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Abstract 

 

Even though lambda calculus (λ-calculus) and combinatory logic (CL) appear to 

be equivalent, they are not. As yet we do not have a reduction in CL which corresponds to 

β-reduction in λ-calculus. There are three proposals but they all have few problems one of 

which is the lack of a complete characterization of CL-terms corresponding to λ-terms in 

β-normal form. Finding such a characterization for any of the three proposals appears to 

require a lot of examples which are tedious and time consuming to develop by hand. For 

this reason, a computer program to do reductions and abstractions of CL-terms would be 

useful. This thesis is about an attempt to write such a program. The program that we have 

does not yet work for the three proposals but it works for βη-strong reduction. Coding this 

program turned out to be much harder than anticipated. Dr. Robin Cockett developed a 

semantic translation which helped in coding the program but his semantic translation 

needs to be extended to all three proposals to obtain the program originally desired and 

that needs a lot of research. 
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Introduction 

 

 This thesis is about the relationship between lambda calculus (λ-calculus) and 

combinatory logic (CL). Both the systems have the same purpose: to describe the 

fundamental properties of operators and combinations of operators [12, Page vi]. 

 The λ-calculus was invented in the 1930s by an American logician named Alonzo 

Church, as a part of system of logic which included higher order functions. Higher-order 

functions are functions which can be applied to functions. The language of λ-calculus is 

important as a higher-order language both for logic and for programming [1, Page 10]. 

 The basic idea of CL was presented by two logicians: Moses Schönfinkel who 

invented it in 1920 and Haskell Curry, who rediscovered it a few years later. 

A lambda expression represents any function and defines the transformation that 

the function performs to its arguments. A lambda expression can be used as both a term 

and an argument. Here, functions are treated as first-class entities, i.e., they are passed as 

arguments and returned as results. λ-calculus can be thought of as an idealized, 

minimalistic programming language. This makes the model of functional programming 

important. λ-calculus is discussed in Chapter 1. 

CL is a notation introduced to eliminate the need for variables in mathematical 

logic. It was developed to be a theory for the foundation of mathematics. Its goal was to 

establish fundamental mathematical concepts on simpler principals. In computer science, 
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combinatory logic is used as a simplified model of computation [3, Page 23]. It is also 

used in computability theory and proof theory. CL is discussed in Chapter 2. 

As we discuss more about λ-calculus and CL, it will become clear that even 

though λ-calculus and CL are closely related, they are subtly different. In practice, the 

natural process of conversion and reduction in λ-calculus is different from that in CL.  

We have combinatory β-equality and combinatory βη-equality which are 

equivalent to λβ-conversion and λβη-conversion respectively [Chapter 2, Page 27]. This 

equivalence of λ-calculus to CL is with respect to conversion but not reduction. Two 

main reductions in λ-calculus are the λβ-reduction and the λβη-reduction. Curry’s strong 

reduction in CL is equivalent to λβη-reduction in λ-calculus [12, Page 213], but as of 

now, we do not have a complete equivalent in CL that corresponds to λβ-reduction in λ-

calculus. There are a few proposals but none of them has a complete characterization of 

terms in normal form. This is discussed in detail in Chapter 3. 

Researchers are working on solving the problem of λβ-reduction, but in order to 

test their theories, they need to generate a lot of examples and to reduce them. This is 

where a program would come in handy. The availability of a program would help them in 

testing their theories. I have discussed how the program was created and what difficulties 

we faced while writing it in chapter 4 while the actual code of the program is in appendix 

B. There is also a short tutorial on SML/NJ in appendix A. The current program performs 

strong reduction, i.e. Curry’s strong reduction. As yet, it does not work for the proposals 

for a combinatory β-reduction.  
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Chapter 1 

λ-calculus 

 

1.1 Introduction: 

What is usually called Lambda(𝜆𝜆)-calculus is a collection of several formal 

systems, based on a notation invented by Alonzo Church in the 1930s [12, Chapter 1]. 

They are designed to describe the most basic way that operators or functions can be 

combined to form other operators. In practice, each 𝜆𝜆-system has a slightly different 

grammatical structure, depending on its intended use. Some have extra constant-symbols, 

and most have built-in syntactic restrictions, for example type-restrictions. 

 

Now let us consider the everyday mathematical expression ′𝑥𝑥 − 𝑦𝑦′. This can be 

considered as defining either a function 𝑓𝑓 of 𝑥𝑥 or a function 𝑔𝑔 of 𝑦𝑦: 

𝑓𝑓 ∶ 𝑥𝑥 ↦ 𝑥𝑥 − 𝑦𝑦,  𝑔𝑔 ∶ 𝑦𝑦 ↦ 𝑥𝑥 − 𝑦𝑦. 

There is a need for a notation that gives 𝑓𝑓 and 𝑔𝑔 different names in some systematic way. 

Church’s notation is a systematic way of constructing, for each expression 

involving ′𝑥𝑥′, a notation for the corresponding function of ′𝑥𝑥′ (and similarly for ′𝑦𝑦′, etc.). 

Church introduced ′𝜆𝜆′ as an auxiliary symbol and wrote: 

𝑓𝑓 =  𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦   𝑔𝑔 =  𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦. 
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For example, consider the equations 

𝑓𝑓(0) =  0 − 𝑦𝑦,  𝑓𝑓(1) =  1 − 𝑦𝑦. 

In the 𝜆𝜆-notation these become 

(𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦)(0) =  0 − 𝑦𝑦, (𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦)(1) =  1 − 𝑦𝑦. 

The 𝜆𝜆-notation is principally intended for denoting higher-order functions, not just 

functions of numbers. This notation is systematic, allowing for its incorporation into a 

programming language. 

 

 The 𝜆𝜆-notation can be extended to functions of more than one variable. For 

example, the expression ′𝑥𝑥 − 𝑦𝑦′ determines two functions ℎ and 𝑘𝑘 of two variables 

defined by 

ℎ(𝑥𝑥, 𝑦𝑦) =  𝑥𝑥 − 𝑦𝑦, 𝑘𝑘(𝑦𝑦, 𝑥𝑥) =  𝑥𝑥 − 𝑦𝑦. 

These can be denoted by 

ℎ =  𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦, 𝑘𝑘 =  𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦. 

However, we can avoid the need of special notation for functions of several 

variables by using functions whose values are not numbers but other functions. For 

example, instead of the two-variable function ℎ above, consider the one-place function ℎ∗ 

defined by 

ℎ∗ =  𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦) 
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For each number a, we have 

ℎ∗(𝑎𝑎) =  𝜆𝜆𝜆𝜆. 𝑎𝑎 − 𝑦𝑦 

Hence for each pair of numbers a, b 

�ℎ∗(𝑎𝑎)�(𝑏𝑏) = (𝜆𝜆𝜆𝜆. 𝑎𝑎 − 𝑦𝑦)(𝑏𝑏) 

= 𝑎𝑎 − 𝑏𝑏 

= ℎ(𝑎𝑎, 𝑏𝑏) 

Thus ℎ∗ can be viewed as ‘representing’ ℎ. This is called ‘Currying’ [after H.B. Curry]. 

 

Here, following points are of significance; 

(1) in λ-calculus (and in combinatory logic), it is usual to write ‘(fx)’ instead of ‘f(x)’ 

for the value of the function f at the value of x; 

(2) for the rest of the thesis, 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥 will be an abbreviation for 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥). 

1.2 Definition (𝝀𝝀-terms) 

Assume that there is a given infinite sequence of expressions 𝑣𝑣0, 𝑣𝑣00, 𝑣𝑣000 , …. called 

variables [12, Definition 1.1], and a finite, infinite or empty sequence of expressions 

called atomic constants, different from the variables. When the sequence of atomic 

constants is empty, the system will be called pure, otherwise applied. The set of 

expressions called λ-terms is defined inductively as follows: 

(a) All variables and atomic constants are 𝜆𝜆-terms (called atoms); 

(b) If 𝑀𝑀 and 𝑁𝑁 are any 𝜆𝜆-terms, then (𝑀𝑀 𝑁𝑁) is a 𝜆𝜆-term (called an application); 
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(c) If 𝑀𝑀 is any 𝜆𝜆-term and 𝑥𝑥 is any variable, then (𝜆𝜆𝜆𝜆. 𝑀𝑀) is a 𝜆𝜆-term (called an 

abstraction). 

Examples of 𝜆𝜆-terms: 

(a) (𝜆𝜆𝑣𝑣0. (𝑣𝑣0𝑣𝑣00 ) ) is a 𝜆𝜆-term. 

If 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are distinct variables, the following are 𝜆𝜆-terms: 

(b) (𝜆𝜆𝜆𝜆. (𝑥𝑥𝑥𝑥)) 

(c) ((𝜆𝜆𝜆𝜆. 𝑦𝑦)(𝜆𝜆𝜆𝜆. (𝑥𝑥𝑥𝑥) ) ) 

(d) (𝑥𝑥(𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑥𝑥) ) ) 

(e) (𝜆𝜆𝜆𝜆. (𝑦𝑦𝑦𝑦)) 

In example (d), there are two occurrences of 𝜆𝜆𝜆𝜆 in one term. Example (e) shows a 

term of form (𝜆𝜆𝜆𝜆. 𝑀𝑀) such that 𝑥𝑥 does not occur in 𝑀𝑀. This is called vacuous abstraction, 

and such terms denote constant functions, i.e., functions whose output is same for all 

inputs. 

In λ-calculus, the parentheses are left associative, that is to say that the leftmost 

term has the first set of parentheses. 

Example:  

Consider the term   𝑥𝑥𝑥𝑥(𝜆𝜆𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑤𝑤 

This is really   (((𝑥𝑥𝑥𝑥)(𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. (𝑦𝑦𝑦𝑦) ) ) )𝑤𝑤) 
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Term-structure and substitution 

1.3 Definition 

The length of a term 𝑀𝑀 (called 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀)) is the total number of occurrences of atoms 

in 𝑀𝑀. 

(a) 𝑙𝑙𝑙𝑙ℎ(𝑎𝑎) =  1  for atoms 𝑎𝑎; 

(b) 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀 𝑁𝑁) =  𝑙𝑙𝑙𝑙ℎ(𝑀𝑀) +  𝑙𝑙𝑙𝑙ℎ(𝑁𝑁); 

(c) 𝑙𝑙𝑙𝑙ℎ(𝜆𝜆𝜆𝜆. 𝑀𝑀) =  1 + 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀). 

‘≡’ implies that the term on the left hand side is identical to the term on the right hand 

side. 

The phrase ‘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑀𝑀’ will mean ‘induction on 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀)’ [12, Definition 1.6]. 

For example, if 𝑀𝑀 ≡ 𝑥𝑥(𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦𝑦𝑦) then 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀) =  5. 

1.4 Definition 

For 𝜆𝜆-terms 𝑃𝑃 and 𝑄𝑄 [12, Definition 1.7], the relation P occurs in Q (or P is a 

subterm of Q, or Q contains P) is defined by induction on 𝑄𝑄, thus: 

(a) 𝑃𝑃 occurs in 𝑃𝑃; 

(b) If 𝑃𝑃 occurs in 𝑀𝑀 or in 𝑁𝑁, then 𝑃𝑃 occurs in (𝑀𝑀𝑀𝑀); 

(c) If 𝑃𝑃 occurs in 𝑀𝑀 or 𝑃𝑃 ≡ 𝑥𝑥, then 𝑃𝑃 occurs in (𝜆𝜆𝜆𝜆. 𝑀𝑀). 
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1.5 Definition (Scope) 

For a particular occurrence of 𝜆𝜆𝜆𝜆. 𝑀𝑀 in a term 𝑃𝑃 [12, Definition 1.9], the 

occurrence of 𝑀𝑀 is called the scope of the occurrence of 𝜆𝜆𝜆𝜆 on the left. 

For example, assume 

𝑃𝑃 ≡ �𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑧𝑧)𝑥𝑥)�𝑣𝑣𝑣𝑣. 

The scope of the left-most 𝜆𝜆𝜆𝜆 is 𝑦𝑦𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑧𝑧)𝑥𝑥), the scope of 𝜆𝜆𝜆𝜆 is 𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑧𝑧)𝑥𝑥, 

and that of the right-most 𝜆𝜆𝜆𝜆 is 𝑧𝑧. 

1.6 Definition (Free and bound variables) 

An occurrence of a variable 𝑥𝑥 in a term 𝑃𝑃 is called 

• bound if it is in the scope of a 𝜆𝜆𝜆𝜆 in 𝑃𝑃, 

• bound and binding, if and only if it is the 𝑥𝑥 in 𝜆𝜆𝜆𝜆, 

• free otherwise. 

If 𝑥𝑥 has at least one binding occurrence in 𝑃𝑃 [12 Definition 1.11], it is called a bound 

variable of P. If 𝑥𝑥 has at least one free occurrence in 𝑃𝑃 it is called a free variable of P; the 

set of all free variables of P is called 

FV(𝑃𝑃). 

A closed term is a term without any free variables. 
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Example: In ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎  the variable x is bound and y is free. Hence, substituting 7 for 

x: ∫ 𝑓𝑓(7, 𝑦𝑦)𝑑𝑑7𝑏𝑏
𝑎𝑎 ; would be incorrect, but substitution for y wouldn’t be: ∫ 𝑓𝑓(𝑥𝑥, 7)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎  

[22]. 

1.7 Definition (Substitution) 

For any 𝑀𝑀, 𝑁𝑁, 𝑥𝑥, define [𝑁𝑁/𝑥𝑥]𝑀𝑀 to be the result of substituting 𝑁𝑁 for every 

occurrence of 𝑥𝑥 in 𝑀𝑀 [12, Definition 1.12], and changing bound variables to avoid 

clashes. 

(a) [𝑁𝑁/𝑥𝑥]𝑥𝑥 ≡ 𝑁𝑁; 

(b) [𝑁𝑁/𝑥𝑥]𝑎𝑎  ≡ 𝑎𝑎    for all atoms 𝑎𝑎 ≢ 𝑥𝑥 

(c) [𝑁𝑁/𝑥𝑥](𝑃𝑃𝑃𝑃) ≡ (([𝑁𝑁/𝑥𝑥]𝑃𝑃)([𝑁𝑁/𝑥𝑥]𝑄𝑄)); 

(d) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. 𝑃𝑃; 

(e) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. 𝑃𝑃   if 𝑥𝑥 ∉ FV(𝑃𝑃) and 𝑦𝑦 ≢ 𝑥𝑥; 

(f) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. [𝑁𝑁/𝑥𝑥]𝑃𝑃   if 𝑥𝑥 ∈ FV(𝑃𝑃) and 𝑦𝑦 ∉ FV(𝑁𝑁) and 

𝑦𝑦 ≢ 𝑥𝑥; 

(g) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. [𝑁𝑁/𝑥𝑥][𝑧𝑧/𝑦𝑦]𝑃𝑃  if 𝑥𝑥 ∈ FV(𝑃𝑃) and 𝑦𝑦 ∈ FV(𝑁𝑁). 

In (g), z is the first variable that does not occur anywhere in the term. 

1.8 Lemma 

For all terms 𝑀𝑀, 𝑁𝑁 and variable 𝑥𝑥; 

(a) [𝑥𝑥/𝑥𝑥]𝑀𝑀 ≡ 𝑀𝑀; 

(b) 𝑥𝑥 ∉ FV(𝑀𝑀) ⟹ [𝑁𝑁/𝑥𝑥]𝑀𝑀 ≡ 𝑀𝑀; 
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(c) 𝑥𝑥 ∈ FV(𝑀𝑀) ⟹FV([𝑁𝑁/𝑥𝑥]𝑀𝑀) = FV(𝑁𝑁) ∪ (FV(𝑀𝑀) −  {𝑥𝑥}); 

(d) 𝑙𝑙𝑙𝑙ℎ([𝑦𝑦/𝑥𝑥]𝑀𝑀) =  𝑙𝑙𝑙𝑙ℎ(𝑀𝑀). 

The proof can be found in [12, Lemma 1.15, page 8]. 

