
LUMPING METHODS FOR MODEL REDUCTION

BLESSING EBERECHUKWU OKEKE
Bachelor of Science in Mathematics, University of Jos, 2006

Master of Science in Industrial Mathematics, University of Hamburg, 2010

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Chemistry and Biochemistry
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Blessing Eberechukwu Okeke, 2013

Dedication

To my ever loving and supportive husband Dr. Onyekwelu U. Okeke and to my lovely
daughters Chiamaka N. Okeke and Ebube O. Okeke. This would not have been possible
without your love and support.

iii

Abstract

Modelling a chemical or biochemical system involves the use of differential equations

which often include both fast and slow time scales. After the decay of transients, the

behaviour of these differential equations usually rests on a low-dimensional surface in the

phase space which is called the slow invariant manifold (SIM) of the flow. A model has

been effectively reduced if such a manifold can be obtained. In this study, we develop

a method that introduces the lumping process (a technique whereby chemical species are

grouped into pseudo-reagents (lumps) to simplify modelling) into the invariant equation

method, and this new method effectively reduces complex models as well as preserving the

structure and underlying mechanism of the original system. We also apply these methods

to simple models of metabolic pathways. This method of model reduction would be of

great importance for industrial applications.

iv

Acknowledgments

I would like to express my profound gratitude to my supervisor Professor Marc R. Roussel.

Thank you for your guidance, encouragement and support throughout this research. I would

also like to thank my supervisory committee members, Dr. Stacey Wetmore and Dr. David

Kaminski for their feedback.

My special thanks goes to my husband, sweetheart, lover, prince and my better half.

Thank you so much for your love and support throughout this program. I would not have

made it through without you. I love you so much, and may our good Lord bless you so

abundantly. Thanks to my lovely daughters Chiamaka N. Okeke and Ebube O. Okeke for

the joy and laughter you brought to my life. You made this journey pleasant and I love you

two so much.

Many thanks to my family. I am indebted to my parents Rev. Kenneth and Mrs. Grace

Amadi for standing by me throughout these years. To my brother and sisters, Comfort

Ndubuisi, Emmanuel Amadi and Mercy Amadi, your prayers made it worthwhile. And to

my mentor, Mama Duke for your prayers and support. May God bless you all.

I would also like to acknowledge the financial support provided by my supervisor, the

University of Lethbridge, and the School of Graduate Studies. Funding this research is well

appreciated.

My special thanks goes to God Almighty, my Father, Lord and Savior. Your love toward

me is unending and everlasting. You are the portion of my inheritance and you maintain

my lots (Ps. 16:5). All thanks and praise be to your name for you grace and favour through

this program.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Figures vii

List of Abbreviations viii

1 Motivation 1

2 Methods for Model Reduction 4
2.1 Quasi-Steady-State Approximation . 4
2.2 Computational Singular Perturbation Method 7
2.3 Intrinsic Low-Dimensional Manifold . 9
2.4 Previous Approaches to Lumping . 10

2.4.1 Linear Lumping . 11
2.4.2 Nonlinear Lumping . 13

3 Methodology 16
3.1 Preliminary Considerations . 16
3.2 Derivation of the Invariance Equation . 17
3.3 Lumping and the Formulation of the Invariance Equation 20

3.3.1 Formulation of the Iterative Algorithm 22

4 A Toy Model: The Michaelis-Menten Mechanism 23
4.1 The Model . 23

4.1.1 Conservation Laws and Planar Reduction 24
4.2 Lumping/Formulation of the Invariance Equation 25
4.3 Numerical Computations and Results . 27

5 The Linear Pathway Model 31
5.1 The Model . 31
5.2 The One-Dimensional Manifold . 33

5.2.1 Formulation of the Invariance Equation 33
5.2.2 Results . 37
5.2.3 Comparing the Full and Reduced Models 39

vi

5.2.4 Discretization Error . 42
5.3 The Case with a Slow Step Somewhere Other Than at the End of the Chain 45
5.4 Two-Dimensional Manifold . 47

5.4.1 Formulation of the Invariance Equation 50
5.4.2 Results . 53
5.4.3 Comparing the Full and Reduced Models 54
5.4.4 Effects of Kinetic Parameters on the Model 56
5.4.5 Discretization Error . 57

5.5 Chapter Summary . 58

6 Conclusions and Future Directions 59
6.1 Summary and Conclusion . 59
6.2 Future Directions . 60

6.2.1 Two Linear Pathways Model . 61
6.2.2 Biochemical Network Models . 61

Bibliography 62

Appendix 66

vii

List of Figures

4.1 The enzyme-substrate complex concentration with respect to the lumped
variable of the Michaelis-Menten mechanism 28

4.2 The substrate concentration with respect to the lumped variable of the
Michaelis-Menten mechanism . 29

4.3 Vector field of the Michaelis-Menten mechanism plotted with the computed
SIM . 30

5.1 The one-dimensional manifold for species s0 37
5.2 The one-dimensional manifold for species s5 38
5.3 Evidence of manifold curvature . 39
5.4 Evidence of manifold curvature for species s5 and s1 40
5.5 Rate of product formation . 41
5.6 The full and reduced models integrated from initial conditions on the man-

ifold . 42
5.7 The reduced model integrated from initial conditions on the manifold and

the full model started from off-manifold initial conditions 43
5.8 The reduced model integrated from initial conditions on the manifold and

the full model started from off-manifold initial conditions for short time . . 44
5.9 Discretization error versus mesh size . 45
5.10 The manifold for the case with a slow step somewhere other than at the end

of the chain for species s0 . 48
5.11 The manifold for the case with a slow step somewhere other than at the end

of the chain for species s5 . 49
5.12 Correct and incorrect lumping . 49
5.13 The slow invariant manifold for the linear metabolic pathway model for

species s0 . 53
5.14 The slow invariant manifold for the linear metabolic pathway model for

species s5 . 54
5.15 z0 from the full and reduced model . 55
5.16 z1 from the full and reduced model . 56
5.17 Discretization error . 58

viii

List of Abbreviations

CSP Computational Singular Perturbation

IE Invariance Equation

ILDM Intrinsic Low-Dimensional Manifold

QSSA Quasi-Steady-State Approximation

SIM Slow Invariant Manifold

ix

Chapter 1

Motivation

Biochemical models are often very large, thus it is desirable to reduce the large sets of

differential equations that make up these models to smaller systems. As biochemical data

continues to increase, the need for model reduction gains in importance. Model reduction

is important for some of the following reasons:

1. Biochemical simulations generate hundreds of differential equations, which bring

about computational difficulties especially when a spatially inhomogeneous system

is considered [51, 43, 50].

2. There is a limitation in our ability to interpret simulation results and use them due to

the difficulty associated with understanding the interrelationships between variables

in higher-dimensional spaces.

3. Model reduction facilitates the prediction and control of species in a system [21, 60].

Lumping is the reduction in the number of variables of a system by the introduction

of a new set of variables, which is a function of the variables in the original set [12].

The technique whereby chemical species with similar properties are grouped into pseudo-

reagents (lumps) to simplify modelling is a historical approach to lumping [11, 34]. In

mathematical terms, lumping can be described as the reduction of an N-dimensional system

[33]
dy
dt

= f (y), y ∈ RN (1.1)

to an N̂-dimensional lumped set

dŷ
dt

= f̂ (ŷ), (1.2)

1

where N̂ < N and

ŷ = h(y), (1.3)

where h is some function of the original variables y. The lumping is called exact or ap-

proximate depending on whether the solution of the lumped differential equations system

does or does not contain errors compared to that of the original system. Some desirable

properties of a lumping scheme are the following:

1. The solutions of the reduced model obtained from the lumping scheme gives an ac-

curate representation of the solutions of the original model.

2. There is a possibility of calculating values of the original variables from the lumped

variables at any point in time.

3. In the lumping process, one has the freedom to select variables for the reduced model

that would aid in giving a clearer chemical interpretation of the original system.

In this thesis, I present an efficient lumping method for model reduction that would be

of great importance for industrial applications [21, 43, 54]. In the lumping process, a large

number of possible lumping matrices exists. Thus instead of testing each reduced scheme

to check whether or not its dynamics matches that of the original system, there is a need

to incorporate the knowledge about the time scales involved in a reaction to the lumping

process [57].

Lumping will be implemented by solving the invariance equation (IE). The success of

the IE method is based upon the existence of fast and slow time scales in the dynamics of

a biochemical system. The effectiveness of this new method will be illustrated using the

Michaelis-Menten mechanism [10, 26, 37] and a linear metabolic pathway model [47, 50].

In chapter 2, I will discuss some methods used for model reduction. In subsequent chapters,

2

I present the methodology used for the formulation of an iterative algorithm that solves the

invariance equation, present results for different ways of arbitrarily splitting the variables

into one or two lumps, compare the trajectories of the full and reduced models and then

study the discretization error of the model.

3

Chapter 2

Methods for Model Reduction

In this chapter, I will discuss some of the methods used in model reduction such as the

quasi-steady-state approximation, the computational singular perturbation method and the

intrinsic low-dimensional manifold method. I will also discuss other approaches to lumping

such as the linear and nonlinear lumping methods for model reduction.

2.1 Quasi-Steady-State Approximation

The quasi-steady-state approximation (QSSA) is used in the study of chemical reactions

when certain species have short life spans with respect to other species [3]. It describes the

kinetics in a system of ordinary differential equations in which, after the decay of the fast

time scales, some of the variables are referred to as being in a steady state1 [52]. The QSSA

assumes that the rate of change among highly reactive species is zero, which reduces the

system of equations used for modeling [3].

In the precomputer era, this method was used to obtain approximate analytic solutions

for kinetic differential equations, but since the advent of computers and advanced software

it has been suggested that the QSSA is a redundant technique and that its application should

be discontinued [57, 58]. Côme emphasized that it is still needed since it has been used

to clarify most reaction mechanisms and to determine many rate coefficients of elementary

processes [9]. The quasi-steady state approximation is still useful for the conversion of stiff

systems2 to non-stiff forms and for the reduction in the number of variables to be solved,

since the use of chemical mechanisms in reactive flow calculations leads to high demands
1A true steady state is a situation in which all the state variables of a system are constant.
2The degree of stiffness of a vector r(c) is given by the ratio S(c) = maxℜ(−αi)

minℜ(−αi)
, where αi are the eigenval-

ues of the Jacobian matrix ∂ri
∂c . A large value of S(c) indicates that the time constants of a system are spread

over many orders of magnitude [7].

4

on even present computer power [3, 57].

The quasi-steady-state approximation is the zero-order approximation to a slow mani-

fold3 [6, 23, 47, 50]. It involves time-scale separation, in particular finding those species

that react in a short time and whose fast motion is adiabatically coupled to the slow time

evolution.

Given the following ordinary differential equation:

dc
dt

= f (c,k), c(0) = c0 (2.1)

where c is an n-dimensional concentration vector and f (c,k) is a function of the reac-

tion rates, the application of the QSSA involves setting some components of the differen-

tial equation (2.1) to zero, i.e. those corresponding to the QSSA (highly reactive) species.

Equation (2.1) is replaced by the following differential-algebraic equation [57]:

dc(1)

dt
= f (1)(c,k), (2.2)

0 = f (2)(c,k), (2.3)

where c(1) and c(2) define the concentrations of the non-QSSA and the QSSA species re-

spectively, and the rate of change of the non-QSSA and QSSA species are given by f (1)

and f (2). Setting f (2) to zero reduces the number of differential equation since some have

been replaced by algebraic equations.

An important characteristic of the QSSA is that from the concentration of other species

in equation (2.3), one can determine the concentrations of the QSSA species [57]. The

choice of the QSSA species is an important aspect of applying this technique, and Frank-

Kamenetskii [19] was the first to introduce this idea. The difference between the non-
3A low-dimensional surface in phase space on which solutions evolve according to the slower time scales

is called a slow manifold. A phase space is a space in which all possible states of a system are represented.
For example, in an isothermal system, the concentrations are known as the phase-space variables.

5

steady-state species (2.1) and the algebraic equation (2.3) is the instantaneous error of the

quasi-steady-state approximation. This error is introduced by the application of the QSSA

to a single species concentration ci which can be used to identify the possible steady-state

species and is defined by [58] :

∆cs
i =

1
Jii

dci

dt
, (2.4)

where the Jacobian matrix of the differential equation is

Jik =

[
∂ fi(c,k)

∂ck

]
. (2.5)

The lifetime of a species i is equal to the reciprocal of the diagonal Jacobian element of the

species, i.e.

τi =
−1
Jii

. (2.6)

It is important to study lifetimes since they can indicate possible QSSA species, and small

errors stem from small lifetimes and/or a slow rate of change for a species [57].

The unavailability of a method to calculate error estimates other than through a simu-

lation of the mechanism with and without the application of the quasi-steady-state approx-

imation is one of the major drawbacks of this technique [58]. Another drawback with this

method is its limitation in usage, i.e. it can only be applied for specific reaction systems and

for the QSSA species selected. Also any investigation done on a particular system cannot

be transfered to other systems [58].

6

2.2 Computational Singular Perturbation Method

The computational singular perturbation (CSP) method developed by Lam is used for an-

alyzing reaction mechanisms and it enables the user to establish quasi-steady-state and

partial equilibrium relationships without detailed chemical knowledge [27, 28, 29]. This

method uses mathematical analysis of the different time scales that occur in biochemical

systems and also computes the slow manifold [56, 60].

Considering the rate equation (2.1), the n-dimensional rate vector f can be written as:

f =
R

∑
j

v jR j, (2.7)

where v j is a vector of stoichiometric coefficients for reaction j, R is the number of el-

ementary reactions incorporated in the mechanism and R j is the jth reaction rate. Let

ai, i = 1,2, . . . ,N be a set of N linearly independent column basis vectors with a set of N

row vectors bi as inverses of ai and N as the dimension of phase space. Specifically, ai and

bi satisfy the orthonormal condition:

bi ·a j = δ
i
j, i, j = 1,2, . . . ,N, (2.8)

where · is the dot product operator and δi
j is the Kronecker delta. Note that the correspond-

ing bi is computed once ai is chosen. The physical representation of equation (2.7) is not

unique and as such it can be written as

f =
N

∑
i=1

aidi, (2.9)

where

ai =
N

∑
k=1

vkAk
i , i = 1, . . . ,N, (2.10)

7

and

di = bi · f =
R

∑
j=1

(bi · v j)R j, i = 1, . . . ,N. (2.11)

The computational singular perturbation method basically chooses Ak
i in an optimal way

so that the rate of each reaction group is associated with a single time scale [57]. These

reaction groups are usually in ascending order with the fastest group at the beginning. As

the reaction occurs, the fast modes become exhausted, i.e. the rate of reaction of a particular

group approaches zero (become dead modes) and can be removed from the right-hand side

of equation (2.9) [57].

For a mechanism with E chemical elements and M dead modes, the right-hand side of

equation (2.9) becomes [57]:

aM+1dM+1 +aM+2dM+2 + · · ·+aN−EdN−E (2.12)

which represents a reduced mechanism of N− (M+E) steps and can be interpreted as an

N− (M+E) dimensional manifold in an N-dimensional space.

The computational singular perturbation method can be used for reducing reaction

mechanisms given its ability to identify important species and reactions [57]. The informa-

tion about fast modes enables this method to be used in the identification of quasi-steady-

state species and partial equilibrium assumptions as well as the identification of potential

rate controlling reactions [56, 57]. A major disadvantage of this method is that the re-

duced models contain systems that are mathematically transformed differential or differen-

tial algebraic equations (DAE) which do not relate one-to-one to biochemical species, thus

limiting biochemical interpretation [56].

8

2.3 Intrinsic Low-Dimensional Manifold

The intrinsic low-dimensional manifold (ILDM) is a method that generates kinetic systems

that are simplified based on the insights from dynamical systems theory [35, 45]. This

method needs no prior knowledge about reactions that are assumed to be in partial equilib-

rium nor about species that are assumed to be in steady state. It only requires information

about the kinetic mechanism and the number of degrees of freedom required in the sim-

plified scheme [35]. This method also allows the decoupling of the fast time scales of the

chemical system, reducing the dimension of the state space as well as the stiffness, both of

which lead to increased computational efficiency [35, 57].

Consider equation (2.1) in terms of vectors [35]:

dc
dt

= f (c). (2.13)

The eigenvalues of fc, the Jacobian of f (c), describe the different time scales in the state

space, while the corresponding eigenvectors describe the characteristic directions associ-

ated with those time scales [35]. The fact that one can have an ill-conditioned matrix (where

almost degenerate eigenvectors exist) results in numerical difficulties, requiring work with

a modified set of basis vectors [22]. Maas and Pope used the Schur vectors as their basis

set.

