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Abstract 
 

As anthropogenic demands on water resources intensify instream flow needs are 

becoming an increasingly important area of study, particularly over winter months during 

which time little is known about the behaviour and physiology of fishes. This thesis 

addresses the implications of water withdrawal from a small in situ stream on brook trout 

(Salvelinus fontinalis) during the winter of 2007 and 2008 in the Rocky Mountains. 

Water was withdrawn from one of two stream enclosures reducing the discharge by 50% 

and 75%, for 4hrs daily. Behaviour was monitored using radio transmitters that were 

externally attached to the small trout. Changes in physiology were monitored by 

measuring stress hormone levels and by measuring predicted body composition 

parameters using bioelectrical impedance analysis. Trout reacted to water withdrawal by 

being more active, but this change in behaviour did not elicit detectable changes in 

physiology. 
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1. Measuring the Effects of Winter Flow Manipulations on Stream Resident Trout: 
Literature Review 

 

1.1 Objectives 

The intention of this literature review is to consider instream flow needs (IFN) of 

overwintering stream resident fish populations and means by which to quantify their 

behaviour and physiology. The following five objectives will be investigated in this 

chapter: 

1) Review instream flow needs 

2) Identify the feeding, movement and habitat preferences of overwintering fish 

3) Review the utility of cortisol as an indicator of stress 

4) Review the use of radio telemetry to determine fish behaviour and habitat 

preferences  

5) Review the use of bioelectrical impedance analysis (BIA) as a non-lethal 

means by which to measure proximate body composition of fish 

 

1.2 Instream Flow Needs 

1.2.1 Overview 

The harnessing of water systems has sacrificed the ecological integrity and self 

sustaining   productivity of countless rivers (Poff et al., 1997). Only a small fraction of 

America’s rivers remain free-flowing (Benke, 1990). Because of the widespread impacts 

that anthropogenic activity can have on water flow, it is pertinent to understand and 
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evaluate IFN in making water management decisions to accommodate economic use 

while protecting ecosystem functions (Poff et al., 1997).  

IFN is a flow determination that is developed to meet a stated ecosystem 

objective. There are many methods used to facilitate the development of IFN 

prescriptions in use today but they are often limited by their relative simplicity 

(Castleberry et al., 1996). In order to formulate a holistic concept of IFN, it is important 

to develop a spatial and temporal framework that evaluates the structure and function of 

the riverine system (Annear et al., 2004). Changes in flow affect the natural flow regime, 

biotic and abiotic diversity, and connectivity of rivers, and this ultimately affects the 

behaviour and physiology of stream resident fish populations.  

The following section will provide a brief overview of IFN, including its 

relevance, the implications of altering flow regime, tools and techniques to determine 

IFN, the challenges and shortcomings of developing IFN parameters, and related research 

on the behavioural and physiological responses of fish to changes in flow. 

 

1.2.2 Relevance of Addressing Environmental Flow Needs 

Human modification of freshwater resources has, and continues to have, 

widespread detrimental impacts on aquatic ecosystems throughout the world (Freeman & 

Marcinek, 2006; Maddock, 1999). As human populations grow and per capita water 

consumption increases, it is predicted that anthropogenic effects will continue to intensify 

in the coming years (Richter et al., 2006); in addition, Gibson et al. (2005) predict that 

inconsistent flow caused by anthropogenic manipulations are likely to be compounded by 

climate change trends. 
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There are five components of the flow regime: magnitude, frequency, duration, 

timing, and rate of change (Poff et al., 1997). The artificial regulation of river flow can 

alter these components, threatening the survival of natural processes and species within 

the river (Poff et al., 1997). Understanding the implications of altering natural flow 

regimes on aquatic environments is crucial in order to mitigate or reverse the detrimental 

effects of the flow manipulation (Marschall & Crowder, 1996), in turn ensuring the long 

term ecological integrity of streams and rivers.  

 

1.2.3 Implications of Regulating Flow 

Three dominant aspects of river health that can be affected by regulated flow are: 

natural variable flow, biotic and abiotic diversity, and connectivity. 

 

Natural variable flow 

The regulation of flow regime can threaten stream habitat stability (Bain et al., 

1988), not strictly because of increasing or decreasing flows, but because of  the 

unpredictable nature of the temporal change in flow. Maintaining the natural flow regime 

variability is crucial in sustaining the ecological health of a river (Poff et al., 1997).  Past 

IFN assessment tools did not consider natural flow patterns, but rather, focused on setting 

a minimum flow target (Annear et al., 2004; Poff et al., 1997). Meeting a minimum flow 

requirement is not adequate in maintaining the ecological integrity of a river because 

many aquatic species depend on hydrological variability (Richter et al., 1997). The life 

cycles of many aquatic plants and animals have adapted to avoid or exploit natural flow 
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changes. Alterations to the seasonal timing of flow events can therefore cause these 

organisms to suffer a fitness cost (Lytle & Poff, 2004).  

 

Biotic and abiotic diversity 

Anderson et al. (2006) argued that to successfully subscribe IFN for a particular 

river, it is necessary to have a thorough understanding of the basic aquatic ecology within 

the river system. Richter et al. (2006) support this argument emphasizing the importance 

of evaluating the inter-relationships between flow and physical habitat, water chemistry, 

energy supplies, and species interaction, in order to develop flow management restoration 

recommendations. IFN prescriptions have traditionally focused on the physical and 

chemical entities of a river, with the assumption that by managing these entities the 

health of the river system would be maintained; although biological components are 

being increasingly recognized as crucial in maintaining the health of an ecosystem 

(Norris & Thoms, 1999). Flow recommendations cannot address the needs of a single 

species or issue alone without compromising the river system as a whole. To preserve the 

viability of the larger river ecosystems, IFN assessments need to include feedback among 

both biotic and abiotic components, and connectivity between upstream and downstream 

habitats (Anderson et al., 2006). 

 

Connectivity 

Change in flow has the potential to disrupt longitudinal and lateral connectivity of 

river systems, influencing aquatic species’ ability to move freely (Bunn & Arthington, 

2002). Longitudinal barriers can disrupt the migration paths of fish potentially inhibiting 
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their ability to complete their lifecycle (Bunn & Arthington, 2002). The restriction of 

lateral expansion of flow onto flood plains inhibits the contribution of organic matter 

inputs and nutrients (Norris & Thoms, 1999), and limits the development of new habitats 

including secondary channels and oxbow lakes (Richter et al., 2006).  

 

1.2.4 Instream Flow Assessment Tool and Techniques 

As anthropogenic activity is increasingly changing water systems, there is a 

heightened awareness of the importance of developing a more holistic concept of IFN 

that closely mimics the natural hydrograph (Jeffres et al., 2006). IFN have traditionally 

been defined on the basis of meeting the needs of one particular species or issue 

(Acreman & Dunbar, 2004). Evaluating IFN has since matured to take a more holistic 

look at incremental methods in which aquatic habitat viability is assessed (Anderson et 

al., 2006; Maddock, 1999; Poff et al., 1997; Stalnaker et al., 1995). An emphasis is now 

being placed on the conceptual strength of incorporating site specific knowledge to 

determine flow allocations (Acreman & Dunbar 2004); however it is important to 

consider the uncertainties associated with different instream flow methods (Castleberry et 

al., 1996; VanWinkle et al., 1997). 

There are a number of methods used to help develop IFN parameters. These 

methods have been assessed in detail (Acreman & Dunbar, 2004; Ahmadi-Nedushan et 

al., 2006; Annear et al., 2004; Annear & Conder, 1984; Bain et al., 1988; Cavendish & 

Duncan, 1986; Hardy, 1998; Irvine et al., 1987; Jowett, 1997; Orsborn, 1977; Richter et 

al., 1997; Richter et al., 2006; Tharme, 2003), but for the purpose of this chapter, only a 

very brief description will be given of the most commonly used methods. 



 6 

Reiser et al. (1989) surveyed agencies in North America to determine what 

methods were most commonly used to determine IFN. At that time, the preferred 

methods used in Canada were the Tennant method and the Instream Flow Incremental 

Methodology (IFIM). The Tennant method is a hydrological method that sets minimum 

flow requirements based largely on historical flows (Tennant, 1976). This method has 

been criticized as being overly simplistic (Anderson et al., 2006; Stalnaker et al., 1995) 

and is consequently being phased out and replaced with other hierologically based 

assessment methods including  the Natural Flow Paradigm (Poff et al., 1997), the Range 

Variability Approach (Richter et al., 1998),  the Dundee Hydrological Regime 

Assessment Method (Black et al., 2005), and Indicators of Hydrologic Alteration (Richter 

et al., 1996).  

IFIM takes an incremental approach to evaluating IFN incorporating hydrology, 

as well as biology, water quality and connectivity (Annear et al., 2004; Bovee, 1982) and 

remains a dominant tool for predicting flow requirements (Sale & Otto, 1991). IFIM was 

developed by the US Fish and Wildlife Service as a method in which to quantify the 

physical aquatic habitat as a function of stream discharge over time and space (Stalnaker 

et al., 1995). IFIM often incorporates the Physical Habitat Simulation System 

(PHABSIM) which is a computer based model that simulates hydrologic habitat 

suitability for target species. PHABSIM’s underlying assumption is that the predicted 

Weighted Usable Area (WUA) is linearly related to fish abundance (Nuhfer & Baker, 

2004). These assessments produce a flow versus physical habitat relationship within a 

specified reach for the target species (Maddock, 1999).  
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1.2.5 Evaluating IFN for Fish: Challenges and Shortcomings  

The evaluation of IFN can be onerous because of the complexity of water systems 

coupled with a limited comprehensive knowledge base in defining river health. IFN 

studies need to develop this knowledge base by studying how changes in stream flow 

affect all involved species and life-stages, throughout all seasons, by acquiring site-

specific knowledge that will ultimately address implications for the river system as a 

whole. 

 

Addressing all affected species  

Instream flow incremental methodology has been criticized for its tendency to 

focus on flow requirements for ‘important’ fish species, namely imperiled or game 

species (Acreman & Dunbar, 2004; Poff et al., 1997). Freeman and Marcinek (2006) 

emphasize the importance of quantifying the responses of a range of aquatic fauna to 

flow alterations. Because IFIM focuses strictly on physical habitat as the limiting factor 

(Sale & Otto, 1991), this method can be deficient if the target species and life stage do 

not have specific or measurable habitat requirements (Hardy, 1998).  

 

Considering implications across all seasons  

The extent to which winter water extraction affects aquatic habitat is relatively 

understudied (Brown et al., 2001; Cunjak, 1996; Heggenes & Dokk, 2001; Huusko et al., 

2007). Changes in flow during winter months may not be as well researched as 

fluctuations during other months simply because there is not as much awareness of 

aquatic habitats at this time of the year, and because it can be more difficult to undertake 
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field research in the winter months because of the restrictions of winter conditions, 

namely ice cover. Alfredsen and Tesaker (2002) drew attention to the fact that more 

winter research is critical because winter may be the limiting period for fish production in 

a water body, particularly in steep or small streams.  

It is often assumed that summer IFN also apply to winter; although little is 

actually known about the ecology of riverine environments during winter months. There 

is a general lack of understanding of the behaviour and habitat needs of overwintering 

fish (Annear et al., 2002). In order to build a successful IFN management system it is 

important to have information of summer and winter fish behaviour (Rimmer et al., 

1983). Baltz et al. (1991) expressed the importance of including seasonal shifts in 

microhabitat use into instream flow models.  

The differences in IFN of fish over summer and winter are likely related to 

priority shifts. During winter months feeding becomes a means to sustain a minimal level 

of metabolic activity not for growth, as in summer (Cunjak & Power, 1987b). Access to 

food in the winter at near freezing temperatures is likely a low priority habitat selection 

criterion for most stream resident species, instead habitat is selected primarily on the need 

to circumvent adverse instream conditions (Cunjak, 1996). In the summer there is less 

emphasis on minimizing risks, instead there is an emphasis on maximizing benefits. 

Summer discharge and nutrient level has been found to be positively related to growth 

rates of adult Artic grayling (Thymallus arcticus) (Deegan et al., 1999). Reduced summer 

discharge caused by drought has been shown to cause deterioration in condition of brook 

trout (Salvelinus fontinalis), related to spatially-limited food resources (Hakala & 

Hartman, 2004). Anthropogenic flow reduction has also been found to reduce brook trout 
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growth rate in the summer coinciding with a reduction in input of invertebrate drift to 

pools (Harvey et al., 2006), demonstrating that high provision habitats are important for 

summer growth. 

 

Incorporating site-specific knowledge  

Frimpong et al. (2005) affirmed that it would be beneficial for managers to be 

able to evaluate streams without field measurements or observations; however, because 

of the complexity and variability of water systems, it is important to have a 

comprehensive understanding of the ecology of individual streams (Anderson et al., 

2006). Many factors need to be considered in defining the health of a river ecosystem 

including: discharge, structure of channel and riparian zone, water quality, channel 

management, level of exploitation, and barriers to connectivity (Acreman & Dunbar, 

2004). It is difficult to effectively evaluate all of these components without physical 

observations. Acreman and Dunbar (2004) noted the importance of incorporating site-

specific knowledge in determining IFN, although they recognized that this knowledge 

may not be readily available or consistent among biologists, hydrologists, historians, and 

local stakeholders. 

 

Evaluating the entire river system 

The evaluation of IFN entails considering the interplay of many variables that can 

be influenced over large areas. Because of the nature of ecosystems the dynamic 

ecological roles of flow components must be considered in order to develop a holistic 

description of IFN. Changing flow regime can ultimately disrupt components of the 
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aquatic ecosystem directly and indirectly. Indirect influences can be seen as the ripple 

effects of the direct influence of  water withdrawal; for instance reducing flow in the 

summer can result in an increase in water temperatures (Richter et al., 2006), which can 

force cool water species to move to cooler habitats. The extent of the indirect disruption 

is difficult to quantify because the repercussions of a single alteration to a river can 

spread, temporally and spatially, over an unknown time and distance. Anderson et al. 

(2006) concluded that the temporal and spatial dynamic feedbacks between system 

components cannot be adequately captured in commonly used management methods. 

 

1.2.6 Research on Behavioural and Physiological Responses to Changes in Flow 

The effects of flow fluctuations on fish has predominantly been studied through 

the monitoring of behavioural and physiological changes of local fish populations 

(Armstrong et al., 1998; Arnekleiv et al., 2004; Berland et al., 2004; Flodmark et al., 

2002; Freeman et al., 2001; Halleraker et al., 2003; Harvey et al., 2006; Heggenes, 1988; 

Hickey & Diaz, 1999; Robertson et al., 2004; Shirvell, 1994; Vehanen et al., 2000). 

Manipulating flow has been most commonly studied in relation to hydropeaking where 

the natural flow regime is disrupted by both increasing and decreasing discharge (Berland 

et al., 2004; Bunt et al., 1999; Curry et al., 1994; Freeman et al., 2001; Jeffres et al., 

2006; Robertson et al., 2004; Saltveit et al., 2001; Scruton et al., 2005; Valentin et al., 

1996; VanWinkle et al., 1997).  
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Behavioural changes induced in fish by changes in flow regime 

Jeffres et al. (2006) tracked the movement of Saremento sucker (Catostomus 

occidentalis) and hitch (Lavina exilicauda) in the spring in a large river that was 

regulated by a hydro dam. They found that the suckers showed a response to the changes 

in flow, whereas the hitch remained relatively stationary, demonstrating that some 

species are more sensitive to changes in flow than others. Robertson et al. (2004) 

simulated a hydropeaking operation and found that the only detectable difference in 

activity of Atlantic salmon parr (Salmo salar), elicited by the increased flow, was 

reduced nocturnal activity during winter indicating that effects of hydropeaking can vary 

dielly. 

Heggenes (1988) studied the effects of discharge on brown trout (Salmo trutta) in 

a small stream during summer months and discovered that emigration increased slightly 

with an increase in discharge but habitat use did not change. In contrast, Pert and Erman 

(1994) found that rainbow trout (Oncorhynchus mykiss) habitat preferences shifted to 

deeper and faster water during short term increases in discharge from a hydropeaking 

operation in the summer. They also found that individuals within the population 

responded differently, which emphasizes the importance of not assuming that the most 

used habitat is the optimal habitat for the species as a whole because optimal habitat is 

often subjugated by a few dominant individuals (Pert & Erman, 1994).  

 

Robertson et al. (2004) monitored the stranding of Atlantic salmon parr after high winter 

water discharges. They determined that as water levels were reduced back to base flows, 

stranding rates were very low. Halleraker et al. (2003) also studied the stranding of fish. 
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They examined factors that affected the stranding of brown trout by manipulating the 

dewatering of an artificial stream and concluded that stranding rates are lower in warmer 

temperatures, in darkness, and with a slower rate of water removal; whereas Saltveit et al. 

(2001) concluded that the stranding of salmon parr and brown trout was most common 

during daytime in winter, perhaps because of reduced swimming capacity in the winter. 

 

Physiological changes induced in fish by changes in flow regime 

Alfredsen and Tesaker (2002) argued that reduced flow can have maladaptive 

effects on feeding, swimming capacity, and competition between fish. For instance, 

rainbow trout that were in small streams in which summer flows were reduced by 75-

80% for six weeks had significantly slower growth rates than the control fish, although 

survival rates were not affected within the sampling period (Harvey et al., 2006). In 

addition to changes in growth rates, cortisol levels have also been studied to help 

determine stress levels in fish exposed to reduced rates of flow. Arnekleiv et al. (2004) 

studied brown trout exposed to a single dewatering in an artificial stream and found that 

cortisol levels increased substantially during dewatering but returned back to baseline 

within a 24hr period. Flodmark et al. (2002) identified a similar cortisol peak response in 

juvenile brown trout; in addition, they determined that after repetitive daily cyclical 

fluctuations by the fourth day of dewatering cortisol levels returned to base levels. 

Chronic stressors do not maintain cortisol at peak levels despite the continued 

administration of the stressor (Wendelaar Bonga, 1997). The fish may still be responding 

to the stressor but cortisol levels can no longer be used as a reliable indicator, instead the 
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implications of the stressor will be apparent in other physiological ways, including 

growth rates (Mommsen et al., 1999).   

