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Abstract 
  
This study empirically examines the performance of the Historical Simulation with ARMA 

forecast (C&M) methodology developed by Cabedo and Moya (2003b) vis-à-vis the 

performance of the Semi-Parametric GARCH methodology developed by Barone-Adesi, 

Giannopoulos, Kostas, and Vosper (1999). Cabedo and Moya (2003b) suggest that their 

model outperforms a GARCH model. However, they use an empirical distribution to 

forecast the future risk structure in the C&M model while they impose a normal distribution 

on the future risk structure in the GARCH model. This study finds that the GARCH model 

is not outperformed by the C&M model if the future risk structure is estimated by historical 

simulation as proposed by Barone-Adesi et al. (1999). Consequently, the study finds that 

Cabedo and Moya’s (2003b) conclusion is mainly driven by the differential in forecasting the 

future distribution of risk rather than a deficiency in the GARCH model. 
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1.0 Introduction & Literature Review 

1.1 Introduction 

Managing risk in modern day corporations has become a task of overwhelming 

magnitude.  For many firms, risk management must take into account huge numbers of risk 

factors of vastly different sources and sizes.  In an increasingly complex and uncertain world, 

new techniques are being developed as an attempt to more effectively and efficiently manage 

risk.  Value-at-Risk (VaR) is one of these recently developed techniques, and has quickly 

risen to prominence in the financial industry.  

Originally the brainchild of Till Guldimann, the head of JP Morgan’s global research 

division during the 1980s, Value-at-Risk was introduced as an alternative to the previously 

popular “earnings-at-risk” (Jorion, 2001).  Once the term was published and seen in the G-

30 report in 1993, VaR’s popularity increased exponentially.  First used in financial 

institutions to quantify market risk, VaR soon proved to be flexible enough to use in any 

industry or firm for a number of different purposes.  Corporations have quickly progressed 

beyond using VaR to simply quantify risk, and have begun to control and even manage these 

risks within the VaR framework.  Though it has drawbacks like any other risk management 

tool, VaR is now the most commonly seen benchmark for measuring financial risks (Jorion, 

2001). 

Though all companies have risk in their business environments, compared to most 

conventional firms, oil companies differ in one important way: their companies’ major 

business risk is based almost solely on the price of one, single, solitary commodity: oil.  

Ironically, the price of oil also happens to be one of the most volatile in the world.  The 

average volatility of crude oil prices is more than 37% a year, which is more than two and a 

half times that of the average US stock index and more than three times that of most major 



 2

world currencies (Jorion, 2001).  Another unique property of oil is that changes in oil prices 

have an impact on economic activity, but economic activity does not have an impact on oil 

prices (Sadorsky, 1999).  Oil price risk is, and should be, the foremost concern of oil 

companies, and oil prices have unique and often seemingly inexplicable properties.  

Evidence from Giot and Laurent (2003) shows that oil prices exhibit excess kurtosis and that 

their volatility clusters over time.  These properties seriously complicate the process of 

modeling oil prices.  Volatility clusters are especially complex in terms of financial modeling, 

because they do violate the assumption of constant variance that simplifies many models.  

Volatility clusters imply that the variance changes over time as oil prices go through periods 

of exceptionally high volatility or exceptionally low volatility.   These unique properties of oil 

prices have led to the development of various techniques to capture these features and 

forecast VaR more accurately.   

  

1.2 VaR Models 

Specifically defined, “VaR summarizes the expected maximum loss (or worst loss) over a 

target horizon within a given confidence interval” (Jorion, 2001).  Hence, the “value at risk” 

in a specific time period, for example a week, can be summed up with one clear number, for 

example $10 million, at a given confidence level.  The confidence level refers to the statistical 

probability that the VaR limit will be exceeded and corresponds to a specific point on the tail 

of the risk factor’s distribution.  For example, at a 99% confidence level, there is only a one 

in a hundred chance that the losses would exceed the VaR in the relevant period.  With this 

one simple, clear number, a risk manager or senior executive can do a number of important 

things.   
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Risk managers can compare alternative investment decisions based on the “worst-case 

scenario” associated with each.  It is important to remember that the VaR number is not the 

worst possible loss; a 99% confidence level is very high, but it does not mean that the VaR 

cannot be exceeded.  Empirical tests of portfolio risk have shown that when the VaR is 

exceeded, even if it only happens once in a hundred time periods, portfolio losses are on 

average 30 to 40% higher than predicted by VaR at the 99% confidence level (Hendricks, 

1996).  At the 95% level, the user would expect the severity of violations to be even larger.  

Besides using VaR to estimate potential losses, managers can use VaR numbers to compare 

investments’ trade-offs between risk and return.  However, similar to beta measures of 

investment risks, having a higher VaR is not necessarily worse if the corresponding returns 

for the investment are significantly higher.  Alternatively, senior managers can use VaR to set 

limits on the amount of risk taken on by various divisions.  In all these ways and more, VaR 

can be used as an objective, unambiguous means of measuring, controlling, and managing a 

wide variety of risks.   

VaR is only one of many available methods of quantifying potential financial losses, and 

within the VaR framework, there are also various alternative methods of forecasting.  It is 

not enough to find a model and use it.  Model risk, described as the danger that a model is 

mis-specified or that the model parameters are incorrect, can be just as dangerous as not 

using a model at all (Jorion, 2001).  Practitioners often place great amounts of faith in their 

financial models and make large monetary commitments based on the information that their 

models provide.  If a particular model is flawed, or is not as accurate as it could be, then 

model risk would expose the asset (or portfolio) to risk levels that are higher than expected. 

This divergence of actual risk and expected, resulting from model risk, undermines risk 
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management and control. Consequently, the search for appropriate modeling techniques and 

model comparisons is an area of active research.   

To minimize (or avoid) model risks, back-testing and comparisons of models are 

commonplace (Bera and Higgins, 1993; Cabedo and Moya, 2003a; Cabedo and Moya, 2003b; 

Hendricks, 1996; Morana, 2001).  However, the results of these empirical tests are only as 

useful as the analyses used to obtain them.  When the analysis or test is flawed, the choice of 

model can be incorrect, and model risk is once again a danger.  In order to minimize model 

risk as much as possible, the models must be correctly specified and formulated in the first 

place, and in the second place, the testing of those models must be objectively and 

systematically carried out.  It is also important to properly compare newly developed models 

to existing, competing models to see if either the existing models remain superior or the 

newly developed models will outperform them; this is clearly the main objective of this 

study. 

 

1.3 Extant Literature 

Previous studies, though not many, have attempted to model oil prices with varying 

methodologies, resulting in different degrees of success.  Among these, a few studies used 

linear regression methodologies to attempt to delineate the relationship of oil prices with 

various other factors, such as stock market indexes (Faff and Brailsford, 1999; Sadorsky, 

1999).  Other studies use various market models, including the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model, to analyze the properties of oil derivatives 

and their effects on energy markets (Moosa and Al-Loughani, 1994; Panas and Ninni, 2000; 

Morana, 2001).  While all of these studies provide relatively conclusive results and manage to 

show statistically that their models fit the data sufficiently well, very few studies have 
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compared VaR models directly (Hendricks, 1996).  In fact, only one previous study 

compares VaR models using oil price data to see which model best fits the unique 

characteristics of oil prices; Cabedo and Moya (2003b) directly compare the standard 

parametric GARCH model and their newly developed Historical Simulations with ARMA 

forecasts (to be called C&M method hereafter) model.  Cabedo and Moya find that the 

GARCH methodology is inferior to their model.  This study examines whether their result is 

driven by the normality assumption imposed on the future structure of oil prices in the 

GARCH model.  An improved comparison between the two models will aid in the quest for 

more accurate modeling of oil prices. 

From the existing literature, it appears that the semi-parametric GARCH methodology 

developed by Barone-Adesi, Giannopoulos, & Vosper (1999) should have good potential for 

accurately forecasting oil’s VaR.  Their methodology not only incorporates more information 

from the historical data by adjusting for historical and forecasted variance, but it allows the 

relaxation of the assumption of constant variance that restricts the C&M model.  Morana 

(2001) found that the semi-parametric GARCH(1,1) fits oil price data well, and produces 

superior forecasts to the standard historical simulation model.  As previously mentioned, the 

C&M methodology surprisingly appears to outperform the Semi-Parametric GARCH 

methodology in their comparison.  This researcher will discover if this result is replicated 

under a second, more thorough test, as no previous study has yet provided a sufficiently 

objective and thorough comparison of these two VaR models.  To this end, each of the 

potential flaws in the methods of the existing literature is examined in turn, in order to 

clearly show the benefits and contribution of this study.  This study then attempts to fill in 

the gaps in the existing research and rectify any inconsistencies in their methodologies and 

analyses.  It is anticipated that a definitive answer will be supplied as to which methodology 
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can most accurately forecast the VaR distributions of oil. This study contributes to this 

literature by comparing the VaR forecasting ability of the Semi-Parametric GARCH model 

to the recently developed C&M under specific and equalized conditions.   
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2.0 Previous VaR Models For Oil Prices  

Forecasting VaR involves important ingredients that the researcher or the practitioner 

must deal with, including the statistical distribution underlying the risk factor, the process 

describing the mean and the variance of the risk factor, the sample period, the forecasting 

range, and the confidence interval.  The following subsections describe these important 

factors in forecasting VaR. 