The Schur decomposition of a matrix is a transformation that results in a matrix with

the eigenvalues on the diagonals (or in the 2 by 2 blocks in the case of complex pairs) in

order of descending real parts [57]. The Schur decomposition is defined by [35]:

Q∗ fcQ = N (2.14)

with ∗ denoting the conjugate transpose, N the resulting triangular matrix, and Q the Schur

matrix:

9

Q =


| | |

q1 q2 . . . qn

| | |

 , (2.15)

where qi are the Schur basis vectors which are mutually orthogonal and have the property

that the first p vectors of the Schur matrix Q span the same subspace as the first p eigenvec-

tors of the Jacobian. We can then define the low-dimensional manifold as the set of points

in state space for which

0 = Q∗L(c) f (c) =



− q∗2+ne+nc+1 −

− q∗2+ne+nc+2 −
...

− q∗n −


f (c). (2.16)

Q∗L is the submatrix of Q∗ corresponding to the n− ne− nc fastest variables with ne,nc

as the number of chemical elements and slow manifold dimension respectively. The slow

manifold can be defined by assuming that the motion in the direction of the Schur vec-

tors associated with the fast variables is zero, and this means that the system is in local

equilibrium with respect to its fastest time scales [57].

A major drawback of the ILDM is that it is not an exact method since it neglects the

curvature of the manifold, i.e. it is not the same as the invariant manifold [57].

2.4 Previous Approaches to Lumping

The need for reducing a high-dimensional system to a smaller one to facilitate modelling

has led to the development of the lumping method. The lumping method is a technique

whereby chemical species are grouped into pseudo-reagents (lumps) to simplify modelling

10

[57]. This reduction process is based on the representation of groups of species by a single

variable, hence the term ”species lumping”. The new variable formed is related to the

original system by the lumping function, which could be either linear or nonlinear.

According to Tomlin and coworkers, some questions that come to mind about lumping

are the following [57]:

1. How small can the lower-dimensional space be while maintaining high accuracy?

2. What is the best way of choosing a lumping function that represents the original

system adequately and gives the smallest reduced scheme?

The following approaches to lumping provide some answers to the above questions.

2.4.1 Linear Lumping

Linear lumping is a form of lumping where the new variables formed are linear combina-

tions of the original ones [57]. It is the simplest form of lumping and can be represented as

follows:

ĉ = Mc (2.17)

where M is an N̂×N real constant matrix called the lumping matrix with N̂� N.

The new N̂ set of ordinary differential equations for the lumped system is given by:

dĉ
dt

= M f (c). (2.18)

For exact lumping, M f (c) must be a function of ĉ so that the reduced system can be ex-

pressed as a function of the new variables. We need to know the pseudo-inverse of M since

from equation (2.17) we have that

11

c = M−1ĉ. (2.19)

The inverse mapping from the ĉ to c space is as important as the forward mapping because

it provides a link between the original and lumped species [57]. Its existence is also a

necessary and sufficient condition for exact lumping [33, 57].

Li and Rabitz [30, 31] as well as Wei and Kuo [59] have stated the conditions and given

examples of techniques that involve exact and approximate linear lumping methods. For

a linear system, it involves finding an appropriate lumping matrix of a given dimension

and its pseudo-inverse, or finding an invariant subspace of the original equation [57]. The

eigenvalues of the reduced system at a fixed point form a subset of the eigenvalues for

the full equations and by choosing which eigenvalues are retained one can relate the full

to the reduced system [57]. For example, a full system exhibiting an oscillatory behaviour

[17, 18, 42] cannot have a lumped system with all the complex eigenvalues lumped together

because the qualitative dynamics of the system would not be adequately represented in the

reduced system.

In combustion where we have nonlinear systems, the transpose of the Jacobian JT (c) is

not a constant matrix and hence it is difficult to convert it into a standard form. JT (c) can

be expressed as:

JT (c) = A0 +
N

∑
k=1

Akak(c), (2.20)

where ak(c) are functions of c which for non-isothermal systems will be simple polynomi-

als. Li and Rabitz proved that the invariant subspaces of JT (c) are also invariant subspaces

of A0 and Ak [30]. The simplest procedure for finding invariant subspaces is to determine

eigenvalues and eigenvectors of ∑
N
k=0 Ak. Given an eigenvector matrix:

12

X = (x1,x2, . . . ,xN), (2.21)

where x1,x2, . . . ,xN are the columns of X , then the subspaces are given by the span of these

columns. The lumping matrices M of different dimensions can then be formed by taking

the columns of X or any linear combinations of them [57].

2.4.2 Nonlinear Lumping

Given that combustion systems are highly nonlinear, linear lumping does not provide the

required degree of reduction that gives an efficient model [57]. There are two approaches

to such cases: Firstly, we can consider the system to be linear locally and then apply the

linear technique over short time periods. Here, different lumped schemes would be needed

for different time periods. The disadvantage of this approach is that for ignition systems

which are highly nonlinear, a large number of lumping schemes would be required to cover

a desired reaction period. As a result of this, one would need to switch between different

reduced schemes and this may slow down the calculation to the point where using a lumping

scheme would no longer save computational time [57].

Secondly, one can develop a nonlinear lumping scheme which would give more flexibil-

ity on how the lumped species can be represented as a function of the original species. This

technique provides a possibility of producing a reduced scheme that can be applied over the

whole reaction zone. The disadvantage of using this approach is that the nonlinear analysis

will involve complicated analytical theory. Li et al. [33] described some developments in

this direction.

From equation (2.1), the new lumped variable is defined by an n̂-dimensional nonlinear

transformation ĉ = h(c) and the new n̂-dimensional equation system given as:

13

dĉ
dt

= f̂ (ĉ(t)). (2.22)

If we define the Jacobian of the transformation h(c) as:

Dh,c(c) =
∂h
∂c

, (2.23)

then according to Li and coworkers [33],

Dh,c(c) f (c) = Dh,c(h̄(h(c))) f (h̄(h(c))) (2.24)

is a necessary and sufficient condition for exact lumping with h̄ as the generalized inverse

transformation. Equation (2.24) is not trivial due to the fact that the existence of an h̄

with this property is not guaranteed. Since h is nonlinear, the calculation of h̄ becomes

difficult for high-dimensional systems. If we redefine the system using a partial differential

operator A the comparison between the linear and nonlinear case becomes clearer. Defining

the operator by:

A =
n

∑
i=1

fi(c(t))
∂

∂ci
, (2.25)

the original differential system becomes:

dc
dt

= Ac. (2.26)

Thus, finding a nonlinear lumping function h depends on finding canonical forms for

the operator A. This contrasts to the linearized case where canonical forms for the Jacobian

and its invariant subspaces are searched for [57]. One way of finding canonical forms for

the operator A in the linear case is to obtain eigenfunctions relating to eigenvalues which

are no longer constant but functions of c(t). For a nonlinear system, finding a full space of

14

eigenfunctions is not an easy task as already shown by Li et al [33].

15

Chapter 3

Methodology

3.1 Preliminary Considerations

In this research, I used the invariance equation (IE) method. The success of this method is

based upon the existence of fast and slow time variations in the dynamics of a stiff system

[7, 8]. Stiff systems often arise in areas like biochemistry, chemical kinetics, nonlinear

dynamics, life sciences and chemical engineering. They occur due to the fast variations

in certain components of a particular system during a short period. In the longer period

remaining, the solution evolves on a low-dimensional surface in the phase space called the

Slow Invariant Manifold (SIM) according to the slower time scales, and the model under

consideration has been effectively reduced if an equation for the SIM can be obtained [23].

The simplification of a stiff system is based on the accurate identification of the slow

invariant manifold which aids in tackling the numerical difficulties typical of stiff systems,

i.e. a large number of unknowns and a vector field containing fast time scales [23]. The sim-

plified system and availability of the slow invariant manifold sheds light on the core of the

problem under consideration by identifying the processes necessary for the development of

the SIM [23] .

For a complete mechanism of a chemical reaction, we can derive a set of mass-action

ordinary differential equations of the following form [50]:

ẏ = f (y;k)

= R(k)h(y), (3.1)

16

where y is the column vector of N chemical concentration variables, f is the vector of rates

and can be written as a product of a matrix R(k) whose elements are linear combinations

of rate constants, and of a vector of monomial basis elements h(y),1 and k is the parameter

vector of specific rate constants corresponding to a model mechanism.

Given (3.1), if there exists a nontrivial constant matrix L with positive entries whose

rows are linearly independent such that [50]:

Lẏ = 0, (3.2)

then there is a set of conservation laws

Ly = c, (3.3)

where c is an M-dimensional constant vector. Using equations (3.1) and (3.3), we get a

new dynamical system of N−M ordinary differential equations,

˙̃y = R̃(k,c)h̃(ỹ), (3.4)

where R̃(k,c) and h̃(ỹ) are the rate matrix and monomial basis for the reduced system and

the components of ỹ are a subset of the components of y.

3.2 Derivation of the Invariance Equation

The invariance equation method, sometimes called the functional iteration method [20, 39,

49], is based on functional equations derived from the governing differential equations,

resulting in reduced systems whose solutions are special solutions of the original system,

1The monomial basis h(y) includes, in principle the degree zero element (′′1′′, required
to treat open systems), monomials of degree one {y1,y2, . . . ,yN}, monomials of degree two
{y2

1,y1y2, . . . ,y1yN ,y2
2,y2y3, . . . ,y2

N}, etc.

17

i.e. those that operate on the slow time scale of the original system [50]. It involves an

iterative algorithm for the solution of the invariance equation. In its original formulation,

the algorithm requires splitting the unknowns into two sets, one of which parametrizes the

slow invariant manifold [23].

Let us consider the N-dimensional stiff system [23]:

ds
dt

= f (s), (3.5)

where the state vector s and the vector field f are N-dimensional column vectors; s =

[s1, . . . ,sN]T and f = [f 1, . . . , f N]T , with T indicating the matrix transpose. Let the slow

invariant manifold be parametrized by zi (i = 1,2, . . . ,d) a set of smooth functions of s,

where d = N−M with M as the fast time scales and d < N:

zi = zi(s)

= zi(s1, . . . ,sN), i = 1, . . . ,d. (3.6)

Assuming we have suitable choices of zi and d, s on the SIM can be written as:

s j = s j(z)

= s j(z1, . . . ,zd), j = 1, . . . ,N (3.7)

where z = [z1, . . . ,zd]T . Differentiating (3.7) with respect to time gives:

ds
dt

= Sz
dz
dt

= f (s), (3.8)

where
dz
dt

= Zs
ds
dt

= Zs f (s). (3.9)

18

Substituting equations (3.9) into (3.8), we obtain a system of algebraic equations:

SzZs f (s) = f (s)

f (s)−SzZs f (s) = 0

⇒ [IN
N −SzZs] f (s) = 0. (3.10)

Equation (3.10) is the invariance equation first derived by Goussis and Valorani [23]. Only

the M components of equation (3.10) are linearly independent, which is sufficient for the

description of the SIM [23]. IN
N is an N×N identity matrix, Sz,Zs are N×d, d×N matrices

respectively, defined as:

Sz =


∂s1

∂z1 · · · ∂s1

∂zd

...
...

∂sN

∂z1 · · · ∂sN

∂zd

 , (3.11)

and

Zs =


∂z1

∂s1 · · · ∂z1

∂sN

...
...

∂zd

∂s1 · · · ∂zd

∂sN

 . (3.12)

They also satisfy the relation:

ZsSz = Id
d . (3.13)

We can then solve equation (3.10) by iteration (to be explained later).

19

3.3 Lumping and the Formulation of the Invariance Equa-

tion

Our method involves incorporating the lumping process into the invariance equation method.

For 0≤m < N−1, with two lumped variables, one possible parametrization of the SIM is:

z0 =
m

∑
i=0

si = s0 + s1 + · · ·+ sm, (3.14)

z1 =
N−1

∑
i=m+1

si = sm+1 + · · ·+ sN−1. (3.15)

The invariance equation for this case can be written as:

[IN
N −SzZs] f (s) = 0, (3.16)

where

Sz =



∂s0
∂z0

∂s0
∂z1

...
...

∂sm
∂z0

∂sm
∂z1

...
...

∂sN
∂z0

∂sN
∂z1


, (3.17)

Zs =

∂z0
∂s0

. . . ∂z0
∂sm

. . . ∂z0
∂sN

∂z1
∂s0

. . . ∂z1
∂sm

. . . ∂z1
∂sN

 , (3.18)

and

f (s) =
(

ṡ0 · · · ṡm · · · ṡN

)T

. (3.19)

20

Sz consists of unknown partial derivatives of the SIM which should be solved for, while Zs

is known and follows from equations (3.14) and (3.15). The invariance equations for six

species, (i.e. N = 6) with two lumped variables z0 = s0 + s1 + s2 and z1 = s3 + s4 + s5 are

given by:

ṡ0

(
1− ∂s0

∂z0

)
− ṡ1

∂s0

∂z0
− ṡ2

∂s0

∂z0
− ṡ3

∂s0

∂z1
− ṡ4

∂s0

∂z1
− ṡ5

∂s0

∂z1
= 0 (3.20a)

−ṡ0
∂s1

∂z0
+ ṡ1

(
1− ∂s1

∂z0

)
− ṡ2

∂s1

∂z0
− ṡ3

∂s1

∂z1
− ṡ4

∂s1

∂z1
− ṡ5

∂s1

∂z1
= 0 (3.20b)

−ṡ0
∂s2

∂z0
− ṡ1

∂s2

∂z0
+ ṡ2

(
1− ∂s2

∂z0

)
− ṡ3

∂s2

∂z1
− ṡ4

∂s2

∂z1
− ṡ5

∂s2

∂z1
= 0 (3.20c)

−ṡ0
∂s3

∂z0
− ṡ1

∂s3

∂z0
− ṡ2

∂s3

∂z0
+ ṡ3

(
1− ∂s3

∂z1

)
− ṡ4

∂s3

∂z1
− ṡ5

∂s3

∂z1
= 0 (3.20d)

−ṡ0
∂s4

∂z0
− ṡ1

∂s4

∂z0
− ṡ2

∂s4

∂z0
− ṡ3

∂s4

∂z1
+ ṡ4

(
1− ∂s4

∂z1

)
− ṡ5

∂s4

∂z1
= 0 (3.20e)

−ṡ0
∂s5

∂z0
− ṡ1

∂s5

∂z0
− ṡ2

∂s5

∂z0
− ṡ3

∂s5

∂z1
− ṡ4

∂s5

∂z1
+ ṡ5

(
1− ∂s5

∂z1

)
= 0 (3.20f)

We seek to obtain a special solution, i.e. the slow manifold, from equations (3.20). The

independent variables are z0 and z1 and the (unknown) dependent variables are the si’s.

Solutions of (3.20) are sheets of trajectories of (3.5) parametrized by (z0,z1). From experi-

ence [47, 49, 48, 50, 51] and based on some theoretical work done by Kaper and Kaper [25]

, we know that iterative methods of solution of equations in this family, if they converge

at all, converge on the slow manifold. The basic problem is to find ∂si
∂z j

for the manifold.

If we knew these derivatives, then (3.20) is just an algebraic equation for the si’s. Given

reasonable estimates of these derivatives, it should be possible to obtain an iterative method

that converges on the slow manifold. In the next section, we formulate an algorithm that

computes the slow manifold iteratively.

21

3.3.1 Formulation of the Iterative Algorithm

The algorithm is given here for the case N = 6,d = 2, i.e. the case to which equations (3.20)

apply.

1. Discretize z0 and z1 for a given number of mesh points.

2. Generate initial values for s0,s1,s2, · · · ,s5 at each mesh point.

3. Compute ∂s0
∂z0

, ∂s1
∂z0

, · · · , ∂s5
∂z0

and ∂s0
∂z1

, ∂s1
∂z1

, · · · , ∂s5
∂z1

by finite differences.

4. Solve the first invariance equation (3.20a) at each mesh point to obtain a new value

for s0.

5. Solve the second invariance equation (3.20b) at each mesh point using the updated

value for s0 to obtain a new value for s1 and so on.

6. Iterate the algorithm until further iterates change s0,s1,s2, · · ·s5 negligibly and the

convergence criterion is satisfied.

22

Chapter 4

A Toy Model: The Michaelis-Menten Mechanism

4.1 The Model

The Michaelis-Menten mechanism is one of the most important chemical reaction mecha-

nisms in biochemistry and a basic building block for all enzyme modelling [10, 26, 37, 47,

50]. This model is used to illustrate the methods described in chapter 3. In this model, an

enzyme reacts with a substrate and reversibly forms an intermediate complex which then

results in a product and the original enzyme. The reverse reaction k−2 is omitted since it

is usually negligible in an in vitro experiment, but in an in vivo experiment it is not always

so. This model is represented as:

E+S
k1−−⇀↽−−

k−1

ES
k2−→ E+P, (4.1)

where S represents substrate, E the enzyme, ES the enzyme-substrate complex, and P the

product. k1,k−1 and k2 are the reaction rate constants. From the Michaelis-Menten mech-

anism (4.1), we have the following ordinary differential equations derived from the law of

mass action [24]:

ė = (k−1 + k2)c− k1se, (4.2a)

ṡ = k−1c− k1se, (4.2b)

ċ = k1se− (k−1 + k2)c, (4.2c)

ṗ = k2c, (4.2d)

23

where lower-case letters represent the concentrations of the corresponding chemical species,

with c = [ES], and the dot represents the time derivative. The appropriate in vitro initial

conditions are s(0) = s0, e(0) = e0, c(0) = 0 and p(0) = 0.