 

1.2.7 Summary 

Alterations of the quality and timing of river flow can cause critical changes to the 

ecological integrity of a river system (Poff et al., 1997). Anthropogenic influences are 

changing the duration, timing, and magnitude of flows. Because of the naturally variable 

and interlinked nature of aquatic ecosystems, evaluating IFN is multifaceted. Most 

instream flow assessment techniques incorporate one or more flow components of 

riverine ecology (hydrology, geomorphology, water quality, connectivity and biology) 

but the expertise to evaluate all components is seldom available. For the ease of resource 

managers, the ideal method for determining flow requirements would be straightforward 

and standardized, but defining IFN parameters is inherently complex and 

multidimensional, analogous to the nature of rivers themselves. Challenges in addressing 

IFN can be exacerbated by a paucity of knowledge of how riverine components are 

affected by changes in flow. “Scientists need to develop and implement monitoring 

methods that will realize the potential of adaptive management, and develop the basic 

biological knowledge that will provide a more secure foundation for decisions that must 

balance instream and consumptive uses of water” (Castleberry et al., 1996, p. 21). The 

further study of IFN is imperative in order to provide a more comprehensive 

understanding of the implications of altering flow and, in turn, building a foundation of 

knowledge for resource mangers to draw from. 
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1.3 Overwintering Stream Resident Fish 

1.3.1 Overview 

There is scarcity of knowledge regarding the behaviour and habitat preferences of 

overwintering fish (Brown et al., 2001; Cunjak, 1996; Heggenes & Dokk, 2001; Huusko 

et al., 2007), despite the fact that winter may be a restrictive time of the year for fish 

production (Alfredsen & Tesaker, 2002; Annear et al., 2002; Jackson et al., 2001). 

Extrapolating from the limited research that has been conducted, it is apparent that there 

is a shift in behaviour in stream fishes during winter months. The following section will 

provide an overview of overwintering stream fishes, including winter feeding, habitat 

preferences, activity levels and risk of mink predation.  

 

1.3.2 Winter Feeding 

Fish have a reduced capacity to process food in the winter. Winter feeding is 

restricted because low water temperatures limit digestion and reduce gastric evacuation 

rates (Cunjak et al., 1987). Stomach analysis of stream resident brook trout and brown 

trout indicate that, despite the reduced capacity, they do continue to feed throughout the 

winter (Cunjak & Power, 1987b; Simpkins & Hubert, 2000), albeit at reduced levels 

(Keast, 1968). Trout are generally visual feeders; therefore surface ice can also cause 

reduced winter feeding because of restricted light penetration (Annear et al., 2002). A 

limited food supply resulting from a decrease in the number of drifting invertebrates may 

also inhibit winter feeding (Bjornn, 1971; Waters, 1962). During periods of low water 

temperature salmonids primarily rely upon stored fat (Pottinger et al., 2003).  
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Annear et al. (2002) found a significant decline in trout weight despite continuous 

feeding throughout the winter study period. Cunjak and Power (1987b) also reported a 

decrease in condition factor in brook and brown trout from early winter to spring. 

Younger salmonids have been shown to deplete their lipid reserves disproportionately 

faster than older fish (Mason, 1976). Cunjak et al. (1987) determined that there was a loss 

in lipid content of brook trout over the winter, but the loss was not to the extent that 

protein stores had to be mobilized; however early winter energy depletion of lipids may 

limit endurance with exposure to atypical environmental perturbations (Cunjak et al., 

1987). Webster and Hartman (2007) hypothesized that declines in overwintering brook 

trout populations were related to mortality caused by decline in energy stores, but 

discovered that mean fat levels changed very little over winter and that the declining 

populations were more likely related to the activity of anglers or to emigration from the 

system. 

 

1.3.3 Winter Habitat Preferences  

Overwintering strategies of riverine trout are dependent on stream morphology, 

local hydrology, and life stage (Cunjak & Power, 1986b). Winter habitat selection 

focuses on physical habitat features that lessen energy expenditures (Cunjak, 1996; 

Heggenes et al., 1993) and that circumvent adverse instream conditions (Cunjak, 1996). 

Ideal winter salmonid habitats include a combination of slow velocity water (Alfredsen & 

Tesaker, 2002; Baltz et al., 1991; Chisholm et al., 1987; Huusko et al., 2007), deep water 

(Annear et al., 2002; Cunjak, 1996; Hartman, 1965; Muhlfeld et al., 2001; Tschaplinski 

& Hartman, 1983), and overhead cover (Bustard & Narver, 1975; Cunjak & Power, 
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1986b; Heggenes et al., 1999; Huusko et al., 2007; Jakober et al., 1998).  Cunjak and 

Power (1987a) suggested that in small streams, deep water may not be a primary winter 

habitat selection criterion in itself but rather is selected because of its associated cover 

and/or low water velocities. Muhlfeld et al. (2003) recognized the characteristics of 

preferred daytime winter habitat but cautioned resource managers to consider the 

importance of more complex habitats during winter to include shallow areas along stream 

margins that fish may use as night habitat, or that juvenile salmonids may prefer (Griffith 

& Smith, 1993). It is important to preserve complex habitat because the relative value of 

winter habitat varies between fish size and species, in addition habitat suitability is not 

static over the course of the winter, varying between the cooling of early winter, mid 

winter and the warming of late winter (Cunjak, 1996).  

“Winter-warm” microhabitats are found in areas of groundwater discharge and 

can provide a thermal refugia from ice events (Cunjak, 1996; Cunjak & Power, 1986b). 

Brown and Mackay (1995) demonstrated that in the winter cutthroat trout moved to areas 

less affected by anchor and frazil ice, namely deep pools and areas where the water 

temperature was warmer. Cunjak and Power (1986b) found trout in large aggregations in 

areas of groundwater discharge where water was warmer. Preference of warm habitats 

varies between species; brown trout prefer to aggregate downstream from ground water 

discharge whereas brook trout prefer to be close to the point source of groundwater 

discharge (Cunjak, 1996). 
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1.3.4 Winter Movement  

Upon finding favourable habitat, stream fishes tend to remain relatively sedentary 

over the winter months (Brown, 1999; Chisholm et al., 1987; Hartman, 1963; Jakober et 

al., 1998; Scruton et al., 2005); although some fish are forced to move if habitats become 

unstable as subsurface ice accrues (Brown, 1999; Brown & Mackay, 1995; Brown et al., 

2001). When winter movement does occur there does not appear to be a particular trend 

in upstream or downstream movement (Brown & Mackay, 1995). Movement during 

winter ice events must be energetically costly increasing chances of mortality (Brown, 

1999). 

In the winter, trout species have been documented to show elevated levels of 

visual pigment (Allen et al., 1982), facilitating a change in diurnal patterns in which the 

fish tend to hide in the day and become more active at night (Annear et al., 2002; 

Heggenes & Dokk, 2001; Huusko et al., 2007; Jakober et al., 2000; Meyer & Gregory, 

2000). Preferred night habitat typically includes low velocity water with fine substrate 

close to river banks (Heggenes et al., 1993). Muhlfeld et al. (2003) found that in the 

winter bull trout moved from day to night locations, a median distance of 86m, from deep 

water with cover to shallower water at dusk. Ovidio et al. (2002) determined that in the 

winter brown trout were the most active at dusk.  

Fish exhibit less territorial behaviour in the winter than in other seasons (Brown 

& Mackay, 1995; Cunjak & Power, 1986b; Hartman, 1963; Heggenes et al., 1993) and 

are more likely to form aggregations (Brown, 1999; Brown & Mackay, 1995), which tend 

to increase in size with decreasing water temperatures (Brown & Mackay, 1995). 

Heggenes et al. (1993) suggest that fish populations may be more regulated by abiotic 
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factors such as habitat availability than by social interactions that play an important role 

in regulating summer populations. Muhlfeld et al. (2001) found that with the existence of 

adequate winter habitat, namely deep slow moving pools with ample cover, small trout 

were not forced to migrate at the onset of winter. 

 

1.3.5 Winter Mink Predation 

It has been demonstrated that the preferred food of mink (Mustela vison) during 

the winter and spring is fish (Gerell, 1967). Fish may be more vulnerable at this time 

because of their reduced swimming capacity at low water temperatures. During other 

seasons crayfish, birds, rodents and amphibians are found to dominate the mink’s diet 

(Gerell, 1967). Heggenes and Borgstrom (1988) found increased mortality of brown trout 

and juvenile Atlantic salmon when mink were present and they observed mink along the 

stream bank more often during autumn and winter than in spring and summer. They also 

found that there was a high mortality rate in small stream fishes because of mink 

predation, most commonly coinciding with low discharge. Both low flow and limited 

cover decreases the possibility to avoid mink predation (Heggenes & Borgstrom, 1988). 

Lindstrom and Hubert (2004) studied winter mink predation on radio tagged fish and 

found that 8% of the tagged cutthroat (Oncorhynchus clarki) and 28% of the tagged 

brook trout were killed by mink over the winter.  
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1.3.6 Summary 

Patterns of trout  activity change in winter and can vary diurnally in different 

habitat types (Ovidio et al., 2002). In the winter trout have to allocate their energy 

differently by adopting strategies that minimize energy loss (Heggenes et al., 1993). 

Mortality caused by winter starvation is unlikely, but rather is more likely caused by 

compounding variables such as predation, stress or disease (Annear et al., 2002). In order 

for fish to optimize their survival over winter they should perform low risk activities, 

have large energy stores, and migrate to areas with favourable habitat (Huusko et al., 

2007). Complex mixes of habitat types are important to provide suitable winter habitat 

for overwintering trout (Jakober et al., 1998). In the winter there is a reduction in feeding, 

aggression, and activity levels of stream resident fishes and a tendency to take refuge in 

low velocity habitat to maximize energy conservation, and protected cover to minimize 

predation.  

 

1.4 Stress Response in Fish 

1.4.1 Overview 

Fish are in intimate contact with their environment and as such have lower 

threshold to stressors than most mammals (Wendelaar Bonga, 1997). Cortisol is an 

important indicator of stress in fish, consequently cortisol levels have been extensively 

studied to determine stress responses to a range of circumstances (Barton, 2002). The 

majority of studies addressing stress induced changes in cortisol levels in fish have 

focused on aquaculture; although other stressors have been studied including exposure to 
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toxins, and changes in flow regime. The implications of these stressors are largely 

dependent on the magnitude, duration, and frequency of the stressor (Barton, 2002). The 

following section will provide an overview of the physiology of stress hormones, the 

study of cortisol as a stress indicator and the effects of stress on fish including changes in 

stress response, and its implications. 

 

1.4.2 Physiology of Stress Hormones in Fish 

When a fish is exposed to a stressful environmental stimulus the hypothalamic-

pituitary-interrenal (HPI) axis initiates a biochemical pathway of reactions resulting in 

the release of cortisol. Corticotrophin-releasing hormone (CRH) is released from the 

hypothalamus in the brain signaling for the release of adrenocorticotropic hormone 

(ACTH) from the anterior pituitary. Circulating ACTH is responsible for stimulating the 

interrenal cells in the anterior head kidney to synthesize and release cortisol (Barton et 

al., 2002). Corticosteroid hormones together with catecholamines facilitate the ability of 

a fish to cope with a stressor in a number of ways: by acting on the vascular system to 

increase the heart rate and blood flow to the gills, by acting on the immune system to 

decrease white blood cells, by affecting metabolism decreasing liver glycogen and 

increasing plasma glucose, and by affecting hydromineral homeostasis increasing water 

excretion (Hontela, 1998). The principal corticosteroid produced by teleosts is cortisol 

(Bentley, 1976; Mommsen et al., 1999). Cortisol acts primarily on the gills, intestine, and 

liver of fishes (Wendelaar Bonga, 1997) and is the principal salt regulating corticosteroid 

stimulating sodium transport in the kidneys, in the mucosa of the gut, and across the gills 

(Norris, 1996).  
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The magnitude of increase in cortisol levels with exposure to stress varies 

between species (Barton, 2002). Resting levels of cortisol are generally low; <5ng/ml in 

salmonids. These levels show 10 to 100 fold increases when exposed to a stressor 

(Wendelaar Bonga, 1997). Because of a delay in the release of cortisol, peak levels may 

not occur for several minutes after the acute stressor is administered and levels generally 

come back to resting amounts after one or more hours (Barton et al., 2002). This trend 

has been documented in a range of species including brook trout (Biron & Benfey, 1994),   

brown trout (Flodmark et al., 2002) and Atlantic salmon (Einarsdottir & Nilssen, 1996). 

Chronic stressors can maintain elevated levels of cortisol, although they do not maintain 

peak levels despite the continued administration of the stressor (Wendelaar Bonga, 1997). 

Mommsen et al.(1999) demonstrated that cortisol levels often drop back to base levels, 

regardless of the fact that the fish is still responding to the stressor. 

 

1.4.3 Cortisol Levels as an Indicator of Stress 

Circulating cortisol levels have been extensively used as indicators of stress in 

fish for three reasons: firstly, cortisol levels can be measured with relative accuracy and 

ease, through tools such as the commercially available radioimmunoassay kits; secondly, 

using proper sampling techniques, blood samples can be obtained without contributing to 

stress levels; thirdly, cortisol levels usually increase as acute stress increases (Mommsen 

et al., 1999). 

The majority of studies that have used cortisol to interpret stress response in fish 

have focused on aquaculture, addressing issues such as genetic predisposition within and 

among species and vulnerability to stressors such as handling and crowding (Barton & 
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Iwama, 1991; Haukenes & Barton, 2004; Jentoft et al., 2005; North et al., 2006; 

Pickering, 1993; Trenzado et al., 2006). Studies have also addressed cortisol stress 

response to toxicants (Brodeur et al., 1998; Gagnon et al., 2006; Hontela, 1998; Hontela 

et al., 1992; Levesque et al., 2002; Tort et al., 1996). There has been a limited number of 

experiments that examine cortisol levels in response to changes in flow regime 

(Arnekleiv et al., 2004; Flodmark et al., 2002).  

Flodmark et al. (2002) studied brown trout in an artificial stream channel and 

associated high peaks of cortisol with the reduction of flow; although the long term 

cortisol response to daily fluctuations showed rapid habituation to this stressor. The 

highest peaks were noted two hours following 30 minutes of dewatering. Pre-exposure 

rates of cortisol were achieved six hours after the stressor was administered. By using an 

artificial stream Flodmark et al. (2002) were able to control many extraneous variables, 

although the lab setting had limitations, including a restricted channel length (21m) and 

potential overcrowding of fish within the constrained area. Arnekleiv et al. (2004) used a 

similar method as that used by Flodmark et al. (2002) and verified a spike in cortisol 

levels with dewatering followed by a return to resting levels of cortisol. Arnekleiv et al. 

(2004) suggest that in order to establish more reliable conclusions regarding fluctuations 

in cortisol levels, it would be beneficial to repeat the dewatering method but instead of 

using artificial streams, cortisol levels should be monitored in fish in their natural habitats 

over different seasons. 
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1.4.4 Stress and its Effects on Fish 

Stress responses 

The intensity level of a stressor that a teleost responds to is far lower than can be 

detected by terrestrial animals (Wendelaar Bonga, 1997). The response to a stressor can 

vary depending on its magnitude and duration. Barton (2002) described three interrelated 

responses of stress in fish: primary, secondary, and tertiary response. The primary 

response is marked by an increase in catecholamines and corticosteroids. The secondary 

response is marked by metabolic and cellular changes, as well as osmoregulatory 

disturbance and changes in immune function. The tertiary response is related to changes 

in the whole animal, including growth, resistance to disease, and behaviour (Barton et al., 

2002). 

 

Implications of stress 

Barton (2002) argued that stress itself is not detrimental to the fish; it is not until 

stress levels start to compromise physiological response mechanisms that the health of 

the fish is put at risk. Acute responses to stressors may extend the fish’s normal adaptive 

ability. In contrast, chronic stress can inhibit the fish’s performance and threaten their 

survival (Davis, 2006). Wedelaar Bonga (1997) explains that the stress response to 

chronic stress can lose its adaptive value and become dysfunctional. This can result in 

tertiary maladaptive responses such as reduced capacity for growth, inhibited 

reproduction and decreased immunocompetence, increasing susceptibility to disease 

(Barton & Iwama, 1991; Schreck, 2000), including bacterial and fungal pathogens 

(Pickering & Pottinger, 1989). 
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1.4.5 Summary 

Studies examining cortisol levels in fish have used a wide range of experimental 

approaches to contribute to the overall understanding of stress in fish. They have 

demonstrated that the action of cortisol is not consistent among all species of fish, or even 

within a species. Cortisol levels are affected by different types, magnitudes, and rates of 

stressors, and cannot always be used as an exclusive indicator of stress.  

Stress responses allow terrestrial and aquatic vertebrates to cope with a stressor in 

order to maintain homeostasis (Barton, 2002); although, there can be a metabolic cost 

associated with stress, which is most notable in prolonged or repeated stress (Barton & 

Iwama, 1991). Chronic stress can lead to the impairment of growth, reproduction, and 

development (Schreck, 2000). As human populations grow, it is inevitable that 

anthropogenic effects on aquatic habitat will intensify in the coming years (Richter et al., 

2006), potentially increasing the frequency and severity of a range of stressors in fish. It 

is important to continue to study the effects of these stressors on fish in order contribute 

to an overall holistic understanding of the implications of altering aquatic environments. 

 

1.5 Radio Telemetry 

1.5.1 Overview 

Radio telemetry has been used in a wide range of fisheries research to study the 

location, behaviour, and physiology of free-ranging fish (Winter, 1996). It allows for the 

continuous monitoring of fish from a passive perspective (Bridger & Booth, 2003) and 

can be applied over a wide range of species and size classes. The type of transmitter 
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selected and how it is attached is a significant consideration in telemetry studies, because 

the presence of the transmitters may adversely affect the fish, potentially causing a 

change in their behaviour and physiology. There are some limitations associated with 

different transmitter attachment methods as well as the transmitter size selected. The 

following section will provide an overview of telemetry in fisheries research, methods of 

transmitter attachment, including internal and external attachment, and means to 

determine optimal tag/body weight ratio of transmitters. 

 

1.5.2 Telemetry in Fisheries Research 

Radio telemetry provides a means to pinpoint individual fish location at any given 

time providing immediate positional and behavioural data (Alfredsen & Tesaker, 2002; 

Lucas & Baras, 2000; Murchie et al., 2008). Studies using telemetry allow for the 

collection of a large amount of data, albeit on a limited sample size because of cost 

restrictions. Radio telemetry has been used to determine various aspects of behaviour and 

physiology including: responses to hydropeaking (Berland et al., 2004; Bunt et al., 1999; 

Robertson et al., 2004; Scruton et al., 2003; Scruton et al., 2005), seasonal variation in 

movement and habitat preferences (Annear et al., 2002; Bettinger & Bettoli, 2004; 

Bridger et al., 2001; Brown & Mackay, 1995; Brown et al., 2001; Curry et al., 2002; 

Jakober et al., 1998; Muhlfeld et al., 2001; Ovidio et al., 2002), diurnal shifts of habitat 

preferences (Muhlfeld et al., 2003; Young, 1995), and spawning migration behaviour 

(Arnekleiv & Ronning, 2004; Cooke et al., 2006a; Cooke et al., 2006b). 
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1.5.3 Methods of Transmitter Attachment 

Transmitters can be attached in three ways: surgical implantation in the peritoneal 

cavity, intragastric insertion, or external attachment. 

