
A NEW PROGRAM FOR COMBINATORY REDUCTION AND ABSTRACTION

SUSHANT DESHPANDE

Master of Science, University of Lethbridge, 2009

A Thesis

Submitted to the School of Graduate Studies

of the University of Lethbridge

in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science

University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

© Sushant Deshpande, 2009

iii

Abstract

Even though lambda calculus (λ-calculus) and combinatory logic (CL) appear to

be equivalent, they are not. As yet we do not have a reduction in CL which corresponds to

β-reduction in λ-calculus. There are three proposals but they all have few problems one of

which is the lack of a complete characterization of CL-terms corresponding to λ-terms in

β-normal form. Finding such a characterization for any of the three proposals appears to

require a lot of examples which are tedious and time consuming to develop by hand. For

this reason, a computer program to do reductions and abstractions of CL-terms would be

useful. This thesis is about an attempt to write such a program. The program that we have

does not yet work for the three proposals but it works for βη-strong reduction. Coding this

program turned out to be much harder than anticipated. Dr. Robin Cockett developed a

semantic translation which helped in coding the program but his semantic translation

needs to be extended to all three proposals to obtain the program originally desired and

that needs a lot of research.

iv

Table of Contents

 Abstract page iii

1. Introduction 1

2. λ-calculus 3

Term-structure and substitution 7

β-reduction 11

β-equality 13

λβη-reduction in λ-calculus 14

βη-reduction 14

βη-normal form 14

λβη-equality in λ-calculus 15

λβ-formal theory of β-equality 15

λβ-formal theory of β-reduction 16

λβη-formal theory of βη-equality 17

λβη-formal theory of βη-reduction 18

3. Combinatory Logic 20

Formal theory of weak equality 27

Formal theory of weak reduction 28

4. Correspondence Between λ-calculus and Combinatory Logic 30

Weak Abstraction 41

Abstraction []𝛽𝛽 45

v

The 𝐻𝐻𝛽𝛽 mapping 46

The 𝐻𝐻𝑤𝑤 mapping 46

Curry’s restriction to clause (c) 47

Dr. Seldin’s Proposal (unpublished) 49

Mezghiche’s Proposal 51

5. SML/NJ and the Program 54

New method for expressing strong reduction 55

The program 60

6. References 68

7. Appendix A - Short tutorial for SML/NJ 71

Recursive Functions 75

Exiting the interactive system 77

8. Appendix B - The program (code) 78

The Output 93

1

Introduction

 This thesis is about the relationship between lambda calculus (λ-calculus) and

combinatory logic (CL). Both the systems have the same purpose: to describe the

fundamental properties of operators and combinations of operators [12, Page vi].

 The λ-calculus was invented in the 1930s by an American logician named Alonzo

Church, as a part of system of logic which included higher order functions. Higher-order

functions are functions which can be applied to functions. The language of λ-calculus is

important as a higher-order language both for logic and for programming [1, Page 10].

 The basic idea of CL was presented by two logicians: Moses Schönfinkel who

invented it in 1920 and Haskell Curry, who rediscovered it a few years later.

A lambda expression represents any function and defines the transformation that

the function performs to its arguments. A lambda expression can be used as both a term

and an argument. Here, functions are treated as first-class entities, i.e., they are passed as

arguments and returned as results. λ-calculus can be thought of as an idealized,

minimalistic programming language. This makes the model of functional programming

important. λ-calculus is discussed in Chapter 1.

CL is a notation introduced to eliminate the need for variables in mathematical

logic. It was developed to be a theory for the foundation of mathematics. Its goal was to

establish fundamental mathematical concepts on simpler principals. In computer science,

2

combinatory logic is used as a simplified model of computation [3, Page 23]. It is also

used in computability theory and proof theory. CL is discussed in Chapter 2.

As we discuss more about λ-calculus and CL, it will become clear that even

though λ-calculus and CL are closely related, they are subtly different. In practice, the

natural process of conversion and reduction in λ-calculus is different from that in CL.

We have combinatory β-equality and combinatory βη-equality which are

equivalent to λβ-conversion and λβη-conversion respectively [Chapter 2, Page 27]. This

equivalence of λ-calculus to CL is with respect to conversion but not reduction. Two

main reductions in λ-calculus are the λβ-reduction and the λβη-reduction. Curry’s strong

reduction in CL is equivalent to λβη-reduction in λ-calculus [12, Page 213], but as of

now, we do not have a complete equivalent in CL that corresponds to λβ-reduction in λ-

calculus. There are a few proposals but none of them has a complete characterization of

terms in normal form. This is discussed in detail in Chapter 3.

Researchers are working on solving the problem of λβ-reduction, but in order to

test their theories, they need to generate a lot of examples and to reduce them. This is

where a program would come in handy. The availability of a program would help them in

testing their theories. I have discussed how the program was created and what difficulties

we faced while writing it in chapter 4 while the actual code of the program is in appendix

B. There is also a short tutorial on SML/NJ in appendix A. The current program performs

strong reduction, i.e. Curry’s strong reduction. As yet, it does not work for the proposals

for a combinatory β-reduction.

3

Chapter 1

λ-calculus

1.1 Introduction:

What is usually called Lambda(𝜆𝜆)-calculus is a collection of several formal

systems, based on a notation invented by Alonzo Church in the 1930s [12, Chapter 1].

They are designed to describe the most basic way that operators or functions can be

combined to form other operators. In practice, each 𝜆𝜆-system has a slightly different

grammatical structure, depending on its intended use. Some have extra constant-symbols,

and most have built-in syntactic restrictions, for example type-restrictions.

Now let us consider the everyday mathematical expression ′𝑥𝑥 − 𝑦𝑦′. This can be

considered as defining either a function 𝑓𝑓 of 𝑥𝑥 or a function 𝑔𝑔 of 𝑦𝑦:

𝑓𝑓 ∶ 𝑥𝑥 ↦ 𝑥𝑥 − 𝑦𝑦, 𝑔𝑔 ∶ 𝑦𝑦 ↦ 𝑥𝑥 − 𝑦𝑦.

There is a need for a notation that gives 𝑓𝑓 and 𝑔𝑔 different names in some systematic way.

Church’s notation is a systematic way of constructing, for each expression

involving ′𝑥𝑥′, a notation for the corresponding function of ′𝑥𝑥′ (and similarly for ′𝑦𝑦′, etc.).

Church introduced ′𝜆𝜆′ as an auxiliary symbol and wrote:

𝑓𝑓 = 𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦 𝑔𝑔 = 𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦.

4

For example, consider the equations

𝑓𝑓(0) = 0 − 𝑦𝑦, 𝑓𝑓(1) = 1 − 𝑦𝑦.

In the 𝜆𝜆-notation these become

(𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦)(0) = 0 − 𝑦𝑦, (𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦)(1) = 1 − 𝑦𝑦.

The 𝜆𝜆-notation is principally intended for denoting higher-order functions, not just

functions of numbers. This notation is systematic, allowing for its incorporation into a

programming language.

 The 𝜆𝜆-notation can be extended to functions of more than one variable. For

example, the expression ′𝑥𝑥 − 𝑦𝑦′ determines two functions ℎ and 𝑘𝑘 of two variables

defined by

ℎ(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥 − 𝑦𝑦, 𝑘𝑘(𝑦𝑦, 𝑥𝑥) = 𝑥𝑥 − 𝑦𝑦.

These can be denoted by

ℎ = 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦, 𝑘𝑘 = 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦.

However, we can avoid the need of special notation for functions of several

variables by using functions whose values are not numbers but other functions. For

example, instead of the two-variable function ℎ above, consider the one-place function ℎ∗

defined by

ℎ∗ = 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑥𝑥 − 𝑦𝑦)

5

For each number a, we have

ℎ∗(𝑎𝑎) = 𝜆𝜆𝜆𝜆. 𝑎𝑎 − 𝑦𝑦

Hence for each pair of numbers a, b

�ℎ∗(𝑎𝑎)�(𝑏𝑏) = (𝜆𝜆𝜆𝜆. 𝑎𝑎 − 𝑦𝑦)(𝑏𝑏)

= 𝑎𝑎 − 𝑏𝑏

= ℎ(𝑎𝑎, 𝑏𝑏)

Thus ℎ∗ can be viewed as ‘representing’ ℎ. This is called ‘Currying’ [after H.B. Curry].

Here, following points are of significance;

(1) in λ-calculus (and in combinatory logic), it is usual to write ‘(fx)’ instead of ‘f(x)’

for the value of the function f at the value of x;

(2) for the rest of the thesis, 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥 will be an abbreviation for 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥).

1.2 Definition (𝝀𝝀-terms)

Assume that there is a given infinite sequence of expressions 𝑣𝑣0, 𝑣𝑣00, 𝑣𝑣000 , …. called

variables [12, Definition 1.1], and a finite, infinite or empty sequence of expressions

called atomic constants, different from the variables. When the sequence of atomic

constants is empty, the system will be called pure, otherwise applied. The set of

expressions called λ-terms is defined inductively as follows:

(a) All variables and atomic constants are 𝜆𝜆-terms (called atoms);

(b) If 𝑀𝑀 and 𝑁𝑁 are any 𝜆𝜆-terms, then (𝑀𝑀 𝑁𝑁) is a 𝜆𝜆-term (called an application);

6

(c) If 𝑀𝑀 is any 𝜆𝜆-term and 𝑥𝑥 is any variable, then (𝜆𝜆𝜆𝜆. 𝑀𝑀) is a 𝜆𝜆-term (called an

abstraction).

Examples of 𝜆𝜆-terms:

(a) (𝜆𝜆𝑣𝑣0. (𝑣𝑣0𝑣𝑣00)) is a 𝜆𝜆-term.

If 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are distinct variables, the following are 𝜆𝜆-terms:

(b) (𝜆𝜆𝜆𝜆. (𝑥𝑥𝑥𝑥))

(c) ((𝜆𝜆𝜆𝜆. 𝑦𝑦)(𝜆𝜆𝜆𝜆. (𝑥𝑥𝑥𝑥)))

(d) (𝑥𝑥(𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑥𝑥)))

(e) (𝜆𝜆𝜆𝜆. (𝑦𝑦𝑦𝑦))

In example (d), there are two occurrences of 𝜆𝜆𝜆𝜆 in one term. Example (e) shows a

term of form (𝜆𝜆𝜆𝜆. 𝑀𝑀) such that 𝑥𝑥 does not occur in 𝑀𝑀. This is called vacuous abstraction,

and such terms denote constant functions, i.e., functions whose output is same for all

inputs.

In λ-calculus, the parentheses are left associative, that is to say that the leftmost

term has the first set of parentheses.

Example:

Consider the term 𝑥𝑥𝑥𝑥(𝜆𝜆𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑤𝑤

This is really (((𝑥𝑥𝑥𝑥)(𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. (𝑦𝑦𝑦𝑦))))𝑤𝑤)

7

Term-structure and substitution

1.3 Definition

The length of a term 𝑀𝑀 (called 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀)) is the total number of occurrences of atoms

in 𝑀𝑀.

(a) 𝑙𝑙𝑙𝑙ℎ(𝑎𝑎) = 1 for atoms 𝑎𝑎;

(b) 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀 𝑁𝑁) = 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀) + 𝑙𝑙𝑙𝑙ℎ(𝑁𝑁);

(c) 𝑙𝑙𝑙𝑙ℎ(𝜆𝜆𝜆𝜆. 𝑀𝑀) = 1 + 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀).

‘≡’ implies that the term on the left hand side is identical to the term on the right hand

side.

The phrase ‘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑀𝑀’ will mean ‘induction on 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀)’ [12, Definition 1.6].

For example, if 𝑀𝑀 ≡ 𝑥𝑥(𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦𝑦𝑦) then 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀) = 5.

1.4 Definition

For 𝜆𝜆-terms 𝑃𝑃 and 𝑄𝑄 [12, Definition 1.7], the relation P occurs in Q (or P is a

subterm of Q, or Q contains P) is defined by induction on 𝑄𝑄, thus:

(a) 𝑃𝑃 occurs in 𝑃𝑃;

(b) If 𝑃𝑃 occurs in 𝑀𝑀 or in 𝑁𝑁, then 𝑃𝑃 occurs in (𝑀𝑀𝑀𝑀);

(c) If 𝑃𝑃 occurs in 𝑀𝑀 or 𝑃𝑃 ≡ 𝑥𝑥, then 𝑃𝑃 occurs in (𝜆𝜆𝜆𝜆. 𝑀𝑀).

8

1.5 Definition (Scope)

For a particular occurrence of 𝜆𝜆𝜆𝜆. 𝑀𝑀 in a term 𝑃𝑃 [12, Definition 1.9], the

occurrence of 𝑀𝑀 is called the scope of the occurrence of 𝜆𝜆𝜆𝜆 on the left.

For example, assume

𝑃𝑃 ≡ �𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑧𝑧)𝑥𝑥)�𝑣𝑣𝑣𝑣.

The scope of the left-most 𝜆𝜆𝜆𝜆 is 𝑦𝑦𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑧𝑧)𝑥𝑥), the scope of 𝜆𝜆𝜆𝜆 is 𝑦𝑦(𝜆𝜆𝜆𝜆. 𝑧𝑧)𝑥𝑥,

and that of the right-most 𝜆𝜆𝜆𝜆 is 𝑧𝑧.

1.6 Definition (Free and bound variables)

An occurrence of a variable 𝑥𝑥 in a term 𝑃𝑃 is called

• bound if it is in the scope of a 𝜆𝜆𝜆𝜆 in 𝑃𝑃,

• bound and binding, if and only if it is the 𝑥𝑥 in 𝜆𝜆𝜆𝜆,

• free otherwise.

If 𝑥𝑥 has at least one binding occurrence in 𝑃𝑃 [12 Definition 1.11], it is called a bound

variable of P. If 𝑥𝑥 has at least one free occurrence in 𝑃𝑃 it is called a free variable of P; the

set of all free variables of P is called

FV(𝑃𝑃).

A closed term is a term without any free variables.

9

Example: In ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 the variable x is bound and y is free. Hence, substituting 7 for

x: ∫ 𝑓𝑓(7, 𝑦𝑦)𝑑𝑑7𝑏𝑏
𝑎𝑎 ; would be incorrect, but substitution for y wouldn’t be: ∫ 𝑓𝑓(𝑥𝑥, 7)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎

[22].

1.7 Definition (Substitution)

For any 𝑀𝑀, 𝑁𝑁, 𝑥𝑥, define [𝑁𝑁/𝑥𝑥]𝑀𝑀 to be the result of substituting 𝑁𝑁 for every

occurrence of 𝑥𝑥 in 𝑀𝑀 [12, Definition 1.12], and changing bound variables to avoid

clashes.

(a) [𝑁𝑁/𝑥𝑥]𝑥𝑥 ≡ 𝑁𝑁;

(b) [𝑁𝑁/𝑥𝑥]𝑎𝑎 ≡ 𝑎𝑎 for all atoms 𝑎𝑎 ≢ 𝑥𝑥

(c) [𝑁𝑁/𝑥𝑥](𝑃𝑃𝑃𝑃) ≡ (([𝑁𝑁/𝑥𝑥]𝑃𝑃)([𝑁𝑁/𝑥𝑥]𝑄𝑄));

(d) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. 𝑃𝑃;

(e) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. 𝑃𝑃 if 𝑥𝑥 ∉ FV(𝑃𝑃) and 𝑦𝑦 ≢ 𝑥𝑥;

(f) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. [𝑁𝑁/𝑥𝑥]𝑃𝑃 if 𝑥𝑥 ∈ FV(𝑃𝑃) and 𝑦𝑦 ∉ FV(𝑁𝑁) and

𝑦𝑦 ≢ 𝑥𝑥;

(g) [𝑁𝑁/𝑥𝑥](𝜆𝜆𝜆𝜆. 𝑃𝑃) ≡ 𝜆𝜆𝜆𝜆. [𝑁𝑁/𝑥𝑥][𝑧𝑧/𝑦𝑦]𝑃𝑃 if 𝑥𝑥 ∈ FV(𝑃𝑃) and 𝑦𝑦 ∈ FV(𝑁𝑁).

In (g), z is the first variable that does not occur anywhere in the term.

1.8 Lemma

For all terms 𝑀𝑀, 𝑁𝑁 and variable 𝑥𝑥;

(a) [𝑥𝑥/𝑥𝑥]𝑀𝑀 ≡ 𝑀𝑀;

(b) 𝑥𝑥 ∉ FV(𝑀𝑀) ⟹ [𝑁𝑁/𝑥𝑥]𝑀𝑀 ≡ 𝑀𝑀;

10

(c) 𝑥𝑥 ∈ FV(𝑀𝑀) ⟹FV([𝑁𝑁/𝑥𝑥]𝑀𝑀) = FV(𝑁𝑁) ∪ (FV(𝑀𝑀) − {𝑥𝑥});

(d) 𝑙𝑙𝑙𝑙ℎ([𝑦𝑦/𝑥𝑥]𝑀𝑀) = 𝑙𝑙𝑙𝑙ℎ(𝑀𝑀).