  

2.1 Forecast Period  

In model comparisons, the researcher must decide on the sample period as well as the 

forecasting period. Data in the sample period is used to estimate the model and the VaR is 

predicted over the forecasting period. The performances of the VaR’s of different models 

are then compared over the forecasting period to determine if a particular model dominates 

another. Previous studies, like Cabedo and Moya (2003b) and Morana (2001), which examine 

oil price, appear to be limited in that most of the available data is used to estimate the model 

and construct the historical distribution, leaving a very short forecasting period.  In Cabedo 

and Moya, the forecasting period is only a year, and Morana only forecasts two months.  

These forecasting periods are not long enough to draw valid inferences of VaR performance.  

For an illustration of this, at a 99% confidence level, the expected number of violations in a 

year (250 trading days) is only 2.5.  Consequently, if the performance of the two models is 

close to the expected level, it is difficult to draw any reliable conclusions. 

This study attempts to perform a more thorough analysis by using historical distributions 

in both Semi-Parametric GARCH and C&M forecasts, and forecasting for a much longer 

time period.  A longer forecast period allows a better comparison of the performance of the 

two methodologies.  This study uses data covering an 18-year period.  The first five years are 
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used as the initial sample to forecast the VaR for the next observation.  After this, the 

sample period is rolled forward by one observation and the models are re-estimated to 

forecast the next VaR (also see Barone-Adesi et al. (1999)).  The dynamic forecasting 

performed by Barone-Adesi et al. is more practical and likely more accurate than the static 

forecast of Cabedo and Moya because a risk manager can update his or her sample daily to 

forecast the next VaR.  In this way, the data used to estimate the mean equation and forecast 

the VaR is constantly updated and no out of date data is used. Thus, an out-of-sample 

period of 13 years is available to assess the forecasting performance of the two competing 

models.  This rolling forecast ensures that the five-year historical distribution is as up-to-date 

and accurate as possible, and with thirteen years of forecasts to compare the two models, a 

thorough comparison using a range of criteria should provide conclusive results.  

  

2.2 Statistical Distribution 

An accurate forecast of VaR requires an accurate forecast of the future risk structure.  

Thus, the results of VaR models depend largely on how the future distribution of the risk 

factor is captured or modeled.  The simplest way of modeling the distribution of a risk factor 

is to use a basic normal distribution.  However, some researchers have attempted to use 

alternative distributions and have found that they can increase the accuracy of forecasting 

models. These alternatives include the Student-t distribution, which partially accounts for the 

fatter tails of the oil price distribution (Bollerslev, Chou, & Kroner, 1992). Another potential 

alternative is to use the historical data of the risk factor to model a distribution that directly 

reflects any unique qualities of the data and avoids misspecifying a forecast model by 

assigning an arbitrary distribution. The C&M model has good potential to model oil prices 

due to its use of this historical simulation technique.  However, their direct comparison of 
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this model to the standard GARCH model is inappropriate since under the C&M, the future 

structure of oil price is historically simulated while in their GARCH model, normality is 

assumed.  Due to the fact that oil prices display characteristics of non-normal distributions, 

this creates an uneven basis for comparison and may lead to distorted results.  As the 

historically-simulated GARCH model has already been developed by Barone-Adesi et al. in 

1999, it is only appropriate to compare these two models using the historically-simulated 

future structure of oil prices in both cases.  This study carries out this task.   

An additional contribution of this study is that it is the first study to apply the 

historically-simulated Semi-Parametric GARCH model to forecasts of VaR for oil prices.  

Although Morana (2001) applies the Semi-Parametric GARCH to oil prices, his study 

focuses on evaluating the accuracy of forward oil prices as forecasters of future oil prices.  In 

addition, Morana does not use an ARMA mean equation in the Semi-Parametric GARCH, as 

Barone-Adesi et al. (1999) recommend.  This direct comparison using the historical 

simulation to predict the future risk structure with ARMA forecasts (C&M method) and 

historical simulation to predict the future risk structure for the GARCH forecasts (Semi-

Parametric GARCH) fills this gap.   

  

2.3 Mean Equations 

Another key issue in testing VaR models is the use of mean equations.  As stated earlier, 

Barone-Adesi et al. (1999) advocate the use of Autoregressive Moving Average (ARMA) 

conditional mean equations in modeling time-series data.  Correspondingly, in Cabedo and 

Moya’s (2003b) analysis, ARMA equations are shown to greatly increase the accuracy of 

standard Historical Simulation forecasts.  An ARMA process contains an autoregressive term 

that incorporates information about the most recent period’s return, as well as a moving 
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average term that contains information about the previous period’s error term.  The process 

can be written as: 

 

 

where the term rt is the return at time t, the α  is a constant, εt is the error at time t, and β  

and σ  are coefficients of rt-1 and εt-1, respectively.  The term “AR” refers to autoregressive and 

is represented by the β rt-1 part of the above equation.  The “MA” term is the moving average 

term, and is captured by σ εt-1 in the mean equation. 

Since Cabedo and Moya (2003b) only used the AR mean equation and not the ARMA 

mean equation in conjunction with the GARCH model, it is impossible to conclude whether 

the C&M model outperforms the GARCH model as a result of the advantages of the 

methodology or the use of different mean equations.  Therefore, this analysis conducts tests 

of the accuracy of the C&M and Semi-Parametric GARCH models using ARMA mean 

equations in both cases, in order to provide an equitable comparison.  In addition, both 

models are also analyzed using an autoregressive mean process in order to clearly delineate 

the added benefit of adding the MA term to the mean equation.  This alternative and 

simplified mean equation is shown below: 

 

 

Using the same mean equations will ensure the differences in the performance of the two 

models are not driven by differentials in the mean equations. 

  

11 −− −++= tttt rr σεεβα

ttt rr εβα ++= −1

)1(

)2(
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2.4 Volatility Equation  

The key difference of the GARCH model compared to the model developed by Cabedo 

and Moya (2003b) is that the GARCH model captures time-varying volatility inherent in 

many financial times series data.  As previously mentioned, there is evidence from Giot and 

Laurent (2003) that the volatility of oil prices clusters over time.  Volatility clusters are 

especially complex in terms of financial modeling, because they do violate the assumption of 

constant variance that simplifies many models.  Volatility clusters imply that the variance 

changes over time as oil prices go through periods of exceptionally high volatility or 

exceptionally low volatility.  Since the GARCH model accounts for the varying volatility, it 

may provide superior results to those of the C&M model, which assumes constant variance.    

Specifically, in GARCH models, the errors are heteroskedastic over time and are usually 

represented by Equation (3).  

 

where εt- has a distribution D with variance ht, defined in Equation (4) below:  

1
2

1 −− ++= ttt hh θδεϖ  

where ϖ  is a constant, δ  is a coefficient, εt-1 the lagged error, and θ  is the coefficient of the 

last period’s volatility, which is denoted by ht-1. Consequently, GARCH models capture 

changing volatility through changing ht, which is influenced by the currently shocks to oil 

prices εt-1. As a result, the assumed distribution of the risk factor widens during periods of 

great volatility and contracts during tranquil periods.  By constantly adjusting to the time-

varying volatility of the oil price returns, the Semi-Parametric GARCH model makes use of 

all of the available information contained in the historical returns, as well as emphasizing the 

information from the most recent return, error, and variance.  Thus, provided oil prices 

)3(),0(~ tt hDε

)4(
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display changing volatility over time, the GARCH technique should deliver more appropriate 

VaR forecasts than the C&M method. 

 

2.5 Confidence Interval 

Another important ingredient in forecasting VaR is the confidence level that the 

researcher or the practitioner uses in estimating the VaR.  In practice, a 95% or 99% 

confidence level is the most common (Jorion, 2001); the actual confidence level chosen is a 

matter of preference and would depend on the use and requirements of each individual 

organization. 

In Morana (2001), an 80% confidence level is arbitrarily chosen, which does not reflect 

the levels used commonly in practice and may not accurately model the unique tails of these 

time-series distributions.  Many previous studies of time-series data note the distinctly fatter 

tails of time-series distributions (Bera & Higgins, 1993; Bollerslev et al., 1992; Hendricks, 

1996), and Panas and Ninni (2000) note the non-normal, leptokurtic characteristics of oil 

products on the European market.  A 99% confidence interval, therefore, may better capture 

the unique qualities of these tails, and in VaR analyses it is the tails of the distributions that 

are of vital importance.  Cabedo and Moya (2003b) use a 99% confidence level, which takes 

into account the tails of the distribution and conforms to the level chosen by the Basel 

Committee for back-testing (Jorion, 2001).  However, a 99% level has its own drawbacks, 

such as the fact that an overly high confidence level does not provide many instances where 

the VaR is exceeded, as theoretically only one in a hundred data points would exceed the 

VaR.   Consequently, it is difficult to compare VaR models at 99% confidence level since a 

meaningful comparison will require a large amount of data. A 99% confidence level also 

results in high VaRs, which is not always desirable to practitioners who must base capital 
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requirements on these forecasts, and explains why 95% confidence levels are often used in 

finance (Jorion, 2001).  In this study, both the 95% and 99% confidence levels are used, as 

both levels have different qualities that are useful in a comparison of VaR modeling 

techniques and both are commonly used in practice.   