 

Surgical implantation 

Surgical implantation of transmitters has been employed in numerous studies 

(Bauer & Schlott, 2006; Berland et al., 2004; Bettinger & Bettoli, 2004; Brown & 

Mackay, 1995; Brown et al., 2001; Brown et al., 2000; Bunt et al., 1999; Curry et al., 

2002; Jakober et al., 1998; Muhlfeld et al., 2001; Muhlfeld et al., 2003; Ovidio et al., 

2002; Robertson et al., 2004; Scruton et al., 2003; Scruton et al., 2005; Young, 1995). 

With the exception of the antenna, the bulk of the surgically implanted transmitter is 

contained internally, thus the transmitter cannot be entangled in vegetation, is less likely 

to cause abrasion than the external transmitter, and will not cause drag (Winter, 1996). 

Surgically implantation keeps the transmitter near the fish’s centre of gravity (Bridger & 

Booth, 2003) so it does not encumber the fish’s balance. Bridger and Booth (2003) 

suggested using this method for long term studies (>20 days). 

The principal limitations of surgical implantation are that it takes longer than the 

other methods, requires a longer recovery period and is more likely to cause infection 

(Winter, 1996). It also requires more skill and practice to execute than the other two 

methods (Winter, 1996). It is possible for transmitters to be lost through the incision if 

suture threads come loose, or to be expelled through the anus or body wall (Bridger & 

Booth, 2003). 
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Intragastric implantation 

Intragastric insertion has been applied in some research studies (Cooke et al., 

2006a; Mellas & Haynes, 1985; Ramstad & Woody, 2003), but is not as commonly used 

as surgical implantation. The limitations of intragastric insertion are that transmitters can 

be difficult to insert, can rupture the esophagus or stomach (Winter, 1996) and are often 

regurgitated after implantation (Mellas & Haynes, 1985). Feeding can decline with 

intragastric insertion potentially because of decreased available stomach volume (Bridger 

& Booth, 2003).  

Like surgical implantation, gastric implantation keeps the transmitter near the 

centre of gravity of the fish (Bridger & Booth, 2003). Using this method transmitters 

cannot be entangled in vegetation, they are less likely to cause abrasion, and will not 

cause drag (Winter, 1996). Unlike surgical impanation, intragastric implantation is a 

quick procedure that requires very little habituation time (Winter, 1996). Mellas and 

Haynes (1985) found that gastric insertion was the most successful method of transmitter 

attachment in white perch (Morone americana). Jepsen et al. (2001) studied cortisol 

levels in chinook salmon (Oncorhynchus tshawytscha) smolts after surgical and gastric 

implantation of radio transmitters and found that 24 hours after implantation both groups 

had higher cortisol levels than the control group; although seven days after implantation 

cortisol levels were back to baselines. There was no clear indication that surgical 

implantation was more or less stressful than gastric insertion. 
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External attachment 

External attachment has been used in select research studies (Arnekleiv & 

Ronning, 2004; Herke & Moring, 1999), as they can be quickly attached (Cooke, 2003), 

with a rapid recovery. The use of external transmitter facilitates studies on small fish or 

early life stage when the size of the body cavity precludes the use of internal transmitters 

(Cooke, 2003). The method can also be used on fish that are spawning or feeding 

(Winter, 1996). 

A significant drawback to using an external attachment method is that the 

transmitters can increase drag on fish potentially affecting swimming speed (Steinhausen 

et al., 2006; Winter, 1996) and can result in greater energy expenditures and shorter 

exhaustion times (Mellas & Haynes, 1985). External transmitters can also become 

entangled in aquatic vegetation ultimately increasing mortality (Ross & McCormick, 

1981; Thorstad et al., 2001). This method of attachment can cause irritation of the dermal 

layers beneath the transmitter (Herke & Moring, 1999; Winter, 1996), however dermal 

irritation from external attachment can be minimized by simply reducing the amount of 

material that is in contact with the fish (Crook, 2004). 

Herke and Moring (1999) successfully attached large external radio tags to 

northern pike (Esox lucius) without apparent influence on movement behaviour and with 

minimal tissue abrasion. Cooke (2003) applied the external attachment method using 

small transmitters on rock bass (Ambloplites rupestris) to monitor how the presence of 

the transmitter affected parental care activity and found negligible effects; concluding 

that externally attached radio transmitters provided a viable means in which to study 
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small fish movement without altering their behaviour. In contrast, Counihan and Frost 

(1999) found that external transmitters significantly affected the swimming performance 

of juvenile white sturgeon (Acipenser transmontanus). External transmitters will 

eventually be shed by the fish (Mulcahy, 2003) which is an advantage for the well-being 

of the fish but may be a limitation if the transmitters are shed before the experiment is 

completed. 

 

1.5.4 Tag/Body Weight Ratio 

Many researchers have set a 2% maximum threshold for tag/body weight ratio 

based on a general suggestion by Winter (1996). Jepsen et al. (2005) caution that it is 

insufficient to assume that a 2% tag/body weight ratio is adequate across all species and 

life stages. They also suggested that the size, position and shape of the transmitter must 

be considered, particularly in external attachment. When selecting transmitter weight it is 

important to evaluate the buoyancy regulating mechanism of the fish and therefore the 

ability of the fish to adjust to the additional mass (Jepsen et al., 2005).  

Some studies have demonstrated how the behaviour of fish is changed with the 

attachment of transmitters. Lafrancois et al.(2001) found that when the externally 

attached tag/body weight ratio of sea bass (Dicentrarchus labrax) reached 4% available 

metabolic energy was compromised, therefore they recommended that the tag ratio 

should be below 2.9% to 4% in order to limit the detrimental effects of tagging. Counihan 

and Frost (1999) demonstrated that external ultrasonic transmitters significantly affected 

the swimming performance of juvenile white sturgeon using a tag ratio that did not 

exceed 1.25%. Ross and McCormick (1981) studied yellow perch (Perca flavescens) and 
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largemouth bass (Micropterus salmoides) and also found that the 2% rule of thumb was 

not adequate, suggesting that transmitter weight, in water, should not exceed 1.5%. 

Other studies have demonstrated that transmitters had no notable effect on the 

experimental fish. Jepsen et al.(2001) studied chinook salmon smolts using transmitters 

that ranged from 1.3 to 3.5% tag/body mass ratio and did not find any indication that it is 

more stressful for the fish with the higher tag ratios. Brown et al. (1999) implanted 

transmitters into rainbow trout using a larger tag/body weight ratio ranging from a 6 to 

12% in air and found that the transmitters did not adversely affect the swimming 

performance of the trout. 

 

1.5.5 Summary 

Radio telemetry enables researchers to determine the long term and long range 

positioning of individual fish elucidating information about their behaviour and 

physiology (Lucas & Baras, 2000). Telemetry can provide a means in which to help 

formulate instream flow needs of stream resident fish based on their behaviour; however 

it is important to ensure that the transmitter is not affecting normal physiology or 

behaviour. Mellas and Haynes (1985) cautioned researches in selecting attachment 

methods of transmitters, suggesting that external, gastric, and surgically implanted 

transmitters all have associated risks and that a method should be chosen based on what 

information needs to be collected and the habitat type under study. Mulcahy (2003) 

suggested using the smallest lightest transmitter that still provides the desired strength 

and duration.  
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1.6 Bioelectrical Impedance Analysis 

1.6.1 Overview 

Bioelectrical impedance analysis (BIA) has been commonly used as a safe, 

inexpensive rapid and portable method to determine proximate body composition  

(Kushner, 1992). BIA measures the resistance and reactance of a given substance, 

providing insight into compositional properties of the substance. Because BIA is a non-

lethal measure, it is an important tool in researching changes for body composition. The 

following section will provide an overview of the principles of BIA, how BIA is 

measured, and research that has implemented BIA for use on fish. 

 

1.6.2 BIA Principles  

BIA measures the conduction of a low current through soluble ions in intracellular 

and extracellular fluids of the body (Schoeller & Kushner, 1989). BIA can be used to 

determine proximate body composition because of the differences in impedance between 

fat mass and fat free mass. In a series pathway impedance is equal to the vector sum of 

resistance (R) and reactance (Xc); impedance = (R² + Xc²)0.5 (Liedtke, 1997). 

Resistance is the inverse of conduction. Ohms Law states that resistance is 

proportional to the voltage drop of an applied current as it passes through a substance [R 

(ohms) = applied voltage drop (volts)/current (amps)] (Kushner, 1992). Body tissues 

containing large amounts of water and electrolytes are highly conductive and therefore 

provide a low resistance pathway; whereas materials such as bone and fat are poor 

conductors and correspond to high resistance (Liedtke, 1997).  
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Reactance, also referred to as capacitive reactance, is a measure of the opposition 

to alternating current arising from the presence of capacitors within a circuit. A capacitor 

is made up of two or more conducting plates isolated from each other by a dielectric used 

to store the charge of electrons (Kushner, 1992). In tissue, reactance is a measure of the 

opposition to an alternating current by the cell membrane. Cell membranes are composed 

of a bi-layer of polar proteins and phospholipids separated by a core of nonconductive 

lipids, that acts as a capacitor (Kushner, 1992). When an electrical signal is introduced 

into a tissue, a small amount of the signal is leaked through protein channels to charge the 

inside of the cell membranes. Cell membranes act as capacitors and cause the electrical 

current to lag behind the applied voltage resulting in a measurable effect determined by 

the resistance of the dielectric (Liedtke, 1998).  

Body composition can be simplified into two components: fat, and fat free mass, 

where fat includes the extractable lipid mass and fat free mass includes water, protein and 

minerals that can be further divided into intracellular fat free mass and extracellular fat 

free mass (Schoeller & Kushner, 1989). Within fat free mass, the aqueous space around 

the cell acts as a resistor and the cell acts as a capacitor (Liedtke, 1998). By measuring 

BIA on a biological cylinder (eg. cucumber), He et al. (2003) determined that the 

electrical current does not just pass through the periphery, but rather passes through the 

entire subject.  

Reactance decreases with an increase in the extracellular water (ECW) / 

intracellular water (ICW) ratio (Segal et al., 1987) and it has been suggested that 

ECW/ICW ratio increases with malnutrition (Kushner, 1992). Barbosa-Silva et al. (2003) 
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stated that, in humans, malnutrition is typified by changes in cellular membrane integrity 

and alterations in fluid balance. Generally high reactance indicates better cell membrane 

integrity and health (Liedtke, 1997). When the cell dies, reactance becomes zero 

(Liedtke, 1998) indicating a breakdown of cell membrane integrity. 

 

1.6.3 Measuring Instrument  

The RJL impedance analyzer (RJL Sytems, Detroit, MI) is manufactured to 

determine the body composition of human subjects but can be adapted for use on other 

animals. The RJL impedance analyzer delivers 800µA alternating current at 50 KHz. The 

device is tetrapolar composed of two signal electrodes which introduce the alternating 

current and two detecting electrodes which measure the voltage drop, directly measuring 

the vectors of resistance and reactance in series (Liedtke, 1997). 

 

1.6.4 Use of BIA on Trout  

There is extensive literature citing the use of BIA on humans (for a review of BIA 

use on human subjects see: Kyle et al., 2004) but studies have also been conducted on 

other animals including wild mammals (Barthelmess et al., 2006; Bowen et al., 1998; 

Hilderbrand et al., 1998; Hundertmark & Schwartz, 2002; Rutter et al., 1998), livestock 

(Berg et al., 1997; Daza et al., 2006; Kraetzl et al., 1995; Velazco et al., 1999), and to a 

lesser extent, on fish (Bosworth & Wolters, 2001; Cox & Hartman, 2005; Duncan et al., 

2007; Webster & Hartman, 2007; Willis & Hobday, In Press). The principal concept of 

BIA is that the tested body is an isotropic conductor with a uniform cross-sectional area 



 34 

and length (Kushner, 1992). The bodies of most mammals are divided into several 

cylindrical segments; whereas a fish has a relatively geometric configuration and 

therefore, BIA can be more easily applied to a fish’s body shape. 

Initial documentation of the use of BIA in fish was for the purpose of predicting 

carcass yield and composition of farmed catfish  (Ictalurus punctatus) (Bosworth & 

Wolters, 2001) and later in farmed juvenile cobia (Rachycentron canadum) (Duncan et 

al., 2007). Both studies found strong linear relationships between impedance measures 

and proximate analysis variables: total body water, dry mass, fat-free mass, total body 

protein, total body ash and total body fat mass. Cox and Hartman (2005) tested the use of 

BIA to determine the proximate body composition of wild and hatchery brook trout. They 

also found strong correlations between composition parameters and impedance 

measurements and validated these measures with a number of other species of fish. 

Webster and Hartman (2007) applied the regression models built by Cox and Hartman 

(2005) to measure changes in body composition of overwintering brook trout  

populations in the Appalachian Mountains in West Virginia as well as to brook trout 

exposed to winter conditions in a lab. They did not find significant changes in protein or 

fat composition over the nine week experiment. Willis and Hobday (In Press) used BIA 

to measure relative condition of bluefin tuna (Thunnus maccoyii) during conventional 

tagging at sea and suggest that composition determined by a impedance index, using 

reactance, was a good indicator of nutritional health.  
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1.6.5 Summary 

BIA can provide a non-invasive means in which to determine proximate body 

composition of fish and other animals. By measuring the voltage drop between signal 

electrodes and adjacent detecting electrodes, direct measures of resistance and reactance 

of the whole body can be determined. These values of impedance are measures of 

conduction and capacitance that provide insight into proximate body composition 

parameters. Proximate body composition parameters that have been determined using 

BIA measures include: body fat, fat free mass, body protein, body water (ECW and 

ICW), and more broadly, nutritional health. BIA is a useful tool because the equipment is 

portable, the procedure is simple, and the results are reproducible (Kyle et al., 2004).  

 

1.7 Conclusion 

Instream flow needs are becoming an increasingly important area of study as 

anthropogenic demands on water intensify. In order to develop a holistic concept of IFN 

it is pertinent to address hydrology, geomorphology, water quality connectivity and 

biology (Annear et al., 2004), paying extra attention to areas where a scarcity of 

knowledge exists. Huusko et al. (2007) point to the importance of evaluating the impacts 

of flow regulation on overwintering salmonids. The ability to effectively study 

behavioural and physiological responses of stream resident salmonids to reduced winter 

flows can be facilitated with the use of radio telemetry to locate fish and BIA to measure 

the proximate body composition of fish. 
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2. Behavioural and Physiological Response of Overwintering Brook Trout (Salvelinus 
fontinalis) to Instream Flow Manipulations from the Canadian Rocky Mountains 

 

2.1 Abstract 

As human populations grow and water use increases, the anthropogenic effects of 

manipulating instream flow will continue to intensify. It is pertinent to evaluate and 

understand instream flow needs (IFN) to effectively manage stream and river systems. 

Assessing IFN across all seasons, including winter, is necessary in order to provide a 

holistic understanding of flow manipulations. To date few studies have focused on the 

effects of water withdrawal on overwintering fish populations. During the winter of 2007 

and 2008, the response of brook trout (Salvelinus fontinalis) to experimental flow 

manipulations was studied in a small stream in Kananaskis Country, Alberta. Brook trout 

behaviour and physiology was monitored, in response to reduced flow, using two in situ 

experimental channels located in a small spring-fed stream. Experimental treatments 

consisted of a 4hr daily water withdrawal from one of the enclosures, removing 50% of 

the stream discharge in 2007 and 75% in 2008. Activity levels and habitat preferences of 

the brook trout were studied using manual radio telemetry. The activity levels of the fish 

were found to increase when water was withdrawn from the stream and the trout showed 

an affinity for habitat with deeply undercut banks. In 2007 fluctuations in cortisol and 

glucose levels were measured to assess stress levels. The fish did not exhibit significantly 

elevated levels of cortisol or glucose at the end of the six week experiment. In 2008, 

proximate body composition was measured as a physiological indicator of stress using 

biological impedance analysis (BIA). There was significant weight loss, predicted total 

body fat (TBF) loss and predicted total body water (TBW) gain over the duration of the 
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winter in all of the fish; however there was no significant difference in predicted TBW or 

TBF detected between the control and experimental fish.  

 

2.2 Introduction 

The flow regulation of water systems has sacrificed the ecological integrity and 

self sustaining productivity of countless rivers (Poff et al., 1997). In order to minimize 

impacts of artificial flow manipulation, it is necessary to  understand and evaluate 

instream flow needs (IFN) to accommodate economic use while protecting ecosystem 

functions (Marschall & Crowder, 1996; Poff et al., 1997). Moreover, IFN must be 

considered across all seasons (Alfredsen et al. 2002). There is a limited understanding of 

both the winter habitat requirements for many fish populations as well as the impact of 

winter water extraction (Brown et al., 2001; Cunjak, 1996; Huusko et al., 2007). Indeed, 

winter may be the limiting period for fish production, particularly in steep or small 

streams (Alfredsen & Tesaker, 2002). 

Overwintering salmonids require strategies that minimize energy expenditure 

(Heggenes et al., 1993; Ultsch, 1989). The energy expenditure associated with swimming 

increases with decreased water temperature (Tang & Boisclair, 1995); consequently, 

salmonids tend to remain relatively sedentary in the winter (Curry et al., 2002; Hartman, 

1963; Ovidio et al., 2002). Winter activity that does occur, has been found to be largely 

dependent on habitat stability (Brown, 1999).  

 

Preferred winter salmonid habitats include areas of deep water (Hartman, 1965; 

Muhlfeld et al., 2001; Tschaplinski & Hartman, 1983), with low velocity (Baltz et al., 
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1991; Chisholm et al., 1987; Huusko et al., 2007) and warm temperatures provided by 

groundwater inputs (Brown & Mackay, 1995; Cunjak, 1996; Power et al., 1999). 

Overwintering salmonids also show a strong preference for instream cover (Cunjak & 

Power, 1986b; Heggenes et al., 1999; Huusko et al., 2007). Cover can provide shelter 

from current as well as a hiding place from predators. Coastal steelhead (Salmo 

gairdneri) have been shown to exhibit ‘hiding’ behaviour in the winter, in part, as a 

means of protection from predation (Bustard & Narver, 1975; Hartman, 1965). Predation 

by mink can be a major mortality factor affecting salmonid numbers in small streams 

(Heggenes & Borgstrom, 1988). Predation efficiency may vary with stream habitat 

(Heggenes & Borgstrom, 1988), for instance, overwintering fish may be more susceptible 

to mink predation in streams that do not become fully covered with ice (Lindstrom & 

Hubert, 2004), or in small streams with low discharge (Heggenes & Borgstrom, 1988).  