The proof can be found in [12, Lemma 1.15, page 8].

1.9 Lemma

Let 𝑥𝑥, 𝑦𝑦, 𝑣𝑣 be distinct (the usual notation convention), and let no variable bound in 𝑀𝑀

be free in 𝑣𝑣𝑣𝑣𝑣𝑣. Then

(a) [𝑃𝑃/𝑣𝑣][𝑣𝑣/𝑥𝑥]𝑀𝑀 ≡ [𝑃𝑃/𝑥𝑥]𝑀𝑀 𝑖𝑖𝑖𝑖 𝑣𝑣 ∉ FV(𝑀𝑀);

(b) [𝑥𝑥/𝑣𝑣][𝑣𝑣/𝑥𝑥]𝑀𝑀 ≡ 𝑀𝑀 𝑖𝑖𝑖𝑖 𝑣𝑣 ∉ FV(𝑀𝑀);

(c) [𝑃𝑃/𝑥𝑥][𝑄𝑄/𝑦𝑦]𝑀𝑀 ≡ [[𝑃𝑃/𝑥𝑥]𝑄𝑄/𝑦𝑦][𝑃𝑃/𝑥𝑥]𝑀𝑀 𝑖𝑖𝑖𝑖 𝑦𝑦 ∉ FV(𝑃𝑃);

(d) [𝑃𝑃/𝑥𝑥][𝑄𝑄/𝑦𝑦]𝑀𝑀 ≡ [𝑄𝑄/𝑦𝑦][𝑃𝑃/𝑥𝑥]𝑀𝑀 𝑖𝑖𝑖𝑖 𝑦𝑦 ∉ FV(𝑃𝑃), 𝑥𝑥 ∉ FV(𝑄𝑄);

(e) [𝑃𝑃/𝑥𝑥][𝑄𝑄/𝑥𝑥]𝑀𝑀 ≡ [[𝑃𝑃/𝑥𝑥]𝑄𝑄/𝑥𝑥]𝑀𝑀.

The proof can be found in [12, Lemma 1.16, Page 9].

1.10 Definition (Change of bound variables, congruence)

Let a term 𝑃𝑃 contain an occurrence of 𝜆𝜆𝜆𝜆. 𝑀𝑀 [12, Definition 1.17], and let 𝑦𝑦 ∉

FV(𝑀𝑀). The action of replacing this 𝜆𝜆𝜆𝜆. 𝑀𝑀 by

𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀

is called a change of bound variable or an 𝛼𝛼-conversion in P. If and only if P can be

changed to Q by a finite (perhaps empty) series of changes of bound variables, we shall

say P is congruent to Q, or P 𝛼𝛼-converts to Q, or

𝑃𝑃 ≡𝛼𝛼 𝑄𝑄

11

𝜷𝜷-reduction

A term of form (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 represents an operator 𝜆𝜆𝜆𝜆. 𝑀𝑀 applied to an argument 𝑁𝑁

[12, Page 11]. In the informal interpretation of 𝜆𝜆𝜆𝜆. 𝑀𝑀, its value when applied to 𝑁𝑁 is

calculated by substituting 𝑁𝑁 for 𝑥𝑥 in 𝑀𝑀. So (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 can be simplified to [𝑁𝑁/𝑥𝑥]𝑀𝑀.

1.11 Definition (𝜷𝜷-contracting, 𝜷𝜷-reduction)

 Any term of form

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁

is called a 𝛽𝛽-redex and the corresponding term

[𝑁𝑁/𝑥𝑥]𝑀𝑀

is called its contractum. A contraction occurs only when a term P containing an

occurrence of (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 is replaced by [𝑁𝑁/𝑥𝑥]𝑀𝑀 and the result is 𝑃𝑃′. We then say we have

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the redex-ocurrence in 𝑃𝑃, and 𝑃𝑃 𝛽𝛽-contracts to 𝑃𝑃′ or

𝑃𝑃 ⊳1𝛽𝛽 𝑃𝑃′,

If and only if 𝑃𝑃 can be changed to 𝑄𝑄 by a finite (perhaps empty) series of 𝛽𝛽-

contractions and changes of bound variables, we say 𝑃𝑃 𝛽𝛽-reduces to 𝑄𝑄, or

𝑃𝑃 ⊳𝛽𝛽 𝑄𝑄.

Examples:

(a) �𝜆𝜆𝜆𝜆. 𝑥𝑥(𝑥𝑥𝑥𝑥)�𝑁𝑁 ⊳1𝛽𝛽 𝑁𝑁(𝑁𝑁𝑁𝑁)

(b) (𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑁𝑁 ⊳1𝛽𝛽 𝑦𝑦

12

(c) (𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑧𝑧)𝑣𝑣 ⊳1𝛽𝛽 [𝑣𝑣/𝑥𝑥]((𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑧𝑧) ≡ (𝜆𝜆𝜆𝜆. 𝑦𝑦𝑦𝑦)𝑧𝑧 ⊳1𝛽𝛽 [𝑧𝑧/𝑦𝑦](𝑦𝑦𝑦𝑦) ≡ 𝑧𝑧𝑧𝑧

1.12 Definition

 A term 𝑄𝑄 which contains no 𝛽𝛽-redexes is called a 𝛽𝛽-normal form (or a term in 𝛽𝛽-

normal form) [12, Definition 1.26]. The class of all 𝛽𝛽-normal forms is called β-nf or λβ-

nf. If a term 𝑃𝑃 𝛽𝛽-reduces to a term 𝑄𝑄 in 𝛽𝛽-nf, then 𝑄𝑄 is called a 𝛽𝛽-normal form of P.

1.13 Lemma

𝑃𝑃 ⊳𝛽𝛽 𝑄𝑄 ⟹ FV(𝑃𝑃) ⊇ FV(𝑄𝑄).

Proof can be found on [12, Lemma 1.30, Page 14].

1.14 Lemma (Substitution and ⊳𝜷𝜷)

If 𝑃𝑃 ⊳𝛽𝛽 𝑃𝑃′ and 𝑄𝑄 ⊳𝛽𝛽 𝑄𝑄′, then

[𝑃𝑃/𝑥𝑥]𝑄𝑄 ⊳𝛽𝛽 [𝑃𝑃′/𝑥𝑥]𝑄𝑄′.

Proof can be found on [12, Lemma 1.31, Page 14].

Example: We have

(𝜆𝜆𝜆𝜆((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧≡[((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)/𝑤𝑤]�����������
𝑃𝑃

(𝜆𝜆𝜆𝜆. 𝑤𝑤𝑤𝑤)𝑧𝑧�������
𝑄𝑄

If 𝑃𝑃′ ≡ 𝑢𝑢 and 𝑄𝑄′ ≡ 𝑤𝑤𝑤𝑤 then [𝑃𝑃′/𝑤𝑤]𝑄𝑄′ ≡ 𝑢𝑢𝑢𝑢

Note that (𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧 ⊳ 𝑢𝑢𝑢𝑢.

13

1.15 Theorem (Church-Rosser theorem for ⊳𝜷𝜷)

If 𝑃𝑃 ⊳𝛽𝛽 𝑀𝑀 and 𝑃𝑃 ⊳𝛽𝛽 𝑁𝑁, then there exists a term T such that

𝑀𝑀 ⊳𝛽𝛽 𝑇𝑇 and 𝑁𝑁 ⊳𝛽𝛽 𝑇𝑇.

Proof can be found on [12, Theorem 1.32, Page 14].

Example:
(𝜆𝜆𝜆𝜆((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧�����������

𝑃𝑃
⊳(𝜆𝜆𝜆𝜆. 𝑢𝑢𝑢𝑢)𝑧𝑧�������

𝑀𝑀
⊳𝑢𝑢𝑢𝑢

(𝜆𝜆𝜆𝜆((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑥𝑥)𝑧𝑧�����������
𝑃𝑃

⊳((𝜆𝜆𝜆𝜆. 𝑦𝑦)𝑢𝑢)𝑧𝑧�������
𝑁𝑁

⊳𝑢𝑢𝑢𝑢�
𝑇𝑇

β-equality

 We say P is β-equal or β-convertible to Q (notation 𝑃𝑃 =𝛽𝛽 𝑄𝑄) if and only if Q is

obtained from P by a finite (perhaps empty) series of β-contractions and reversed β-

contractions and changes of bound variables. That is, 𝑃𝑃 =𝛽𝛽 𝑄𝑄 if and only if there exists

𝑃𝑃0, … , 𝑃𝑃𝑛𝑛 (𝑛𝑛 ≥ 0) such that

(∀𝑖𝑖 ≤ 𝑛𝑛 − 1)(𝑃𝑃𝑖𝑖 ⊳1𝛽𝛽 𝑃𝑃𝑖𝑖+1 or 𝑃𝑃𝑖𝑖+1 ⊳1𝛽𝛽 𝑃𝑃𝑖𝑖 or 𝑃𝑃𝑖𝑖 ≡𝛼𝛼 𝑃𝑃𝑖𝑖+1),

𝑃𝑃0 ≡ 𝑃𝑃, 𝑃𝑃𝑛𝑛 ≡ 𝑄𝑄.

1.16 Lemma

If 𝑃𝑃 =𝛽𝛽 𝑄𝑄 and 𝑃𝑃 ≡𝛼𝛼 𝑃𝑃′ and 𝑄𝑄 ≡𝛼𝛼 𝑄𝑄′, then 𝑃𝑃′ =𝛽𝛽 𝑄𝑄′.

[12, Lemma 1.39, Page 16].

Example: Same as in lemma 1.14.

14

1.17 Lemma (substitution lemma for β-equality)

𝑀𝑀 =𝛽𝛽 𝑀𝑀′, 𝑁𝑁 =𝛽𝛽 𝑁𝑁′ ⟹ [𝑁𝑁/𝑥𝑥]𝑀𝑀 =𝛽𝛽 [𝑁𝑁′/𝑥𝑥]𝑀𝑀′

[12, Lemma 1.40, Page 16].

Example: Same as in theorem 1.15.

1.18 Theorem (Church-Rosser theorem for =𝜷𝜷)

If 𝑃𝑃 =𝛽𝛽 𝑄𝑄, then there exists a term 𝑇𝑇 such that [4]

𝑃𝑃 ⊳𝛽𝛽 𝑇𝑇 and 𝑄𝑄 ⊳𝛽𝛽 𝑇𝑇

λβη-reduction in λ-calculus

An η-redex is any λ-term

𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀

with 𝑥𝑥 ∉ FV(𝑀𝑀). Its contractum is

𝑀𝑀.

βη-reduction: A βη-redex is a β-redex or an η-redex. The phrases ‘P βη-contracts

to Q’ and ‘P βη-reduces to Q’ are defined like ‘β-contracts’ and ‘β-reduces’ with

notation

𝑃𝑃 ⊳1𝛽𝛽𝛽𝛽 𝑄𝑄, 𝑃𝑃 ⊳𝛽𝛽𝛽𝛽 𝑄𝑄.

βη-normal form: A λ-term Q containing no βη-redexes is said to be in βη-normal

form and we say such a term Q is a βη-normal form of P if and only if 𝑃𝑃 ⊳𝛽𝛽𝛽𝛽 𝑄𝑄.

15

λβη-equality in λ-calculus

We say P is βη-equal or βη-convertible to Q (notation 𝑃𝑃 =𝛽𝛽𝛽𝛽 𝑄𝑄) if and only if Q is

obtained from P by a finite (perhaps empty) series of β-contractions or η-contractions and

reversed β-contractions or η-contractions and changes of bound variables. That is,

𝑃𝑃 =𝛽𝛽𝛽𝛽 𝑄𝑄 if and only if there exists 𝑃𝑃0, … , 𝑃𝑃𝑛𝑛 (𝑛𝑛 > 0) such that

(∀𝑖𝑖 ≤ 𝑛𝑛 − 1)

(𝑃𝑃𝑖𝑖 ⊳1𝛽𝛽𝛽𝛽 𝑃𝑃𝑖𝑖+1 or 𝑃𝑃𝑖𝑖+1 ⊳1𝛽𝛽𝛽𝛽 𝑃𝑃𝑖𝑖 or 𝑃𝑃𝑖𝑖 ≡𝛼𝛼 𝑃𝑃𝑖𝑖+1)

𝑃𝑃0 ≡ 𝑃𝑃, 𝑃𝑃𝑛𝑛 ≡ 𝑄𝑄.

λβ and λβη theories

λβ formal theory of β-equality

The formulas of λβ are just equations M = N, for all λ-terms M and N. The axioms

are the particular (α), (β) and (ρ) below, for all λ-terms M, N, and all variables x, y. The

rules are (μ), (ν), (ξ), (τ), and (σ) below.

The axiom-schemes are:

(α) 𝜆𝜆𝜆𝜆. 𝑀𝑀 = 𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀 if 𝑦𝑦 ∉ FV(𝑀𝑀);

(β) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 = [𝑁𝑁/𝑥𝑥]𝑀𝑀;

(ρ) 𝑀𝑀 = 𝑀𝑀.

16

The rules of inference are:

(μ) 𝑀𝑀=𝑀𝑀`
𝑁𝑁𝑁𝑁=𝑁𝑁𝑁𝑁`

(ν) 𝑀𝑀=𝑀𝑀`
𝑀𝑀𝑀𝑀=𝑀𝑀`𝑁𝑁

(ξ) 𝑀𝑀=𝑀𝑀`
𝜆𝜆𝜆𝜆 .𝑀𝑀=𝜆𝜆𝜆𝜆 .𝑀𝑀`

(τ) 𝑀𝑀=𝑁𝑁 𝑁𝑁=𝑃𝑃
𝑀𝑀=𝑃𝑃

(σ) 𝑀𝑀=𝑁𝑁
𝑁𝑁=𝑀𝑀

λβ formal theory of β-reduction

This theory is called λβ like the previous one. Its formulas are expressions 𝑀𝑀 ⊳

𝑁𝑁, for all λ-terms M and N. Its axiom-schemes and rules are the same as above, but with

‘=’ changed to ‘⊳’ and rule (σ) omitted. If and only if an expression 𝑀𝑀 ⊳ 𝑁𝑁 is provable

in λβ, we say

𝜆𝜆𝜆𝜆 ⊢ 𝑀𝑀 ⊳ 𝑁𝑁

The axiom-schemes are:

(α) 𝜆𝜆𝜆𝜆. 𝑀𝑀 ⊳ 𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀 if 𝑦𝑦 ∉ FV(𝑀𝑀);

(β) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 ⊳ [𝑁𝑁/𝑥𝑥]𝑀𝑀;

(ρ) 𝑀𝑀 ⊳ 𝑀𝑀.

17

The rules of inference are:

(μ) 𝑀𝑀⊳𝑀𝑀`
𝑁𝑁𝑁𝑁⊳𝑁𝑁𝑁𝑁`

(ν) 𝑀𝑀⊳𝑀𝑀`
𝑀𝑀𝑀𝑀⊳𝑀𝑀`𝑁𝑁

(ξ) 𝑀𝑀⊳𝑀𝑀`
𝜆𝜆𝜆𝜆 .𝑀𝑀⊳𝜆𝜆𝜆𝜆 .𝑀𝑀`

(τ) 𝑀𝑀⊳𝑁𝑁 𝑁𝑁⊳𝑃𝑃
𝑀𝑀⊳𝑃𝑃

1.19 Lemma

(a) 𝑀𝑀 ⊳𝛽𝛽 𝑁𝑁 ⟺ 𝜆𝜆𝜆𝜆 ⊢ 𝑀𝑀 ⊳ 𝑁𝑁;

(b) 𝑀𝑀 =𝛽𝛽 𝑁𝑁 ⟺ 𝜆𝜆𝜆𝜆 ⊢ 𝑀𝑀 = 𝑁𝑁.

Proof can be found on [12, Lemma 6.4, Page 71].

λβη formal theory of βη-equality

Consider the rules of inference:

(ζ) 𝑀𝑀𝑀𝑀 =𝑁𝑁𝑁𝑁
𝑀𝑀=𝑁𝑁

 if 𝑥𝑥 ∉ FV(𝑀𝑀𝑀𝑀)

(η) 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝑀𝑀 if 𝑥𝑥 ∉ FV(𝑀𝑀).

 Let λβ be the theory of equality as defined above. We define two new theories of

equality:

18

λβζ: add rule (ζ) to λβ

λβη: add axiom-scheme (η) to λβ

(Adding (η) means adding all equations 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝑀𝑀 as new axioms, for all terms M and

all 𝑥𝑥 ∉ FV(𝑀𝑀)).