1.9 Lemma 

Let 𝑥𝑥, 𝑦𝑦, 𝑣𝑣 be distinct (the usual notation convention), and let no variable bound in 𝑀𝑀 

be free in 𝑣𝑣𝑣𝑣𝑣𝑣. Then 

(a) [𝑃𝑃/𝑣𝑣][𝑣𝑣/𝑥𝑥]𝑀𝑀 ≡ [𝑃𝑃/𝑥𝑥]𝑀𝑀   𝑖𝑖𝑖𝑖 𝑣𝑣 ∉ FV(𝑀𝑀); 

(b) [𝑥𝑥/𝑣𝑣][𝑣𝑣/𝑥𝑥]𝑀𝑀 ≡ 𝑀𝑀    𝑖𝑖𝑖𝑖 𝑣𝑣 ∉ FV(𝑀𝑀); 

(c) [𝑃𝑃/𝑥𝑥][𝑄𝑄/𝑦𝑦]𝑀𝑀 ≡ [[𝑃𝑃/𝑥𝑥]𝑄𝑄/𝑦𝑦][𝑃𝑃/𝑥𝑥]𝑀𝑀 𝑖𝑖𝑖𝑖 𝑦𝑦 ∉ FV(𝑃𝑃); 

(d) [𝑃𝑃/𝑥𝑥][𝑄𝑄/𝑦𝑦]𝑀𝑀 ≡ [𝑄𝑄/𝑦𝑦][𝑃𝑃/𝑥𝑥]𝑀𝑀  𝑖𝑖𝑖𝑖 𝑦𝑦 ∉ FV(𝑃𝑃), 𝑥𝑥 ∉ FV(𝑄𝑄); 

(e) [𝑃𝑃/𝑥𝑥][𝑄𝑄/𝑥𝑥]𝑀𝑀 ≡ [[𝑃𝑃/𝑥𝑥]𝑄𝑄/𝑥𝑥]𝑀𝑀. 

The proof can be found in [12, Lemma 1.16, Page 9]. 

1.10 Definition (Change of bound variables, congruence) 

Let a term 𝑃𝑃 contain an occurrence of 𝜆𝜆𝜆𝜆. 𝑀𝑀 [12, Definition 1.17], and let 𝑦𝑦 ∉ 

FV(𝑀𝑀). The action of replacing this 𝜆𝜆𝜆𝜆. 𝑀𝑀 by 

𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀 

is called a change of bound variable or an 𝛼𝛼-conversion in P. If and only if P can be 

changed to Q by a finite (perhaps empty) series of changes of bound variables, we shall 

say P is congruent to Q, or P 𝛼𝛼-converts to Q, or 

𝑃𝑃 ≡𝛼𝛼 𝑄𝑄 
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𝜷𝜷-reduction 

A term of form (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 represents an operator 𝜆𝜆𝜆𝜆. 𝑀𝑀 applied to an argument 𝑁𝑁 

[12, Page 11]. In the informal interpretation of 𝜆𝜆𝜆𝜆. 𝑀𝑀, its value when applied to 𝑁𝑁 is 

calculated by substituting 𝑁𝑁 for 𝑥𝑥 in 𝑀𝑀. So (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 can be simplified to [𝑁𝑁/𝑥𝑥]𝑀𝑀. 

1.11 Definition (𝜷𝜷-contracting, 𝜷𝜷-reduction) 

 Any term of form 

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 

is called a 𝛽𝛽-redex and the corresponding term 

[𝑁𝑁/𝑥𝑥]𝑀𝑀 

is called its contractum. A contraction occurs only when a term P containing an 

occurrence of (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 is replaced by [𝑁𝑁/𝑥𝑥]𝑀𝑀 and the result is 𝑃𝑃′. We then say we have 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the redex-ocurrence in 𝑃𝑃, and 𝑃𝑃 𝛽𝛽-contracts to 𝑃𝑃′ or 

𝑃𝑃 ⊳1𝛽𝛽 𝑃𝑃′, 

If and only if 𝑃𝑃 can be changed to 𝑄𝑄 by a finite (perhaps empty) series of 𝛽𝛽-

contractions and changes of bound variables, we say 𝑃𝑃 𝛽𝛽-reduces to 𝑄𝑄, or 

𝑃𝑃 ⊳𝛽𝛽 𝑄𝑄. 

Examples: 

(a) �𝜆𝜆𝜆𝜆. 𝑥𝑥(𝑥𝑥𝑥𝑥)�𝑁𝑁 ⊳1𝛽𝛽 𝑁𝑁(𝑁𝑁𝑁𝑁) 

(b) (𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑁𝑁 ⊳1𝛽𝛽 𝑦𝑦 



12 
 

(c) (𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑧𝑧)𝑣𝑣 ⊳1𝛽𝛽 [𝑣𝑣/𝑥𝑥]((𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑧𝑧) ≡ (𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑧𝑧 ⊳1𝛽𝛽  [𝑧𝑧/𝑦𝑦](𝑦𝑦𝑦𝑦) ≡ 𝑧𝑧𝑧𝑧 

1.12 Definition 

 A term 𝑄𝑄 which contains no 𝛽𝛽-redexes is called a 𝛽𝛽-normal form (or a term in 𝛽𝛽-

normal form) [12, Definition 1.26]. The class of all 𝛽𝛽-normal forms is called β-nf or λβ-

nf. If a term 𝑃𝑃 𝛽𝛽-reduces to a term 𝑄𝑄 in 𝛽𝛽-nf, then 𝑄𝑄 is called a 𝛽𝛽-normal form of P. 

1.13 Lemma 

𝑃𝑃 ⊳𝛽𝛽 𝑄𝑄 ⟹ FV(𝑃𝑃) ⊇ FV(𝑄𝑄). 

Proof can be found on [12, Lemma 1.30, Page 14]. 

1.14 Lemma (Substitution and ⊳𝜷𝜷) 

If 𝑃𝑃 ⊳𝛽𝛽 𝑃𝑃′ and 𝑄𝑄 ⊳𝛽𝛽 𝑄𝑄′, then 

[𝑃𝑃/𝑥𝑥]𝑄𝑄 ⊳𝛽𝛽  [𝑃𝑃′/𝑥𝑥]𝑄𝑄′. 

Proof can be found on [12, Lemma 1.31, Page 14]. 

Example: We have   

(𝜆𝜆𝜆𝜆((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧≡[((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)/𝑤𝑤]�����������
𝑃𝑃

(𝜆𝜆𝜆𝜆. 𝑤𝑤𝑤𝑤)𝑧𝑧�������
𝑄𝑄

 

If 𝑃𝑃′ ≡ 𝑢𝑢 and 𝑄𝑄′ ≡ 𝑤𝑤𝑤𝑤 then [𝑃𝑃′/𝑤𝑤]𝑄𝑄′ ≡ 𝑢𝑢𝑢𝑢 

Note that (𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧 ⊳ 𝑢𝑢𝑢𝑢. 
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1.15 Theorem (Church-Rosser theorem for ⊳𝜷𝜷) 

If 𝑃𝑃 ⊳𝛽𝛽 𝑀𝑀 and 𝑃𝑃 ⊳𝛽𝛽 𝑁𝑁, then there exists a term T such that 

𝑀𝑀 ⊳𝛽𝛽 𝑇𝑇 and 𝑁𝑁 ⊳𝛽𝛽 𝑇𝑇. 

Proof can be found on [12, Theorem 1.32, Page 14]. 

Example:         
(𝜆𝜆𝜆𝜆((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧�����������

𝑃𝑃
⊳(𝜆𝜆𝜆𝜆. 𝑢𝑢𝑢𝑢)𝑧𝑧�������

𝑀𝑀
⊳𝑢𝑢𝑢𝑢 

(𝜆𝜆𝜆𝜆((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧�����������
𝑃𝑃

⊳((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑧𝑧�������
𝑁𝑁

⊳𝑢𝑢𝑢𝑢�
𝑇𝑇

 

β-equality 

 We say P is β-equal or β-convertible to Q (notation 𝑃𝑃 =𝛽𝛽 𝑄𝑄) if and only if Q is 

obtained from P by a finite (perhaps empty) series of β-contractions and reversed β-

contractions and changes of bound variables. That is, 𝑃𝑃 =𝛽𝛽 𝑄𝑄 if and only if there exists 

𝑃𝑃0, … , 𝑃𝑃𝑛𝑛 (𝑛𝑛 ≥ 0) such that 

(∀𝑖𝑖 ≤ 𝑛𝑛 − 1)(𝑃𝑃𝑖𝑖 ⊳1𝛽𝛽 𝑃𝑃𝑖𝑖+1   or   𝑃𝑃𝑖𝑖+1 ⊳1𝛽𝛽 𝑃𝑃𝑖𝑖    or   𝑃𝑃𝑖𝑖 ≡𝛼𝛼 𝑃𝑃𝑖𝑖+1), 

𝑃𝑃0 ≡ 𝑃𝑃, 𝑃𝑃𝑛𝑛 ≡ 𝑄𝑄. 

1.16 Lemma 

If 𝑃𝑃 =𝛽𝛽 𝑄𝑄 and 𝑃𝑃 ≡𝛼𝛼 𝑃𝑃′ and 𝑄𝑄 ≡𝛼𝛼 𝑄𝑄′, then 𝑃𝑃′ =𝛽𝛽 𝑄𝑄′. 

[12, Lemma 1.39, Page 16]. 

Example: Same as in lemma 1.14. 
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1.17 Lemma (substitution lemma for β-equality) 

𝑀𝑀 =𝛽𝛽 𝑀𝑀′, 𝑁𝑁 =𝛽𝛽 𝑁𝑁′ ⟹  [𝑁𝑁/𝑥𝑥]𝑀𝑀 =𝛽𝛽 [𝑁𝑁′/𝑥𝑥]𝑀𝑀′ 

[12, Lemma 1.40, Page 16]. 

Example: Same as in theorem 1.15. 

1.18 Theorem (Church-Rosser theorem for =𝜷𝜷) 

If 𝑃𝑃 =𝛽𝛽 𝑄𝑄, then there exists a term 𝑇𝑇 such that [4] 

𝑃𝑃 ⊳𝛽𝛽 𝑇𝑇 and 𝑄𝑄 ⊳𝛽𝛽 𝑇𝑇 

λβη-reduction in λ-calculus 

An η-redex is any λ-term 

𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 

with 𝑥𝑥 ∉ FV(𝑀𝑀). Its contractum is 

𝑀𝑀. 

βη-reduction:  A βη-redex is a β-redex or an η-redex. The phrases ‘P βη-contracts 

to Q’ and ‘P βη-reduces to Q’ are defined like ‘β-contracts’ and ‘β-reduces’ with 

notation 

𝑃𝑃 ⊳1𝛽𝛽𝛽𝛽 𝑄𝑄,  𝑃𝑃 ⊳𝛽𝛽𝛽𝛽 𝑄𝑄. 

βη-normal form: A λ-term Q containing no βη-redexes is said to be in βη-normal 

form and we say such a term Q is a βη-normal form of P if and only if 𝑃𝑃 ⊳𝛽𝛽𝛽𝛽 𝑄𝑄. 
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λβη-equality in λ-calculus 

We say P is βη-equal or βη-convertible to Q (notation 𝑃𝑃 =𝛽𝛽𝛽𝛽 𝑄𝑄) if and only if Q is 

obtained from P by a finite (perhaps empty) series of β-contractions or η-contractions and 

reversed β-contractions or η-contractions and changes of bound variables. That is, 

𝑃𝑃 =𝛽𝛽𝛽𝛽 𝑄𝑄 if and only if there exists 𝑃𝑃0, … , 𝑃𝑃𝑛𝑛 (𝑛𝑛 > 0) such that 

(∀𝑖𝑖 ≤ 𝑛𝑛 − 1) 

(𝑃𝑃𝑖𝑖 ⊳1𝛽𝛽𝛽𝛽 𝑃𝑃𝑖𝑖+1    or    𝑃𝑃𝑖𝑖+1 ⊳1𝛽𝛽𝛽𝛽 𝑃𝑃𝑖𝑖     or    𝑃𝑃𝑖𝑖 ≡𝛼𝛼 𝑃𝑃𝑖𝑖+1) 

𝑃𝑃0 ≡ 𝑃𝑃,       𝑃𝑃𝑛𝑛 ≡ 𝑄𝑄. 

 

λβ and λβη theories 

λβ formal theory of β-equality 

The formulas of λβ are just equations M = N, for all λ-terms M and N. The axioms 

are the particular (α), (β) and (ρ) below, for all λ-terms M, N, and all variables x, y. The 

rules are (μ), (ν), (ξ), (τ), and (σ) below. 

The axiom-schemes are: 

(α) 𝜆𝜆𝜆𝜆. 𝑀𝑀 = 𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀  if 𝑦𝑦 ∉ FV(𝑀𝑀); 

(β) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 = [𝑁𝑁/𝑥𝑥]𝑀𝑀; 

(ρ) 𝑀𝑀 = 𝑀𝑀. 
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The rules of inference are: 

(μ) 𝑀𝑀=𝑀𝑀`
𝑁𝑁𝑁𝑁=𝑁𝑁𝑁𝑁`

 

(ν) 𝑀𝑀=𝑀𝑀`
𝑀𝑀𝑀𝑀=𝑀𝑀`𝑁𝑁

 

(ξ) 𝑀𝑀=𝑀𝑀`
𝜆𝜆𝜆𝜆 .𝑀𝑀=𝜆𝜆𝜆𝜆 .𝑀𝑀`

 

(τ) 𝑀𝑀=𝑁𝑁   𝑁𝑁=𝑃𝑃
𝑀𝑀=𝑃𝑃

 

(σ) 𝑀𝑀=𝑁𝑁
𝑁𝑁=𝑀𝑀

 

 

λβ formal theory of β-reduction 

This theory is called λβ like the previous one. Its formulas are expressions 𝑀𝑀 ⊳

𝑁𝑁, for all λ-terms M and N. Its axiom-schemes and rules are the same as above, but with 

‘=’ changed to ‘⊳’ and rule (σ) omitted. If and only if an expression 𝑀𝑀 ⊳ 𝑁𝑁 is provable 

in λβ, we say 

𝜆𝜆𝜆𝜆 ⊢ 𝑀𝑀 ⊳ 𝑁𝑁 

The axiom-schemes are: 

(α) 𝜆𝜆𝜆𝜆. 𝑀𝑀 ⊳ 𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀  if 𝑦𝑦 ∉ FV(𝑀𝑀); 

(β) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 ⊳ [𝑁𝑁/𝑥𝑥]𝑀𝑀; 

(ρ) 𝑀𝑀 ⊳ 𝑀𝑀. 
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The rules of inference are: 

(μ) 𝑀𝑀⊳𝑀𝑀`
𝑁𝑁𝑁𝑁⊳𝑁𝑁𝑁𝑁`

 

(ν) 𝑀𝑀⊳𝑀𝑀`
𝑀𝑀𝑀𝑀⊳𝑀𝑀`𝑁𝑁

 

(ξ) 𝑀𝑀⊳𝑀𝑀`
𝜆𝜆𝜆𝜆 .𝑀𝑀⊳𝜆𝜆𝜆𝜆 .𝑀𝑀`

 

(τ) 𝑀𝑀⊳𝑁𝑁   𝑁𝑁⊳𝑃𝑃
𝑀𝑀⊳𝑃𝑃

 

1.19 Lemma 

(a) 𝑀𝑀 ⊳𝛽𝛽 𝑁𝑁 ⟺ 𝜆𝜆𝜆𝜆 ⊢ 𝑀𝑀 ⊳ 𝑁𝑁; 

(b) 𝑀𝑀 =𝛽𝛽 𝑁𝑁 ⟺ 𝜆𝜆𝜆𝜆 ⊢ 𝑀𝑀 = 𝑁𝑁. 

Proof can be found on [12, Lemma 6.4, Page 71]. 

 

λβη formal theory of βη-equality 

Consider the rules of inference: 

(ζ) 𝑀𝑀𝑀𝑀 =𝑁𝑁𝑁𝑁
𝑀𝑀=𝑁𝑁

   if 𝑥𝑥 ∉ FV(𝑀𝑀𝑀𝑀) 

(η) 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝑀𝑀  if 𝑥𝑥 ∉ FV(𝑀𝑀). 