4.1.1 Conservation Laws and Planar Reduction

Some important conservation laws can be deduced from the system of four ordinary differ-

ential equations (4.2) [26, 37]. Equation (4.2) yields two constants of the motion called the

total enzyme and total substrate which are obtained as follows: Firstly, we add equations

(4.2a) and (4.2c) to obtain

d(e+ c)
dt

= 0 (4.3)

and then integrate with respect to time. We have the following:

c(t)+ e(t) = e0 (4.4)

which represents the total enzyme concentration. Secondly, we add equations (4.2b),(4.2c),

and (4.2d) to obtain

d(s+ c+ p)
dt

= 0 (4.5)

and after integrating with respect to time we have the following:

s(t)+ c(t)+ p(t) = s0, (4.6)

which represents the total substrate concentration. We can ignore equation (4.2d) since

none of the other three rate equations depend explicitly on p(t). We can also ignore equa-

24

tion (4.2a) given the conservation law in equation (4.4) which means that e(t) can be

determined from c(t). Hence the four differential equations in (4.2) have been reduced to

two differential equations:

ṡ = k−1c− k1s(e0− c), (4.7a)

ċ = k1s(e0− c)− (k−1 + k2)c. (4.7b)

4.2 Lumping/Formulation of the Invariance Equation

For the Michaelis-Menten mechanism, we now have two differential equations (i.e. a two-

dimensional model), and we want to reduce it to a one-dimensional model. We already

know that this mechanism has a one-dimensional slow manifold [6, 13, 14, 39]. We can

lump this model in the following form:

z = s+ c, (4.8)

where z is the lumped variable. Our choice of this lumped variable is because s+ c repre-

sents the unreacted substrate. We can now formulate the invariance equation as follows:

[I2
2 −YzZy] f (y) = 0, (4.9)

where I2
2 is a 2×2 identity matrix, and Yz,Zy and f (y) are as follows:

Yz =

 ∂s
∂z

∂c
∂z

 , (4.10)

25

Zy =

(
∂z
∂s

∂z
∂c

)
,

=

(
1 1

)
(4.11)

and

f (y) =

ṡ

ċ

 . (4.12)

Zy follows from (4.8) and is known while Yz consists of unknown partial derivatives of

the SIM and should be solved for. The invariance equation (4.9) gives us the following

differential system:

ṡ− ṡ
∂s
∂z
− ċ

∂s
∂z

= 0, (4.13a)

ċ− ṡ
∂c
∂z
− ċ

∂c
∂z

= 0. (4.13b)

At each step of the iterative calculation described in section 3.3.1, the unknowns ∂s
∂z and

∂c
∂z are estimated using central difference approximations. We will solve the above system

iteratively in Matlab for s(z) and c(z). Once we have these, we obtain the reduced model

by differentiating equation (4.8) with respect to time:

dz
dt

=
ds
dt

+
dc
dt

. (4.14)

Since ds
dt and dc

dt are functions of s and c (equation 4.7), if s(z) and c(z) are known, this is

an autonomous ordinary differential equation for z(t).

We would need a good initial function to begin the iteration. To achieve this, we can

26

take a quasi-steady-state approximation, i.e. after the decay of the fast transients, ċ(t) ≈ 0

[10, 20, 26, 37, 39] . From equation (4.7b), we have:

k1s(t)[e0− c(t)]≈ (k−1 + k2)c(t). (4.15)

Solving for c(t), we obtain

c(t)≈ e0s(t)
Km + s(t)

(4.16)

where Km is called the Michaelis-Menten constant denoted as:

Km =
k−1 + k2

k1
. (4.17)

4.3 Numerical Computations and Results

In this section, we illustrate the numerical technique used to obtain the SIM of the Michaelis-

Menten mechanism using Matlab. The iterative algorithm that solves the system (4.13) is

as follows:

1. Discretize the lumped variable z for a given number of mesh points.

2. Generate initial conditions for s and c. Here we use equation (4.16) with s a vector

of the discretized points.

3. Calculate z = s+ c.

4. Compute ∂s
∂z and ∂c

∂z using central differences.

5. Solve equation (4.13a) at each mesh point to obtain a new value for s.

6. Solve equation (4.13b) at each mesh point using the updated value of s to obtain a

new value for c.

27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

c

z

Figure 4.1: The enzyme-substrate complex concentration with respect to the lumped vari-
able (c(z)) of the Michaelis-Menten mechanism with k1 = 1, k−1 = 1, k2 = 1 and e0 = 1 for
10 mesh points. The calculation converges after 3 iterates with a tolerance value of 10−3.

7. Recalculate z = s+ c.

8. Iterate back to step 4 until further iterates change s and c negligibly and the error

denoted by:

E = max |s− snew|+max |c− cnew| (4.18)

where snew,cnew represents the updated s and c, satisfies the convergence criterion:

E < tolerance. (4.19)

28

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

s

z

Figure 4.2: The substrate concentration with respect to the lumped variable (s(z)) of the
Michaelis-Menten mechanism with the same parameters as figure 4.1.

Figures 4.1 and 4.2 show the enzyme-substrate complex and substrate concentrations

with respect to the lumped variable. Figure 4.3 shows the vector field of the model ap-

proaching the SIM, which is a one-dimensional curve in the two-dimensional phase plane.

The SIM attracts the flow and approaches the equilibrium point which is (s,c) = (0,0).

The results obtained here are identical to those in previous papers that computed the SIM

for this model, for example Roussel [47].

In this chapter, we have illustrated the lumping method in detail using the Michaelis-

Menten mechanism. We formulated the invariance equation, calculated the SIM and repro-

duced the results of previous studies on this system [20, 39, 47]. In principle, one could

integrate equation (4.14) numerically to obtain the time evolution on the slow time scale.

29

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

s

c

Figure 4.3: Vector field of the Michaelis-Menten mechanism plotted with the computed
SIM with the same parameters as figure 4.1.

An example of this procedure will be presented for the more complex model studied in the

next chapter.

30

Chapter 5

The Linear Pathway Model

5.1 The Model

In this chapter, we consider a metabolic transformation in which the product of one reaction

is the reactant of the next. Each step is catalyzed by a reversible Michaelian enzyme [50]:

Si−1
vi+−−⇀↽−−
vi−

Si, i = 1,2, . . . ,N, (5.1)

with

vi+ =
Vi+Si−1/Ki+

1+Si−1/Ki++Si/Ki−
,

vi− =
Vi−Si/Ki−

1+Si−1/Ki++Si/Ki−
, (5.2)

where Vi± are the maximum velocities for each direction of an enzyme-catalyzed reaction

step and Ki± are the Michaelis constants of the appropriate enzyme-substrate complexes.

We have the rate equations for the model as follows [50]:

dS0

dt
= v1−− v1+,

dSi

dt
= vi+− vi−− v(i+1)++ v(i+1)−, i = 1,2, . . . ,N−1, (5.3)

dSN

dt
= vN+− vN−.

Note that

31

N

∑
i=0

dSi

dt
= 0

⇒
N

∑
i=0

Si = ST , (5.4)

where ST is a constant, the total amount of substrate. Then we can obtain SN as follows:

SN = ST −
N−1

∑
i=0

Si. (5.5)

The substrate conservation relation (5.4) provides us with a convenient scale to measure

the concentrations of all the substrates in the chain given that 0 ≤ Si ≤ ST . We can define

the following dimensionless variables and parameters [50]:

si =
Si

ST
, τ =

V1+t
K1+

,

αi =
ST

Ki+
, βi =

ST

Ki−
, (5.6)

ηi =
Vi−K1+

V1+Ki−
, γi =

Vi+K1+

V1+Ki+
.

We then obtain the following dimensionless differential equations:

ṡ0 =
η1s1

1+α1s0 +β1s1
− s0

1+α1s0 +β1s1
,

ṡi =
γisi−1

1+αisi−1 +βisi
− ηisi

1+αisi−1 +βisi

− γi+1si

1+αi+1si +βi+1si+1
+

ηi+1si+1

1+αi+1si +βi+1si+1
, (5.7)

i = 1,2, . . . ,N−1.

32

By definition γ1 = 1 and the system is closed by the transformed mass conservation relation:

sN = 1−
N−1

∑
i=0

si. (5.8)

5.2 The One-Dimensional Manifold

In this section, we consider a reduction of the model to one dimension. We initially consider

a case in which the rates of the reversible steps have the following relations:

S0
fast−−⇀↽−− S1

fast−−⇀↽−− S2
fast−−⇀↽−− S3

fast−−⇀↽−− S4
fast−−⇀↽−− S5

slowest−−−−⇀↽−−−− S6 · (5.9)

Here, we have a one-dimensional lump represented as:

z = s0 + s1 + s2 + s3 + s4 + s5. (5.10)

The above lumped variable is a good choice because, given that the last step is the

slowest, s0 to s5 equilibrates faster than the slow conversion to s6. The slow variable is

therefore associated with the formation of s6 and one way to obtain such a variable is by

taking the complementary quantity z (all the values that are not s6) as our slow variable.

5.2.1 Formulation of the Invariance Equation

The invariance equation for N = 6 is given as:

[I6
6 −SzZs] f (s) = 0, (5.11)

where

33

Sz =

(
∂s0
∂z

∂s1
∂z

∂s2
∂z

∂s3
∂z

∂s4
∂z

∂s5
∂z

)T

, (5.12)

Zs =

(
∂z
∂s0

∂z
∂s1

∂z
∂s2

∂z
∂s3

∂z
∂s4

∂z
∂s5

)
,

=

(
1 1 1 1 1 1

)
, (5.13)

and

f (s) =

(
ṡ0 ṡ1 ṡ2 ṡ3 ṡ4 ṡ5

)T

. (5.14)

Note that (5.12) consists of unknown partial derivatives of the SIM while (5.13) follows

from (5.10). The invariance equation is now:

ṡ0

(
1− ∂s0

∂z

)
− ṡ1

∂s0

∂z
− ṡ2

∂s0

∂z
− ṡ3

∂s0

∂z
− ṡ4

∂s0

∂z
− ṡ5

∂s0

∂z
= 0, (5.15a)

−ṡ0
∂s1

∂z
+ ṡ1

(
1− ∂s1

∂z

)
− ṡ2

∂s1

∂z
− ṡ3

∂s1

∂z
− ṡ4

∂s1

∂z
− ṡ5

∂s1

∂z
= 0, (5.15b)

−ṡ0
∂s2

∂z
− ṡ1

∂s2

∂z
+ ṡ2

(
1− ∂s2

∂z

)
− ṡ3

∂s2

∂z
− ṡ4

∂s2

∂z
− ṡ5

∂s2

∂z
= 0, (5.15c)

−ṡ0
∂s3

∂z
− ṡ1

∂s3

∂z
− ṡ2

∂s3

∂z
+ ṡ3

(
1− ∂s3

∂z

)
− ṡ4

∂s3

∂z
− ṡ5

∂s3

∂z
= 0, (5.15d)

−ṡ0
∂s4

∂z
− ṡ1

∂s4

∂z
− ṡ2

∂s4

∂z
− ṡ3

∂s4

∂z
+ ṡ4

(
1− ∂s4

∂z

)
− ṡ5

∂s4

∂z
= 0, (5.15e)

−ṡ0
∂s5

∂z
− ṡ1

∂s5

∂z
− ṡ2

∂s5

∂z
− ṡ3

∂s5

∂z
− ṡ4

∂s5

∂z
+ ṡ5

(
1− ∂s5

∂z

)
= 0. (5.15f)

34

We then need to solve equations (5.15) iteratively and we do this as follows:

1. Discretize z for a given number of mesh points, with z bounded between 0 and 1.

2. Generate initial values for s0,s1,s2, · · · ,s5 at each mesh point.

3. Compute ∂s0
∂z ,

∂s1
∂z , · · · ,

∂s5
∂z by central differences.

4. Treating s0 as an unknown, and the functions s1(z), · · · ,s5(z) as well as the derivatives

computed in steps 3 as known quantities, solve the first invariance equation (5.15a)

at each mesh point to obtain a new set of values for s0.

5. Similarly, solve the second invariance equation (5.15b) at each mesh point using the

updated value for s0 to obtain a new value for s1, and so on.

6. Return to step 3 and iterate the algorithm until further iterates change s0,s1,s2, · · · ,s5

negligibly. Iteration stops when the error defined by:

E =
5

∑
i=0

max
j
|s(n+1)

i, j − s(n)i, j |, (5.16)

where j represents mesh points, i species, n iterates and s(n)i, j ,s
(n+1)
i, j the preceding and

current iterate, satisfies the convergence criterion:

E < tolerance. (5.17)

In order to obtain a correct manifold, we need a good initial function to start the itera-

tion. One way to do this is the following: Given that z = s0 + s1 + s2 + s3 + s4 + s5

1. Solve the dimensionless equivalent of vi+ = vi− for i = 1,2, · · · ,5. Note that this is

a local equilibrium approximation. Solving for s0, · · · ,s5 from equations (5.7) we

35

have:

s0 = η1s1, (5.18a)

s2 =
γ2s1

η2
, (5.18b)

s3 =
γ3s2

η3
=

γ3γ2s1

η2η3
, (5.18c)

s4 =
γ4s3

η4
=

γ4γ3γ2s1

η2η3η4
, (5.18d)

s5 =
γ5s4

η5
=

γ5γ4γ3γ2s1

η2η3η4η5
. (5.18e)

2. Substitute the values of s0, · · · ,s5 from equations (5.18) into equation (5.10). We

have:

z = η1s1 + s1 +
γ2s1

η2
+

γ3γ2s1

η2η3
+

γ4γ3γ2s1

η2η3η4
+

γ5γ4γ3γ2s1

η2η3η4η5
. (5.19)

3. Solve for s1 from equation (5.19). Solving for s1 gives:

s1 =
zη2η3η4η5

η1η2η3η4η5 +η2η3η4η5 +η3η4η5γ2 +η4η5γ2γ3 +η5γ2γ3γ4 + γ2γ3γ4γ5
.

(5.20)

Note the dependence on z.

4. Solve for s0,s2,s3,s4 and s5 with respect to z to obtain the remaining initial func-

tions. To do this, substitute the value of s1 above into equations (5.18a) to (5.18e)

respectively.

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

z

s
0

Figure 5.1: The one-dimensional manifold for species s0 with 10 mesh points, and αi =
βi = 1, i = 1, . . . ,6, γ2 = γ4 = γ5 = 100, η1 = η4 = 1, η2 = η5 = 10, η3 = γ3 = 0.01,γ6 = 1
and η6 = 0. The solution converges after 2 iterates with a tolerance value of 10−3.

5.2.2 Results

Figures 5.1 and 5.2 represent the SIM for the one-dimensional manifold for species s0 and

s5 with respect to the lumped variable z. These manifolds are almost linear due to the

choice of a good lumping variable, which is in contrast to the noticeably curved manifold

parameterized by s0 found by Roussel and Fraser [50]. However, they are not exactly

linear as illustrated in figures 5.3 and 5.4. The calculation converges after 2 iterates, and

even for a small number of mesh points (10) we get rapid convergence. Convergence is still

obtained if one of the steps prior to the last step is as slow as the last one. For example with

γ3 = η3 = γ6 = η6 = 10−2, the calculation converges after two iterates. We also observe

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

s
5

Figure 5.2: The one-dimensional manifold for species s5 with 10 mesh points using the
same parameters as in figure 5.1.

that γ6,η6 ≤ 1 to obtain a convergent solution, any value greater than these would result

in a divergent scheme because the assumptions made in choosing our lumped variable (z)

break down since, implicitly, γ1 = 1.

When η6 = 0, the model represents a reaction with irreversible product formation. The

lumped model then corresponds to Z → S6 with a nonlinear evolution equation given by

equation (5.21). Figure 5.5 represents the rate of reaction with respect to the lumped vari-

able z. S6 is the product and the shape of this curve contrasts that of the Michaelis-Menten

hyperbola obtained as the steady-state rate law in many models of simple pathways [10].

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9068

0.9069

0.907

0.9071

0.9072

∂
s
5

∂
z

z

Figure 5.3: Evidence of manifold curvature using the same parameters as in figure 5.1.

5.2.3 Comparing the Full and Reduced Models

In this subsection, we compare the full and reduced models. We do this to verify that we

have a reasonable representation of the invariant manifold and that the manifold computed

is attracting. This shows that the reduced model provides a faithful representation of the

full model. To do this, we proceed as follows:

1. Pick an initial condition (z0) for the reduced model.

2. Compute the coordinates s0(z0),s1(z0), · · · ,s5(z0) on the manifold and use them as

initial conditions for the full model, i.e start the integration of the full model on the

slow manifold.