λβη formal theory of βη-reduction

This is defined by adding to the theory of β-reduction (discussed above), the axiom

scheme

(η) 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 ⊳ 𝑀𝑀 (if 𝑥𝑥 ∉ FV(𝑀𝑀))

Thus the axiom schemes are:

(α) 𝜆𝜆𝜆𝜆. 𝑀𝑀 ⊳ 𝜆𝜆𝜆𝜆. [𝑦𝑦/𝑥𝑥]𝑀𝑀 if 𝑦𝑦 ∉ FV(𝑀𝑀);

(β) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑁𝑁 ⊳ [𝑁𝑁/𝑥𝑥]𝑀𝑀;

(ρ) 𝑀𝑀 ⊳ 𝑀𝑀;

(η) 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 ⊳ 𝑀𝑀 (if 𝑥𝑥 ∉ FV(𝑀𝑀)).

The rules of inference are:

(μ) 𝑀𝑀⊳𝑀𝑀`
𝑁𝑁𝑁𝑁⊳𝑁𝑁𝑁𝑁`

(ν) 𝑀𝑀⊳𝑀𝑀`
𝑀𝑀𝑀𝑀⊳𝑀𝑀`𝑁𝑁

(ξ) 𝑀𝑀⊳𝑀𝑀`
𝜆𝜆𝜆𝜆 .𝑀𝑀⊳𝜆𝜆𝜆𝜆 .𝑀𝑀`

19

(τ) 𝑀𝑀⊳𝑁𝑁 𝑁𝑁⊳𝑃𝑃
𝑀𝑀⊳𝑃𝑃

The theories λβζ and λβη of equality are equivalent. Thus both theories determine the

same equality relation.

1.20 Lemma

 Rule (ζ) is equivalent to the combination of rule (ξ) and rule (η).

(ξ) + (𝜂𝜂) ⟹ (ζ)

𝑥𝑥 ∉ FV(𝑀𝑀𝑀𝑀)

𝑀𝑀 = 𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 (𝜂𝜂) 𝑀𝑀𝑀𝑀 = 𝑁𝑁𝑁𝑁

𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝜆𝜆𝜆𝜆. 𝑁𝑁𝑁𝑁 (ξ)
𝑀𝑀 = 𝜆𝜆𝜆𝜆. 𝑁𝑁𝑁𝑁 (𝜏𝜏) 𝜆𝜆𝜆𝜆. 𝑁𝑁𝑁𝑁 = 𝑁𝑁 (𝜂𝜂)

𝑀𝑀 = 𝑁𝑁
(𝜏𝜏)

(ζ) ⟹ (ξ)

(𝜆𝜆𝑥𝑥. 𝑀𝑀)𝑥𝑥 = 𝑀𝑀 (𝛽𝛽)
𝑀𝑀 = 𝑁𝑁

(𝜆𝜆𝑥𝑥. 𝑀𝑀)𝑥𝑥 = 𝑁𝑁 (𝜏𝜏) 𝑁𝑁 = (𝜆𝜆𝑥𝑥. 𝑁𝑁)𝑥𝑥 (𝛽𝛽)

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝑥𝑥 = (𝜆𝜆𝜆𝜆. 𝑁𝑁)𝑥𝑥
𝜆𝜆𝑥𝑥. 𝑀𝑀 = 𝜆𝜆𝑥𝑥. 𝑁𝑁 (ζ)

(𝜏𝜏)

(ζ) ⟹ (𝜂𝜂)

𝑥𝑥 ∉ FV(𝑀𝑀)

(𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀)𝑥𝑥 = 𝑀𝑀𝑀𝑀 (𝛽𝛽)

𝜆𝜆𝜆𝜆. 𝑀𝑀𝑀𝑀 = 𝑀𝑀
(ζ)

20

Chapter 2

Combinatory Logic

 Systems of combinators are designed to perform the same tasks as systems of 𝜆𝜆-

calculus, but without using bound variables [12, Chapter 2]. To motivate combinators,

consider the commutative law of addition in arithmetic, which says

(∀𝑥𝑥, 𝑦𝑦)(𝑥𝑥 + 𝑦𝑦) = (𝑦𝑦 + 𝑥𝑥)

The above expression contains bound variables ‘x’ and ‘y’. But these can be

removed, as follows. We first define an addition operator A by

𝐴𝐴(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥 + 𝑦𝑦 (for all 𝑥𝑥, 𝑦𝑦),

and then introduce an operator C defined by

�𝐂𝐂(𝑓𝑓)�(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑦𝑦, 𝑥𝑥) (for all 𝑓𝑓, 𝑥𝑥, 𝑦𝑦).

Then the commutative law becomes simply

𝐴𝐴 = 𝐂𝐂(𝐴𝐴).

The operator C may be called a combinator; the other examples of such an

operator are the following:

B, which composes two functions: �𝐁𝐁(𝑓𝑓, 𝑔𝑔)�(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥));

𝐁𝐁′ , a reversed composition operator: �𝐁𝐁′ (𝑓𝑓, 𝑔𝑔)�(𝑥𝑥) = 𝑔𝑔(𝑓𝑓(𝑥𝑥));

21

I, the identity operator: 𝐈𝐈(𝑓𝑓) = 𝑓𝑓;

K, which forms constant functions: �𝐊𝐊(𝑎𝑎)�(𝑥𝑥) = 𝑎𝑎;

S, a stronger composition operator: �𝐒𝐒(𝑓𝑓, 𝑔𝑔)�(𝑥𝑥) = 𝑓𝑓(𝑥𝑥, 𝑔𝑔(𝑥𝑥));

W, for doubling: �𝐖𝐖(𝑓𝑓)�(𝑥𝑥) = 𝑓𝑓(𝑥𝑥, 𝑥𝑥).

In this first section, same notation as in [12, Chapter 2] has been used.

2.1 Definition (Combinatory Logic terms, or CL-terms)

 Assume that there is an infinite sequence of expressions 𝑣𝑣0,𝑣𝑣00, 𝑣𝑣000 , … called

variables [12, Definition 2.1], and a finite or infinite sequence of expressions called

atomic constants, including three called basic combinators: I, K, S. (If I, K and S are the

only atomic constants, the system will be called pure, otherwise applied.) The set of

expressions called CL-terms is defined inductively as follows:

(a) All variables and atomic constants, including I, K, S, are CL-terms.

(b) If X and Y are CL-terms, then so is (XY).

 An atom is a variable or atomic constant. A non-redex constant is an atomic

constant other than I, K, S. A non-redex atom is a variable or a non-redex constant. A

closed term is a term containing no variables. A combinator is a term whose only atoms

are basic combinators. (In the pure system this is the same as a closed term.)

Examples of CL-terms: ((S(KS))K), ((S(K 𝑥𝑥))((SK)K)).

22

2.2 Definition (Length of a term)

 The length of X (or lgh(X)) is the number of occurrences of atoms in X [12,

Definition 2.3]:

(a) lgh(a) = 1 for atoms a;

(b) lgh(UV) = lgh(U) + lgh(V).

2.3 Definition (Occurrence of a variable)

 The relation X occurs in Y, or X is a subterm of Y [12, Definition 2.4], is defined

thus:

(a) X occurs in X;

(b) If X occurs in U or in V, then X occurs in (UV).

The set of all variables occurring in Y is called FV(Y).

2.4 Definition (Substitution)

 [𝑈𝑈/𝑥𝑥]𝑌𝑌 is defined to be the result of substuting U for every occurrence of 𝑥𝑥 in Y

[12, Definition 2.6]; that is,

(a) [𝑈𝑈/𝑥𝑥]𝑥𝑥 ≡ 𝑈𝑈,

(b) [𝑈𝑈/𝑥𝑥]𝑎𝑎 ≡ 𝑎𝑎 for atoms 𝑎𝑎 ≢ 𝑥𝑥,

(c) [𝑈𝑈/𝑥𝑥](𝑉𝑉𝑉𝑉) ≡ (([𝑈𝑈/𝑥𝑥]𝑉𝑉)([𝑈𝑈/𝑥𝑥]𝑊𝑊)).

For all 𝑈𝑈1, … , 𝑈𝑈𝑛𝑛 and mutually distinct 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , the result of simultaneously substuting

𝑈𝑈1 for 𝑥𝑥1, 𝑈𝑈2 for 𝑥𝑥2, …, 𝑈𝑈𝑛𝑛 for 𝑥𝑥𝑛𝑛 in 𝑌𝑌 is called

23

[𝑈𝑈1/𝑥𝑥1 , … , 𝑈𝑈𝑛𝑛 /𝑥𝑥𝑛𝑛]𝑌𝑌.

2.5 Definition (Weak Reduction)

 Any term IX, KXY or SXYZ is called a (weak) redex [12, Definition 2.9].

Contracting an occurrence of a weak redex in a term U means replacing one occurrence

of

 IX by X, or

 KXY by X, or

 SXYZ by XZ(YZ).

If and only if this changes U to 𝑈𝑈′ , we say that U (weakly) contracts to 𝑈𝑈′ , or

𝑈𝑈 ⊳1𝑤𝑤 𝑈𝑈′ .

If and only if V is obtained from U by a finite (perhaps empty) series of weak

contractions, we say that U (weakly) reduces to V, or

𝑈𝑈 ⊳𝑤𝑤 𝑉𝑉.

2.6 Definition

 A weak normal form (or weak nf or term in weak normal form) is a term

containing no weak redexes [12, Definition 2.10]. If U weakly reduces to a weak normal

form X, then X is called a weak normal form of U.

Example: Define B ≡ S(KS)K. Then B𝑋𝑋𝑋𝑋𝑋𝑋 ⊳𝑤𝑤 𝑋𝑋(𝑌𝑌𝑌𝑌), since

𝐁𝐁𝑋𝑋𝑋𝑋𝑋𝑋 ≡ 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑲𝑲𝑋𝑋𝑋𝑋𝑋𝑋

24

 ⊳1𝑤𝑤 𝐊𝐊𝐊𝐊𝑋𝑋(𝐊𝐊𝑋𝑋)𝑌𝑌𝑌𝑌 by contracting S(KS)KX to KSX(KX)

 ⊳1𝑤𝑤 𝐒𝐒(𝐊𝐊𝑋𝑋)𝑌𝑌𝑌𝑌 by contracting KSX to S

 ⊳1𝑤𝑤 𝐊𝐊𝑋𝑋𝑋𝑋(𝑌𝑌𝑌𝑌) by contracting S(KX)YZ

 ⊳1𝑤𝑤 𝑋𝑋(𝑌𝑌𝑌𝑌) by contracting KXZ

Here also the parentheses are left associative.

Example:

 SKxy ≡ ((SK)x)y

SIK(xy) ≡ ((SI)K)(xy)

2.7 Definition (Abstraction)

 For every CL-term 𝑀𝑀 and every variable 𝑥𝑥 [12, Definition 2.18], a CL-term called

[𝑥𝑥]. 𝑀𝑀 is defined by induction on 𝑀𝑀, thus:

(a) [𝑥𝑥]. 𝑀𝑀 ≡ 𝐊𝐊𝑀𝑀 if 𝑥𝑥 ∉FV (𝑀𝑀);

(b) [𝑥𝑥]. 𝑥𝑥 ≡ 𝐈𝐈;

(c) [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈 if 𝑥𝑥 ∉FV (𝑈𝑈);

(d) [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉) if neither (a) nor (c) applies

Example: [𝑥𝑥]. 𝑥𝑥𝑥𝑥 ≡ 𝐒𝐒([𝑥𝑥]. 𝑥𝑥)([𝑥𝑥]. 𝑦𝑦)

≡ 𝐒𝐒𝐒𝐒(𝐊𝐊𝑦𝑦)

25

2.8 Theorem

 The clauses in definition 2.7 allow us to construct [𝑥𝑥]. 𝑀𝑀 for all 𝑥𝑥 and 𝑀𝑀 [12,

Theorem 2.21]. Further, [𝑥𝑥]. 𝑀𝑀 does not contain 𝑥𝑥, and for all 𝑁𝑁,

([𝑥𝑥]. 𝑀𝑀)𝑁𝑁 ⊳𝑤𝑤 [𝑁𝑁/𝑥𝑥]𝑀𝑀.

Proof: By structural induction on the construction of 𝑀𝑀, the proof has the following

cases:

Case 1: 𝑥𝑥 ∉ FV(𝑀𝑀). Then

[𝑥𝑥]. 𝑀𝑀 ≡ 𝐊𝐊𝑀𝑀.

Since 𝑥𝑥 ∉ FV(𝑀𝑀), 𝑥𝑥 ∉ FV(𝐊𝐊𝑀𝑀) = FV([𝑥𝑥]. 𝑀𝑀).

Also ([𝑥𝑥]. 𝑀𝑀)𝑁𝑁 ≡ 𝐊𝐊𝑀𝑀𝑀𝑀 ⊳ 𝑀𝑀 ≡ [𝑁𝑁/𝑥𝑥]𝑀𝑀.

Case 2: 𝑀𝑀 ≡ 𝑥𝑥. Then

[𝑥𝑥]. 𝑀𝑀 ≡ [𝑥𝑥]. 𝑥𝑥 ≡ 𝐈𝐈.

Here 𝑥𝑥 ∉ FV([𝑥𝑥]. 𝑥𝑥) ≡ 𝐹𝐹𝐹𝐹(𝐈𝐈) and,

([𝑥𝑥]. 𝑥𝑥)𝑁𝑁 ≡ 𝐈𝐈𝑁𝑁 ⊳ 𝑁𝑁 ≡ [𝑁𝑁/𝑥𝑥]𝑥𝑥.

Case 3: 𝑀𝑀 ≡ 𝑈𝑈𝑈𝑈, where 𝑥𝑥 ∉ FV(𝑈𝑈).

Then, [𝑥𝑥]. 𝑀𝑀 ≡ 𝑈𝑈 and 𝑥𝑥 ∉ FV(𝑈𝑈) = FV([𝑥𝑥]. 𝑈𝑈𝑈𝑈).

Also, ([𝑥𝑥]. 𝑈𝑈𝑈𝑈)𝑁𝑁 ≡ 𝑈𝑈𝑈𝑈 ≡ [𝑁𝑁/𝑥𝑥]. 𝑈𝑈𝑈𝑈.

Case 4: 𝑀𝑀 ≡ 𝑈𝑈𝑈𝑈 and neither of cases 1 or 3 applies. Then,

26

[𝑥𝑥]. 𝑀𝑀 ≡ 𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉).

Also, by the induction hypothesis,

𝑥𝑥 ∉ FV([𝑥𝑥]. 𝑈𝑈) and ([𝑥𝑥]. 𝑈𝑈)𝑁𝑁 ⊳ [𝑁𝑁/𝑥𝑥]𝑈𝑈 and also 𝑥𝑥 ∉ FV([𝑥𝑥]. 𝑉𝑉) and ([𝑥𝑥]. 𝑉𝑉)𝑁𝑁 ⊳

[𝑁𝑁/𝑥𝑥]𝑉𝑉.

Then, 𝑥𝑥 ∉ FV(𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉)) and

([𝑥𝑥]. 𝑀𝑀)𝑁𝑁 ≡ 𝐒𝐒([𝑥𝑥]. 𝑈𝑈)([𝑥𝑥]. 𝑉𝑉)𝑁𝑁

⊳ ([𝑥𝑥]. 𝑈𝑈)𝑁𝑁([𝑥𝑥]. 𝑉𝑉)𝑁𝑁

⊳ [𝑁𝑁/𝑥𝑥]𝑈𝑈([𝑁𝑁/𝑥𝑥]𝑉𝑉)

⊳ [𝑁𝑁/𝑥𝑥](𝑈𝑈𝑈𝑈) ≡ [𝑁𝑁/𝑥𝑥]𝑀𝑀.

Example:

(a) [𝑥𝑥, 𝑦𝑦]. 𝑥𝑥 ≡ [𝑥𝑥]. ([𝑦𝑦]. 𝑥𝑥)

 ≡ [𝑥𝑥]. 𝐊𝐊𝑥𝑥

 ≡ 𝐊𝐊

(b) [𝑥𝑥, 𝑦𝑦, 𝑧𝑧]. 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦) ≡ [𝑥𝑥]. ([𝑦𝑦]. ([𝑧𝑧]. 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦)))

 ≡ [𝑥𝑥]. ([𝑦𝑦]. (𝐒𝐒([𝑧𝑧]. 𝑥𝑥𝑥𝑥)([𝑧𝑧]. 𝑦𝑦𝑦𝑦)))

 ≡ [𝑥𝑥]. ([𝑦𝑦]. 𝐒𝐒𝑥𝑥𝑥𝑥)

 ≡ [𝑥𝑥]. 𝐒𝐒𝑥𝑥

 ≡ 𝐒𝐒

27

Formal theory of weak equality

The formulas of CLw are equations X = Y, for all CL-terms X and Y [12,

Definition 6.5]. The axioms are the particular cases of the four axiom-schemes below, for

all CL-terms X, Y and Z. The rules are (μ), (ν), (τ) and (σ) below.

