Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diethylmethyleniminium chloride

René T. Boeré

Department of Chemistry and Biochemistry, University of Lethbridge, AB, Canada
T1K 3M4
Correspondence e-mail: boere@uleth.ca

Received 13 July 2007; accepted 17 July 2007
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.021 ; w R$ factor $=0.058$; data-to-parameter ratio $=15.3$.

The title compound, $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$, contains $\left[\mathrm{Et}_{2} \mathrm{~N}=\mathrm{CH}_{2}\right]^{+}$ and Cl^{-}ions. The $\mathrm{C}=\mathrm{N}$ double-bond distance is 1.2729 (13) \AA and the sum of the angles around the central N atom is 359.92°. There are short contacts [2.973 (1) Å] between the iminium C atom and the Cl^{-}ion and between five of the $\mathrm{C}-\mathrm{H}$ H atoms and the Cl^{-}ion, of which the shortest is 2.623 (11) \AA.

Related literature

Structures of $\left[\mathrm{Me}_{2} \mathrm{~N}=\mathrm{CH}_{2}\right]^{+}$ions with Cl^{-}(Burg, 1989), Br^{-} and I^{-}(Clark et al., 1994), and $\left[\mathrm{NiBr}_{4}\right]^{-}$(Hitchcock et al., 2003) counter-ions have been published. Strong evidence has been obtained for intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}^{-}$interactions in the title compound from a detailed NMR investigation (Mayr et al., 1997).

For related literature, see: Allen (2002); Ramakrishna et al. (1999).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=121.61$
Monoclinic, $P 2_{1} / n$
$a=6.6023$ (4) \AA
$b=15.7426$ (10) \AA
$c=7.0057$ (4) A
$\beta=106.021(1)^{\circ}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
1544 independent reflections 1500 reflections with $I>2 \sigma(I)$
Absorption correction: none
7666 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021 \quad 12$ restraints
$w R\left(F^{2}\right)=0.058 \quad$ Only H-atom coordinates refined
$S=1.06$
1544 reflections
101 parameters

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{C} 4-\mathrm{N} 1$	$1.4826(12)$	$\mathrm{C} 6-\mathrm{N} 1$	$1.2729(13)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.4808(12)$		
			$2.772(12)$
$\mathrm{C} 6 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$2.973(1)$	$\mathrm{H} 2 B \cdots \mathrm{Cl} 1^{\mathrm{iv}}$	$2.817(11)$
$\mathrm{H} 6 B \cdots \mathrm{Cl} 1$	$2.623(11)$	$\mathrm{H} 4 A \cdots \mathrm{Cl} 1{ }^{\text {ivi }}$	$2.925(14)$
$\mathrm{H} 6 A \cdots \mathrm{Cl} 1^{1 i}$	$2.664(11)$	$\mathrm{H} 5 A \cdots \mathrm{Cl} 1^{\mathrm{iv}}$	
			$117.79(8)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$121.29(8)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 4$	$120.84(8)$		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (iii) $x-1, y, z$; (iv) $x-1, y, z-1$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINTPlus (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of the NSERC and the University of Lethbridge.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2019).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2006). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Burg, A. B. (1989). Inorg. Chem. 28, 1295-1300.
Clark, G. R., Shaw, G. L., Surman, P. W. J., Taylor, M. J. \& Steele, D. (1994). J. Chem. Soc. Faraday Trans. 90, 3139-3144.
Hitchcock, P. B., Lee, T. H. \& Leigh, J. (2003). Inorg. Chim. Acta, 355, 168-174.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Mayr, H., Ofial, A. R., Würthwein, E.-U. \& Aust, N. C. (1997). J. Am. Chem. Soc. 119, 12727-12733.
Ramakrishna, T. V. V., Elias, A. J. \& Vij, A. (1999). Inorg. Chem. 38, 30223026.

Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Westrip, S. J. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o3581 [doi:10.1107/S160053680703499X]

Diethylmethyleniminium chloride

R. T. Boeré

Comment

There is considerable interest in the structural chemistry of iminium ions, in large part because they can be the cationic components of ionic liquids. The structure presented here may be compared to that of the $\left[\mathrm{Me}_{2} \mathrm{~N}=\mathrm{CH}_{2}\right] \mathrm{Cl}$ (Burg, 1989) and $\left[\mathrm{Me}_{2} \mathrm{~N}=\mathrm{CH}_{2}\right] \mathrm{Br}$ (Clark et al., 1994) structures which are reported in the literature (Refcodes VAPREJ and LILLOH, respectively; Allen, 2002). There is a short contact between the iminium carbon atom and the Cl^{-}anion of 2.973 (1) \AA. Interestingly, a similar interaction is seen in the dimethylmethyleniminium bromide, but not in the dimethyleneiminium chloride salt. Mayr, et al. have shown that specific cation-anion interactions in iminium halides ($\mathrm{C}-\mathrm{H} \cdots \mathrm{Hal}^{-}$hydrogen bonds) may be responsible for the different products that iminium ions with different counterions give in reactions with alkynes and allylsilanes (Mayr et al., 1997). C—H ${ }^{\cdots} \mathrm{Hal}^{-}$bonds rather than equilibria between ionic and covalent moieties are responsible for the anion dependence of the NMR chemical shifts of iminium ions (Mayr et al., 1997).

Experimental

The title compound was obtained from the reaction of $\mathrm{Me}_{2} \mathrm{NH}$ with 1,3,5-trichloro-1-thia-2,4,6-triazine, a reaction which was previously reported to be very susceptible to hydrolysis (Ramakrishna et al., 1999), as the only tractable product. Colourless blocks were obtained and a crystal was mounted on a glass fibre in Paratone oil and diffraction data was collected at 173 (2) K. Refinement proceeded normally, but in view of the interest in intermolecular $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Cl}^{-}$contacts, it was decided to freely refine all the H atom positions, after they were located using the HFIX command in SHELXTL, with the temperature factors set at $1.5 \times$ the attached methyl and $1.2 \times \mathrm{CH}_{2}$ carbons. A similar approach was taken by (Clark et al., 1994).

Figures

-

diethylmethyleniminium chloride

Crystal data	
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$	$F_{000}=264$
$M_{r}=121.61$	$D_{\mathrm{x}}=1.154 \mathrm{Mg} \mathrm{m}^{-3}$
	Mo Ka radiation
Monoclinic, $P 2_{1} / n$	$\lambda=0.71073 \AA$
Hall symbol: - P 2 yn	Cell parameters from 7168 reflections
$a=6.6023(4) \AA$	$\theta=2.6-28.6^{\circ}$

supplementary materials

$b=15.7426(10) \AA$
$c=7.0057$ (4) \AA
$\beta=106.0210(10)^{\circ}$
$V=699.87(7) \AA^{3}$
$Z=4$

Data collection

Bruker APEX II CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173(2) \mathrm{K}$
φ and ω scans
Absorption correction: none
7666 measured reflections
1544 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.058$
$S=1.06$
1544 reflections
101 parameters
12 restraints
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.46 \times 0.28 \times 0.25 \mathrm{~mm}$

1500 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=27.1^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-20 \rightarrow 20$
$l=-8 \rightarrow 8$

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
Only H-atom coordinates refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0289 P)^{2}+0.1779 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16$ e \AA^{-3}
Extinction correction: SHELXTL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.036 (3)

Special details

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})
x
y
z
$U_{\text {iso }} * / U_{\text {eq }}$

