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ABSTRACT 

 

Innate variability in parasite transmission is one of the hallmarks of the phenomenon of 

parasitism. Empirical research aimed at quantifying these differences is limited, particularly 

for generalist parasites that utilize a broad range of sympatric hosts. Using an ecological 

epidemiological approach, I characterized variability in transmission of an emerging host 

generalist parasite, Dicrocoelium dendriticum, in Cypress Hills Interprovincial Park, 

Alberta. ‘Hotspots’ for ant-to-ungulate transmission were characterized by the presence of 

aspen (Populus tremuloides) trees on moderately graded, south, or east facing slopes at 

elevation > 1300m. Individual fluke performance and per capita fecundity were 

approximately equal among naturally-infected elk and experimentally-infected sheep and 

cattle. However, when these data were combined with host population size and host 

residency time in CHP, the sub-population of roughly 4000 cow/calves that are pastured in 

CHP contribute approximately 80% of the estimated 300 billion eggs that contaminate 

pasture each year. 
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“The wisest mind has something yet to learn.”  

– George Santayana - 
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 CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 GENERAL OVERVIEW 

The international movement of livestock, landscape modification associated with 

modern agricultural practices, and translocation of wildlife for conservation, agricultural and 

hunting purposes brings together novel combinations of indigenous and non-indigenous 

species (NIS) (Daszak et al., 2000; Hatcher et al., 2012). A significant, albeit often neglected, 

concern associated with the introduction of NIS is the risk of parasite and pathogen ‘spill-

over’ into previously unexposed populations of hosts. Examples of parasite spill-over are 

common across the globe. In Great Britain, the presence of bovine tuberculosis in the 

European badger (Meles meles) represents a considerable threat to domesticated cattle 

(Brooks-Pollock & Wood, 2015). The lungworm nematode (Protostrongylus stilesi), 

common in wild sheep (Ovis spp.), has recently emerged in muskoxen (Ovibos moschatus 

moschatus) with the reintroduction of this host to its historical range in the Canadian north 

(Kutz et al., 2004). These emerging novel host-parasite interactions can be highly 

pathogenic to host individuals and can significantly affect population health and fitness. 

Consequently, parasite spill-over is associated with important economic and conservation 

implications, particularly for endangered host species (Daszak et al., 2000; Hoberg & 

Brooks, 2008). An understanding of the factors that amplify or constrain transmission is 

therefore necessary for effective management of invasive parasites and host populations 

(Hoberg & Brooks, 2015).  

Risk factors for parasite spill-over and subsequent emergence in novel areas are 

complex. Most simply, the rate and direction of spread are dependent on the contact or 

overlap in distribution of infected and uninfected hosts. However, successful invasion is 
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also determined by a combination of traits intrinsic to the parasite (e.g. degree of specificity, 

reproductive output) and to the range of host species (e.g. variable host competence), as 

well as environmental factors extrinsic to the hosts (Ostfeld & Keesing, 2000; Hatcher et al., 

2012). These factors may act in a species-specific and context-dependent manner (e.g. May 

& Anderson, 1978; Stromberg, 1997; Barger, 1999), often complicating our understanding 

of where, when, and in which hosts’ risk of transmission is highest. A better understanding 

of the connections and heterogeneities among parasites, their hosts and the landscape may 

enhance our ability to identify transmission “hot spots” and hosts that contribute 

disproportionately to parasite transmission (Ostfeld & Keesing, 2000; Wilson et al., 2002; 

Paull & Johnson, 2011). These data may in turn facilitate forecasts of the likelihood and 

rate at which parasites will disperse into new geographic regions and successfully establish in 

novel host species. However, few empirical studies exist that are designed to evaluate the 

rate and direction of spread of parasites in multi-host systems. The paucity of accurate 

epidemiological data is paramount for parasites dependent upon obligate vectors or 

intermediate hosts for at least one stage of development. Not surprisingly, studies have 

predominantly focused on single parasite/single host species interactions for domestic hosts. 

