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ABSTRACT

Proteome Analyst (PA) (http://www.cs.ualberta.ca/
~bioinfo/PA/) is a publicly available, high-throughput,
web-based system for predicting various properties
of each protein in an entire proteome. Usingmachine-
learned classifiers, PA can predict, for example, the
GeneQuiz general function and Gene Ontology (GO)
molecular function of a protein. In addition, PA is cur-
rently the most accurate and most comprehensive
system for predicting subcellular localization, the
location within a cell where a protein performs its
main function. Two other capabilities of PA are not-
able. First, PAcancreate acustomclassifier topredict
a new property, without requiring any programming,
based on labeled training data (i.e. a set of examples,
eachwith the correct classification label) provided by
a user. PA has been used to create custom classifiers
for potassium-ion channel proteins and other general
function ontologies. Second, PA provides a sophist-
icatedexplanation feature that showswhyonepredic-
tion is chosen over another. The PA systemproduces
aNaı̈veBayesclassifier,which isamenable toagraph-
ical and interactive approach to explanations for its
predictions; transparent predictions increase the
user’s confidence in, and understanding of, PA.

INTRODUCTION

There are now more than 1200 complete or partially sequenced
genomes deposited in public databases (http://www.ebi.ac.uk/
genomes/) and this number is growing rapidly. Given the size
and complexity of these data sets, most researchers are com-
pelled to use automated annotation systems to identify or

classify individual genes/proteins in their genomic data. A
number of systems have been developed over the past few years
that permit automated genome-wide or proteome-wide anno-
tation. These include GeneQuiz (1), GeneAtlas (2), Ensembl
(3), PEDANT (4), Genotator (5), MAGPIE (6) and GAIA (7).

The Proteome Analyst (PA) system (8–10) (http://
www.cs.ualberta.ca/�bioinfo/PA/) focuses on the task of pre-
dicting (classifying) various aspects of a protein. Our results
show that classification can be used for many annotations,
including general function, subcellular localization, specific
function and many specialized predictors, such as the
potassium-ion channel predictor described later in this paper.

Although there are a variety of tools for protein annotation,
PA has unique capabilities. In addition to being the most
accurate and most comprehensive (i.e. broadest range of
organisms and organelles, highest number of proteins annot-
ated) predictor of subcellular localization (9),

(i) PA provides a single, integrated, high-throughput and
web-based interface to a number of different tools for
proteome annotation;

(ii) PA allows the user to create custom predictors in a simple
train-by-example way, for any user-specified ontology of
labels; and

(iii) PA provides clear and transparent explanations for each
of its predictions.

InthecontextofPA,transparencyistheabilitytoprovideformally
sound and intuitively simple explanations for predictions. PA
bases its predictions on well-understood concepts from probabil-
ity theory. Its explanations use stacked-bar graphs (Figure 8) and
hyperlinks to clearly display the evidence for each prediction.

USING PROTEOME ANALYST

Proteome Analyst is web based. The user may choose to either
analyze (annotate) a proteome using built-in (previously
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trained) classifiers or train a new custom classifier, which can
afterwards be used to analyze specific properties of proteins.
We explain both options.

Analysis of a proteome

To analyze a proteome, the user first uploads a FASTA-format
file containing the sequences to be analyzed. Two important
tools are a classifier-based predictor and the PACardCreator.
Currently, a user may select from several built-in general
function classifiers that use the GeneQuiz (GQ) ontology
and were trained on sequences from individual organisms:
Escherichia coli, Yeast, Drosophila or a multiorganism-
trained classifier trained with sequences from all three organ-
isms. A Gene Ontology (GO)-based classifier for molecular
function is also available in the latest version of PA. Alter-
natively, a user may select any custom classification-based
predictor that has been trained as described below.

The PACardCreator generates a PACard for each
sequence—a summary of all the predicted properties of
each protein specified in the input. The top of a typical PACard
is shown in Figure 1. A PACard is based on the E.coli
cards from the CyberCell Database (CCDB) (http://redpoll.
pharmacy.ualberta.ca/CCDB/).

Currently, PA can fill in over 30 different fields: Name,
GeneQuiz general function, subcellular location, GeneOntol-
ogy molecular function, Specific Function, Pfam Domain/
Function, EC Number, Specific Reaction, General Reaction,
PROSITE, BLAST, Important Sites, Inhibitor, Interacting
Partners, Sequence, Secondary Structure, Metabolic Impor-
tance, Copy Number, RNA Copy No., Similarity, Number
of Amino Acids, Molecular Weight, Transmembrane, Cys/
Met Content, Structure Class, Quaternary Structure, Cofac-
tors, Metals Ions, Kcat Value (1/min), Specific Activity
(mmol) and Km Value (mM).

