages of using the Galerkin method as we mentioned

in section 3.2.

4.3.2 Divergence of τ̃2

The Galerkin formulation of ∇ · τ̃2, which is zero for the OC because µ = 0 in the

OC, and boundary conditions to it will be derived as follows. Recall that the r, θ and φ

components of ∇ · (τ̃2) in the spherical coordinate system are given by equations (3.16)-

(3.18) i.e.,

{
∇ · τ̃2

}
r =

∂(τ2)rr
∂r

+
1
r

∂(τ2)θr
∂θ

+
1

r sinθ

∂(τ2)φr

∂φ
+

2(τ2)rr− (τ2)θθ
− (τ2)φφ

r

+
cotθ

r
(τ2)θr, (4.44)

{
∇ · τ̃2

}
θ
=

∂(τ2)rθ

∂r
+

1
r

∂(τ2)θθ

∂θ
+

1
r sinθ

∂(τ2)φθ

∂φ
+

3(τ2)rθ

r

+
cotθ

r

{
(τ2)θθ

− (τ2)φφ

}
, (4.45)
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{
∇ · τ̃2

}
φ
=

∂(τ2)rφ

∂r
+

1
r

∂(τ2)θφ

∂θ
+

1
r sinθ

∂(τ2)φφ

∂φ
+

3(τ2)rφ

r

+
2cotθ

r
(τ2)θφ

. (4.46)

Here the components of the stress tensor τ̃2 are given by equations (3.19)-(3.26)

(τ2)rr = 2µ
∂ur

∂r
, (4.47)

(τ2)θθ
= 2µ

[
ur

r
+

1
r

∂uθ

∂θ

]
, (4.48)

(τ2)φφ
= 2µ

[
1

r sinθ

∂uφ

∂φ
+

ur

r
+

cotθuθ

r

]
, (4.49)

(τ2)rθ
= µ

[
∂uθ

∂r
− uθ

r
+

1
r

∂ur

∂θ

]
, (4.50)

(τ2)θφ
= µ

[
1
r

∂uφ

∂θ
−

cotθuφ

r
+

1
r sinθ

∂uθ

∂φ

]
, (4.51)

(τ2)φr = µ
[

∂uφ

∂r
−

uφ

r
+

1
r sinθ

∂ur

∂φ

]
. (4.52)

Using equations (4.5)-(4.7), Clairaut’s form of equations (4.44)-(4.46) is

{
∇ · τ̃2

}
r =

[
1+

2
3

d
dr0

(r0ε)P2

]
∂(τ2)rr

∂r0
+

1
r0

(
1+

2
3

εP2

)[
2
3

r0εP1
2

∂(τ2)θr
∂r0

+
∂(τ2)θr

∂θ

+
1

sinθ

∂(τ2)φr

∂φ
+2(τ2)rr− (τ2)θθ

− (τ2)φφ
+ cotθ(τ2)θr

]
, (4.53)

{
∇ · τ̃2

}
θ
=

[
1+

2
3

d
dr0

(r0ε)P2

]
∂(τ2)rθ

∂r0
+

1
r0

(
1+

2
3

εP2

)[
2
3

r0εP1
2

∂(τ2)θθ

∂r0

+
∂(τ2)θθ

∂θ
+

1
sinθ

∂(τ2)φθ

∂φ
+3(τ2)rθ

+ cotθ
{
(τ2)θθ

− (τ2)φφ

}]
, (4.54)
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{
∇ · τ̃2

}
φ
=

[
1+

2
3

d
dr0

(r0ε)P2

]
∂(τ2)rφ

∂r0
+

1
r0

(
1+

2
3

εP2

)[
2
3

r0εP1
2

∂(τ2)θφ

∂r0

+
∂(τ2)θφ

∂θ
+

1
sinθ

∂(τ2)φφ

∂φ
+3(τ2)rφ

+2cotθ(τ2)θφ

]
. (4.55)

Again, using equations (4.5)-(4.7) and (4.16) in (4.47)-(4.52), the components of τ̃2 in the

Clairaut coordinates system become

(τ2)rr = 2µ
[

1+
2
3

d
dr0

(r0ε)P2

]
∂ur

∂r0
,

= 2µ
[

1+
2
3

d
dr0

(r0ε)P2

] N

∑
n=|m|

dUm
n

dr0
Pm

n eimφ, (4.56)

(τ2)θθ
=

2µ
r0

(
1+

2
3

εP2

)[
ur +

2
3

r0P1
2

∂uθ

∂r0
+

∂uθ

∂θ

]
,

=
2µ
r0

N

∑
n=|m|

[
Um

n Pm
n +V m

n
d2Pm

n
dθ2 +

im
sinθ

W m
n

dPm
n

dθ
− im

sinθ
W m

n cotθPm
n

+
2
3

r0ε

{
dV m

n
dr0

Pm
n +2

dV m
n

dr0
P1

2
dPm

n
dθ

+ im
dW m

n
dr0

P1
2

sinθ
Pm

n

}
+

2
3

ε

{
Um

n Pm
n +V m

n
d2Pm

n
dθ2

−4r0
dV m

n
dr0

Pm
n +

im
sinθ

W m
n

dPm
n

dθ
− im

sinθ
W m

n cotθPm
n

}
P2

]
eimφ, (4.57)

(τ2)φφ
=

2µ
r0

(
1+

2
3

εP2

)[
1

sinθ

∂uφ

∂φ
+ur + cotθuθ

]
,

=
2µ
r0

N

∑
n=|m|

[
Um

n Pm
n −

m2

sin2
θ

V m
n Pm

n +V m
n cotθ

dPm
n

dθ
− im

sinθ
W m

n
dPm

n
dθ

+ imW m
n

cotθ

sinθ
Pm

n

+
2
3

r0ε

{
dV m

n
dr0

cotθP1
2 Pm

n − im
dW m

n
dr0

P1
2

sinθ
Pm

n

}
+

2
3

ε

{
Um

n Pm
n −

m2

sin2
θ

V m
n Pm

n

+V m
n cotθ

dPm
n

dθ
− im

sinθ
W m

n
dPm

n
dθ

+ imW m
n

cotθ

sinθ
Pm

n

}
P2

]
eimφ, (4.58)
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(τ2)rθ
= µ
[{

1+
2
3

d
dr0

(r0ε)P1
2

}
∂uθ

∂r0
− 1

r0

(
1+

2
3

εP2

){
uθ−

2
3

r0P1
2

∂ur

∂r0
− ∂ur

∂θ

}]
,

= µ
N

∑
n=|m|

[
dV m

n
dr0

dPm
n

dθ
+

im
sinθ

dW m
n

dr0
Pm

n −
1
r0

{
V m

n
dPm

n
dθ

+
im

sinθ
W m

n Pm
n −Um

n
dPm

n
dθ

}

+
2
3

d
dr0

(r0ε)

{
dV m

n
dr0

dPm
n

dθ
+

im
sinθ

dW m
n

dr0
Pm

n

}
P2−

2
3r0

ε

{
V m

n
dPm

n
dθ

+
im

sinθ
W m

n Pm
n

−Um
n

dPm
n

dθ

}
P2 +

2
3

{
d

dr0
(r0ε)

dV m
n

dr0
+ r0ε

d2V m
n

dr2
0
− ε

dV m
n

dr0
+ ε

dUm
n

dr0

}
P1

2 Pm
n

]
eimφ,

(4.59)