 

 Let λβ be the theory of equality as defined above. We define two new theories of 

equality: 
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λβζ: add rule (ζ) to λβ 

λβη: add axiom-scheme (η) to λβ 

(Adding (η) means adding all equations 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝑀𝑀 as new axioms, for all terms M and 

all 𝑥𝑥 ∉ FV(𝑀𝑀)). 

 

λβη formal theory of βη-reduction 

This is defined by adding to the theory of β-reduction (discussed above), the axiom 

scheme 

(η)  𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 ⊳ 𝑀𝑀  (if 𝑥𝑥 ∉ FV(𝑀𝑀)) 

Thus the axiom schemes are: 

(α) 𝜆𝜆𝜆𝜆. 𝑀𝑀 ⊳ 𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀  if 𝑦𝑦 ∉ FV(𝑀𝑀); 

(β) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 ⊳ [𝑁𝑁/𝑥𝑥]𝑀𝑀; 

(ρ) 𝑀𝑀 ⊳ 𝑀𝑀; 

(η) 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 ⊳ 𝑀𝑀  (if 𝑥𝑥 ∉ FV(𝑀𝑀)). 

The rules of inference are: 

(μ) 𝑀𝑀⊳𝑀𝑀`
𝑁𝑁𝑁𝑁⊳𝑁𝑁𝑁𝑁`

 

(ν) 𝑀𝑀⊳𝑀𝑀`
𝑀𝑀𝑀𝑀⊳𝑀𝑀`𝑁𝑁

 

(ξ) 𝑀𝑀⊳𝑀𝑀`
𝜆𝜆𝜆𝜆 .𝑀𝑀⊳𝜆𝜆𝜆𝜆 .𝑀𝑀`
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(τ) 𝑀𝑀⊳𝑁𝑁   𝑁𝑁⊳𝑃𝑃
𝑀𝑀⊳𝑃𝑃

 

The theories λβζ and λβη of equality are equivalent. Thus both theories determine the 

same equality relation. 

1.20 Lemma 

 Rule (ζ) is equivalent to the combination of rule (ξ) and rule (η). 

(ξ) + (𝜂𝜂) ⟹ (ζ) 

𝑥𝑥 ∉ FV(𝑀𝑀𝑀𝑀) 

 
𝑀𝑀 = 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 (𝜂𝜂) 𝑀𝑀𝑀𝑀 = 𝑁𝑁𝑁𝑁

𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝜆𝜆𝜆𝜆. 𝑁𝑁𝑁𝑁 (ξ)
𝑀𝑀 = 𝜆𝜆𝜆𝜆. 𝑁𝑁𝑁𝑁 (𝜏𝜏) 𝜆𝜆𝜆𝜆. 𝑁𝑁𝑁𝑁 = 𝑁𝑁 (𝜂𝜂)

𝑀𝑀 = 𝑁𝑁
(𝜏𝜏)

 

 

(ζ)  ⟹ (ξ) 

(𝜆𝜆𝑥𝑥. 𝑀𝑀)𝑥𝑥 = 𝑀𝑀 (𝛽𝛽)
𝑀𝑀 = 𝑁𝑁

(𝜆𝜆𝑥𝑥. 𝑀𝑀)𝑥𝑥 = 𝑁𝑁 (𝜏𝜏) 𝑁𝑁 = (𝜆𝜆𝑥𝑥. 𝑁𝑁)𝑥𝑥 (𝛽𝛽)

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑥𝑥 = (𝜆𝜆𝜆𝜆. 𝑁𝑁)𝑥𝑥
𝜆𝜆𝑥𝑥. 𝑀𝑀 = 𝜆𝜆𝑥𝑥. 𝑁𝑁 (ζ)

(𝜏𝜏)
 

 

(ζ) ⟹ (𝜂𝜂) 

𝑥𝑥 ∉ FV(𝑀𝑀) 

 
(𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀)𝑥𝑥 = 𝑀𝑀𝑀𝑀 (𝛽𝛽)

𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝑀𝑀
(ζ) 
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Chapter 2 

Combinatory Logic 

 

 Systems of combinators are designed to perform the same tasks as systems of 𝜆𝜆-

calculus, but without using bound variables [12, Chapter 2]. To motivate combinators, 

consider the commutative law of addition in arithmetic, which says 

(∀𝑥𝑥, 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) = (𝑦𝑦 + 𝑥𝑥) 

The above expression contains bound variables ‘x’ and ‘y’. But these can be 

removed, as follows. We first define an addition operator A by 

𝐴𝐴(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥 + 𝑦𝑦 (for all 𝑥𝑥, 𝑦𝑦), 

and then introduce an operator C defined by 

�𝐂𝐂(𝑓𝑓)�(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑦𝑦, 𝑥𝑥)  (for all 𝑓𝑓, 𝑥𝑥, 𝑦𝑦). 

Then the commutative law becomes simply 

𝐴𝐴 = 𝐂𝐂(𝐴𝐴). 

The operator C may be called a combinator; the other examples of such an 

operator are the following: 

B, which composes two functions:  �𝐁𝐁(𝑓𝑓, 𝑔𝑔)�(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)); 

𝐁𝐁′ , a reversed composition operator:  �𝐁𝐁′ (𝑓𝑓, 𝑔𝑔)�(𝑥𝑥) = 𝑔𝑔(𝑓𝑓(𝑥𝑥)); 
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I, the identity operator:    𝐈𝐈(𝑓𝑓) = 𝑓𝑓; 

K, which forms constant functions:  �𝐊𝐊(𝑎𝑎)�(𝑥𝑥) = 𝑎𝑎; 

S, a stronger composition operator:  �𝐒𝐒(𝑓𝑓, 𝑔𝑔)�(𝑥𝑥) = 𝑓𝑓(𝑥𝑥, 𝑔𝑔(𝑥𝑥)); 

W, for doubling:     �𝐖𝐖(𝑓𝑓)�(𝑥𝑥) = 𝑓𝑓(𝑥𝑥, 𝑥𝑥). 

In this first section, same notation as in [12, Chapter 2] has been used. 

2.1 Definition (Combinatory Logic terms, or CL-terms) 

 Assume that there is an infinite sequence of expressions 𝑣𝑣0,𝑣𝑣00, 𝑣𝑣000 , … called 

variables [12, Definition 2.1], and a finite or infinite sequence of expressions called 

atomic constants, including three called basic combinators: I, K, S. (If I, K and S are the 

only atomic constants, the system will be called pure, otherwise applied.) The set of 

expressions called CL-terms is defined inductively as follows: 

(a) All variables and atomic constants, including I, K, S, are CL-terms. 

(b) If X and Y are CL-terms, then so is (XY). 

 An atom is a variable or atomic constant. A non-redex constant is an atomic 

constant other than I, K, S. A non-redex atom is a variable or a non-redex constant. A 

closed term is a term containing no variables. A combinator is a term whose only atoms 

are basic combinators. (In the pure system this is the same as a closed term.) 

Examples of CL-terms: ((S(KS))K),  ((S(K 𝑥𝑥))((SK)K)). 
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2.2 Definition (Length of a term) 

 The length of X (or lgh(X)) is the number of occurrences of atoms in X [12, 

Definition 2.3]: 

(a) lgh(a) = 1 for atoms a; 

(b) lgh(UV) = lgh(U) + lgh(V). 

2.3 Definition (Occurrence of a variable) 

 The relation X occurs in Y, or X is a subterm of Y [12, Definition 2.4], is defined 

thus: 

(a) X occurs in X; 

(b) If X occurs in U or in V, then X occurs in (UV). 

The set of all variables occurring in Y is called FV(Y). 

2.4 Definition (Substitution) 

 [𝑈𝑈/𝑥𝑥]𝑌𝑌 is defined to be the result of substuting U for every occurrence of 𝑥𝑥 in Y 

[12, Definition 2.6]; that is, 

(a) [𝑈𝑈/𝑥𝑥]𝑥𝑥 ≡ 𝑈𝑈, 

(b) [𝑈𝑈/𝑥𝑥]𝑎𝑎 ≡ 𝑎𝑎  for atoms 𝑎𝑎 ≢ 𝑥𝑥, 

(c) [𝑈𝑈/𝑥𝑥](𝑉𝑉𝑉𝑉) ≡ (([𝑈𝑈/𝑥𝑥]𝑉𝑉)([𝑈𝑈/𝑥𝑥]𝑊𝑊)). 

For all 𝑈𝑈1, … , 𝑈𝑈𝑛𝑛  and mutually distinct 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , the result of simultaneously substuting 

𝑈𝑈1 for 𝑥𝑥1, 𝑈𝑈2 for 𝑥𝑥2, …, 𝑈𝑈𝑛𝑛  for 𝑥𝑥𝑛𝑛  in 𝑌𝑌 is called 
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[𝑈𝑈1/𝑥𝑥1 , … , 𝑈𝑈𝑛𝑛 /𝑥𝑥𝑛𝑛  ]𝑌𝑌. 

2.5 Definition (Weak Reduction) 

 Any term IX, KXY or SXYZ is called a (weak) redex [12, Definition 2.9]. 

Contracting an occurrence of a weak redex in a term U means replacing one occurrence 

of 

    IX  by  X, or 

    KXY  by  X, or 

    SXYZ by  XZ(YZ). 

If and only if this changes U to 𝑈𝑈′ , we say that U (weakly) contracts to 𝑈𝑈′ , or 

𝑈𝑈 ⊳1𝑤𝑤 𝑈𝑈′ . 

If and only if V is obtained from U by a finite (perhaps empty) series of weak 

contractions, we say that U (weakly) reduces to V, or 

𝑈𝑈 ⊳𝑤𝑤 𝑉𝑉. 

2.6 Definition 

 A weak normal form (or weak nf or term in weak normal form) is a term 

containing no weak redexes [12, Definition 2.10]. If U weakly reduces to a weak normal 

form X, then X is called a weak normal form of U. 

Example: Define B ≡ S(KS)K. Then B𝑋𝑋𝑋𝑋𝑋𝑋 ⊳𝑤𝑤 𝑋𝑋(𝑌𝑌𝑌𝑌), since 

𝐁𝐁𝑋𝑋𝑋𝑋𝑋𝑋 ≡ 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑲𝑲𝑋𝑋𝑋𝑋𝑋𝑋 
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 ⊳1𝑤𝑤 𝐊𝐊𝐊𝐊𝑋𝑋(𝐊𝐊𝑋𝑋)𝑌𝑌𝑌𝑌 by contracting S(KS)KX to KSX(KX) 

 ⊳1𝑤𝑤 𝐒𝐒(𝐊𝐊𝑋𝑋)𝑌𝑌𝑌𝑌  by contracting KSX to S 

 ⊳1𝑤𝑤 𝐊𝐊𝑋𝑋𝑋𝑋(𝑌𝑌𝑌𝑌) by contracting S(KX)YZ 

 ⊳1𝑤𝑤 𝑋𝑋(𝑌𝑌𝑌𝑌)      by contracting KXZ 

Here also the parentheses are left associative. 

Example: 

 SKxy ≡ ((SK)x)y 

SIK(xy) ≡ ((SI)K)(xy) 

2.7 Definition (Abstraction) 

 For every CL-term 𝑀𝑀 and every variable 𝑥𝑥 [12, Definition 2.18], a CL-term called 

[𝑥𝑥]. 𝑀𝑀 is defined by induction on 𝑀𝑀, thus: 

(a) [𝑥𝑥]. 𝑀𝑀 ≡ 𝐊𝐊𝑀𝑀  if 𝑥𝑥 ∉FV (𝑀𝑀); 

(b) [𝑥𝑥]. 𝑥𝑥 ≡ 𝐈𝐈; 

(c) [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈  if 𝑥𝑥 ∉FV (𝑈𝑈);  

(d) [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉)  if neither (a) nor (c) applies 

Example:                       [𝑥𝑥]. 𝑥𝑥𝑥𝑥 ≡ 𝐒𝐒([𝑥𝑥]. 𝑥𝑥)([𝑥𝑥]. 𝑦𝑦) 

≡ 𝐒𝐒𝐒𝐒(𝐊𝐊𝑦𝑦) 
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2.8 Theorem 

 The clauses in definition 2.7 allow us to construct [𝑥𝑥]. 𝑀𝑀 for all 𝑥𝑥 and 𝑀𝑀 [12, 

Theorem 2.21]. Further, [𝑥𝑥]. 𝑀𝑀 does not contain 𝑥𝑥, and for all 𝑁𝑁, 

([𝑥𝑥]. 𝑀𝑀)𝑁𝑁 ⊳𝑤𝑤 [𝑁𝑁/𝑥𝑥]𝑀𝑀. 

Proof: By structural induction on the construction of 𝑀𝑀, the proof has the following 

cases: 

Case 1:  𝑥𝑥 ∉ FV(𝑀𝑀). Then 

[𝑥𝑥]. 𝑀𝑀 ≡ 𝐊𝐊𝑀𝑀. 

Since 𝑥𝑥 ∉ FV(𝑀𝑀), 𝑥𝑥 ∉ FV(𝐊𝐊𝑀𝑀) = FV([𝑥𝑥]. 𝑀𝑀). 

Also    ([𝑥𝑥]. 𝑀𝑀)𝑁𝑁 ≡ 𝐊𝐊𝑀𝑀𝑀𝑀 ⊳ 𝑀𝑀 ≡ [𝑁𝑁/𝑥𝑥]𝑀𝑀. 

Case 2: 𝑀𝑀 ≡ 𝑥𝑥. Then 

[𝑥𝑥]. 𝑀𝑀 ≡ [𝑥𝑥]. 𝑥𝑥 ≡ 𝐈𝐈. 

Here 𝑥𝑥 ∉ FV([𝑥𝑥]. 𝑥𝑥) ≡ 𝐹𝐹𝐹𝐹(𝐈𝐈) and, 

([𝑥𝑥]. 𝑥𝑥)𝑁𝑁 ≡ 𝐈𝐈𝑁𝑁 ⊳ 𝑁𝑁 ≡ [𝑁𝑁/𝑥𝑥]𝑥𝑥. 

Case 3: 𝑀𝑀 ≡ 𝑈𝑈𝑈𝑈, where 𝑥𝑥 ∉ FV(𝑈𝑈). 

Then, [𝑥𝑥]. 𝑀𝑀 ≡ 𝑈𝑈 and 𝑥𝑥 ∉ FV(𝑈𝑈) = FV([𝑥𝑥]. 𝑈𝑈𝑈𝑈). 

Also,    ([𝑥𝑥]. 𝑈𝑈𝑈𝑈)𝑁𝑁 ≡ 𝑈𝑈𝑈𝑈 ≡ [𝑁𝑁/𝑥𝑥]. 𝑈𝑈𝑈𝑈. 

Case 4: 𝑀𝑀 ≡ 𝑈𝑈𝑈𝑈 and neither of cases 1 or 3 applies. Then, 
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[𝑥𝑥]. 𝑀𝑀 ≡ 𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉). 

Also, by the induction hypothesis, 

𝑥𝑥 ∉ FV([𝑥𝑥]. 𝑈𝑈) and ([𝑥𝑥]. 𝑈𝑈)𝑁𝑁 ⊳ [𝑁𝑁/𝑥𝑥]𝑈𝑈 and also 𝑥𝑥 ∉ FV([𝑥𝑥]. 𝑉𝑉) and ([𝑥𝑥]. 𝑉𝑉)𝑁𝑁 ⊳

[𝑁𝑁/𝑥𝑥]𝑉𝑉. 

Then, 𝑥𝑥 ∉ FV(𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉)) and 

([𝑥𝑥]. 𝑀𝑀)𝑁𝑁 ≡ 𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉)𝑁𝑁 

⊳ ([𝑥𝑥]. 𝑈𝑈)𝑁𝑁([𝑥𝑥]. 𝑉𝑉)𝑁𝑁 

⊳ [𝑁𝑁/𝑥𝑥]𝑈𝑈([𝑁𝑁/𝑥𝑥]𝑉𝑉) 

⊳ [𝑁𝑁/𝑥𝑥](𝑈𝑈𝑈𝑈) ≡ [𝑁𝑁/𝑥𝑥]𝑀𝑀. 