Artificial changes in flow threaten habitat stability strongly influencing stream 

fish community structure (Bain et al., 1988). Change in flow regime has both behavioural 

and physiological implications for stream fishes. There are a number of studies that have 

addressed the affects of flow manipulation on stream fishes (Berland et al., 2004; Bunt et 

al., 1999; Freeman et al., 2001; Harvey et al., 2006; Heggenes, 1988; Jeffres et al., 2006; 

Pert & Erman, 1994; Scruton et al., 2005; Shirvell, 1994), however there has been limited 

research on effects of flow manipulations under winter conditions in the field (Robertson 

et al., 2004; Saltveit et al., 2001) or in the lab (Arnekleiv et al., 2004; Halleraker et al., 

2003; Vehanen et al., 2000). 
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Behavioural responses of stream fishes, to flow manipulation, have been studied 

by monitoring fish movement and habitat preferences. Scruton et al. (2003) demonstrated 

that artificial alterations to flow affected fish activity levels differently between species, 

with Atlantic salmon (Salmo salar)  moving more than brook trout (Salvelinus fontinalis). 

Robertson et al. (2004) and Berland et al. (2004) found minimal effects of flow 

manipulation on Atlantic salmon parr; whereas Armstrong et al. (1998) found that 

Atlantic salmon showed an increase in exploratory behaviour during flow reduction. 

Juvenile brown trout (Salmo trutta) movement has been shown to increase in response to 

simulated high flows, and displacement was greatest during high stream flows at low 

temperatures in the winter (Vehanen et al., 2000). In contrast, brown trout activity levels 

have been observed to remain unchanged in response to summer hydropeaking (Bunt et 

al., 1999). Change in flow has been shown to elicit shifts in habitat preference 

(Armstrong et al., 1998; Pert & Erman, 1994; Shirvell, 1994). 

Physiological responses of stream fishes in response to flow manipulation have 

been studied by monitoring fish growth, population abundance, and stress levels. Growth 

rates of rainbow trout (Oncorhynchus mykiss) were significantly lowered in the summer 

when discharge was reduced (Harvey et al., 2006), and an increase in the number of 

major discharge fluctuations downstream of a dam has been shown to correlate with 

mortality of winter-stocked trout (Annear et al., 2002). A stress response, indicated by 

elevated cortisol levels, has often been found to accompany dewatering (Arnekleiv et al., 

2004; Flodmark et al., 2002; Thomas et al., 1999); however, cortisol has been shown to 

return to base levels  following four days of repetitive daily dewaterings, despite 

exposure to continued dewatering events (Flodmark et al., 2002). Chronic stressors do 
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not maintain cortisol at peak levels despite the continued administration of the stressor 

(Wendelaar Bonga, 1997). The fish may still be responding to the stressor but cortisol 

levels can no longer be used as a reliable stress indicator, instead the implications of the 

stressor may become apparent in other physiological ways, including growth rates 

(Mommsen et al., 1999).   

The effects of flow fluctuations depend on the capability of fish to respond to 

habitat alterations and their ability to find appropriate refugia (Valentin et al., 1996). The 

availability of “desirable” space is the major regulator of salmonid density in winter 

(Chapman, 1966); therefore physiological and behavioural changes in fish caused by 

alterations in winter flow may be more pronounced in streams that provide less available 

habitat. The purpose of this study is to provide insight into the relationship between 

winter flow, fish habitat and individual fish fitness. 

 

2.2.1 Objectives and Hypotheses 

The following five objectives and related hypotheses will be investigated in this 

chapter: 

 

1.) To determine how available habitat will be altered with a reduction in stream 

discharge. 

Ha1: Deep water with deep undercut bank habitat will be reduced and slow 

velocity habitat will increase with a reduction in stream discharge. 

 

2.) To determine the preferred habitat of overwintering brook trout. 
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Ha2: Brook trout will prefer habitat with overhead cover, deep water, and large 

substrate. 

 

3.) To determine if overwintering brook trout activity levels will change when subjected 

to flow manipulations. 

Ha3: Flow reductions will increase the activity levels of overwintering brook 

trout. 

 

4.) To determine if there will be a change in plasma cortisol and glucose levels in brook 

trout subjected to flow manipulation. 

Ha4: Flow reductions will cause an increase in plasma cortisol and glucose levels 

in overwintering brook trout subjected to flow manipulation. 

 

5.) To assess body composition changes of overwintering brook trout subjected to flow 

manipulations. 

Ha5: Brook trout percent total body fat will decrease in both control and 

experimental fish over the winter; though, the magnitude of total body fat loss 

will be greater in experimental fish. 
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2.3 Methods 

2.3.1 Study Site 

Site location 

The study was carried out using in situ experimental channels located in a small 

unnamed first order stream in the Canadian Rocky Mountains (50º59'03.2''N; 

115º04'48.2''W). The spring-fed stream drains into the southern end of Barrier Lake 

(Figure 2-1). The stream is small with a mean width of 1.5m ±0.034 (±SE) (range: 0.8-

3m) and a mean depth of 0.21m ±0.007 (±SE) (range: 0.05-0.53m), with a winter 

discharge of approximately 45 l/s. Because the stream is groundwater fed it remains 

largely ice free throughout the winter. The elevation at the study site is 1425m at which 

point the stream has a moderate gradient (1-2%) and a NW aspect. The habitat within the 

stream is heterogeneous containing, riffles, runs and pools with diverse substrate and 

cover and is shaded by a canopy of lodgepole pine (Pinus contorta) and white spruce 

(Picea glauca). Brook trout species are the only fish species within the stream with the 

exception of an infrequent presence of a brown trout.  
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Figure 2-1 Map of the experimental site located in Kananaskis Country in the Canadian Rocky Mountains.  
 

Site Design 

Two similar 100m stretches of the stream were isolated using fences made of 

6mm metal hardware-cloth and T-bar posts: a control reach (downstream, 50º58'59.6''N; 

115º04'46.8''W) and an experimental reach (downstream, 50º59'03.2''N; 115º04'48.2'' W). 

The two sites were separated by a 35m reach where the stream ran through a culvert 

under the Porcupine Group Campsite Road (Figure 2-2). The control site was upstream of 

the experimental site. 
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Figure 2-2 Experimental site layout depicting the position of the control and experimental reaches. Small 
arrows indicate stream-flow direction. Scale ~1:2500  
 

2.3.2 Timeframe 

The experiments were conducted during the winters of 2007 and 2008. In 2007 

the experiment ran for six weeks, commencing on Jan 22 and finishing on Mar 4 and was 

divided into three two-week treatment regimes. In 2008 the experiment ran for seven 

weeks, commencing on Jan 23 and finishing on Mar 12 and was divided into seven one- 

week treatment regimes. 

 

2.3.4. Sampling 

Fish capture 

In 2007, after the experimental sites were isolated with fish fences, the enclosures 

were electrofished on January 20th using a backpack electrofisher. The stream was also 

electrofished above and below the experimental sites in order to capture enough fish of 

↑ 
N 
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adequate size for the study. A total of 58 brook trout were captured for sampling with a 

mean weight of 22.0g ±1.5 (±SE) and mean length of 131mm ±3.1 (±SE). 

In 2008, brook trout were introduced to the study site from Canmore Creek (51º 

04' 47.3'' N; 115º 22' 46.4'' W; elevation: 1375m) in order to ensure that the experimental 

fish used in 2008 were unaffected by the 2007 experiment. Fish were captured for 

relocation from Canmore Creek on January 14th using a backpack electrofisher. A total of 

70 brook trout were captured with a mean weight of 35.8g ±1.8 (±SE) and length of 

159mm ±2.9 (±SE). Before the fish were relocated to the experimental site on January 

15th, the experimental reaches were isolated with fish fences and the two reaches were 

electrofished, in three passes, to remove all resident brook trout. 

 

Sample treatments 

Sampling treatments and sample sizes were slightly different in 2007 and 2008 

(Table 2-1).  

Table 2-1 Summary of the number of brook trout sampled in 2007 and 2008 and the number of fish within 
each sampling treatment 
  2007 2008 

Sampling treatment Control  Experimental  Control  Experimental  
Blood sample taken 22 19 0 0 
Bioelectrical impedance analysis 0 0 35 35 
Radio transmitter externally attached 10 10 15 15 
Tagged 10 12 20 20 

 

Blood sampling 

Blood samples were taken in the 2007 field season in order to determine plasma 

cortisol and glucose levels. All fish that were large enough to get a sufficient blood 

sample from (≥100mm), were bled at the end of the experiment; a total of 41 fish. Fish 
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were first anaesthetized using a 40ppm solution of clove oil with ethanol as an emulsifier 

(Keene et al., 1998). After being anaesthetized, blood was taken from the caudal vessels 

using heparinised 1ml plastic syringes. The blood was transferred to a 0.5ml centrifuge 

tube and was kept cool until it was centrifuged. Plasma samples were temporarily stored 

in liquid nitrogen until being transferred to a -80°C freezer were they were held for 

analysis. 

The plasma samples were thawed in the lab and cortisol levels were measured in 

duplicate (ng/ml plasma) with a radioimmunoassay kit. Glucose levels were also 

measured in samples containing a sufficient amount of plasma. Glucose was measured in 

duplicate (mg/ml plasma) in a spectrophotometric assay (510 nm) using the GOD-PAP 

reagent.  

 

Bioelectric impedance analysis 

In 2008, BIA was determined by measuring resistance and reactance of the fish 

using a tetrapolar, Quantum X bioelectrical body composition analyzer (RJL Systems, 

Detroit, Michigan). The analyzer was adapted for use on fish by using 28 gauge 12mm 

stainless steel needle electrodes (Grass Telefactor, West Warwick, Rhode Island). After 

the fish were anesthetized and patted dry, they were placed on a dry paper towel. The 

electrodes were inserted ipsilaterally into the fish midway between the lateral line and the 

dorsal midpoint (Cox & Hartman, 2005). The distance between the two inner detecting 

electrodes was measured and resistance and reactance readings were taken. Resistance 

readings ranged from 445-766Ω with a mean of 607Ω ±15.09 (±SE), and reactance 

readings ranged from 120-197Ω with a mean of 153Ω ±3.55 (±SE). Readings were taken 
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on 70 fish before the experiment commenced and again on 54 recovered fish after the 

experiment was completed. 

 

Attachment of transmitters 

Brook trout that weighed >20g were selected for the external attachment of radio 

transmitters ensuring that the weight of the transmitter did not exceed 2.5% of the total 

weight of the fish (Table 2-2). Following the advice of Brown et al. (1999) the suggested 

2% tag/body mass ratio (Winter, 1996) was not considered a strict rule, but instead, the 

smallest possible tag/body weight ratio was used by selecting the smallest available 

transmitters with sufficient battery life in order to minimize any behavioural or 

physiological responses the fish could have to the transmitter. The coded radio NanoTag 

transmitters (model NTC-3-M; Lotek Wireless Inc., Newmarket, Ontario) weighed 0.5g 

in air with dimensions of 7.2mm x 7.0mm x 14.5mm. The transmitters had a 10s burst 

rate with a 64 day ‘calculated operational’ longevity and a 51 day guaranteed longevity. 

 

 
Table 2-2  Summary of brook trout length (fork length; mm), weight (g), and tag ratio (transmitter weight 
to the corresponding fish weight; %) in 2007 (n=20) and in 2008 (n=30). 
  Minimum Maximum Mean SE 

Winter 2007    
Length 131.0 189.0 155.1 ±3.4 
Weight 20.7 60.1 33.1 ±2.0 
Tag ratio 2.4 0.8 1.6 ±0.1 

Winter 2008 
Length 160.0 198.0 180.4 ±2.0 
Weight 31.1 78.7 49.7 ±1.2 
Tag ratio 1.6 0.6 1.1 ±0.0 

 

The NanoTag transmitters were attached externally to 20 fish in 2007 (coded: 11-

30; frequencies: 150.280-150.460kHz) and 30 fish in 2008 (coded: 11-40; frequencies: 
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148.380-151.890kHz). The transmitters were manufactured with a small straw (10mm in 

length) attached to the side of each transmitter, secured in place by heat shrink wrap. The 

straw on the transmitter was threaded with 0.225mm diameter non-absorbable nylon 

suture thread (Supramid, S. Jackson Inc.; Alexandria, VA). Two small gauged sewing 

needles were then threaded through each end of the suture thread. The transmitter was 

attached by simultaneously pushing the threaded needles through the dorsal musculature 

of the fish and then through the holes in a plastic back plate situated on the opposite side 

of the dorsal fin. The back plate was 1.5mm x 4mm x 16.5mm and was used to prevent 

tissue abrasion by the thread. 

 

Measuring and tagging   

Each fish sampled was measured (FL) and weighed. Fish that were not fitted with 

external transmitters, but were >100mm in length, were tagged with Floy FTF-69 

Fingerling Tags (Floy Tag Inc., Seattle, Washington) that were attached to the anterior of 

the dorsal fin through the dorsal musculature. In 2007, 22 fish were tagged with Floy 

tags, 10 in the control reach and 12 in the experimental reach. Tag retention was poor 

(27% retention) in 2007, so the attachment method was modified in 2008. In 2008, the 

tags were not ordered threaded on needles as they were in 2007; instead they were 

ordered loose and were threaded with 0.225mm diameter non-absorbable nylon suture 

thread (Supramid, S.Jackson Inc.; Alexandria, VA) onto a smaller needle. In 2008 a total 

of 40 fish were Floy tagged, 20 in the control reach and 20 in the experimental reach. Tag 

retention rate of captured fish in 2008 was 100%. 

 



 61 

Relocation and recovery   

After weights and lengths were taken and the transmitters and tags were attached, 

the fish were placed in large bins of fresh stream water and were monitored to ensure that 

they retained full equilibrium evident from their upright position and their activity and 

swimming behaviour. Visual observations suggested that there was no difference in fish 

behaviour before or after transmitters were attached or between the fish with transmitters 

and those without. After the fish were fully recovered from the anesthetic, they were 

placed into the fenced reaches of the stream. In 2007 a total of 46 resident fish were 

released back into the control and experimental reaches. They were given 36 hours to 

recover from sampling before water withdrawal treatments commenced. On January 15th 

2008 a total of 70 fish were transported in 125 L aerated water barrels to the study area 

from Canmore Creek and released into the control and experimental reaches. The fish 

were given a week to recover from sampling before the water withdrawal treatments 

commenced. 

 

2.3.5 Tracking 

Movement and habitat selection was monitored using manual radio telemetry. A 

receiver with a hand held H antenna (Lotek Wireless Inc., Newmarket, Ontario) was used 

to track the externally attached coded transmitters. Each radio tagged fish was located 

three times daily: at 8:30 before water withdrawal, at 11:30 during water withdrawal and 

again at 14:30 after water withdrawal. Linear longitudinal movement was determined 

relative to the previous position occupied. The fish within the control and experimental 

sites were tracked concurrently.  
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Labelled stakes were placed in the ground every two metres along the banks of 

the control and experimental reaches. Pilot tests suggested that transmitters could be 

located within 0.5m; therefore the position of each fish was measured to within 0.5m by 

using the stakes as location markers. In 2007, 20 fish were tracked over 42 consecutive 

days from January 22nd to March 4th, yielding ~126 observations for each fish. In 2008, 

30 fish were tracked over 50 days from January 22nd to March 11th, yielding ~150 

observations per fish.  

 

2.3.6 Water Withdrawal 

Pumps and hoses 

Two trash pumps were used to withdraw water from the stream to reduce 

discharge. In 2007 water was withdrawn using a 5cm 5HP Honda pump and a 10cm 8HP 

Rotating Right pump. In 2008 water was withdrawn using two 10cm 8HP Rotating Right 

pumps. The pumps were situated approximately 4m away from the stream on the right 

bank. Water was withdrawn with suction hoses that were positioned immediately 

upstream of the upper experimental fence. The water was then routed through two 91m 

lay-flat hoses that ran parallel to the stream to the discharge site, situated below the lower 

experimental fence. The water ran out onto a tarp, where the water velocity was reduced 

before it ran back into the stream maintaining turbidity levels and preventing scouring of 

the stream channel (Figure 2-2).   
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Stream flow manipulation 

The 2007 experiment ran for six weeks (Table 2-3). During water withdrawal 

treatments approximately 50% of the total discharge was withdrawn from the 

experimental site for four hours daily, from 10:00 to 14:00. 

Table 2-3 The 2007 experimental treatment regime schedule. Each treatment lasted two weeks, alternating 
from water withdrawal (WW) to no water withdrawal (NW). Brook trout sample size was calculated per 
day.  Control fish n=10, Experiment fish n=10 

2007 Date Treatment 
Duration 

(days) 

Experimental 
sample (% of radio 

tagged fish remaining) 

Control sample 
(% of radio tagged 

fish remaining) 
Jan 20 - Jan 21 Acclimatization 1.5 100 100 
Jan 22 - Feb 4 1: WW 14 100 100 
Feb 5 - Feb 18 2: NW 14 100 100 
Feb 19 - Mar 4 3: WW 14 100 100 

 

The 2008 experiment ran for seven weeks (Table 2-4). During water withdrawal 

treatments approximately 75% of the total discharge was withdrawn from the 

experimental site for four hours daily, from 10:00 to 14:00.  

 
Table 2-4 The 2008 experimental treatment regime schedule. Each treatment lasted one week, alternating 
from water withdrawal (WW) to no water withdrawal (NW) for 7 weeks. During treatments 1 and 5, only 6 
days of data were collected because of weather and predator events. Brook trout sample size was calculated 
per day. The sample size was reduced because of predators and failing transmitters. Original sample: 
Control fish n=15, Experiment fish n=15   

2008 Date Treatment 
Duration 

(days) 

Experimental 
sample (% of radio 

tagged fish remaining) 

Control sample (% 
of radio tagged fish 

remaining) 
Jan 16 - Jan 22 Acclimatization 7 100 100 
Jan 23 - Jan 29 1: WW 6 100 100 
Jan 30 - Feb 5 2: NW 7 100 100 
Feb 6 - Feb 12 3: WW 7 100 100 
Feb 13 - Feb 19 4: NW 7 100 100 
Feb 20 - Feb 26 5: WW 6 83 100 
Feb 27 - Mar 4 6: NW 7 67 100 
Mar 5 - Mar 11 7: WW 7 63 97 
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Quantifying discharge  

Quantifying the amount of water withdrawal necessary to reduce stream discharge 

by approximately 50% in 2007 and 75% in 2008 was done in two ways. Firstly discharge 

was correlated with staff gauge depth. A total of four staff gauges were located within the 

experimental and control sites. They were monitored a minimum of three times daily to 

indicate approximate discharge. The revolutions per minute (RPM) of the pumps could 

be initially calibrated according to the readings on the experimental site staff gauges. 