(τ2)θφ
=

µ
r0

(
1+

2
3

εP2

)[
2
3

r0P1
2

∂uφ

∂r0
+

∂uφ

∂θ
− cotθuφ +

1
sinθ

∂uθ

∂φ

]
,

=
µ
r0

N

∑
n=|m|

[
2im
sinθ

V m
n

dPm
n

dθ
−2imV m

n
cotθ

sinθ
−W m

n
d2Pm

n
dθ2 −W m

n
m2

sin2
θ
+W m

n cotθ
dPm

n
dθ

− 2
3

εr0
dW m

n
dr0

Pm
n +

2
3

ε

{
2imV m

n
1

sinθ

dPm
n

dθ
−2imV m

n
cotθ

sinθ
Pm

n −W m
n

d2Pm
n

dθ2

+W m
n cotθ

dPm
n

dθ
−W m

n
m2

sin2
θ

Pm
n +4r0

dW m
n

dr0
Pm

n

}
P2 +

2
3

r0ε

{
2im

dV m
n

dr0

1
sinθ

Pm
n

−2
dW m

n
dr0

dPm
n

dθ
+

dW m
n

dr0
cotθPm

n

}
P1

2

]
eimφ, (4.60)

(τ2)φr = µ
[{

1+
2
3

d
dr0

(r0ε)P1
2

}
∂uφ

∂r0
− 1

r0

(
1+

2
3

εP2

){
uφ−

1
sinθ

∂ur

∂φ

}]
,

= µ
N

∑
n=|m|

[
im

sinθ

dV m
n

dr0
Pm

n −
dW m

n
dr0

dPm
n

dθ
− 1

r0

{
im

sinθ
V m

n Pm
n −W m

n
dPm

n
dθ
− im

sinθ
Um

n Pm
n

}

+
2
3

d
dr0

(r0ε)

{
im

sinθ

dV m
n

dr0
Pm

n −
dW m

n
dr0

dPm
n

dθ

}
P2−

2
3r0

ε

{
im

sinθ
V m

n Pm
n −W m

n
dPm

n
dθ

− im
sinθ

Um
n Pm

n

}
P2−

2
3

{
d

dr0
(r0ε)

dW m
n

dr0
+ r0ε

d2W m
n

dr2
0
− ε

dW m
n

dr0

}
P1

2 Pm
n

]
eimφ

(4.61)
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to the first order in ε, where we use the relation

dP1
2

dθ
= 1−4P2. (4.62)

Now, using equations (4.56)-(4.61) in (4.53), and doing some algebra, we get the r

component of ∇ · (τ̃2)

{
∇ · τ̃2

}
r =

N

∑
n=|m|

µ
[{

2
d2Um

n

dr2
0
−n(n+1)Um

n −4Um
n +

4
r0

dUm
n

dr0
+

2
3r0

ε
dUm

n
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−n(n+1)

×
(

1
r0

dV m
n

dr0
−3V m

n

)
+

2
3r0

(
d

dr0
(r0ε)
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n
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+ r0ε
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n
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0
−3ε
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n
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)}
Pm

n

+

{
8
3

d
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(r0ε)
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n

dr2
0

+
4
3

d2

dr2
0
(r0ε)

d2
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0
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dUm
n
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+

8
3r0

(
− d
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n
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− r0ε
d2V m

n

dr2
0

+3ε
dV m

n
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)
−n(n+1)

(
2

3r0

d
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(r0ε)
dV m

n
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+
2

3r0
ε

dV m
n
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−4εV m
n

)
− 4

3
n(n+1)εUm

n +
8
3

(
1
r0

d
dr0

(r0ε)
dUm

n
dr0
−2εUm

n

)}
P2Pm

n

+
4

3r0

{
ε

dUm
n

dr0
+ r0ε

d2V m
n
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+

d
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(r0ε)
dV m

n
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−3ε

dV m
n
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}
P1

2
dPm

n
dθ

+
2

3r0

{
ε
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n

dr0
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n
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+

d
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n
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n
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n

]
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+
N

∑
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dµ
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[
2

dUm
n
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Pm

n +
2
3

ε

{
Um

n
r0
− V m

n
r0

+
dV m

n
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}
P1

2
dPm

n
dθ

+
8
3

d
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(r0ε)
dUm

n
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P2Pm
n +

2im
3

ε

{
dW m

n
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−W m

n
r0

}
P1

2
sinθ

Pm
n

]
eimφ (4.63)

in the Clairaut coordinates system to the first order in ε, where the associated Legendre

differential equation (4.27) is used.

Similarly, the θ component of ∇ · (τ̃2) is obtained from equations (4.56)-(4.61) and
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(4.54)

{
∇ · τ̃2

}
θ
=

N

∑
n=|m|

µ
[{

1
r0

dUm
n

dr0
+

4
r2

n
Um
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d2V m

n
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0

+
2
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n
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0
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n

+
4
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n
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+ im
{
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2
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0
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2
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ε
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}
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n
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+

4
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ε
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2
3
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n
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2
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+
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+

4
3

d
dr0

(r0ε)
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3
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n
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3
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ε
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+

4
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θ
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8
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n
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8
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ε
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n
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The dot product of u∗ and ∇ · τ̃2 is
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The normal component of the stress tensor τ̃2 is given as
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The dot product of n̂ · τ̃2 and u∗ is expressed by
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Using equations (4.17), (4.56)-(4.61) in (4.69), we get
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4.4 Boundary Conditions at the Earth’s Surface in the Clairaut Coor-

dinate System

In subsection 2.4.3, we mentioned that the normal component of the stress tensor n̂ · τ̃4

vanishes; and the gravitational potential (V1)4 and gravitational flux n̂ ·∇(V1)4 outside the

Earth (r > R) are continuous. In the region r > R, Poisson’s equation reduces to Laplace’s

equation. Recall that the gravitational potential (Eq. (2.37)) in the spherical coordinate

system is

(V1)4(r) =
Nk

∑
n=|m|

Am
n r−(n+1)Y m

n (θ,φ), (4.71)

where Am
n are constants.

Using equation (4.1) in (4.71) and applying a Taylor expansion up to the first order in
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ε, the gravitational potential in the Clairaut coordinate system is
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correct to the first order in ε [87].

Using equations (4.5)-(4.7) in (4.29), the gradient of the gravitational potential V1 in the

Clairaut coordinate system is
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correct to the first order in ε [87].

Using equation (4.9) in equation (4.73), the gravitational flux is expressed as

n̂ ·∇V1 =
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correct to the first order in ε [87].

Again, using (4.72) in (4.75), we get
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At the Earth’s surface,

(V1)3(R−) = (V1)4(R+), (4.76)

which gives

(Xm
n )3(R−) = Am

n r−(n+1)
0

(
1+

2
3
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)
, (4.77)
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where equations (2.21) and (4.72) are used. Hence, using equations (4.75) and (4.77), the

gravitational flux at the Earth’s surface is
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If we set ε = 0 in the above equations (4.72)-(4.78), then they are valid for a spherical Earth

model as we derived in subsection 2.4.3.