3. Compute the trajectory of the reduced model by numerically integrating the differ-

ential equation:

39

0 1 2 3

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s
1

s
5

Figure 5.4: Evidence of manifold curvature with αi = βi = 1, i = 1, . . . ,6, γ2 = γ4 = γ5 =
100, η1 = η4 = 0.1, η2 = η5 = 10, η3 = γ3 = 0.01,γ6 = 1 and η6 = 0.

dz
dt

=
ds0

dt
+

ds1

dt
+

ds2

dt
+

ds3

dt
+

ds4

dt
+

ds5

dt
. (5.21)

We compute the si at a set of discrete mesh points and then interpolate linearly to

obtain values between the mesh points during integration. ṡi(s0, . . . ,s5) is given by

equation (5.7), and since we know s0(z), · · · ,s5(z), then the above equation is an

autonomous ordinary differential equation in z since the independent variable z does

not appear explicitly in the equation.

From figure 5.6, we observe that the full and reduced models are identical within the

resolution of the figure. Figure 5.7 represents solutions of the reduced model and of the

full model starting from off-manifold initial conditions. For example, here we have the

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

ṡ
6(
z
)

z

Figure 5.5: Rate of product formation for 10 mesh points with αi = βi = 100, i = 1, . . . ,6,
γ2 = γ4 = γ5 = η1 = η4 = η2 = η5 = 100, η3 = γ3 = 0.01, γ6 = 1 and η6 = 0.

off-manifold initial conditions as s0(0) = 0.8001,si(0) = 0 for i ≥ 1. We observe that

even when we start the integration of the full model off the manifold, its trajectory is still

indistinguishable from that of the reduced model. This shows that the reduced model can be

used as a representation of the full model after the decay of transients and that the neglected

transients have a negligible effect on the eventual trajectory. From figure 5.8, we see that

at very small time the full and reduced models are different, but after a long period of time

they become indistinguishable, as seen in figure 5.7.

41

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

z

full model

reduced model

Figure 5.6: The full and reduced models integrated from initial conditions on the manifold.
The manifold was computed with 10 mesh points using αi = βi = 100, i = 1, . . . ,6, γ2 =
γ4 = γ5 = η1 = η4 = η2 = η5 = 100, η3 = γ3 = 0.01, γ6 = η6 = 10−4. The initial condition
for the full model is s0(0) = 0.7620,si(0) = 0.0076, i≥ 1 and for the reduced model z(0) =
0.8001.

5.2.4 Discretization Error

The process of discretizing a differential equation usually leads to errors and some ques-

tions that come to mind regarding the accuracy of a numerical solution are the following:

1. How does this error arise in a numerical calculation?

2. How can we reduce this error?

Discretization error arises whenever we represent a continuous function by a discrete set of

points [5, 55]. This error is in contrast to round-off error1 which is always present.
1The error that comes from representing a real number as a floating point number on a computer.

42

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

z

reduced model

full model wt diff ics

Figure 5.7: The reduced model integrated from initial conditions on the manifold and the
full model started from off-manifold initial conditions. The manifold was computed with
10 mesh points using the same parameters as in figure 5.6. The initial condition for the full
model is s0(0) = 0.8001,si(0) = 0, i≥ 1 and for the reduced model z(0) = 0.8001.

Discretization error can be reduced by decreasing the grid spacing, (i.e. increasing the

number of mesh points). As the grid spacing is decreased, the error will get small. This has

a disadvantage of computational cost since more calculations would be done [5, 55]. Also

there is a limit to how small the grid spacing should be before the round-off error will start

negatively affecting the computation. The negative effect of the round-off error is due to

the fact that we have derivatives and when taking the difference of two similar numbers we

run into the problem of finite precision.

A discretization error (D) for the one-dimensional linear metabolic pathway model can

be defined by:

43

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

t

z

reduced model

full model wt diff ics

Figure 5.8: The reduced model integrated from initial conditions on the manifold and the
full model started from off-manifold initial conditions for short time. The manifold was
computed with 10 mesh points using αi = βi = 1, i = 1, . . . ,6, γ2 = γ4 = γ5 = η1 = η4 =
η2 = η5 = 100, η3 = γ3 = 0.01, γ6 = η6 = 10−4.

D = ∑
i
(zi

(red)− zi
(f ull))

2|zi−1
(red)− zi

(red)|. (5.22)

where zi
(red),z

i
(f ull) represent the ith time points of the full and reduced models respectively.

The first part of this equation, i.e.
[
(zi

(red)− zi
(f ull))

2
]

represents the error, i.e. the difference

between the full and reduced model. The absolute value represents the distance travelled

along a trajectory. This is an approximation of the path integral along the trajectory.

From figure 5.9, we observe that the discretization error is very small (of order 10−8).

The weak variation of the discretization error with the number of mesh points shows that

the result is essentially fully converged in this regime. This is no doubt due to the near-

44

5 10 15 20 25 30
1.85

1.9

1.95

2
x 10

−8

mesh size

d
is

c
re

ti
z
a
ti
o
n
 e

rr
o
r

Figure 5.9: Discretization error versus mesh size, using the same parameters as in figure
5.1

linearity of the manifold observed earlier.

5.3 The Case with a Slow Step Somewhere Other Than at

the End of the Chain

In this section, we investigate the case where the slow step is somewhere other than at the

end of the chain. As an example, we consider the following case:

S0
fast−−⇀↽−− S1

fast−−⇀↽−− S2
fast−−⇀↽−− S3

fast−−⇀↽−− S4
slowest−−−−⇀↽−−−− S5

fast−−⇀↽−− S6 · (5.23)

Here, we can choose a single lumped variable:

45

z = s0 + s1 + s2 + s3 + s4. (5.24)

Choosing the lump in this way enables us to capture all the information contained in the

slowest connection, i.e. the motion along the slow manifold. Roughly speaking, the lumped

model can be thought of as Z0
 Z1, where z0 is given by equation (5.24) and z1 = s5 + s6.

We only need one variable to parameterize a one-dimensional slow manifold, and chose z0.

The invariance equation for N = 6 is given as:

[I6
6 −SzZs] f (s) = 0, (5.25)

where

Sz =

(
∂s0
∂z

∂s1
∂z

∂s2
∂z

∂s3
∂z

∂s4
∂z

∂s5
∂z

)T

, (5.26)

Zs =

(
∂z
∂s0

∂z
∂s1

∂z
∂s2

∂z
∂s3

∂z
∂s4

∂z
∂s5

)
,

=

(
1 1 1 1 1 0

)
, (5.27)

and

f (s) =
(

ṡ0 ṡ1 ṡ2 ṡ3 ṡ4 ṡ5

)T

. (5.28)

The invariance equation is now:

46

ṡ0

(
1− ∂s0

∂z

)
− ṡ1

∂s0

∂z
− ṡ2

∂s0

∂z
− ṡ3

∂s0

∂z
− ṡ4

∂s0

∂z
= 0,

−ṡ0
∂s1

∂z
+ ṡ1

(
1− ∂s1

∂z

)
− ṡ2

∂s1

∂z
− ṡ3

∂s1

∂z
− ṡ4

∂s1

∂z
= 0,

−ṡ0
∂s2

∂z
− ṡ1

∂s2

∂z
+ ṡ2

(
1− ∂s2

∂z

)
− ṡ3

∂s2

∂z
− ṡ4

∂s2

∂z
= 0,

−ṡ0
∂s3

∂z
− ṡ1

∂s3

∂z
− ṡ2

∂s3

∂z
+ ṡ3

(
1− ∂s3

∂z

)
− ṡ4

∂s3

∂z
= 0, (5.29)

−ṡ0
∂s4

∂z
− ṡ1

∂s4

∂z
− ṡ2

∂s4

∂z
− ṡ3

∂s4

∂z
+ ṡ4

(
1− ∂s4

∂z

)
= 0,

−ṡ0
∂s5

∂z
− ṡ1

∂s5

∂z
− ṡ2

∂s5

∂z
− ṡ3

∂s5

∂z
− ṡ4

∂s5

∂z
+ ṡ5 = 0

We then need to the compute initial conditions for s0,s1,s2,s3 and s4 as in the previous case

(section 5.2) but with s5 = 0 since it is not included in the lumped variable.

Figures 5.10 and 5.11 represent the SIM for the one-dimensional manifold for species

s0 and s5 with respect to the lumped variable z for the case where the slow step is not at

the end of the chain. We observe that the calculation converges after 3 iterates and also

when the rate of the slowest step approaches the rate of the next slowest step we still get a

convergent solution.

5.4 Two-Dimensional Manifold

In this section, we calculate a two-dimensional manifold with the rates of the reversible

steps similar to the one-dimensional manifold in section (5.2) with the following connec-

tions:

S0
fast−−⇀↽−− S1

fast−−⇀↽−− S2
slow−−−⇀↽−−− S3

fast−−⇀↽−− S4
fast−−⇀↽−− S5

slow−−−⇀↽−−− S6 · (5.30)

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z

s
0

Figure 5.10: The manifold for the case with a slow step somewhere other than at the end
of the chain for species s0. The calculation was carried out with 10 mesh points with
αi = βi = 100, i = 1, . . . ,6, γ2 = γ4 = γ6 = η1 = η2 = η4 = η6 = 10, η3 = γ3 = 0.1 and
γ5 = η5 = 0.01. The solution converges after 3 iterates.

In order to get a correct slow invariant manifold, we need to lump the species correctly.

To do this, we need to have the fast connections within the lumps and the slow connection

between the lumps as illustrated in figure 5.12. This choice enables us to capture all the in-

formation about the system contained in the slow connections. Lumping incorrectly results

in the slow connection being within the lumps. The dynamical modes eliminated by the

lumping are then not purely fast, so that the lumped variables do not evolve purely on the

slow time scales. Note that the information contained in the fast connections often cannot

be captured experimentally due to instrumental limitations.

We then have the two lumps as follows:

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z

s
5

Figure 5.11: The manifold for the case with a slow step somewhere other than at the end
of the chain for species s5. The calculation was carried out with 10 mesh points with the
same parameters as in figure 5.10. The solution converges after 3 iterates.

U

s s s s s s
0 1 2 3 4 5

fast fast slow fast fast

Incorrect
Lumping

Correct
Lumping

U1U0U

Z0
Z1

s s s s s s s
0 1 2 3 4 5 6

slow

Figure 5.12: Correct and incorrect lumping

49

z0 = s0 + s1 + s2, (5.31)

and

z1 = s3 + s4 + s5. (5.32)

5.4.1 Formulation of the Invariance Equation

The invariance equation for N = 6 is given as:

[I6
6 −SzZs] f (s) = 0, (5.33)

where

Sz =



∂s0
∂z0

∂s0
∂z1

∂s1
∂z0

∂s1
∂z1

∂s2
∂z0

∂s2
∂z1

∂s3
∂z0

∂s3
∂z1

∂s4
∂z0

∂s4
∂z1

∂s5
∂z0

∂s5
∂z1


, (5.34)

Zs =

∂z0
∂s0

∂z0
∂s1

∂z0
∂s2

∂z0
∂s3

∂z0
∂s4

∂z0
∂s5

∂z1
∂s0

∂z1
∂s1

∂z1
∂s2

∂z1
∂s3

∂z1
∂s4

∂z1
∂s5

 ,

=

1 1 1 0 0 0

0 0 0 1 1 1

 , (5.35)

and

50

f (s) =
(

ṡ0 ṡ1 ṡ2 ṡ3 ṡ4 ṡ5

)T

. (5.36)

The invariance equation is now:

ṡ0

(
1− ∂s0

∂z0

)
− ṡ1

∂s0

∂z0
− ṡ2

∂s0

∂z0
− ṡ3

∂s0

∂z1
− ṡ4

∂s0

∂z1
− ṡ5

∂s0

∂z1
= 0, (5.37a)

−ṡ0
∂s1

∂z0
+ ṡ1

(
1− ∂s1

∂z0

)
− ṡ2

∂s1

∂z0
− ṡ3

∂s1

∂z1
− ṡ4

∂s1

∂z1
− ṡ5

∂s1

∂z1
= 0, (5.37b)

−ṡ0
∂s2

∂z0
− ṡ1

∂s2

∂z0
+ ṡ2

(
1− ∂s2

∂z0

)
− ṡ3

∂s2

∂z1
− ṡ4

∂s2

∂z1
− ṡ5

∂s2

∂z1
= 0, (5.37c)

−ṡ0
∂s3

∂z0
− ṡ1

∂s3

∂z0
− ṡ2

∂s3

∂z0
+ ṡ3

(
1− ∂s3

∂z1

)
− ṡ4

∂s3

∂z1
− ṡ5

∂s3

∂z1
= 0, (5.37d)

−ṡ0
∂s4

∂z0
− ṡ1

∂s4

∂z0
− ṡ2

∂s4

∂z0
− ṡ3

∂s4

∂z1
+ ṡ4

(
1− ∂s4

∂z1

)
− ṡ5

∂s4

∂z1
= 0, (5.37e)

−ṡ0
∂s5

∂z0
− ṡ1

∂s5

∂z0
− ṡ2

∂s5

∂z0
− ṡ3

∂s5

∂z1
− ṡ4

∂s5

∂z1
+ ṡ5

(
1− ∂s5

∂z1

)
= 0. (5.37f)

We can solve equations (5.37) iteratively as follows:

1. Discretize z0 and z1 for a given number of mesh points.

2. Generate initial values for s0,s1,s2, · · · ,s5 at each mesh point.

3. Compute ∂s0
∂z0

, ∂s1
∂z0

, · · · , ∂s5
∂z0

and ∂s0
∂z1

, ∂s1
∂z1

, · · · , ∂s5
∂z1

by central differences.

4. Using the partial derivative estimates from step 3 and the arrays s1, · · · ,s5, solve the

first invariance equation (5.37a) at each mesh point to obtain a new value for s0.

5. Similarly, solve the second invariance equation (5.37b) at each mesh point using the

updated value for s0 to obtain a new value for s1 and so on.

6. Iterate the algorithm until further iterates change s0,s1,s2, · · ·s5 negligibly and the

convergence criterion (5.17) is satisfied.

51

In order to obtain a correct manifold, we need a good initial function to start the itera-

tion. One way to do this is the following: Given that z0 = s0 + s1 + s2 and z1 = s3 + s4 + s5

1. Take a quasi-equilibrium approximation of the fast steps, i.e. solve the dimensionless

equivalents of v1+ = v1−,v2+ = v2− and v4+ = v4−,v5+ = v5− for s0, . . . ,s5. We

obtain:

s0 = η1s1, (5.38a)

s2 =
γ2s1

η2
, (5.38b)

s3 =
η4s4

γ4
, (5.38c)

s5 =
γ5s4

η5
. (5.38d)

2. Substitute the values of s0,s2,s3,s5 from equations (5.38) into equations (5.31) and

(5.32) . We have:

z0 = η1s1 + s1 +
γ2s1

η2
, (5.39)

and

z1 =
η4s4

γ4
+ s4 +

γ5s4

η5
. (5.40)

3. Solve for s1 and s4 from equations (5.39) and (5.40) respectively. Solving for s1 and

s4 gives:

s1 =
z0η2

η1η2 +η2 + γ2
, (5.41)

and

s4 =
z1γ4η5

η4η5 + γ4η5 + γ5γ4
. (5.42)

52

Figure 5.13: The slow invariant manifold for the linear metabolic pathway model for
species s0 with 10 mesh points along each coordinate axis using α1, . . . ,α6 = β1, . . . ,β6 =
100,γ2 = γ4 = γ5 = η1 = η2 = η4 = η5 = 100,η3 = γ3 = 0.01,γ6 = 0.01 and η6 = 0. The
solution converges after 3 iterates with a tolerance value of 10−3.

4. Solve for the remaining initial conditions s0,s2,s3 and s5 with respect to z0 and z1.

To do this, substitute the values of s1 and s4 above into equations (5.38a) to (5.38d).

5.4.2 Results

Here we present results obtained using the lumping scheme we developed in the section

above.

Figures 5.13 and 5.14 represent the slow invariant manifold for the linear metabolic

pathway model for the species s0 and s5 respectively. This manifold is a discretized approx-

imation to the solution of the invariance equation, derived from the differential equations

53

Figure 5.14: The slow invariant manifold for the linear metabolic pathway model for
species s5 with 10 mesh points along each coordinate axis using the same parameters as
in figure 5.13. The solution converges after 3 iterates with a tolerance value of 10−3.

for the reaction. The calculation converges after 3 iterates.

5.4.3 Comparing the Full and Reduced Models

To compare the full and reduced models, we can proceed as follows:

1. Pick an initial condition (z(0)0 ,z(0)1) for the reduced model.

2. Compute the coordinates s0,s1, · · · ,s5 on the manifold, and use them as initial con-

ditions for the full model, i.e. start the integration of the full model on the slow

manifold.