Secondly, levels of water withdrawal were double checked using actual discharge 

measures determined by a current meter. Discharge was measured using a hand held 

Pygmy current meter (Model 625D, Gurley Precision Instruments, Troy, N.Y.) at two 

permanent transects. The transects were located downstream of the upper and lower 

experimental fish fences within the reach that was subjected to water withdrawal. 

Discharge was measured a minimum of three times daily before water withdrawal, during 

water withdrawal, and again after water withdrawal. The RPM of the pumps were 

adjusted accordingly to ensure correct discharge reduction.  

 

2.3.7 Measuring Stream Habitat 

Water temperature 

Water temperature was automatically recorded every 10 minutes using four digital 

temperature loggers (HOBO Water Temp Pro; Onset Computer Corporation: Bourne, 

MA, USA). The loggers were placed upstream and downstream of the two study reaches, 

in the middle of the stream channel.  
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Air temperature 

Air temperature was recorded at the stream site three times daily at 8:30, 11:30, 

and 14:30. These temperatures were correlated with three nearby weather stations: 

University of Calgary Kananaskis Field Station, Kananaskis (Nakiska Ridgetop), and 

Bow Valley (Provincial Park). Weather data from Bow Valley (Provincial Park) was 

most closely correlated with data from the stream site and was therefore used to indicate 

approximate hourly air temperature at the study site.  

 

Habitat transects 

To determine how available habitats changed as discharge was manipulated 

stream width and velocity were measured along a series of 24 transects incorporating four 

different macrohabitats; pools, riffles, runs with deeply undercut banks, and runs without 

undercut banks. Twelve transects were positioned within the control reach and an 

additional twelve within the experimental reach. Depth and velocity were measured at 

0.2m increments along each transect. Velocity readings were taken at 0.4 of the stream 

depth, measured from the streambed (Gordon et al., 1992). The surveys where executed 

at four levels of discharge; 100%, 75%, 50%, and 25% of the natural stream discharge.  

Habitat characteristics were recorded every meter along both the 100m control 

reach and the 100m experimental reach. Descriptions of the stream width, depth, 

substrate composition, bank shape, undercut bank depths, and instream cover were 

recorded.  Substrate was recorded according to a modified Wentworth scale (Gordon et 
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al., 1992) as silt and sand (<2mm), gravel (2-64mm), cobble (65-256mm), and boulder 

(>256mm). 

 

2.4 Results 

2.4.1 Stream Habitat  

Water and air temperatures 

The mean water and air temperatures measured over the duration of the 

experiment were slightly cooler in 2007 than in 2008. However the 2008 experiment ran 

for an extra week into March when the temperatures were warmer. The range of water 

and air temperature was greater in 2008 (Table 2-5, Figure 2-3 & 2-4).  

 
Table 2-5  Summary of water and air temperature over the 2007 and 2008 experimental duration.  
Temperature was measured every hour during Jan 22-Mar 5 in 2007 and during Jan 22-Mar 11 in 2008. 

 Minimum Maximum Mean SE 
 Winter 2007 
Water temperature (°C) 0.98 3.68 2.32 ±0.02 
Air temperature (°C) -23.3 11.7 -4.9 ±0.25 
 Winter 2008 
Water temperature (°C) 0.25 4.94 3.07 ±0.02 
Air temperature (°C) -37.6 12.3 -3.9 ±0.27 
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Figure 2-3  The 2007 air and water temperature of the site measued over the duration of the experiment. 
The water temperature is an average of temperatures recorded at the top and bottom of the control and 
experimental sites. Air temperature was recorded from the Bow Valley (Provincial Park) weather station 
(51° 4.800' N 115° 4.200' W).  
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Figure 2-4 The 2008 air and water temperature of the site measured over the duration of the experiment. 
The water temperature is an average of temperatures recorded at the top and bottom of the control and 
experimental sites. Air temperature was recorded from the Bow Valley (Provincial Park) weather station 
(51°4.800' N 115°4.200'W) 
 
 

Habitat availability  

As stream flow was reduced there was a reduction in the stream width, depth and 

the quantity of available undercut bank cover (Figure 2-5). 
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Figure 2-5 Summary of how reducing discharge affects reduction of stream (a) width, (b) depth, and (c) 
undercut bank (UCB) availability within the experimental reach site. n=101. 
 

Water velocity was observed at different discharges to document changes in water 

velocity with reduced flow (Figure 2-6). Mean water velocity at base flows was 

0.20m/sec ±0.03 (±SE) (range: 0-0.84m/sec), at 50% reduction was 0.15m/sec ±0.02 

(±SE) (range: 0-0.78m/sec), and at 75% reduction was 0.11m/sec ±0.02 (±SE) (range: 0-

0.58m/sec). 
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Figure 2-6 Velocity histograms illustrating frequency of velocities at: (a) base discharge, (b) 50% 
discharge reduction, and (c) 75% discharge reduction at the experimental stream site. Velocity measures 
were taken every 0.2m across the width of the stream at 12 transects; n= 67.  
 

Habitat use 

The stream substrate was largely composed of fines and gravel with some cobbles 

and boulders. Stream habitat type was primarily runs with some riffles and pools. 

Undercut banks and woody debris provided a large amount of cover throughout both 

(a) 

(a) (b) 

(c) (b) 

(c) 
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reaches (Table 2-6). Using t-tests, no significant difference between the amount of 

undercut bank cover (t(198) = 0.31,. p = .76), boulder substrate (t(198) = 1.67,. p = .10), or 

stream width (t(198) = 2.51, p = .27) was found between the experimental or control sites; 

however the experimental site was significantly deeper (t(198) = 4.64, p = < .001), with 

more fine substrate (t(198) = 4.42, p < .001), more woody debris cover (t(198) = 3.15, p = 

.002), less gravel substrate (t(198) = 4.50, p < .001), and less cobble substrate (t(198) = 2.62, 

p = .01).  

 
Table 2-6 Stream habitat characteristics measured along (a) all transects n: 202, (b) control transects n = 
101 and (c) experimental transects n = 101. UCB: undercut banks, WD: woody debris 

   % Substrate  %Instream Cover %Habitat 

  
depth 
(m) 

width 
(m) fines gravel  cobble boulder UCB WD boulder riffle  run  pool  

(a) 0.21 1.53 47 45 8 0.6 92 67 4 10 85 5 
(b) 0.23 1.50 56 38 6 0.4 97 76 1 8 88 4 
(c) 0.18 1.55 39 52 9 0.8 87 57 7 12 82 6 

 

The habitat characteristic of the locations used by the control and experimental 

fish were compared to the habitat available over each reach during 2007 and 2008. Used 

stream positions were determined by locating the fish three times a day: before, during, 

and after water withdrawal over the duration of each experiment. Using t-tests there was 

no consistently significant difference found between available substrate, and used 

substrate, including fines (2007 cont: t(1349) = 1.84, p = .07, exp: t(1349) = 1.48, p = .14; 

2008 cont: t(2220) = 0.31  p = .70, exp: t(1962) = 0.25 p = .80 ), gravel (2007 cont: t(1349) = 

3.32, p < .005, exp: t(1349) = 1.78,  p = .08; 2008 cont: t(2220) = 0.83 p = .40, exp: t(1962) = 

0.08 p = .94 ), cobbles (2007 cont: t(1349) = 3.12, p < .05, exp: t(1349) = 1.44, p = .15; 2008 

cont: t(2220) = 0.95, p = .34, exp: t(1962) = 1.92 p =  .06), and boulders (2007 cont: t(1349) = 

0.30 p = .76, exp: t(1349) = 1.56,  p = .12; 2008 cont: t(2220) = 2.96, p < .005, exp: t(1962) = 
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1.02, p = .31 ). There was also no consistently significant difference between available 

and used woody debris cover (2007 cont: t(1349) = 5.77, p < .001, exp:  t(1349) = 1.77, p = 

.12; 2008 cont: t(2220) = 0.57, p = .57, exp: t(1962) = 0.86 p = .39) or between available 

width and used width (2007 cont: t(1349) = 2.28, p = .20, exp: t(1349) = 0.68, p = .54, 2008 

cont: t(2220) = 0.77, p = .44, exp: t(1962) = 3.71 p < .001). Locations that the brook trout 

used had deeply undercut banks and deep water that were found to be significantly 

greater than that available (Table 2-7, Figure 2-7).  

 
Table 2-7 Comparison of the depth of the stream and the depth of the undercut banks (UCB) (mean± SE) at 
locations that the brook trout used in comparison to locations that were available within the (a) control and 
the (b) experimental reach. Significance was determined using t-tests 
(a) Control stream 
position n 

UCB depth 
(cm)  t p 

Stream 
depth (cm)  t p 

2007 Used  1250 31 ± 0.2 8.9 0.001 23 ± 0.2 2.9 .005 
2008 Used 2121 28 ± 0.2 5 0.001 24 ± 0.2 4.3 .001 
2007/2008 Available  101 23 ± 1.2   21 ± 0.7   
        
(b) Experimental 
stream position n 

UCB depth 
(cm)  t p 

Stream 
depth (cm) t p 

2007 Used  1250 42 ± 0.7 8 0.001 29 ± 0.2 5.1 .001 
2008 Used 1863 38 ± 0.5 6.7 0.001 29 ±0.2 5.4 .001 
2007/2008 Available  101 23 ± 1.2   25 ± 0.7   
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Figure 2-7 Undercut bank depth (UCB) histograms illustrating frequency of UCB cover available and the 
frequency of UCB cover used by the brook trout within the (a) experimental reach and the (b) control 
reach. Used locations were determined three times daily over 2007and 2008. Control: used cover n=3371, 
available cover n=101. Experimental: used cover n=3113, available cover n=101 
 

 (a)  (b) 
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The most used location of each individual fish was compared to their position prior to 

water withdrawal treatments. In 2007, nine of the ten experimental fish were found in 

habitat characterized by equal or deeper undercut banks in comparison to their initial 

location. In 2008, eight of the fifteen experimental fish were found in habitat 

characterized by equal or deeper undercut banks in comparison to their initial location. 

 

2.4.2 Activity Level  

Activity levels in 2007 

Because of the hierarchical sampling structure, a mixed model nested ANOVA 

was used to compare the log-transformed distance moved of fish in the control and 

experimental stream sections, over the entire experiment. For this analysis, sampling days 

were repeated measures nested within the three treatments, with time as replication. This 

nested ANOVA indicated a significant difference between control and experimental fish 

movement (F(1,78) = 4.19, p = .044). The fish in the experimental site moved significantly 

more over the entire experiment; however movement varied between treatments. The 

experimental fish moved significantly more than those in the control site during treatment 

one (F(1,278) = 7.93, p = .005) but not during treatment two (F(1,278)  < 1), or treatment three 

(F(1,278) = 2.73, p = .10) (Figure 2-8a). Most of the movement occurred within the first six 

days of the two water withdrawal treatments (Figure 2-8:1.b, & 3.b); in which the 

experimental fish activity levels were significantly greater than the control fish during 

both water withdrawal treatments: treatment one (F(1,118) = 9.93, p = .002) and three 

(F(1,118) = 16.33, p < .001).  
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Figure 2-8 The distance individual control and experimental brook trout moved each tracking measured 
over (a) the two week treatment regimes: (1.a) water withdrawal; F (1,278) = 7.93, p = .005, (2.a) no water 
withdrawal; F(1,278)  < 1, and, (3.a) water withdrawal; F(1,278) = 2.73, p = .10. Mean distance moved per 
tracking per day of each fish measured over (b) the first six days of the treatment: (1.b) F(1,118) = 9.94, p = 
.002, (2.b) F(1,118) = .25, p = .620, (3.b) F(1,118) = 16.3, p < .001. Significance was determined using log 
transformed movement data in a one way ANOVA. Control fish n = 10, Experimental fish n = 10. 
 

The number of active experimental fish (move ≥ 2m) was significantly greater 

than the number of active control fish at each tracking during the two combined 

(2.a) 

(3.a) 

(1.a) (1.b) 

(3.b) 

(2.b) 
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treatments of water withdrawal (X²(1, N=1680) = 13.6, p < .001), and not significantly 

different during the no water withdrawal treatment (X²(1, N = 1840) = 1.27, p = .26).  

There was a large degree of variability in individual fish movement over the 

duration of the experiment. Within the control reach, the range of movement of 

individual fish during each tracking was 0.2-2.4m (mean ±SE: 0.9m ±0.2). Within the 

experimental reach, tracked movement ranged from 0.4-4.2m during each tracking (mean 

±SE: 1.4m ±0.4). Movement showed no apparent upstream or downstream trend. 

Movement was significantly related to water temperature although there was high 

variance in this relationship (linear regression: R² = .04, F(1, 248) = 10.63,  p = .001). 

Corrected weight loss was found to be significantly correlated with the distance 

individual fish moved (linear regression, R² = .24, F(1, 18) = 5.74 p = .028), whereby the 

more the fish moved the more weight they lost. 

 

Activity levels in 2008 

A mixed model nested ANOVA was used to compare the log-transformed 

distance moved of fish in the control and experimental stream sections, over the entire 

experiment. For this analysis, sampling days were repeated measures nested within the 

seven weeks (treatments), with time as replication.  This nested ANOVA indicated that 

the experimental fish moved significantly more than the control fish (F(1,80) = 78.0, p < 

.0001) over the duration of the entire seven week experiment. The mean daily movement 

of experimental fish was significantly greater than that of the control fish during each 

water withdrawal treatment (Table 2-8, Figure 2-9.1). In addition, a greater percentage of 
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the experimental fish were active than the control fish during the water withdrawal 

treatments (Figure 2-9.2).  

 
Table 2-8  Comparison of control and experimental brook trout movement during each treatment in 2008. 
Movement was calculated by determining the mean movement of each fish per tracking, measured three 
times daily, over each treatment. Each treatment lasted 7 days, alternating from water withdrawal (WW) to 
no water withdrawal (NW) for 7 weeks. Significance was determined using logged movement data in a 
one-way ANOVA. Control fish: n = 15, Experimental fish: n = 15 

 Treatment Control move (m) Experimental move (m) F df p 

1 WW 0.80 3.50 39.9 178 .001 
2 NW 0.41 0.91 4.00 208 .047 
3 WW 0.84 1.41 10.1 208 .002 
4 NW 0.78 0.85 0.22 208 .642 
5 WW 0.48 1.22 29.5 163 .001 
6 NW 0.49 0.21 2.15 173 .145 
7 WW 0.51 1.33 29.4 166 .001 
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Figure 2-9  (1) Mean distance individual control and experimental brook trout moved each tracking in 
2008 measured over (1a) weeks 2, 4 and 6 of no water withdrawal (NW), and during (1b) weeks 1, 3, 5, 
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and 7 of water withdrawal (WW) treatments. The distance each fish moved was measured three times a 
day. Significance was determined using daily mean logged distance moved per tracking in an ANOVA 
with control/experimental fish as a fixed factor and week as a random factor: (1a) NW; F(1,2). = 25.5, p = 
.70 (control n = 387, experimental n = 336), (1b) WW; F(1,3) < 1, (control n = 315, experimental n = 280). 
Movement with different letters differ significantly (p < .05) according to Duncan’s multiple range test. (2) 
Percent of the control and experimental brook trout that were active each tracking in 2008 over (2a) weeks 
2, 4 and 6 of no water withdrawal (NW), and during (2b) weeks 1, 3, 5 and, 7 of water withdrawal (WW) 
treatments. A fish was defined as active if it moved 2m or more between each tracking. Significance was 
determined using Pearson Chi Square: active vs. inactive control and experimental fish: (2a) NW; X²(1, N = 

2169) = 1.47, p = .23), (2b) WW; X²(1, N = 1785) = 58.5, p < .001. Control fish n = 15, Experimental fish n = 
15. 
 
 

There was a large degree of variability in individual fish movement over the 

duration of the experiment in both years. Within the control reach, the range of 

movement of individual fish during each tracking was 0.0-1.3m (mean ±SE: 0.6m ±0.1). 

Within the experimental reach, tracked movement ranged from 0.2-4.3m during each 

tracking (mean ±SE: 1.4m ±0.4) and movement showed no apparent upstream or 

downstream trend, as in 2007. Weight loss in 2008 was not found to be significantly 

correlated with the distance individual fish moved (linear regression; R² = .01, F(1, 23) < 

1), nor was movement significantly related to water temperature (linear regression; R² = 

.01, F(1, 139) = 1.4 , p = .24). 

 

2.4.3 Cortisol and Glucose 

There was no significant difference in the levels of cortisol or glucose between 

the control and experimental fish taken at the end of the experiment in 2007 (Table 2-9).  

Table 2-9 Comparison of the (a) cortisol levels (mean ± SE) and (b) glucose levels (mean ± SE) of the 
control and experimental brook trout in 2007. Significance was determined using a one-way ANOVA. 
(a) Cortisol (ng/ml) n F df p 
Control 14.1 ± 5.4 22 < 1 39 .951 
Experiment 13.7 ± 4.5 19    
      
(b) Glucose (mg/ml) n F df p 
Control 0.67 ± 0.02 22 < 1 32 .897 
Experiment 0.68 ± 0.02 12    
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2.4.4 Body Composition Analysis 

The fish lost a significant amount of weight over the duration of the winter of 

2007 (Table 2-10a) (repeated measures ANOVA: control fish, F(1,9) = 32.4, p < .001, and 

experimental fish, F(1,9) = 38.9, p < .001), and 2008  (Table 2-10b) (repeated measures 

ANOVA: control fish, F(1,28) = 93.5, p < .001, and experimental fish, F(1,24) = 62.9, p < 

.001), although there was no significant difference between weight loss of the control and 

experimental fish (one-way ANOVA; 2007, F(1,18) <1; 2008, F(1,52) = 2.07, p = .156).  

Bioelectrical impedance readings indicate that the fish generally gained water 

content and lost lipid content over the duration of the experiment (Table 2-10b). There 

was a significant increase in proximate TBW (repeated measures ANOVA: F(1,52) = 7.12, 

p = .010) of 1% and a decrease in proximate TBF (repeated measures ANOVA:  F(1, 52) = 

6.24, p = .016) of 21% in the fish over the winter, but there was not a significant 

difference between the change in predicted compositional variables between the control 

and experimental fish (one-way ANOVA; TBW: F(1,52) <1; TBF: F(1,52) = 1.02,  p = .932). 

 

Table 2-10 Descriptive statistics of changes in condition of the overwintering brook trout in 2007 and 
2008: (a) 2007 weight loss,  (b) 2008 weight loss and change in percent predicted total body water content 
(TBW) and total body fat content (TBF). 