4.5 Application of Clairaut Coordinate to Galerkin Functional Forms

for the Dynamical Equations of the Earth’s Elastic Inner Core and

Mantle

In this section, we will expand the Galerkin functional forms of the momentum equa-

tion and the Poisson equation for an elastic IC and MT of the Earth model correct to the

first order in ellipticity. Using equations (4.18), (4.24), (4.17)-(4.22), (4.26)-(4.28), (4.38),

(4.40), (4.43), (4.67), (4.70) in equation (4.13), we arrive at the Galerkin functional form

of the momentum equation
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where the subscript k = 1 of the limits [i.e., (r0)1 and (r0)2] for the radial integration corre-

sponds to the IC, whereas k = 2 and k = 3 correspond to the OC and the MT, respectively.

Now, using integration by parts among the spherical harmonics, then we get
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Using equations (4.80)-(4.91) in (4.79), we get
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+
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n
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∫
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∑
q=|m|
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∑
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∑
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(
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q
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+
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(
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(
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∑
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∑
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n
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n
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n
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q +
2
3

εV m
q

(
dUm

n
dr0

+
2Um

n −n(n+1)V m
n
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+2imεW m
q
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dUm
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2Um
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∑
q=|m|
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∑
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+
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{
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+
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+
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(
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(4.92)

where we used the relations:

cos2
θ =

1
3
(2P2 +1), (4.93)

P1
2

sinθ
=−3cosθ (4.94)

cotθP1
2 =−(2P2 +1). (4.95)

Similarly, using equations (2.24), (4.8), (4.9), (4.12), (4.15), (4.31), (4.32), and (4.80)-

(4.91) in equation (4.14), then we get the Galerkin functional form of the Poisson equation
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If we set ε = 0 in equations (4.92) and (4.96), then equations (4.92) and (4.96) are valid

for a spherical Earth model. In sections 3.2 and 3.3 of chapter 3, we show that the Galerkin

functionals [(4.92) and (4.96)] give three sets of equations for the IC, the OC and the MT.

These sets of equations lead to 4{(N1 + 1)L1 + ∑
3
k=2(Nk + 1)(Lk + 1)} algebraic linear

and homogeneous equations with same number of coefficients. These linear equations can

then be written in matrix form. The roots of the determinant of the matrix are the non-

dimensional frequencies σ of the normal modes. First, we consider the spherical Earth

model, and compute the non-dimensional frequencies of the normal modes such as the

Slichter modes, the spheroidal modes, the inertial modes of both the spherical OC with an

elastic MT and spherical shell OC with an elastic IC and MT models as we will discuss in

part I of the next chapter.
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4.6 The Dynamical Equations of the Earth’s Fluid Core for a Spheroidal

Earth Model

The dynamical equations of the fluid core are given by equations (2.7), (2.12) and (2.13)

ω
2uk−2iωΩê3×uk−g0∇ ·uk +∇(uk ·g0 +(V1)k)+

1
ρ0

∇ · (λ∇ ·uk1̃) = 0, (4.97)

∇
2(V1)k−4πG∇ · (ρ0uk) = 0. (4.98)

Kamruzzaman and Seyed Mahmoud [43] have computed the frequencies of the normal

modes such as the Slichter modes, the spheroidal modes, the inertial modes of both the

spherical OC with an elastic MT and spherical shell OC with an elastic IC and MT mod-

els using equations (4.97) and (4.98) of the OC. However, these equations are unable to

describe the OC flow i.e., the inertial modes of the OC for a spheroidal Earth model (e.g,

Seyed-Mahmoud and Rochester [38], Rochester and Crossley [78], Rochester et al. [60]).

We have scaled analysis of equations (4.97) and (4.98) in terms of the ellipticity because

the wobble and nutation modes depend on the shape of the Earth i.e., the ellipticity of the

Earth. For low frequency (long period) modes: ω ∼ εΩ [78], and we get from equation

(4.4) Ω2 ∼ εGρ0. Therefore

1st Term: ω2u∼ ε2Ω2u = ε3Gρ0u

2nd Term: ωΩê3×u∼ εΩ2ê3×u = ε2Gρ0ê3×u

We show that the 1st and 2nd terms of equation (4.97) are 3rd and 2nd order in terms of

ellipticity, respectively, whereas the other terms are 1st order [78]. This means that the 3rd,

4th and 5th terms of this equation dominate in terms of ellipticity. However, the inertial

modes of the OC mainly depends on the Coriolis term (2nd term). That is why, equations

(4.97) and (4.98) are unable to describe the OC flow for a spheroidal Earth model. To

overcome this problem, the dynamical equations of the fluid core may be written in the
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form [78]

σ
2u− iσê3×u−βg0∇ ·u−∇ζ = 0, (4.99)

ζ+
λ

ρ0
∇ ·u+u ·g0 +V1 = 0, (4.100)

∇
2V1−

4πGρ2
0

λ

(
ζ+V1 +βu ·g0

)
= 0, (4.101)

where the subscript k of the field variables in equations (4.99)-(4.101) is dropped for con-

venience, and ζ is the reduced pressure. Note that Rochester and Crossley [78] did not

account for the inertial term (1st term) of the momentum equation (4.99), and computed

the eigenperiods for the CW and ICW. However, their formulation is insufficient for com-

puting the periods of the inertial-gravity modes of the OC such as the FCN. To justify

the above equations of the fluid core, we will compute the eigenfrequencies of the inertial

modes of the OC with a rigid boundary for a spheroidal Earth model as shown in section

5.3.

The Galerkin functional forms of equations (4.99) - (4.101) are

F1 =
∫

V
u∗ ·
[

σ
2u− iσê3×u−βg0∇ ·u−∇ζ

]
dV, (4.102)

F2 =
∫

V
ζ
∗ρ0

λ

[
ζ+u ·g0 +V1

]
dV +

∫
S

ζ
∗(n̂ ·u)dS−

∫
V

u ·∇ζ
∗dV, (4.103)

F3 =
∫

S
V ∗1 (n̂ ·∇V1)dS−

∫
V

∇V ∗1 ·∇V1dV +
∫

V
V ∗1

4πGρ2
0

λ

(
ζ+V1 +βu ·g0

)
dV, (4.104)

where the identity ∇ · ( f A) = f ∇ ·A+A ·∇ f and the divergence theorem are used. The

trial function of ζ corresponding to equations (2.22) and (2.23) can have

ζ =
N2

∑
p=|m|

Zm
2p−|m|+1Y m

2p−|m|+1(θ,φ), (4.105)
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or

ζ =
N2

∑
p=|m|

Zm
2p−|m|Y

m
2p−|m|(θ,φ). (4.106)

Hereafter, we will use the subscript n instead of the subscripts for equations (4.105) and

(4.106). The radially dependent functions in equation (4.105) or (4.106) are expanded as

Zm
n (r) =

L2

∑
l=0

Km
n,l fl(x), (4.107)

for n = |m|, |m|+1, |m|+2, · · · ,N2; where Km
n,l are constants, L2 is the truncation level for

the radial expansion and fl(x) are the Legendre polynomials of degree l. The argument of

x for fl is −1≤ x≤ 1. The expression for x is given by equation (2.28).

The Galerkin formation of the dynamical equations of an elastic IC and MT leads to

the boundary conditions at the ICB and CMB on the fluid side which are

BC f luid =±
∫

Sk

(n̂ ·u∗){u ·g0 +V1}rkdS±
∫

Sk

1
ρ0
{n̂ · τ̃1}rk ·u

∗dS, (4.108)

[see equations (3.29) and (3.35)]. The ‘+’ sign of equation (4.108) corresponds to the the

ICB at r1 = a+, and the ‘−’ sign corresponds to the CMB at r2 = b−.