Example: 

(a) [𝑥𝑥, 𝑦𝑦]. 𝑥𝑥 ≡ [𝑥𝑥]. ([𝑦𝑦]. 𝑥𝑥) 

 ≡ [𝑥𝑥]. 𝐊𝐊𝑥𝑥 

 ≡ 𝐊𝐊 

(b) [𝑥𝑥, 𝑦𝑦, 𝑧𝑧]. 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦) ≡ [𝑥𝑥]. ([𝑦𝑦]. ([𝑧𝑧]. 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦) ) ) 

 ≡ [𝑥𝑥]. ([𝑦𝑦]. (𝐒𝐒([𝑧𝑧]. 𝑥𝑥𝑥𝑥)([𝑧𝑧]. 𝑦𝑦𝑦𝑦) ) ) 

 ≡ [𝑥𝑥]. ([𝑦𝑦]. 𝐒𝐒𝑥𝑥𝑥𝑥) 

 ≡ [𝑥𝑥]. 𝐒𝐒𝑥𝑥 

 ≡ 𝐒𝐒 
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Formal theory of weak equality 

The formulas of CLw are equations X = Y, for all CL-terms X and Y [12, 

Definition 6.5]. The axioms are the particular cases of the four axiom-schemes below, for 

all CL-terms X, Y and Z. The rules are (μ), (ν), (τ) and (σ) below. 

The axiom-schemes are: 

(I) IX = X; 

(K) KXY = X; 

(S) SXYZ = XZ(YZ); 

(ρ) X = X. 

The rules of inference are: 

(μ) 𝑋𝑋=𝑋𝑋`
𝑍𝑍𝑍𝑍=𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋=𝑋𝑋`
𝑋𝑋𝑋𝑋=𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋=𝑌𝑌   𝑌𝑌=𝑍𝑍
𝑋𝑋=𝑍𝑍

 

(σ) 𝑋𝑋=𝑌𝑌
𝑌𝑌=𝑋𝑋

 

If and only if an equation X = Y is provable in CLw, we say 

CL𝑤𝑤 ⊢ 𝑋𝑋 = 𝑌𝑌. 
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Formal theory of weak reduction 

The formulas of CLw are expressions 𝑋𝑋 ⊳ 𝑌𝑌, for all CL-terms X and Y [12, 

Definition 6.6]. The axiom-schemes and rules are the same as above [10], but with ‘=’ 

changed to ‘⊳’ and (σ) omitted. If and only if 𝑋𝑋 ⊳ 𝑌𝑌 is provable in CLw, we say 

𝐶𝐶𝐶𝐶𝐶𝐶 ⊢ 𝑋𝑋 ⊳ 𝑌𝑌. 

Thus the axiom schemes are: 

(I) IX ⊳ X; 

(K) KXY ⊳ X; 

(S) SXYZ ⊳ XZ(YZ); 

(ρ) X ⊳ X. 

The rules of inference are: 

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋⊳𝑌𝑌   𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

 

2.9 Lemma 

(a) 𝑋𝑋 ⊳𝑤𝑤 𝑌𝑌 ⟺ CL𝑤𝑤 ⊢ 𝑋𝑋 ⊳ 𝑌𝑌 

(b) 𝑋𝑋 =𝑤𝑤 𝑌𝑌 ⟺ CL𝑤𝑤 ⊢ 𝑋𝑋 = 𝑌𝑌 
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[12, Lemma 6.7, Page 71]. 
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Chapter 3 

Correspondence Between 𝝀𝝀-calculus and Combinatory Logic 

 

Even though the terms in lambda calculus (λ-claculus) and combinatory logic 

(CL) appear to be equivalent, they are not. In order to understand this, we must first look 

at the λ-transform and the H-transform. 

3.1 λ-Transform 

To each CL-term X we associate a λ-term 𝑋𝑋𝜆𝜆  called its λ-transform, by induction on X 

[12, Definition 9.2]. Thus: 

(a) 𝑥𝑥𝜆𝜆 ≡ 𝑥𝑥 

(b) 𝐈𝐈𝜆𝜆 ≡ 𝜆𝜆𝜆𝜆. 𝑥𝑥,  𝐊𝐊𝜆𝜆 ≡ 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥,  𝐒𝐒𝜆𝜆 ≡ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦) 

(c) (𝑋𝑋𝑋𝑋)𝜆𝜆 ≡ 𝑋𝑋𝜆𝜆𝑌𝑌𝜆𝜆  

3.2 H-Transform 

To each 𝜆𝜆-term M we associate a CL-term called 𝑀𝑀𝐻𝐻  [12, Definition 9.10]. Thus: 

(a) 𝑥𝑥𝐻𝐻 ≡ 𝑥𝑥 

(b) (𝑀𝑀𝑀𝑀)𝐻𝐻 ≡ 𝑀𝑀𝐻𝐻𝑁𝑁𝐻𝐻 

(c) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝐻𝐻 ≡ [𝑥𝑥]. (𝑀𝑀𝐻𝐻) 

The λ-transform and the H-transform allow us to describe λ-terms in CL and vice versa. 
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3.3 Weak normal form 

A weak normal form (or weak nf or term in weak normal form) is a term that 

contains no weak redexes. 

For example, in combinatory logic;  

[𝑥𝑥]. (𝐊𝐊𝑥𝑥𝑥𝑥) ≡ 𝐒𝐒([𝑥𝑥]. 𝐊𝐊𝑥𝑥)([𝑥𝑥]. 𝑥𝑥) ≡ 𝐒𝐒𝐒𝐒𝐒𝐒 

The above is in weak normal form [1, Page 152]. 

 

If we look at the equivalent term in λ-calculus, we get; 

𝜆𝜆𝜆𝜆. 𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥 ≡ 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆𝜆𝜆. 𝑢𝑢)𝑥𝑥𝑥𝑥 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≡ 𝐈𝐈𝜆𝜆  

Here, 𝜆𝜆𝜆𝜆. 𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥 does reduce to 𝐈𝐈𝜆𝜆 . 

The key point is that [x].(Kxx) ≡ SKI cannot be reduced in CL, although Kxx can 

be reduced, because Kxx really does not occur as a subterm of [x].(Kxx) ≡ SKI, whereas 

𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥 really does occur as a subterm of 𝜆𝜆𝜆𝜆. 𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥. So the latter term reduces to 𝐈𝐈𝜆𝜆 . 

 We have seen that λ-calculus and CL are different, but there are some points of 

similarity. We have the combinatory β-equality (=𝑐𝑐𝑐𝑐 ) and combinatory βη-equality 

(=𝑐𝑐𝑐𝑐𝑐𝑐 ), which are equivalent to λβ-conversion and λβη-conversion, respectively. To 

understand this, let us first take a brief overview of extensional equality in CL. 

3.4 Extensional Equality in CL 

Consider the rules: 

(ζ) 𝑋𝑋𝑋𝑋 =𝑌𝑌𝑌𝑌
𝑋𝑋=𝑌𝑌

   if 𝑥𝑥 ∉ FV(𝑋𝑋𝑋𝑋) 
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(ξ) 𝑋𝑋=𝑌𝑌
[𝑥𝑥].𝑋𝑋=[𝑥𝑥].𝑌𝑌

 

Consider the axiom-scheme: 

(η) [𝑥𝑥]. 𝑈𝑈𝑈𝑈 = 𝑈𝑈  if 𝑥𝑥 ∉ FV(𝑈𝑈) 

Here, the relation =𝑒𝑒𝑒𝑒𝑒𝑒  is defined as: 

𝑋𝑋 =𝑒𝑒𝑒𝑒𝑒𝑒 𝑌𝑌  ⇔   CLζ ⊢ 𝑋𝑋 = 𝑌𝑌 

Where, CLζ can be obtained by adding the rule (ζ) to CLw (formal theory of weak 

equality defined in Chapter 2). 

Thus, the axiom-schemes are: 

(I) IX = X; 

(K) KXY = X; 

(S) SXYZ = XZ(YZ); 

(ρ) X = X. 

The rules of inference are: 

(μ) 𝑋𝑋=𝑋𝑋`
𝑍𝑍𝑍𝑍=𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋=𝑋𝑋`
𝑋𝑋𝑋𝑋=𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋=𝑌𝑌   𝑌𝑌=𝑍𝑍
𝑋𝑋=𝑍𝑍

 

(σ) 𝑋𝑋=𝑌𝑌
𝑌𝑌=𝑋𝑋
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(ζ) 𝑋𝑋𝑋𝑋 =𝑌𝑌𝑌𝑌
𝑋𝑋=𝑌𝑌

 

This relation is often called =𝑐𝑐𝑐𝑐𝑐𝑐 . 

Example: SK =𝑒𝑒𝑒𝑒𝑒𝑒  KI 

This is proved by applying rule (ζ) twice to the weak equation SK𝑥𝑥𝑥𝑥 =𝑤𝑤  KI𝑥𝑥𝑥𝑥, 

which is proved thus; 

SK𝑥𝑥𝑥𝑥 =𝑤𝑤 𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) 

 =𝑤𝑤 𝑦𝑦 

 =𝑤𝑤 𝐈𝐈𝑦𝑦 

 =𝑤𝑤 𝐊𝐊𝐊𝐊𝑥𝑥𝑥𝑥 

3.5 Extensionality axioms 

 The theory CL𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎  (i.e. =𝑎𝑎𝑎𝑎 ) is defined by adding to CLw the following five 

axioms [12, Definition 8.10]: 

E-ax 1: S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK); 

E-ax 2: S(S(KS)K)(KI) = I; 

E-ax 3: S(KI) = I; 

E-ax 4: S(KS)(S(KK)) = K; 

E-ax 5: S(K(S(KS)))(S(KS)(S(KS))) = S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS). 
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Since the theory CL𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎  is equivalent to the CL𝛽𝛽𝛽𝛽  theory, it determines the same 

equality-relation, namely =𝑒𝑒𝑒𝑒𝑒𝑒 . 

Now let us discuss about the relation of β-equality in λ-calculus. 

3.6 Combinatory β-equality 

The relation of β-equality in λ-calculus induces the following equality between 

CL-terms [12, Definition 9.29]. 

For all CL-terms X and Y, define 

𝑋𝑋 =𝑐𝑐𝑐𝑐 𝑌𝑌 ⟺ 𝑋𝑋𝜆𝜆 =𝛽𝛽 𝑌𝑌𝜆𝜆  

3.7 Functional CL-terms 

 A CL-term with one of the six forms SXY (for some X, Y), SX, KX, S, K, I, is 

called functional or fnl [12, Definition 9.6]. 

3.8 Lemma 

 For all functional CL-terms U: 

(a) 𝑈𝑈𝜆𝜆 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. 𝑀𝑀 for some λ-term M; 

(b) 𝑈𝑈 ⊳𝑤𝑤 𝑉𝑉 ⟹ 𝑉𝑉 is functional. 

 [12, Lemma 9.7, Page 94]. 
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3.9 The formal theory CLζ𝜷𝜷 

CLζ𝛽𝛽  is obtained by adding the following rule to the theory CLw of weak equality 

[12, Definition 9.32]: 

(ζ𝛽𝛽 ) 𝑈𝑈𝑈𝑈 =𝑉𝑉𝑉𝑉
𝑈𝑈=𝑉𝑉

  if 𝑥𝑥 ∉ FV(𝑈𝑈𝑈𝑈) and U and V are functional. 

The axiom schemes become: 

(I) IX = X; 

(K) KXY = X; 

(S) SXYZ = XZ(YZ); 

(ρ) X = X. 

The rules of inference are: 

(μ) 𝑋𝑋=𝑋𝑋`
𝑍𝑍𝑍𝑍=𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋=𝑋𝑋`
𝑋𝑋𝑋𝑋=𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋=𝑌𝑌   𝑌𝑌=𝑍𝑍
𝑋𝑋=𝑍𝑍

 

(ζ𝛽𝛽 ) 𝑈𝑈𝑈𝑈 =𝑉𝑉𝑉𝑉
𝑈𝑈=𝑉𝑉

  if 𝑥𝑥 ∉ FV(𝑈𝑈𝑈𝑈) and U and V are functional. 

Example: CLζ𝛽𝛽 ⊢ SK = KI. 

𝐒𝐒𝐒𝐒𝑦𝑦𝑦𝑦 = 𝐊𝐊𝑧𝑧(𝑦𝑦𝑦𝑦) = 𝑧𝑧 = 𝐈𝐈𝑧𝑧. 
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The rule (ζ𝛽𝛽 ) can be applied, since SKy and I are functional, to give 

𝐒𝐒𝐒𝐒𝑦𝑦 = 𝐈𝐈. 

But CL𝑤𝑤 ⊢ 𝐈𝐈 = 𝐊𝐊𝐊𝐊𝑦𝑦, so CLζ𝛽𝛽 ⊢ 𝐒𝐒𝐒𝐒𝑦𝑦 = 𝐊𝐊𝐊𝐊𝑦𝑦. Since SK and KI are functional, rule (ζ𝛽𝛽 ) 

can be applied to give 

𝐒𝐒𝐒𝐒 = 𝐊𝐊𝐊𝐊. 

The above holds true for conversion, i.e., describing the conversion in λ-calculus 

and trying to find its equivalent in combinatory logic, but what about reduction? It so 

happens that we have Strong Reduction in CL which is equivalent to λβη-reduction in λ-

calculus. This is the subject of the next section. 

3.10 Definition (Strong reduction,  ) 

 The formal theory of strong reduction has as formulas all expressions X  Y [12, 

Definition 8.15], for all CL-terms X and Y. Its axiom-schemes and rules are the same as 

those for CLw, but with ‘=’ changed to ‘  ‘, and the following new rule added: 

(ξ)  𝑋𝑋 𝑌𝑌
[𝑥𝑥].𝑋𝑋 [𝑥𝑥].𝑌𝑌

 

Thus, the axiom-schemes become: 

(I) IX  X; 

(K) KXY  X; 

(S) SXYZ  XZ(YZ); 



37 
 

(ρ) X  X. 

The rules of inference are: 

(μ) 𝑋𝑋 𝑋𝑋`
𝑍𝑍𝑍𝑍 𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋 𝑋𝑋`
𝑋𝑋𝑋𝑋 𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋 𝑌𝑌   𝑌𝑌 𝑍𝑍
𝑋𝑋 𝑍𝑍

 

(ξ) 𝑋𝑋 𝑌𝑌
[𝑥𝑥].𝑋𝑋 [𝑥𝑥].𝑌𝑌

 

Also, rule (ξ) can be replaced with rule (ξ`) which says that; 

(ξ`) 𝑈𝑈𝑈𝑈 𝑌𝑌
𝑈𝑈 [𝑥𝑥]𝑌𝑌

  (x ∉ FV(U)) 

(ξ`) can be derived from (ξ) by taking [𝑥𝑥]. 𝑋𝑋 for 𝑈𝑈, and (ξ`) from (ξ) by taking 𝑈𝑈𝑈𝑈 for 𝑋𝑋. 

The 𝑈𝑈 in (ξ`) can be restricted to being a functional term [6, Page 93]. 

If and only if X  Y is provable in this theory, we say X strongly reduces to Y, or just 

X  Y. 

The strong reduction was proposed by H.B. Curry. At that time, he used a formalism that 

included both the abstraction operator λ as primitive and also included the basic 

combinators I, K, and S, so that abstraction could be defined by the definition of [  ]𝜂𝜂  

[Definition 2.7, Page 24]. So, if we were to perform strong reduction to prove that S(KI) 

 I, we would write it in the following way; 

𝐒𝐒(𝐊𝐊𝐊𝐊) 
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𝜆𝜆𝜆𝜆. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 

𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 

𝜆𝜆𝜆𝜆𝜆𝜆. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 

𝜆𝜆𝜆𝜆𝜆𝜆. 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) 

𝜆𝜆𝜆𝜆𝜆𝜆. 𝐈𝐈(𝑥𝑥𝑥𝑥) 

𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥 

𝜆𝜆𝜆𝜆. 𝑥𝑥 

𝐈𝐈 

But later, he used the standard syntax for CL in which 𝜆𝜆𝜆𝜆 was replaced with [𝑥𝑥]. So, the 

reduction would then be; 

𝐒𝐒(𝐊𝐊𝐊𝐊) 

[𝑥𝑥]. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 

[𝑥𝑥]. [𝑦𝑦]. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 

[𝑥𝑥]. [𝑦𝑦]. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 

[𝑥𝑥]. [𝑦𝑦]. 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) 

[𝑥𝑥]. [𝑦𝑦]. 𝐈𝐈(𝑥𝑥𝑥𝑥) 

[𝑥𝑥]. [𝑦𝑦]. 𝑥𝑥𝑥𝑥 
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[𝑥𝑥]. 𝑥𝑥 

𝐈𝐈 

Examples: 

(a) SK  KI 

To prove this, first note that 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝑦𝑦. Since the axiom-schemes and 

rules for  include those for ⊳𝑤𝑤 , this gives 

𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥  𝑦𝑦. 