 
 
 
 

(a) 2007   N Minimum Maximum Mean SE (±) 

Weight (g) 
pre 20 22.7 60.1 33.6 2.01 
post 20 21.1 59.0 31.5 2.01 
diff  -1.6 -1.1 -2.1 0.24 

(b) 2008   N Minimum Maximum Mean SE (±) 
Weight (g) pre 54 11.4 78.7 37.3 2.15 
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2.4.5 Predation 

During the fifth treatment of water withdrawal, on February 23 2008, five 

experimental fish with transmitters were killed by mink (Mustela vison). Two fish with 

transmitters were consumed on the bank within the experimental reach. The transmitters 

from these fish were left behind, one functioning and the other damaged and no longer 

transmitting. The mink did not eat the other three fish with transmitters, but instead 

removed them from the experimental reach and transported them downstream where they 

were cached in two separate locations. The dead fish were found, submerged in the creek, 

in holes dug into the undercut banks. There were an additional two dead fish found 

downstream that did not have transmitters but were found stashed together with the fish 

with transmitters; one with a Floy tag and one untagged fish. Overall in 2008, 33% 

(n=15) of the experimental transmitter fish were killed by a predator. The control fish 

(n=15) were unaffected by predation. 

 

2.5 Discussion 

Flow manipulations have been shown to affect habitat availability and activity 

levels of overwintering brook trout within this study. Repeated flow reductions did not 

post 54 10.6 71.6 33.5 1.87 
diff  -0.8 -7.1 -3.8 0.31 

Predicted TBW (%) 
pre 54 74.6 83.0 80.0 0.22 
post 54 76.9 85.0 80.7 0.25 
diff  2.3 2.0 0.7 0.25 

Predicted TBF (%) 
pre 54 -0.8 15.0 4.8 0.45 
post 54 -2.0 12.2 3.8 0.48 
diff  -1.2 -2.8 -1.0 0.41 
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cause detectable physiological changes in the cortisol and glucose levels of the 

experimental fish, or TBF and TBW content, over the duration of the experiment. It was 

also found that mink predation resulted in significant mortality of experimental fish. 

 

2.5.1 Habitat Availability  

Within the context of this study, as water was removed from the experimental 

stream width and depth were reduced, thereby restricting undercut bank habitat 

availability. Because reducing discharge limits habitat availability, the capacity for a 

stream to maintain salmonid populations may be compromised with increased water 

withdrawal. Baran et al. (1995) also found that area of cover, and depth decreased with 

reduced discharge, in addition they noted a decrease in velocity.  

A reduction in velocity could be viewed as a positive alteration to winter habitat, 

as trout prefer low velocity water and this preference becomes more pronounced in the 

winter (Heggenes & Dokk, 2001). Within this study, the mean water velocity in the 

experimental channel decreased when discharge was reduced because of a diminishing 

range of maximum velocities; however there was not a corresponding increase in low 

velocity habitat. The quantity of low velocity water stayed constant at 25%, 50%, and 

75% flow reduction, but because the stream width and depth was reduced with water 

withdrawal, there was a reduction in habitat that provided low velocity water that was 

covered by undercut banks.  
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2.5.2 Habitat Use 

Cover 

The findings of this study indicate a strong cover preference in daytime habitat 

selection of overwintering brook trout, with deep water with deeply undercut banks being 

the most commonly selected cover. The preference for brook trout to seek covered habitat 

is stronger in the winter than the summer (Cunjak & Power, 1986b), and it has been noted  

that trout have a stronger preference for submerged winter cover than high cover (Cunjak 

& Power, 1987a). Following this trend, coho salmon (Oncorhynchus kisutch) and 

steelhead trout have been shown to move closer to cover as water temperatures decline in 

the winter (Bustard & Narver, 1975).  

 

Depth and velocity   

The present study found that overwintering brook trout were rarely seen in riffles, 

instead they preferred deep water habitats; however, it is important to consider that 

stream habitat variables tend to be intercorrelated (Young, 1995). Winter habitat selection 

was likely not based on depth alone as depth was found to be correlated with the 

available area of undercut banks, and was also associated with low velocity habitat.  

 

Substrate  

The brook trout within this study showed no preference for any particular 

substrate in winter. These findings coincide with Chisholm et al. (1987) findings, but are 

in contrast to other studies which demonstrated that cutthroat trout had a preference for 
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small substrate (Brown & Mackay, 1995) while juvenile Atlantic salmon preferred large 

substrate (Hiscock et al., 2002). 

 

Water temperature   

Because of the relatively homogenous temperature of the experimental stream 

selected for this study, temperature was not examined as a habitat selection variable; 

however the presence of fish naturally overwintering in the experimental ground-water 

fed stream suggests an affinity to “winter warm” water.  

 

2.5.3 Activity Level  

Using radio telemetry, control and experimental fish could be tracked multiple 

times daily to determine activity levels and habitat preferences of overwintering brook 

trout and to observe how the fish were affected by changes in flow regime.  

 

Winter activity levels   

The tendency for fish to remain sedentary in the winter was apparent within this 

study in both 2007 and 2008 with some fish showing virtually no movement for the 

duration of the experiment. The relative inactivity may be the result of low water 

temperatures reducing swimming performance (Hartman, 1963). There was a weak, but 

significant correlation between movement and water temperature in 2007 but not in 2008. 

Brown et al. (2001) also addressed the association between movement and water 

temperature and did not find a significant relationship between temperature and distance 
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moved of brown trout , white sucker (Catostomus commersoni Lacepede) or common 

carp (Cyprinus carpio Linnaeus).  

This study focused on tracking daytime activity levels; however overwintering 

salmonids do exhibit a shift in diurnal activity in the winter with a propensity for daytime 

concealment and a tendency to become more active at night (Heggenes & Dokk, 2001; 

Huusko et al., 2007; Jakober et al., 2000). Within the study period, fish became more 

visually observable during the night. There was an apparent diurnal trend marked by 

some fish moving laterally out from under cover at night and back under cover during the 

day. 

 

Activity levels with flow manipulation  

Within the context of this study, activity levels of the experimental brook trout 

were significantly increased during reduced flows. In both 2007 and 2008 the 

experimental fish were most active during the first few days of the first water withdrawal 

treatment. Because the flow manipulations within each treatment were consistent in 

magnitude and duration throughout each experiment, the fish may have been able to 

adapt to the environmental perturbation. Adaptation or habituation appears to be likely in 

2007 when the fish activity levels came steadily back down to control levels after six 

days of treatment. In 2008 flow was reduced to lower levels than in 2007. Comparable to 

fish movement in 2007 the highest activity level in 2008 occurred in the first week, but 

unlike 2007, there was no trend in reduced activity over the repeated treatments 

potentially demonstrating an inability to adapt or habituate to the greater magnitude of 

water withdrawal.  
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Atlantic salmon parr move significantly more at changing flows than at stable 

flows (Berland et al., 2004), and brook trout have been shown to have elevated levels of 

activity during up- and down-ramping (Scruton et al., 2003). In this study, visual 

observations were made of increased activity and exposure of the trout during the period 

of changing flows. These data were not quantitatively captured because the change in 

discharge occurred quickly and the visually active fish were often found to return to the 

same location after flows stabilized when tracking occurred, resulting in no recordable 

distance moved.  

 

Activity levels with change in habitat   

Discharge reduction changed the quantity and quality of habitat available for the 

brook trout within the present study. Experimental fish tended to seek out deeper 

undercut banks in response to flow manipulations likely for refuge. Trout have been 

shown to modify their habitat selection as a result of a change in flows (Bunt et al., 1999; 

Pert & Erman, 1994). In 2007 when fish where subjected to 50% water withdrawal, 90% 

of the experimental fish moved to habitat characterized by equal or deeper undercut 

banks after water withdrawal treatments commenced. In 2008 when fish where subjected 

to 75% water withdrawal, only 53% of the experimental fish moved to habitat of equal or 

deeper undercut banks after water withdrawal treatments commenced. This discrepancy 

is consistent with the difference in activity levels. In 2007 activity levels declined 

throughout each treatment indicating that the fish may have been able to find suitable 

habitat, namely deep undercut banks, which permitted relative stability regardless of flow 

reduction. In 2008 activity levels did not decline throughout each treatment potentially 



 83 

indicating that the increased intensity of the treatment resulted in the inability of some 

fish to find habitat unaffected by the increased levels of water withdrawal.  

Stream morphology, in conjunction with magnitude of flow manipulation, can 

dictate habitat availability (Valentin et al., 1996) and can be a central determinant of the 

tendency of a fish to have to move (Scruton et al., 2005). If the increase in fish 

movement, in response to discharge reduction, is primarily the result of fish seeking out 

better habitat, it is likely that their level of activity would be inversely proportional to the 

available habitat at the reduced flows. The stream chosen for this study was relatively 

deep and narrow with a large amount of cover. When discharge was reduced by 75% 

almost half of the undercut bank habitat was still available. If the experimental stream 

reach had a shallow and wide lateral profile, activity levels may have increased 

significantly more with water withdrawal because the wetted perimeter of rivers this 

shape show more sensitivity to flow manipulation (Anderson et al., 2006), ultimately 

affecting the quantity and quality of refugia. Brook trout activity levels have been shown 

to peak during periods of extreme high or low flows likely as a result of having to seek a 

new suitable habitat and activity levels have been shown to decrease when suitable refuge 

is found (Murchie & Smokorowski, 2004). 

Trout biomass has been found to increase with habitat improvements including 

creation of pools and cover (Burgess & Bider, 1980). In turn it would be expected that 

biomass would decrease with the deterioration of habitat availability. This was not tested 

within the present study as the fish were enclosed, inhibiting out migration. 
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Variation in activity levels  

Behaviour is likely highly context-dependent and there may be mobile and non-

mobile salmonid individuals within one population (Hiscock et al., 2002; Muhlfeld et al., 

2001; Pert & Erman, 1994). Variability in movement may be influenced by habitat 

availability (Murchie & Smokorowski, 2004). A large range in activity levels within 

single size classes of cutthroat trout (Oncorhynchus clarki)  has been documented 

(Brown, 1999), demonstrating large intra-species variation. These findings correspond 

with the present study where there was a large range of brook trout activity levels in 2007 

and 2008; furthermore, this range was considerably magnified in experimental fish 

subjected to water withdrawal, likely the result of reduced habitat. In conjunction with 

these findings, a large range in mobility in brown trout subjected to pulsed discharge has 

also been observed (Bunt et al., 1999). Large variation in movement among individual 

fish can obscure more subtle responses to environmental conditions such as changes in 

discharge (Berland et al., 2004). 

 

Fish size and activity levels  

In salmonid species, large body size often correlates with dominance (Mellas & 

Haynes, 1985). In this study, in order to minimize tag/body mass ratios, the largest fish 

were selected for transmitters and, by default, for monitoring behaviour; consequently it 

was not possible to assess how the changes in discharge were affecting the behaviour of 

the small less dominant fish. Scruton et al. (2005) hypothesized that larger fish may have 

a greater propensity to hold their position in their preferred habitat during exposure to 
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flow manipulations than smaller less dominant fish because site fidelity may be linked to 

social hierarchy. Larger Atlantic salmon parr have been shown to be less affected by 

variable flow than smaller fish (Berland et al., 2004). Within the present study it is 

possible that the smaller trout were being more affected by flow manipulations than the 

larger trout; however fish tend to exhibit less aggression in winter (Hartman, 1963, 1965; 

Vehanen et al., 2000) so dominant habitat fidelity in the winter may not be as pronounced 

as it would be in the summer. 

 

2.5.4 Cortisol and Glucose  

Cortisol   

Cortisol levels were measured as an indicator of the stress response initiated by 

the repeated stressor of manipulated flow. In order to avoid affecting fish behaviour 

throughout the study, cortisol levels were only measured for analysis once at the end of 

the experiment and there was virtually no difference in cortisol levels between control 

and experimental fish at this point. 

Repeated stressors can desensitize fish, inhibiting catecholamine release (Reid et 

al., 1998). A repeated stressor may elicit a slightly elevated level of cortisol, although the 

initial peak cortisol level is not maintained despite the continued administration of the 

stressor (Einarsdottir & Nilssen, 1996; Jentoft et al., 2005; Pickering & Pottinger, 1989; 

Wendelaar Bonga, 1997). After ten weeks of subjecting rainbow trout to an acute daily 

stressor, there was an observed decrease in cortisol and glucose levels indicating 

habituation (Barton et al., 1987). Habituation, or compensation, was also observed in 

brown trout in response to a repeated stressor, apparent by a drop in cortisol levels back 
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to resting levels, despite the continued administration of the flow manipulation stressor 

(Flodmark et al., 2002).   

It is probable that the experimental fish in the present study responded in a similar 

way to the experimental fish in the study carried out by Flodmark et al. (2002) and 

Arnekleiv et al. (2004) in which there was an initial peak in cortisol levels after exposure 

to the stress of reduced flow. With repeated administration of the stressor there may have 

been greatly reduced or completely diminished elevations of cortisol levels, until no 

response was detectable. Sloman et al. (2001) also speculated that cortisol concentrations 

could have increased briefly but returned to basal concentrations by the time blood 

samples were taken in brown trout after a two week exposure to artificial drought 

conditions.  

Because behavioural and physiological responses to stress are interconnected 

(Iwama, 1998), it is likely that within the context of this study, cortisol levels were 

increasing in parallel with activity levels. If the experimental fish did exhibit an initial 

spike in cortisol, like that seen in activity levels, it is probable that there would be large 

variation in the cortisol levels depending on the degree to which the habitat of individual 

fish was being affected by reduced flow.   

 

Glucose  

Within the present study, there was no detectable difference in glucose levels 

between control and experimental trout taken at the end of the study period. Like cortisol, 

glucose levels show a habituated reduction in repeatedly stressed trout (Barton et al., 

1987; Scruton et al., 2005). It has been demonstrated that the groups of brown trout with 
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elevated cortisol levels also had the highest glucose levels after exposure to dewatering in 

an artificial channel (Arnekleiv et al., 2004), in contrast, no change in blood glucose was 

found in brown trout exposed to a flow regime stressor despite elevated cortisol levels 

(Flodmark et al., 2002). Within the present study it is probable that glucose levels were 

not significantly elevated if the fish were able to find refuge from the stressor. 

 

Implications of the stress response 

Stress responses allow a fish to cope with a stressor to maintain relative 

homeostasis and do not become detrimental until the fish’s physiological stress 

mechanisms become compromised (Barton et al., 2002). The rate of change and time 

period between a stressor (eg. a change in flow) can play a role in determining if the 

effects become cumulative or if the fish is able to habituate (Scruton et al., 2005). In 

order to alleviate or minimize detrimental effects caused by stress on fish, there should be 

a sufficient time period between stressors in accordance with the stressors’ severity and 

duration (Barton & Iwama, 1991). The sensitivity to stress of fish at different life phases 

should also be considered. 

 

2.5.5 Body Composition Analysis  

Weight  

Salmonid winter feeding is restricted because low water temperatures limit 

appetite, digestion and gastric evacuation rates (Cunjak et al., 1987; Sweka et al., 2004); 

consequently they primarily rely upon stored fat to meet energetic demands (Pottinger et 

al., 2003) and have been shown to lose weight while they adjust to winter (Cunjak et al., 
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1987; Simpkins & Hubert, 2000). Within this study, in both 2007 and 2008, every control 

and experimental fish lost weight over the duration of the experiment. The physiological 

implications of flow regime manipulations may be even more pronounced in early winter 

as it has been shown to be a stressful period of acclimatization in which condition factor 

has been shown to rapidly decline (Cunjak, 1988). 

Attempting to compensate for extreme flows can impose significant energetic 

costs (Heggenes et al., 1999). In a lab setting fish exposed to fluctuating flows had 

reduced feeding consumption and reduced growth than those held at stable high water 

levels (Flodmark et al., 2004). Within this study, there was a significant, albeit weak, 

relationship between tracked movement and weight loss in 2007; however this 

relationship was not significant in 2008. In both 2007 and 2008 the experimental fish did 

not lose significantly more weight than the control fish. Borrowing from Flodmark et 

al.’s (2004) postulations, fish may be better able to better adapt to changes in flow, in a 

stream that provides a complex environment than they would in the lab or in shallow low 

gradient rivers with inadequate habitat at low flows.  

 

Water and fat 

There was a reduction in percent TBF and, respectively, a small gain of percent 

TBW content of the control and experimental fish over the extent of the experiment. 

Cunjak and Power (1986a) also found that percent water content of brook trout increased 

over the winter, and lipid levels have been shown to rapidly decrease in early winter for 

brook and brown trout (Cunjak, 1988). Mortality of overwintering young rainbow trout 

has been shown to be linked to the depletion of lipid reserves (Biro et al., 2004); however 
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salmonids are not always found to lose a significant amount of fat over the winter 

(Webster & Hartman, 2007) . 

If the experimental fish within this study were unable to habituate to the water 

withdrawal stressor, and instead had to compensate by adjusting physiologically or 

behaviourally, it would be expected that there would be an energetic toll affecting their 

growth, reproduction and, potentially, survival (Scruton et al., 2003). It has been 

demonstrated that sedentary juvenile rainbow trout maintain lipid levels, while active fish 

exhibit a decrease in lipid content (Simpkins et al., 2003a, 2004). The experimental fish 

exposed to the stress of flow manipulations, did adjust behaviourally by being more 

active, potentially seeking out more hospitable habitats, but they did not lose significantly 

more weight or fat in comparison to fish not exposed to the stressor. There are a number 

of possible explanations for this. The stressor may have been affecting the fish in ways 

that were not measured, for instance inhibition of reproduction functions (eg. reduced 

quality of gametes (Campbell et al., 1992)). The experiments lasted six weeks in 2007 

and seven weeks in 2008. This may not have been a sufficient amount of time to detect a 

change in physiology indicative of a stress induced energetic toll, or the fish may have 

been able to habituate to the stressor because of the complex available habitat.  

 

2.5.6 Predation 

Predation can be a significant limiting factor of winter survival. Lindstrom and 

Hubert (2004) found that mink predation played a major role in winter fish mortality as at 

least  8% of the 25 radio-tagged cutthroat and 28% of the 25 radio-tagged brook trout 

were killed by mink. Significant mink predation has also been documented on 
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overwintering radio-tagged juvenile Atlantic salmon (Hiscock et al., 2002). The seasonal 

shift in salmonid diel behaviour, characterized by day time concealment (Annear et al., 

2002; Heggenes & Dokk, 2001; Meyer & Gregory, 2000), may be an adaptive behaviour 

to minimize predation risk (Heggenes et al., 1993; Jakober et al., 2000; Valdimarsson & 

Metcalfe, 1998). Within the present study, experimental fish were visually observed more 

frequently than control fish, likely as a result of a decrease in undercut bank cover 

availability. There was no control fish regularly observed in the centre of the stream 

channel; whereas, four of the fifteen experimental fish with transmitters were observed 

on a regular basis in the centre of the channel during tracking. Of the four regularly 

exposed fish, three were killed by mink. An additional two experimental fish with 

transmitters were also killed by mink predation. These two fish were also regularly 

located in the middle of the stream channel, however they were usually under the cover 

of a piece of large woody debris. It is apparent that the exposed fish were more 

vulnerable to predation than those protected by undercut banks; and therefore is likely 

that the experimental fish were more vulnerable to predation than the control fish as a 

result of flow manipulation. 