Since n̂ · 1̃ ·u∗ = n̂ ·u∗, and using equations (2.7) and (4.100) in (4.108), we get

BC f luid =±
∫

Sk

(n̂ ·u∗)(−ζ)dS. (4.109)

This means that the boundary conditions at the ICB and CMB on the fluid side due to the

dynamical equations of an elastic IC and MT are written in terms of the reduced pressure

just inside of the OC.
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4.7 Application of Clairaut Coordinate to Galerkin Functional Forms

for the Dynamical Equations of the Earth’s Fluid Core

In this section, we will expand the equations (4.102)-(4.104) in terms of the Clairaut

coordinate. We already expanded all analogous terms relevant in equations (4.102)-(4.104)

in terms of the Clairaut oordinate in sections 4.2 - 4.5. Using equations (4.5) - (4.8), (4.10),

(4.17) -(4.18), (4.24), (4.80) - (4.91) and (4.107) in (4.102), we get
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Again, using equations (2.21), (4.8) -(4.12), (4.16) and (4.19) -(4.21) in equation (4.103),
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where ‘+’ sign corresponds to the the ICB at r1 = a+, and the ‘−’ sign corresponds to the

CMB at r2 = b−.
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Similarly, equation (4.104) gives
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The Galerkin functionals for an elastic IC and MT [equations (4.92) and (4.96)], and

a compressible OC [equations (4.110) - (4.112)] give to 4(N1 + 1)L1 + 5(N2 + 1)(L2 +

1)+4(N3 +1)(L3 +1) algebraic linear and homogeneous equations with same number of

coefficients. These linear equations can then be written in a matrix form. The roots of the

determinant of the matrix are the non-dimensional frequencies σ of the normal modes for

a spheroidal Earth model as we will discuss in part II of the next chapter.
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4.8 Integration of Galerkin Functional Forms for the Dynamical Equa-

tions

The Galerkin functional has a form
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where S1n, S2n, ..., S10n compose on the radial dependent variables Um
n , V m

n , W m
n , Xm

n ,

and Zm
n . In order to integrate equation (4.113) with respect to θ, we need the following

identities:

cosθPm
n = Gm

n Pm
n−1 +Hm

n Pm
n+1, (4.114)

sinθ
dPm

n
dθ

=−(n+1)Gm
n Pm

n−1 +nHm
n Pm

n+1, (4.115)

P2Pm
n = Am

n Pm
n−2 +Bm

n Pm
n +Cm

n Pm
n+2, (4.116)

P1
2

dPm
n

dθ
= 2(n+1)Am

n Pm
n−2 +3Bm

n Pm
n −2nCm

n Pm
n+2, (4.117)

6P2Pm
n −P1

2
dPm

n
θ

= (4−2n)Am
n Pm

n−2 +3Bm
n Pm

n +(2n+6)Cm
n Pm

n+2, (4.118)

cosθP2Pm
n = Am

n Gm
n−2Pm

n−3 +
[
2(n+1)Am

n Hm
n−2 +3Bm

n Gm
n
]
Pm

n−1

+
[
3Bm

n Hm
n −2nCm

n Gm
n+2
]
Pm

n+1−2nCm
n Hm

n+2Pm
n+3, (4.119)

sinθP1
2 Pm

n = 3Gm
n Gm

n−1Gm
n−2Pm

n−3 +3Gm
n
[
Gm

n−1Hm
n−2 +Gm

n Hm
n−1 +Gm

n+1Hm
n −1

]
Pm

n−1

+3Hm
n
[
Gm

n Hm
n−1 +Gm

n+1Hm
n +Gm

n+2Hm
n+1−1

]
Pm

n+1 +3Hm
n Hm

n+1Hm
n+2Pm

n+3,

(4.120)
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where
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Using equations (4.114) - (4.122) in equation (4.113), the Galerkin functional takes a form

F =
∫ (r0)k+1

(r0)k

Sn(r)dr
∫

π

0
Pm

n Pm
q sinθdθ. (4.128)

The orthogonality relation is given by

∫
π

0
Pm

n Pm
q sinθdθ =

2
2q+1

(q+m)!
(q−m)!

δq,n, (4.129)

where δq,n is the Kronecker delta, which is zero for n 6= q and 1 for n = q. Now the

orthogonality relation is applied to the equation (4.128), and we remove the θ dependence

from the equation (4.128). We apply this technique to develop an algorithm based on the

work of Seyed-Mahmoud [81] to integrate the Galerkin functional forms with respect to
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θ. The algorithm is given in Appendix A. After integrating the Galerkin functional forms

with respect to θ, we use the IMSL [83] subroutine DQDAG, which is an adaptive scheme

based on Gauss-Kronrod quadrature rule, to integrate the Galerkin functional forms with

respect to r.
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Chapter 5

Numerical results

This chapter is separated into two parts. In part I, we will first consider a rotating spherical

Earth model with a compressible, inviscid, stratified fluid OC with an elastic MT. Next, we

consider a rotating spherical fluid shell contained between an elastic inner core and mantle.

The procedures for computing non-dimensional frequencies of the normal modes such as

the Slichter modes, the spheroidal modes, the inertial modes of both the spherical OC with

an elastic MT and spherical shell OC with an elastic IC and MT models will be presented.

We will then present the non-dimensional frequencies and the displacement eigenfunctions

of some of these inertial modes. In part II, we will consider a rotating spheroidal fluid shell

contained between an elastic inner core and mantle, and will compute the period of the

Earth’s wobble/nutation modes.
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Part I

Numerical Results for Spherical Earth

Models
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5.1. NUMERICAL VALIDATION

The following part is reprinted from the work of Kamruzzaman and Seyed Mahmoud [43].

As a first project of my PhD work, I have used the LMD of the dynamics of the Earth in

order to investigate the effects of mantle and inner core elasticity on the frequencies of

some of the inertial modes of a spherical Earth model with a liquid core. No one has done

that before. Traditionally, a liquid core with rigid boundaries is considered to study these

modes. Initially, I have applied the Galerkin method and have written FORTRAN codes to

solve the linear momentum and Poisson’s equations with the relevant boundary conditions

at the interfaces. Unfortunately, my FORTRAN codes were not given the expected results

for the elastic (spheroidal) modes, the Slichter modes and the inertial modes because I did

not set the first derivatives of the dependent variables to zero at the center of the Earth. I

thank Behnam Seyed Mahmoud for suggesting it. Then I have computed the periods of

the seismic and Slichter modes and the frequencies of some of the inertial modes of that

model, and have analyzed the results. Also, Behnam Seyed Mahmoud has rechecked my

derivations as well as my FORTRAN codes. Next, I have written the manuscript and have

submitted for a publication.

5.1 Numerical Validation

In this work, we first compute the periods of the seismic and Slichter modes and com-

pare the results to the known values in order to validate our approach. Next, we compute

the eigenfrequencies and the displacement eigenfunctions for some of the inertial modes of

a realistic Earth model with elastic inner core and mantle. We then compare the results with

the analytical results for a Poincaré core model and other core models (when available) to

show the effects of elastic boundaries on the eigenfrequencies and eigenfunctions of these

modes.