Hence, by rule (ξ) twice, 

[𝑥𝑥, 𝑦𝑦]. 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥  [𝑥𝑥, 𝑦𝑦]. 𝑦𝑦 

But [𝑥𝑥, 𝑦𝑦]. 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 ≡ 𝐒𝐒𝐒𝐒 and [𝑥𝑥, 𝑦𝑦]. 𝑦𝑦 ≡ 𝐊𝐊𝐊𝐊. 

 

(b) S(KX)(KY)  K(XY) 

To prove this for all terms X and Y, choose 𝑣𝑣 ∉ FV(𝑋𝑋𝑋𝑋). Then 

S(KX)(KY) ≡ [v].(KXv)(KYv), K(XY)≡ [v].XY 

Also (KXv)(KYv) ⊳𝑤𝑤  XY, so by (ξ), 

 [v].(KXv)(KYv)  [v].XY 
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3.11 Lemma 

 The relation  is transitive and reflexive. Also 

(a) 𝑋𝑋  𝑌𝑌 ⇒ FV(𝑋𝑋) ⊇ FV(𝑌𝑌); 

(b) 𝑋𝑋  𝑌𝑌 ⇒ [𝑋𝑋/𝑣𝑣]𝑍𝑍   [𝑌𝑌/𝑣𝑣]𝑍𝑍; 

(c) 𝑋𝑋  𝑌𝑌 ⟹ [𝑈𝑈1/𝑥𝑥1 , … . , 𝑈𝑈𝑛𝑛 /𝑥𝑥𝑛𝑛  ]𝑋𝑋  [𝑈𝑈1/𝑥𝑥1 , … . , 𝑈𝑈𝑛𝑛 /𝑥𝑥𝑛𝑛  ]𝑌𝑌; 

(d) the equivalence relation generated by  is the same as =𝑒𝑒𝑒𝑒𝑒𝑒 ; that is, 𝑋𝑋 =𝑒𝑒𝑒𝑒𝑒𝑒 𝑌𝑌 if 

and only if X goes to Y by a finite series of strong reductions and reversed strong 

reductions. 

Proof can be found on [12, Lemma 8.17, Page 90]. 

The theory of strong reduction depends on the definition of the abstraction being 

used. In particular, it requires an abstraction using clause (c) of the abstraction algorithm, 

which is: 

[𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈 if 𝑥𝑥 ∉ FV(𝑈𝑈) 

This definition does not work for defining a reduction in combinatory logic 

equivalent to λβ-reduction. This is because rule (η) is not valid for all λβ-reductions but it 

is valid for some. So some instances of clause (c) are needed but not all. 

If 𝑥𝑥 ∉ FV(𝑉𝑉) and 𝑥𝑥 ≢ 𝑦𝑦, we have 

𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑉𝑉)𝑥𝑥 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. [𝑥𝑥/𝑦𝑦]𝑉𝑉 ⊳𝛼𝛼 𝜆𝜆𝜆𝜆. 𝑉𝑉 
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But clause (c) of the abstraction cannot be restricted to combinatory logic terms 

equivalent to abstracts because there is no algorithm which can decide whether a CL term 

is equivalent to an abstract, and so the result is not an algorithm. 

We are now going to look at various alternative definitions of abstractions, as the 

discussion above shows the need for this. 

So far, we have seen [  ] . From now on, [  ] will be called [  ]𝜂𝜂 . Now let us look at 

[  ]𝑤𝑤 . Here we must note that H is really 𝐻𝐻𝜂𝜂 . 

 

Weak Abstraction 

For all CL-terms Y, [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 is defined thus: 

(a) [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌    if 𝑥𝑥 ∉ FV(𝑌𝑌); 

(b) [𝑥𝑥]𝑤𝑤 . 𝑥𝑥 ≡ 𝐈𝐈; 

(f) [𝑥𝑥]𝑤𝑤 . 𝑈𝑈𝑈𝑈 ≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑈𝑈)([𝑥𝑥]𝑤𝑤 . 𝑉𝑉)  if 𝑥𝑥 ∈ FV(𝑈𝑈𝑈𝑈). 

3.12 Lemma 

For all CL-terms Y and Z, [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 is defined for all variables x and terms Y and 

does not contain x. 

3.13 Lemma 

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌 
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Proof: 

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌) 

Then, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ≡ 𝐊𝐊𝑌𝑌𝑌𝑌 ⊳𝑤𝑤 𝑌𝑌 ≡ [𝑍𝑍/𝑥𝑥]𝑌𝑌 

Case 2: 𝑌𝑌 ≡ 𝑥𝑥 

Then, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ≡ ([𝑥𝑥]𝑤𝑤 . 𝑥𝑥)𝑍𝑍 ≡ 𝐈𝐈𝑍𝑍 ⊳𝑥𝑥 𝑍𝑍 ≡ [𝑍𝑍/𝑥𝑥]𝑥𝑥 

Case 3: 𝑌𝑌 ≡ 𝑌𝑌1𝑌𝑌2 and 𝑥𝑥 ∈ FV(𝑌𝑌1𝑌𝑌2) 

Then, by the induction hypothesis, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)𝑍𝑍 ⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌1 and ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝑍𝑍 ⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌2. 

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ≡ ([𝑥𝑥]𝑤𝑤 . (𝑌𝑌1𝑌𝑌2))𝑍𝑍 

≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝑍𝑍 

⊳𝑤𝑤 ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)𝑍𝑍(([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝑍𝑍) 

⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌1([𝑍𝑍/𝑥𝑥]𝑌𝑌2) 

≡ [𝑍𝑍/𝑥𝑥](𝑌𝑌1𝑌𝑌2) 

≡ [𝑍𝑍/𝑥𝑥]𝑌𝑌 

3.14 Lemma 

[𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌   if 𝑧𝑧 ∉ FV(𝑌𝑌) 

Proof: 

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌) 

Then, [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 
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[𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑧𝑧]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 ≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 

Case 2: 𝑌𝑌 ≡ 𝑥𝑥 

Then, [𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑥𝑥 ≡ [𝑧𝑧]𝑤𝑤 . 𝑧𝑧 ≡ 𝐈𝐈 ≡ [𝑥𝑥]𝑤𝑤 . 𝑥𝑥 ≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 

Case 3: 𝑌𝑌 = 𝑌𝑌1𝑌𝑌2 

Then, by the induction hypothesis, [𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌1 ≡ [𝑥𝑥]𝑤𝑤 𝑌𝑌1 and [𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌2 ≡ [𝑥𝑥]𝑤𝑤 𝑌𝑌2. 

[𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌1𝑌𝑌2 

≡ 𝐒𝐒([𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌1)([𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌2) 

≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2) 

≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 

3.15 Lemma 

[𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌) ≡ [𝑥𝑥]𝑤𝑤 . ([𝑍𝑍/𝑣𝑣]𝑌𝑌)   if 𝑥𝑥 ∉ FV(𝑣𝑣𝑣𝑣) 

Proof: 

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌) 

Then [𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌) ≡ [𝑍𝑍/𝑣𝑣]. 𝐊𝐊𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 ≡ 𝐊𝐊. ([𝑍𝑍/𝑣𝑣]𝑌𝑌) ≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌. 

Case 2: 𝑌𝑌 ≡ 𝑥𝑥 

Then, [𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑥𝑥) ≡ [𝑍𝑍/𝑣𝑣]𝐈𝐈 ≡ 𝐈𝐈 ≡ [𝑥𝑥]𝑤𝑤 . 𝑥𝑥. 

Case 3: 𝑌𝑌 = 𝑌𝑌1𝑌𝑌2 
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Then, by the induction hypothesis,  

[𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1) ≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌1 and [𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2) ≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌2. 

[𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1𝑌𝑌2) 

⊳𝑤𝑤 [𝑍𝑍/𝑣𝑣]𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)([𝑥𝑥]𝑤𝑤 𝑌𝑌2) 

≡ 𝑆𝑆([𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌))([𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)) 

≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌1)([𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌2) 

≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌 

3.16 Lemma 

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝜆𝜆 =𝛽𝛽 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆) 

Proof: 

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌) 

[𝑥𝑥]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝜆𝜆 ≡ (𝐊𝐊𝑌𝑌)𝜆𝜆  

     ≡ (𝜆𝜆𝜆𝜆𝜆𝜆. 𝑢𝑢)(𝑌𝑌𝜆𝜆) where 𝑢𝑢𝑢𝑢 ∉ FV(𝑌𝑌) = FV(𝑌𝑌𝜆𝜆) 

     ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆)  where 𝑣𝑣 ∉ FV(𝑌𝑌) 

≡𝛼𝛼 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆) 
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Case 2: 𝑌𝑌 ≡ 𝑥𝑥 

Then, ([𝑥𝑥]𝑤𝑤 . 𝑥𝑥)𝜆𝜆 ≡ 𝐈𝐈𝜆𝜆 ≡ (𝜆𝜆𝜆𝜆. 𝑥𝑥) ≡ 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆) 

Case 3: 𝑌𝑌 = 𝑌𝑌1𝑌𝑌2 

Then, by the induction hypothesis, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)𝜆𝜆 = 𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆  and ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝜆𝜆 = 𝜆𝜆𝜆𝜆. 𝑌𝑌2𝜆𝜆 . 

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝜆𝜆 ≡ ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1𝑌𝑌2)𝜆𝜆 ≡ (𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2))𝜆𝜆  

≡𝛽𝛽 (𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣))(𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆 )(𝜆𝜆𝜆𝜆. 𝑌𝑌2𝜆𝜆 ) 

≡𝛽𝛽 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆 )𝑤𝑤((𝜆𝜆𝜆𝜆. 𝑌𝑌2𝜆𝜆 )𝑤𝑤) 

≡𝛽𝛽 𝜆𝜆𝜆𝜆. ([𝑤𝑤/𝑥𝑥]. 𝑌𝑌1𝜆𝜆 )([𝑤𝑤/𝑥𝑥]. 𝑌𝑌2𝜆𝜆 ) 

≡𝛼𝛼 𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆 𝑌𝑌2𝜆𝜆  

≡ 𝜆𝜆𝜆𝜆. 𝑌𝑌𝜆𝜆  

 

Abstraction [  ]𝜷𝜷 

Curry defined an abstraction, today called ‘[  ]𝛽𝛽 ’, which does not admit clause (c) 

of Definition 2.7 in all cases [12, Remark 9.27]. His definition consists of weak 

abstraction clauses (a) and (b), plus the following: 

(c𝛽𝛽 ) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈    if U is functional and x ∉ FV(U); 

(f𝛽𝛽 ) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑆𝑆([𝑥𝑥]𝜂𝜂 . 𝑈𝑈)([𝑥𝑥]𝜂𝜂 . 𝑉𝑉) if neither (a) nor (c𝛽𝛽 ) applies. 
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Thus this abstraction is defined by: 

(a) [𝑥𝑥]𝛽𝛽 . 𝑀𝑀 ≡ 𝐊𝐊𝑀𝑀  if 𝑥𝑥 ∉FV (𝑀𝑀); 

(b) [𝑥𝑥]𝛽𝛽 . 𝑥𝑥 ≡ 𝐈𝐈; 

(c𝛽𝛽 ) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈    if U is functional and x ∉ FV(U); 

(f𝛽𝛽 ) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑆𝑆([𝑥𝑥]𝜂𝜂 . 𝑈𝑈)([𝑥𝑥]𝜂𝜂 . 𝑉𝑉) if neither (a) nor (c𝛽𝛽 ) applies. 

 

Note the two η’s in (f𝛽𝛽 ); their effect is to say that clause (c) can be used 

unrestrictedly in computing [x].Y if it is not the first clause in the evaluation. 

 

The 𝑯𝑯𝜷𝜷 mapping 

 For all λ-terms M, define 𝐻𝐻𝛽𝛽  as in the definition of H mapping, but using [  ]𝛽𝛽  

instead of [  ]: 

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝐻𝐻𝛽𝛽 ≡ [𝑥𝑥]𝛽𝛽 (𝑀𝑀𝐻𝐻) 

 

The 𝑯𝑯𝒘𝒘 mapping 

For all λ-terms M, we define 𝑀𝑀𝐻𝐻𝑤𝑤 , but using [  ]𝑤𝑤  instead of [  ]𝜂𝜂 ; in particular, 

define 

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝐻𝐻𝑤𝑤 ≡ [𝑥𝑥]𝑤𝑤 . (𝑀𝑀𝐻𝐻𝑤𝑤 ) 
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 For all λ-terms M and N: 

(a) FV(𝑀𝑀𝐻𝐻𝑤𝑤 ) = FV(𝑀𝑀); 

(b) 𝑀𝑀 ≡𝛼𝛼 𝑁𝑁 ⟹ 𝑀𝑀𝐻𝐻𝑤𝑤 ≡ 𝑁𝑁𝐻𝐻𝑤𝑤 ; 

(c) ([𝑁𝑁/𝑥𝑥]𝑀𝑀)𝐻𝐻𝑤𝑤 ≡ [𝑁𝑁𝐻𝐻𝑤𝑤 /𝑥𝑥](𝑀𝑀𝐻𝐻𝑤𝑤 ). 

So, we have seen that we have strong reduction in CL which is equivalent to λβη-

reduction in λ-calculus. But then what about λβ-reduction (in λ-calculus)? As of now, we 

do not have complete equivalent reduction in CL and it is the only part of CL that is now 

missing. However, there are a few proposals by Curry, Seldin and Mezghiche which are 

discussed below. 

Notations: 

The (ξ)-rule is called (𝜉𝜉𝛽𝛽 ) or ( 𝜉𝜉𝜂𝜂 ), depending on the type of abstraction being used. 

 

Curry’s restriction to clause (c) 

H.B. Curry proposed [𝑥𝑥]𝛽𝛽  with its restriction to clause (c) [7]. He defined beta-reduction 

as follows: 

The weak rules are the same along with one new rule (𝜉𝜉𝛽𝛽 ), which states that 

(𝜉𝜉𝛽𝛽 )  𝑋𝑋⊳𝑌𝑌
[𝑥𝑥]𝛽𝛽 .𝑋𝑋⊳[𝑥𝑥]𝛽𝛽 .𝑌𝑌
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Thus axiom schemes would be; 

(I) IX ⊳ X; 

(K) KXY ⊳ X; 

(S) SXYZ ⊳ XZ(YZ); 

(ρ) X ⊳ X. 

The rules of inference are: 

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋⊳𝑌𝑌   𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

 

(𝜉𝜉𝛽𝛽 ) 𝑋𝑋⊳𝑌𝑌
[𝑥𝑥]𝛽𝛽 .𝑋𝑋⊳[𝑥𝑥]𝛽𝛽 .𝑌𝑌

 

But his proposals had some problems: 

(1) X ⊳ Y does not mean 𝑋𝑋𝜆𝜆 ⊳𝛽𝛽𝛽𝛽 𝑌𝑌𝜆𝜆 . 

(2) Being functional is not preserved by reduction. That is, if we reduce a term which 

is functional, then it is not necessary that the term obtained after this reduction be 

functional. It can be a non-functional term also. Let us consider and example: 

𝐈𝐈(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝑥𝑥𝑥𝑥 

[𝑦𝑦]𝛽𝛽 𝐈𝐈(𝑥𝑥𝑥𝑥) ⊳𝛽𝛽 [𝑦𝑦]𝛽𝛽 (𝑥𝑥𝑥𝑥) 

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 
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𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 ([𝑥𝑥]𝛽𝛽 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈)𝑥𝑥 

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)𝑥𝑥 

Now, 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 is functional but 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)𝑥𝑥  is not. 