Although both the upper and lower limits of the confidence intervals are discussed as 

though they are a pair, in reality the position in an asset (or portfolio) determines whether 

the upper or lower limit is of interest; an oil producer, for example, would have a long 

position in oil and would therefore be solely interested in price declines (the lower tail of the 

price distribution).  The lower limit would define how much of the value of his or her 

inventory is at risk.  Alternately, a heavy user of oil, such as a refiner, would have a short 

position in oil and would be adversely affected by upward price movements.  Therefore, a 

refiner would be exclusively interested in the upper tail of the price distribution.  For these 

reasons, the analysis in this study will look at both the upper and lower portions of the 

confidence intervals separately. 
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3.0 Methodologies Under Comparison 

3.1 Historical Simulation Methodology 

Historical simulation (HS) is often used to model VaR because many researchers and 

practitioners believe it is potentially one of the most accurate modeling techniques 

(Hendricks, 1996).  HS models are shown in more than one study to outperform almost any 

other type of VaR modeling technique (Cabedo and Moya, 2003b; Hendricks, 1996).  

However, historical simulation can be time-consuming, and if the necessary data are not 

routinely gathered in-house, it can be difficult to obtain enough data from outside sources.  

On the other hand, if the information is gathered as part of a daily routine, running the 

simulation and forecasting the VaR for the next period can be done quite quickly.   

The basic process to forecast VaR using historical simulation involves the formation of a 

distribution from historical return.  This distribution is formed by ranking the actual returns 

that have occurred over the in-sample period.  Once the historical distribution is formed, the 

VaR is simply taken as the return that falls at the 1st, 5th, 95th, or 99th percentile, depending on 

the confidence interval used.  The methodology developed by Cabedo and Moya in 2003 is 

more advanced, and involves first parametrically estimating the ARMA mean equation and 

generating the residuals from the model.  The residuals are ordered, the appropriate 

percentile is fed into the estimated mean equation to produce the VaR forecast. By including 

the ARMA mean equation, the C&M method can have high levels of accuracy.  However, 

their method is restricted by the assumption of constant variance.  Therefore, the GARCH 

model will potentially generate better forecasts due to its ability to incorporate time-varying 

volatility in the forecasts. 

Specifically, Cabedo and Moya first estimate the ARMA model using the Box-Jenkins’ 

methodology and generate the errors from the model (εt for t=1,…n, where n is the sample 
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size).  These errors are ranked and 1st, 5th, 95th, and 99th percentiles (say ε1, ε5, ε95, ε99, 

respectively) of the distribution are used in the estimated mean equation, to predict the 

returns at the 1st, 5th, 95th, and 99th percentiles, respectively.  For instance, the VaR at 5% in 

the ARMA model is forecasted as:  

 

 

where β̂  denotes the sample estimate of β, and so on.  In this way, not only is the historical 

information incorporated through the constant and the error term, but the most recent 

information is incorporated through the last day’s return and error and its relative 

importance is adjusted through the parametrically-estimated coefficients. 

 

3.2 Semi-Parametric GARCH Methodology 

GARCH models are a generalized version of the ARCH models originally developed by 

Engle in the early 1980s.  Bollerslev (1986) introduced the generalized version of Engle’s 

ARCH model, the GARCH, and many subsequent studies celebrate the GARCH model for 

its parsimony and flexibility (Moosa and Al-Loughani, 1994; Morana, 2001).  In fact, Bera 

and Higgins show in their 1993 study that a low-order GARCH model (GARCH(1,1)) 

models times-series data equally as well as a high-order ARCH model (ARCH(6)).  Since 

most model selection criteria take into account the number of factors that must be specified 

in the model, the GARCH model has a distinct advantage in its simplicity. 

GARCH models allow the forecaster to relax the assumption that the variance of the 

data-generating process is constant.  GARCH models incorporate a term that contains 

information about the variance of the previous period and therefore allow the variance to be 

adjusted based on what actually happened in the last relevant period.  Additionally, the use 

5115 ˆˆˆ εεσβα +−+= −− ttrr )5(
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of a non-parametric historical distribution allows the forecaster to relax the assumption that 

the future distribution of the risk factor is normal.  Previous studies show that the standard 

GARCH models can accurately forecast oil price changes (Sadorsky, 1999).  Consequently, a 

GARCH model with a non-parametric historical distribution may have the potential to 

provide superior VaR forecasts relative to the alternative available techniques, and the C&M 

model in particular.  Barone-Adesi et al. (1999) show that simulating the future distribution 

in GARCH setups delivers better VaR forecasts than the standard GARCH method. 

There are three basic ways to estimate VaR using GARCH models.  The standard 

approach involves imposing a normal distribution on the data, as was done in Cabedo and 

Moya (2003b).  Since oil prices have been shown in previous studies to have a distinctly non-

normal distribution, it is not surprising that the standard GARCH model performs 

comparatively poorly in Cabedo and Moya’s analysis.  The second possible way to forecast 

VaR using a GARCH model is by imposing an alternative, non-normal distribution on the 

data, such as a Student-t distribution.  While this method is shown in previous studies to be 

an improvement on the normal distribution (Bera and Higgins, 1993; Bollerslev et al., 1992), 

it still imposes an arbitrary distribution on the data that may not accurately capture the 

empirical characteristics of the data.  In contrast, the third method, introduced by Barone-

Adesi et al. in 1999, uses a non-parametric distribution that is formed from historical data to 

forecast the future distribution and the VaR.  In this way, a GARCH model using a historical 

distribution makes use of important sample information to forecast the future risk structure.  

Consequently, this technique will potentially circumvent one of the most troublesome 

properties of oil prices, and time-series financial data in general, that Cabedo and Moya’s 

approach cannot account for: the tendency to have volatility clustering (Bera and Higgins, 

1993; Bollerslev et al., 1992; Hendricks, 1996; Morana 2001). 
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The Semi-Parametric GARCH methodology proposed by Barone-Adesi et al. (1999) is 

an important step in VaR modeling because it alleviates the necessity of imposing an 

arbitrary, theoretical distribution on the data and does not require the use of correlation 

matrices, which quickly becomes burdensome when modeling more than one factor.  The 

methodology uses a combination of parametric and non-parametric techniques.  The first 

stage involves the parametric estimation of the coefficients of the ARMA or AR mean 

equation and the variance equation, shown above as Equations (1) or (2) and Equation (4) 

respectively.  

This variance equation is the key difference between the Semi-Parametric GARCH and 

the C&M methodologies.  In the C&M methodology, the errors are ranked, and the 1st, 5th, 

95th, and 99th percentiles of the distribution are fed directly into the mean equation, shown as 

Equation (1) or (2) above.  However, in the Semi-Parametric GARCH, the errors are 

standardized and adjusted to reflect current volatility condition before they are ranked and 

the 1st, 5th, 95th, and 99th percentiles are chosen.  Since the residuals generated from the 

estimation of the mean equation are not independently and identically distributed, they are 

divided by the of the corresponding day’s standard deviation, as shown in Equation (6) 

below, in order to normalize them.   

 

 

The standardized errors are then independently and identically distributed under the 

GARCH assumptions. These standardized errors (et, t = 1,…,n, where n is the sample size) 

are adjusted by next period’s standard deviation forecast (           ) to adapt them to current 

volatility condition as follows: 
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The error has been adjusted to the current period’s forecasted variance, which incorporates 

both historical information about the variance over the past five years through the constant 

ϖ  in Equation (4), and more recent information about the most recent volatility and 

amount of surprise in the market through the terms ht-1 and εt-1 in Equation (4).   

As with the C&M method, the adjusted standardized errors are ranked and the 1st, 5th, 

95th and 99th percentiles (say, s1, s5, s95, s99, respectively) are used in the estimated mean 

equation to predict the returns at the 1st, 5th, 95th, and 99th percentiles, respectively.  For 

instance, the VaR at 5% in the ARMA model is forecasted as:  

 

 

In sum, the process of adjusting and adapting the VaR forecasts to incorporate 

additional information about the historical and recent variance of the oil price returns may 

result in the Semi-Parametric GARCH model providing superior forecasts to those of the 

C&M model.   
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4.0 Data & Methodology  

4.1 Testing Methodology  

Eight comparisons are actually done, in order to form the most accurate picture of the 

forecast properties of both models.  The C&M and Semi-Parametric GARCH forecasts are 

compared at a 95% confidence level and a 99% confidence level, using both the AR and the 

ARMA mean equations.  The first step of the analysis is to estimate the Semi-Parametric 

GARCH and C&M model specifications, using the first five years of data.  The error terms 

from the estimation process are saved to form the historical distributions for the second step 

of the analyses.  These non-parametric distributions are used in both forecasts.  Once the 

mean equation and, in the case of the GARCH model the variance equation, are estimated 

and the distribution is formed, a VaR forecast is estimated for the next day using either the 

AR or ARMA mean equation.  This procedure is reiterated daily using a rolling 5-year 

sample for the next thirteen years.  Five comparison criteria are considered to determine the 

performance of the models. 