We first consider a SNREI (spherical, non-rotating, elastic and isotropic) Earth model

and compute the elastic and Slichter modes of this model. In this model, the displacement

102



5.1. NUMERICAL VALIDATION

Table 5.1: The periods (min) of the seismic modes of a SNREI Earth model

Author 0S2 0S3 0S4 0S5

Dziewonski and Anderson [1] 53.89 35.57 25.76 19.84
This work 53.58 35.54 25.48 19.76

Percentage difference 0.57 0.08 1.08 0.40

Table 5.2: The periods (hr) of the Slichter modes for PREM

Author Rotating Non-rotating
prograde axial retrograde

Crossley et al. [17] 5.979 5.310 4.777 5.4206
Wu and Rochester [18] 5.979 5.310 4.767 5.4205

This work 5.979 5.310 4.779 5.4287

of the spheroidal modes is represented as

uk =
Nk

∑
n=|m|

(Sm
n )k. (5.1)

In equation (5.1), the toroidal (Tm
n )k component of uk is omitted because the spheroidal

and toroidal modes are decoupled [90]. They are degenerate i.e., the eigenfrequencies of

these modes for this model do not depend on the azimuthal order m. Table 5.1 shows the

periods of some of the seismic modes (spheroidal modes) of this model. The seismic mode

of the pth overtone period of harmonic degree n is denoted by pSn; where p = 0,1,2,3, · · ·

and p= 0 corresponds to the fundamental mode. As it is clear from Table 5.1, our computed

periods of the seismic modes agree very well with those cited in the literature [1].

Next, we compute the periods of the Slichter modes for both a non-rotating and a ro-

tating Earth model. These results are given in Table 5.2 and are compared with the ones

available in the literature for similar Earth models. Note that for the rotating model the

displacement given in equation (2.22) or (2.23) is used. The periods of the Slichter modes

from this work are nearly identical to those computed by Crossley et al. [17] using a per-

turbation technique, and with those by Wu and Rochester [18].
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5.2. INERTIAL MODES OF REALISTIC EARTH MODELS

Table 5.3: Non-dimensional eigenfrequencies, σ = ω/2Ω, of some of the low order inertial
modes for different Earth models. Except for the Poincaré core model (column 2) which
is incompressible, the OC of the Earth models is considered as compressible and neutrally
stratified. Note that BC means boundary conditions.

Modes σ σ σ σ

Poincaré sphere with sphere with shell with
model rigid BC elastic BC elastic BCs

(4,1,0) 0.6547 0.6573 0.6528 0.6661
(6,1,0) 0.4688 0.4715 0.4774 0.4742
(6,2,0) 0.8302 0.8308 0.8337 0.8341
(2,1,1) 0.5000 0.5000 0.4995 0.4995
(4,1,1) -0.4100 -0.4213 -0.4208
(4,2,1) 0.3060 0.3103 0.3150 0.3016
(4,3,1) 0.8540 0.8491 0.8587 0.8525
(6,1,1) -0.7021 -0.7057 -0.7035 -0.6967
(6,2,1) -0.2687 -0.2760 -0.2872
(6,3,1) 0.2202 0.2242 0.2257
(6,4,1) 0.6530 0.6517 0.6575 0.6595
(6,5,1) 0.9308 0.9282 0.9376

In column 3 of Table 5.3, we show the frequencies of some the inertial modes com-

puted using our method for a compressible, neutrally stratified spherical core model with

rigid boundary. These frequencies are identical to those given by Seyed Mahmoud and

Rochester [38] and Seyed Mahmoud et al. [37] for a similar core model. This represents

yet another test of our method.

5.2 Inertial modes of realistic Earth models

In this section we report our computed non-dimensional frequencies, σ, for some of

the low order inertial modes of different spherical Earth models. Note that there are two

truncation levels involved for each layer: Nk represents the truncation level along θ, and

Lk represents the truncation level along r, where k = 1,2,3 for an IC, OC and MT, respec-

tively. Firstly, we ensure that for a given set of Nk’s the frequency of a mode converges by

increasing Lk’s as necessary, therefore, in the Figures 5.1 and 5.2 we do not show Lk’s.
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Figure 5.1: The convergence pattern for the (4,3,1) mode of a spherical Earth model with
a compressible, inviscid, neutrally stratified fluid core with an elastic mantle. The num-
bers on the horizontal axis are the truncation levels (N2,N3) for the fluid core and mantle
respectively.

Figure 5.2: The convergence pattern for the (4,2,1) mode of a spherical fluid shell contained
between an elastic inner core and mantle. The numbers on the horizontal axis are the
truncation levels (N1,N2,N3) for the inner core, fluid core and mantle respectively.
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To ensure convergence in the θ direction, first low values of Nk’s are chosen and a

frequency is computed. We then keep N2 and N3 fixed and increase N1 until the frequency

converges. We then keep N1 and N3 fixed and N2 is increased, and so on. This process is

repeated until the frequency is converged for the set of Nk’s. For example, the convergence

pattern of the (4,3,1) mode for a spherical Earth model with a compressible OC and elastic

MT is shown in Fig 5.1. The frequency of this mode is converged at N2 = 6 for the OC and

N3 = 6 for the MT, whereas this mode for a spherical compressible OC with rigid boundary

converges at N2 = 4 [see Table 1 in [37]].

We identify a mode using three criteria: (1) the frequency of the mode is converged;

(2) the displacement pattern of the mode must satisfy the boundary conditions, be regular

at r = 0, and in the outer core of the Earth model, has displacement pattern similar to its

counterpart for a Poincaré core model [38]; (3) the gravitational potential must be contin-

uous across the interfaces. We use Greenspan’s [80] notation to identify an inertial mode

using labels (n,c,m), where n, and m refer to, respectively, the degree and order of the

spherical harmonics; where c = 1,2,3, · · · , and c = 1 corresponds to the smallest value of

the frequencies of modes for a given n and m.

Table 5.3 shows the non-dimensional frequencies σ = ω/2Ω for the some low order

(m = 0 and m = 1) inertial modes of different spherical Earth models. We have chosen

these wavenumbers because m = 0 corresponds to changes in the Earth’s rotation rate and

m= 1 to the Earth’s wobble and nutation. In column 2 of Table 5.3 we show the frequencies

of inertial modes of a Poincaré core model for which analytical solutions exist [80]. The

frequencies of the inertial modes for a compressible spherical core model with an associated

elastic mantle are given in column 4 of this table. Note that in column 3 are the frequencies

of the inertial modes for a core model with a rigid boundary. It is clear that the frequency of

the (4,2,1) mode is more affected by the elasticity of mantle, and the frequency of the SOM

[the (2,1,1) mode] is less affected. The frequency of the FCN is changed from ≈ 0.50144

for an Earth model with a rigid mantle and inner core [91, 40] to ≈ 0.50116 for an elastic
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Earth model [72, 39, 45, 84]. The corresponding period of the FCN for an Earth model

with a rigid MT and IC is 346 sidereal days (sd) while that for an elastic Earth’s model is

460 sd. It is clear that the change in the frequency of the SOM from 0.5000 for an Earth

model with rigid mantle and inner core to 0.4995 for an Earth model with elastic mantle

and inner core is consistent with the change in the frequency of the FCN, as the FCN is

the counterpart of the SOM in a wobbling Earth model [36]. This is also significant as

the frequency of the (2,1,1) mode is not affected by the compressibility [37] and density

stratification [41, 42] of the OC. In column 5 of Table 5.3 we show the frequencies of the

modes of a spherical fluid shell with elastic boundaries. A blank entry in this column means

that the frequency of that mode did not converge and the corresponding mode of a sphere

may not exist in a fluid shell (see [37]).