(3) This proposal does not have a complete characterization of terms in normal form. 

Example of a reduction under this proposal: 

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝑥𝑥𝑥𝑥 

[𝑦𝑦]𝛽𝛽 (𝑥𝑥𝑥𝑥) ≡ 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 

[𝑥𝑥]𝛽𝛽  𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 ≡ 𝐒𝐒([𝑥𝑥]𝜂𝜂 𝐒𝐒(𝐊𝐊𝑥𝑥) )(𝐊𝐊𝐊𝐊) 

by (ξ’) twice   ≡ 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊) 

So,         𝐒𝐒(𝐊𝐊𝐊𝐊) ⊳𝛽𝛽 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊) 

Under strong reduction S(KI)  I, but it doesn’t under this proposal. 

 

 

Dr. Seldin’s Proposal (unpublished) 

Dr. J.P. Seldin also gave a proposal which uses [𝑥𝑥]𝑤𝑤  (weak abstraction). 

The definition of new reduction uses the weak rules, and  

(ξ`) for all functional U except S, K, I, 𝑈𝑈𝑈𝑈 ⊳ 𝑌𝑌 ⟹ 𝑈𝑈 ⊳ [𝑥𝑥]𝑤𝑤 𝑌𝑌     (𝑥𝑥 ∉ FV(𝑈𝑈)); 

(𝛽𝛽1) S(S(KX)I)Y ⊳ SXY; 
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(𝛽𝛽2) SX(S(KY)I) ⊳ SXY; 

(𝛽𝛽3) S(KU)I ⊳ U for U functional. 

Thus axiom schemes would be; 

(I) IX ⊳ X; 

(K) KXY ⊳ X; 

(S) SXYZ ⊳ XZ(YZ); 

(ρ) X ⊳ X; 

(𝛽𝛽1) S(S(KX)I)Y ⊳ SXY; 

(𝛽𝛽2) SX(S(KY)I) ⊳ SXY; 

(𝛽𝛽3) S(KU)I ⊳ U for U functional. 

The rules of inference are: 

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋⊳𝑌𝑌   𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

 

(ξ`) for all functional U except S, K, I, 𝑈𝑈𝑈𝑈 ⊳ 𝑌𝑌 ⟹ 𝑈𝑈 ⊳ [𝑥𝑥]𝑤𝑤 𝑌𝑌     (𝑥𝑥 ∉ FV(𝑈𝑈)); 

One problem with this proposal is that it also does not have a complete characterization 

of terms in normal form. Let us consider the following example: 
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𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) 

⊳𝑤𝑤 𝐈𝐈(𝑥𝑥𝑥𝑥) 

⊳𝑤𝑤 𝑥𝑥𝑥𝑥 

By (ξ′ )    𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 [𝑦𝑦]𝑤𝑤 (𝑥𝑥𝑥𝑥) 

≡ 𝐒𝐒([𝑦𝑦]𝑥𝑥)([𝑦𝑦]𝑦𝑦) 

≡ 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 

Hence by ξ again, 𝐒𝐒(𝐊𝐊𝐊𝐊) ⊳𝛽𝛽 [𝑥𝑥]𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 

≡ 𝐒𝐒([𝑥𝑥]𝐒𝐒(𝐊𝐊𝑥𝑥) )([𝑥𝑥]𝐈𝐈) 

≡ 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)([𝑥𝑥]𝐊𝐊𝑥𝑥))(𝐊𝐊𝐊𝐊) 

≡ 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐈𝐈)(𝐊𝐊𝐊𝐊) 

⊳𝛽𝛽 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊) 

 

Mezghiche’s Proposal 

The abstraction algorithm [𝑥𝑥]𝑐𝑐𝑐𝑐 𝑋𝑋 is defined by [18, Page 2], 

[𝑥𝑥]𝑐𝑐𝑐𝑐 𝑋𝑋 ≡ 𝐒𝐒(𝐊𝐊([𝑥𝑥]𝜂𝜂 𝑋𝑋))𝐈𝐈 
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The ⊳𝑐𝑐𝑐𝑐  is the cβ-reduction which is the extension of weak combinatory 

reduction [18]. Mezghiche defines his new cβ-reduction by adding to the axioms of weak 

combinatory reduction the following two axioms: 

(+) 𝐒𝐒(𝐊𝐊𝑈𝑈)𝐈𝐈 ⊳𝑐𝑐𝑐𝑐 𝑈𝑈  if U is functional 

(ξ`) 𝑈𝑈𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 𝑌𝑌 ⟹ 𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 [𝑥𝑥]𝑐𝑐𝑐𝑐 𝑌𝑌 if U is functional and 𝑥𝑥 ∉ 𝑈𝑈. 

Thus axiom schemes would be; 

(I) IX ⊳ X; 

(K) KXY ⊳ X; 

(S) SXYZ ⊳ XZ(YZ); 

(ρ) X ⊳ X; 

(+) 𝐒𝐒(𝐊𝐊𝑈𝑈)𝐈𝐈 ⊳𝑐𝑐𝑐𝑐 𝑈𝑈  if U is functional. 

The rules of inference are: 

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

 

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

 

(τ) 𝑋𝑋⊳𝑌𝑌   𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

 

(ξ`) 𝑈𝑈𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 𝑌𝑌 ⟹ 𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 [𝑥𝑥]𝑐𝑐𝑐𝑐 𝑌𝑌 if U is functional and 𝑥𝑥 ∉ 𝑈𝑈 
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The problem with this proposal is that it has only a partial characterization of 

terms in normal form. 

Let us consider the following example: 

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝐈𝐈(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝑥𝑥𝑥𝑥 

𝐒𝐒(𝐊𝐊𝐊𝐊) ⊳𝑤𝑤 [𝑥𝑥]𝑐𝑐𝑐𝑐 [𝑦𝑦]𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥) 

≡ [𝑥𝑥]𝑐𝑐𝑐𝑐 𝐒𝐒(𝐊𝐊([𝑦𝑦]𝜂𝜂 (𝑥𝑥𝑥𝑥))𝐈𝐈 

≡ [𝑥𝑥]𝑐𝑐𝑐𝑐 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 

≡ 𝐒𝐒(𝐊𝐊([𝑥𝑥]𝜂𝜂 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈))𝐈𝐈 

≡ 𝐒𝐒(𝐊𝐊(𝐒𝐒([𝑥𝑥]𝜂𝜂 (𝐒𝐒(𝐊𝐊𝑥𝑥))(𝐊𝐊𝐊𝐊))))𝐈𝐈 

≡ 𝐒𝐒(𝐊𝐊(𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)))𝐈𝐈 

 

Because of the problem discussed above, it would be desirable to have a computer 

program in which a user has the power to define the definition/rules of 

abstraction/reduction, and the program would then generate examples. It takes a lot of 

time to generate examples by hand. If a computer program allowed the user to specify the 

abstraction and reduction by appropriate axiom schemes and rules, the program could 

then generate examples based on those rules. This would be useful to researchers who 

could then work on those examples and try to complete a solution to the problem of 

finding a reduction for CL equivalent to λβ-reduction. The next chapter discusses the 

program produced and the problems faced while trying to develop that program. 
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Chapter 4 

SML/NJ and the Program 

 

 ML is a language that has some extremely interesting features. Its designers 

incorporated many modern programming-language ideas, yet the language is surprisingly 

easy to learn and use. ML is primarily a functional language, meaning that the basic 

mode of computation is the definition and application of functions. Functions can be 

defined by the user as in conventional languages, by writing code for the functions. But it 

is also possible in ML to treat functions as values and compute new functions from them 

with operators like function compositions. ML is a strongly typed language, meaning that 

all the values and variables have a type that can be determined at compile time (i.e., by 

examining the program but not running it). A value of one type cannot be given to a 

variable of another type. For example, the integer value 4 cannot be the value of a real-

valued variable. 

 CL terms are defined through an inductive definition and functions are defined 

recursively. CL uses inductive and recursive definitions extensively (this is discussed in 

appendix A). This is the reason I chose ML for the program. I used SML/NJ (Standard 

ML/New Jersey) for MAC and SML/NJ for Windows for this program. 
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New method for expressing strong reduction 

 The way strong reduction was defined made it difficult to write an 

implementation program. While performing strong reduction, one does not only perform 

the reduction operation but also abstractions, so as one progresses, a number of 

abstractions and reductions are performed. The way these equations were written earlier 

didn’t make it very clear as to when exactly a reduction operation was performed.  Let us 

take the example that we had in chapter 3 for strong reduction, SK  KI. Let us reduce 

this using both the old and the new method, 

Old method: 

𝐒𝐒𝐒𝐒 

[𝑥𝑥]𝐒𝐒𝐒𝐒𝑥𝑥 

[𝑥𝑥][𝑦𝑦]𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 

[𝑥𝑥][𝑦𝑦]𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) 

[𝑥𝑥][𝑦𝑦]𝑦𝑦 

[𝑥𝑥]𝐈𝐈 

𝐊𝐊𝐊𝐊 

  

Reduction 

Abstraction 

Reduction 
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New method: 

𝐒𝐒𝐒𝐒 

[𝑥𝑥][[𝐒𝐒𝐒𝐒]]𝑥𝑥  

[𝑥𝑥](𝐒𝐒𝐒𝐒𝑥𝑥) 

[𝑥𝑥][𝑦𝑦][[𝐒𝐒𝐒𝐒𝑥𝑥]]𝑦𝑦  

[𝑥𝑥][𝑦𝑦][[𝐊𝐊]]𝑦𝑦 [[𝑥𝑥]]𝑦𝑦  

[𝑥𝑥][𝑦𝑦](𝐊𝐊𝑦𝑦)(𝑥𝑥𝑥𝑥) 

[𝑥𝑥][𝑦𝑦]𝑦𝑦 

[𝑥𝑥]𝐈𝐈 

𝐊𝐊𝐊𝐊 

In first example, there are two reduction operations, SKxy reduces to Ky(xy) and Ky(xy) 

reduces to y. But of these, only the second one is relevant. The reason the first is not 

relevant is, that when we do the expansion for y and get [x] [y] SKxy, we have two 

choices. We can either perform the reduction operation and get Ky(xy). Since 𝐒𝐒𝑥𝑥𝑥𝑥𝑥𝑥 ⊳

𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦), hence 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 ⊳ 𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥); where 𝑥𝑥 = 𝐊𝐊, 𝑦𝑦 = 𝑥𝑥 and 𝑧𝑧 = 𝑦𝑦. Alternatively we could 

perform the abstraction operation and get SKx again. By the application of clause (c) as 

discussed in Chapter 2, Definition 2.7, [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈. Hence, [𝑥𝑥, 𝑦𝑦]. (𝐒𝐒𝐒𝐒𝑥𝑥)𝑦𝑦 ≡ 𝐒𝐒𝐒𝐒𝑥𝑥; where 

𝑥𝑥 = 𝑦𝑦 and 𝑈𝑈 = 𝐒𝐒𝐒𝐒𝑥𝑥. While this is not a problem when doing it on paper, when one 

attempts to make a computer program, this would cause the program to go into an infinite 

Reduction 
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loop. Curry’s linearization of strong reduction could be helpful here [5, Page 225]. Here, 

a type IIb step, which says 𝐒𝐒𝑈𝑈𝑈𝑈 ⟹ 𝜆𝜆𝜆𝜆. 𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉), could replace the first contraction to 

obtain [𝑥𝑥][𝑦𝑦]𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥). This would identify the second contraction as the crucial one and 

would prevent the evaluation before it. This idea was captured by Dr. Robin Cockett who 

developed a semantic translation based on it. The semantic translation developed by him 

is as follows: 

Axiom schemes: 

𝑀𝑀 ⇒ [𝑥𝑥][[𝑀𝑀]]𝑥𝑥 , 

[[𝐒𝐒𝑀𝑀𝑀𝑀]]𝑥𝑥 ⇒ [[𝑀𝑀]]𝑥𝑥 [[𝑁𝑁]]𝑥𝑥 , 

[[𝐒𝐒𝑁𝑁]]𝑥𝑥 ⟹ 𝐒𝐒𝑁𝑁𝑁𝑁, 

[[𝐊𝐊𝑁𝑁]]𝑥𝑥 ⇒ 𝑁𝑁, 

[[𝐒𝐒]]𝑥𝑥 ⇒ 𝐒𝐒𝑥𝑥, 

[[𝐊𝐊]]𝑥𝑥 ⇒ 𝐊𝐊𝑥𝑥, 

[[𝑈𝑈]]𝑥𝑥 ⇒ 𝑈𝑈𝑈𝑈. 

Contraction steps: 

𝐒𝐒𝑥𝑥𝑥𝑥𝑥𝑥 ⊳ 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦), 

𝐊𝐊𝑥𝑥𝑥𝑥 ⊳ 𝑥𝑥, 

𝐈𝐈𝑥𝑥 ⊳ 𝑥𝑥, 

𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 ⊳ 𝑥𝑥, 
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𝐒𝐒(𝐊𝐊𝑥𝑥)(𝐊𝐊𝑦𝑦) ⊳ 𝐊𝐊(𝑥𝑥𝑥𝑥). 

 Hence, in the second method, when we get [𝑥𝑥][𝑦𝑦][[𝐒𝐒𝐒𝐒𝑥𝑥]]𝑦𝑦 , we can tell the 

program to only perform a reduction operation and thus avoid infinitely looping. Also, 

the abstraction is not evaluated until either one of the contraction steps has occurred or no 

combinators are left to perform further contractions.  

 This new method is yet to be published. 

Let us take a look at another example. 

S(KI)  I 

Old method: 

𝐒𝐒(𝐊𝐊𝐊𝐊) 

[𝑥𝑥]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 

[𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 

[𝑥𝑥][𝑦𝑦]𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) 

[𝑥𝑥][𝑦𝑦]𝐈𝐈(𝑥𝑥𝑥𝑥) 

[𝑥𝑥][𝑦𝑦]𝑥𝑥𝑥𝑥 

[𝑥𝑥]𝑥𝑥 

𝐈𝐈 

 

Abstraction 

Reduction 

Reduction 
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New method: 

𝐒𝐒(𝐊𝐊𝐊𝐊) 

[𝑥𝑥][[𝐒𝐒(𝐊𝐊𝐊𝐊)]]𝑥𝑥  

[𝑥𝑥]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 

[𝑥𝑥][𝑦𝑦][[𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥]]𝑦𝑦  

[𝑥𝑥][𝑦𝑦][[𝐊𝐊𝐊𝐊]]𝑦𝑦 [[𝑥𝑥]]𝑦𝑦  

[𝑥𝑥][𝑦𝑦]𝐈𝐈(𝑥𝑥𝑥𝑥) 

[𝑥𝑥][𝑦𝑦]𝑥𝑥𝑥𝑥 

[𝑥𝑥]𝑥𝑥 

𝐈𝐈 

As we can see in the above example, once we get to [𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥, we have two 

options; either to perform the reduction operation and obtain [𝑥𝑥][𝑦𝑦]𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥), 

([𝑥𝑥, 𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳ [𝑥𝑥, 𝑦𝑦]𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) since 𝐒𝐒𝑥𝑥𝑥𝑥𝑥𝑥 ⊳ 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦)) or to perform the abstraction 

operation and obtain [𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 back again (by the application of clause (c) which 

states that [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈) and enter an infinite loop. But in the new method, the computer 

program would clearly know that it needs to perform a reduction operation at this stage. 

Yet again, when we have [𝑥𝑥][𝑦𝑦]𝐈𝐈(𝑥𝑥𝑥𝑥), we can either perform a reduction operation and 

get [𝑥𝑥][𝑦𝑦]𝑥𝑥𝑥𝑥 or perform an abstraction operation and obtain [𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊) again and enter 

Reduction 



60 
 

an infinite loop. But with the new translation method, the only operation that we can 

perform at this point is reduction. 

 

The program 

Before I start the description of the program and the difficulties that I faced in 

generating it, I thank Dr. Robin Cockett, his post-doctorate student Brian Redmond, and 

his graduate student Sean Nichols. Without their help, this program could not have been 

written. 