The axiom-schemes are:

(I) IX = X;

(K) KXY = X;

(S) SXYZ = XZ(YZ);

(ρ) X = X.

The rules of inference are:

(μ) 𝑋𝑋=𝑋𝑋`
𝑍𝑍𝑍𝑍=𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋=𝑋𝑋`
𝑋𝑋𝑋𝑋=𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋=𝑌𝑌 𝑌𝑌=𝑍𝑍
𝑋𝑋=𝑍𝑍

(σ) 𝑋𝑋=𝑌𝑌
𝑌𝑌=𝑋𝑋

If and only if an equation X = Y is provable in CLw, we say

CL𝑤𝑤 ⊢ 𝑋𝑋 = 𝑌𝑌.

28

Formal theory of weak reduction

The formulas of CLw are expressions 𝑋𝑋 ⊳ 𝑌𝑌, for all CL-terms X and Y [12,

Definition 6.6]. The axiom-schemes and rules are the same as above [10], but with ‘=’

changed to ‘⊳’ and (σ) omitted. If and only if 𝑋𝑋 ⊳ 𝑌𝑌 is provable in CLw, we say

𝐶𝐶𝐶𝐶𝐶𝐶 ⊢ 𝑋𝑋 ⊳ 𝑌𝑌.

Thus the axiom schemes are:

(I) IX ⊳ X;

(K) KXY ⊳ X;

(S) SXYZ ⊳ XZ(YZ);

(ρ) X ⊳ X.

The rules of inference are:

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋⊳𝑌𝑌 𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

2.9 Lemma

(a) 𝑋𝑋 ⊳𝑤𝑤 𝑌𝑌 ⟺ CL𝑤𝑤 ⊢ 𝑋𝑋 ⊳ 𝑌𝑌

(b) 𝑋𝑋 =𝑤𝑤 𝑌𝑌 ⟺ CL𝑤𝑤 ⊢ 𝑋𝑋 = 𝑌𝑌

29

[12, Lemma 6.7, Page 71].

30

Chapter 3

Correspondence Between 𝝀𝝀-calculus and Combinatory Logic

Even though the terms in lambda calculus (λ-claculus) and combinatory logic

(CL) appear to be equivalent, they are not. In order to understand this, we must first look

at the λ-transform and the H-transform.

3.1 λ-Transform

To each CL-term X we associate a λ-term 𝑋𝑋𝜆𝜆 called its λ-transform, by induction on X

[12, Definition 9.2]. Thus:

(a) 𝑥𝑥𝜆𝜆 ≡ 𝑥𝑥

(b) 𝐈𝐈𝜆𝜆 ≡ 𝜆𝜆𝜆𝜆. 𝑥𝑥, 𝐊𝐊𝜆𝜆 ≡ 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥, 𝐒𝐒𝜆𝜆 ≡ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦)

(c) (𝑋𝑋𝑋𝑋)𝜆𝜆 ≡ 𝑋𝑋𝜆𝜆𝑌𝑌𝜆𝜆

3.2 H-Transform

To each 𝜆𝜆-term M we associate a CL-term called 𝑀𝑀𝐻𝐻 [12, Definition 9.10]. Thus:

(a) 𝑥𝑥𝐻𝐻 ≡ 𝑥𝑥

(b) (𝑀𝑀𝑀𝑀)𝐻𝐻 ≡ 𝑀𝑀𝐻𝐻𝑁𝑁𝐻𝐻

(c) (𝜆𝜆𝜆𝜆. 𝑀𝑀)𝐻𝐻 ≡ [𝑥𝑥]. (𝑀𝑀𝐻𝐻)

The λ-transform and the H-transform allow us to describe λ-terms in CL and vice versa.

31

3.3 Weak normal form

A weak normal form (or weak nf or term in weak normal form) is a term that

contains no weak redexes.

For example, in combinatory logic;

[𝑥𝑥]. (𝐊𝐊𝑥𝑥𝑥𝑥) ≡ 𝐒𝐒([𝑥𝑥]. 𝐊𝐊𝑥𝑥)([𝑥𝑥]. 𝑥𝑥) ≡ 𝐒𝐒𝐒𝐒𝐒𝐒

The above is in weak normal form [1, Page 152].

If we look at the equivalent term in λ-calculus, we get;

𝜆𝜆𝜆𝜆. 𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥 ≡ 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆𝜆𝜆. 𝑢𝑢)𝑥𝑥𝑥𝑥 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. 𝑥𝑥 ≡ 𝐈𝐈𝜆𝜆

Here, 𝜆𝜆𝜆𝜆. 𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥 does reduce to 𝐈𝐈𝜆𝜆 .

The key point is that [x].(Kxx) ≡ SKI cannot be reduced in CL, although Kxx can

be reduced, because Kxx really does not occur as a subterm of [x].(Kxx) ≡ SKI, whereas

𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥 really does occur as a subterm of 𝜆𝜆𝜆𝜆. 𝐊𝐊𝜆𝜆𝑥𝑥𝑥𝑥. So the latter term reduces to 𝐈𝐈𝜆𝜆 .

 We have seen that λ-calculus and CL are different, but there are some points of

similarity. We have the combinatory β-equality (=𝑐𝑐𝑐𝑐) and combinatory βη-equality

(=𝑐𝑐𝑐𝑐𝑐𝑐), which are equivalent to λβ-conversion and λβη-conversion, respectively. To

understand this, let us first take a brief overview of extensional equality in CL.

3.4 Extensional Equality in CL

Consider the rules:

(ζ) 𝑋𝑋𝑋𝑋 =𝑌𝑌𝑌𝑌
𝑋𝑋=𝑌𝑌

 if 𝑥𝑥 ∉ FV(𝑋𝑋𝑋𝑋)

32

(ξ) 𝑋𝑋=𝑌𝑌
[𝑥𝑥].𝑋𝑋=[𝑥𝑥].𝑌𝑌

Consider the axiom-scheme:

(η) [𝑥𝑥]. 𝑈𝑈𝑈𝑈 = 𝑈𝑈 if 𝑥𝑥 ∉ FV(𝑈𝑈)

Here, the relation =𝑒𝑒𝑒𝑒𝑒𝑒 is defined as:

𝑋𝑋 =𝑒𝑒𝑒𝑒𝑒𝑒 𝑌𝑌 ⇔ CLζ ⊢ 𝑋𝑋 = 𝑌𝑌

Where, CLζ can be obtained by adding the rule (ζ) to CLw (formal theory of weak

equality defined in Chapter 2).

Thus, the axiom-schemes are:

(I) IX = X;

(K) KXY = X;

(S) SXYZ = XZ(YZ);

(ρ) X = X.

The rules of inference are:

(μ) 𝑋𝑋=𝑋𝑋`
𝑍𝑍𝑍𝑍=𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋=𝑋𝑋`
𝑋𝑋𝑋𝑋=𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋=𝑌𝑌 𝑌𝑌=𝑍𝑍
𝑋𝑋=𝑍𝑍

(σ) 𝑋𝑋=𝑌𝑌
𝑌𝑌=𝑋𝑋

33

(ζ) 𝑋𝑋𝑋𝑋 =𝑌𝑌𝑌𝑌
𝑋𝑋=𝑌𝑌

This relation is often called =𝑐𝑐𝑐𝑐𝑐𝑐 .

Example: SK =𝑒𝑒𝑒𝑒𝑒𝑒 KI

This is proved by applying rule (ζ) twice to the weak equation SK𝑥𝑥𝑥𝑥 =𝑤𝑤 KI𝑥𝑥𝑥𝑥,

which is proved thus;

SK𝑥𝑥𝑥𝑥 =𝑤𝑤 𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥)

 =𝑤𝑤 𝑦𝑦

 =𝑤𝑤 𝐈𝐈𝑦𝑦

 =𝑤𝑤 𝐊𝐊𝐊𝐊𝑥𝑥𝑥𝑥

3.5 Extensionality axioms

 The theory CL𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 (i.e. =𝑎𝑎𝑎𝑎) is defined by adding to CLw the following five

axioms [12, Definition 8.10]:

E-ax 1: S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK);

E-ax 2: S(S(KS)K)(KI) = I;

E-ax 3: S(KI) = I;

E-ax 4: S(KS)(S(KK)) = K;

E-ax 5: S(K(S(KS)))(S(KS)(S(KS))) = S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS).

34

Since the theory CL𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 is equivalent to the CL𝛽𝛽𝛽𝛽 theory, it determines the same

equality-relation, namely =𝑒𝑒𝑒𝑒𝑒𝑒 .

Now let us discuss about the relation of β-equality in λ-calculus.

3.6 Combinatory β-equality

The relation of β-equality in λ-calculus induces the following equality between

CL-terms [12, Definition 9.29].

For all CL-terms X and Y, define

𝑋𝑋 =𝑐𝑐𝑐𝑐 𝑌𝑌 ⟺ 𝑋𝑋𝜆𝜆 =𝛽𝛽 𝑌𝑌𝜆𝜆

3.7 Functional CL-terms

 A CL-term with one of the six forms SXY (for some X, Y), SX, KX, S, K, I, is

called functional or fnl [12, Definition 9.6].

3.8 Lemma

 For all functional CL-terms U:

(a) 𝑈𝑈𝜆𝜆 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. 𝑀𝑀 for some λ-term M;

(b) 𝑈𝑈 ⊳𝑤𝑤 𝑉𝑉 ⟹ 𝑉𝑉 is functional.

 [12, Lemma 9.7, Page 94].

35

3.9 The formal theory CLζ𝜷𝜷

CLζ𝛽𝛽 is obtained by adding the following rule to the theory CLw of weak equality

[12, Definition 9.32]:

(ζ𝛽𝛽) 𝑈𝑈𝑈𝑈 =𝑉𝑉𝑉𝑉
𝑈𝑈=𝑉𝑉

 if 𝑥𝑥 ∉ FV(𝑈𝑈𝑈𝑈) and U and V are functional.

The axiom schemes become:

(I) IX = X;

(K) KXY = X;

(S) SXYZ = XZ(YZ);

(ρ) X = X.

The rules of inference are:

(μ) 𝑋𝑋=𝑋𝑋`
𝑍𝑍𝑍𝑍=𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋=𝑋𝑋`
𝑋𝑋𝑋𝑋=𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋=𝑌𝑌 𝑌𝑌=𝑍𝑍
𝑋𝑋=𝑍𝑍

(ζ𝛽𝛽) 𝑈𝑈𝑈𝑈 =𝑉𝑉𝑉𝑉
𝑈𝑈=𝑉𝑉

 if 𝑥𝑥 ∉ FV(𝑈𝑈𝑈𝑈) and U and V are functional.

Example: CLζ𝛽𝛽 ⊢ SK = KI.

𝐒𝐒𝐒𝐒𝑦𝑦𝑦𝑦 = 𝐊𝐊𝑧𝑧(𝑦𝑦𝑦𝑦) = 𝑧𝑧 = 𝐈𝐈𝑧𝑧.

36

The rule (ζ𝛽𝛽) can be applied, since SKy and I are functional, to give

𝐒𝐒𝐒𝐒𝑦𝑦 = 𝐈𝐈.

But CL𝑤𝑤 ⊢ 𝐈𝐈 = 𝐊𝐊𝐊𝐊𝑦𝑦, so CLζ𝛽𝛽 ⊢ 𝐒𝐒𝐒𝐒𝑦𝑦 = 𝐊𝐊𝐊𝐊𝑦𝑦. Since SK and KI are functional, rule (ζ𝛽𝛽)

can be applied to give

𝐒𝐒𝐒𝐒 = 𝐊𝐊𝐊𝐊.

The above holds true for conversion, i.e., describing the conversion in λ-calculus

and trying to find its equivalent in combinatory logic, but what about reduction? It so

happens that we have Strong Reduction in CL which is equivalent to λβη-reduction in λ-

calculus. This is the subject of the next section.

3.10 Definition (Strong reduction,)

 The formal theory of strong reduction has as formulas all expressions X Y [12,

Definition 8.15], for all CL-terms X and Y. Its axiom-schemes and rules are the same as

those for CLw, but with ‘=’ changed to ‘ ‘, and the following new rule added:

(ξ) 𝑋𝑋 𝑌𝑌
[𝑥𝑥].𝑋𝑋 [𝑥𝑥].𝑌𝑌

Thus, the axiom-schemes become:

(I) IX X;

(K) KXY X;

(S) SXYZ XZ(YZ);

37

(ρ) X X.

The rules of inference are:

(μ) 𝑋𝑋 𝑋𝑋`
𝑍𝑍𝑍𝑍 𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋 𝑋𝑋`
𝑋𝑋𝑋𝑋 𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋 𝑌𝑌 𝑌𝑌 𝑍𝑍
𝑋𝑋 𝑍𝑍

(ξ) 𝑋𝑋 𝑌𝑌
[𝑥𝑥].𝑋𝑋 [𝑥𝑥].𝑌𝑌

Also, rule (ξ) can be replaced with rule (ξ`) which says that;

(ξ`) 𝑈𝑈𝑈𝑈 𝑌𝑌
𝑈𝑈 [𝑥𝑥]𝑌𝑌

 (x ∉ FV(U))

(ξ`) can be derived from (ξ) by taking [𝑥𝑥]. 𝑋𝑋 for 𝑈𝑈, and (ξ`) from (ξ) by taking 𝑈𝑈𝑈𝑈 for 𝑋𝑋.

The 𝑈𝑈 in (ξ`) can be restricted to being a functional term [6, Page 93].

If and only if X Y is provable in this theory, we say X strongly reduces to Y, or just

X Y.

The strong reduction was proposed by H.B. Curry. At that time, he used a formalism that

included both the abstraction operator λ as primitive and also included the basic

combinators I, K, and S, so that abstraction could be defined by the definition of []𝜂𝜂

[Definition 2.7, Page 24]. So, if we were to perform strong reduction to prove that S(KI)

 I, we would write it in the following way;

𝐒𝐒(𝐊𝐊𝐊𝐊)

38

𝜆𝜆𝜆𝜆. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥

𝜆𝜆𝜆𝜆. 𝜆𝜆𝜆𝜆. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥

𝜆𝜆𝜆𝜆𝜆𝜆. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥

𝜆𝜆𝜆𝜆𝜆𝜆. 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥)

𝜆𝜆𝜆𝜆𝜆𝜆. 𝐈𝐈(𝑥𝑥𝑥𝑥)

𝜆𝜆𝜆𝜆𝜆𝜆. 𝑥𝑥𝑥𝑥

𝜆𝜆𝜆𝜆. 𝑥𝑥

𝐈𝐈

But later, he used the standard syntax for CL in which 𝜆𝜆𝜆𝜆 was replaced with [𝑥𝑥]. So, the

reduction would then be;

𝐒𝐒(𝐊𝐊𝐊𝐊)

[𝑥𝑥]. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥

[𝑥𝑥]. [𝑦𝑦]. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥

[𝑥𝑥]. [𝑦𝑦]. 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥

[𝑥𝑥]. [𝑦𝑦]. 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥)

[𝑥𝑥]. [𝑦𝑦]. 𝐈𝐈(𝑥𝑥𝑥𝑥)

[𝑥𝑥]. [𝑦𝑦]. 𝑥𝑥𝑥𝑥

39

[𝑥𝑥]. 𝑥𝑥

𝐈𝐈

Examples:

(a) SK KI

To prove this, first note that 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝑦𝑦. Since the axiom-schemes and

rules for include those for ⊳𝑤𝑤 , this gives

𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 𝑦𝑦.

Hence, by rule (ξ) twice,

[𝑥𝑥, 𝑦𝑦]. 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 [𝑥𝑥, 𝑦𝑦]. 𝑦𝑦

But [𝑥𝑥, 𝑦𝑦]. 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 ≡ 𝐒𝐒𝐒𝐒 and [𝑥𝑥, 𝑦𝑦]. 𝑦𝑦 ≡ 𝐊𝐊𝐊𝐊.