  

4.2 Comparison Criteria 

The five comparison criteria used to evaluate the VaR models are: 

 

1.  Actual vs. expected number of violations 

2.  Severity of violations 

3.  Summed differences between actual and forecasted values 

4.  Number of consecutive violations 

5. Conditional Coverage Likelihood Ratio (Christoffersen, 1998). 
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The first criterion compares the total number of times that the oil price exceeds its VaR 

forecast to the number of times that it was expected to do so.  For example, 5 out of 100 

times the actual price should be greater than the upper limit of the 95% confidence interval, 

but in actuality it may only be greater 4 times or 7 times.  The second criterion deals with the 

severity of the violations, when they occur.  This criterion is calculated by dividing the 

magnitude of the VaR exceedence into the limit and multiplying the ratio by 100.  This 

criterion is important because although one model may have exactly the expected number of 

violations, those violations may be severe.  The third criterion simply shows how close the 

VaR are to the actual prices.  It would conceivably be possible to draw two straight lines as a 

confidence interval and have the same number and severity of violations as a continually 

changing forecast.  However, the summed differences would show that the constantly 

adapting forecasts were much closer over time to the actual values, a result which is 

extremely important in as it indicates that the forecasts are not being overestimated more 

than necessary.  A banker who is using VaR to set his or her cash requirements will not wish 

the VaR to be any higher than it must, as holding greater reserves of cash is very costly.  The 

fourth criterion, the number of consecutive violations, is also critical because it shows not 

only how the methodology deals with periods of greater volatility, but how independent the 

violations are.  The fifth criterion, the conditional coverage likelihood ratio statistic (LRCC), 

developed by Christoffersen in 1998, also examines independence using statistical inference. 

The conditional coverage likelihood ratio is actually made up of two ratios, the 

unconditional coverage likelihood ratio (LRUC) and the independence likelihood ratio 

(LRIND).  These three likelihood ratios make up a structured system for formally evaluating 

interval forecasts.  The unconditional coverage ratio examines the likelihood that the interval 

forecast provides sufficient coverage, based on the number of expected and actual violations.  
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The statistic produced can be compared to a χ2 distribution with one degree of freedom to 

see if the ratio is significant at the appropriate level of test. For instance, if the LRUC test 

statistic is 3.246 and the χ2 distribution with one degree of freedom at the 5% level is valued 

at 3.841, then the null hypothesis that the model does not provide statistically significant 

unconditional coverage can be rejected with 95% confidence.  The formula is shown below. 
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where p is the percentage of expected violations, π is the actual percentage of violations, n0 is 

the number of times the limit was not violated, and n1 is the number of times the limit was 

violated. 

In contrast to the unconditional coverage likelihood ratio, the independence ratio 

statistic tests whether violations occur independently or cluster at some periods.  This 

independence is measured by the number of consecutive violations.  A consecutive violation 

is an instance where a violation on the upper or lower level is immediately followed by 

another violation.  This factor is extremely important because it displays whether or not the 

model can adapt quickly enough to a large increase in volatility.  Like the unconditional 

coverage statistic, the independence statistic is also compared to a χ2 distribution with one 

degree of freedom to see if the ratio is significant at the 5% level.  The formula for the 

independence ratio is shown below. 
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where π2 is the actual percentage of total violations, π01 is the actual percentage of non-

consecutive violations, π11 is the actual percentage of consecutive violations, n00 is the 

number of times the VaR was not violated non-consecutively or the total number of 
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forecasts less n01, n10 is the number of times the limit was not violated consecutively, n01 is the 

number of times the limit was violated non-consecutively, and n11 is the number of times the 

limit was violated consecutively. 

Christoffersen (1998) then states that the two statistics can be summed, as shown below, 

and compared to a χ2 distribution with two degrees of freedom to see if the conditional 

coverage, which includes both the factor of unconditional coverage and independence, is 

significant at the 5% level.   

INDUCCC LRLRLR +=  

These five comparison criteria should provide thorough and multi-faceted means 

through which the two VaR forecasting methodologies can be compared. 

  

4.3 Data  

This study uses data on daily Brent Crude oil prices for the period from May 20th, 1987 

to January 18th, 2005.  The data are obtained from the Energy Information Administration 

(EIA) of the US Department of Energy.  This time period consists of all available data 

points from the EIA, in order to perform the most thorough analysis possible.  In addition, 

the use of daily prices ensures that a large number of data points are available; in total, there 

are 4495 observations.  The first five years of data, from May 20th, 1987 to May 19th, 1992, 

are used to estimate the mean equation, and the errors are saved in order to form the 

historical distribution from which the forecasts are drawn.  After this, the sample is rolled 

forward by a day and the parameters are re-estimated to forecast the next day’s VaR. This 

process is replicated until the VaR for all the remaining observations are forecasted (in total, 

the VaRs for 3,206 data points are forecasted from May 20th 1992 to January 18th, 2005). To 

)11(
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estimate the parameters and the VaR, the oil prices are transformed into continuous return 

calculated as log(Pt/Pt-1).   

The following table displays the mean, median, and standard deviation of both the daily 

oil prices and daily returns over the entire in-sample and out-of sample periods.  It is evident 

that some years have much greater volatility than others, and that the average price of oil 

changes drastically from year to year.  

Table 1: Descriptive Statistics of Data by Year 

   PRICE RETURN 
Year Obs Mean Median Std. Dev. Mean Median Std. Dev.

              
1987 160 $18.53 $18.60 $0.97 -0.03% 0.00% 1.56%
1988 255 $14.91 $15.13 $1.47 0.03% 0.00% 2.38%
1989 254 $18.23 $18.10 $1.22 0.13% 0.12% 1.66%
1990 256 $23.76 $20.57 $7.73 0.18% 0.17% 3.49%
1991 257 $20.04 $19.70 $1.94 -0.12% -0.11% 3.38%
1992 257 $19.32 $19.48 $1.13 0.05% 0.04% 1.33%
1993 252 $17.01 $17.00 $1.53 -0.10% 0.00% 1.37%
1994 252 $15.86 $16.08 $1.40 0.03% 0.14% 1.74%
1995 253 $17.02 $16.85 $0.92 0.04% 0.18% 1.27%
1996 254 $20.64 $20.05 $2.27 0.11% 0.08% 2.19%
1997 248 $19.11 $18.83 $1.78 -0.11% -0.06% 1.73%
1998 253 $12.76 $12.61 $1.57 -0.12% -0.41% 3.10%
1999 249 $17.90 $17.55 $5.02 0.35% 0.35% 2.45%
2000 253 $28.66 $28.86 $3.39 -0.02% 0.10% 2.76%
2001 257 $24.46 $25.44 $3.41 -0.02% -0.03% 2.96%
2002 255 $24.99 $25.49 $2.94 0.21% 0.23% 2.18%
2003 258 $28.85 $28.80 $2.48 0.03% 0.15% 2.21%
2004 261 $38.26 $37.60 $5.63 0.14% 0.00% 2.36%
2005 11 $43.77 $43.75 $1.60 1.07% 0.40% 2.47%

              
Total 4495 $21.28 $19.05 $6.95 0.05% 0.00% 2.35%

  

Table 2, shown below, summarizes the descriptive statistics of the daily oil prices and 

daily returns for both the in-sample and out-of-sample periods.  It is immediately clear that 

the volatility of oil prices is high, as both the prices and returns have large standard 

deviations, and some years were exceptionally volatile, like 1990. 
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Table 2: Descriptive Statistics of Oil Prices and Returns 

 Price (US$) Return (%) 
Statistics In-Sample Out-of-Sample In-Sample Out-of-Sample

Mean  19.09394 22.15556 0.04445% 0.04897%
Std Dev 4.66248 7.49915 2.63338% 2.23505%

Skewness 2.24667 1.02756 -0.90636 0.07661
Kurtosis 6.21566 1.12799 20.62335 4.75760

1st Percentile 12.20000 10.39050 -6.96947% -5.85795%
5th Percentile 13.98700 12.35250 -3.41551% -3.50585%

95th Percentile 30.39050 36.42000 3.67962% 3.54943%
99th Percentile 38.36450 45.45200 7.79377% 5.83693%

Jarque-Bera 3156.9191 734.1610 22984.14127 3026.75762
 

In addition, it seems from Table 1 and Table 2 that the volatility of oil prices is growing 

slightly over time; as oil prices rise, there is more room for movement and a greater range of 

prices are possible.  Comparing the Jarque-Bera test statistics to a χ2 distribution with two 

degrees of freedom at the 5% level, which has a value of 5.991, suggests that the distribution 

of oil prices or returns are non-normal in both the in-sample and out-of-sample periods. 

Also, the skewness and kurtosis of the oil prices and returns are extremely non-normal, as 

both in-sample and out-of-sample prices have skewness and kurtosis with p-values of 0.00.  

The distributions of oil prices and returns appear to be positively skewed, indicating that 

there are more likely to be positive returns than negative, a conclusion which is supported by 

the fact that oil prices are generally rising over time.  In addition, the kurtosis of the 

distribution is high, meaning that it is more “peaked” than a normal distribution.  However, 

this kurtosis may be offset by the potential fat-tails of the distribution and likely does not 

mean that the distribution has a smaller standard deviation than a normal distribution.  This 

fact adds further weight to the argument that a historical, non-parametric distribution may 

provide superior forecasts to a normal distribution by incorporating these clues about oil 

price returns into the projected risk factor’s distribution.  