The displacement patterns in the fluid core for some of the inertial modes for a spheri-

cal Earth model with a compressible, inviscid, neutrally stratified fluid core and an elastic

mantle are shown in Fig 5.3. These displacement patterns are similar to those for a Poincaré

model [80] which are also similar to those of a compressible core model with a rigid bound-

ary [37]. This is expected as the mantle is nearly rigid compared to the fluid core. In figure

5.4 we show the displacement eigenfunctions of a spherical fluid shell contained between

an elastic inner core and mantle. Recall that the truncation levels Nk correspond to degree

2Nk of the spherical harmonics in equations (2.22) and (2.24) or (2.23) and (2.25). The

truncation levels (N2, L2) of the OC for the convergence of the frequencies of the inertial

modes depend on the spatial structure of these modes [37]. We would like to emphasize

that the maximum degree of spherical harmonics considered in the traditional approach is

5 [45]. This is the main reason why the traditional approach does not yield the frequencies

of the (long period) inertial modes, except for the purely toroidal modes like the SOM.
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Figure 5.3: The displacement eigenfunctions in a meridional plane of fluid core for some
of the inertial modes of a spherical Earth model with a compressible, inviscid, neutrally
stratified fluid core with an elastic mantle. The eigenfrequencies of these modes are given
in column 4 of Table 5.3.
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Figure 5.4: The displacement eigenfunctions in a meridional plane of fluid core for some
of the inertial modes of a spherical fluid shell contained between an elastic inner core and
mantle. The eigenfrequencies of these modes are given in column 5 of Table 5.3. Note that
the mantle and the inner core are nearly rigid compare to the OC.
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Figure 5.5: The gravitational potential contour of the (4,2,1) mode for the Earth model: (a)
with a compressible core and an elastic mantle, and (b) zoomed in of the gravitational po-
tential in the mantle. The contours clearly show the continuity of the gravitational potential
at the CMB.

Figure 5.6: (a) The gravitational potential contour of the (4,2,1) mode for a three layer
spherical Earth model with a compressible outer core, and elastic mantle and inner core.
Fig 5-b shows the gravitational potential contours in the mantle (zoomed-in). The contours
clearly show the continuity of the gravitational potential at the ICB and CMB.
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In this part, we compute the eigenfrequencies of the inertial modes of the OC with

a rigid boundary for the spheroidal Earth models. Next, we compute the periods of the

wobble and nutation modes of the realistic Earth models.

5.3 Numerical Validation

In order to justify our approach as well as our FORTRAN code, we consider a rotating

spheroidal compressible and neutrally stratified OC with a rigid mantle, and compute non-

dimensional eigenfrequencies σ of the inertial modes for this model. Table 5.4 shows the

non-dimensional frequencies for some of the low order inertial modes of an incompress-

ible fluid spheroid (the Poincaré model), and a compressible and neutrally stratified fluid

spheroid. In Table 5.4, column 1 represents some of the low order modes of azimuthal

wavenumber 0 and 1 and degree up to 6; column 2 shows our non-dimensional frequencies

of these modes, which are identical to analytical solutions [92] for the Poincaré core model.

In column 3 of this table, we show our computed eigenfrequencies of the above modes

for a compressible and neutrally stratified OC with a rigid mantle. The non-dimensional

frequencies (column 4) of these inertial modes for the same modified neutrally stratified

spheroidal core model were computed by Seyed-Mahmoud and Moradi [87]. Although

they used the 3PD, the results are nearly identical. Note that the procedure to identify a

mode is described in Section 5.2.

5.4 Wobble and Nutation Modes of Realistic Earth Models

We have computed the periods of the CW and the FCN for an ocean-less PREM and

a neutrally stratified outer core (PREMN) discussed in details in section 2.5. We compare

our computed periods of the CW and the FCN with those of other authors for similar

Earth models in Tables 5.5 and 5.6, respectively. In Tables 5.5 and 5.6, column 2 refers

to the method used, AMD or LMD. Columns 4 and 5 of these tables show the computed

periods of the CW and the FCN for the PREM and PREMN models, respectively. From
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Table 5.4: Non-dimensional eigenfrequencies, σ = ω/2Ω, of some of the low order inertial
modes for the spheroidal Earth models. Except for the Poincaré core model (column 2)
which is an incompressible, the OC of the Earth model is considered as a compressible and
neutrally stratified with a rigid mantle.

Modes σ σ σ

Poincaré spheroid spheroid [87]
model This work

(4,1,0) 0.6556 0.6577 0.657
(6,1,0) 0.4698 0.4715
(6,2,0) 0.8309 0.8310 0.831
(2,1,1) 0.5013 0.5013 0.5013
(4,1,1) -0.4108 -0.4221 -0.419
(4,2,1) 0.3068 0.3111 0.307
(4,3,1) 0.8546 0.8505 0.851
(6,1,1) -0.7030 -0.7063 -0.706
(6,2,1) -0.2692 -0.2765 -0.277
(6,3,1) 0.2208 0.2248 0.225
(6,4,1) 0.6540 0.6527 0.653
(6,5,1) 0.9312 0.9286 0.928

column 3 of these tables, we see that in previous work the maximum degree of the spherical

harmonics considered in the traditional approach of solving the dynamical equations for

similar Earth models is 5, and there is no proof of convergence. We are confident our

results are converged (see Fig 5.7).

In Table 5.5, we show that Rogister and Valette [39] find the period of CW to be about

403 sd for PREM and 406 sd for PREMN. Smith [52] computed the periods of the CW as

403.5 sd and noted that the outer fluid core stratification would not affect the period of CW

significantly (see also Crossley and Rochester [45]). Our computed period of the CW is

403.52 sd for both PREM and PREMN models i.e., the period of the CW is not affected by

the density stratification of the fluid core.

Jeffreys and Vicente [56] computed the period of the FCN for a two-layer Earth model,

a homogeneous liquid core and an elastic, radially inhomogeneous mantle to be about -460

sd. Molodensky [57], and Shen and Mansinha [58] extended this model to add compress-
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Table 5.5: The period (sd) of the Chandler Wobble (CW) of a spheroidal Earth model.
AMD refers to angular momentum description, and LMD refers to linear momentum de-
scription.

Author Description Truncation PREM PREMN

Mathews et al. [72] AMD 401.8
Rochester and Crossley [78] AMD 400.3

Rogister and Valette [39] LMD T3 403.2 406.6
S4 402.6 406.3

Crossley and Rochester [45] LMD T3 401.69 401.69
T5 401.69 401.69

This work LMD converged 403.52 403.52

Table 5.6: The period (sd) of the Free Core Nutation (FCN) of a spheroidal Earth model.
AMD refers to angular momentum description, and LMD refers to linear momentum de-
scription.