This limited focus pervades our understanding of the transmission dynamics of invasive, 

host generalist parasites that tend to infect a broad range of wild and domestic species of 

host (Cleaveland et al., 2002). 

 

1.2 ECOLOGICAL EPIDEMIOLOGY 

The focus of epidemiological research has, in recent years, been extended by ecologists 

to include not only the study of human-specific disease dynamics, but also to encompass 

the dynamics of infectious pathogens in any species of host (Begon, 2009). Parasitologists 
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and epidemiologists recognize that parasite distributions vary enormously across space, 

among host species, and between individuals (Wilson et al., 2002). Indeed, the notion of 

heterogeneity in parasite burdens within and among samples of hosts is one of the 

hallmarks of the phenomenon of parasitism (Goater et al., 2014). Ecological epidemiology 

has advanced as a branch of epidemiological research that aims to understand the patterns 

and underlying processes associated with heterogeneity of occurrence of parasites and other 

infectious diseases (Begon, 2009). Using an ecological epidemiology approach to 

characterize heterogeneity in parasite transmission dynamics at three levels - environmental, 

host species, and individual hosts - a clearer understanding of the fundamental mechanisms 

promoting parasite colonization and persistence in novel environments and hosts is 

attainable.  

 

1.2.1 Environmental heterogeneity and landscape epidemiology 

The characterization of heterogeneity in parasite dynamics among hosts and vectors or 

intermediate host species across a landscape is a key area of emphasis in ecological 

epidemiology (Begon, 2009). This focus stems from the long-held recognition that rates of 

transmission among samples of hosts collected from different sites, even those that are 

adjacent and connected, can differ by several orders of magnitude (e.g. Malone, 2005). The 

environmental features of transmission “hot spots” amplify parasite survival or densities of 

hosts and are characterized by high parasite prevalence (percentage of infected hosts), high 

infection intensity (number of parasites per infected host), or an increased rate of 

transmission. As a result, these hot spots also represent a point source for parasite dispersal 

into novel hosts and geographic regions (Paull & Johnson, 2011).  
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For direct lifecycle parasites of wild and domestic ungulates, (i.e. exposure via direct 

contact or through ingestion of infective larvae on pasture), variability in host habitat 

selection and use influences the timing and location of parasite-seeded pasture (e.g. Altizer 

et al., 2003). The distribution, rate of development, and survival of free-living larvae is then 

affected by the prevailing environmental conditions (e.g. Ng’ang’a et al., 2004; Beck et al., 

2015). However, the influence of environmental heterogeneity may be more pronounced 

among indirectly transmitted parasites. The intersection of high parasite, 

vector/intermediate host, and final host densities characterize hot spots. Transmission of 

infective stages for these types of parasites may therefore be limited to more isolated 

patches across the landscape (Paull & Johnson, 2011).  

Quantitative description of spatial heterogeneity over a diverse landscape is dependent 

upon the ability to spatially link parasite data with environmental and topographical features 

(Reisen, 2010). Classic studies often involved painstaking field surveys, in combination with 

complex laboratory studies. The development of the Ollerenshaw Index, which combined 

parasite prevalence in livestock from individual ranches with data from local weather 

stations, is a prime example. This index continues to provide a basis for short-term 

forecasts of Fasciola hepatica (Trematoda) outbreaks on English rangelands (Ollerenshaw 

& Rowlands, 1959). However, the validity and accuracy of this and other early models, 

which were based on collating, mapping and analyzing prevalence data, is limited. The use 

of modern geographic information systems (GIS) tools and spatial statistics has greatly 

enhanced epidemiological research for a number of common parasitic infections of 

humans, domestic animals and wildlife, contributing to an improved understanding of 

parasite transmission biology (Hay et al., 2013). Using a GIS-based approach researchers 

have shown that regional temperature and precipitation patterns account for a significant 
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proportion of the total variability in transmission of Plasmodium-causing malaria (Sehgal et 

al., 2010) and tick-borne encephalitis (Merler et al., 1996). With epidemiological factors 

influencing parasite transmission over a range of spatial and temporal scales, these tools 

have become invaluable for landscape epidemiologists (Brooker et al., 2002). A GIS allows 

researchers to acquire, store and visualize spatial data, but also to analyze, synthesize and 

statistically model environmental data to highlight epidemiological trends (Reisen, 2010). 