 



 25

Table 3: Ljung-Box Test of In-Sample Data 

Considered Lag Ljung-Box Test Statistic 
Q(12) 741.9094* 
Q(24) 823.8779* 
Q(36) 950.8926* 

*Significance level under 0.05 

It is clear from Table 3 above that the in-sample squared returns display statistically 

significant autocorrelation.  This result provides weight to the argument that the GARCH 

model may be able to provide superior forecasts to the ARMA-HS model since GARCH 

models capture changing volatility but the ARMA-HS does not.  This not only indicates that 

the GARCH model may better deal with the increasing volatility of oil prices, but that more 

accurate and flexible forecasting methods will become key as oil markets become even less 

predictable.
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5.0 Results 

The results of this analysis are quite consistent with expectations.  In all of the models, 

the 95% and 99% confidence intervals are quite similar; the 99th percentile’s band is simply 

slightly wider than the 95th’s.  However, there is evidence from the comparison criteria that 

some of the models forecast more efficiently with either the 95% or 99% confidence 

interval.  The following four sections discuss each of the forecasting methods’ results in turn, 

and the discussion section compares and contrasts the various results. 

 

5.1 Historical Simulation with AR Forecast Results 

Table 4 below shows the estimate of the constant and the AR coefficient of the 

Historical Simulation with Auto-Regressive Forecast (AR-HS) forecast mean equations.  The 

constant is extremely small, and likely indicates that the returns are slightly more likely to be 

positive than negative, on any given day.  The AR coefficient is also quite small, which 

suggests that the previous day’s return gave very little clue as to what today’s return would 

be.  

Table 4: AR-HS Mean Equation Coefficients 

Coefficient Mean Value SE of Mean T-Stat 
Constant  0.0001332194 5.421401e-06 24.57288* 

AR Coefficient 0.0512477223 0.000314 163.13092* 
*Significance level under 0.05 

The Historical Simulation with the Autoregressive mean equation (AR-HS) performs less 

than adequately in this analysis.  The AR-HS model shows statistically significant 

autocorrelation in both the Ljung-Box test of the errors and that of the squared errors.  The 

results are summarized below in Tables 5 and 6.  The raw residuals, shown in Table 5, 

exhibit autocorrelation, which suggests the AR mean equation does not completely remove 
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the autocorrelation of the returns.  In addition, the information in Table 6 indicates that the 

square errors, and thus the higher order moments, are also autocorrelated.  This fact suggests 

that the GARCH may be able to provide a superior forecast by dealing more effectively with 

the autocorrelation of the higher-order moments.  

Table 5: Ljung-Box Test of AR-HS Errors 

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  32.0604* 0.00135440
Q(24) 61.0355* 0.00004555
Q(36) 74.6588* 0.00016241

*Significance level under 0.05 

Table 6: Ljung-Box Test of AR-HS Squared Errors 

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  152.7191* 0.00000000
Q(24) 165.6505* 0.00000000
Q(36) 192.3672* 0.00000000

*Significance level under 0.05 

The results of the Value-at-Risk forecasts are summarized in Table 7, below.  The actual 

number of violations is fairly close to the expected number, although it is interesting to point 

out that there are significantly more violations of the two lower limits than the two upper 

limits.  Since the summed differences are also smaller for the upper half of the confidence 

interval than the lower, it seems that the upper half of the forecasted interval is consistently 

closer to the actual returns.  This is a positive facet of the model; a practitioner would prefer 

to forecast a smaller confidence interval and know that it is less likely to be violated.  Not 

surprisingly, the degree of violation is slightly higher for the two lower percentiles than for 

the upper two.  
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Table 7: Summary of AR-HS Results  

%tile 
Expected # 
of Violations 

# of 
Violations

Degree of 
Violation

Consecutive 
Violations 

Summed 
Differences

1%  32.05 38 74.14% 3 200.45
5% 160.25 182 46.18% 22 111.40

95% 160.25 182 49.28% 15 108.62
99% 32.05 36 39.39% 1 191.55

  

Christoffersen (1998) provides an excellent means for formally comparing interval 

forecasts using Likelihood Ratio statistics.  These are summarized below in Table 8 for the 

AR-HS model.  These ratios allow the researcher to look at the results in Table 7 and test 

whether the obtained violations and the conservative violations are significantly different 

from their expected values.  For instance, someone may look at the difference between the 

expected number of violations and the actual number of violations and think that the 

number of violations looks too high.  However, Christoffersen’s Unconditional Coverage 

Likelihood Ratio (LRUC) offers a formal way to test whether the 182 actual violations are 

statistically different from the expected violations at some significance level (usually 5%).  

Similarly, the researcher may be unable to judge whether the number of consecutive 

violations produced by the AR-HS model is acceptable. 

The Independence Likelihood Ratios (LRIND) suggest that the number of consecutive 

violations at the 1st, 5th, and 99th confidence levels are too high, and that the AR-HS is not 

producing sufficiently independent forecasts at these confidence levels.  Not surprisingly, 

when the two ratios are summed to form the Conditional Coverage Likelihood Ratio (LRCC), 

it becomes apparent that the conditional coverage is not sufficient at any of the percentiles 

but the 95th.   Therefore, it is concluded that the AR-HS delivers too many consecutive 

violations of the VaR on the whole, although the number of actual violations at all four 

percentiles is acceptably close to the expected number.  Overall, the AR-HS model does not 

forecast the VaR of oil prices adequately. 



 29

Table 8: Likelihood Ratio Statistics for AR-HS Results 

Percentile LRUC LRIND LRCC 
1%  1.05313 21.86676* 22.91989*
5% 2.98260 11.58218* 14.56478*

95% 2.98260 2.10882 5.09142
99% 0.47289 7.806798* 8.27968*

      *Results show statistically significant differences from expected values at the 0.05 level 

As Graphs 1 and 2 show that although the confidence intervals seem to hug the actual 

returns quite closely, the forecasts are not very flexible.  They do vary slightly from day 

to day, but overall the forecasts do not seem to mirror the true volatility of the oil prices 

very closely.  In addition, both the 95% and, more obviously, the 99% intervals seem to 

be noticeably wider in the first portion of the out-of-sample period.  It seems that the AR-

HS model was more likely to overestimate the VaR forecast when the variance of the 

returns was actually lower; this may be an area for future research.  In sum, the forecasts 

seem to follow the real returns fairly closely, if not flexibly. 
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Graph 1: AR-HS Results – 95% Confidence Interval 
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Graph 2: AR-HS Results – 99% Confidence Interval  
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5.2 Historical Simulation with ARMA Forecast Results 

The average coefficients of the mean equations for the Historical Simulation with 

ARMA forecast (ARMA-HS) are shown below in Table 9.  As with the AR-HS model, the 

constant is quite small, but it is interesting to note that with the addition of the MA term, the 

coefficient of the AR term becomes not only more heavily weighted, but negative.  This 

suggests that if the previous day’s return is large and negative, the mean equation would be 

strongly weighted with a large, positive AR term.  The MA term has a positive and fairly 

large coefficient, which suggests that the previous day’s error has a significant effect on the 

forecast.  It is interesting to note how much the addition of the MA term to the mean 

equation changes the estimation of the model, yet there seems to be little difference in the 

resulting forecasts. 

Table 9: ARMA-HS Mean Equation Coefficients  

Coefficient Mean Value SE of Mean T-Stat 
Constant  0.0001319821 5.452439e-06 24.20607*

AR Coefficient -0.2006616194 0.005191 -38.65555*
MA Coefficient 0.2559199659 0.005385 47.52106*

*Significance level under 0.05 

As previously stated, the ARMA-HS model has surprisingly similar results to the AR-HS 

model, although with a few key differences.  Once again, as with the AR-HS model, the 

ARMA-HS shows statistically significant autocorrelation in the Ljung-Box tests of both the 

raw residuals and the squared, shown in Tables 10 and 11.  This may be one reason that the 

ARMA-HS model, with the addition of the moving average term in the mean equation, is 

unable to outperform the AR-HS; it does not appear to deal with the higher-order auto-

correlation of the residuals any better than the AR-HS, despite the addition of the moving 

average error term.  The violations and other performance statistics are summarized in Table 

12 below. 
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Table 10: Ljung-Box Test of ARMA-HS Errors 

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  31.9882* 0.00138958
Q(24) 60.7833* 0.00004948
Q(36) 74.4904* 0.00017031

*Significance level under 0.05 

Table 11: Ljung-Box Test of ARMA-HS Squared Errors  

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  152.8254* 0.00000000
Q(24) 165.6682* 0.00000000
Q(36) 192.3460* 0.00000000

*Significance level under 0.05 

Although the results of the ARMA-HS forecasts are very similar to those of the AR-HS, 

particularly at the 1% and 5% level, the ARMA mean equation appears to better deal with 

the upper limits of the interval forecasts than the AR mean equation does.  However, 

although the ARMA-HS has both fewer actual violations and a few less consecutive 

violations than the AR-HS, it is apparent upon further examination that the degree of 

violation is slightly higher at all levels in the ARMA-HS forecasts.  Since the summed 

differences are extremely similar between the two models, practitioners would have to decide 

whether to accept a few more violations if the violations in question were slightly less severe 

or vice versa.  Nevertheless, the LR statistics in Table 13 give a more concrete method of 

assessing the efficiency of the forecast intervals. 