54

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

t

z
0

full model

reduced model

Figure 5.15: z0 from the full and reduced model for 10 mesh points using the same param-
eters as in figure 5.13

3. Compute the trajectory of the reduced model by numerically integrating the differ-

ential equations:

dz0

dt
=

ds0

dt
+

ds1

dt
+

ds2

dt
, (5.43)

dz1

dt
=

ds3

dt
+

ds4

dt
+

ds5

dt
, (5.44)

obtained from equations (5.31) and (5.32). We compute the si at a set of discrete

mesh points and then interpolate linearly to obtain values between the mesh points

during integration.

55

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

z
1

full model

reduced model

Figure 5.16: z1 from the full and reduced model for 10 mesh points using the same param-
eters as in figure 5.13

We observe that the trajectories of the full and reduced models in figures 5.15 and 5.16

are identical. This shows that the reduced model can be used as a representation of the full

model after the decay of transients.

5.4.4 Effects of Kinetic Parameters on the Model

In this subsection, we studied the effects of the kinetic parameters on the behaviour of

the iterative solution. The kinetic parameters were chosen randomly and for αi,βi, i =

1, . . . ,6 values were generated between (0.01,100). The fast time scale parameters, i.e.

η1,η2,η4,η5,γ2,γ4,γ5, were also generated from values between (1,100). We also gener-

56

ated random numbers between (0.01,0.1) for the slow time scales, i.e. η3,γ3,γ6, and set

η6 to zero. Again, we obtained a convergent solution approximating the slow invariant

manifold.

Secondly, fixing all the parameters except η3,γ3,γ6 and setting γ3 = γ6 = 0.01 while

varying η3, we observed that η3≤ 0.01 is necessary to obtain a convergent solution. Values

of η3 greater than this lead to a divergent scheme. This is so because the assumptions made

in choosing our lumps break down, i.e. the concentrations combined within a lump no

longer interconvert on the fastest time scales of the system. Similarly, setting γ3 = η3 =

0.01 and varying γ6 and also setting η3 = γ6 = 0.01 and varying γ3, I observed similar

behaviour. I also observed that γ6,γ3 ≤ 0.01 to obtain a convergent solution, and values of

γ6,γ3 greater than this lead to a divergent scheme.

5.4.5 Discretization Error

The discretization error (D) for the two-dimensional linear metabolic pathway model is

given by:

D = ∑
i

[
(zi

0(red)
− zi

0(f ull)
)2 +(zi

1(red)
− zi

1(f ull)
)2
]√

(zi−1
0(red)
− zi

0(red)
)2 +(zi−1

1(red)
− zi

1(red)
)2

(5.45)

where zi
0(red)

,zi
0(f ull)

,zi
1(red)

,zi
1(f ull)

represents the ith time point of z0 and z1 for the full and re-

duced models respectively. The first part of this equation, i.e.
[
(zi

0(red)
− zi

0(f ull)
)2+(zi

1(red)
−

zi
1(f ull)

)2], represents the error, i.e. the difference between the full and reduced model for the

z0 and z1 component. The value in the square root represents the distance travelled along a

trajectory. The sum is an approximation of a path integral along the trajectory.

As we can see from figure 5.17, the discretization error of this problem is very small

57

5 10 15 20 25 30
1.18

1.19

1.2

1.21

1.22

1.23

1.24
x 10

−7

mesh size

d
is

c
re

ti
z
a
ti
o
n
 e

rr
o
r

Figure 5.17: Discretization error for 30 mesh points, using the same parameters as in figure
5.13. The tolerance value is 10−3.

(of order 10−7), indicating that the manifold is very accurately approximated.

5.5 Chapter Summary

In this chapter, we illustrated the lumping method in more detail using the linear pathway

model and considered a reduction of the model to one or two dimensions. We formulated

the invariance equations, obtained the reduced model with numerical examples, compared

the full and reduced models, studied the effect of the kinetic parameters and the discretiza-

tion error. Therefore, we can say that the lumping method can be used to reduce complex

models and still fully represent the original model.

58

Chapter 6

Conclusions and Future Directions

6.1 Summary and Conclusion

We have developed a lumping method for model reduction and illustrated it using the

Michaelis-Menten mechanism and the linear metabolic pathway model. For the Michaelis-

Menten mechanism, we derived the invariance equation and solved it iteratively using Mat-

lab. We then obtained the slow invariant manifold, a low-dimensional surface on which the

system evolves according to the slower time scale, which is a one-dimensional curve in the

two-dimensional phase plane for this mechanism.

For the linear metabolic pathway model, we considered both one- and two-dimensional

reductions. For the one-dimensional reduction, we obtained a convergent solution for

the SIM. Thus instead of studying a six-dimensional model, we are working with a one-

dimensional model which is easier to understand and analyse. We compared the full and

reduced models starting from initial conditions on the manifold and observed that they are

identical. We also compared the reduced model from initial conditions on the manifold

with the full model starting from off-manifold initial conditions. We observed that the tra-

jectory of the full model starting at different initial conditions is identical to the reduced

model starting from initial conditions on the manifold. This tells us that the reduced model

accurately represents the full model after the decay of transients. We considered the case

where the model represents a reaction with irreversible product formation and observed

that the rate of product formation was very small. We also studied the discretization er-

ror and observed that it is very small. This shows that the manifold is very accurately

approximated.

For the two-dimensional reduction, we obtained a convergent solution for the slow

59

invariant manifold and observed that the reduced model converges rapidly even for a small

number of mesh points (e.g N = 10). In order to get a correct slow invariant manifold, we

need to lump the species in the model correctly. To do this, we need to have the fast time

scales within the lumps and the slow time scales between the lumps as illustrated in figure

5.12, otherwise our lumping scheme leads to nonconvergent iterative processes.

Comparison of the full and reduced models was also done and we observed that they

are identical. This means that using the lumping method for model reduction we can relate

the full and reduced models, and the reduced model fully represents the original system

on the slow time scale(s). We studied the effect of the discretization error, and obtained a

small discretization error which decreases as the mesh size increases.

For both the one- and two-dimensional reductions, generating a good initial function

to start off the iteration is essential to obtain a convergent solution. We do this by using a

quasi-equilibrium approximation to the manifold (explained in detail in chapter 5).

In conclusion, the lumping method we developed in this research is an efficient method

for model reduction that would be of great importance for industrial application both locally

and abroad, e.g. in ecological modelling [1], hydrocarbon combustion [36, 41], and enzyme

kinetics[16].

6.2 Future Directions

Further work can be done by illustrating the relevance of the lumping method to more

complex models as given below:

60

6.2.1 Two Linear Pathways Model

Here one could consider a two linear pathways model that interact in one point. Some

questions that may arise here would be whether we can treat such a system using a lumped

variable to represent each linear pathway, or rather when, (i.e. under what conditions) can

this be done.

6.2.2 Biochemical Network Models

The study of biochemical network models with dense local connections and sparse global

connections would be another class of complex models that could be used to illustrate

the lumping method we developed in this research. An example is the process of photo-

synthesis where the Calvin cycle is coupled to the light-induced electron transport in the

photosystems through the NADPH and NADP levels, even though each is a subsystem that

can be studied in its own right. Here we can imagine a (lumped) variable specifying the

state of each subsystem. The rate equations for the coupled system would then be derived

from our solution of the invariance equation (3.10).

61

Bibliography

[1] Pierre Auger and Rafael Bravo de la Parra. Methods of aggregation of variables in
population dynamics. C. R. Acad. Sci., Ser. III, 323(8):665–674, 2000.

[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press, England, 1994.

[3] Marzia Bisi, Flammetta Conforto, and Laurent Desvillettes. Quasi-steady-state ap-
proximation for reaction-diffusion equations. Bull. Inst. Math. Acad. Sinica (New
series), 2(4):823–850, 2007.

[4] J.R. Bowen, A. Acrivos, and A.K. Oppenheim. Singular perturbation refinement to
quasi-steady state approximation in chemical kinetics. Chem. Eng. Sci., 18(3):177 –
188, 1963.

[5] Richard L. Burden and Douglas J. Faires. Numerical Analysis. PWS-Kent, Boston,
4th edition, 1981.

[6] S. Matt Calder and David Siegel. Properties of the Michaelis-Menten mechanism in
phase space. J. Math. Anal. Appl., 339:1044–1064, 2008.

[7] Guy Marie Côme. Radical reaction mechanisms. mathematical theory. J. Phys.
Chem., 81(25):2560–2563, 1977.

[8] Guy Marie Côme. Mechanistic modelling of homogeneous reactors: A numerical
method. Comput. & Chem. Eng., 3(1-4):603 – 609, 1979.

[9] Guy Marie Côme. The Use of Computers in the Analysis and Simulation of Complex
Reactions, volume 24 of Comprehensive Chemical Kinetics. Elsevier, 1983.

[10] Athel Cornish-Bowden. Fundamentals of Enzyme Kinetics, 3rd ed. Portland press,
1995.

[11] Pamela G. Coxson and Kenneth B. Bischoff. Lumping strategy. 1. Introductory tech-
niques and applications of cluster analysis. Ind. Eng. Chem. Res., 26(6):1239–1248,
1987.

[12] Pamela G. Coxson and Kenneth B. Bischoff. Lumping strategy. 2. A system theoreti-
cal approach. Ind. Eng. Chem., 26(10):2151–2157, 1987.

[13] S. Philip Crooke, D. Robert Tanner, and Rutherford Aris. The role of dimensionless
parameters in the Briggs-Haldane and Michaelis-Menten approximations. Chem. Eng.
Sci., 34:1354–1357, 1979.

[14] I. G. Darvey and R. F. Matlak. An investigation of a basic assumption in enzyme
kinetics using results of the geometric theory of differential equations. Bull. Math.
Biophys., 29:335–341, 1967.

62

[15] Michael J. Davis and Rex T. Skodje. Geometrical investigation of low-dimensional
manifolds in systems approaching equilibrium. J. Chem. Phys., 111(3):859–874,
1999.

[16] Allan Fersht. Enzyme Structure and Mechanism. Freeman, New York, 2nd edition,
1975.

[17] Richard J. Field, Endre Koros, and Richard M. Noyes. Oscillations in chemical sys-
tems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic
acid system. J. Am. Chem. Soc., 94(25):8649–8664, 1972.

[18] Richard J. Field and Richard M. Noyes. Oscillations in chemical systems. IV. Limit
cycle behavior in a model of a real chemical reaction. J. Chem. Phys., 60(5), 1974.

[19] D.A. Frank-Kamenetskii. Conditions for the application of the Bodenstein method in
chemical kinetics (in Russian). Zh. Fiz. Him., 14:695–700, 1940.

[20] Simon J. Fraser. The steady state and equilibrium approximations: A geometrical
picture. J. Chem. Phys., 88(8):4732–4738, 1988.

[21] Carlos E. Garcı́a, David M. Prett, and Manfred Morari. Model predictive control:
Theory and practice - a survey. Automatica, 25(3):335 – 348, 1989.

[22] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 3rd ed. Johns Hop-
kins University Press, 1996.

[23] Dimitris A. Goussis and Mauro Valorani. An efficient iterative algorithm for the
approximation of the fast and slow dynamics of stiff systems. J. Comput. Phys.,
214(1):316–346, May 2006.

[24] Steinfeld I. Jeffrey, Francisco S. Joseph, and Hase L. William. Chemical Kinetics and
Dynamics, 2nd ed. Prentice Hall, 1998.

[25] Hans G. Kaper and Tasso J. Kaper. Asymptotic analysis of two reduction methods for
systems of chemical reactions. Physica D, 165(1-2):66 – 93, 2002.

[26] Keith J. Laidler and Peter S. Bunting. The Chemical Kinetics of Enzyme Action, 2nd
ed. Clarendon, Oxford, 1973.

[27] S. H. Lam. Using CSP to understand complex chemical kinetics. Combust. Sci. and
Tech., 89(5-6):375 – 404, 1993.

[28] S. H. Lam and D. A. Goussis. Understanding complex chemical kinetics with compu-
tational singular perturbation. Symposium (International) on Combustion, 22(1):931
– 941, 1989.

[29] S. H. Lam and D. A. Goussis. The CSP method for simplifying kinetics. Int. J. Chem.
Kinet., 26(4):461–486, 1994.

63

[30] Genyuan Li and Herschel Rabitz. A general analysis of exact lumping in chemical
kinetics. Chem. Eng. Sci., 44(6):1413 – 1430, 1989.

[31] Genyuan Li and Herschel Rabitz. A general analysis of approximate lumping in
chemical kinetics. Chem. Eng. Sci., 45(4):977 – 1002, 1990.

[32] Genyuan Li and Herschel Rabitz. Combined symbolic and numerical approach to
constrained nonlinear lumping- with application to an H2/O2 oxidation model. Chem.
Eng. Sci., 51(21):4801–4816, 1996.

[33] Genyuan Li, Herschel Rabitz, and János Tóth. A general analysis of exact nonlinear
lumping in chemical kinetics. Chem. Eng. Sci., 49(3):343–361, 1994.

[34] Genyuan Li, Alison S. Tomlin, Herschel Rabitz, and János Tóth. Determination of
approximate lumping schemes by a singular perturbation method. J. Chem. Phys.,
99(5):3562–3574, 1993.

[35] U. Maas and S.B. Pope. Simplifying chemical kinetics: Intrinsic low-dimensional
manifolds in composition space. Combustion and Flame, 88(3-4):239 – 264, 1992.

[36] U. Mass, R.W. Dibble, J. Warnatz, and E. Zwicker. Combusion: Physical and
Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Forma-
tion. Springer, Berlin, 2nd edition, 1999.

[37] Leonor Michaelis and Maud L. Menten. Die kinetik der invertinwirkung. Biochem.
Z., 49(333-369):352, 1913.

[38] J. Nafe and U. Maas. A general algorithm for improving ILDMs. Combust. Theory
Model, 6(4):697–709, 2002.

[39] An Hoang Nguyen and Simon J. Fraser. Geometrical picture of reaction in enzyme
kinetics. J. Chem. Phys., 91(1):186–193, 1989.

[40] David J.M. Park. The hierarchical structure of metabolic networks and the construc-
tion of efficient metabolic simulators. J. Theor. Biol., 46(1):31 – 74, 1974.

[41] N. Peters and B. Rogg. Reduced Kinetic Mechanism for Applications in Combustion
Systems. Springer, Berlin, 2nd edition, 1993.

[42] Valery Petrov, Stephen K. Scott, and Kenneth Showalter. Mixed-mode oscillations in
chemical systems. J. Chem. Phys., 97(9), 1992.

[43] Linda Petzold and Wenjie Zhu. Model reduction for chemical kinetics: An optimiza-
tion approach. AIChE Journal, 45(4):869–886, 1999.

[44] J. Davis Philip and Rabinowitz Philip. Methods of Numerical Integration, 2nd ed.
Academic press, 2007.

64

[45] S.B. Pope and U. Maas. Implementation of simplified chemical kinetics based on
intrinsic low-dimensional manifolds. Symposium (International) on Combustion,
24(1):103 – 112, 1992.

[46] Christopher V. Rao and Adam P. Arkin. Stochastic chemical kinetics and the quasi-
steady-state assumption: Application to the gillespie algorithm. J. Chem. Phys.,
118(11):4999–5010, 2003.

[47] Marc R. Roussel. Forced convergence iterative schemes for the approximation of
invariant manifolds. J. Math. Chem., 21:385–393, 1997.

[48] Marc R. Roussel and Simon J. Fraser. Geometry of the steady state approximation:
Perturbation and accelerated convergence methods. J. of Chem. Phys., 93(2), 1990.

[49] Marc R. Roussel and Simon J. Fraser. On the geometry of transient relaxation. J.
Chem. Phys., 94(11):7106–7113, 1991.

[50] Marc R. Roussel and Simon J. Fraser. Invariant manifold methods for metabolic
model reduction. CHAOS, 11(1):196–206, 2001.

[51] Marc R. Roussel and Rui Zhu. Reducing a chemical master equation by invariant
manifold methods. J. Chem. Phys., 121(18):8716–8730, 2004.

[52] Lee A. Segel and Marshall Slemrod. The quasi-steady-state assumption: A case study
in perturbation. SIAM Review, 31(3):pp. 446–477, 1989.

[53] Rex T. Skodje and Michael J. Davis. Geometrical simplification of complex kinetic
systems. J. Phys. Chem. A, 105(45):10356–10365, 2001.

[54] Michael Spence. Cost reduction, competition, and industry performance. Economet-
rica, 52(1):101–122, 1984.

[55] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Welles-
ley, MA, 1986.

[56] Irina Surovtsova, Natalia Simus, Katrin Hübner, Sven Sahle, and Ursula Kummer.
Simplification of biochemical models: A general approach based on the analysis of
the impact of individual species and reaction on the system dynamics. BMC Syst.
Biol., 6(14):1–16, 2012.

[57] Alison S. Tomlin, Tamás Turányi, and Michael J. Pilling. Mathematical tools for the
construction, investigation and reduction of combustion mechanisms. In Michael J.
Pilling, editor, Low-Temperature Combustion and Autoignition, pages 342–375. Else-
vier, 1997.

[58] T. Turanyi, A. S. Tomlin, and M. J. Pilling. On the error of the quasi-steady-state
approximation. J. Phys. Chem., 97(1):163–172, 1993.