The development of GIS-based distribution models using Bayesian methodologies is now 

recognized as a powerful tool for the identification of key habitat characteristics underlying 

the distribution of parasites at the landscape scale (Yang et al., 2005).  

Broad-scale GIS-based epidemiological models have improved our understanding of 

parasite ecology and have been successfully applied to direct intervention strategies (Pullan 

et al., 2011). A key example includes the establishment of the Schistosomiasis Control 

Initiative in sub-Sahara Africa (Brooker, 2007). Additionally, GIS and remote sensing-

based analyses have guided the control of schistosomiasis in cattle, water buffalo, and 

humans in China (Yang et al., 2005). However, these broad-scale approaches often 

underestimate the spatial heterogeneity in host-parasite contact on a local-scale (Malone, 

2005; Musella et al., 2010). Comprehensive epidemiological data are rare, with fine-scale 

data available for only select parasites. Studies have therefore focused on regional and 

continental variability in parasite occurrence. Further, anthropogenically-significant parasites 

and pathogens continue to dominate epidemiological literature with limited focus on a 

number of subclinical parasites (Musella et al., 2010). As a result, the ecological 

determinants of fine-scale heterogeneity in transmission remain poorly understood for a 

broad range of parasites. These neglected parasites may represent a considerable 

conservation and economic concern. 
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High-resolution geo-spatial models of transmission can provide accurate depictions of 

local and regional parasite distribution patterns, many of which are of high human, 

veterinary, and conservation importance. In the analysis of spatial heterogeneity in 

transmission of Fasciola hepatica, Malone (2005) found that regional climate variables 

could account for a significant proportion of inter-annual variation in transmission between 

snails and cattle. However, this broad scale approach failed to account for local scale 

variation in risk. A 100-fold difference in F. hepatica transmission risk was documented 

between adjacent cattle farms owing to heterogeneity in local ecological characteristics. 

Evaluation of fine-scale variation in risk of transmission across the landscape is a key 

priority for understanding the complex transmission dynamics and environmental 

determinants for indirect life-cycle parasites, which utilize a broad range of intermediate 

and final host species.  

 

1.2.2 Intraspecific and interspecific heterogeneity  

In addition to heterogeneity at the landscape scale, interspecific and intraspecific 

variability in parasite transmission can significantly influence the rate and direction of 

spread for invasive parasites. When spatial heterogeneity in the distribution of infective 

parasite stages is controlled, even small differences in host suitability and susceptibility can 

produce high variability in mean abundance and parasite prevalence within a population of 

hosts (Anderson & May, 1978). In an elegant set of laboratory experiments, Keymer and 

Anderson (1979) manipulated the distribution of eggs of the tapeworm Hymenolepis 

diminuta. Even when the spatial distribution of eggs was approximately uniform, parasite 

distributions were highly aggregated in the flour beetles (Tribolium confusum) populations. 

Parasites are often found to exhibit a highly aggregated distribution within a population of 

 
 

6 



hosts, with the majority of individuals harbouring low numbers of parasites (Shaw & 

Dobson, 1995). From this overarching pattern, Woolhouse et al. (1997) proposed the 

“20/80” rule where 80% of transmission events can be attributed to 20% of hosts. The key 

implication here is that a small number of highly infected ‘superspreading’ individuals and 

‘superspreader’ subgroups are disproportionately responsible for amplifying parasite 

transmission and play a significant role in the spread of infection into new hosts and to new 

geographical areas (Lloyd-Smith et al., 2005; Cross et al., 2009).  