Table 12: Summary of ARMA-HS Results 

Percentile 
Expected # 
of Violations 

# of 
Violations

Degree of 
Violation 

Consecutive 
Violations 

Summed 
Differences 

1%  32.05 38 75.06% 3 200.23
5% 160.25 183 46.21% 23 111.66

95% 160.25 179 50.55% 12 108.63
99% 32.05 34 42.09% 1 191.06
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Like the AR-HS model, the ARMA-HS model has only one percentile, the 95th, that 

provides sufficient conditional coverage.  The ARMA-HS provides sufficient unconditional 

coverage at all four percentiles, just as the AR-HS does.  These results suggest there is no 

significant difference between the two C&M models. Therefore, it appears the MA term 

does not add anything significant from the VaR perspective.  This is evidence of why the 

five comparison criteria are all crucial to a thorough comparison.   

Table 13: Likelihood Ratio Statistics for ARMA-HS Results 

Percentile LRUC LRIND LRCC 
1%  1.05313 21.86676* 22.91989*
5% 3.25730 13.11851* 16.37580*

95% 2.22866 0.42590 2.65456
99% 0.11751 7.83817* 7.95568*

*Results show statistically significant differences from expected values at the 0.05 level 

 

Graphs 3 and 4, below, display forecasts almost identical to those of the AR-HS, only 

with slightly more variance on a daily basis; the ARMA-HS also appears inflexible overall. 
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Graph 3: ARMA-HS Results – 95% Confidence Interval 
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Graph 4: ARMA-HS Results – 99% Confidence Interval 

In review, the results of the ARMA-HS forecasts are mixed relative to the preceding 

model. The ARMA-HS does not provide sufficient conditional coverage or independence at 

the 1%, 5%, or 99% level, but like the AR-HS model has sufficient unconditional coverage 

at all four percentiles.  The similarity in performance between the AR-HS and the ARMA-

HS suggests that the addition of the MA term does not significantly improve the 

specification of the mean equation from the Value-at-Risk perspective. Clearly, neither 

model is ideal nor do either the AR-HS or the ARMA-HS appear to deal adequately with the 

interdependence of the oil price return volatility.  It may be that the two Semi-Parametric 

GARCH models, discussed in the following two sections, may be more successful in 

capturing the volatility clustering and deliver more independent Value-at-Risk violations.  
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5.3 Semi-Parametric GARCH with AR Forecast Results 

Table 14 displays the constant and coefficient estimates of the Semi-Parametric GARCH 

with AR Forecast (AR-GARCH) mean equation, which are very similar to those of the AR-

HS mean equation.  Both the constant and AR coefficient are slightly larger than those of 

the AR-HS; this may indicate that the forecasts are slightly more skewed to the positive side 

and that the last day’s return provides more information to the GARCH forecast than the 

C&M model.  

Table 14: AR-GARCH Mean and Variance Equation Coefficients  

Coefficient Mean Value SE of Mean T-Stat 
 Mean Equation Constant 0.0003883944 9.958302e-06 39.00201*

AR Coefficient 0.0658380959 0.000270 243.51320*
Variance Equation Constant 0.0000207258 9.393505e-07 22.06137*

Variance Error Coefficient 0.0857233801 0.000554 154.66509*
Variance Coefficient 0.8788461594 0.002524 348.19369*

*Significance level under 0.05 

The AR-GARCH model performs very well in modeling the VaR for oil prices.  As 

Tables 15 and 16 below display, the AR-GARCH, unlike the C&M models, produces errors 

and squared errors that are not significantly autocorrelated.  This fact reflects the GARCH 

model’s ability to remove dependence in higher order moments of the oil price series. This 

suggests that the GARCH model captures the conditional volatility of the returns better and, 

as a consequence, may be able to deliver better VaR forecasts than the method suggested by 

Cabedo and Moya (2003b).  Overall, the AR-GARCH forecasts are superior to those from 

the C&M models in a number of ways, as shown in the results to follow. 

Table 15: Ljung-Box Test of AR-GARCH Errors 

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  11.3216 0.50157894
Q(24) 28.8315 0.22653749
Q(36) 41.7290 0.23575275

*Significance level under 0.05 
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Table 16: Ljung-Box Test of AR-GARCH Squared Errors 

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  17.5169 0.13116555
Q(24) 26.7525 0.31611938
Q(36) 35.4471 0.49470357

*Significance level under 0.05 

The results of the AR-GARCH model are slightly mixed.  For example, while the 5th 

percentile actually has less than the expected number of violations, it has twice as many 

consecutive violations as the 95th percentile.  One very interesting fact to note is that the 

degree of violations for the 1st percentile is drastically higher than that of the other 

percentiles; in fact, almost double that of the 99th percentile.  This is surprising, because the 

summed differences of the 1st percentile are higher than the 99th, which would suggest that 

the forecasts of the 1st percentile are more conservative.  However, the large degree of 

violation suggests that a few very large negative returns were not anticipated, which could be 

a serious problem in practice.  The AR-GARCH, as predicted, displays much fewer 

consecutive violations than the C&M models, a fact which will be discussed further in the 

next section.   

Table 17: Summary of AR-GARCH Results 

Percentile 
Expected # 
of Violations 

# of 
Violations

Degree of 
Violation 

Consecutive 
Violations 

Summed 
Differences 

1%  32.05 35 62.68% 1 180.49
5% 160.25 158 35.93% 12 116.11

95% 160.25 169 39.32% 6 107.50
99% 32.05 34 28.51% 0 173.24

  

The LR statistics for the AR-GARCH model are assuredly the best out of all four 

models.  The LRUC statistics indicate that the model provides sufficient unconditional 

coverage at all four percentiles, and the LRIND statistics indicate sufficient independence for 

all but the 1st percentile.  Accordingly, the LRCC statistics for the 5th, 95th, and 99th percentiles 
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show that the number of actual violations and consecutive violations are not significantly 

different from their expected values.  These are very good results, and although the 1st 

percentile’s LRIND and LRCC values are statistically significantly different from their expected 

values, this is due to only one single consecutive violation versus the expected value of 0.32 

consecutive violations.  Overall, the forecasts produced by the AR-GARCH are very good. 

Table 18: Likelihood Ratio Statistics for AR-GARCH Results 

Percentile LRUC LRIND LRCC 
1%  0.26631 7.82097* 8.08728*
5% 0.03340 2.19502 2.22843

95% 0.49447 1.18414 1.67861
99% 0.11751 0.72912 0.84663

*Results show statistically significant differences from expected values at the 0.05 level 

It is immediately clear from the two graphs below that the GARCH model produces a 

vastly superior forecast relative to the two C&M models in terms of flexibility of the VaR 

bands.  This additional flexibility is driven by the changing volatility in returns which the 

Semi-Parametric GARCH captures, while the C&M models are restricted by the assumption 

of constant variance.  From the graphs, it is evident why the summed differences of the AR-

GARCH are lower; the intervals seem to adjust much more quickly to changing volatility and 

the forecasted values follow the actual returns very well. 
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Graph 5: AR-GARCH Results – 95% Confidence Interval 
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Graph 6: AR-GARCH Results – 99% Confidence Interval  
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In sum, it appears that the AR-GARCH provides very good forecasts, but is better able 

to forecast the upper half of the confidence interval than the lower half.  Therefore, this 

methodology is very sound, and provides superior forecasts compared to the C&M method. 

  

5.4 Semi-Parametric GARCH with ARMA Forecast Results 

Interestingly, the coefficients of the Semi-Parametric GARCH with ARMA Forecast 

(ARMA-GARCH) mean equation are similar to those of the preceding models in different 

ways.  The values, shown below in Table 19, are similar in structure to those of the ARMA-

HS; for instance, the constant is small and positive, the AR coefficient is relatively large and 

negative, and the MA coefficient is relatively large and positive.  In all of these ways, the 

coefficients mirror those of the ARMA-HS model.  However, they also mirror those of the 

AR-GARCH model in that they are all significantly larger than the ARMA-HS values, just as 

the AR-GARCH values were larger than those of the AR-HS.  In this way, it appears that 

the GARCH models seem to place more weight on the last day’s return and error, and also 

that the GARCH models, through the slightly larger, positive constant, seem to adjust for 

the fact that returns are more often positive than negative over time (hence the large increase 

in oil prices over time). 

Table 19: ARMA-GARCH Mean Equation Coefficients 

Coefficient Mean Value SE of Mean T-Stat 
Mean Equation Constant 0.0005257460 1.378129e-05 38.14926*

AR Coefficient -0.3306019607 0.003941 -83.89695*
MA Coefficient 0.4027207864 0.004026 100.02983*

Variance Equation Constant 0.0000180929 5.343464e-07 33.85992*
Variance Error Coefficient 0.0855338155 0.000546 156.56372*

Variance Coefficient 0.8860899573 0.001665 532.18514*
*Significance level under 0.05  
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The results of the ARMA-GARCH forecast are almost completely identical to those of 

the AR-GARCH.  The results of the Ljung-Box test of the standardized errors and squared 

errors generated from the ARMA-GARCH are shown in Tables 20 and 21 below.  As with 

the preceding GARCH model, the squared errors are not significantly autocorrelated.  This 

indicates that the GARCH process is successfully removing autocorrelation from the higher-

order moments.  This result is encouraging, as the ARMA-GARCH is producing very good 

forecast data and effectively modeling the time-varying volatility of the returns. 