 

2.5.6 Conclusion 

The ecological process of fish populations are regulated by biotic factors 

including competition and predation and by abiotic factors including habitat (Heggenes, 

1996; Jackson et al., 2001). In the winter salmonid behavioural strategies change 

(Cunjak, 1996; Cunjak & Power, 1986b; Heggenes et al., 1993), whereby competition for 
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food and social interactions appear to play less of a role than at other times of the year 

and the relevance of predation and habitat becomes magnified.  

There is a dynamic energetic cost associated with winter movement. The decrease 

in riverine habitat availability with winter flow reduction and the resulting increase in 

fish activity exemplifies the importance of habitat availability, particularly instream 

cover. Complex habitats provide important refuge for fish during disturbances (Pearsons 

et al., 1992). Bjornn (1971, p. 436) proposed that “the amount of suitable winter cover in 

a stream plays a major role in regulating the number of fish that overwinter in streams 

with winter water temperatures below 4-5 C”. Bustard and Narver (1975) also stress the 

importance of cover and infer that altering the winter habitat of salmonids would likely 

result in reduced overwinter survival. Cover plays a major role in providing refuge from 

predation (Valdimarsson & Metcalfe, 1998). Under natural flows, habitat availability is a 

limiting factor for overwintering brook trout and this limitation is exacerbated by 

reducing flows. To minimize adverse effects of daytime winter flow reduction it is 

important to have complex stream habitat at normal and reduced flows. 

 

To summarize 

 (1) Because reduced flow decreased the width and depth of the stream the 

amount of undercut bank cover was also diminished. Mean water velocity decreased with 

a reduction in discharge, however the quantity of low velocity water did not increase as 

hypothesized and the amount of low velocity habitat that provided overhead cover was 

reduced. (2) Deeply undercut banks and deep water provided preferential winter habitat. 

(3) Pulsed deviations from the natural flow regime had a significant effect on movement 
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of stream resident brook trout. The duration of increased movement is likely to be 

dependent on the magnitude of water withdrawal. (4) There was no difference in cortisol 

and glucose levels between the control and experimental fish after six weeks of 

alternating treatments. (5) The body composition of the brook trout changed significantly 

over the winter with a proximate increase in TBW and decrease in TBF; however there 

was no significant difference of body composition between control and experimental fish. 

 

Further research 

It is important to further monitor the implications of water withdrawal during 

winter in conjunction with different ice conditions and channel shapes. In addition studies 

should examine effects of manipulating winter flow at a range of magnitudes over 

varying durations at different times of the day. It is also important to investigate the 

implications of winter disturbances on fecundity, specifically of spring spawners.    
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3. Bioelectrical Impedance Analysis of Overwintering Brook Trout (Salvelinus 
fontinalis) from the Canadian Rocky Mountains 

 

3.1 Abstract 

The physiological response of brook trout (Salvelinus fontinalis) to experimental 

flow manipulations was studied during the winter of 2008. The study was carried out 

using in situ experimental channels located in a small stream from Kananaskis Country, 

Alberta. Experimental treatments consisted of four hour daily water withdrawals from 

one of the two enclosures, removing 75% of the stream discharge. Changes in brook trout 

proximate body composition over the duration of the eight week experiment were 

measured using bioelectrical impedance analysis (BIA). Regression models were 

developed, using body composition measures and BIA readings of resistance (R) and 

reactance (Xc), as a tool to predict percent total body water (TBW) and percent total body 

fat (TBF) of live fish. The best predictive models to determine body composition 

combined reactance with length to predict TBF yielding an R² value of 0.774 and 

combined reactance with Fulton’s condition factor (K) to predict TBW yielding an R² 

value of 0.765. Using these models proximate body composition of the experimental fish 

was predicted before and after the experiment. The brook trout experienced a significant 

weight loss, predicted TBF loss, and predicted TBW gain over the eight week winter 

study; however there was no significant difference detected in predicted body 

composition between the fish exposed to flow manipulations and those not exposed. 
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3.2 Introduction 

BIA measures the conduction of a current as it passes through soluble ions in 

intracellular and extracellular fluids of a body. BIA directly measures reactance (Xc) and 

resistance (R) parameters from which  proximate body composition can be determined 

because of differences in impedance between fat mass and fat free mass (Liedtke, 1997). 

Resistance is equal to the pure opposition of alternating current to flow, and reactance is 

the opposition to flow of current caused by the capacitance of cell membranes (Kushner, 

1992). Body tissues containing large amounts of water and electrolytes are highly 

conductive and therefore provide a low resistance pathway; whereas materials such as 

bone and fat are poor conductors and correspond to high resistance (Liedtke, 1997). 

Reactance, also referred to as capacitive reactance, is a measure of the opposition 

to alternating current arising from the presence of capacitors within a circuit. A capacitor 

is made up of two or more conducting plates isolated from each other by a dielectric used 

to store the charge of electrons (Kushner, 1992). In tissue, reactance is a measure of the 

opposition to an alternating current by the cell membrane. Cell membranes are composed 

of a bilayer of polar proteins and phospholipids separated by a core of nonconductive 

lipids that act as a capacitors (Kushner, 1992). When an electrical signal is introduced 

into a tissue a small amount of the signal is leaked through protein channels to charge the 

inside of the cell membranes. Cell membranes act as capacitors and cause the electrical 

current to lag behind the applied voltage resulting in a measurable effect because of the 

resistance of the dielectric (Liedtke, 1998). In tissue, reactance is analogous to 

intracellular volume; whereas resistance is analogous with extracellular volume (Liedtke, 

1998). 
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There is extensive literature citing the use of BIA on humans (for a review of BIA 

use on human subjects see: Kyle et al., 2004)). Studies have also been conducted on other 

animals including wild mammals (Barthelmess et al., 2006; Bowen et al., 1998; Farley & 

Robbins, 1994; Hundertmark & Schwartz, 2002; Rutter et al., 1998), livestock (Berg et 

al., 1997; Daza et al., 2006; Kraetzl et al., 1995; Velazco et al., 1999), and to a lesser 

extent, on fish (Bosworth & Wolters, 2001; Cox & Hartman, 2005; Duncan et al., 2007; 

Webster & Hartman, 2007; Willis & Hobday, In Press). The bodies of most mammals are 

divided into several cylindrical segments; whereas fish have a relatively geometric 

configuration, therefore, BIA can be more easily applied to a fish’s body shape because 

the principal concept of BIA is that the tested body is an isotropic conductor with a 

uniform cross-sectional area and length (Kushner, 1992). 

Initial documentation of the use of BIA on fish was for the purpose of predicting 

carcass yield and composition of farmed catfish  (Ictalurus punctatus) (Bosworth & 

Wolters, 2001) and later in farmed  juvenile cobia (Rachycentron canadum) (Duncan et 

al., 2007). BIA has been further developed as a means of determining condition and 

health of wild stocks. The relative condition of bluefin tuna (Thunnus maccoyii) at sea 

(Willis & Hobday, In Press) has been measured using BIA; in addition, BIA has been 

used to determine the proximate body composition of wild and hatchery brook trout 

(Salvelinus fontinalis) (Cox & Hartman, 2005). The regression models built by Cox and 

Hartman (2005) were further applied to overwintering brook trout in situ and in the lab to 

measure changes in body composition (Webster & Hartman, 2007). Because BIA has the 

capacity to detect small change in the electrical properties of a body (Foster & Lukaski, 
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1996), it can be used as a tool to monitor changes in body composition and therefore 

changes in physical condition and energy expenditure.  

A change in the body composition of salmonids over winter has been associated 

with a winter fitness cost. A significant decline in trout weight despite continuous feeding 

throughout winter has been observed (Annear et al., 2002), particularly in reproductive 

fish (Hutchings et al., 1999). Coinciding with weight loss, lipid loss has also been 

documented in overwintering brook trout (Cunjak et al., 1987), and has been found to be 

related to post-reproductive survival of brook trout (Hutchings et al., 1999). Lipid loss of 

overwintering brook trout is generally not to the extent that protein stores have to be 

mobilized; however early winter energy depletion of lipids may limit endurance with 

exposure to atypical environmental perturbations (Cunjak et al., 1987). Because winter 

may be a restrictive time of the year for fish production (Alfredsen & Tesaker, 2002; 

Annear et al., 2002; Jackson et al., 2001), it is important to monitor changes in fish 

physiology over winter months, including  how winter condition is affected by 

compounding anthropomorphic stressors, such as instream flow manipulation.  

 

3.2.1 Objectives  

The following two objectives and related hypothesis will be investigated in this 

chapter: 

 

1.) To determine if bioelectrical impedance analysis provides an accurate means in which 

to measure brook trout proximate body composition. 
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Ha1: Bioelectrical impedance analysis will provide an accurate means in which to 

measure proximate body composition of brook trout. 

 

2.) To determine how the body composition of brook trout changes over winter and how 

these changes in composition are further affected by flow manipulations. 

Ha2: Brook trout will lose weight, lose fat and gain water over the winter and 

these changes will be exacerbated in brook trout that are subjected to flow 

manipulations  

 

3.3 Methods 

3.3.1 Model Building 

Thirty two brook trout were collected from two locations in Kananaskis on 

October 18 2007. The first sampling site was an unnamed tributary to Porcupine Creek 

(50º59'13.0''N; 115º05'14.0''W), and the second sampling site was at Joshua Creek 

(50º10'35.6''N; 114º 53'57.6''W). The creeks were fished using a backpack electrofisher. 

Each sampled trout was anesthetized using a 40ppm solution of clove oil, at which point 

their weight and length (FL) was measured (Table 3-1). BIA measures were then 

determined using a tetrapolar, Quantum X Bioelectrical Body Composition Analyzer 

(RJL Systems, Detroit, Michigan). The analyzer was adapted for use on fish by using 

stainless steel needle electrodes (Grass Telefactor, West Warwick, Rhode Island). The 

fish were placed on a dry paper towel and stainless steel electrodes were inserted 

ipsilaterally into the fish midway between the lateral line and the dorsal midpoint (Cox & 

Hartman, 2005). Resistance and reactance readings were recorded, and the distance 
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between the two inner detecting electrodes was measured (Table 3-1). Because the bulk 

electrical properties of tissue can be anisotropic (Foster & Lukaski, 1996), electrode 

placement was consistent in all trials.  

The sampled brook trout were euthanized, individually wrapped in foil, 

numbered, and bagged. The fish were put on ice, and transported to the lab where they 

were frozen. The trout were processed in the lab to measure body composition 

parameters. The whole bodies were dried at 50°C in individual foil containers until a 

constant dry weight was reached (~48hrs). TBW was determined by calculating the 

difference between wet and dry weight and percent TBW was calculated relative to the 

total fresh body weight of the fish. Each whole dried fish was homogenized in a small 

grinder. Aliquot samples, containing a minimum of 1.5 grams of homogenized tissue 

were run using the hot Soxhlet extraction method, with petroleum ether as a solvent. The 

samples were run in duplicate for a minimum of three hours until the sample maintained 

a constant weight. TBF was determined by calculating the difference in weight of the 

tissue sample before and after lipid extraction and percent TBF was then calculated 

relative to the total fresh body weight of the fish (Table 3-1).  

 

Table 3-1 Body composition measures of brook trout sampled in October 2007 from Kananaskis Country 
to create BIA regression models. TBW: total body water, TBF: total body fat. n=32 
  MEAN MIN MAX SE (±) 
Length (mm) 150 110 193 4.10 
Weight (g) 35 13 76 2.72 
Resistance (ohms) 607 445 766 15.09 
Reactance (ohms) 153 120 197 3.55 
TBW (%) 78 73 80 0.32 
TBF (%) 8 2 16 0.67 
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3.3.2 Study Site 

Site location 

The study was carried out using in situ experimental channels located in a small 

unnamed first order stream in the Canadian Rocky Mountains (50º59'03.2''N; 

115º04'48.2''W). The spring-fed stream drains into the southern end of Barrier Lake 

(Figure 3-1). The stream is small with a mean width of 1.5m ±0.034 (±SE) (range: 0.8-

3m) and a mean depth of 0.21m ±0.007 (±SE) (range: 0.05-0.53m), with a winter 

discharge of approximately 45 l/s. Because the stream is groundwater fed it remains 

largely ice free throughout the winter. The elevation at the study site is 1425m at which 

point the stream has a moderate gradient (1-2%) and a NW aspect. The habitat within the 

stream is heterogeneous containing, riffles, runs and pools with diverse substrate and 

cover and is shaded by a canopy of lodgepole pine (Pinus contorta) and white spruce 

(Picea glauca). Brook trout species are almost the sole species within the stream with the 

exception of an infrequent presence of a brown trout.  
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Figure 3-1 Map of the experimental site located in Kananaskis Country in the Canadian Rocky Mountains 

 
Site design 

Two similar 100m stretches of the stream were isolated using fences made of 

6mm metal hardware-cloth and T-bar posts: a control reach (downstream, 50º58'59.6''N; 

115º 04' 46.8''W) and an experimental reach (downstream, 50º59'03.2''N; 

115º04'48.2''W). The two sites were separated by a 35m reach where the stream ran 

through a culvert under the Porcupine Group Campsite Road (Figure 3-2). The control 

site was upstream of the experimental site. 
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Figure 3-2 Experimental site layout depicting the position of the control and experimental reaches. Small 
arrows indicate stream-flow direction. Scale ~1:2500  

 
3.3.4. Sampling 

The experiment was conducted during the winter of 2008, commencing on Jan 16 

and finishing on Mar 12 (Table 3-2). The experimental reaches at the study site were 

isolated with fish fences and the two reaches were electrofished, in three passes, to 

remove all resident brook trout. Brook trout were introduced to the study site from 

another homogeneous stream in order to ensure that the experimental fish used in 2008 

were unaffected by experimental treatments that were implemented in the past at the 

study site. The experimental trout were captured for relocation from Canmore Creek 

(51º04'47.3''N; 115º22'46.4''W; elevation: 1375m) using a backpack electrofisher. A total 

of 70 brook trout were captured with a mean weight of 35.8g ±1.8 (±SE) and length of 

159mm ±2.9 (±SE).  

BIA readings were taken on the 70 sampled brook trout using the same method as 

that used on fish sampled to build regression models (see section 3.3.1). The fish were 

↑ 
N 
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transported to the study site in 125 L aerated water barrels from Canmore Creek. They 

were given one week to recover from sampling before the water withdrawal treatments 

commenced. BIA readings were taken again at the end of the experiment on the same fish 

to provide before and after resistance and reactance measures and ultimately before and 

after predicted body composition measures. 

 

3.3.5 Water Withdrawal 

Pumps and hoses 

Water was withdrawn from the stream using two Rotating Right 10cm 8HP water 

trash pumps. The pumps were situated approximately 4m away from the stream on the 

right bank. Water was withdrawn with suction hoses that were positioned immediately 

upstream of the upper experimental fence. The water was routed through two 91m lay-

flat hoses that ran parallel to the stream to the discharge site, below the lower 

experimental fence. The water ran out onto a tarp, where the water velocity was reduced 

before it ran back into the stream maintaining turbidity levels and preventing scouring of 

the stream channel (Figure 3-2).   

 

Stream flow manipulation 

The experiment ran for eight weeks (Table 3-2). During water withdrawal 

treatments approximately 75% of the total discharge was withdrawn from the 

experimental site for four hours daily, from 10:00 to 14:00.  
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Table 3-2  The experimental treatment regime schedule. Each treatment lasted a week, alternating from 
water withdrawal to no water withdrawal for 7 weeks. During treatments 1 and 5 only 6 days of data were 
collected because of weather and predator events.  

2008 Date Treatment Duration (days) 
Jan 16 - Jan 22 Acclimatization 7 
Jan 23 - Jan 29 1: water withdrawal  6 
Jan 30 - Feb 5 2: no water withdrawal 7 
Feb 6 - Feb 12 3: water withdrawal 7 
Feb 13 - Feb 19 4: no water withdrawal 7 
Feb 20 - Feb 26 5: water withdrawal 6 
Feb 27 - Mar 4 6: no water withdrawal 7 
Mar 5 - Mar 11 7: water withdrawal 7 

 

3.4 Results 

3.4.1 Predicting Body Composition  

Linear regression analysis was used to evaluate the relation between body 

composition measures, morphometric measures, and BIA readings. Water content and fat 

content were found to be inversely proportional with an R² of 0.82 (Figure 3-3).  
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Figure 3-3 Linear relationship between percent total body fat (TBF) and percent total body water (TBW) 
of sampled brook trout. n=32 
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Morphometric measures of weight and length were significant independent predictors of 

TBW and TBF (Table 3-3).  

 

Table 3-3 Linear regression analysis of morphometric measures of brook trout as predictors of a) total 
body water (TBW) and b) total body fat (TBF). Weight (g) , Length: FL (mm), BIA length: distance 
between inner electrodes (mm), K: Fulton’s condition factor (W/L³)*100,000. n=32 
a) TBW       
Morphometric 

Measure Slope  Intercept R² R² adj SEE p 
Weight 0.054 75.627 .23 .20 1.69 .006 
Length 0.042 71.237 .26 .24 1.65 .003 
BIA length 0.053 74.666 .09 .06 1.84 .095 
K -7.321 84.610 .09 .62 1.83 .910 

 
b) TBF       
Morphometric 

Measure Slope  Intercept R² R² adj SEE p 
Weight -0.148 13.012 .41 .39 3.05 .000 
Length -0.114 24.897 .46 .44 2.92 .000 
BIA length -0.175 17.225 .23 .21 3.47 .005 
K 11.115 -2.948 .05 .02 3.85 .217 

 

BIA linear regression models were developed using bioelectrical impedance readings of 

resistance and reactance and measured body composition. The impedance quotient (L²/R) 

was strongly related to total body weight (R² = .95) (Figure 3-4).  
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Figure 3-4  Linear relationship between total wet body weight and the bioelectrical impedance quotient, L: 
fork length and R: resistance of sampled brook trout. n=32. 
 

Reactance was the best sole independent predictor of both TBW and TBF (Table 3-4) 

accounting for 72% of the total variability associated with both TBW and TBF (Figure 3-

5).  