Among naturally infected animals, opportunistic sampling has demonstrated that 

variability in parasite transmission can be attributed to differences in age, gender, condition, 

behaviour and genetics (Wilson et al., 2002). In the absence of effective immunity, parasite 

loads may increase with chronic exposure to a plateau in older animals. Alternatively, 

among hosts that acquire an active immune response, the aggregation of parasites may 

decline with age (e.g. Beck et al., 2014). Adaptations of classic single host-single parasite 

models (e.g. Anderson & May, 1978; May & Anderson, 1978) have been used to evaluate 

the relative significance of these mechanisms, as well as the importance of interactions 

between them in amplifying differences in parasite burden among individuals (Wilson et al., 

2002; Lloyd-Smith et al., 2005; Begon, 2009). However, patterns of infection and the 

drivers of transmission heterogeneity are highly variable among species of host and parasite. 

Therefore, a combination of intensive field surveys and laboratory analyses will often be 

required to determine the host-specific and parasite-specific determinates of transmission 

heterogeneity.  

For parasites that can infect multiple species of host (i.e. generalists), interspecific 

variability in host-parasite contact, susceptibility, and host competence can also lead to 

species-specific differences in parasite transmission (Haydon et al., 2002). It is presumed 
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that a true generalist has evolved more general host recognition and tolerance strategies that 

allow individuals to transmit and become reproductively mature in a broad range of hosts. 

However, not all parasites are equal, nor are their hosts (Agosta et al., 2010). Parasites can 

be classified along a host specialist - host generalist continuum. The magnitude of 

asymmetries in parasite performance (i.e. recruitment, growth, reproduction, and 

development) and transmission among host species is influenced by the extent to which a 

parasite is a host specialist or host generalist (Combes, 2001; Poulin, 2007). Therefore, the 

degree of host specificity may significantly impact a parasite’s host finding ability and overall 

transmission success (Hatcher et al., 2012). For highly specialized parasites, transmission 

and dispersal is limited by the interactions between one or a few suitable host species 

(Hatcher et al., 2012). For these specialists, spill-over is only epidemiologically significant if 

parasites are able to reach reproductive maturity in a novel host. In these cases, the 

determination of key transmission rate parameters (i.e. parasite fecundity, rate of 

transmission) and the underlying risk factors for emergence of specialist parasites is 

relatively less complicated. In contrast, extreme host generalists that successfully utilize a 

broad range of host species represent a complex ‘nightmare’ for applied and theoretical 

epidemiologists (Grenfell et al., 2002).  

Due to the innate complexity of transmission patterns for multi-host parasites, accurate 

comparison of parasite performance are rare. The best evidence comes from 

experimentally infected species of host, where confounding factors such as host age, 

immune status, parasite genetics and infectivity are controlled. In a classic study, Hairston 

(1962) showed that the intensity, prevalence, morphology and per capita reproduction of 

the trematode Schistosoma japonicum varied extensively among sympatric humans, dogs, 

pigs and rats. In this early example, species-related differences in parasite transmission were 
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incorporated into simple models to demonstrate that targeted control of the rate population 

effectively reduced transmission. These disparities in parasite performance and host 

contributions to total parasite transmission are likely to be common among generalist 

parasites. However, such heterogeneity in transmission cannot be established or assumed a 

priori (Shaw & Dobson, 1995; Lloyd-Smith et al., 2005).  

The basic reproductive number (Ro) has been employed as a mathematical 

approximation for the ‘transmission threshold’ of a parasite. Ro represents the number of 

reproductively mature offspring produced over the lifetime of a single adult parasite 

(Anderson & May, 1991; Streicker et al., 2013), where Ro must be ≥ 1 for infection to 

spread. However, for generalist parasites with multiple hosts and multiple developmental/ 

transmission stages, calculation of this value is particularly complex. Alternatively, 

measurement of the relative contribution of each host species to the total number of 

infective stages (Streicker et al., 2013) or infected vectors (Kilpatrick et al., 2006) can be 

used in the estimation of host-related differences in parasite fitness. Although these data can 

provide evidence of species-specific variability in the shedding of parasite eggs, comparisons 

also necessitates the evaluation of relevant population characteristics, such as host density. 