(b) S(KX)(KY) K(XY)

To prove this for all terms X and Y, choose 𝑣𝑣 ∉ FV(𝑋𝑋𝑋𝑋). Then

S(KX)(KY) ≡ [v].(KXv)(KYv), K(XY)≡ [v].XY

Also (KXv)(KYv) ⊳𝑤𝑤 XY, so by (ξ),

 [v].(KXv)(KYv) [v].XY

40

3.11 Lemma

 The relation is transitive and reflexive. Also

(a) 𝑋𝑋 𝑌𝑌 ⇒ FV(𝑋𝑋) ⊇ FV(𝑌𝑌);

(b) 𝑋𝑋 𝑌𝑌 ⇒ [𝑋𝑋/𝑣𝑣]𝑍𝑍 [𝑌𝑌/𝑣𝑣]𝑍𝑍;

(c) 𝑋𝑋 𝑌𝑌 ⟹ [𝑈𝑈1/𝑥𝑥1 , … . , 𝑈𝑈𝑛𝑛 /𝑥𝑥𝑛𝑛]𝑋𝑋 [𝑈𝑈1/𝑥𝑥1 , … . , 𝑈𝑈𝑛𝑛 /𝑥𝑥𝑛𝑛]𝑌𝑌;

(d) the equivalence relation generated by is the same as =𝑒𝑒𝑒𝑒𝑒𝑒 ; that is, 𝑋𝑋 =𝑒𝑒𝑒𝑒𝑒𝑒 𝑌𝑌 if

and only if X goes to Y by a finite series of strong reductions and reversed strong

reductions.

Proof can be found on [12, Lemma 8.17, Page 90].

The theory of strong reduction depends on the definition of the abstraction being

used. In particular, it requires an abstraction using clause (c) of the abstraction algorithm,

which is:

[𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈 if 𝑥𝑥 ∉ FV(𝑈𝑈)

This definition does not work for defining a reduction in combinatory logic

equivalent to λβ-reduction. This is because rule (η) is not valid for all λβ-reductions but it

is valid for some. So some instances of clause (c) are needed but not all.

If 𝑥𝑥 ∉ FV(𝑉𝑉) and 𝑥𝑥 ≢ 𝑦𝑦, we have

𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑉𝑉)𝑥𝑥 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. [𝑥𝑥/𝑦𝑦]𝑉𝑉 ⊳𝛼𝛼 𝜆𝜆𝜆𝜆. 𝑉𝑉

41

But clause (c) of the abstraction cannot be restricted to combinatory logic terms

equivalent to abstracts because there is no algorithm which can decide whether a CL term

is equivalent to an abstract, and so the result is not an algorithm.

We are now going to look at various alternative definitions of abstractions, as the

discussion above shows the need for this.

So far, we have seen [] . From now on, [] will be called []𝜂𝜂 . Now let us look at

[]𝑤𝑤 . Here we must note that H is really 𝐻𝐻𝜂𝜂 .

Weak Abstraction

For all CL-terms Y, [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 is defined thus:

(a) [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 if 𝑥𝑥 ∉ FV(𝑌𝑌);

(b) [𝑥𝑥]𝑤𝑤 . 𝑥𝑥 ≡ 𝐈𝐈;

(f) [𝑥𝑥]𝑤𝑤 . 𝑈𝑈𝑈𝑈 ≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑈𝑈)([𝑥𝑥]𝑤𝑤 . 𝑉𝑉) if 𝑥𝑥 ∈ FV(𝑈𝑈𝑈𝑈).

3.12 Lemma

For all CL-terms Y and Z, [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 is defined for all variables x and terms Y and

does not contain x.

3.13 Lemma

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌

42

Proof:

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌)

Then, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ≡ 𝐊𝐊𝑌𝑌𝑌𝑌 ⊳𝑤𝑤 𝑌𝑌 ≡ [𝑍𝑍/𝑥𝑥]𝑌𝑌

Case 2: 𝑌𝑌 ≡ 𝑥𝑥

Then, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ≡ ([𝑥𝑥]𝑤𝑤 . 𝑥𝑥)𝑍𝑍 ≡ 𝐈𝐈𝑍𝑍 ⊳𝑥𝑥 𝑍𝑍 ≡ [𝑍𝑍/𝑥𝑥]𝑥𝑥

Case 3: 𝑌𝑌 ≡ 𝑌𝑌1𝑌𝑌2 and 𝑥𝑥 ∈ FV(𝑌𝑌1𝑌𝑌2)

Then, by the induction hypothesis, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)𝑍𝑍 ⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌1 and ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝑍𝑍 ⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌2.

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝑍𝑍 ≡ ([𝑥𝑥]𝑤𝑤 . (𝑌𝑌1𝑌𝑌2))𝑍𝑍

≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝑍𝑍

⊳𝑤𝑤 ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)𝑍𝑍(([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝑍𝑍)

⊳𝑤𝑤 [𝑍𝑍/𝑥𝑥]𝑌𝑌1([𝑍𝑍/𝑥𝑥]𝑌𝑌2)

≡ [𝑍𝑍/𝑥𝑥](𝑌𝑌1𝑌𝑌2)

≡ [𝑍𝑍/𝑥𝑥]𝑌𝑌

3.14 Lemma

[𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 if 𝑧𝑧 ∉ FV(𝑌𝑌)

Proof:

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌)

Then, [𝑥𝑥]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌

43

[𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑧𝑧]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 ≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌

Case 2: 𝑌𝑌 ≡ 𝑥𝑥

Then, [𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑥𝑥 ≡ [𝑧𝑧]𝑤𝑤 . 𝑧𝑧 ≡ 𝐈𝐈 ≡ [𝑥𝑥]𝑤𝑤 . 𝑥𝑥 ≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌

Case 3: 𝑌𝑌 = 𝑌𝑌1𝑌𝑌2

Then, by the induction hypothesis, [𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌1 ≡ [𝑥𝑥]𝑤𝑤 𝑌𝑌1 and [𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌2 ≡ [𝑥𝑥]𝑤𝑤 𝑌𝑌2.

[𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌 ≡ [𝑧𝑧]𝑤𝑤 [𝑧𝑧/𝑥𝑥]𝑌𝑌1𝑌𝑌2

≡ 𝐒𝐒([𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌1)([𝑧𝑧]𝑤𝑤 . [𝑧𝑧/𝑥𝑥]𝑌𝑌2)

≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)

≡ [𝑥𝑥]𝑤𝑤 . 𝑌𝑌

3.15 Lemma

[𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌) ≡ [𝑥𝑥]𝑤𝑤 . ([𝑍𝑍/𝑣𝑣]𝑌𝑌) if 𝑥𝑥 ∉ FV(𝑣𝑣𝑣𝑣)

Proof:

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌)

Then [𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌) ≡ [𝑍𝑍/𝑣𝑣]. 𝐊𝐊𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌 ≡ 𝐊𝐊. ([𝑍𝑍/𝑣𝑣]𝑌𝑌) ≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌.

Case 2: 𝑌𝑌 ≡ 𝑥𝑥

Then, [𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑥𝑥) ≡ [𝑍𝑍/𝑣𝑣]𝐈𝐈 ≡ 𝐈𝐈 ≡ [𝑥𝑥]𝑤𝑤 . 𝑥𝑥.

Case 3: 𝑌𝑌 = 𝑌𝑌1𝑌𝑌2

44

Then, by the induction hypothesis,

[𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1) ≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌1 and [𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2) ≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌2.

[𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1𝑌𝑌2)

⊳𝑤𝑤 [𝑍𝑍/𝑣𝑣]𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)([𝑥𝑥]𝑤𝑤 𝑌𝑌2)

≡ 𝑆𝑆([𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌))([𝑍𝑍/𝑣𝑣]([𝑥𝑥]𝑤𝑤 . 𝑌𝑌))

≡ 𝐒𝐒([𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌1)([𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌2)

≡ [𝑥𝑥]𝑤𝑤 . [𝑍𝑍/𝑣𝑣]𝑌𝑌

3.16 Lemma

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝜆𝜆 =𝛽𝛽 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆)

Proof:

Case 1: 𝑥𝑥 ∉ FV(𝑌𝑌)

[𝑥𝑥]𝑤𝑤 . 𝑌𝑌 ≡ 𝐊𝐊𝑌𝑌

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝜆𝜆 ≡ (𝐊𝐊𝑌𝑌)𝜆𝜆

 ≡ (𝜆𝜆𝜆𝜆𝜆𝜆. 𝑢𝑢)(𝑌𝑌𝜆𝜆) where 𝑢𝑢𝑢𝑢 ∉ FV(𝑌𝑌) = FV(𝑌𝑌𝜆𝜆)

 ⊳𝛽𝛽 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆) where 𝑣𝑣 ∉ FV(𝑌𝑌)

≡𝛼𝛼 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆)

45

Case 2: 𝑌𝑌 ≡ 𝑥𝑥

Then, ([𝑥𝑥]𝑤𝑤 . 𝑥𝑥)𝜆𝜆 ≡ 𝐈𝐈𝜆𝜆 ≡ (𝜆𝜆𝜆𝜆. 𝑥𝑥) ≡ 𝜆𝜆𝜆𝜆. (𝑌𝑌𝜆𝜆)

Case 3: 𝑌𝑌 = 𝑌𝑌1𝑌𝑌2

Then, by the induction hypothesis, ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)𝜆𝜆 = 𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆 and ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2)𝜆𝜆 = 𝜆𝜆𝜆𝜆. 𝑌𝑌2𝜆𝜆 .

([𝑥𝑥]𝑤𝑤 . 𝑌𝑌)𝜆𝜆 ≡ ([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1𝑌𝑌2)𝜆𝜆 ≡ (𝐒𝐒([𝑥𝑥]𝑤𝑤 . 𝑌𝑌1)([𝑥𝑥]𝑤𝑤 . 𝑌𝑌2))𝜆𝜆

≡𝛽𝛽 (𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆. 𝑢𝑢𝑢𝑢(𝑣𝑣𝑣𝑣))(𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆)(𝜆𝜆𝜆𝜆. 𝑌𝑌2𝜆𝜆)

≡𝛽𝛽 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆)𝑤𝑤((𝜆𝜆𝜆𝜆. 𝑌𝑌2𝜆𝜆)𝑤𝑤)

≡𝛽𝛽 𝜆𝜆𝜆𝜆. ([𝑤𝑤/𝑥𝑥]. 𝑌𝑌1𝜆𝜆)([𝑤𝑤/𝑥𝑥]. 𝑌𝑌2𝜆𝜆)

≡𝛼𝛼 𝜆𝜆𝜆𝜆. 𝑌𝑌1𝜆𝜆 𝑌𝑌2𝜆𝜆

≡ 𝜆𝜆𝜆𝜆. 𝑌𝑌𝜆𝜆

Abstraction []𝜷𝜷

Curry defined an abstraction, today called ‘[]𝛽𝛽 ’, which does not admit clause (c)

of Definition 2.7 in all cases [12, Remark 9.27]. His definition consists of weak

abstraction clauses (a) and (b), plus the following:

(c𝛽𝛽) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈 if U is functional and x ∉ FV(U);

(f𝛽𝛽) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑆𝑆([𝑥𝑥]𝜂𝜂 . 𝑈𝑈)([𝑥𝑥]𝜂𝜂 . 𝑉𝑉) if neither (a) nor (c𝛽𝛽) applies.

46

Thus this abstraction is defined by:

(a) [𝑥𝑥]𝛽𝛽 . 𝑀𝑀 ≡ 𝐊𝐊𝑀𝑀 if 𝑥𝑥 ∉FV (𝑀𝑀);

(b) [𝑥𝑥]𝛽𝛽 . 𝑥𝑥 ≡ 𝐈𝐈;

(c𝛽𝛽) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈 if U is functional and x ∉ FV(U);

(f𝛽𝛽) [𝑥𝑥]𝛽𝛽 . 𝑈𝑈𝑈𝑈 ≡ 𝑆𝑆([𝑥𝑥]𝜂𝜂 . 𝑈𝑈)([𝑥𝑥]𝜂𝜂 . 𝑉𝑉) if neither (a) nor (c𝛽𝛽) applies.

Note the two η’s in (f𝛽𝛽); their effect is to say that clause (c) can be used

unrestrictedly in computing [x].Y if it is not the first clause in the evaluation.

The 𝑯𝑯𝜷𝜷 mapping

 For all λ-terms M, define 𝐻𝐻𝛽𝛽 as in the definition of H mapping, but using []𝛽𝛽

instead of []:

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝐻𝐻𝛽𝛽 ≡ [𝑥𝑥]𝛽𝛽 (𝑀𝑀𝐻𝐻)

The 𝑯𝑯𝒘𝒘 mapping

For all λ-terms M, we define 𝑀𝑀𝐻𝐻𝑤𝑤 , but using []𝑤𝑤 instead of []𝜂𝜂 ; in particular,

define

(𝜆𝜆𝜆𝜆. 𝑀𝑀)𝐻𝐻𝑤𝑤 ≡ [𝑥𝑥]𝑤𝑤 . (𝑀𝑀𝐻𝐻𝑤𝑤)

47

 For all λ-terms M and N:

(a) FV(𝑀𝑀𝐻𝐻𝑤𝑤) = FV(𝑀𝑀);

(b) 𝑀𝑀 ≡𝛼𝛼 𝑁𝑁 ⟹ 𝑀𝑀𝐻𝐻𝑤𝑤 ≡ 𝑁𝑁𝐻𝐻𝑤𝑤 ;

(c) ([𝑁𝑁/𝑥𝑥]𝑀𝑀)𝐻𝐻𝑤𝑤 ≡ [𝑁𝑁𝐻𝐻𝑤𝑤 /𝑥𝑥](𝑀𝑀𝐻𝐻𝑤𝑤).

So, we have seen that we have strong reduction in CL which is equivalent to λβη-

reduction in λ-calculus. But then what about λβ-reduction (in λ-calculus)? As of now, we

do not have complete equivalent reduction in CL and it is the only part of CL that is now

missing. However, there are a few proposals by Curry, Seldin and Mezghiche which are

discussed below.

Notations:

The (ξ)-rule is called (𝜉𝜉𝛽𝛽) or (𝜉𝜉𝜂𝜂), depending on the type of abstraction being used.

Curry’s restriction to clause (c)

H.B. Curry proposed [𝑥𝑥]𝛽𝛽 with its restriction to clause (c) [7]. He defined beta-reduction

as follows:

The weak rules are the same along with one new rule (𝜉𝜉𝛽𝛽), which states that

(𝜉𝜉𝛽𝛽) 𝑋𝑋⊳𝑌𝑌
[𝑥𝑥]𝛽𝛽 .𝑋𝑋⊳[𝑥𝑥]𝛽𝛽 .𝑌𝑌

48

Thus axiom schemes would be;

(I) IX ⊳ X;

(K) KXY ⊳ X;

(S) SXYZ ⊳ XZ(YZ);

(ρ) X ⊳ X.

The rules of inference are:

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋⊳𝑌𝑌 𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

(𝜉𝜉𝛽𝛽) 𝑋𝑋⊳𝑌𝑌
[𝑥𝑥]𝛽𝛽 .𝑋𝑋⊳[𝑥𝑥]𝛽𝛽 .𝑌𝑌

But his proposals had some problems:

(1) X ⊳ Y does not mean 𝑋𝑋𝜆𝜆 ⊳𝛽𝛽𝛽𝛽 𝑌𝑌𝜆𝜆 .

(2) Being functional is not preserved by reduction. That is, if we reduce a term which

is functional, then it is not necessary that the term obtained after this reduction be

functional. It can be a non-functional term also. Let us consider and example:

𝐈𝐈(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝑥𝑥𝑥𝑥

[𝑦𝑦]𝛽𝛽 𝐈𝐈(𝑥𝑥𝑥𝑥) ⊳𝛽𝛽 [𝑦𝑦]𝛽𝛽 (𝑥𝑥𝑥𝑥)

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈

49

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 ([𝑥𝑥]𝛽𝛽 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈)𝑥𝑥

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)𝑥𝑥

Now, 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 is functional but 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)𝑥𝑥 is not.

(3) This proposal does not have a complete characterization of terms in normal form.

Example of a reduction under this proposal:

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝑥𝑥𝑥𝑥

[𝑦𝑦]𝛽𝛽 (𝑥𝑥𝑥𝑥) ≡ 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈

[𝑥𝑥]𝛽𝛽 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 ≡ 𝐒𝐒([𝑥𝑥]𝜂𝜂 𝐒𝐒(𝐊𝐊𝑥𝑥))(𝐊𝐊𝐊𝐊)

by (ξ’) twice ≡ 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)

So, 𝐒𝐒(𝐊𝐊𝐊𝐊) ⊳𝛽𝛽 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)

Under strong reduction S(KI) I, but it doesn’t under this proposal.

Dr. Seldin’s Proposal (unpublished)

Dr. J.P. Seldin also gave a proposal which uses [𝑥𝑥]𝑤𝑤 (weak abstraction).

The definition of new reduction uses the weak rules, and

(ξ`) for all functional U except S, K, I, 𝑈𝑈𝑈𝑈 ⊳ 𝑌𝑌 ⟹ 𝑈𝑈 ⊳ [𝑥𝑥]𝑤𝑤 𝑌𝑌 (𝑥𝑥 ∉ FV(𝑈𝑈));

(𝛽𝛽1) S(S(KX)I)Y ⊳ SXY;

50

(𝛽𝛽2) SX(S(KY)I) ⊳ SXY;

(𝛽𝛽3) S(KU)I ⊳ U for U functional.