Figure 2 shows an example analysis, sorted by general
function (GeneQuiz ontological class). The probability of
the predicted general function class is shown for each
sequence. The output also shows the predicted subcellular
localization (and the probability of this prediction), the top
homologs found during the BLAST search, a link to the full

BLAST output in standard format, links to the full general
function classifier output (Figure 3), the subcellular classifier
output, the PACard (Figure 1) and explanations for each clas-
sifier prediction. The ‘explain’ facility is discussed later in the
paper and is one of the most novel characteristics of PA. We
believe explanations are essential for widespread acceptance
of computational prediction techniques in bioinformatics.

Figure 3 shows that the predicted ontological class (Energy
metabolism) of the ACEA_ECOLI protein (Protein #1 from
Figure 2) has a probability of 72.1%. It also shows that the next
most probable class is Other categories, with a probability
of 27.8%.

Prediction techniques in PA

PA makes extensive use of machine-learning (ML) classifiers
to predict annotations. PA can help the user build novel clas-
sifiers, for new annotations, by applying a standard ML algo-
rithm to a set of labeled training items—a list of known
proteins with their respective class labels (i.e. annotations).
The classifier is later used to provide labels (predictions or
annotations) to previously unlabeled proteins. In PA, each
training item consists of a primary protein sequence and the
ontological class it has been assigned by an expert.

In general, an ML classifier algorithm requires features to be
associated with each training item. Note that PA is given only
the primary sequence of the protein; the features are automat-
ically computed by the system. Once built, a classifier takes a
protein sequence with unknown class and uses the values of
these features (i.e. the presence or absence of the associated
word or phrase) to predict its class.

Figure 3. Full classifier output for ACEA_ECOLI (partial screenshot).

Figure 1. The top part of a sample PACard.

Figure 2. Proteins by ontological class (partial screenshot).
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Specifically, PA uses a preprocessing step that maps each
sequence to a set of features, as shown in Figure 4. First, the
sequence is compared to the SWISS-PROT database using
BLAST. Second, the SWISS-PROT entries of (up to) three
top homologs (whose E-values are <0.001) are parsed to
extract a feature set from the SWISS-PROT KEYWORDS
field, any Interpro numbers (11) contained in the DBSOURCE
field, and the SUBCELLULAR LOCATION field. The union
of the features for the selected homologs forms the feature set.
If no homologs match the E-value cutoff or if all features are
removed by feature selection (described later) then the
sequence has no features, so no prediction is made.

The feature set is then used as input for both the training and
classification phases of PA (discussed below). In essence, PA
learns a mapping from feature sets to classes (also known as
‘annotations’). The same extraction algorithm is used to
determine the prediction or annotation for each protein
sequence, whether the classifier is a built-in one or a custom
user-trained one.

Training a custom classifier

Since PA provides several built-in classifiers, many users will
not need to build their own custom classifier. However, for
user-specified ontologies or other specialized purposes, the
ability to build and explain a custom classifier, without
requiring any programming, is a key advantage of PA.

As shown in Figure 5, classification-based prediction is a
two-step process: training/learning and prediction. In the train-
ing/learning step, a classifier is built using an ML classification
algorithm by analyzing a set of training sequences, each
tagged by a known class label. In the prediction step, the
generated classifier is used to predict the class label of an
unknown query sequence.

Of course, when building any classifier, it is necessary for
the training data to satisfy two criteria. First, they must be
broad enough to contain representative examples of each

labeled class. Second, the training data must be relatively
free from errors. Training data with narrow coverage or label-
ing errors cannot produce an accurate classifier using any ML
technology. However, PA’s explanation system can actually
be used to find errors in the training data, if necessary (10). If
the training data contain too many errors, PA will indicate the
poor quality of the trained classifier by reporting low accuracy
in the automatic validation that is done after training a
classifier.

The production version of PA includes a general function
(GeneQuiz ontology) classifier and a series of subcellular
localization classifiers (based on organism type). However,
a user can also train a Naı̈ve Bayes (NB) custom classifier.
The first step in training a custom classifier is to provide a
name for the classifier and a corresponding training file in
FASTA format. Each sequence in the file must have a
FASTA tag that starts with a known class label. For example,
Figure 6 shows part of a training file for a custom K-ion
channel classifier, where the two training sequences have
known class labels KV1 and KV2, respectively.