Table 20: Ljung-Box Test of ARMA-GARCH Errors 

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  10.8162 0.54473668
Q(24) 28.6217 0.23469229
Q(36) 42.0406 0.22566554

*Significance level under 0.05 

Table 21: Ljung-Box Test of ARMA-GARCH Squared Errors  

Considered Lag Ljung-Box Test Statistic Significance Level 
Q(12)  17.4378 0.13385699
Q(24) 27.1697 0.29660537
Q(36) 35.4200 0.49599104

*Significance level under 0.05 

Similar to the AR-GARCH, the ARMA-GARCH seems to deal better with the upper 

limits of the interval forecast than the lower.  Although there are fewer actual violations on 

the lower level, the degree of violations, the number of consecutive violations, and the 

summed differences are all better for the two upper percentiles.  Once again, just as with the 

AR-GARCH model, the ARMA-GARCH model has a very large degree of violation for the 

1st percentile.  Since the summed differences are higher, and the number of violations is so 

low, it is odd that the degree of violations for the 1% limit is so high.  As is the case with the 

AR-GARCH model, the ARMA-GARCH produces the highest quality results for the two 

upper limits, and the 95% limit in particular.  This indicates, as previously mentioned, that 
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although the results at all four percentiles were more than adequate, the VaR forecasts 

generated would be most useful for someone holding a short position in oil.   

Table 22: Summary of ARMA-GARCH Results 

Percentile 
Expected # 
of Violations 

# of 
Violations

Degree of 
Violation 

Consecutive 
Violations 

Summed 
Differences 

1%  32.05 31 64.39% 1 179.60
5% 160.25 158 35.31% 11 116.32

95% 160.25 168 39.06% 7 108.20
99% 32.05 34 28.45% 1 174.32

  

In addition to the difference between the upper and lower limits, the analysis shows a 

significant difference between the 95% confidence interval and the 99% confidence interval.  

The LR statistics, shown in Table 23 below, clearly display the fact that the 5th and 95th 

percentiles have statistically sufficient conditional coverage, while the 1st and 99th percentiles 

do not.  The 1% and 99% interval forecasts have sufficient unconditional coverage, but the 

fact that both forecasts have even one single consecutive violation is enough to fail to reject 

the null hypothesis that the forecasts are not independent.  As previously mentioned, some 

judgment can be used to decide whether the variance of the actual number of consecutive 

violations, in this case 1, from the number of expected consecutive violations, 0.32, is 

sufficient evidence to reject a model.  Since the LRIND statistics display statistically significant 

variance from the expected values, it is not surprising that the LRCC statistics for the 1st and 

99th percentiles are statistically significant as well.  These results do not necessarily indicate 

that the ARMA-GARCH is producing unusable results (as mentioned above the actual 

variance from the expected values in the case of consecutive violations is extremely small), 

but they do make it possible to see that the AR-GARCH provides superior results to the 

ARMA-GARCH, and that both GARCH models provide superior results to the C&M 

models. 
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Table 23: Likelihood Ratio Statistics for ARMA-GARCH Results 

Percentile LRUC LRIND LRCC 
1%  0.03513 7.90899* 7.94411*
5% 0.03340 1.31378 1.34718

95% 0.38865 0.44074 0.82939
99% 0.11751 7.83817*  7.95568*

*Results show statistically significant differences from expected values at the 0.05 level 

Not surprisingly, the graphs of the ARMA-GARCH forecasts, shown below in Graphs 7 

and 8, are very similar to those of the AR-GARCH, simply with more volatility day to day.  

This indicates that the addition of the MA term introduces more volatility into the forecasts 

and shows more variance in the forecasts from day to day. 
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Graph 7: ARMA-GARCH Results – 95% Confidence Interval  
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Graph 8: ARMA-GARCH Results – 99% Confidence Interval 

In sum, the ARMA-GARCH generates good, reliable results, especially at the 5% and 

95% level.  For an oil producer with a long position in oil, who does not have strict risk 

management requirements, the ARMA-GARCH would provide very effective results.  The 

same would apply to a heavy user of oil with a short position who simply wants a reliable 

estimate of how much he or she could expect the cost of his or her inputs to increase.  

Although the conditional coverage at both the 1st and 99th percentile is not statistically 

sufficient, it may be that the extremely small numbers of actual and expected consecutive 

violations simply do not provide enough information to make a firm judgment.  Potentially, 

a much longer forecasting period may provide sufficient data to prove that the Semi-

Parametric GARCH models have adequate conditional coverage at the 99% confidence 

interval as well as the 95%.  In any case, the ARMA-GARCH model generates very good 
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forecasts of VaR values, and appears to deal very well with the changing volatility of oil price 

returns. 
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6.0 Discussion  

The results of this comparison are somewhat surprising in some respects, and yet 

perhaps not surprising at all in others.  Drawing from the work of Barone-Adesi et al. (1999) 

and Morana (2001), among others, it is logical to surmise that the GARCH model should be 

a superior tool in modeling oil price returns.  However, from Cabedo and Moya’s work in 

2003, it is also apparent that in their specific comparison, the Generalized Autoregressive 

Conditional Heteroskedastic (GARCH) model does not outperform the newly-developed 

C&M model.  Therefore, it is interesting to see whether, in fact, any difference is made by 

the difference in the mean equations in the Cabedo and Moya’s (2003b) analysis, and to see 

how much better the GARCH model may perform with a non-parametric distribution as 

opposed to restricting it with the assumption of normality.  

In the case of both methodologies, the addition of the MA term not only makes little 

difference, but in some cases it actually seems to have a negative affect on the forecasts.  For 

instance, in the case of the C&M model the addition of the MA term increases the severity 

of the violations displayed.  In the Semi-Parametric GARCH model, the severity of 

violations at the 1st percentile increase from 62.68% to 64.39%.  In addition, the MA term 

appears to increase, not decrease, the number of consecutive violations seen in the GARCH 

model by one at both of the upper limits.  Conversely, the MA term decreases the actual 

number of violations and consecutive violations seen in the C&M model, so its contribution 

appears to be mixed.  All in all, the benefit of the MA term would have to be decided by the 

end user and their position; for example, a producer with a long position in oil may conclude 

that the ARMA-GARCH deals better with the lower portion of the interval forecasts.  On 

the other hand, a refiner who is short oil may decide that the AR-GARCH has an acceptable 
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number of violations and consecutive violations at both the 95% and 99% level, and is 

therefore more suitable to their needs.  

As earlier mentioned, it seems that the inferior performance of the GARCH model may 

be the result of one particular factor in Cabedo and Moya’s analysis.  Ultimately, their 

comparison of these two models is flawed by its use of a historical, non-parametric 

distribution for the C&M model, and a normal distribution for the GARCH model.  This 

factor, from all the evidence gathered, is the key reason that the GARCH model does not 

compete strongly in their comparison.  Therefore, it is not surprising that the semi-

parametric GARCH model performs well against the C&M in this analysis, as it is not 

restricted by the assumption of normality.  In sum, after an extensive and thorough testing 

process, it appears Cabedo and Moya’s conclusion that their model outperforms the 

GARCH model is driven in large part by the normal distributional assumption imposed on 

the GARCH model.  The simpler C&M model simply cannot adequately deal with the 

volatility clustering in oil prices, and the Semi-Parametric GARCH models the time-varying 

volatility extremely well, as evidenced by the removal of the auto-correlation in the squared 

residuals and the excellent VaR forecasts.  

Since the Semi-Parametric GARCH model relaxes the assumption of constant variance 

on the future risk structure, it offers more flexibility in modeling VaR than the C&M model. 

In particular, variance equation used in the Semi-Parametric GARCH model allows the 

forecasts to be adjusted not only by the historical returns and errors, but by the historical 

and forecasted variance.  In this way, the GARCH model provides additional flexibility in 

the sense that it models changing volatility while the C&M does not. Consequently, as 

demonstrated in this study, the C&M methodology does not surpass the Semi-Parametric 

GARCH. In fact, if the series displays significant changing volatility, the Semi-Parametric 
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GARCH should be deliver superior VaR forecasts. Thus, it appears the C&M conclusion is 

driven by different assumptions about the future risk structure rather than an inherent flaw 

in the GARCH model. 
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7.0 Practical Application  

The goal of comparing forecasting models is not only to determine which produces the 

most accurate forecasts, but also to evaluate the practicality and ease of use of the models.  