Thus axiom schemes would be;

(I) IX ⊳ X;

(K) KXY ⊳ X;

(S) SXYZ ⊳ XZ(YZ);

(ρ) X ⊳ X;

(𝛽𝛽1) S(S(KX)I)Y ⊳ SXY;

(𝛽𝛽2) SX(S(KY)I) ⊳ SXY;

(𝛽𝛽3) S(KU)I ⊳ U for U functional.

The rules of inference are:

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋⊳𝑌𝑌 𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

(ξ`) for all functional U except S, K, I, 𝑈𝑈𝑈𝑈 ⊳ 𝑌𝑌 ⟹ 𝑈𝑈 ⊳ [𝑥𝑥]𝑤𝑤 𝑌𝑌 (𝑥𝑥 ∉ FV(𝑈𝑈));

One problem with this proposal is that it also does not have a complete characterization

of terms in normal form. Let us consider the following example:

51

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥)

⊳𝑤𝑤 𝐈𝐈(𝑥𝑥𝑥𝑥)

⊳𝑤𝑤 𝑥𝑥𝑥𝑥

By (ξ′) 𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 ⊳𝛽𝛽 [𝑦𝑦]𝑤𝑤 (𝑥𝑥𝑥𝑥)

≡ 𝐒𝐒([𝑦𝑦]𝑥𝑥)([𝑦𝑦]𝑦𝑦)

≡ 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈

Hence by ξ again, 𝐒𝐒(𝐊𝐊𝐊𝐊) ⊳𝛽𝛽 [𝑥𝑥]𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈

≡ 𝐒𝐒([𝑥𝑥]𝐒𝐒(𝐊𝐊𝑥𝑥))([𝑥𝑥]𝐈𝐈)

≡ 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)([𝑥𝑥]𝐊𝐊𝑥𝑥))(𝐊𝐊𝐊𝐊)

≡ 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐈𝐈)(𝐊𝐊𝐊𝐊)

⊳𝛽𝛽 𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)

Mezghiche’s Proposal

The abstraction algorithm [𝑥𝑥]𝑐𝑐𝑐𝑐 𝑋𝑋 is defined by [18, Page 2],

[𝑥𝑥]𝑐𝑐𝑐𝑐 𝑋𝑋 ≡ 𝐒𝐒(𝐊𝐊([𝑥𝑥]𝜂𝜂 𝑋𝑋))𝐈𝐈

52

The ⊳𝑐𝑐𝑐𝑐 is the cβ-reduction which is the extension of weak combinatory

reduction [18]. Mezghiche defines his new cβ-reduction by adding to the axioms of weak

combinatory reduction the following two axioms:

(+) 𝐒𝐒(𝐊𝐊𝑈𝑈)𝐈𝐈 ⊳𝑐𝑐𝑐𝑐 𝑈𝑈 if U is functional

(ξ`) 𝑈𝑈𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 𝑌𝑌 ⟹ 𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 [𝑥𝑥]𝑐𝑐𝑐𝑐 𝑌𝑌 if U is functional and 𝑥𝑥 ∉ 𝑈𝑈.

Thus axiom schemes would be;

(I) IX ⊳ X;

(K) KXY ⊳ X;

(S) SXYZ ⊳ XZ(YZ);

(ρ) X ⊳ X;

(+) 𝐒𝐒(𝐊𝐊𝑈𝑈)𝐈𝐈 ⊳𝑐𝑐𝑐𝑐 𝑈𝑈 if U is functional.

The rules of inference are:

(μ) 𝑋𝑋⊳𝑋𝑋`
𝑍𝑍𝑍𝑍⊳𝑍𝑍𝑍𝑍`

(ν) 𝑋𝑋⊳𝑋𝑋`
𝑋𝑋𝑋𝑋⊳𝑋𝑋`𝑍𝑍

(τ) 𝑋𝑋⊳𝑌𝑌 𝑌𝑌⊳𝑍𝑍
𝑋𝑋⊳𝑍𝑍

(ξ`) 𝑈𝑈𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 𝑌𝑌 ⟹ 𝑈𝑈 ⊳𝑐𝑐𝑐𝑐 [𝑥𝑥]𝑐𝑐𝑐𝑐 𝑌𝑌 if U is functional and 𝑥𝑥 ∉ 𝑈𝑈

53

The problem with this proposal is that it has only a partial characterization of

terms in normal form.

Let us consider the following example:

𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳𝑤𝑤 𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝐈𝐈(𝑥𝑥𝑥𝑥) ⊳𝑤𝑤 𝑥𝑥𝑥𝑥

𝐒𝐒(𝐊𝐊𝐊𝐊) ⊳𝑤𝑤 [𝑥𝑥]𝑐𝑐𝑐𝑐 [𝑦𝑦]𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥)

≡ [𝑥𝑥]𝑐𝑐𝑐𝑐 𝐒𝐒(𝐊𝐊([𝑦𝑦]𝜂𝜂 (𝑥𝑥𝑥𝑥))𝐈𝐈

≡ [𝑥𝑥]𝑐𝑐𝑐𝑐 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈

≡ 𝐒𝐒(𝐊𝐊([𝑥𝑥]𝜂𝜂 𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈))𝐈𝐈

≡ 𝐒𝐒(𝐊𝐊(𝐒𝐒([𝑥𝑥]𝜂𝜂 (𝐒𝐒(𝐊𝐊𝑥𝑥))(𝐊𝐊𝐊𝐊))))𝐈𝐈

≡ 𝐒𝐒(𝐊𝐊(𝐒𝐒(𝐒𝐒(𝐊𝐊𝐊𝐊)𝐊𝐊)(𝐊𝐊𝐊𝐊)))𝐈𝐈

Because of the problem discussed above, it would be desirable to have a computer

program in which a user has the power to define the definition/rules of

abstraction/reduction, and the program would then generate examples. It takes a lot of

time to generate examples by hand. If a computer program allowed the user to specify the

abstraction and reduction by appropriate axiom schemes and rules, the program could

then generate examples based on those rules. This would be useful to researchers who

could then work on those examples and try to complete a solution to the problem of

finding a reduction for CL equivalent to λβ-reduction. The next chapter discusses the

program produced and the problems faced while trying to develop that program.

54

Chapter 4

SML/NJ and the Program

 ML is a language that has some extremely interesting features. Its designers

incorporated many modern programming-language ideas, yet the language is surprisingly

easy to learn and use. ML is primarily a functional language, meaning that the basic

mode of computation is the definition and application of functions. Functions can be

defined by the user as in conventional languages, by writing code for the functions. But it

is also possible in ML to treat functions as values and compute new functions from them

with operators like function compositions. ML is a strongly typed language, meaning that

all the values and variables have a type that can be determined at compile time (i.e., by

examining the program but not running it). A value of one type cannot be given to a

variable of another type. For example, the integer value 4 cannot be the value of a real-

valued variable.

 CL terms are defined through an inductive definition and functions are defined

recursively. CL uses inductive and recursive definitions extensively (this is discussed in

appendix A). This is the reason I chose ML for the program. I used SML/NJ (Standard

ML/New Jersey) for MAC and SML/NJ for Windows for this program.

55

New method for expressing strong reduction

 The way strong reduction was defined made it difficult to write an

implementation program. While performing strong reduction, one does not only perform

the reduction operation but also abstractions, so as one progresses, a number of

abstractions and reductions are performed. The way these equations were written earlier

didn’t make it very clear as to when exactly a reduction operation was performed. Let us

take the example that we had in chapter 3 for strong reduction, SK KI. Let us reduce

this using both the old and the new method,

Old method:

𝐒𝐒𝐒𝐒

[𝑥𝑥]𝐒𝐒𝐒𝐒𝑥𝑥

[𝑥𝑥][𝑦𝑦]𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥

[𝑥𝑥][𝑦𝑦]𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥)

[𝑥𝑥][𝑦𝑦]𝑦𝑦

[𝑥𝑥]𝐈𝐈

𝐊𝐊𝐊𝐊

Reduction

Abstraction

Reduction

56

New method:

𝐒𝐒𝐒𝐒

[𝑥𝑥][[𝐒𝐒𝐒𝐒]]𝑥𝑥

[𝑥𝑥](𝐒𝐒𝐒𝐒𝑥𝑥)

[𝑥𝑥][𝑦𝑦][[𝐒𝐒𝐒𝐒𝑥𝑥]]𝑦𝑦

[𝑥𝑥][𝑦𝑦][[𝐊𝐊]]𝑦𝑦 [[𝑥𝑥]]𝑦𝑦

[𝑥𝑥][𝑦𝑦](𝐊𝐊𝑦𝑦)(𝑥𝑥𝑥𝑥)

[𝑥𝑥][𝑦𝑦]𝑦𝑦

[𝑥𝑥]𝐈𝐈

𝐊𝐊𝐊𝐊

In first example, there are two reduction operations, SKxy reduces to Ky(xy) and Ky(xy)

reduces to y. But of these, only the second one is relevant. The reason the first is not

relevant is, that when we do the expansion for y and get [x] [y] SKxy, we have two

choices. We can either perform the reduction operation and get Ky(xy). Since 𝐒𝐒𝑥𝑥𝑥𝑥𝑥𝑥 ⊳

𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦), hence 𝐒𝐒𝐒𝐒𝑥𝑥𝑥𝑥 ⊳ 𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥); where 𝑥𝑥 = 𝐊𝐊, 𝑦𝑦 = 𝑥𝑥 and 𝑧𝑧 = 𝑦𝑦. Alternatively we could

perform the abstraction operation and get SKx again. By the application of clause (c) as

discussed in Chapter 2, Definition 2.7, [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈. Hence, [𝑥𝑥, 𝑦𝑦]. (𝐒𝐒𝐒𝐒𝑥𝑥)𝑦𝑦 ≡ 𝐒𝐒𝐒𝐒𝑥𝑥; where

𝑥𝑥 = 𝑦𝑦 and 𝑈𝑈 = 𝐒𝐒𝐒𝐒𝑥𝑥. While this is not a problem when doing it on paper, when one

attempts to make a computer program, this would cause the program to go into an infinite

Reduction

57

loop. Curry’s linearization of strong reduction could be helpful here [5, Page 225]. Here,

a type IIb step, which says 𝐒𝐒𝑈𝑈𝑈𝑈 ⟹ 𝜆𝜆𝜆𝜆. 𝑈𝑈𝑈𝑈(𝑉𝑉𝑉𝑉), could replace the first contraction to

obtain [𝑥𝑥][𝑦𝑦]𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥). This would identify the second contraction as the crucial one and

would prevent the evaluation before it. This idea was captured by Dr. Robin Cockett who

developed a semantic translation based on it. The semantic translation developed by him

is as follows:

Axiom schemes:

𝑀𝑀 ⇒ [𝑥𝑥][[𝑀𝑀]]𝑥𝑥 ,

[[𝐒𝐒𝑀𝑀𝑀𝑀]]𝑥𝑥 ⇒ [[𝑀𝑀]]𝑥𝑥 [[𝑁𝑁]]𝑥𝑥 ,

[[𝐒𝐒𝑁𝑁]]𝑥𝑥 ⟹ 𝐒𝐒𝑁𝑁𝑁𝑁,

[[𝐊𝐊𝑁𝑁]]𝑥𝑥 ⇒ 𝑁𝑁,

[[𝐒𝐒]]𝑥𝑥 ⇒ 𝐒𝐒𝑥𝑥,

[[𝐊𝐊]]𝑥𝑥 ⇒ 𝐊𝐊𝑥𝑥,

[[𝑈𝑈]]𝑥𝑥 ⇒ 𝑈𝑈𝑈𝑈.

Contraction steps:

𝐒𝐒𝑥𝑥𝑥𝑥𝑥𝑥 ⊳ 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦),

𝐊𝐊𝑥𝑥𝑥𝑥 ⊳ 𝑥𝑥,

𝐈𝐈𝑥𝑥 ⊳ 𝑥𝑥,

𝐒𝐒(𝐊𝐊𝑥𝑥)𝐈𝐈 ⊳ 𝑥𝑥,

58

𝐒𝐒(𝐊𝐊𝑥𝑥)(𝐊𝐊𝑦𝑦) ⊳ 𝐊𝐊(𝑥𝑥𝑥𝑥).

 Hence, in the second method, when we get [𝑥𝑥][𝑦𝑦][[𝐒𝐒𝐒𝐒𝑥𝑥]]𝑦𝑦 , we can tell the

program to only perform a reduction operation and thus avoid infinitely looping. Also,

the abstraction is not evaluated until either one of the contraction steps has occurred or no

combinators are left to perform further contractions.

 This new method is yet to be published.

Let us take a look at another example.

S(KI) I

Old method:

𝐒𝐒(𝐊𝐊𝐊𝐊)

[𝑥𝑥]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥

[𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥

[𝑥𝑥][𝑦𝑦]𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥)

[𝑥𝑥][𝑦𝑦]𝐈𝐈(𝑥𝑥𝑥𝑥)

[𝑥𝑥][𝑦𝑦]𝑥𝑥𝑥𝑥

[𝑥𝑥]𝑥𝑥

𝐈𝐈

Abstraction

Reduction

Reduction

59

New method:

𝐒𝐒(𝐊𝐊𝐊𝐊)

[𝑥𝑥][[𝐒𝐒(𝐊𝐊𝐊𝐊)]]𝑥𝑥

[𝑥𝑥]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥

[𝑥𝑥][𝑦𝑦][[𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥]]𝑦𝑦

[𝑥𝑥][𝑦𝑦][[𝐊𝐊𝐊𝐊]]𝑦𝑦 [[𝑥𝑥]]𝑦𝑦

[𝑥𝑥][𝑦𝑦]𝐈𝐈(𝑥𝑥𝑥𝑥)

[𝑥𝑥][𝑦𝑦]𝑥𝑥𝑥𝑥

[𝑥𝑥]𝑥𝑥

𝐈𝐈

As we can see in the above example, once we get to [𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥, we have two

options; either to perform the reduction operation and obtain [𝑥𝑥][𝑦𝑦]𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥),

([𝑥𝑥, 𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥𝑥𝑥 ⊳ [𝑥𝑥, 𝑦𝑦]𝐊𝐊𝐊𝐊𝑦𝑦(𝑥𝑥𝑥𝑥) since 𝐒𝐒𝑥𝑥𝑥𝑥𝑥𝑥 ⊳ 𝑥𝑥𝑥𝑥(𝑦𝑦𝑦𝑦)) or to perform the abstraction

operation and obtain [𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊)𝑥𝑥 back again (by the application of clause (c) which

states that [𝑥𝑥]. 𝑈𝑈𝑈𝑈 ≡ 𝑈𝑈) and enter an infinite loop. But in the new method, the computer

program would clearly know that it needs to perform a reduction operation at this stage.

Yet again, when we have [𝑥𝑥][𝑦𝑦]𝐈𝐈(𝑥𝑥𝑥𝑥), we can either perform a reduction operation and

get [𝑥𝑥][𝑦𝑦]𝑥𝑥𝑥𝑥 or perform an abstraction operation and obtain [𝑥𝑥][𝑦𝑦]𝐒𝐒(𝐊𝐊𝐊𝐊) again and enter

Reduction

60

an infinite loop. But with the new translation method, the only operation that we can

perform at this point is reduction.

The program

Before I start the description of the program and the difficulties that I faced in

generating it, I thank Dr. Robin Cockett, his post-doctorate student Brian Redmond, and

his graduate student Sean Nichols. Without their help, this program could not have been

written.

I start the program with defining datatypes [29] where variables, constants, I, K, S

and application of a combinatory term to another combinatory term are defined. As

discussed in Chapter 2, I, K and S are the combinators. The application of a combinatory

term to another combinatory term is a recursive step. Dr. Robin Cockett then helped me

in coding combinatory algebra reducer which defines all the basic reductions. There is

also a pretty printer which uses the App, I, K and S defined above to print the result of

reduction. User can type in examples and test the output by calling them. The Lprint2

function prints the result of the strong reduction operation. Without this function, the

result looks as follows;

- reducestrong (20, App (App (S, App (K, Var "x")), App (K,

Var "y")));

val it = (0,App (K,App (#,#))) : int * CombTerm

but upon application of this function, the result is:

61

- Lprint2 (reducestrong (20, App (App (S, App (K, Var

"x")), App (K, Var "y"))));

val it = "0: K(xy)" : string

The next step was to define some basic set operations: removing an element from

a set, testing membership in a set, forming the union of two sets, and forming the

intersection of two sets. These operations were then used in defining the set of free

variables. Some of the set operations are not used but they are there should a user need to

write code where he needs these set operations.