In a comparison of gastrointestinal parasite transmission among small mammal 

communities across the eastern United States, Streicker et al. (2013) identified that two 

distinct, but not mutually exclusive features were responsible for transmission asymmetries 

among sympatric species of hosts: heterogeneity in host population abundance and relative 

parasite performance. In addition to providing key insights into the identification of 

superspreading hosts, these data may also provide direction for intervention strategies. For 

example, targeted treatment of highly abundant domestic dogs has alleviated transmission 

of the rabies virus in wild carnivores in the Serengeti (Lembo et al., 2007). 
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The gold standard for evaluating interspecific and intraspecific variability in parasite 

performance and the contribution to transmission requires detection of parasites from a 

large number of equally sampled hosts from populations of known size, where movement 

of hosts can be estimated (Poulin, 2007). Ideally, through post-mortem examination, 

reliable estimates of parasite prevalence, distribution and transmission parameters (e.g. 

exposure, rate of encounter, patency, fecundity) can be determined (Wobeser, 2007; 

Altizer et al., 2013). Unfortunately, where transmission involves large wildlife, accurate data 

are often unavailable due to logistical, financial and ethical constraints. As an alternative, 

indirect diagnostic measures of parasite abundance (e.g. coprological egg detection methods, 

anti-parasite antibody detection via ELISA’s) are commonly used. However, the sensitivity 

of these methods can be low. Additionally, accurate approximations of host population size 

are also rare. As a result, the dynamics of emerging parasites in natural multi-host systems 

are often poorly understood (Shaw & Dobson, 1995). 

 

1.3 MODEL SYSTEM 

Dicrocoelium dendriticum provides a unique model for evaluating transmission 

heterogeneity of a host generalist parasite across space, species and individuals.  With 

historical introductions outside of its’ home range in central Europe via movement of 

infected livestock and wildlife, this fluke is now present throughout Europe, Asia, north 

Africa and is found in patches in North America (Soulsby, 1982; review by Otranto & 

Traversa, 2002). Characterized as a host generalist, adult flukes have been documented in 

the bile ducts and gall bladder of a wide range of mammalian hosts, principally including 

domestic and wild ruminants.  However, infection has also been documented in camelids, 

rabbits, pigs, dogs, and horses (review by Otranto & Traversa, 2002). Among naturally- and 
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experimentally-infected hosts, cholangitis, liver fibrosis, anaemia and reduced weight gain 

have been documented (review by Manga-González et al., 2001), with changes in liver 

function (i.e. increased production of bilirubin, albumen, hepatic enzymes) above burdens 

of ~4000 adult flukes (Manga-González & González-Lanza, 2005). However, hosts are 

normally asymptomatic, with no clear economic significance associated with infection. 

Over 90 species of terrestrial molluscs have been found to act as a suitable first 

intermediate host for the development of D. dendriticum larvae. Following ingestion of 

embryonated eggs from host feces, miracidia hatch, migrate through the gut wall and settle 

into the adjacent vascular connective tissue, where they become mother sporocysts. The 

sporocysts migrate to the digestive gland and produce several daughter sporocysts. 

Cercariae are produced asexually inside each daughter sporocyst. Cercaria migrate to the 

respiration chamber and are released onto pasture in mucus clusters (‘slime balls’) of up to 

5000 individuals and are then ingested by ants (Formica spp.).  Metacercaria develop in the 

ant abdomen, becoming infective to hosts 1-2 months post exposure (Manga-González & 

Ferreras, 2014). One or two individual cercariae remain unencycted on the subesophageal 

ganglion. The presence of this parasite in the brain is associated with modified behaviour, 

with larval infected ants attaching themselves to vegetation surrounding the nest and 

entering into a state of torpor. Subsequent infection of definitive hosts can then occur 

through the ingestion of these ‘zombie’ ants (review by Otranto & Traversa, 2002; Waldner 

et al., 2004). Adult flukes are then reproductively mature 49-79 days post infection (Campo 

et al., 2000). 