65

[59] James Wei and J. C. W. Kuo. Lumping analysis in monomolecular reaction systems.
analysis of the exactly lumpable system. Indust. Eng. Chem. Fundam., 8(1):114–123,
1969.

[60] A. Zagaris, H. G. Kaper, and T. J. Kaper. Analysis of the computational singular
perturbation reduction method for chemical kinetics. J. Nonlinear Sci., 14(1):59 – 91,
2004.

66

Appendix

Matlab Code for the Michaelis-Menten Mechanism
The Matlab program for the Michaelis-Menten mechanism as illustrated in chapter 4.

%Blessing Okeke 25/07/2013

%generating an array of initial conditions for s and c

global k1 k2 km1 e0 iz dsdz dcdz s c snew cnew

%parameters
k1=1;k2=1;km1=1;e0=1;
Km = (km1+k2)/k1;
n=10;
zmax = 2;
h=zmax/n; %step size
zz0=0:h:zmax;

%generating the initial functions
s = zz0;%creates a array
%s=z;
c=e0.*s./(Km+s);
z=c+s;

%computing the finite difference approximation for the derivatives

delta=1;
tol=10ˆ-3;%eps;
itr=0;

while delta>tol
itr=itr+1;
for iz=2:n

%finite within the mesh
dsdz(iz)=(s(iz+1)-s(iz-1))/(z(iz+1)-z(iz-1));
dcdz(iz)=(c(iz+1)-c(iz-1))/(z(iz+1)-z(iz-1));

end

%finite difference at initial & boundary condition

67

dsdz(1) = (s(2)-s(1))/(z(2)-z(1));
dsdz(n+1) = (s(n+1)-s(n))/(z(n+1)-z(n));
dcdz(1) =(c(2)-c(1))/(z(2)-z(1));
dcdz(n+1) = (c(n+1)-c(n))/(z(n+1)-z(n));

for iz=1:n+1
snew(iz)=fzero(@FE_s,s(iz));
%cnew(iz)=z(iz)-snew(iz);

end

for iz=1:n+1
cnew(iz)=fzero(@FE_c,c(iz));
%cnew(iz)=z(iz)-snew(iz);

end

%condition for determining convergence
delta=max(abs(s)-abs(snew))+max(abs(c)-abs(cnew));
s = snew;
c= cnew;

z=s+c;

end
figure(1)
plot(z,snew)
ylabel(’s’)
xlabel(’z’)
xlim([0 2])

figure(2)
plot(z,cnew)
ylabel(’c’)
xlabel(’z’)
xlim([0 2])

figure(3)
plot(snew,cnew)
axis([0 1.8 0 0.6])
xlabel(’s’)
ylabel(’c’)
%xlim([0 2])

hold on

68

[s,c]=meshgrid(0:.2:2, 0:.1:.6);
sdot = -k1.*(e0-c).*s+km1.*c;
cdot = k1.*(e0-c).*s-km1.*c-k2.*c;
quiver(s,c,sdot, cdot,’r’)

%numerical integration to obtain the reduced model
n1=10;
t=(0:0.01:n1);
y0=[0.5 0.5];
[t,zz] = ode45(@mm_int,t,y0);
z_new=zz(:,1)+zz(:,2);

v=k2*cnew;

figure(4)
%plot(t,z_new)
plot(z,v)
ylabel(’v=k_2*c(z)’)
xlabel(’z’)
xlim([0 2])

Matlab functions for the code above.

function result=cdot(s,c)
global k1 km1 k2 e0;
result=k1*(e0-c)*s-(km1+k2)*c;

end

function result=sdot(s,c)
global k1 km1 e0;
result=-k1*(e0-c)*s+km1*c;

end

function result=FE_c(c)
global dcdz iz snew
result=cdot(snew(iz),c)*(1-dcdz(iz))-sdot(snew(iz),c)*dcdz(iz);

end

function result=FE_s(s)
global dsdz iz c
result=sdot(s,c(iz))*(1-dsdz(iz))-cdot(s,c(iz))*dsdz(iz);

69

end

Numerical integration for the Michealis-Menten mechanism.

%numerical integration of the full model

function result=mm_int(t,zz)

global k1 k2 km1 e0

sdot=-k1*(e0-zz(2))*zz(1)+km1*zz(2);
cdot=k1*(e0-zz(2))*zz(1)-km1*zz(2)-k2*zz(2);

result=[sdot;cdot];
end

Matlab Code for the One-Dimensional Linear Pathway Model
Matlab code for the linear pathway model as illustrated in chapter 5.

%Blessing Okeke 25/07/2013

%the iterative method for the multistep enzymic conversion
%s(i-1)->s(i), i=1,2..N
%the case with 1 lump and 6 substrate

global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4
global gamma1 gamma2 gamma3 gamma4 eta1 eta2 eta3 eta4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6
global ds0dz0 ds1dz0 ds2dz0 ds3dz0 ds4dz0 ds5dz0
global s0new s1new s2new s3new s4new s5new
global s0 s1 s2 s3 s4 s5 i z0

n=5:5:30;
m=length(n);
itr_store=zeros(m,1);
for k=1:m

%matrices containing initial condition at each mesh point

%n=10;
z0max = 1;

70

h0=z0max/n(k); %step size
zz0=0:h0:z0max;

%generating the initial functions
z0 = zz0’;%creates a array

denom = eta2*eta3*eta4*eta5+eta3*eta4*eta5*gamma2+eta4*eta5*gamma2*gamma3...
+eta5*gamma2*gamma3*gamma4+gamma2*gamma3*gamma4*gamma5...
+eta1*eta2*eta3*eta4*eta5;
for i=1:n(k)+1

s0(i) = (eta1*eta2*eta3*eta4*eta5*z0(i))/denom;
s1(i) = (eta2*eta3*eta4*eta5*z0(i))/denom;
s2(i) = (eta3*eta4*eta5*gamma2*z0(i))/denom;
s3(i) = (eta4*eta5*gamma2*gamma3*z0(i))/denom;
s4(i) = (eta5*gamma2*gamma3*gamma4*z0(i))/denom;
s5(i) = (gamma2*gamma3*gamma4*gamma5*z0(i))/denom;

end

delta=1;
tol=1e-3;
itr=0;

while delta>tol
tic;
itr=itr+1; %counts the number of iteration
itr_store(k)=itr;

%computing the finite difference approximation for the derivatives
%inside the array
for i=2:n(k)

ds0dz0(i)=(s0(i+1)-s0(i-1))/(2*h0);%finite within the array
ds1dz0(i)=(s1(i+1)-s1(i-1))/(2*h0);
ds2dz0(i)=(s2(i+1)-s2(i-1))/(2*h0);
ds3dz0(i)=(s3(i+1)-s3(i-1))/(2*h0);
ds4dz0(i)=(s4(i+1)-s4(i-1))/(2*h0);
ds5dz0(i)=(s5(i+1)-s5(i-1))/(2*h0);

end

%finite difference at initial & boundary condition
ds0dz0(1) = (s0(2)-s0(1))/h0;
ds0dz0(n(k)+1) = (s0(n(k)+1)-s0(n(k)))/h0;

71

ds1dz0(1) = (s1(2)-s1(1))/h0;
ds1dz0(n(k)+1) = (s1(n(k)+1)-s1(n(k)))/h0;

ds2dz0(1) = (s2(2)-s2(1))/h0;
ds2dz0(n(k)+1) = (s2(n(k)+1)-s2(n(k)))/h0;

ds3dz0(1) = (s3(2)-s3(1))/h0;
ds3dz0(n(k)+1) = (s3(n(k)+1)-s3(n(k)))/h0;

ds4dz0(1) = (s4(2)-s4(1))/h0;
ds4dz0(n(k)+1) = (s4(n(k)+1)-s4(n(k)))/h0;

ds5dz0(1) = (s5(2)-s5(1))/h0;
ds5dz0(n(k)+1) = (s5(n(k)+1)-s5(n(k)))/h0;

%computes the solution at each array point
for i=1:n(k)+1

s0new(i)=fsolve(@FE_s0,s0(i));
end

for i=1:n(k)+1
s1new(i)=fsolve(@FE_s1,s1(i));

end

for i=1:n(k)+1
s2new(i)=fsolve(@FE_s2,s2(i));

end

for i=1:n(k)+1
s3new(i)=fsolve(@FE_s3,s3(i));

end

for i=1:n(k)+1
s4new(i)=fsolve(@FE_s4,s4(i));

end

for i=1:n(k)+1
s5new(i)=fsolve(@FE_s5,s5(i));

end

delta = max(abs(s0-s0new))+max(abs(s1-s1new))...

72

+max(abs(s2-s2new))+max(abs(s3-s3new))...
+max(abs(s4-s4new))+max(abs(s5-s5new));

%e(itr)=delta; % iterative error
s0=s0new;
s1= s1new;
s2=s2new;
s3=s3new;
s4=s4new;
s5=s5new;

%s0_store(:,itr)=s0new;
%s1_store(:,itr)=s1new;
%s2_store(:,itr)=s2new;
%s3_store(:,itr)=s3new;
%s4_store(:,itr)=s4new;
%s5_store(:,itr)=s5new;

end
tElapsed = toc;

%plot of the SIM

figure(1)
plot(z0,s0new)
xlabel(’z’)
ylabel(’s_0’)

figure(2)
plot(z0,s5new)
xlabel(’z’)
ylabel(’s_5’)

%========= comparing the full and reduced model=======================

%numerical integration of the full model
na=100000;
t=(0:100:na);
a0=interp1(z0,s0new,0.8001);
a1=interp1(z0,s1new,0.8001);
a2=interp1(z0,s2new,0.8001);
a3=interp1(z0,s3new,0.8001);
a4=interp1(z0,s4new,0.8001);

73

a5=interp1(z0,s5new,0.8001);
x0=[a0 a1 a2 a3 a4 a5];

[t,s] = ode15s(@num_int_full,t,x0);

%the full model: suming up the s’s to obtain the correpsonding z0 and z1
z_1=s(:,1)+s(:,2)+s(:,3)+s(:,4)+s(:,5)+s(:,6);

%numerical integration of the reduced model
n1=na;
t1=(0:100:n1);
y0=0.8001;
[t1,z] = ode15s(@num_int2_z,t1,y0);

%numerical integration of the full model starting from different initial
%condition on the manifold
n2=na;
t2=(0:100:n2);
xx0=[0.8001 0 0 0 0 0];

[t2,ss] = ode15s(@num_int_full,t2,xx0);

%the full model: suming up the s’s to obtain the correpsonding z0 and z1
zz_1=ss(:,1)+ss(:,2)+ss(:,3)+ss(:,4)+ss(:,5)+ss(:,6);

%plots to compare the full and reduced model wrt to t
figure(3)
plot(t,z_1,’.r’)
hold on
plot(t1,z,’-v’)
xlabel(’t’)
ylabel(’z’)
legend(’full model’,’reduced model’)
xlim([0 na])

%plots to compare the full and reduced model wrt to t within then manifold
%and wt diff ics on the manifold
figure(4)
plot(t,z_1,’.r’)
hold on
plot(t1,z,’-v’)

74

plot(t2,zz_1,’-’)
xlabel(’t’)
ylabel(’z’)
legend(’full model’,’reduced model’,’full model wt diff ics’)
xlim([0 na])

%==
%checking the case where the model represents a reaction with irreversible
%product formation i.e eta6=0

s6_update=1-(s0new+s1new+s2new+s3new+s4new+s5new);

s6_dot=(gamma6.*s5new)./(1+alpha6.*s5new+beta6.*s6_update);

figure(6)
plot(s6_dot,z0)
xlabel(’$\dot{s}_{6}(z)$’,’interpreter’,’latex’)
ylabel(’z’)
%legend(’\dot{s_6}’,’z’)

%==========discretization error================

error1 = zeros(length(z),1);
for kk=2:length(z)

distance=sqrt((z(kk-1)-z(kk))ˆ2) ;
z_part=(z(kk)-z_1(kk))ˆ2 ;
error1(kk)=z_part*distance;

end
error(k)=sum(error1);

end

figure(5)
plot(n,itr_store,’*-’)
xlabel(’mesh size’)
ylabel(’number of iterations’)

75

figure(6)
plot(n,error,’*-’)
xlabel(’mesh size’)
ylabel(’discretization error’)

Parameters file for the above code.

global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4 eta1 eta2 eta3 eta4
global gamma2 gamma3 gamma4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6

alpha1=100; alpha2 =100; alpha3 =100; alpha4 =100; alpha5=100; alpha6=100;
beta1 = 100; beta2 = 100; beta3 =100; beta4 = 100; beta5=100; beta6=100;
gamma2 = 100; gamma4 =100; gamma5=100; %1e-4

eta1 = 1; eta2 =10; eta4 =1; eta5=10;
gamma3 =1e-2; eta3 =1e-2; gamma6=1e-4; eta6=1e-4;

Matlab functions for the code above.

function result=FE_s0(s0)
global ds0dz0 i s1 s2 s3 s4 s5
result=s0dot(s0,s1(i))*(1-ds0dz0(i))-s1dot(s0,s1(i),s2(i))*ds0dz0(i)...

-s2dot(s1(i),s2(i),s3(i))*ds0dz0(i)-s3dot(s2(i),s3(i),s4(i))*ds0dz0(i)...
-s4dot(s3(i),s4(i),s5(i))*ds0dz0(i)...
-s5dot(s0,s1(i),s2(i),s3(i),s4(i),s5(i))*ds0dz0(i);

end

function result=FE_s1(s1)
global ds1dz0 i s0new s2 s3 s4 s5
result=-s0dot(s0new(i),s1)*ds1dz0(i)+s1dot(s0new(i),s1,s2(i))*(1-ds1dz0(i))...
-s2dot(s1,s2(i),s3(i))*ds1dz0(i)-s3dot(s2(i),s3(i),s4(i))*ds1dz0(i)...
-s4dot(s3(i),s4(i),s5(i))*ds1dz0(i)...
-s5dot(s0new(i),s1,s2(i),s3(i),s4(i),s5(i))*ds1dz0(i);

end

function result=FE_s2(s2)
global ds2dz0 i s0new s1new s3 s4 s5
result=-s0dot(s0new(i),s1new(i))*ds2dz0(i)...
-s1dot(s0new(i),s1new(i),s2)*ds2dz0(i)...
+s2dot(s1new(i),s2,s3(i))*(1-ds2dz0(i))-s3dot(s2,s3(i),s4(i))*ds2dz0(i)...

76

-s4dot(s3(i),s4(i),s5(i))*ds2dz0(i)...
-s5dot(s0new(i),s1new(i),s2,s3(i),s4(i),s5(i))*ds2dz0(i);

end

function result=FE_s3(s3)
global ds3dz0 i s0new s1new s2new s4 s5
result=-s0dot(s0new(i),s1new(i))*ds3dz0(i)...
-s1dot(s0new(i),s1new(i),s2new(i))*ds3dz0(i)...
-s2dot(s1new(i),s2new(i),s3)*ds3dz0(i)...
+s3dot(s2new(i),s3,s4(i))*(1-ds3dz0(i))...
-s4dot(s3,s4(i),s5(i))*ds3dz0(i)...
-s5dot(s0new(i),s1new(i),s2new(i),s3,s4(i),s5(i))*ds3dz0(i);

end

function result=FE_s4(s4)
global ds4dz0 i s0new s1new s2new s3new s5
result=-s0dot(s0new(i),s1new(i))*ds4dz0(i)...
-s1dot(s0new(i),s1new(i),s2new(i))*ds4dz0(i)...
-s2dot(s1new(i),s2new(i),s3new(i))*ds4dz0(i)...
-s3dot(s2new(i),s3new(i),s4)*ds4dz0(i)...
+s4dot(s3new(i),s4,s5(i))*(1-ds4dz0(i))...
-s5dot(s0new(i),s1new(i),s2new(i),s3new(i),s4,s5(i))*ds4dz0(i);

end

function result=FE_s5(s5)
global ds5dz0 i s0new s1new s2new s3new s4new
result=-s0dot(s0new(i),s1new(i))*ds5dz0(i)...
-s1dot(s0new(i),s1new(i),s2new(i))*ds5dz0(i)...
-s2dot(s1new(i),s2new(i),s3new(i))*ds5dz0(i)...
-s3dot(s2new(i),s3new(i),s4new(i))*ds5dz0(i)...
-s4dot(s3new(i),s4new(i),s5)*ds5dz0(i)...
+s5dot(s0new(i),s1new(i),s2new(i),s3new(i),s4new(i),s5)*(1-ds5dz0(i));

end

function result=s0dot(s0,s1)
global alpha1 beta1 eta1
result=(eta1*s1)/(1+alpha1*s0+beta1*s1)-s0/(1+alpha1*s0+beta1*s1);

end

function result=s1dot(s0,s1,s2)
global alpha1 beta1 eta1 alpha2 gamma2 eta2 beta2
result=(s0)/(1+alpha1*s0+beta1*s1)-(eta1*s1)/(1+alpha1*s0+beta1*s1)...