I start the program with defining datatypes [29] where variables, constants, I, K, S 

and application of a combinatory term to another combinatory term are defined. As 

discussed in Chapter 2, I, K and S are the combinators. The application of a combinatory 

term to another combinatory term is a recursive step. Dr. Robin Cockett then helped me 

in coding combinatory algebra reducer which defines all the basic reductions. There is 

also a pretty printer which uses the App, I, K and S defined above to print the result of 

reduction. User can type in examples and test the output by calling them. The Lprint2 

function prints the result of the strong reduction operation. Without this function, the 

result looks as follows; 

- reducestrong (20, App (App (S, App (K, Var "x")), App (K, 

Var "y"))); 

val it = (0,App (K,App (#,#))) : int * CombTerm 

but upon application of this function, the result is: 
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- Lprint2 (reducestrong (20, App (App (S, App (K, Var 

"x")), App (K, Var "y")))); 

val it = "0: K(xy)" : string 

  

The next step was to define some basic set operations: removing an element from 

a set, testing membership in a set, forming the union of two sets, and forming the 

intersection of two sets. These operations were then used in defining the set of free 

variables. Some of the set operations are not used but they are there should a user need to 

write code where he needs these set operations.  

Next, a function named Largest is defined. This function finds the largest 

element in a given list. Then, a new function named freshvars was defined. Here, we 

use the getOpt function [28]. The way getOpt works is that it takes an option `a and 

returns some of `a. If there is nothing to return, it returns none. 

Examples: 

1. option int 

NONE 

SOME 5 

SOME 17 

2. option string 

NONE 

SOME “xyz” 
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SOME “abc” 

In order to perform strong reduction, we need to add variables at the end on the 

expression. But it is quite possible that the expression that we have already contains a 

variable. So we first have to scan the entire expression and find all the free variables in it.  

In the program, we have used a naming scheme as “_1”, “_2” … etc. So we discard those 

variables that don’t fit the pattern “_n”. Now of the remaining variables, we remove the 

“_” so that “_n” will be “n” and then turn it into a number. In order to do this, we use 

Int.fromString. This changes the string to option int. We then use getOpt, with 

default = 0, to get int from this. Now, we find the largest number, add 1 to it, turn it back 

into a string and prepend “_”. 

Let us consider an example to understand what exactly is happening here. Suppose we 

have an expression SKx. So if we want to perform a strong reduction on this, we would 

add y to the end and a [y] to the front of it and then perform the operation. What this 

program would do is it would scan the given expression and find all the free variables. x 

is free in SKx. So the next thing that it would do is discard those that don’t fit the pattern 

“_n”, in this case S and K. So now, we are left with one element which is x or “_1”. So it 

would then remove the “_” and take 1. It will then add 1 to it to get 2, turn it back to 

string and prepend “_” to it to get “_2”. This means that it would add y to the end. 

 Next, free variables and some translations from combinatory logic to lambda 

calculus and vice versa were defined. In order to do this, new datatypes and free variables 

had to be defined again. The next major thing to define was λ and CL abstraction and λ 
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and CL application to a term. Here, all the abstraction rules discussed in chapter 2 were 

defined. 

Next, we proceeded with defining weak abstraction. Here, clause (c) from the 

definition (code) of trans2b_abst had to be removed. As discussed in chapter 3, 

weak abstraction is similar to abstraction in CL but with clause (c) omitted. Then, the 

definition of a functional term was coded in. A CL-term with one of the six forms SXY 

(for some X, Y), SX, KX, S, K, I, is called functional or fnl [12, Definition 9.6]. Also, 

beta abstraction was defined which is very similar to CL abstraction defined earlier. We 

then created another function trans2beta_abst_nf in which we exclude the 

functional check. This is because one might need to attach terms which at certain times 

might not be functional. 

There is a counter attached to the front of every reduction which tells the program 

how many times it should perform the reduction operation. When the counter reaches 0, 

the program stops the reduction and outputs the result. 

 Now a user can type in the expression and call the reducestrong function to 

perform the strong reduction. Here are a few examples with their outputs: 

If the expression is Kx  Kx, then it can be executed in one of the following three ways: 

1. val Strg_ex_1 = App (K,Var "x"); 

Output; 

val Strg_ex_1 = App (K,Var "x") : CombTerm 
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2. reducestrong (20, App(K,Var "x")); 

Output; 

val it = (0,App (K,Var "x")) : int * CombTerm 

3. Lprint2 (reducestrong (20, App (K, Var "x"))); 

Output; 

val it = "0: Kx" : string 

Similarly, for SK  KI; 

1. val Strg_ex_2 = App (S, K); 

Output; 

val Strg_ex_2 = App (S,K) : CombTerm 

2. reducestrong (15, App (S, K)); 

Output; 

val it = (0,App (K,I)) : int * CombTerm 

3. Lprint2 (reducestrong (15, App (S, K))); 

Output; 

val it = "0: KI" : string 

For S(Kx)(Ky)  K(xy); 
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1. val Strg_ex_3 = App (App (S, App (K, Var "x")), App 

(K, Var "y")); 

Output; 

val Strg_ex_3 = App (App (S,App #),App (K,Var #)) : 

CombTerm 

2. reducestrong (25, App (App (S, App (K, Var "x")), App 

(K, Var "y"))); 

Output; 

val it = (0,App (K,App (#,#))) : int * CombTerm 

3. Lprint2 (reducestrong (25, App (App (S, App (K, Var 

"x")), App (K, Var "y")))); 

Output; 

val it = "0: K(xy)" : string 

For S(KI)  I; 

1. val Strg_ex_4 = App (S, App (K, I)); 

Output; 

val Strg_ex_4 = App (S,App (K,I)) : CombTerm 

2. reducestrong (20, App (S, App (K, I))); 
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Output; 

val it = (0,I) : int * CombTerm 

3. Lprint2 (reducestrong (20, App (S, App (K, I)))); 

Output; 

val it = "0: I" : string 

For S(KS)(S(KK))  K; 

1. val Strg_ex_5 = App (App (S, App (K, S)), App (S, App 

(K, K))); 

Output; 

val Strg_ex_5 = App (App (S,App #),App (S,App #)) : 

CombTerm 

2. reducestrong (20, App (App (S, App (K, S)), App (S, 

App (K, K)))); 

Output; 

val it = (0,K) : int * CombTerm 

3. Lprint2 (reducestrong (20, App (App (S, App (K, S)), 

App (S, App (K, K))))); 

Output; 
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val it = "0: K" : string 

For S(S(KS)(S(KK)K))(K(SKK))  K; 

1. val Strg_ex_6 = App (App (S, App (App (S, App (K, S)), 

App (App (S, App(K, K)), K))), App (K, App(App (S, K), 

K))); 

Output; 

val Strg_ex_6 = App (App (S,App #),App (K,App #)) : 

CombTerm 

2. reducestrong (20, App (App (S, App (App (S, App (K, 

S)), App (App (S, App(K, K)), K))), App (K, App(App (S, K), 

K)))); 

Output; 

val it = (0,K) : int * CombTerm 

3. Lprint2 (reducestrong (20, App (App (S, App (App (S, 

App (K, S)), App (App (S, App(K, K)), K))), App (K, App(App 

(S, K), K))))); 

Output; 

val it = "0: K" : string  
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Appendix A 

Short tutorial for SML/NJ 

 

Standard ML is a safe, modular, strict, functional, polymorphic programming 

language with compile-time type checking and type inference, garbage collection, 

exception handling, immutable data types and updatable references, abstract data types, 

and parametric modules. It has efficient implementations and a formal definition with a 

proof of soundness [28]. 

To run SML/NJ in interactive mode [24, Chapter 1], in response to the command prompt 

type 

 sml 

SML/NJ will respond with: 

 Standard ML of New Jersey… 

 - 

The dash in the second line is ML’s prompt. The prompt invites us to type an expression, 

and ML will respond with the value of the expression. 

 When we are in interactive mode, the simplest thing we can do is type an 

expression in response to the ML prompt (-). ML will respond with value and its type. 

Example: Here is an example of an expression that we may type and the ML response. 
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 1+2*3; 

 val it = 7 : int 

Here, we have typed the expression 1 + 2 * 3, and ML responds that the value of variable 

it is 7, and that the type of this value is integer. The variable ‘it’ plays a special role in 

ML. It receives the value of any expression that we type. Two useful points to observe 

are; 

• An expression must be followed by a semicolon to tell the ML system that the 

instruction is finished. If ML expects more input when a <return> is typed, it will 

respond with the prompt = instead of -. The = sign is a warning that we have not 

finished our input expression. 

• The response of ML to an expression is: 

1. The word val standing for “value,” 

2. The variable name it, which stands for the previous expression, 

3. An equal sign, 

4. The value of expression (7 in this example), 

5. A colon, which in ML is the symbol that associates a value with its type, 

and 

6. An expression that denotes the type of the value. In our example, the value 

of the expression is an integer, so the type int follows the colon. 

The keyword fun introduces function definitions. The simplest form of function 

declaration is 

fun<identifier>(<parameter list>) = <expression>; 
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That is, the keyword fun is followed by the name of the function, a list of the parameters 

for that function, an equal-sign, and an expression involving the parameters. This 

expression becomes the value of the function when we give the function arguments to 

correspond to its parameters. 

Example: 

 fun square(x:real) = x*x; 

 val square = fn : real  real 

The function square has one parameter, x. By following parameter x with a colon and the 

type real, we declare to ML that the parameter of function square is of type real. ML then 

infers that the expression x*x represents real multiplication, and therefore the value 

returned by square is of type real. 

 It is necessary to indicate that x is real somewhere. Otherwise, ML will use a 

colon and type integer, for x, resulting in a function that can square integers but not reals: 

 fun square(x) = x*x; 

 val square = fn : int  int 

As an example of the use of the square function, suppose we have defined the variable pi 

and radius to have values 3.14159 and 4.0, as in previous example. 

 pi*square(radius); 

 val it = 50.26544 

Following is the program that produces the largest of three real numbers. 
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 fun max3(a:real, b, c) = (* maximum of three reals *) 

  if a>b then 

  if a>c then a 

  else c 

  else 

   if b>c then b 

   else c; 

 val max3 = fn : real * real * real  real 

 val t = (1.0, 2.0, 3.0); 

 max3(t);  

ML produces the value 3.0. 

Here is an example which uses the let function which is used in the program: 

 fun factorial n = 

       let 

           fun tail_fact p 0 = p 

             | tail_fact p m = tail_fact (p * m) (m - 1) 

       in 

           tail_fact 1 n 

       end 
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 All these programs are of type-and-execute fashion i.e. we type the program on 

the ML window and ML executes them there itself. But there is a way by which we can 

load and execute ML programs previously saved onto our hard drive. To do this, we use 

the ‘use’ command. Its syntax is –use”<program name>.sml”; [28]. We can type ML 

programs in Notepad (Windows) or TextEdit (Macintosh), but while saving, we have to 

save them with .sml extension. 

 

Recursive Functions 

 It is possible for ML functions to be recursive (as mentioned at the start of this 

chapter), that is defined in terms of themselves, either directly or indirectly [24, Chapter 

1]. Normally a recursive function consists of  

1. A basis, where for sufficiently small arguments we compute the result without 

making any recursive calls, and 

2. An inductive step, where for arguments not handled by the basis, we call the 

function recursively, one or more times, with smaller arguments. 

Example 

 Let us write a function reverse(L) that produces the reverse of the list L3

BASIS: The basis is the empty list; the reverse of the empty list is the empty list. 

. For 

example, reverse([1,2,3]) produces the list [3,2,1]. 
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INDUCTION: For the inductive step, suppose L has at least one element. Let the first or 

head element of L be h, and let the tail or remaining elements of L be the list T. Then we 

can construct the reverse of list L by reversing T and following it by the element h. 

 For instance, if L is [1,2,3], then h = 1, T is [2,3], the reverse of T is [3,2], and the 

reverse of T concatenated with the list containing only h is [3,2]@[1], or [3,2,1]. 

 fun reverse(L) = 

  if L = nil then nil 

  else reverse(tl(L)) @ [hd(L)]; 

 val reverse = fn : ‘a list  ‘a list 

We see the ML definition of reverse that follows the basis and inductive step. 

 Now, let us revisit the definition of term that we presented in Chapter 2. The set 

of expressions called CL-terms is defined inductively as follows: 

(c) All variables and atomic constants, including I, K, S, are CL-terms. 

(d) If X and Y are CL-terms, then so is (XY). 

Since term is a recursive definition, it should easily be coded in ML, i.e. it should 

be fairly easy to write an ML program of it. 
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Exiting the interactive system 

 Typing control-D (EOF) at top level will cause an exit to the shell (or the parent 

process from which sml was run). One can also terminate by calling 

  

OS.Process.exit(OS.Process.success). 
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Appendix B 

The program (code) 

datatype CombTerm = Var of string 

                  | Const of string 

                  | I | S | K 

                  | App of CombTerm * CombTerm; 

 

fun isVar (Var _) = true 

  | isVar _ = false; 

 

fun isConst (Const _) = true 

  | isConst _ = false; 

 

 

(* Here is a little combinatory algebra reducer *) 

fun reduce (n,t) 

   = case (n,t) of 

        (0,t) => (0,t) 

      | (n,App (App(K,t1),_)) => reduce (n-1,t1) 

      | (n,App (App (App (S,t1),t2),t3)) => 

                       reduce (n-
1,App(App(t1,t3),App(t2,t3))) 

      | (n,App (I,t1)) => reduce (n-1,t1) 

      | (n,App(t1,t2)) => (case (reduce (n,t1)) of 
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                           (m,t1') => (case (reduce (m,t2)) 
of 

                               (m',t2') => 

                                   if n > m' then reduce 
(m',App(t1',t2')) 

                                   else (m',App(t1',t2')))) 

      | (n,S) => (n,S) 

      | (n,K) => (n,K) 

      | (n,I) => (n,I) 

      | (n,Var s)   => (n,Var s) 

      | (n,Const s) => (n,Const s); 

 

(* A pretty printer *) 

fun Lprint I = "I" 

  | Lprint S = "S" 

  | Lprint K = "K" 

  | Lprint (Const s) = s 

  | Lprint (Var s) = s 

  | Lprint (App (t1, App(t2,t3))) = (Lprint t1)^"("^(Lprint 
(App(t2,t3)))^")" 

  | Lprint (App (t1,t2)) = (Lprint t1)^(Lprint t2); 

 

fun Lprint2 (n, t) = (Int.toString n) ^ ": " ^ (Lprint t); 

 

(*   Examples *) 
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reduce (4,App(App(App(S,K),K),Var "x")); 

reduce (4,App(Const "a",App(App(K,Var "x"),S))); 

 

val Omega = App(App(App(S,I),I),App(App(S,I),I)); 

 

Lprint ((fn (x,y) => y) (reduce (3,Omega))); 

 

val t1 = App(App(App(S,App(K,Var "x")),App(K,Var 
"y")),Omega); 

 

fun Preduce n t = Lprint ((fn (x,y) => y) (reduce(n, t))); 

 

 

(**********************************************************
******* 

 * 

 *   Some basic utilities for handling sets: 

 * 

 * Removing an element from a set (represented as a list) 

 
***********************************************************
******) 

 

(* Removing an element from a set (represented as a list) 
*) 

fun remove v [] = [] 

  | remove v (y :: ys) = 
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                 if y = v then remove v ys 

                 else y ::(remove v ys); 

 

(* testing membership in a set *) 

fun member x [] = false 

  | member x (y::ys) = if x=y then true 

                       else (member x ys); 

 

(* Forming the union of two sets *) 

fun union [] ys = ys 

  | union xs [] = xs 

  | union (x::xs) ys = 

          if (member x ys) then (union xs ys) 

          else x::(union xs ys); 

 

(* Forming the intersection of two sets *) 

 

fun intersection [] ys = [] 

  | intersection (x::xs) ys = 

             if (member x ys) then x::(intersection xs ys) 

             else (intersection xs ys); 

 

(* Filter elements out of a list *) 

 

fun filter f [] = [] 
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  | filter f (x::xs) = if (f x) then x::(filter f xs) 