Although D. dendriticum has been present in North American since the 1930’s 

(Mapes & Baker, 1950), this fluke was not detected in Alberta, Canada until 1988. The 

lancet fluke was found in <1 % of hunter-shot wapiti (Cervus canadensis), moose (Alces 
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alces), white-tailed deer (Odocoileus virginianus), and mule deer (O. hemionus) during a 

province-wide survey (Pybus, 1990), with no evidence of the fluke found during previous 

parasitological surveys (e.g. Kingscote et al., 1987). Infected hosts (N = 4) were localized in 

or around the Cypress Hills Interprovincial Park (CHP), a conservation preserve located 

approximately 100 km north of the Canadian/United States border and extending from the 

south-eastern corner of Alberta into the south-western corner of Saskatchewan (49o40’N, 

110o115’W). With an approximate total upland area of 2590 km2, maximum elevation of 

CHP varies from 1, 466m above sea level at the western end in Alberta to 1, 067 m in 

Saskatchewan. Embedded within the extensive grassland natural region (Downing & 

Pettapiece, 2006), the top of the plateau is dominated by plains rough fescue (Festuca sp.), 

western porcupine grass (Stipa curtiseta), sedges, and various forbs. The slopes and valleys 

of this island park are characteristic of the montane natural subregion, with grasses and 

forbs interspersed with stands of lodgepole pine (Pinus contorta), white spruce (Picea 

glauca), trembling aspen (Populus tremuloides) and balsam poplar (P. balsamifera).  

The life-cycle of D. dendriticum requires spatial overlap in distribution of suitable 

invertebrate intermediate (terrestrial molluscs and Formica spp. ants) and definitive hosts 

(reviews by Manga-González et al., 2001; Otranto & Traversa, 2002). Thus, transmission is 

clearly tied to landscape characteristics. The emergence of D. dendriticum in CHP 

therefore provides an opportunity to investigate local-scale ecological covariates for the 

geographic colonization and establishment of this invasive parasite, as well as the potential 

for subsequent range expansion. Typically, infection in livestock is associated with lowland 

or mountain pastures with dry, calcareous alkaline soils (review by Manga-González et al., 

2001) and a high percentage of wood, rocks, and arable soil with sparse trees (Musella et al., 

2010). Presumably, these characteristics provide suitable microhabitat for terrestrial 

 
 

12 



gastropods and Formica spp. ants. However, the use of these generalized landscape 

characteristics in predicting risk of transmission is likely to result in inaccurate projections. 

The specific microhabitat characteristics that define the overlap in distribution of 

intermediate and final hosts species is likely to vary on a local scale relative to the range of 

hosts utilized in a specific geographic region. Since D. dendriticum was first detected within 

CHP, a new intermediate host snail species (Oreohelix spp.) has been identified (B.J. van 

Paridon, Ph.D. Thesis, unpublished observations). Highlighting the fine-scale ecological 

covariates of D. dendriticum intermediate host distribution may therefore provide key 

insights for the emergence of this parasite in CHP and the risk of parasite dispersal beyond 

the current distributional range.  

The emergence of D. dendriticum in CHP is also a powerful model system for 

evaluation of circulation and transmission patterns among a range of suitable hosts. Despite 

this parasite having been rare prior to 1990, subsequent opportunistic sampling has 

indicated that prevalence now ranges from 40-90% in the community of large sympatric 

herbivores on the Alberta side of the CHP (Goater & Colwell, 2007). This is among the 

highest reported globally  (review by Duchácek & Lamka, 2003). In CHP, prevalence of 

infection and parasite abundance are highly variable (Goater & Colwell, 2007).  

Accurate comparisons of individual and host species differences in relative 

contribution to total parasite transmission are rare (Poulin, 2007). Host-related differences 

in the parasite abundance and circulation have been documented among freshwater fish 

populations (e.g. Aho & Kennedy, 1987; Baldwin & Goater, 2003). However, the 

calculation of species-related differences in parasite circulation failed to incorporate a 

measure of host population size and density. The accuracy of these comparisons is 

therefore limited. The integration of host density and assessments of parasite distribution 
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patterns is necessary to more reliably estimate heterogeneity in parasitism and the relative 

contribution of different populations of sympatric hosts to overall transmission. Such data 

are often unavailable for multi-host parasites shared among large mammals (Wilson et al., 

2002; Hatcher et al., 2012).  