Cl1	$0.22927(3)$	$0.601617(15)$	$0.36447(3)$	$0.02793(10)$
C1	$1.12954(18)$	$0.72306(8)$	$0.8063(2)$	$0.0445(3)$
H1A	$1.041(2)$	$0.7606(10)$	$0.846(3)$	0.067^{*}
H1B	$1.123(3)$	$0.7328(11)$	$0.661(2)$	0.067^{*}
H1C	$1.274(2)$	$0.7299(10)$	$0.890(2)$	0.067^{*}
C5	$0.67421(19)$	$0.59059(8)$	$0.98303(18)$	$0.0368(3)$
H5A	$0.806(2)$	$0.5944(9)$	$1.090(2)$	0.055^{*}
H5B	$0.649(2)$	$0.5315(9)$	$0.937(2)$	0.055^{*}
H5C	$0.555(2)$	$0.6072(9)$	$1.038(2)$	0.055^{*}
C4	$0.67811(15)$	$0.64901(6)$	$0.81260(15)$	$0.0272(2)$
H4A	$0.5433(18)$	$0.6488(8)$	$0.7100(17)$	0.033^{*}
H4B	$0.7143(19)$	$0.7068(7)$	$0.8580(18)$	0.033^{*}
C2	$1.06293(14)$	$0.63213(7)$	$0.82196(15)$	$0.0270(2)$
H2A	$1.142(2)$	$0.5943(7)$	$0.7609(19)$	0.032^{*}
H2B	$1.080(2)$	$0.6142(8)$	$0.9549(17)$	0.032^{*}
C6	$0.78309(16)$	$0.58266(6)$	$0.54673(15)$	$0.0262(2)$
H6A	$0.8909(18)$	$0.5658(8)$	$0.4865(18)$	0.031^{*}
H6B	$0.6375(18)$	$0.5758(8)$	$0.4823(18)$	0.031^{*}
N1	$0.83797(12)$	$0.62006(5)$	$0.71424(12)$	$0.02214(17)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.02520(14)$	$0.03059(15)$	$0.02709(15)$	$-0.00273(8)$	$0.00568(9)$	$-0.00059(8)$
C1	$0.0278(5)$	$0.0331(6)$	$0.0677(8)$	$-0.0042(4)$	$0.0050(5)$	$-0.0157(6)$
C5	$0.0366(6)$	$0.0413(6)$	$0.0376(6)$	$-0.0005(5)$	$0.0184(5)$	$0.0048(5)$
C4	$0.0254(5)$	$0.0267(5)$	$0.0308(5)$	$0.0027(4)$	$0.0101(4)$	$-0.0018(4)$
C2	$0.0210(4)$	$0.0325(5)$	$0.0252(5)$	$0.0032(4)$	$0.0027(3)$	$0.0013(4)$
C6	$0.0271(5)$	$0.0243(4)$	$0.0267(5)$	$0.0001(4)$	$0.0068(4)$	$0.0016(4)$
N1	$0.0216(4)$	$0.0194(3)$	$0.0251(4)$	$0.0017(3)$	$0.0058(3)$	$0.0027(3)$

Geometric parameters ($A,{ }^{\circ}$)

C1-C2	1.5105 (16)	C4-H4A	0.978 (11)
C1-H1A	0.930 (14)	C4-H4B	0.971 (11)
C1-H1B	1.016 (14)	$\mathrm{C} 2-\mathrm{N} 1$	1.4808 (12)
C1-H1C	0.976 (14)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.968 (11)
C5-C4	1.5130 (15)	C2-H2B	0.949 (11)
C5-H5A	0.981 (13)	C6-N1	1.2729 (13)
C5-H5B	0.983 (13)	C6-H6A	0.960 (11)
C5-H5C	1.000 (13)	C6-H6B	0.949 (11)
C4-N1	1.4826 (12)		
C6 $\cdots \mathrm{Cl1} 1^{\text {i }}$	2.973 (1)	$\mathrm{H} 2 \mathrm{~B}{ }^{\text {ii } \ldots .} \mathrm{Cl} 1^{\text {iv }}$	2.772 (12)
H6B $\cdots \mathrm{Cl} 1$	2.623 (11)	$\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cl} 1$	2.817 (11)
H6A ${ }^{\text {ii } . .} \mathrm{C} 11^{\text {iii }}$	2.664 (11)	H5A ${ }^{\text {ii... }} \mathrm{Cl} 11^{\text {iv }}$	2.925 (14)
C2-C1-H1A	111.1 (11)	N1-C4-H4B	107.3 (7)
C2-C1-H1B	106.4 (10)	C5-C4-H4B	111.5 (7)
H1A-C1-H1B	110.4 (14)	H4A-C4-H4B	109.6 (10)

supplementary materials

C2-C1-H1C	$108.5(10)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$110.84(8)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	$110.1(14)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$106.6(8)$
H1B-C1-H1C	$110.3(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$110.3(7)$
C4-C5-H5A	$111.3(9)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	$107.2(8)$
C4-C5-H5B	$110.8(9)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	$113.2(8)$
H5A-C5-H5B	$110.0(13)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	$108.5(11)$
C4-C5-H5C	$109.4(9)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	$118.4(8)$
H5A-C5-H5C	$108.2(13)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	$119.0(8)$
H5B-C5-H5C	$107.1(13)$	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	$122.4(11)$
N1—C4-C5	$110.45(8)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$121.29(8)$
N1-C4-H4A	$106.1(7)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 4$	$120.84(8)$
C5-C4-H4A	$111.6(8)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$117.79(8)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) , , (iii) $x-1, y, z$; (iv) $x-1, y, z-1$.

Fig. 1

supplementary materials

Fig. 2