After uploading the training file, the user has a choice of two
configuration parameters: feature wrapping (12) and the value
of k for the k-fold cross-validation. The wrapping (feature
selection) process is a standard ML technique (13). It removes
the less discriminating features from the trained classifier and
has the overall effect of improving accuracy by reducing over-
fitting. The default configuration uses wrapping.

In k-fold cross-validation (12), the labeled training instances
are ‘randomly’ divided into k groups (G1, . . . ,Gk), while keep-
ing the number of training instances with each label approx-
imately the same in each training group. Then, k different
classifiers are constructed (C1, . . . ,Ck), where Ci uses all of
the training instances from all of the groups except Gi. Next, a
confusion matrix is computed for each of the k classifiers, Ci,
using the sequences in group Gi (which were not used in its
training) as test data. The confusion matrix records the number
and type of classification mistakes made by the newly trained
classifier (false positives, false negatives, and so on). The final
confusion matrix is then computed by summing the entries in
all of the confusion matrices. The PA default value of k is 5
(common in ML).

Once the classifier has been trained, the user may view a
classifier information page (Figure 7) that contains three lists
that summarize the training. The first list shows the training
sequences that PA excluded (none in this example) because the
BLAST search did not produce any usable features. The sec-
ond list contains training sequences that are most probably
labeled incorrectly, sorted from the highest to the lowest prob-
ability. The third list contains the rest of the training
sequences, sorted from the highest to the lowest probability
of being labeled correctly. The user can discover why PA
inferred that a training sequence was labeled correctly or
incorrectly by selecting an Explain hyperlink or by looking
at the raw BLAST results.

Figure 6. The FASTA-based format of a classifier training file.
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Figure 4. The feature extraction algorithm for a protein sequence in PA.
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Figure 5. The training and prediction phases of classification.
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CUSTOM CLASSIFIER EXAMPLE

Voltage-gated potassium channels (VKCs) are intrinsic mem-
brane proteins that respond to changes in the transmembrane
electric field by changing shape and selectively allowing
potassium ions to pass through the lipid bi-layer (14). We
obtained 78 protein sequences that were divided into 4 classes
(KV1, 23 sequences; KV2, 19 sequences; KV3, 17 sequences;
and KV4, 19 sequences) from W. Gallin’s laboratory. Many of
the VKC sequences have close homologs that lie in classes
other than their own class.

In a process that mirrors how users of PA might create a
custom classifier, we iteratively trained a classifier, used PA’s
Explain (and other capabilities) to find the reasons for
any inaccurate predictions on the training set itself [i.e.
re-substitution or training set errors (12)], fixed the source
of the inaccuracies and then trained a new classifier. After
only two rounds, we were able to create a final custom
classifier that is 100% accurate, over 5-fold cross-validation,
with respect to the training data.

Initially, PA produced an NB classifier that made only three
errors during 5-fold cross-validation. However, one error was
a labeling error in the training set. After consulting with an
expert and fixing the labeling error, we re-trained another
classifier. The output in Figure 7 shows the two remaining
errors. We eliminated these two errors by modifying the
feature extraction algorithm’s parameters. Originally, we
performed three PSI-BLAST iterations before picking the
top three homologs to use for feature extraction. We found
that when there are many homologs in different ontological
classes, better accuracy can be obtained by using only a single
PSI-BLAST iteration. Since one iteration of PSI-BLAST is
equivalent to BlastP, PA uses BlastP.

From this case study, we now understand that PSI-BLAST
with multiple iterations is likely to perform poorly because
multiple iterations tend to promote sequences from the most
prevalent organisms in the SWISS-PROT database, at the
expense of sequences from minority organisms, even though
the minority sequences may have better similarity. The lesson
is that when you train a classifier for predicting properties that

differentiate based on small differences, a single iteration is
better. After making this change, the accuracy increased to
100% on the K-ion training set. PA’s explanation mechanism
was key in improving the custom classifier.

ACCURACY AND COVERAGE OF PA

Identifying the destination or localization of proteins is key to
understanding their function and facilitating their purification.
A number of existing computational prediction methods are
based on sequence analysis. However, these methods are lim-
ited in scope, accuracy and most particularly breadth of cover-
age. Rather than using sequence information alone, we have
explored the use of database text annotations from homologs
and machine learning to substantially improve the prediction
of subcellular location.