Next, a function named Largest is defined. This function finds the largest

element in a given list. Then, a new function named freshvars was defined. Here, we

use the getOpt function [28]. The way getOpt works is that it takes an option `a and

returns some of `a. If there is nothing to return, it returns none.

Examples:

1. option int

NONE

SOME 5

SOME 17

2. option string

NONE

SOME “xyz”

62

SOME “abc”

In order to perform strong reduction, we need to add variables at the end on the

expression. But it is quite possible that the expression that we have already contains a

variable. So we first have to scan the entire expression and find all the free variables in it.

In the program, we have used a naming scheme as “_1”, “_2” … etc. So we discard those

variables that don’t fit the pattern “_n”. Now of the remaining variables, we remove the

“_” so that “_n” will be “n” and then turn it into a number. In order to do this, we use

Int.fromString. This changes the string to option int. We then use getOpt, with

default = 0, to get int from this. Now, we find the largest number, add 1 to it, turn it back

into a string and prepend “_”.

Let us consider an example to understand what exactly is happening here. Suppose we

have an expression SKx. So if we want to perform a strong reduction on this, we would

add y to the end and a [y] to the front of it and then perform the operation. What this

program would do is it would scan the given expression and find all the free variables. x

is free in SKx. So the next thing that it would do is discard those that don’t fit the pattern

“_n”, in this case S and K. So now, we are left with one element which is x or “_1”. So it

would then remove the “_” and take 1. It will then add 1 to it to get 2, turn it back to

string and prepend “_” to it to get “_2”. This means that it would add y to the end.

 Next, free variables and some translations from combinatory logic to lambda

calculus and vice versa were defined. In order to do this, new datatypes and free variables

had to be defined again. The next major thing to define was λ and CL abstraction and λ

63

and CL application to a term. Here, all the abstraction rules discussed in chapter 2 were

defined.

Next, we proceeded with defining weak abstraction. Here, clause (c) from the

definition (code) of trans2b_abst had to be removed. As discussed in chapter 3,

weak abstraction is similar to abstraction in CL but with clause (c) omitted. Then, the

definition of a functional term was coded in. A CL-term with one of the six forms SXY

(for some X, Y), SX, KX, S, K, I, is called functional or fnl [12, Definition 9.6]. Also,

beta abstraction was defined which is very similar to CL abstraction defined earlier. We

then created another function trans2beta_abst_nf in which we exclude the

functional check. This is because one might need to attach terms which at certain times

might not be functional.

There is a counter attached to the front of every reduction which tells the program

how many times it should perform the reduction operation. When the counter reaches 0,

the program stops the reduction and outputs the result.

 Now a user can type in the expression and call the reducestrong function to

perform the strong reduction. Here are a few examples with their outputs:

If the expression is Kx Kx, then it can be executed in one of the following three ways:

1. val Strg_ex_1 = App (K,Var "x");

Output;

val Strg_ex_1 = App (K,Var "x") : CombTerm

64

2. reducestrong (20, App(K,Var "x"));

Output;

val it = (0,App (K,Var "x")) : int * CombTerm

3. Lprint2 (reducestrong (20, App (K, Var "x")));

Output;

val it = "0: Kx" : string

Similarly, for SK KI;

1. val Strg_ex_2 = App (S, K);

Output;

val Strg_ex_2 = App (S,K) : CombTerm

2. reducestrong (15, App (S, K));

Output;

val it = (0,App (K,I)) : int * CombTerm

3. Lprint2 (reducestrong (15, App (S, K)));

Output;

val it = "0: KI" : string

For S(Kx)(Ky) K(xy);

65

1. val Strg_ex_3 = App (App (S, App (K, Var "x")), App

(K, Var "y"));

Output;

val Strg_ex_3 = App (App (S,App #),App (K,Var #)) :

CombTerm

2. reducestrong (25, App (App (S, App (K, Var "x")), App

(K, Var "y")));

Output;

val it = (0,App (K,App (#,#))) : int * CombTerm

3. Lprint2 (reducestrong (25, App (App (S, App (K, Var

"x")), App (K, Var "y"))));

Output;

val it = "0: K(xy)" : string

For S(KI) I;

1. val Strg_ex_4 = App (S, App (K, I));

Output;

val Strg_ex_4 = App (S,App (K,I)) : CombTerm

2. reducestrong (20, App (S, App (K, I)));

66

Output;

val it = (0,I) : int * CombTerm

3. Lprint2 (reducestrong (20, App (S, App (K, I))));

Output;

val it = "0: I" : string

For S(KS)(S(KK)) K;

1. val Strg_ex_5 = App (App (S, App (K, S)), App (S, App

(K, K)));

Output;

val Strg_ex_5 = App (App (S,App #),App (S,App #)) :

CombTerm

2. reducestrong (20, App (App (S, App (K, S)), App (S,

App (K, K))));

Output;

val it = (0,K) : int * CombTerm

3. Lprint2 (reducestrong (20, App (App (S, App (K, S)),

App (S, App (K, K)))));

Output;

67

val it = "0: K" : string

For S(S(KS)(S(KK)K))(K(SKK)) K;

1. val Strg_ex_6 = App (App (S, App (App (S, App (K, S)),

App (App (S, App(K, K)), K))), App (K, App(App (S, K),

K)));

Output;

val Strg_ex_6 = App (App (S,App #),App (K,App #)) :

CombTerm

2. reducestrong (20, App (App (S, App (App (S, App (K,

S)), App (App (S, App(K, K)), K))), App (K, App(App (S, K),

K))));

Output;

val it = (0,K) : int * CombTerm

3. Lprint2 (reducestrong (20, App (App (S, App (App (S,

App (K, S)), App (App (S, App(K, K)), K))), App (K, App(App

(S, K), K)))));

Output;

val it = "0: K" : string

68

References

[1] Barendregt H., The Lambda Calculus – Its syntax and Semantics, Elsevier Science

Publishers B.V., 1984.

[2] Bunder M., Hindley R. and Seldin J., On Adding (ξ) to Weak Equality in

Combinatory Logic, The Journal of Symbolic Logic, Volume 54, Number 2, Pages 590-

607, 1989.

[3] Cagman N, Hindley R., Combinatory Weak Reduction in Lambda Calculus,

Theoretical Computer Science, Volume 198, Pages 239-247, 1998.

[4] Church A., The Calculi of Lambda-Conversion, Princeton University Press, 1941.

[5] Curry H., Feys R. and Craig W, Combinatory Logic Volume 1, North-Holland

Publishing Company-Amsterdam, 1968.

[6] Curry H., Hindley R. and Seldin J., Combinatory Logic Volume 2, North-Holland

Publishing Company-Amsterdam, 1972.

[7] Curry H., Hindley R. and Seldin J., Beta Strong Reduction in Combinatory Logic, The

Journal of Symbolic Logic, Volume 49, Number 2, Pages 688-689, 1984.

[8] Eisenbach S., Functional Programming Languages, Tools and Architectures, Ellis

Horwood Limited, 1987.

[9] Hindley R., Axioms for Strong Reduction in Combinatory Logic, The Journal of

Symbolic Logic, Volume 32, Number 2, Pages 224-236, 1967.

69

[10] Hindley R., Combinatory Reductions and Lambda Reductions Compared, Zeitschr.

j. math. Logik und Grundlagen d. Math., Volume 23, Pages 169-180, 1977.

[11] Hindley R., The Church-Rosser Property and a Result in Combinatory Logic, PhD.

Dissertation, University of Newcastle, 1964.

[12] Hindley R. and Seldin J., Introduction to Combinators and Lambda-Calculus,

Cambridge University Press, 2008.

[13] Klop J., Combinatory Reduction Systems, Dissertation, University of Amsterdam,

Mathematisch Centrum, 1980.

[14] Lercher B., Lambda-calculus Terms That Reduce to Themselves, Notre Dame

Journal of Formal Logic, Volume XVII, Number 2, Pages 291-292, 1976.

[15] Lercher B., Strong Reduction and Normal Forms in Combinatory Logic, The

Journal of Symbolic Logic, Volume 32, Number 2, Pages 213-223, 1967.

[16] Lercher B., Strong Reduction and Recursion in Combinatory Logic, PhD.

Dissertation, The Pennsylvania State University, 1963.

[17] Lercher B., The Decidability of Hindley’s Axioms for Strong Reduction, The

Journal of Symbolic Logic, Volume 32, Number 2, Pages 237-239, 1967.

[18] Mezghiche M., Note on Pseudo-cβ Normal Form in Combinatory Logic, Theoretical

Computer Science, Volume 66, Pages 323-331, 1989.

[19] Mezghiche M., cβ-Machine with λβ-reduction, Theoretical Computer Science,

Volume, 189, Pages 221-228, 1997.

70

[20] Paulson L., ML for the Working Programmer, Cambridge University Press, 1991.

[21] Rosser B., Highlights of the History of the Lambda-Calculus, Annals of the History

of Computing, Volume 6, Number 4, Pages 337-349, 1984.

[22] Schönfinkel M., On the Building Blocks of Mathematical Logic, van Heijenoort,

From Frege to G𝑜̈𝑜del A Source Book in Mathematical Logic, 1879-1931, Harvard

University Press, 1977.

[23] Seldin J., On List and Other Abstract Data Types in the Calculus of Construction,

Math. Struct. In Comp. Science, vol. 10, Cambridge University Press, Pages 261-276,

2000.

[24] Ullman J., Elements of ML Programming, ML 97 Edition, Prentice Hall, 1997.

[25] Ullman J., Fundamental Concepts of Programming Systems, Addison-Wesley

Publishing Company, 1976.

[26] Baudinet M. and MacQueen D., Tree Pattern Matching for ML (extended abstract),

http://www.smlnj.org/compiler-notes/85-note-baudinet.ps, as accessed on 01-04-2009.

[27] Barendregt H. and Barendsen E., Introduction to Lambda Calculus,

http://www.cs.ru.nl/E.Barendsen/onderwijs/sl2/materiaal/lambda.pdf, as accessed on 02-

04-2009.

[28] http://www.smlnj.org/index.html as accessed on 02-06-2008.

[29] http://www.standardml.org/Basis/date.html, as accessed on 04-04-2009.

71

Appendix A

Short tutorial for SML/NJ

Standard ML is a safe, modular, strict, functional, polymorphic programming

language with compile-time type checking and type inference, garbage collection,

exception handling, immutable data types and updatable references, abstract data types,

and parametric modules. It has efficient implementations and a formal definition with a

proof of soundness [28].

To run SML/NJ in interactive mode [24, Chapter 1], in response to the command prompt

type

 sml

SML/NJ will respond with:

 Standard ML of New Jersey…

 -

The dash in the second line is ML’s prompt. The prompt invites us to type an expression,

and ML will respond with the value of the expression.

 When we are in interactive mode, the simplest thing we can do is type an

expression in response to the ML prompt (-). ML will respond with value and its type.

Example: Here is an example of an expression that we may type and the ML response.

72

 1+2*3;

 val it = 7 : int

Here, we have typed the expression 1 + 2 * 3, and ML responds that the value of variable

it is 7, and that the type of this value is integer. The variable ‘it’ plays a special role in

ML. It receives the value of any expression that we type. Two useful points to observe

are;

• An expression must be followed by a semicolon to tell the ML system that the

instruction is finished. If ML expects more input when a <return> is typed, it will

respond with the prompt = instead of -. The = sign is a warning that we have not

finished our input expression.

• The response of ML to an expression is:

1. The word val standing for “value,”

2. The variable name it, which stands for the previous expression,

3. An equal sign,

4. The value of expression (7 in this example),

5. A colon, which in ML is the symbol that associates a value with its type,

and

6. An expression that denotes the type of the value. In our example, the value

of the expression is an integer, so the type int follows the colon.

The keyword fun introduces function definitions. The simplest form of function

declaration is

fun<identifier>(<parameter list>) = <expression>;

73

That is, the keyword fun is followed by the name of the function, a list of the parameters

for that function, an equal-sign, and an expression involving the parameters. This

expression becomes the value of the function when we give the function arguments to

correspond to its parameters.

Example:

 fun square(x:real) = x*x;

 val square = fn : real  real

The function square has one parameter, x. By following parameter x with a colon and the

type real, we declare to ML that the parameter of function square is of type real. ML then

infers that the expression x*x represents real multiplication, and therefore the value

returned by square is of type real.

 It is necessary to indicate that x is real somewhere. Otherwise, ML will use a

colon and type integer, for x, resulting in a function that can square integers but not reals:

 fun square(x) = x*x;

 val square = fn : int  int

As an example of the use of the square function, suppose we have defined the variable pi

and radius to have values 3.14159 and 4.0, as in previous example.

 pi*square(radius);

 val it = 50.26544

Following is the program that produces the largest of three real numbers.

74

 fun max3(a:real, b, c) = (* maximum of three reals *)

 if a>b then

 if a>c then a

 else c

 else

 if b>c then b

 else c;

 val max3 = fn : real * real * real  real

 val t = (1.0, 2.0, 3.0);

 max3(t);

ML produces the value 3.0.

Here is an example which uses the let function which is used in the program:

 fun factorial n =

 let

 fun tail_fact p 0 = p

 | tail_fact p m = tail_fact (p * m) (m - 1)

 in

 tail_fact 1 n

 end

75

 All these programs are of type-and-execute fashion i.e. we type the program on

the ML window and ML executes them there itself. But there is a way by which we can

load and execute ML programs previously saved onto our hard drive. To do this, we use

the ‘use’ command. Its syntax is –use”<program name>.sml”; [28]. We can type ML

programs in Notepad (Windows) or TextEdit (Macintosh), but while saving, we have to

save them with .sml extension.

Recursive Functions

 It is possible for ML functions to be recursive (as mentioned at the start of this

chapter), that is defined in terms of themselves, either directly or indirectly [24, Chapter

1]. Normally a recursive function consists of

1. A basis, where for sufficiently small arguments we compute the result without

making any recursive calls, and

2. An inductive step, where for arguments not handled by the basis, we call the

function recursively, one or more times, with smaller arguments.

Example

 Let us write a function reverse(L) that produces the reverse of the list L3

BASIS: The basis is the empty list; the reverse of the empty list is the empty list.

. For

example, reverse([1,2,3]) produces the list [3,2,1].

76

INDUCTION: For the inductive step, suppose L has at least one element. Let the first or

head element of L be h, and let the tail or remaining elements of L be the list T. Then we

can construct the reverse of list L by reversing T and following it by the element h.

 For instance, if L is [1,2,3], then h = 1, T is [2,3], the reverse of T is [3,2], and the

reverse of T concatenated with the list containing only h is [3,2]@[1], or [3,2,1].

 fun reverse(L) =

 if L = nil then nil

 else reverse(tl(L)) @ [hd(L)];

 val reverse = fn : ‘a list  ‘a list

We see the ML definition of reverse that follows the basis and inductive step.

 Now, let us revisit the definition of term that we presented in Chapter 2. The set

of expressions called CL-terms is defined inductively as follows:

(c) All variables and atomic constants, including I, K, S, are CL-terms.

(d) If X and Y are CL-terms, then so is (XY).

Since term is a recursive definition, it should easily be coded in ML, i.e. it should

be fairly easy to write an ML program of it.

77

Exiting the interactive system

 Typing control-D (EOF) at top level will cause an exit to the shell (or the parent

process from which sml was run). One can also terminate by calling

OS.Process.exit(OS.Process.success).