 

Table 3-4 Linear regression analysis of impedance measures of brook trout as predictors of a) total body 
water (TBW) and b) total body fat (TBF). L: length (mm), R: resistance (Ω) measured in series, Xc: 
reactance (Ω) measured in series. n=32 
a) TBW       
Impedance 
Measure Slope  Intercept R² R² adj SEE p 

Rm -0.015 86.615 .473 .456 1.40 .001 
Xcm -0.079 89.572 .719 .710 1.02 .001 
L²/ Rm 0.062 75.005 .360 .339 1.54 .001 
L²/ Xcm 0.019 74.492 .438 .419 1.44 .001 

 
b) TBF       
Impedance 
Measure Slope  Intercept R² R² adj SEE p 

Rm 0.036 -13.824 .635 .623 2.40 .001 
Xcm 0.162 -16.921 .718 .708 2.10 .001 
L²/ Rm -0.159 14.242 .555 .540 2.64 .001 
L²/ Xcm -0.047 15.216 .617 .605 2.45 .001 
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Figure 3-5 Linear relationship between reactance and (a) total body fat (TBF) (b) total body water (TBW) 
of sampled brook trout.  n=32 
 

The accuracy of statistically predicting TBW and TBF was improved by the 

inclusion of length to predict TBF [multiple linear regression, R² = .77, F(2,29) = 47.2, p = 

0.001;  y = (0.131* Xc) + (-0.048*L) -4.864)] and Fulton’s condition factor to predict 

TBW [multiple linear regression, R² = .77, F(2,29) = 49.8, p = .001; y = (-0.077* Xc) + (-
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5.166*K) +94.239)]. These multiple regression models were applied to predict body 

composition of experimental and control fish pre and post experiment (Table 3-5). 

 

3.4.2 Changes in Proximate Body Composition 

Winter  

All sampled brook trout lost weight over the duration of the winter (repeated 

measures ANOVA: F(1,52) = 153, p < .001). Bioelectrical impedance readings indicate that 

the fish generally gained water content and lost lipid content. There was a significant 

increase in predicted TBW (repeated measures ANOVA: F(1,52) = 7.12,  p= .01) of 1% 

and a decrease in predicted TBF (repeated measure ANOVA: F(1, 52) = 6.24, p = .02) of 

21% in the fish, over the duration of the experiment (Table 3-5).   

 

Table 3-5 The changes in physiological condition of all sampled book trout from Jan 16-Mar 11 2008. 
Change in weight was calculated through actual before and after measures. Change in predicted total body 
fat (TBF) and predicted total body water (TBW) was calculated using BIA regression models. 

   N Minimum Maximum Mean SE (±) 

Weight (g) 
pre 54 11.4 78.7 37.3 2.15 
post 54 10.6 71.6 33.5 1.87 
diff  -0.8 -7.1 -3.8 0.31 

Predicted TBW (%) 
pre 54 74.6 83.0 80.0 0.22 
post 54 76.9 85.0 80.7 0.25 
diff  2.3 2.0 0.7 0.25 

Predicted TBF (%) 
pre 54 -0.8 15.0 4.8 0.45 
post 54 -2.0 12.2 3.8 0.48 
diff  -1.2 -2.8 -1.0 0.41 
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Exposed to flow manipulations 

There was no significant difference in weight (one-way ANOVA; F(1,52) <1), 

proximate TBF (F(1,52) = 1.01, p = .32), or proximate TBW (F(1,52) <1) between the 

control and experimental fish at the beginning of the experiment. Both control and 

experimental fish lost a significant amount of weight over the duration of the experiment 

(repeated measures ANOVA, control; F(1,28) = 93.5, p < .001, and experimental; F(1,24) = 

62.9, p < .001); however there was no significant difference in weight loss between the 

two groups (one-way ANOVA; F(1,52) = 2.07, p = .16), nor was there a significant 

difference in predicted compositional variables between the control and experimental fish 

at the end of the experiment (one-way ANOVA; TBW: F(1,52) <1; TBF: F(1,52) = 1.02, p = 

.32). 

 

3.5 Discussion 

3.5.1 Predicting Body Composition  

There is a strong linear relationship between impedance measures of  fish and 

proximate analysis variables: total body water, dry mass, fat-free mass, total body 

protein, total body ash and total body fat mass (Bosworth & Wolters, 2001; Duncan et 

al., 2007). Within this study there was a decrease in impedance measures, both resistance 

and reactance, as TBW content increased and as TBF decreased, coinciding with the 

results of other studies (Bosworth & Wolters, 2001). Percent TBF was inversely related 

to both weight and length of individual fish and percent TBF was found to be positively 
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related to Fulton’s condition factor. The larger fish tended to have more TBF; however 

they had less percent TBF than the smaller fish. There was an inverse relationship 

between TBW and TBF (R² = .82), similar to that found in other studies (Cunjak & 

Power, 1986a; Peters et al., 2007). 

Varying indices have been used in BIA studies to predict body composition. 

Strong correlations have been found between composition parameters and impedance 

measurements by using length and resistance measured in series to best predict TBW and 

total length and reactance in parallel to best predict TBF in brook trout (Cox & Hartman, 

2005). BIA has been used to measure relative condition of bluefin tuna by calculating a 

composition index using length between electrodes and serial reactance (Willis & 

Hobday, In Press). Willis and Hobday, (In Press) suggest that it is appropriate to use 

reactance or resistance in parallel or series; furthermore they demonstrated that within 

their own study, composition determined by an impedance index, using reactance, was a 

good indicator of nutritional health. 

For the purpose of this study, reactance in series provided the strongest single 

correlate to predict both TBW (R² = .72) and TBF (R² = .72). Morphometric measures 

such as length and width were also significant predictors of body composition 

parameters, albeit not as strong as impedance measures. Total body weight alone 

explained 23% of the variation in TBW and 41% of the variation in TBF. Total body 

length explained 24% of the variation of TBW and 46% of TBF. The relationship 

between Fulton’s condition factor and TBF was very low with an R² of 0.05, coinciding 

closely with the relationship between condition factor and TBF (R² .03) documented in 

chinook salmon (Oncorhynchus tshawytscha) (Peters et al., 2007). Indices based on 
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lengths and weights are not as accurate in assessing physiological condition as those 

based on proximate body composition (Simpkins et al., 2003a), and therefore it has been 

recommended that fisheries scientist include percent lipid content as an index in 

determining the physiological status of trout (Simpkins et al., 2003b). 

Morphometric measures are not precise predictors of body composition on their 

own but when included with impedance measures, they play an important role in 

strengthening BIA regression models. Within this study length was included with 

reactance to predict TBF increasing the R² value to 0.77, and Fulton’s condition factor 

was included with reactance to predict TBW increasing the R² value to 0.77. The variance 

explained in the regression models developed in this study are not as high as in the 

regression models developed by Cox and  Hartman (2005) but are similar to those 

developed by Bosworth and Wolters (2001) who used reactance as an impedance 

measure to predict TBF (R² = .75) and TBW (R² = .65) in live catfish. The strength of 

regression models were found to become weakened when applied to catfish that had been 

filleted (Bosworth & Wolters, 2001).  

 

3.5.2 Changes in Proximate Body Composition 

Winter 

Salmonid winter feeding is restricted because low water temperatures limit 

appetite, digestion, and gastric evacuation rates (Cunjak et al., 1987) and consequently 

they have been shown to lose weight while they adjust to winter (Cunjak et al., 1987; 

Simpkins & Hubert, 2000). In the winter, trout have to adopt strategies that minimize 

energy expenditures to economically utilize energy stores (Heggenes et al., 1993); 
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therefore the energetic cost of a fish to move in the winter may be more pronounced than 

in the summer. Within the context of this study all of the 54 fish that were recovered at 

the end of the experiment lost weight over the study period. Because this study did not 

commence in early winter the preliminary weight measures do not represent pre-winter 

weight. Late winter weight loss may not be as pronounced as early winter weight loss, 

because early winter is a stressful period of acclimatization, during which lipid levels 

have been shown to be rapidly depleted (Cunjak, 1988); therefore the affects of 

environmental perturbations on fish may be more pronounced in early winter than in late 

winter. 

BIA provided a non-lethal means in which to determine changes in proximate 

body composition of overwintering trout in this study. There was a small gain in percent 

TBW and, respectively, a loss in percent TBF of the control and experimental fish over 

the extent of the experiment. An increase in TBW in overwintering brook trout was also 

observed by Cunjak and Power (1986a) and lipid levels have been shown to rapidly 

decrease in early winter for brook and brown trout (Salmo trutta) (Cunjak, 1988). Within 

this study, the mean predicted TBF of the overwintering fish decreased by 21% over the 

eight weeks. A study evaluating overwinter brook trout lipid loss from October to April, a 

much longer duration than within this study, found that reproductive males lost 58% 

TBF, reproductive females lost 42% TBF and non-reproductive trout lost 24% TBF 

(Hutchings et al., 1999). In addition, it was demonstrated that survival probabilities were 

negatively associated with average reduction in lipids (Hutchings et al., 1999). Lipid 

accumulation is the most economical way for fish to store energy for the winter (Ultsch, 

1989); therefore during periods of low water temperature salmonids primarily rely upon 
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stored fat (Pottinger et al., 2003), resulting in a decrease of TBF. This tendency for 

winter fat loss is not always evident. The regression models built by Cox and Hartman 

(2005) were applied to measure changes in body composition of wild overwintering 

brook trout populations as well as to brook trout exposed to winter conditions in a lab and 

no significant changes in fat composition were detected over a nine week experiment 

(Webster & Hartman, 2007). 

 

Exposure to flow manipulations 

If the experimental fish were unable to habituate to the water withdrawal stressor, 

and instead had to compensate by adjusting physiologically or behaviourally, it would be 

expected that there would be an energetic toll affecting their growth, reproduction, and 

potentially survival (Scruton et al., 2003). Rainbow trout (Oncorhynchus mykiss) growth 

rates have been shown to be significantly lowered when the fish were subjected to 

reduced discharge, potentially because of reduced drift feeding (Harvey et al., 2006). In a 

lab setting, fish exposed to fluctuating flows and stable low flows had reduced feeding 

consumption and reduced growth in comparison to those held at stable high water levels 

(Flodmark et al., 2004). Within this study, fish subjected to the stress of flow 

manipulations, did adjust behaviourally by being more active, potentially seeking out 

more hospitable habitats, but they did not lose significantly more weight or TBF or gain 

more TBW than the control fish not subjected to the stressor.  
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Limitations 

There are limitations of BIA studies on the basis of their reliance on regression 

models (Lukaski, 1999). Within this study there was a strong correlation between 

reactance and TBF; however reactance readings may be more strongly related to other 

unmeasured body composition parameters that also correlate with TBF. For instance, 

reactance readings have been shown to be lower in humans with high extracellular water 

(ECW) / intracellular water (ICW) ratio (Segal et al., 1987), and a high ECW/ICW ratio 

has been suggested to be an indicator of malnutrition (Kushner, 1992). In humans, 

malnutrition is typified by changes in cellular membrane integrity and alterations in fluid 

balance; therefore BIA readings can provide insight into nutrition status by indirectly 

measuring these changes (Barbosa-Silva et al., 2003). Generally high reactance indicates 

better cell membrane integrity and health (Liedtke, 1997). TBF is a general indicator of 

overall nutritional health (Peters et al., 2007), consequently the high predicted TBF 

readings, indicated by high reactance readings, may only be one of many confounding 

but unmeasured biological parameters of fish condition, such as ECW/ICW ratios or cell 

membrane integrity. 

 

3.5.3 Conclusion 

BIA is a convenient tool because it is safe, inexpensive, rapid and portable means 

in which to determine proximate body composition (Kushner, 1992). Changes in percent 

TBF and TBW content of overwintering brook trout were predicted using BIA reactance 

measures. Reactance measures provided a non-lethal index to access the nutritional state 

of fish that was more accurate in predicting body composition parameters than 
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morphometric measures of length, weight, or condition factor alone. BIA is a convenient 

tool in determining fish body composition and general health; however results are not 

always consistent and broad use of regression models may be limited. This study derived 

body composition regression models using a single fish species from a single geographic 

area in order to develop a model well suited to the experiment; however the strength of 

this model may be inappropriate for application in other research that does not examine 

small stream resident brook trout in the Rocky Mountains during the autumn and winter.  

 

To summarize  

1) BIA provides a relatively accurate means in which to measure changes in 

brook trout body composition accounting for 76.5% of the variability in TBW content 

and 77.4% of TBF. 2) Mean predicted TBW values increased in the brook trout over the 

duration of the experiment and mean predicted TBF values and weight decreased. There 

was no statistically significant difference detected between predicted proximate body 

composition measures of experimental brook trout subjected to flow manipulations and 

control brook trout. 

 

Further research 

It is important to further investigate the accuracy of using BIA to monitor fish 

physiology, by examining the relationship between impedance measures and body 

composition at different times of the year and over a range of life stages. It is also 

important to further research methods in which to ensure consistent impedance readings 
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including how readings are affected by the electrodes used, electrode placement, and air 

temperatures. 

Examining the physiological implications of water withdrawal during winter on 

stream resident fishes is an important area for further study. To further the results of this 

study it is critical to examine streams that become ice covered, as well as stream reaches 

that do not provide complex habitat. In addition it is also important to further examine 

changes in physiology between male and female fishes at different life stages. 
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Appendix: External Attachment of NanoTag Transmitters to Small Brook Trout 
(Salvelinus fontinalis) 

 
Radio telemetry provides a means in which to pinpoint individual fish location at 

any given time providing immediate positional and behavioural data (Alfredsen & 
Tesaker, 2002; Lucas & Baras, 2000; Murchie et al., 2008). Because of the cost of 
transmitters, studies using radio telemetry tend to have relatively small sample sizes and 
consequently, transmitter retention is very important. Transmitters can be attached in 
three main ways: surgical implantation in the peritoneal cavity, intragastric insertion, or 
external attachment (Winter, 1996). There is limited information on external attachment 
of transmitters because this attachment procedure is rarely employed (Bridger & Booth, 
2003). The viability of externally attached transmitters can be compromised because of 
irritation of the dermal layers beneath the transmitter (Herke & Moring, 1999) and 
because the transmitter can become entangled in aquatic vegetation ultimately increasing 
mortality (Herke & Moring, 1999; Winter, 1996). Advantages of external attachment 
include quick attachment (Bridger & Booth, 2003; Cooke, 2003), and rapid recovery 
(Winter, 1996). The use of external transmitter facilitates studies on small fish or early 
life stage when the size of the body cavity precludes the use of internal transmitters 
(Cooke, 2003). In addition this method allows for quick attachment to fish exposed to 
cold temperatures during winter research.  

 
The objective of this study was to determine if an external attachment method 

would be a viable means in which to attach a NanoTag transmitter to small stream 
resident brook trout during the winter. 
 

Brook trout that weighed >20g were preferentially selected for the external 
attachment of radio transmitters whereby the weight of the transmitter did not exceed 
2.5% of the total weight of the fish (Table A-1). Following the advice of (Brown et al., 
1999) the suggested 2% tag/body mass ratio (Winter, 1996) was not considered as a strict 
rule, but instead the smallest possible tag/body weight ratio was used by selecting the 
smallest available transmitters, with sufficient battery life, in order to minimize any 
behavioural or physiological responses the fish could have to the transmitters. The coded 
radio NanoTag transmitters (model NTC-3-M; Lotek Wireless Inc., Newmarket, Ontario) 
weighed 0.5g in air with dimensions of 7.2mm x 7.0mm x 14.5mm. The transmitters had 
a 10s burst rate with a 64 day ‘calculated operational’ longevity and a 51 day guaranteed 
longevity. 

 
 

 
 

 
Table A-1 Summary of brook trout length (fork length; mm), weight (g), and tag ratio (transmitter weight 
to the corresponding fish weight; %) in 2007 (n=20) and in 2008 (n=30). 
  Minimum Maximum Mean SE 

Winter 2007    
Length 131.0 189.0 155.1 ±3.4 
Weight 20.7 60.1 33.1 ±2.0 
Tag ratio 2.4 0.8 1.6 ±0.1 
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  Minimum Maximum Mean SE 

Winter 2008 
Length 160.0 198.0 180.4 ±2.02 
Weight 31.1 78.7 49.7 ±1.99 
Tag ratio 1.6 0.6 1.1 ±0.04 

 
 

The NanoTag transmitters were attached externally to 20 fish in 2007 and 30 fish 
in 2008. The transmitters were manufactured with a small straw (10mm in length) 
attached to the side of each transmitter, secured in place by heat shrink wrap. This was 
done by the manufacturer (Lotek Wireless Inc.) as a trial method to facilitate the external 
attachment of the NanoTag transmitters that were designed for internal insertion. The 
straw was threaded with 0.225mm diameter non-absorbable nylon suture thread 
(Supramid, S.Jackson Inc.; Alexandria, VA). Two small gauged sewing needles were 
then threaded onto each end of the suture thread in preparation for tagging.  

 
The experimental trout were individually anesthetized using a 40ppm solution of 

clove oil and placed ventral side down on a wet sponge. The transmitter was attached by 
simultaneously pushing the threaded needles through the dorsal musculature of the fish 
and then through the holes in a plastic back plate situated on the opposite side of the 
dorsal fin (Figure A-1a). The needles were removed and the thread was tightened and tied 
off with a triple knot (Figure A-1b & A-2). The back plate was 1.5mm x 4mm x 16.5mm 
and was used in order to prevent tissue abrasion by the thread. Fish were released into 
two 100m isolated reaches within a small creek. They were monitored for six weeks 
during the winter of 2007 and eight weeks during the winter of 2008. At the end of each 
experiment the fish were captured to assess, transmitter retention dermal irritation, and 
transmitter fouling. 

 
 
 
 
 
 
 
 
 
 

Figure A-1 Photos depicting the process of externally attaching a NanoTag transmitter onto a small brook 
trout a) during and b) after attachment 
 

a) 

b) 

b) 
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Figure A-2 External attachment diagram used to attach transmitter to small stream resident brook trout 
during the winter of 2007 and 2008 

 
One hundred percent of the transmitters stayed attached for the duration of the 

2007 and 2008 experiments with limited dermal irritation (Figure A-3). The transmitters 
showed no signs of fouling resulting from vegetation entanglement. The external 

attachment method applied in this 
study was similar to that used in 
attachment of transmitters in other 
studies using large fish (Cooke, 2003; 
Crook, 2004; Mellas & Haynes, 1985); 
however this study addressed the use 
of external transmitters on small fish, 
where there has been limited research 
(Beaumont et al., 1996). The 
attachment method used, within this 
study, provided a viable means in 
which to quickly attach small 
transmitters to small riverine trout 
during winter sampling. 

 
       

Figure A-3 Dermal irritation on brook trout caused by six  
weeks of wear from an externally attached radio transmitters  
during the winter of 2007 
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