                                else filter f xs; 

 

(**********************************************************
***** 

 * 

 *  To calculate the free variables of a term 

 * 

 
***********************************************************
****) 

 

fun freevars (Var x) = [x] 

  | freevars (App (t1,t2)) = union (freevars t1) (freevars 
t2) 

  | freevars _ = []; 

 

fun largest [] = 0 

  | largest (x::xs) = let val y = largest xs 

    in 

        if x > y then x else y 

    end; 

 

fun freshvar t = "_" ^ Int.toString (largest (map 

                     (fn s => 
getOpt(Int.fromString(String.extract (s, 1, NONE)), 0)) 

                     (filter (fn s => String.extract (s, 0, 
SOME 1) = "_") (freevars t))) + 1); 
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(**********************************************************
*********** 

 
***********************************************************
********** 

 *                  TRANSLATIONS                                     
* 

 
***********************************************************
********** 

 
***********************************************************
**********) 

 

(* First we need a corresponding datatype for lambda terms 
*) 

 

datatype LambdaTerm = LVar of string 

                    | LAbst of (string * LambdaTerm) 

                    | LApp of (LambdaTerm * LambdaTerm) 

                    | LConst of string; 

 

fun freeLvars (LVar x) = [x] 

  | freeLvars (LAbst(x,t)) = remove x (freeLvars t) 

  | freeLvars (LApp(t1,t2)) = union (freeLvars t1) 
(freeLvars t2) 

  | freeLvars _ = []; 
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(* the easy translation first from combinatory logic to the 
lambda 

calculus: *) 

 

fun trans_C2L (Var x) = LVar x 

  | trans_C2L (Const c) = LConst c 

  | trans_C2L I = LAbst ("x",LVar "x") 

  | trans_C2L K = LAbst ("x",LAbst ("y",LVar "x")) 

  | trans_C2L S = LAbst ("x",LAbst ("y",LAbst ("z" 

              ,LApp (LApp (LVar "x",LVar "z"),LApp (LVar 
"y",LVar "z"))))) 

  |  trans_C2L (App(t1,t2)) = LApp(trans_C2L t1,trans_C2L 
t2); 

 

(* Now a little more challenging: the translation from 
lambda 

 * calculus to combinatory logic -- recall there is more 
than one 

 * possible translation!!  Here is the simplest tarnslation 
... *) 

 

(* translating abstraction ... *) 

fun trans_abst x (Var y) = if x=y then I 

                           else App(K,Var y) 

  | trans_abst x (App(c1,c2)) = App(App(S,trans_abst x 
c1),trans_abst x c2) 

  | trans_abst x v = App(K,v) 
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fun trans_L2C (LVar x) = (Var x) 

  | trans_L2C (LConst c) = (Const c) 

  | trans_L2C (LAbst(x,t)) = trans_abst x (trans_L2C t) 

  | trans_L2C (LApp(t1,t2)) = App(trans_L2C t1,trans_L2C 
t2); 

 

(* Here is the other translation which tests to see whether 
variables 

 * are free .. *) 

 

fun trans2b_abst x (Var y) = if x=y then I 

                              else App(K,Var y) 

  | trans2b_abst x (App(c1,c2)) = App(App(S,trans2_abst x 
c1),trans2_abst x c2) 

  | trans2b_abst x v = App(K,v) 

and trans2a_abst x (App(u,Var y)) 

    = if x=y andalso not (member x (freevars u)) then u 

      else trans2b_abst x (App(u,Var y)) 

  | trans2a_abst x n =  trans2b_abst x n 

and trans2_abst x n = if not (member x (freevars n)) then  
App(K,n) 

                      else trans2a_abst x n; 

 

fun trans2_L2C (LVar x) = (Var x) 

  | trans2_L2C (LConst c) = (Const c) 

  | trans2_L2C (LAbst(x,t)) =  trans2_abst x (trans2_L2C t) 
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  | trans2_L2C (LApp(t1,t2)) = App(trans2_L2C t1,trans2_L2C 
t2); 

 

 

 

(* examples *) 

 

val Puff = LAbst("x",LApp(LVar "x",LVar "x")); 

val LOmega = LApp(Puff,Puff); 

val fPuff = LAbst("x",LApp(LApp(LVar "f",LVar "x"),LVar 
"x")); 

val Y = LAbst("f",LApp(fPuff,fPuff)); 

 

fun pL2C x = print((Lprint (trans_L2C x))^"\n"); 

fun p2L2C x = print((Lprint (trans2_L2C x))^"\n"); 

 

 

 

(****Weak Abstraction****) 

 

fun trans2w_abst x (Var y) = if x=y then I 

                              else App(K,Var y) 

  | trans2w_abst x (App(c1,c2)) = App(App(S,trans2_abst x 
c1),trans2_abst x c2) 

  | trans2w_abst x v = App(K,v) 

and trans2a_abst x (App(u,Var y)) 
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    = trans2w_abst x (App(u,Var y)) 

  | trans2a_abst x n =  trans2b_abst x n 

and trans2_abst x n = if not (member x (freevars n)) then  
App(K,n) 

                      else trans2w_abst x n; 

 

 

 

(*******Functional Term*******) 

 

fun fnl (App(App(S, x), y)) = true 

            | fnl (App(S, x)) = true 

            | fnl (App(K, x)) = true 

            | fnl S = true 

            | fnl K = true 

            | fnl I = true 

            | fnl x = false; 

 

 

 

(******Beta Abstraction*****) 

 

fun trans2beta_abst x (Var y) = if x=y then I 

                              else App(K,Var y) 

  | trans2beta_abst x (App(c1,c2)) = App(App(S,trans2_abst 
x c1),trans2_abst 
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x c2) 

  | trans2beta_abst x v = App(K,v) 

and trans2a_abst x (App(u,Var y)) 

    = if x=y andalso not (member x (freevars u)) andalso 
fnl u then u 

      else trans2beta_abst x (App(u,Var y)) 

  | trans2a_abst x n =  trans2beta_abst x n 

and trans2_abst x n = if not (member x (freevars n)) then  
App(K,n) 

                      else trans2a_abst x n; 

 

fun trans2_L2C (LVar x) = (Var x) 

  | trans2_L2C (LConst c) = (Const c) 

  | trans2_L2C (LAbst(x,t)) =  trans2_abst x (trans2_L2C t) 

  | trans2_L2C (LApp(t1,t2)) = App(trans2_L2C t1,trans2_L2C 
t2); 

 

 

(* Same as above, but without the "is functional" check in 
Clause C ("_nf" stands for non functional) *) 

 

fun trans2beta_abst_nf x (Var y) = if x=y then I 

                              else App(K,Var y) 

  | trans2beta_abst_nf x (App(c1,c2)) = 
App(App(S,trans2_abst_nf x c1),trans2_abst_nf x c2) 

  | trans2beta_abst_nf x v = App(K,v) 

and trans2a_abst_nf x (App(u,Var y)) 
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    = if x=y andalso not (member x (freevars u)) then u 

      else trans2beta_abst_nf x (App(u,Var y)) 

  | trans2a_abst_nf x n =  trans2beta_abst_nf x n 

and trans2_abst_nf x n = if not (member x (freevars n)) 
then  App(K,n) 

                      else trans2a_abst_nf x n; 

 

 

(*******Strong Reduction********) 

 

fun reducestrong (0,t) = (0,t) 

  | reducestrong (n,App (App(K,t1),_)) = reducestrong (n-
1,t1) 

  | reducestrong (n,App (App (App (S,t1),t2),t3)) = 

                       reducestrong (n-
1,App(App(t1,t3),App(t2,t3))) 

  | reducestrong (n,App (I,t1)) = reducestrong (n-1,t1) 

  | reducestrong (n,App(t1,t2)) = (case (attempt_noxi 
(n,t1)) of 

                           (m,t1') => (case (attempt_noxi 
(m,t2)) of 

                               (m',t2') => 

                                   if n > m' then 
reducestrong (m',App(t1',t2')) 

                                             else xirule 
(n, App(t1,t2))))                   (* (m',App(t1',t2')))) 
*) 

  | reducestrong (n,S) = (n,S) 
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  | reducestrong (n,K) = (n,K) 

  | reducestrong (n,I) = (n,I) 

  | reducestrong (n,Var s)   = (n,Var s) 

  | reducestrong (n,Const s) = (n,Const s) 

and attempt_noxi (0,t) = (0,t) 

  | attempt_noxi (n,App (App(K,t1),_)) = attempt_noxi (n-
1,t1) 

  | attempt_noxi (n,App (App (App (S,t1),t2),t3)) = 

                       attempt_noxi (n-
1,App(App(t1,t3),App(t2,t3))) 

  | attempt_noxi (n,App (I,t1)) = attempt_noxi (n-1,t1) 

  | attempt_noxi (n,App(t1,t2)) = (case (attempt_noxi 
(n,t1)) of 

                           (m,t1') => (case (attempt_noxi 
(m,t2)) of 

                               (m',t2') => 

                                   if n > m' then 
attempt_noxi (m',App(t1',t2')) 

                                             else 
(m',App(t1',t2')))) 

  | attempt_noxi (n,S) = (n,S) 

  | attempt_noxi (n,K) = (n,K) 

  | attempt_noxi (n,I) = (n,I) 

  | attempt_noxi (n,Var s)   = (n,Var s) 

  | attempt_noxi (n,Const s) = (n,Const s) 

and xirule (n, t) 

   = let val fv = freshvar t 

         val y = reducexi (n-1, App (t, Var fv)) 
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     in 

         case y of (k, t2) => if (k = ~1) 

                       then (n,t) 

(*                       else (k,t2) *) 

                       else let val z = reducestrong (k, 
t2) 

                            in 

                                case z of (m, t3) => (0, 
trans2_abst_nf fv t3) 

                            end  

     end 

and reducexi (0,t) = (~1,t) 

  | reducexi (n,App (App(K,t1),_)) = (n,t1) 

  | reducexi (n,App (App (App (S,t1),t2),t3)) = 

                       (n,App(App(t1,t3),App(t2,t3))) 

  | reducexi (n,App (I,t1)) = (n,t1) 

  | reducexi (n,App(t1,t2)) = xirule (n, App(t1,t2)); 

 

(* 

 * Note in the last case above, the Xi (Xi prime actually) 
rule is: 

 *    if Ux >- Y then U >- [x].Y (for x not in FV(U)) 

 *  we get to pick our var. x, so we just pick it such 

 *   that it is not free in U, therefore we have only 

 *   to check the other condition (that Ux >- Y) 

 *) 
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(* Some examples to use with Strong Reduction *) 

 

val Strg_ex_1 = App (K,Var "x"); 

    (* Kx >- Kx *) 

val Strg_ex_2 = App (S, K); 

    (* SK >- KI *) 

val Strg_ex_3 = App (App (S, App (K, Var "x")), App (K, Var 
"y")); 

    (* S(Kx)(Ky) >- K(xy) *) 

val Strg_ex_4 = App (S, App (K, I)); 

    (* S(KI) >- I *) 

val Strg_ex_5 = App (App (S, App (K, S)), App (S, App (K, 
K))); 

    (* S(KS)(S(KK)) >- K *) 

val Strg_ex_6 = App (App (S, App (App (S, App (K, S)), App 
(App (S, App(K, K)), K))), App (K, App(App (S, K), K))); 

    (* S(S(KS)(S(KK)K))(K(SKK)) >- K *) 
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The Output 

Standard ML of New Jersey, Version 110.0.7, September 28, 
2000 [CM&CMB] 

- use "D:\\prog-25mar.sml"; 

[opening D:\prog-25mar.sml] 

datatype CombTerm 

  = App of CombTerm * CombTerm | Const of string | I | K | 
S | Var of string 

val isVar = fn : CombTerm -> bool 

val isConst = fn : CombTerm -> bool 

GC #0.0.0.0.1.15:   (0 ms) 

val reduce = fn : int * CombTerm -> int * CombTerm 

val Lprint = fn : CombTerm -> string 

val Lprint2 = fn : int * CombTerm -> string 

val it = (2,Var "x") : int * CombTerm 

val it = (3,App (Const "a",Var "x")) : int * CombTerm 

val Omega = App (App (App #,I),App (App #,I)) : CombTerm 

val it = "SII(SII)" : string 

val t1 = App (App (App #,App #),App (App #,App #)) : 
CombTerm 

val Preduce = fn : int -> CombTerm -> string 

GC #0.0.0.0.2.60:   (0 ms) 

val remove = fn : ''a -> ''a list -> ''a list 

val member = fn : ''a -> ''a list -> bool 

val union = fn : ''a list -> ''a list -> ''a list 

val intersection = fn : ''a list -> ''a list -> ''a list 
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val filter = fn : ('a -> bool) -> 'a list -> 'a list 

val freevars = fn : CombTerm -> string list 

val largest = fn : int list -> int 

val freshvar = fn : CombTerm -> string 

datatype LambdaTerm 

  = LAbst of string * LambdaTerm 

  | LApp of LambdaTerm * LambdaTerm 

  | LConst of string 

  | LVar of string 

val freeLvars = fn : LambdaTerm -> string list 

GC #0.0.0.0.3.129:   (0 ms) 

val trans_C2L = fn : CombTerm -> LambdaTerm 

val trans_abst = fn : string -> CombTerm -> CombTerm 

val trans_L2C = fn : LambdaTerm -> CombTerm 

val trans2b_abst = fn : string -> CombTerm -> CombTerm 

val trans2a_abst = fn : string -> CombTerm -> CombTerm 

val trans2_abst = fn : string -> CombTerm -> CombTerm 

val trans2_L2C = fn : LambdaTerm -> CombTerm 

val Puff = LAbst ("x",LApp (LVar #,LVar #)) : LambdaTerm 

val LOmega = LApp (LAbst ("x",LApp #),LAbst ("x",LApp #)) : 
LambdaTerm 

val fPuff = LAbst ("x",LApp (LApp #,LVar #)) : LambdaTerm 

val Y = LAbst ("f",LApp (LAbst #,LAbst #)) : LambdaTerm 

val pL2C = fn : LambdaTerm -> unit 

val p2L2C = fn : LambdaTerm -> unit 

GC #0.0.0.0.4.197:   (0 ms) 
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val trans2w_abst = fn : string -> CombTerm -> CombTerm 

val trans2a_abst = fn : string -> CombTerm -> CombTerm 

val trans2_abst = fn : string -> CombTerm -> CombTerm 

val fnl = fn : CombTerm -> bool 

val trans2beta_abst = fn : string -> CombTerm -> CombTerm 

val trans2a_abst = fn : string -> CombTerm -> CombTerm 

val trans2_abst = fn : string -> CombTerm -> CombTerm 

val trans2_L2C = fn : LambdaTerm -> CombTerm 

val trans2beta_abst_nf = fn : string -> CombTerm -> 
CombTerm 

val trans2a_abst_nf = fn : string -> CombTerm -> CombTerm 

val trans2_abst_nf = fn : string -> CombTerm -> CombTerm 

GC #0.0.0.0.5.275:   (0 ms) 

D:\prog-25mar.sml:260.1-307.53 Warning: match nonexhaustive 

          (0,t) => ... 

          (n,App (App (<pat>,<pat>),_)) => ... 

          (n,App (App (<pat>,<pat>),t3)) => ... 

          (n,App (I,t1)) => ... 

          (n,App (t1,t2)) => ... 

 

val reducestrong = fn : int * CombTerm -> int * CombTerm 

val attempt_noxi = fn : int * CombTerm -> int * CombTerm 

val xirule = fn : int * CombTerm -> int * CombTerm 

val reducexi = fn : int * CombTerm -> int * CombTerm 

val Strg_ex_1 = App (K,Var "x") : CombTerm 

val Strg_ex_2 = App (S,K) : CombTerm 
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val Strg_ex_3 = App (App (S,App #),App (K,Var #)) : 
CombTerm 

val Strg_ex_4 = App (S,App (K,I)) : CombTerm 

val Strg_ex_5 = App (App (S,App #),App (S,App #)) : 
CombTerm 

val Strg_ex_6 = App (App (S,App #),App (K,App #)) : 
CombTerm 

val it = () : unit 

- 
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