78

Appendix B

The program (code)

datatype CombTerm = Var of string

 | Const of string

 | I | S | K

 | App of CombTerm * CombTerm;

fun isVar (Var _) = true

 | isVar _ = false;

fun isConst (Const _) = true

 | isConst _ = false;

(* Here is a little combinatory algebra reducer *)

fun reduce (n,t)

 = case (n,t) of

 (0,t) => (0,t)

 | (n,App (App(K,t1),_)) => reduce (n-1,t1)

 | (n,App (App (App (S,t1),t2),t3)) =>

 reduce (n-
1,App(App(t1,t3),App(t2,t3)))

 | (n,App (I,t1)) => reduce (n-1,t1)

 | (n,App(t1,t2)) => (case (reduce (n,t1)) of

79

 (m,t1') => (case (reduce (m,t2))
of

 (m',t2') =>

 if n > m' then reduce
(m',App(t1',t2'))

 else (m',App(t1',t2'))))

 | (n,S) => (n,S)

 | (n,K) => (n,K)

 | (n,I) => (n,I)

 | (n,Var s) => (n,Var s)

 | (n,Const s) => (n,Const s);

(* A pretty printer *)

fun Lprint I = "I"

 | Lprint S = "S"

 | Lprint K = "K"

 | Lprint (Const s) = s

 | Lprint (Var s) = s

 | Lprint (App (t1, App(t2,t3))) = (Lprint t1)^"("^(Lprint
(App(t2,t3)))^")"

 | Lprint (App (t1,t2)) = (Lprint t1)^(Lprint t2);

fun Lprint2 (n, t) = (Int.toString n) ^ ": " ^ (Lprint t);

(* Examples *)

80

reduce (4,App(App(App(S,K),K),Var "x"));

reduce (4,App(Const "a",App(App(K,Var "x"),S)));

val Omega = App(App(App(S,I),I),App(App(S,I),I));

Lprint ((fn (x,y) => y) (reduce (3,Omega)));

val t1 = App(App(App(S,App(K,Var "x")),App(K,Var
"y")),Omega);

fun Preduce n t = Lprint ((fn (x,y) => y) (reduce(n, t)));

(**

 *

 * Some basic utilities for handling sets:

 *

 * Removing an element from a set (represented as a list)

******)

(* Removing an element from a set (represented as a list)
*)

fun remove v [] = []

 | remove v (y :: ys) =

81

 if y = v then remove v ys

 else y ::(remove v ys);

(* testing membership in a set *)

fun member x [] = false

 | member x (y::ys) = if x=y then true

 else (member x ys);

(* Forming the union of two sets *)

fun union [] ys = ys

 | union xs [] = xs

 | union (x::xs) ys =

 if (member x ys) then (union xs ys)

 else x::(union xs ys);

(* Forming the intersection of two sets *)

fun intersection [] ys = []

 | intersection (x::xs) ys =

 if (member x ys) then x::(intersection xs ys)

 else (intersection xs ys);

(* Filter elements out of a list *)

fun filter f [] = []

82

 | filter f (x::xs) = if (f x) then x::(filter f xs)

 else filter f xs;

(**

 *

 * To calculate the free variables of a term

 *

****)

fun freevars (Var x) = [x]

 | freevars (App (t1,t2)) = union (freevars t1) (freevars
t2)

 | freevars _ = [];

fun largest [] = 0

 | largest (x::xs) = let val y = largest xs

 in

 if x > y then x else y

 end;

fun freshvar t = "_" ^ Int.toString (largest (map

 (fn s =>
getOpt(Int.fromString(String.extract (s, 1, NONE)), 0))

 (filter (fn s => String.extract (s, 0,
SOME 1) = "_") (freevars t))) + 1);

83

(**

 * TRANSLATIONS
*

**********)

(* First we need a corresponding datatype for lambda terms
*)

datatype LambdaTerm = LVar of string

 | LAbst of (string * LambdaTerm)

 | LApp of (LambdaTerm * LambdaTerm)

 | LConst of string;

fun freeLvars (LVar x) = [x]

 | freeLvars (LAbst(x,t)) = remove x (freeLvars t)

 | freeLvars (LApp(t1,t2)) = union (freeLvars t1)
(freeLvars t2)

 | freeLvars _ = [];

84

(* the easy translation first from combinatory logic to the
lambda

calculus: *)

fun trans_C2L (Var x) = LVar x

 | trans_C2L (Const c) = LConst c

 | trans_C2L I = LAbst ("x",LVar "x")

 | trans_C2L K = LAbst ("x",LAbst ("y",LVar "x"))

 | trans_C2L S = LAbst ("x",LAbst ("y",LAbst ("z"

 ,LApp (LApp (LVar "x",LVar "z"),LApp (LVar
"y",LVar "z")))))

 | trans_C2L (App(t1,t2)) = LApp(trans_C2L t1,trans_C2L
t2);

(* Now a little more challenging: the translation from
lambda

 * calculus to combinatory logic -- recall there is more
than one

 * possible translation!! Here is the simplest tarnslation
... *)

(* translating abstraction ... *)

fun trans_abst x (Var y) = if x=y then I

 else App(K,Var y)

 | trans_abst x (App(c1,c2)) = App(App(S,trans_abst x
c1),trans_abst x c2)

 | trans_abst x v = App(K,v)

85

fun trans_L2C (LVar x) = (Var x)

 | trans_L2C (LConst c) = (Const c)

 | trans_L2C (LAbst(x,t)) = trans_abst x (trans_L2C t)

 | trans_L2C (LApp(t1,t2)) = App(trans_L2C t1,trans_L2C
t2);

(* Here is the other translation which tests to see whether
variables

 * are free .. *)

fun trans2b_abst x (Var y) = if x=y then I

 else App(K,Var y)

 | trans2b_abst x (App(c1,c2)) = App(App(S,trans2_abst x
c1),trans2_abst x c2)

 | trans2b_abst x v = App(K,v)

and trans2a_abst x (App(u,Var y))

 = if x=y andalso not (member x (freevars u)) then u

 else trans2b_abst x (App(u,Var y))

 | trans2a_abst x n = trans2b_abst x n

and trans2_abst x n = if not (member x (freevars n)) then
App(K,n)

 else trans2a_abst x n;

fun trans2_L2C (LVar x) = (Var x)

 | trans2_L2C (LConst c) = (Const c)

 | trans2_L2C (LAbst(x,t)) = trans2_abst x (trans2_L2C t)

86

 | trans2_L2C (LApp(t1,t2)) = App(trans2_L2C t1,trans2_L2C
t2);

(* examples *)

val Puff = LAbst("x",LApp(LVar "x",LVar "x"));

val LOmega = LApp(Puff,Puff);

val fPuff = LAbst("x",LApp(LApp(LVar "f",LVar "x"),LVar
"x"));

val Y = LAbst("f",LApp(fPuff,fPuff));

fun pL2C x = print((Lprint (trans_L2C x))^"\n");

fun p2L2C x = print((Lprint (trans2_L2C x))^"\n");

(****Weak Abstraction****)

fun trans2w_abst x (Var y) = if x=y then I

 else App(K,Var y)

 | trans2w_abst x (App(c1,c2)) = App(App(S,trans2_abst x
c1),trans2_abst x c2)

 | trans2w_abst x v = App(K,v)

and trans2a_abst x (App(u,Var y))

87

 = trans2w_abst x (App(u,Var y))

 | trans2a_abst x n = trans2b_abst x n

and trans2_abst x n = if not (member x (freevars n)) then
App(K,n)

 else trans2w_abst x n;

(*******Functional Term*******)

fun fnl (App(App(S, x), y)) = true

 | fnl (App(S, x)) = true

 | fnl (App(K, x)) = true

 | fnl S = true

 | fnl K = true

 | fnl I = true

 | fnl x = false;

(******Beta Abstraction*****)

fun trans2beta_abst x (Var y) = if x=y then I

 else App(K,Var y)

 | trans2beta_abst x (App(c1,c2)) = App(App(S,trans2_abst
x c1),trans2_abst

88

x c2)

 | trans2beta_abst x v = App(K,v)

and trans2a_abst x (App(u,Var y))

 = if x=y andalso not (member x (freevars u)) andalso
fnl u then u

 else trans2beta_abst x (App(u,Var y))

 | trans2a_abst x n = trans2beta_abst x n

and trans2_abst x n = if not (member x (freevars n)) then
App(K,n)

 else trans2a_abst x n;

fun trans2_L2C (LVar x) = (Var x)

 | trans2_L2C (LConst c) = (Const c)

 | trans2_L2C (LAbst(x,t)) = trans2_abst x (trans2_L2C t)

 | trans2_L2C (LApp(t1,t2)) = App(trans2_L2C t1,trans2_L2C
t2);

(* Same as above, but without the "is functional" check in
Clause C ("_nf" stands for non functional) *)

fun trans2beta_abst_nf x (Var y) = if x=y then I

 else App(K,Var y)

 | trans2beta_abst_nf x (App(c1,c2)) =
App(App(S,trans2_abst_nf x c1),trans2_abst_nf x c2)

 | trans2beta_abst_nf x v = App(K,v)

and trans2a_abst_nf x (App(u,Var y))

89

 = if x=y andalso not (member x (freevars u)) then u

 else trans2beta_abst_nf x (App(u,Var y))

 | trans2a_abst_nf x n = trans2beta_abst_nf x n

and trans2_abst_nf x n = if not (member x (freevars n))
then App(K,n)

 else trans2a_abst_nf x n;

(*******Strong Reduction********)

fun reducestrong (0,t) = (0,t)

 | reducestrong (n,App (App(K,t1),_)) = reducestrong (n-
1,t1)

 | reducestrong (n,App (App (App (S,t1),t2),t3)) =

 reducestrong (n-
1,App(App(t1,t3),App(t2,t3)))

 | reducestrong (n,App (I,t1)) = reducestrong (n-1,t1)

 | reducestrong (n,App(t1,t2)) = (case (attempt_noxi
(n,t1)) of

 (m,t1') => (case (attempt_noxi
(m,t2)) of

 (m',t2') =>

 if n > m' then
reducestrong (m',App(t1',t2'))

 else xirule
(n, App(t1,t2)))) (* (m',App(t1',t2'))))
*)

 | reducestrong (n,S) = (n,S)

90

 | reducestrong (n,K) = (n,K)

 | reducestrong (n,I) = (n,I)

 | reducestrong (n,Var s) = (n,Var s)

 | reducestrong (n,Const s) = (n,Const s)

and attempt_noxi (0,t) = (0,t)

 | attempt_noxi (n,App (App(K,t1),_)) = attempt_noxi (n-
1,t1)

 | attempt_noxi (n,App (App (App (S,t1),t2),t3)) =

 attempt_noxi (n-
1,App(App(t1,t3),App(t2,t3)))

 | attempt_noxi (n,App (I,t1)) = attempt_noxi (n-1,t1)

 | attempt_noxi (n,App(t1,t2)) = (case (attempt_noxi
(n,t1)) of

 (m,t1') => (case (attempt_noxi
(m,t2)) of

 (m',t2') =>

 if n > m' then
attempt_noxi (m',App(t1',t2'))

 else
(m',App(t1',t2'))))

 | attempt_noxi (n,S) = (n,S)

 | attempt_noxi (n,K) = (n,K)

 | attempt_noxi (n,I) = (n,I)

 | attempt_noxi (n,Var s) = (n,Var s)

 | attempt_noxi (n,Const s) = (n,Const s)

and xirule (n, t)

 = let val fv = freshvar t

 val y = reducexi (n-1, App (t, Var fv))

91

 in

 case y of (k, t2) => if (k = ~1)

 then (n,t)

(* else (k,t2) *)

 else let val z = reducestrong (k,
t2)

 in

 case z of (m, t3) => (0,
trans2_abst_nf fv t3)

 end

 end

and reducexi (0,t) = (~1,t)

 | reducexi (n,App (App(K,t1),_)) = (n,t1)

 | reducexi (n,App (App (App (S,t1),t2),t3)) =

 (n,App(App(t1,t3),App(t2,t3)))

 | reducexi (n,App (I,t1)) = (n,t1)

 | reducexi (n,App(t1,t2)) = xirule (n, App(t1,t2));

(*

 * Note in the last case above, the Xi (Xi prime actually)
rule is:

 * if Ux >- Y then U >- [x].Y (for x not in FV(U))

 * we get to pick our var. x, so we just pick it such

 * that it is not free in U, therefore we have only

 * to check the other condition (that Ux >- Y)

 *)

92

(* Some examples to use with Strong Reduction *)

val Strg_ex_1 = App (K,Var "x");

 (* Kx >- Kx *)

val Strg_ex_2 = App (S, K);

 (* SK >- KI *)

val Strg_ex_3 = App (App (S, App (K, Var "x")), App (K, Var
"y"));

 (* S(Kx)(Ky) >- K(xy) *)

val Strg_ex_4 = App (S, App (K, I));

 (* S(KI) >- I *)

val Strg_ex_5 = App (App (S, App (K, S)), App (S, App (K,
K)));

 (* S(KS)(S(KK)) >- K *)

val Strg_ex_6 = App (App (S, App (App (S, App (K, S)), App
(App (S, App(K, K)), K))), App (K, App(App (S, K), K)));

 (* S(S(KS)(S(KK)K))(K(SKK)) >- K *)

93

The Output

Standard ML of New Jersey, Version 110.0.7, September 28,
2000 [CM&CMB]

- use "D:\\prog-25mar.sml";

[opening D:\prog-25mar.sml]

datatype CombTerm

 = App of CombTerm * CombTerm | Const of string | I | K |
S | Var of string

val isVar = fn : CombTerm -> bool

val isConst = fn : CombTerm -> bool

GC #0.0.0.0.1.15: (0 ms)

val reduce = fn : int * CombTerm -> int * CombTerm

val Lprint = fn : CombTerm -> string

val Lprint2 = fn : int * CombTerm -> string

val it = (2,Var "x") : int * CombTerm

val it = (3,App (Const "a",Var "x")) : int * CombTerm

val Omega = App (App (App #,I),App (App #,I)) : CombTerm

val it = "SII(SII)" : string

val t1 = App (App (App #,App #),App (App #,App #)) :
CombTerm

val Preduce = fn : int -> CombTerm -> string

GC #0.0.0.0.2.60: (0 ms)

val remove = fn : ''a -> ''a list -> ''a list

val member = fn : ''a -> ''a list -> bool

val union = fn : ''a list -> ''a list -> ''a list

val intersection = fn : ''a list -> ''a list -> ''a list

94

val filter = fn : ('a -> bool) -> 'a list -> 'a list

val freevars = fn : CombTerm -> string list

val largest = fn : int list -> int

val freshvar = fn : CombTerm -> string

datatype LambdaTerm

 = LAbst of string * LambdaTerm

 | LApp of LambdaTerm * LambdaTerm

 | LConst of string

 | LVar of string

val freeLvars = fn : LambdaTerm -> string list

GC #0.0.0.0.3.129: (0 ms)

val trans_C2L = fn : CombTerm -> LambdaTerm

val trans_abst = fn : string -> CombTerm -> CombTerm

val trans_L2C = fn : LambdaTerm -> CombTerm

val trans2b_abst = fn : string -> CombTerm -> CombTerm

val trans2a_abst = fn : string -> CombTerm -> CombTerm

val trans2_abst = fn : string -> CombTerm -> CombTerm

val trans2_L2C = fn : LambdaTerm -> CombTerm

val Puff = LAbst ("x",LApp (LVar #,LVar #)) : LambdaTerm

val LOmega = LApp (LAbst ("x",LApp #),LAbst ("x",LApp #)) :
LambdaTerm

val fPuff = LAbst ("x",LApp (LApp #,LVar #)) : LambdaTerm

val Y = LAbst ("f",LApp (LAbst #,LAbst #)) : LambdaTerm

val pL2C = fn : LambdaTerm -> unit

val p2L2C = fn : LambdaTerm -> unit

GC #0.0.0.0.4.197: (0 ms)

95

val trans2w_abst = fn : string -> CombTerm -> CombTerm

val trans2a_abst = fn : string -> CombTerm -> CombTerm

val trans2_abst = fn : string -> CombTerm -> CombTerm

val fnl = fn : CombTerm -> bool

val trans2beta_abst = fn : string -> CombTerm -> CombTerm

val trans2a_abst = fn : string -> CombTerm -> CombTerm

val trans2_abst = fn : string -> CombTerm -> CombTerm

val trans2_L2C = fn : LambdaTerm -> CombTerm

val trans2beta_abst_nf = fn : string -> CombTerm ->
CombTerm

val trans2a_abst_nf = fn : string -> CombTerm -> CombTerm

val trans2_abst_nf = fn : string -> CombTerm -> CombTerm

GC #0.0.0.0.5.275: (0 ms)

D:\prog-25mar.sml:260.1-307.53 Warning: match nonexhaustive

 (0,t) => ...

 (n,App (App (<pat>,<pat>),_)) => ...

 (n,App (App (<pat>,<pat>),t3)) => ...

 (n,App (I,t1)) => ...

 (n,App (t1,t2)) => ...

val reducestrong = fn : int * CombTerm -> int * CombTerm

val attempt_noxi = fn : int * CombTerm -> int * CombTerm

val xirule = fn : int * CombTerm -> int * CombTerm

val reducexi = fn : int * CombTerm -> int * CombTerm

val Strg_ex_1 = App (K,Var "x") : CombTerm

val Strg_ex_2 = App (S,K) : CombTerm

96

val Strg_ex_3 = App (App (S,App #),App (K,Var #)) :
CombTerm

val Strg_ex_4 = App (S,App (K,I)) : CombTerm

val Strg_ex_5 = App (App (S,App #),App (S,App #)) :
CombTerm

val Strg_ex_6 = App (App (S,App #),App (K,App #)) :
CombTerm

val it = () : unit

-

	Thesis - Cover Page
	Thesis - Abstract-12sep
	Thesis - Table of Contents-12sep
	Thesis - Draft-13sep
	Exiting the interactive system