-(gamma2*s1)/(1+alpha2*s1+beta2*s2)+(eta2*s2)/(1+alpha2*s1+beta2*s2);

77

end

function result=s2dot(s1,s2,s3)
global alpha2 gamma2 eta2 beta2 gamma3 alpha3 eta3 beta3
result=(gamma2*s1)/(1+alpha2*s1+beta2*s2)-(eta2*s2)/(1+alpha2*s1+beta2*s2)...

-(gamma3*s2)/(1+alpha3*s2+beta3*s3)+(eta3*s3)/(1+alpha3*s2+beta3*s3);
end

function result=s3dot(s2,s3,s4)
global gamma3 alpha3 eta3 beta3 gamma4 alpha4 beta4 eta4
result=(gamma3*s2)/(1+alpha3*s2+beta3*s3)-(eta3*s3)/(1+alpha3*s2+beta3*s3)...

-(gamma4*s3)/(1+alpha4*s3+beta4*s4)+(eta4*s4)/(1+alpha4*s3+beta4*s4);
end

function result=s4dot(s3,s4,s5)
global gamma4 alpha4 beta4 eta4 gamma5 alpha5 eta5 beta5
result=(gamma4*s3)/(1+alpha4*s3+beta4*s4)-(eta4*s4)/(1+alpha4*s3+beta4*s4)...

-(gamma5*s4)/(1+alpha5*s4+beta5*s5)+(eta5*s5)/(1+alpha5*s4+beta5*s5);
end

function result=s5dot(s0,s1,s2,s3,s4,s5)
s6=1-s0-s1-s2-s3-s4-s5;
global gamma5 alpha5 eta5 beta5 gamma6 alpha6 beta6 eta6
result=(gamma5*s4)/(1+alpha5*s4+beta5*s5)-(eta5*s5)/(1+alpha5*s4+beta5*s5)...

-(gamma6*s5)/(1+alpha6*s5+beta6*s6)+(eta6*s6)/(1+alpha6*s5+beta6*s6);
end

Numerical integration of the full and reduced model.

% the reduced model

function result=num_int2_z(t1,z)
global s0new s1new s2new s3new s4new s5new z0
global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4
global gamma2 gamma3 gamma4 eta1 eta2 eta3 eta4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6

s0_in=interp1(z0,s0new,z);
s1_in=interp1(z0,s1new,z);
s2_in=interp1(z0,s2new,z);
s3_in=interp1(z0,s3new,z);

78

s4_in=interp1(z0,s4new,z);
s5_in=interp1(z0,s5new,z);

s6_in=1-s0_in-s1_in-s2_in-s3_in-s4_in-s5_in;

%computes the rhs of the rate equations

ds0dt=(eta1*s1_in)/(1+alpha1*s0_in+beta1*s1_in)...
-s0_in/(1+alpha1*s0_in+beta1*s1_in);

ds1dt=(s0_in)/(1+alpha1*s0_in+beta1*s1_in)...
-(eta1*s1_in)/(1+alpha1*s0_in+beta1*s1_in)...
-(gamma2*s1_in)/(1+alpha2*s1_in+beta2*s2_in)...
+(eta2*s2_in)/(1+alpha2*s1_in+beta2*s2_in);

ds2dt=(gamma2*s1_in)/(1+alpha2*s1_in+beta2*s2_in)...
-(eta2*s2_in)/(1+alpha2*s1_in+beta2*s2_in)...
-(gamma3*s2_in)/(1+alpha3*s2_in+beta3*s3_in)...
+(eta3*s3_in)/(1+alpha3*s2_in+beta3*s3_in);

ds3dt=(gamma3*s2_in)/(1+alpha3*s2_in+beta3*s3_in)...
-(eta3*s3_in)/(1+alpha3*s2_in+beta3*s3_in)...
-(gamma4*s3_in)/(1+alpha4*s3_in+beta4*s4_in)...
+(eta4*s4_in)/(1+alpha4*s3_in+beta4*s4_in);

ds4dt=(gamma4*s3_in)/(1+alpha4*s3_in+beta4*s4_in)...
-(eta4*s4_in)/(1+alpha4*s3_in+beta4*s4_in)...
-(gamma5*s4_in)/(1+alpha5*s4_in+beta5*s5_in)...
+(eta5*s5_in)/(1+alpha5*s4_in+beta5*s5_in);

ds5dt=(gamma5*s4_in)/(1+alpha5*s4_in+beta5*s5_in)...
-(eta5*s5_in)/(1+alpha5*s4_in+beta5*s5_in)...
-(gamma6*s5_in)/(1+alpha6*s5_in+beta6*s6_in)...
+(eta6*s6_in)/(1+alpha6*s5_in+beta6*s6_in);

result=ds0dt+ds1dt+ds2dt+ds3dt+ds4dt+ds5dt;

end

79

%numerical integration of the full model

function result=num_int_full(t,s)

global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4
global gamma2 gamma3 gamma4 eta1 eta2 eta3 eta4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6

s(7)=1-s(1)-s(2)-s(3)-s(4)-s(5)-s(6);

result=[(eta1*s(2))/(1+alpha1*s(1)+beta1*s(2))...
-s(1)/(1+alpha1*s(1)+beta1*s(2));
(s(1))/(1+alpha1*s(1)+beta1*s(2))...
-(eta1*s(2))/(1+alpha1*s(1)+beta1*s(2))...
-(gamma2*s(2))/(1+alpha2*s(2)+beta2*s(3))...
+(eta2*s(3))/(1+alpha2*s(2)+beta2*s(3));
(gamma2*s(2))/(1+alpha2*s(2)+beta2*s(3))...
-(eta2*s(3))/(1+alpha2*s(2)+beta2*s(3))...
-(gamma3*s(3))/(1+alpha3*s(3)+beta3*s(4))...
+(eta3*s(4))/(1+alpha3*s(3)+beta3*s(4));
(gamma3*s(3))/(1+alpha3*s(3)+beta3*s(4))...
-(eta3*s(4))/(1+alpha3*s(3)+beta3*s(4))...
-(gamma4*s(4))/(1+alpha4*s(4)+beta4*s(5))...
+(eta4*s(5))/(1+alpha4*s(4)+beta4*s(5));
(gamma4*s(4))/(1+alpha4*s(4)+beta4*s(5))...
-(eta4*s(5))/(1+alpha4*s(4)+beta4*s(5))...
-(gamma5*s(5))/(1+alpha5*s(5)+beta5*s(6))...
+(eta5*s(6))/(1+alpha5*s(5)+beta5*s(6));
(gamma5*s(5))/(1+alpha5*s(5)+beta5*s(6))...
-(eta5*s(6))/(1+alpha5*s(5)+beta5*s(6))...
-(gamma6*s(6))/(1+alpha6*s(6)+beta6*s(7))...
+(eta6*s(7))/(1+alpha6*s(6)+beta6*s(7))];

end

80

Matlab Code for the Two-Dimensional Linear Pathway Model
Matlab code for the two-dimensional linear pathway model.

%Blessing Okeke 25/07/2013
%main file

%the iterative method for the multistep enzymic conversion
%s(i-1)->s(i), i=1,2..N
%the case where we have 2 lumps and 6 substrates. The lumps are splitted
%equally with discretization error included

global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4 eta1 eta2 eta3 eta4
global gamma2 gamma3 gamma4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6
global ds0dz0 ds0dz1 ds1dz0 ds1dz1 ds2dz0 ds2dz1 ds3dz0 ds3dz1
global ds4dz0 ds4dz1 ds5dz0 ds5dz1
global s0new s1new s2new s3new s4new s5new
global s0 s1 s2 s3 s4 s5 i j k
global z0 z1

n=5:5:30;
m=length(n);
itr_store=zeros(m,1); %counts number of iterates
for k=1:m

z0max =1;
z1max =1;
h0=z0max/n(k); %step size
h1=z1max/n(k); %step size
zz0=0:h0:z0max; %grid on the x axis representing z0=s0+s2+s4
zz1=0:h1:z1max; %grid on the y axis representing z1=s1+s3+s5
tic; %setting timer

%generating the initial functions

[z0,z1] = meshgrid(zz0,zz1);%creates a mesh of z0 and z1

for i=1:n(k)+1
tStart=tic; %start timing
for j=1:n(k)+1
s0(i,j) = (eta1*eta2*z0(i,j))/(eta1*eta2+eta2+gamma2);
s1(i,j) = (eta2*z0(i,j))/(eta1*eta2+eta2+gamma2);

81

s2(i,j) = (gamma2*z0(i,j))/(eta1*eta2+eta2+gamma2);
s3(i,j) = (eta4*eta5*z1(i,j))/(eta4*eta5+gamma4*eta5+gamma5*gamma4);
s4(i,j) = (gamma4*eta5*z1(i,j))/(eta4*eta5+gamma4*eta5+gamma5*gamma4);
s5(i,j) = (gamma4*gamma5*z1(i,j))/(eta4*eta5+gamma4*eta5+gamma5*gamma4);
end

end

delta=1;
tol=1e-3;
itr=0;

while delta>tol

itr=itr+1;
itr_store(k)=itr;
for i=2:n(k) %represents columns

for j=2:n(k) %represents rows
%finite difference within the mesh
ds0dz0(i,j)=(s0(i,j+1)-s0(i,j-1))/(2*h0);
ds0dz1(i,j)=(s0(i+1,j)-s0(i-1,j))/(2*h1);

ds1dz0(i,j)=(s1(i,j+1)-s1(i,j-1))/(2*h0);
ds1dz1(i,j)=(s1(i+1,j)-s1(i-1,j))/(2*h1);

ds2dz0(i,j)=(s2(i,j+1)-s2(i,j-1))/(2*h0);
ds2dz1(i,j)=(s2(i+1,j)-s2(i-1,j))/(2*h1);

ds3dz0(i,j)=(s3(i,j+1)-s3(i,j-1))/(2*h0);
ds3dz1(i,j)=(s3(i+1,j)-s3(i-1,j))/(2*h1);

ds4dz0(i,j)=(s4(i,j+1)-s4(i,j-1))/(2*h0);
ds4dz1(i,j)=(s4(i+1,j)-s4(i-1,j))/(2*h1);

ds5dz0(i,j)=(s5(i,j+1)-s5(i,j-1))/(2*h0);
ds5dz1(i,j)=(s5(i+1,j)-s5(i-1,j))/(2*h1);

end
end

%outer edges and corners for s0
for j=1:n(k)

ds0dz0(1,j)=(s0(1,j+1)-s0(1,j))/h0;
ds0dz0(n(k)+1,j)=(s0(n(k)+1,j+1)-s0(n(k)+1,j))/h0;
ds0dz0(j,1)=(s0(j,2)-s0(j,1))/h0;

82

ds0dz0(j,n(k)+1)=(s0(j,n(k)+1)-s0(j,n(k)))/h0;
ds0dz1(j,1)=(s0(j+1,1)-s0(j,1))/h1;
ds0dz1(j,n(k)+1)=(s0(j+1,n(k)+1)-s0(j,n(k)+1))/h1;
ds0dz1(1,j)=(s0(2,j)-s0(1,j))/h1;
ds0dz1(n(k)+1,j)=(s0(n(k)+1,j)-s0(n(k),j))/h1;

end
ds0dz0(n(k)+1,n(k)+1)=(s0(n(k)+1,n(k)+1)-s0(n(k)+1,n(k)))/h0;
ds0dz1(n(k)+1,n(k)+1)=(s0(n(k)+1,n(k)+1)-s0(n(k),n(k)+1))/h1;

%outer edges and corners for s1
for j=1:n(k)

ds1dz0(1,j)=(s1(1,j+1)-s1(1,j))/h0;
ds1dz0(n(k)+1,j)=(s1(n(k)+1,j+1)-s1(n(k)+1,j))/h0;
ds1dz0(j,1)=(s1(j,2)-s1(j,1))/h0;
ds1dz0(j,n(k)+1)=(s1(j,n(k)+1)-s1(j,n(k)))/h0;
ds1dz1(j,1)=(s1(j+1,1)-s1(j,1))/h1;
ds1dz1(j,n(k)+1)=(s1(j+1,n(k)+1)-s1(j,n(k)+1))/h1;
ds1dz1(1,j)=(s1(2,j)-s1(1,j))/h1;
ds1dz1(n(k)+1,j)=(s1(n(k)+1,j)-s1(n(k),j))/h1;

end
ds1dz0(n(k)+1,n(k)+1)=(s1(n(k)+1,n(k)+1)-s1(n(k)+1,n(k)))/h0;
ds1dz1(n(k)+1,n(k)+1)=(s1(n(k)+1,n(k)+1)-s1(n(k),n(k)+1))/h1;

%outer edges and corners for s2
for j=1:n(k)

ds2dz0(1,j)=(s2(1,j+1)-s2(1,j))/h0;
ds2dz0(n(k)+1,j)=(s2(n(k)+1,j+1)-s2(n(k)+1,j))/h0;
ds2dz0(j,1)=(s2(j,2)-s2(j,1))/h0;
ds2dz0(j,n(k)+1)=(s2(j,n(k)+1)-s2(j,n(k)))/h0;
ds2dz1(j,1)=(s2(j+1,1)-s2(j,1))/h1;
ds2dz1(j,n(k)+1)=(s2(j+1,n(k)+1)-s2(j,n(k)+1))/h1;
ds2dz1(1,j)=(s2(2,j)-s2(1,j))/h1;
ds2dz1(n(k)+1,j)=(s2(n(k)+1,j)-s2(n(k),j))/h1;

end
ds2dz0(n(k)+1,n(k)+1)=(s2(n(k)+1,n(k)+1)-s2(n(k)+1,n(k)))/h0;
ds2dz1(n(k)+1,n(k)+1)=(s2(n(k)+1,n(k)+1)-s2(n(k),n(k)+1))/h1;

%---------------------------next lump(z1)-----------------------------

%outer edges and corners for s3

83

for j=1:n(k)
ds3dz0(1,j)=(s3(1,j+1)-s3(1,j))/h0;
ds3dz0(n(k)+1,j)=(s3(n(k)+1,j+1)-s3(n(k)+1,j))/h0;
ds3dz0(j,1)=(s3(j,2)-s3(j,1))/h0;
ds3dz0(j,n(k)+1)=(s3(j,n(k)+1)-s3(j,n(k)))/h0;
ds3dz1(1,j)=(s3(2,j)-s3(1,j))/h1;
ds3dz1(n(k)+1,j)=(s3(n(k)+1,j)-s3(n(k),j))/h1;
ds3dz1(j,1)=(s3(j+1,1)-s3(j,1))/h1;
ds3dz1(j,n(k)+1)=(s3(j+1,n(k)+1)-s3(j,n(k)+1))/h1;

end
ds3dz0(n(k)+1,n(k)+1)=(s3(n(k)+1,n(k)+1)-s3(n(k)+1,n(k)))/h0;
ds3dz1(n(k)+1,n(k)+1)=(s3(n(k)+1,n(k)+1)-s3(n(k),n(k)+1))/h1;

%outer edges and corners for s4
for j=1:n(k)

ds4dz0(1,j)=(s4(1,j+1)-s4(1,j))/h0;
ds4dz0(n(k)+1,j)=(s4(n(k)+1,j+1)-s4(n(k)+1,j))/h0;
ds4dz0(j,1)=(s4(j,2)-s4(j,1))/h0;
ds4dz0(j,n(k)+1)=(s4(j,n(k)+1)-s4(j,n(k)))/h0;
ds4dz1(1,j)=(s4(2,j)-s4(1,j))/h1;
ds4dz1(n(k)+1,j)=(s4(n(k)+1,j)-s4(n(k),j))/h1;
ds4dz1(j,1)=(s4(j+1,1)-s4(j,1))/h1;
ds4dz1(j,n(k)+1)=(s4(j+1,n(k)+1)-s4(j,n(k)+1))/h1;

end
ds4dz0(n(k)+1,n(k)+1)=(s4(n(k)+1,n(k)+1)-s4(n(k)+1,n(k)))/h0;
ds4dz1(n(k)+1,n(k)+1)=(s4(n(k)+1,n(k)+1)-s4(n(k),n(k)+1))/h1;

%outer edges and corners for s5
for j=1:n(k)

ds5dz0(1,j)=(s5(1,j+1)-s5(1,j))/h0;
ds5dz0(n(k)+1,j)=(s5(n(k)+1,j+1)-s5(n(k)+1,j))/h0;
ds5dz0(j,1)=(s5(j,2)-s5(j,1))/h0;
ds5dz0(j,n(k)+1)=(s5(j,n(k)+1)-s5(j,n(k)))/h0;
ds5dz1(1,j)=(s5(2,j)-s5(1,j))/h1;
ds5dz1(n(k)+1,j)=(s5(n(k)+1,j)-s5(n(k),j))/h1;
ds5dz1(j,1)=(s5(j+1,1)-s5(j,1))/h1;
ds5dz1(j,n(k)+1)=(s5(j+1,n(k)+1)-s5(j,n(k)+1))/h1;

end
ds5dz0(n(k)+1,n(k)+1)=(s5(n(k)+1,n(k)+1)-s5(n(k)+1,n(k)))/h0;
ds5dz1(n(k)+1,n(k)+1)=(s5(n(k)+1,n(k)+1)-s5(n(k),n(k)+1))/h1;