Author Description Truncation PREM PREMN

Mathews et al. [72] AMD -458.0
Rogister and Valette [39] LMD T3 -459.3 -459.3

S4 -459.4 -459.4
Crossley and Rochester [45] LMD T3 -456.00 -455.98

T5 -456.05 -456.05
Zhang and Huang [84] LMD T3 -431.2

This work LMD converged -432.28 -432.28
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Figure 5.7: The convergence pattern for the Chandler Wobble of PREM . The numbers on
the horizontal axis are the truncation levels (N1,N2,N3) for the inner core, fluid core and
mantle, respectively.

ibility of the liquid core and computed the same period for this mode. Rosat et al. [93] ana-

lyzed data from superconducting gravimeters and found the observed period of this mode to

be (−428±3) sd. Koot et al. [51] used VLBI (Very Long Baseline Interferometry) data and

found the period of (−429.07±0.07) sd for this mode. Our computed period of the FCN is

-432.28 sd (see Table 5.6). Our result agrees with Zhang and Huang [84]. From Table 5.6,

we show that the period of the FCN is the same for both PREM and PREMN models. This

is consistent with the theory. Seyed Mahmoud et al. [41] and Kamruzzaman [42] show that

the period of the (2,1,1) mode (the SOM) of the fluid core is independent of the density

stratification of the fluid core. The FCN is the counterpart of the SOM of a wobbling Earth

model [36]. Our approach does not yield the periods of the FICN and the ICW. We believe

this is due to the fact that our results are correct to first order in the ellipticity. To compute

the FICN and ICW, the boundary boundary conditions must be correct to second order in

the ellipticity (see Eq. (27) in [40]).
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Chapter 6

Conclusions

In this thesis, we have used the linear momentum description (LMD) of the dynamics of

the Earth in order to study the Earth’s normal modes. The advantage of the LMD is that we

have used directly the S- and P-wave speeds and the density profiles of the Earth’s layers,

whereas the Love numbers are used mostly when a Lagrangian view is adopted and the

angular momentum description (AMD) is considered. The main disadvantage of using the

Love numbers is that another six differential equations are needed to solve for calculating

the Love numbers [94].

A Galerkin method is applied to solve the momentum and Poisson’s equations includ-

ing the boundary conditions at the interfaces. It is clear that an important advantage of

a Galerkin method is that the application of the divergence theorem replaces the volume

integrals involving second-order derivatives with surface and volume integrals involving

first-order derivatives. Another advantage is that the singularity of the differential equa-

tions (2.4) and (2.5) at r = 0 is removed using this method. The most important advantage,

however, is that the convergence of the results may be checked. Note that the computed

periods of wobble/nutation modes of the Earth in existing methods of previous studies lack

proven convergence (e.g., [52, 62, 39, 45]). The heavy truncation involving in all previous

studies was not able to answer for the question of whether or not the computed periods have

actually converged. We have shown that our computed periods of wobble/nutation modes

are converged using the Galerkin method. We have derived the vector and scalar opera-

tions, which involve the Galerkin formulation of the dynamical equations, by applying the

116



6. CONCLUSIONS

Clairaut coordinate system. We have expanded the Galerkin formulation of the dynami-

cal equations correct to first order in the ellipticity. To integrate the Galerkin functional

forms with respect to θ, we have used the orthogonality relation and the linear indepen-

dence properties of the spherical harmonics to develop an algorithm based on the work of

Seyed-Mahmoud [81]. After integrating the Galerkin functional forms with respect to θ,

we have used the IMSL [83] subroutine DQDAG, which is an adaptive scheme based on

the Gauss-Kronrod quadrature rule, to integrate the Galerkin functional forms with respect

to r.

In order to find the P-wave and S-wave speeds, and the density profiles of the Earth’s

layers, the Preliminary Reference Earth Model (PREM) [1] is adopted as the base for our

Earth model. We consider a one layer ocean-less MT and use the least squares method to

modify density and seismic wave velocity profiles of this region. This is justified for our

studies as the mantle is nearly rigid compared to the liquid core. In modifying PREM’s

mantle, we make sure that the P-wave and S-wave speeds, and the density profiles obey the

law of mass conservation and meet the Adams-Williamson condition. Also, we have solved

the Clairaut equation to find the Earth’s ellipticity profile using the Runge-Kutta integration

method.

We have considered a rotating spherical Earth model with a compressible, inviscid,

stratified fluid OC with an elastic MT, and then a rotating spherical fluid shell contained

between an elastic IC and an elastic MT, and have investigated the effects of mantle and

inner core elasticity on the frequencies of some of the inertial modes of a spherical Earth

model with a liquid core. Traditionally, a liquid core with rigid boundaries is considered to

study these modes. We have validated our approach and numerical code by computing the

periods of some of the seismic modes, the Slichter modes and some of the inertial modes of

a compressible core model with rigid boundaries. Next, we have computed the frequencies,

the displacement and gravitational potential eigenfunctions for some of the inertial modes

of the fluid core for both models. We have shown that the frequencies of the inertial modes
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may be significantly affected by the elasticity of an inner core and mantle. These modes

are the long-period normal modes of a rotating Earth model and, because of rotation, in

general their frequencies converge slowly. Our method allows us to increase the truncation

levels and ensure that these frequencies are converged. For example, spherical harmonics

of degree up to 24 were needed for the frequency of the (6,2,0) mode to converge. Up until

now the maximum degree of the spherical harmonics considered in the traditional approach

of solving the dynamical equations for a similar Earth model is 5, which would only yields

the (2,1,1) mode. Seyed-Mahmoud et al. [40] show that spherical harmonics of degree up

to 20 are needed for frequency of the FICN of a simple Earth model with rigid inner-core

and mantle and an incompressible and homogeneous OC to converge to a mean value.

Next, we have considered a rotating spheroidal Earth model which has a compressible,

inviscid, stratified fluid OC, an elastic IC and an elastic MT. To validate our approach

and FORTRAN code, we have computed the non-dimensional frequencies of the inertial

modes of an incompressible fluid spheroid (the Poincaré model), and a compressible and

neutrally stratified fluid spheroid. Our results are nearly identical to those computed by

Seyed-Mahmoud and Moradi [87]. Finally, we have computed the periods of the CW and

the FCN for an ocean-less PREM and a neutrally stratified outer core (PREMN) models.

Our computed periods of the CW and the FCN are 403.52 sd and 432.28 sd, respectively.

Our result for the CW agrees with those predicted by other authors (see e.g., Smith [52],

Rogister and Valette [39] and Crossley and Rochester [45]), and our computed period of

the FCN agrees with observed values determined by both superconducting gravimetry and

Very Long Baseline Interferometry (VLBI) data [93, 51], as well as the result of Zhang

and Huang [84]. Our result indicates that the Earth is indeed in hydrostatic equilibrium

and there is still merit in considering hydrostatic equilibrium as the reference configuration

for a steadily rotating celestial body. However, Dehant and Defraigne [95] attempted to

construct the Earth deviated from hydrostatic equilibrium which is completely internally

inconsistent. Also, we show that the computed periods of the CW and the FCN are the same
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for both PREM and PREMN models, i.e., the periods of these modes are not significantly

affected by the density stratification of the fluid core. However, we are not able to compute

the periods of the FICN and the ICW because we consider only first order of the ellipticity

of the dynamical equations of the Earth’s interior. As our approach is correct to first order

in the ellipticity, it is not sufficient for computing periods of the FICN and the ICW.