We constructed five custom classifiers for predicting sub-
cellular localization of proteins from animals, plants, fungi,
Gram-negative bacteria and Gram-positive bacteria which are
81% accurate for fungi and 92–94% accurate for the other four
categories (Table 1). These are the most accurate subcellular
predictors across the widest set of organisms published to date
(9). In a series of experiments, we showed that PA makes
highly accurate subcellular localization predictions, for
many different organisms (e.g. the five custom classifiers listed
above), for a variety of different data sets (e.g. SWISS-PROT,
LOCkey, PSORT-B) and using a variety of ML techniques.
We tested Naı̈ve Bayes, artificial neural networks (ANNs),
support vector machines (SVMs), and nearest-neighbor
classifiers.

PA uses Naı̈ve Bayes classifiers, since the accuracy is
always within 3–5% of the best technique for all of the clas-
sifiers we have trained (the best technique varies for different
training sets, so no particular ML technique is always best) (9).
Since there is very little quantitative difference in accuracy
between NB and the best technique for any training set, we
select NB for qualitative reasons. Specifically, as described in
the next section, it is possible to transparently explain NB
predictions to non-computational scientists. Since the produc-
tion version of PA uses only NB, it is the only ML technique
discussed in this paper.

Table 1. Accuracies and informal sequence/taxonomic coverage of

current subcellular localization predictors

Name Accuracies Coverage Technique

PSORT-B 0.75 1443 GN bacterial Combination

LOCkey 0.87 1161 assorted Homology

SubLoc 0.91 291 prokaryotic AA composition
0.79 2427 eukaryotic

TargetP 0.85 940 plant Signal prediction
0.90 2738 non-plant

Proteome
analyst

0.93 16 284 animal Homology and
machine learning

0.93 3420 plant
0.81 2104 fungal
0.92 3218 GN bacterial
0.94 1571 GP bacterial

Gram-negative bacteria and Gram-positive bacteria are denoted GN and
GP respectively. This table is reproduced from (9).

Figure 7. Information for a trained classifier (partial screenshot).
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The subcellular predictors began their lives as custom pre-
dictors in PA. However, after their success, we constructed a
simple standalone web tool for predicting just subcellular
localization (PA-SUB), available at (http://www.cs.ualberta.
ca/�bioinfo/PA/Sub). In addition, these predictors have also
become built-in classifiers in the production version of PA
(http://www.cs.ualberta.ca/~bioinfo/PA).

TRANSPARENCY AND EXPLAINABILITY

While it is necessary for a protein prediction tool to be accu-
rate, it is also important that it can clearly explain its predic-
tions to the user. This is important for two main reasons. First,
it helps biologists to develop confidence in the tool. Second, it
can help locate and correct errors that occur in the training set,
the underlying database (which might give rise to incorrect
predictions) or the system parameters, as with the K-ion cus-
tom classifier in PA.

Explaining a prediction/classification

PA provides an explanation mechanism to help users under-
stand why a classifier makes a particular classification (10). It
allows a user to examine the query protein itself, as well as the
proteins on which the classifier was trained. The user can then
examine which particular features added the most evidence to
a classification. We will use the protein ACEA_ECOLI as an
example. If the user clicks the Explain hyperlink of the
ACEA_ECOLI protein in Figure 2, then an Explain page
(Figure 8) is displayed.

Each stacked bar in the graph represents a class in
the ontology, and each of its five colored sub-bars corresponds
to the presence of one of five selected features in the training
sequences. In fact, a sub-bar may represent the absence of a
feature. However, for simplicity, in this subsection, we will
assume that sub-bars mark the presence of a feature (and this
is the case in Figure 8, where the features are tricarb-
oxylic acid cycle, glyoxylate bypass, ipr000918, lyase, and
phophorylation).

Each composed bar on a single line represents the logarithm
(base 2) of the combined probability that the protein is in the
class represented by the line. For example the lengths of the
Energy metabolism and Other categories bars are �43 and
41.6 units respectively. The difference is �1.4 units, which
means that the ratio of the probabilities is �21.4 � 2.6. From
Figure 3, the ratio is actually 72.1/27.8 � 2.6. The logarithm is
used so that the contributions to the probabilities represented
by each feature can be added. Additive quantities can be
visualized using stacked bar graphs. No simple visual mechan-
ism is available for multiplicative values.