84

%iteration for the invariance equation

for i=1:n(k)+1
for j=1:n(k)+1

s0new(i,j)=fsolve(@FE_s0,s0(i,j));
end
end

for i=1:n(k)+1
for j=1:n(k)+1

s1new(i,j)=fsolve(@FE_s1,s1(i,j));
end
end

for i=1:n(k)+1
for j=1:n(k)+1

s2new(i,j)=fsolve(@FE_s2,s2(i,j));
end
end

for i=1:n(k)+1
for j=1:n(k)+1

s3new(i,j)=fsolve(@FE_s3,s3(i,j));
end
end

for i=1:n(k)+1
for j=1:n(k)+1

s4new(i,j)=fsolve(@FE_s4,s4(i,j));
end
end

for i=1:n(k)+1
for j=1:n(k)+1

s5new(i,j)=fsolve(@FE_s5,s5(i,j));
end
end

85

delta = max(max(abs(s0-s0new)))+max(max(abs(s1-s1new)))...
+max(max(abs(s2-s2new)))+max(max(abs(s3-s3new)))...
+max(max(abs(s4-s4new)))+max(max(abs(s5-s5new)));

%error(itr)=delta; %iterative error
s0=s0new;
s1=s1new;
s2=s2new;
s3=s3new;
s4=s4new;
s5=s5new;

%store the the values of the iterates at each point in computations
%s0_store(:,:,itr)=s0new;
%s1_store(:,:,itr)=s1new;
%s2_store(:,:,itr)=s2new;
%s3_store(:,:,itr)=s3new;
%s4_store(:,:,itr)=s4new;
%s5_store(:,:,itr)=s5new;

end
tElapsed = toc(tStart);

figure(1)
h=mesh(s0new);
set(h,’LineWidth’,1)
xlabel(’z_0’)
ylabel(’z_1’)
zlabel(’s_0’)

figure(2)
b=mesh(s5new);
set(b,’LineWidth’,1)
xlabel(’z_0’)
ylabel(’z_1’)
zlabel(’s_5’)

%========= comparing the full and reduced model=======================

86

%numerical integration of the full model

na=10000;
t=(0:100:na);
x0=[0.1568 0.1352 0.1080 0.1026 0.1278 0.1697];
[t,s] = ode15s(@num_int_full,t,x0);

%the full model: suming up the s’s to obtain the correpsonding z0 and z1
z_1=s(:,1)+s(:,2)+s(:,3);
z_2=s(:,4)+s(:,5)+s(:,6);

%numerical integration of the reduced model

testoptions=odeset(’RelTol’,1e-8,’AbsTol’,1e-8);
n1=na;
t1=(0:100:n1);
y0=[0.4000 0.4001];
[t1,z] = ode15s(@num_int2_z,t1,y0);

%plots to compare the full and reduced model wrt to t
figure(3)
plot(t,z_1,’.r’)
hold on
plot(t1,z(:,1),’-v’)
xlabel(’t’)
ylabel(’z_0’)
legend(’full model’,’reduced model’,’Location’,’SouthEast’)
xlim([0 na])

figure(4)
plot(t,z_2,’.r’)
hold on
plot(t1,z(:,2),’-v’)
xlabel(’t’)
ylabel(’z_1’)
legend(’full model’,’reduced model’)
xlim([0 na])

%==========discretization error================

87

error1 = zeros(length(z),1);
for kk=2:length(z)

distance=sqrt((z(kk-1,1)-z(kk,1))ˆ2 + (z(kk-1,2)-z(kk,2))ˆ2);

z1_part=(z(kk,2)-z_2(kk))ˆ2;
z0_part=(z(kk,1)-z_1(kk))ˆ2 ;
error1(kk)=(z0_part + z1_part)*distance;

end
error(k)=sum(error1);

end

%number of iteration versus mesh size
figure(5)
plot(n,itr_store,’-*’)
xlabel(’mesh size’)
ylabel(’number of iterates’)

%discretization error plot versus mesh size
figure(6)
plot(n,error,’-*’)
xlabel(’mesh size’)
ylabel(’discretization error’)

Parameter file for the code above.

%multistep paramater file

global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4
global eta1 eta2 eta3 eta4 gamma2 gamma3 gamma4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6

alpha1= 100; alpha2 = 100; alpha3 = 100; alpha4 = 100; alpha5=100; alpha6=100;
beta1 = 100; beta2 = 100; beta3 =100; beta4 = 100; beta5=100; beta6=100;
gamma2 = 100; gamma4 =100; gamma5=100;
eta1 = 100; eta2 = 100; eta4 =100; eta5=100;
gamma3 =1e-2; eta3 =1e-2; gamma6=1e-2; eta6=0;

Functions for the above program.

function result=FE_s0(s0)

88

global ds0dz0 ds0dz1 i j s1 s2 s3 s4 s5
result=s0dot(s0,s1(i,j))*(1-ds0dz0(i,j))...
-s1dot(s0,s1(i,j),s2(i,j))*ds0dz0(i,j)...
-s2dot(s1(i,j),s2(i,j),s3(i,j))*ds0dz0(i,j)...
-s3dot(s2(i,j),s3(i,j),s4(i,j))*ds0dz1(i,j)...
-s4dot(s3(i,j),s4(i,j),s5(i,j))*ds0dz1(i,j)...
-s5dot(s0,s1(i,j),s2(i,j),s3(i,j),s4(i,j),s5(i,j))*ds0dz1(i,j);

end

function result=FE_s1(s1)
global ds1dz0 ds1dz1 i j s0new s2 s3 s4 s5
result=-s0dot(s0new(i,j),s1)*ds1dz0(i,j)...
+s1dot(s0new(i,j),s1,s2(i,j))*(1-ds1dz0(i,j))...
-s2dot(s1,s2(i,j),s3(i,j))*ds1dz0(i,j)...
-s3dot(s2(i,j),s3(i,j),s4(i,j))*ds1dz1(i,j)...
-s4dot(s3(i,j),s4(i,j),s5(i,j))*ds1dz1(i,j)...
-s5dot(s0new(i,j),s1,s2(i,j),s3(i,j),s4(i,j),s5(i,j))*ds1dz1(i,j);

end

function result=FE_s2(s2)
global ds2dz0 ds2dz1 i j s0new s1new s3 s4 s5
result=-s0dot(s0new(i,j),s1new(i,j))*ds2dz0(i,j)...
-s1dot(s0new(i,j),s1new(i,j),s2)*ds2dz0(i,j)...
+s2dot(s1new(i,j),s2,s3(i,j))*(1-ds2dz0(i,j))...
-s3dot(s2,s3(i,j),s4(i,j))*ds2dz1(i,j)...
-s4dot(s3(i,j),s4(i,j),s5(i,j))*ds2dz1(i,j)...
-s5dot(s0new(i,j),s1new(i,j),s2,s3(i,j),s4(i,j),s5(i,j))*ds2dz1(i,j);

end

function result=FE_s3(s3)
global ds3dz0 ds3dz1 i j s0new s1new s2new s4 s5
result=-s0dot(s0new(i,j),s1new(i,j))*ds3dz0(i,j)...
-s1dot(s0new(i,j),s1new(i,j),s2new(i,j))*ds3dz0(i,j)...
-s2dot(s1new(i,j),s2new(i,j),s3)*ds3dz0(i,j)...
+s3dot(s2new(i,j),s3,s4(i,j))*(1-ds3dz1(i,j))...
-s4dot(s3,s4(i,j),s5(i,j))*ds3dz1(i,j)...
-s5dot(s0new(i,j),s1new(i,j),s2new(i,j),s3,s4(i,j),s5(i,j))*ds3dz1(i,j);

end

function result=FE_s4(s4)
global ds4dz0 ds4dz1 i j s0new s1new s2new s3new s5
result=-s0dot(s0new(i,j),s1new(i,j))*ds4dz0(i,j)...
-s1dot(s0new(i,j),s1new(i,j),s2new(i,j))*ds4dz0(i,j)...

89

-s2dot(s1new(i,j),s2new(i,j),s3new(i,j))*ds4dz0(i,j)...
-s3dot(s2new(i,j),s3new(i,j),s4)*ds4dz1(i,j)...
+s4dot(s3new(i,j),s4,s5(i,j))*(1-ds4dz1(i,j))...
-s5dot(s0new(i,j),s1new(i,j),s2new(i,j),s3new(i,j),s4,s5(i,j))*ds4dz1(i,j);

end

function result=FE_s5(s5)
global ds5dz0 ds5dz1 i j s0new s1new s2new s3new s4new
result=-s0dot(s0new(i,j),s1new(i,j))*ds5dz0(i,j)...
-s1dot(s0new(i,j),s1new(i,j),s2new(i,j))*ds5dz0(i,j)...
-s2dot(s1new(i,j),s2new(i,j),s3new(i,j))*ds5dz0(i,j)...
-s3dot(s2new(i,j),s3new(i,j),s4new(i,j))*ds5dz1(i,j)...
-s4dot(s3new(i,j),s4new(i,j),s5)*ds5dz1(i,j)...
+s5dot(s0new(i,j),s1new(i,j),s2new(i,j),s3new(i,j),s4new(i,j),s5)*(1-ds5dz1(i,j));
end

function result=s0dot(s0,s1)
global alpha1 beta1 eta1
result=(eta1*s1)/(1+alpha1*s0+beta1*s1)-s0/(1+alpha1*s0+beta1*s1);

end

function result=s1dot(s0,s1,s2)
global alpha1 beta1 eta1 alpha2 gamma2 eta2 beta2
result=(s0)/(1+alpha1*s0+beta1*s1)-(eta1*s1)/(1+alpha1*s0+beta1*s1)...

-(gamma2*s1)/(1+alpha2*s1+beta2*s2)+(eta2*s2)/(1+alpha2*s1+beta2*s2);
end

function result=s2dot(s1,s2,s3)
global alpha2 gamma2 eta2 beta2 gamma3 alpha3 eta3 beta3 k
result=(gamma2*s1)/(1+alpha2*s1+beta2*s2)-(eta2*s2)/(1+alpha2*s1+beta2*s2)...

-(gamma3(k)*s2)/(1+alpha3*s2+beta3*s3)+(eta3*s3)/(1+alpha3*s2+beta3*s3);
end

function result=s3dot(s2,s3,s4)
global gamma3 alpha3 eta3 beta3 gamma4 alpha4 beta4 eta4 k
result=(gamma3(k)*s2)/(1+alpha3*s2+beta3*s3)...
-(eta3*s3)/(1+alpha3*s2+beta3*s3)...

-(gamma4*s3)/(1+alpha4*s3+beta4*s4)+(eta4*s4)/(1+alpha4*s3+beta4*s4);
end

function result=s4dot(s3,s4,s5)
global gamma4 alpha4 beta4 eta4 gamma5 alpha5 eta5 beta5
result=(gamma4*s3)/(1+alpha4*s3+beta4*s4)-(eta4*s4)/(1+alpha4*s3+beta4*s4)...

90

-(gamma5*s4)/(1+alpha5*s4+beta5*s5)+(eta5*s5)/(1+alpha5*s4+beta5*s5);
end

function result=s5dot(s0,s1,s2,s3,s4,s5)
global gamma5 alpha5 eta5 beta5 gamma6 alpha6 beta6 eta6
s6=1-s0-s1-s2-s3-s4-s5;
result=(gamma5*s4)/(1+alpha5*s4+beta5*s5)-(eta5*s5)/(1+alpha5*s4+beta5*s5)...

-(gamma6*s5)/(1+alpha6*s5+beta6*s6)+(eta6*s6)/(1+alpha6*s5+beta6*s6);
end

Numerical integration for the full and reduced model.

%numerical integration of the full model

function result=num_int_full(t,s)

global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4
global gamma2 gamma3 gamma4 eta1 eta2 eta3 eta4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6

s(7)=1-s(1)-s(2)-s(3)-s(4)-s(5)-s(6);

result=[(eta1*s(2))/(1+alpha1*s(1)+beta1*s(2))...
-s(1)/(1+alpha1*s(1)+beta1*s(2));

(s(1))/(1+alpha1*s(1)+beta1*s(2))...
-(eta1*s(2))/(1+alpha1*s(1)+beta1*s(2))...
-(gamma2*s(2))/(1+alpha2*s(2)+beta2*s(3))...
+(eta2*s(3))/(1+alpha2*s(2)+beta2*s(3));
(gamma2*s(2))/(1+alpha2*s(2)+beta2*s(3))...
-(eta2*s(3))/(1+alpha2*s(2)+beta2*s(3))...
-(gamma3*s(3))/(1+alpha3*s(3)+beta3*s(4))...
+(eta3*s(4))/(1+alpha3*s(3)+beta3*s(4));
(gamma3*s(3))/(1+alpha3*s(3)+beta3*s(4))...
-(eta3*s(4))/(1+alpha3*s(3)+beta3*s(4))...
-(gamma4*s(4))/(1+alpha4*s(4)+beta4*s(5))...
+(eta4*s(5))/(1+alpha4*s(4)+beta4*s(5));
(gamma4*s(4))/(1+alpha4*s(4)+beta4*s(5))...
-(eta4*s(5))/(1+alpha4*s(4)+beta4*s(5))...
-(gamma5*s(5))/(1+alpha5*s(5)+beta5*s(6))...
+(eta5*s(6))/(1+alpha5*s(5)+beta5*s(6));
(gamma5*s(5))/(1+alpha5*s(5)+beta5*s(6))...
-(eta5*s(6))/(1+alpha5*s(5)+beta5*s(6))...
-(gamma6*s(6))/(1+alpha6*s(6)+beta6*s(7))...
+(eta6*s(7))/(1+alpha6*s(6)+beta6*s(7))];

91

end

% numerical integration of the reduced model

function result=num_int2_z(t1,z)
global s0new s1new s2new s3new s4new s5new z0 z1
global alpha1 alpha2 alpha3 alpha4 beta1 beta2 beta3 beta4
global gamma2 gamma3 gamma4 eta1 eta2 eta3 eta4
global alpha5 alpha6 beta5 beta6 eta5 eta6 gamma5 gamma6

s0_in=interp2(z0,z1,s0new,z(1),z(2));
s1_in=interp2(z0,z1,s1new,z(1),z(2));
s2_in=interp2(z0,z1,s2new,z(1),z(2));
s3_in=interp2(z0,z1,s3new,z(1),z(2));
s4_in=interp2(z0,z1,s4new,z(1),z(2));
s5_in=interp2(z0,z1,s5new,z(1),z(2));
s6_in=1-s0_in-s1_in-s2_in-s3_in-s4_in-s5_in;

%computes the rhs of the rate equations

ds0dt=(eta1*s1_in)/(1+alpha1*s0_in+beta1*s1_in)...
-s0_in/(1+alpha1*s0_in+beta1*s1_in);

ds1dt=(s0_in)/(1+alpha1*s0_in+beta1*s1_in)...
-(eta1*s1_in)/(1+alpha1*s0_in+beta1*s1_in)...

-(gamma2*s1_in)/(1+alpha2*s1_in+beta2*s2_in)...
+(eta2*s2_in)/(1+alpha2*s1_in+beta2*s2_in);

ds2dt=(gamma2*s1_in)/(1+alpha2*s1_in+beta2*s2_in)...
-(eta2*s2_in)/(1+alpha2*s1_in+beta2*s2_in)...
-(gamma3*s2_in)/(1+alpha3*s2_in+beta3*s3_in)...
+(eta3*s3_in)/(1+alpha3*s2_in+beta3*s3_in);

ds3dt=(gamma3*s2_in)/(1+alpha3*s2_in+beta3*s3_in)...
-(eta3*s3_in)/(1+alpha3*s2_in+beta3*s3_in)...
-(gamma4*s3_in)/(1+alpha4*s3_in+beta4*s4_in)...
+(eta4*s4_in)/(1+alpha4*s3_in+beta4*s4_in);

ds4dt=(gamma4*s3_in)/(1+alpha4*s3_in+beta4*s4_in)...
-(eta4*s4_in)/(1+alpha4*s3_in+beta4*s4_in)...
-(gamma5*s4_in)/(1+alpha5*s4_in+beta5*s5_in)...

92

+(eta5*s5_in)/(1+alpha5*s4_in+beta5*s5_in);

ds5dt=(gamma5*s4_in)/(1+alpha5*s4_in+beta5*s5_in)...
-(eta5*s5_in)/(1+alpha5*s4_in+beta5*s5_in)...
-(gamma6*s5_in)/(1+alpha6*s5_in+beta6*s6_in)...
+(eta6*s6_in)/(1+alpha6*s5_in+beta6*s6_in);

result=[ds0dt+ds1dt+ds2dt;ds3dt+ds4dt+ds5dt];
end

93