The greater simplicity of the C&M models is a benefit in practical application, as not all users 

of the VaR methodology will be accomplished in the field of econometrics.  If a more 

parsimonious model is able to produce equal, or superior, results relative to a more complex 

model, the simpler models would always be preferred.  However, since the Semi-Parametric 

GARCH models produce better results in this analysis, it is also necessary to point out the 

fact that although the GARCH methodology is slightly more complex than that of the C&M 

model, once the model is set up and running smoothly, little additional work needs to be 

done.  Therefore, although the initial estimation and programming of the GARCH model 

may involve slightly more work, once it is set up both methodologies simply need to have 

another day of data added and to have the in-sample data rolled forward by one day.   

In this light, the GARCH model is just as simple to run on a daily basis as the C&M.  

Along the same vein, the fact that the forecast equation of the AR-GARCH methodology 

contains fewer estimates than the ARMA-GARCH is a slight point in its favour.  Since the 

AR-GARCH also generates more accurate forecasts than the ARMA-GARCH based on the 

overall conditional coverage, this indicates that it should be the preferred model.  A further 

advantage of the GARCH methodology over the C&M methodology is that the instability of 

the oil prices can make it difficult to generate accurate results using the C&M method, and 

this difficulty increases in periods of higher volatility.  Consequently, since oil markets seem 

to be experiencing greater volatility over time, having a model that can better deal with the 

increasing variance, as the GARCH does, is a clear benefit. 



 49

One attractive quality of the Semi-Parametric GARCH model is that the 99% confidence 

interval VaR estimates performed well, if not quite as well as the 95% confidence level; as 

previously mentioned, judging the independence, and consequently the conditional coverage, 

of the 99% confidence interval is problematic.   If the model could produce slightly better 

forecasts at the 1st percentile, it would have great benefit in practice due to banks’ strict 

requirements.  It would be interesting to see if the AR-GARCH performs as well, or better, 

with less volatile commodities.  As the Basel Committee requires that banks hold a cash 

reserve large enough to cover a VaR at 99% confidence (Jorion, 2001), being able to 

accurately and flexibly forecast this percentile without overestimating would be of great 

value to practitioners.  Aside from banks, there are many large and small businesses with 

short positions in oil that have reason to look for a conservative VaR number; many large 

trusts and publicly-owned companies have very risk-averse profile, and many small 

companies simply do not have the liquidity or working capital to risk underestimating their 

potential losses.  In these cases, and in many others, having a dependable and flexible VaR 

model is paramount. 
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8.0 Limitations  

This comparison, like any data-driven study, is limited by a number of factors. The study 

itself was driven by the need to replicate the comparison performed by Cabedo and Moya 

(2003b) in a more thorough and equitable manner.  Therefore, it is possible that another 

methodology exists that could outperform the Semi-Parametric GARCH model and the 

other models within this analysis. 

Another limitation of this study is the commodity forecasted; due to the fact that oil 

prices have unique characteristics like fat-tails and conditional volatility (Bera and Higgins, 

1993; Bollerslev et al., 1992; Hendricks, 1996; Panas and Ninni, 2000), the preceding models 

may perform very differently when forecasting commodities or series other than oil returns.  

Replication of this comparison on portfolios of stocks or exchange rates would go far in 

affirming the preceding results.    

One factor that does not limit this study is the data.  The data is undeniably sufficient 

and covers a greater length of time than most other comparisons.  It is also essentially the 

complete set of available data; oil has been traded on the New York Mercantile Exchange 

(NYMEX) since 1983, and the only data not used in this test were the prices from the time 

study began until today.  Data is vital to any back-testing, and this data set is complete, with 

very few missing observations, and from a reliable source, the Energy Information 

Administration of the US Department of Energy. 

One note of interest, the 1st percentile seems to cause problems for all of the four 

models.  This could either be a limitation of the methodologies examined in the preceding 

analysis, or an inherent quality of oil prices that should be further explored.  Specifically, in 

September and October of 2001, there are very large negative returns that are very likely 

related to the bombing of the World Trade Centre on September 11th.  These singular and 
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huge drops in oil prices cause great difficulties for all the models, and likely skew both the 

independence likelihood ratios and the degree of violations.  In total, there are many more 

consecutive violations on the lower level than the upper level of the intervals.  Upon initial 

examination, it appears that both the C&M and the Semi-Parametric GARCH models are 

much more likely to underestimate the lower limit of the confidence interval than the upper 

limit.  In terms of oil price returns, this statistic seems to follow logically, as the lower limit 

of the return is actually bounded; the largest possible drop in oil price is 100%.  On the other 

hand, oil price could hypothetically increase infinitely.  However, contrary to this hypothesis, 

by digging deeper we see that there are actually higher summed differences on the lower level 

than the upper level, counter-intuitively indicating a greater tendency to overstate the 

downside risk of oil prices.  The higher consecutive violations and degree of violations may 

simply be the result of the few outliers from events like September 11th and would be a 

fascinating topic for future investigation. 

In reference to this quality of the VaR forecasts, Barone-Adesi et al. (1999) and Morana 

(2001) both incorporate an additional factor into the Semi-Parametric GARCH’s variance 

equation that was not used in this analysis.  This additional constant, shown below in the 

alternative variance equation as γ, is intended to measure the asymmetry of the last observed 

error.   

1
2

1 )( −− +++= ttt hh θγεαϖ  

This model, called the Asymmetric GARCH model (Morana, 2001), is intended to allow 

an asymmetric reaction to large price movements; essentially, it would allow the model to 

follow large downward price movements with higher volatility estimates than large upward 

price movements.  This model may better deal with the time-varying volatility and skewness 

)12(
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of oil price returns and the lack of an asymmetric term in the variance equation may partially 

account for the fact that the models all appeared to deal better with the upper limits of the 

interval forecasts than the lower limits.  Further research may provide interesting results. 

Replication should be done to affirm the preceding conclusions, and new models should 

be tested as they are developed.  In terms of this study, the evidence shows that overall the 

Semi-Parametric GARCH model outperforms the model developed by Cabedo and Moya in 

2003.   
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9.0 Conclusion  

By amalgamating the information contained in all of the preceding sections, several facts 

become obvious.  Firstly, the results of this analysis are mixed.  No one method stood out as 

clearly superior to the others, and no one method performed poorly enough that it would 

not be a useful forecasting tool.  Secondly, the two GARCH models overall produce more 

efficient forecasts than the two C&M models.  And thirdly, the addition of the MA term to 

the mean equation has little benefit, especially in the case of the GARCH models, where the 

results are almost identical.  Therefore, within the scope of this analysis, it is concluded that 

the Semi-Parametric GARCH model produces the most accurate Value-at-Risk forecasts of 

oil price returns.  

In Cabedo and Moya’s (2003b) study, they compare three methodologies for estimating 

the VaR of oil prices: the standard Historical Simulation model, the parametric GARCH 

model, and the Historical Simulation with ARMA forecasts model that they develop within 

the scope of the study.  They conclude that their newly-developed model is the superior.  As 

Cabedo and Moya (2003b) do not use formal comparison criteria to assess the efficacy of the 

VaR forecasting methods, their assertion that their model is superior is simply based on the 

fact that the model has close to the required percentage of violations, and appears more 

flexible than the standard GARCH approach which uses a normal distribution and no MA 

term in the mean equation.  However, as is apparent from the preceding analysis, there are 

many other factors that must be taken into consideration when undertaking a thorough and 

fair comparison of interval forecasts.   

In their closing, Cabedo and Moya state that there are two main advantages to their 

model: firstly, that an autoregressive mean equation is used to forecast the VaRs, as opposed 

to the standard Historical Simulation model, which simply takes the values directly from the 
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historical distribution of returns; and secondly, that their model does not arbitrarily impose a 

distribution on the structure of the risk factor, as is the case in the parametric GARCH.  

However, it is quickly obvious that the Semi-Parametric GARCH model analyzed within this 

study not only shares both of these stated advantages, but surpasses them with a third: the 

ability to adjust the VaR forecast to the time-varying volatility of oil prices.  In doing so, the 

Semi-Parametric GARCH methodology developed by Barone-Adesi et al. (1999) summarily 

outperforms Cabedo and Moya’s Historical Simulation with ARMA Forecasts methodology 

and provides superior estimates of oil’s Value-at-Risk.  The key difference being that the 

VaR violations are more independent under the Semi-Parametric GARCH model than under 

the C&M method. 

As discussed above, the drastic differences in the conclusions of this study and that of 

Cabedo and Moya (2003b) stem from the misspecification of the GARCH model by 

arbitrarily applying a normal distribution to the structure of the risk factor.  Logically, the 

evidence given within their study to support the use of the non-parametric historical 

distribution in conjunction with the ARMA forecasts would also apply in the case of the 

GARCH model.  By following this logic through and applying the historical distribution in 

both models, it was possible to see the potential that the GARCH model has in forecasting 

the VaR of oil prices and conclude that Cabedo and Moya’s assertion that their model is 

superior to the GARCH is based on the difference in the assumed distribution used in the 

forecasts and not on any true inferiority of the GARCH methodology. 

In sum, this study adds to the extant literature by performing a thorough and extensive 

comparison of two Value-at-Risk methodologies for forecasting oil prices.  These results 

should be replicated, and further study is needed to see how each model deals with different 

time-series data, but this comparison should provide both researchers and practitioners with 
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conclusive evidence on the usefulness of both the Cabedo and Moya and Semi-Parametric 

GARCH methodologies in forecasting the Value-at-Risk of oil prices. 
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