In future work, we will take account of the following considerations:

(i) Expand the Galerkin formulation of the dynamical equations to include the 2nd order

ellipticity because the frequency of the ICW is very low, and to compute the FICN

and ICW, the boundary conditions must be correct to second order in the ellipticity

(see Eq. (27) in [40]). Note that the ICW is not observed yet and the computed

period of this mode is in the range 2410 sd to 2715 sd [71, 78]. Our method may

give the actual period of this mode because our method makes sure whether or not the

computed periods have actually converged.

(ii) Include the Lorentz force of the dynamical equations of the Earth’s interior, and study

the effects of the magnetic field on the frequencies of the Earth’s normal modes such

as inertial modes, Slichter modes and Earth’s wobble/nutation modes. Note the ob-

served and computed period of the FICN are 929± 31 sd [51] and 470 sd [45] re-

spectively. The discrepancy of the observed and computed period of this mode may

indicate a significant role of the magnetic field.

(iii) Include the viscosity of the fluid OC, and investigate the effect on the frequencies of

the Earth’s normal modes. The viscosity of the fluid OC may be responsible for the

damping of the normal mode after excitation as a result of a large earthquake.

(iv) Include forces of other planets on the Earth, and study the forced wobble/nutation

modes of the Earth.
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Appendix A

Algorithm for Integration with Respect
to the θ

In the section 4.8, we explain a technique to remove the θ dependence from the Galerkin
functional forms of the dynamical equations. We apply this technique to develop an algo-
rithm based on the work of Seyed-Mahmoud [81]. Here, the algorithm for integration with
respect to θ is as follows:

l=2*i2
if (i4.eq.3) goto 109 [This if statement separate the odd and even chain of the displacement
i.e., this if loop performs for the equation (2.23)]
if (l1.eq.2) then
l=l+4
az=0.0d0
ax=0.0d0
bx=0.0d0
cx=0.0d0
dx=0.0d0
ex=0.0d0
kx=Al(m,l-1)*GX(m,l-3)
lx=3.0d0*GX(m,l-1)*GX(m,l-2)*GX(m,l-3)
mx=2.0d0*l*Al(m,l-1)*GX(m,l-3)
nx=-l*Al(m,l-2)*GX(m,l-1)

else if (l1.eq.1) then
l=l+2
az=0.0d0
ax=GX(m,l-1)
bx=-l*GX(m,l-1)
cx=Al(m,l)
dx=2.0d0*(l+1)*Al(m,l)
ex=6.0d0*cx-dx
kx=Al(m,l-1)*HX(m,l-3)+Bl(m,l-1)*GX(m,l-1)
lx=3*GX(m,l-1)*(GX(m,l-2)*HX(m,l-3)+GX(m,l-1)*HX(m,l-2)+GX(m,l)*HX(m,l-1)-1.0d0)
mx=2*l*Al(m,l-1)*HX(m,l-3)+3*Bl(m,l-1)*GX(m,l-1)
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nx=(l-1)*Al(m,l)*HX(m,l-1)-l*Bl(m,l-2)*GX(m,l-1)

else if(l1.eq.0) then
az=1.0d0
ax=HX(m,l-1)
bx=(l-1)*HX(m,l-1)
cx=Bl(m,l)
dx=3.0d0*Bl(m,l)
ex=6.0d0*cx-dx
kx=Bl(m,l-1)*HX(m,l-1)+Cl(m,l-1)*GX(m,l+1)
lx=3.0d0*HX(m,l-1)*(GX(m,l-1)*HX(m,l-2)+GX(m,l)*HX(m,l-1)+GX(m,l+1)*HX(m,l)-
1.0d0)
mx=3.0d0*Bl(m,l-1)*HX(m,l-1)-2*(l-1)*Cl(m,l-1)*GX(m,l+1)
nx=(l-1)*HX(m,l-1)*Bl(m,l)-l*GX(m,l-1)*Cl(m,l-2)

else if(l1.eq.(-1)) then
l=l-2
az=0.0d0
ax=0.0d0
bx=0.0d0
cx=Cl(m,l)
dx=-2.0d0*l*Cl(m,l)
ex=6.0d0*cx-dx
kx=Cl(m,l-1)*HX(m,l+1)
lx=3.0d0*HX(m,l-1)*HX(m,l)*HX(m,l+1)
mx=-2.0d0*(l-1)*Cl(m,l-1)*HX(m,l+1)
nx= dfloat(l-1)*Cl(m,l)*HX(m,l-1)
end if
109 continue

if (i4.eq.3) then [ This if loop performs for the equation (2.22)]
if(l1.eq.1) then
l=l+2
az=0.0d0
ax=0.0d0
bx=0.0d0
cx=Al(m,l-1)
dx=2.0d0*(l)*Al(m,l-1)
ex=6.0d0*cx-dx
kx=Al(m,l)*GX(m,l-2)
lx=3.0d0*GX(m,l)*GX(m,l-1)*GX(m,l-2)
mx=2.0d0*(l+1)*Al(m,l)*GX(m,l-2)
nx=-dfloat(l+1)*Al(m,l-1)*GX(m,l)

else if (l1.eq.0) then
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az=1.0d0
ax=GX(m,l)
bx=-dfloat(l+1)*GX(m,l)
cx=Bl(m,l-1)
dx=3.0d0*Bl(m,l-1)
ex=6.0d0*cx-dx
kx=Al(m,l)*HX(m,l-2)+Bl(m,l)*GX(m,l)
lx=3.0d0*GX(m,l)*(GX(m,l-1)*HX(m,l-2)+GX(m,l)*HX(m,l-1)+GX(m,l+1)*HX(m,l)-1.0d0)
mx=2.0d0*(l+1)*Al(m,l)*HX(m,l-2)+3.0d0*Bl(m,l)*GX(m,l)
nx=dfloat(l)*Al(m,l+1)*HX(m,l)-(l+1)*GX(m,l)*Bl(m,l-1)

else if(l1.eq.(-1)) then
l=l-2
az=0.0d0
ax=HX(m,l)
bx=dfloat(l)*HX(m,l)
cx=Cl(m,l-1)
dx=-2*(l-1)*Cl(m,l-1)
ex=6.0d0*cx-dx
kx=Bl(m,l)*HX(m,l)+Cl(m,l)*GX(m,l+2)
lx=3.0d0*HX(m,l)*(GX(m,l)*HX(m,l-1)+GX(m,l+1)*HX(m,l)+GX(m,l+2)*HX(m,l+1)-1.0d0)
mx=3.0d0*Bl(m,l)*HX(m,l)-2.0d0*(l)*Cl(m,l)*GX(m,l+2)
nx=dfloat(l)*Bl(m,l+1)*HX(m,l)-(l+1)*GX(m,l)*Cl(m,l-1)

else if(l1.eq.(-2)) then
l=l-4
az=0.0d0
ax=0.0d0
bx=0.0d0
cx=0.0d0
dx=0.0d0
ex=0.0d0
kx=Cl(m,l)*HX(m,l+2)
lx=3.0d0*HX(m,l)*HX(m,l+1)*HX(m,l+2)
mx=-2.0d0*(l)*Cl(m,l)*HX(m,l+2)
nx=dfloat(l)*Cl(m,l+1)*HX(m,l)
end if
end if

if (i4.eq.1.and.i8.eq.1) then
F=az*S1+ax*S2+bx*S3+cx*S4+dx*S5+ex*S6+kx*S7+lx*S8+mx*S9+nx*S10
end if
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