The (red) tricarboxylic acid cycle subbars occur in the class
lines of Other categories, Purines, Energy metabolism and
Amino acid biosynthesis and in no other class lines. This indi-
cates that this feature occurred only in the training data of these
four classes. The relative lengths of the sub-bars indicate the
(logs of the) relative number of times the feature occurred in the
different training sets. Similarly, the violet sub-bar represents
the occurrence of the feature glyoxylate bypass, which
appeared only in training data for the classes Other categories,
Purines, Energy metabolism and Regulatory functions.

The (orange) reduced residual bar represents the combined
contributions of all features that are not explicitly shown in the

graph. The length of each (orange) reduced residual bar has
been reduced by subtracting the length of the shortest one from
all the (orange) reduced residual bars. Since bar lengths repre-
sent logarithms of probabilities, any fixed amount can always
be subtracted from all bars in the graph without affecting the
difference between the lengths of any two bars. For example, if
the original lengths of two bars were 63 and 61.6 respectively,
this would mean that the ratio of probabilities for the two
predicted classes was 2(63�61.6) = 21.4 = 2.6. If we subtract
20 from both bars the new lengths are 63 � 20 = 43 and
61.6 � 20 = 41.6. The ratio of probabilities of the two pre-
dicted labels becomes 2(43�41.6) = 21.4 � 2.6 (unchanged).
Since Transport and binding proteins had the shortest (orange)
bar to begin with, its (orange) bar is eliminated (has zero
length) after subtracting its length from all orange bars includ-
ing itself. This subtraction is equivalent to applying a zoom to
the graph that focuses on the five most important features.

The (gray) reduced prior bars account for the different sizes
of the training sets. A similar subtraction of the shortest (gray)
reduced prior bar has been performed (i.e. the bar for the class
Other categories). The explanation facility also allows the user
to change which features are explicitly displayed in the graph.

The importance of transparency

The PA Explain mechanism is the most important example of
prediction transparency in PA. First, the Explain mechanism
can be used to understand how a particular protein prediction
was made. Second, it can be used to understand the internal
structure of a predictor—how its training data affect its pre-
dictions. Prediction transparency is very important for two
reasons. First, it is hard to accept predictions unless you under-
stand how they were made. After using the Explain mechan-
ism, you gain confidence that the predictor is working
properly. Second, even the best predictors will make wrong
predictions. They should not be trusted blindly.

There are three important situations in which classification-
based predictors fail. First, classifiers are only as good as their
training data, and the current databases that are used to obtain
training data are not perfect. This is why PA clearly labels
‘suspicious’ training data as probably mislabeled, after it con-
structs any new classifier. This is another example of trans-
parency in PA. Of course, the user decides on the training data,
and whether to include the suspicious sequences in a classifier;
PA’s role is only to clearly identify the suspicious data. Given
PA’s feedback on the training data, a more conservative
user can retrain a new classifier, without these suspicious
sequences. We have found many suspicious sequences
while training classifiers.

Second, predictors can fail if there is not enough training
data to uniquely identify a single prediction class. In PA, this is
characterized by a full-classifier graph (e.g. Figure 3) where
there are multiple bars with significant probabilities.

Third, predictors can fail due to an inferior classifier algo-
rithm which cannot adequately use the training data to differ-
entiate between query sequences. A trend in ML in general, and
recently in bioinformatics, has been always to select the algo-
rithm with the best accuracy. If we had followed that advice we
would be using an ANN or SVM classifier in PA (since they
have accuracies that are a few percentage points higher) (9). But
we are not. The ANN and SVM classifiers are not transparent,
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which, as argued above, is important. In the production version
of PA, we have opted for a classifier with slightly lower accu-
racy so that we can provide transparent predictions. We believe
that this is essential in this domain, where even the best pre-
dictors make errors due to bad training data or not enough
training data, and these errors must be found.

SUMMARY

We have presented Proteome Analyst (PA), a web-based
tool for the high-throughput prediction of protein features.
In addition to several built-in classifiers and tools for protein
annotation, PA supports the construction of custom classifica-
tion-based predictors. PA’s custom classifiers can be for any
user-specified ontology and, since classifiers are trained by
example, no programming knowledge is required. Notably,
using PA’s custom classifier features, we have trained and
then made available (as a built-in predictor) in PA, the (cur-
rently) most accurate and most comprehensive subcellular

localization predictor. Furthermore, to increase the user’s
confidence in the system and to help improve the accuracy
of the classifiers, every prediction made by PA can be
explained in a transparent way. PA is publicly available at
http://www.cs.ualberta.ca/�bioinfo/PA.
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