 

1.4 THESIS OBJECTIVES 

Geographic information systems (GIS) tools are employed in Chapter 2 to evaluate 

fine-scale variation (1m2) in risk of D. dendriticum transmission to sympatric ungulate hosts 

in CHP. Little is known about the ecological drivers of local scale variation in risk of 

transmission, with previous studies focusing on more broad scale distribution patterns of 

infected hosts. In this study, I define ‘hot spots’ for parasite transmission by the 

presence/absence of infected intermediate hosts at 100 randomly selected sites in CHP. 

GIS-based Bayesian multivariate spatial statistical analyses are then used to determine 

locally specific habitat covariates for risk of D. dendriticum transmission from larval 

infected ants to a suitable grazing host. 

In chapter 3 I present an evaluation of individual heterogeneity in parasite abundance 

among two naturally infected host species. Here, I specifically evaluate variability in D. 

dendriticum abundance relative to host age in wapiti and cattle.  Individual elk and cattle 

were aged and necropsied to test the hypothesis that 0.5-2 year old elk are most at risk of 

exposure to larval D. dendriticum.  

In Chapter 4, data from experimentally- and naturally-infected hosts are combined to 

evaluate heterogeneity in key performance characteristics of parasites between individual 

hosts and between host species. The relative performance of D. dendriticum was compared 

among naïve cattle and sheep experimentally exposed to known numbers of D. 
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dendriticum metacercariae. Faecal egg counts were collected over the course of a 120-day 

experimental infection program for comparison of the time to egg shedding. With 

collection and incubation of live flukes, I evaluated variability in percent recruitment, fluke 

morphology, and estimates of daily fecundity. Flukes were also collected from naturally-

infected elk for comparison of per capita performance relative to livestock hosts.  

In Chapter 5, I evaluate the annual relative contribution of sympatric ungulate host 

species (cattle, wapiti, mule deer, and white-tailed deer) to the infective pool of D. 

dendriticum eggs onto pasture. Combining estimates of per capita worm fecundity, parasite 

and host abundance, parasite prevalence, and host residency time in CHP, I estimated the 

relative contribution of each resident host species to the contamination of CHP pasture 

with D. dendriticum eggs.  

Together, these data allow me to identify hosts and environments that contribute 

disproportionately to transmission, with significant implications for understanding risk of 

parasite emergence in new geographic regions beyond CHP. Exploring the transmission 

patterns of this generalist parasite may also provide broader insights parasite ecology and 

patterns of emergence locally, regionally and across the globe. 
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2.1 ABSTRACT 

Ecological influences on the transmission stages of parasites are many and varied, 

particularly for species whose life-cycles require transmission to and from a series of 

obligate hosts.  A shift from broad-scale (100’s to 1000’s of km2) geospatial evaluations 

towards local-scale assessments is necessary to yield insights regarding the ecological 

conditions required for successful transmission. We evaluated site-specific variation in ant-

to-ungulate transmission of the invasive trematode, Dicrocoelium dendriticum, in Cypress 

Hills Interprovincial Park in Alberta, Canada. Cross-sectional field data collected at over 

100 randomly selected sites were used to construct hierarchical logistic regression models to 

identify local-scale topographical and ecological covariates of D. dendriticum transmission, 

as measured by the presence/absence of larvae-infected ants. ‘Clinging’ metacercariae-

infected formicid ants were detected at ~63% of aspen-dominant sites and were not present 

under other canopy types, in riparian zones, or on grasslands. All infected ants contained at 

least one unencysted parasite in the brain and mean metacercarial intensity varied 

significantly between sites (1-250 larvae/host). Statistical models indicated that “hot spots” 

for ant-to-ungulate transmission were characterized by pure or mixed stands of aspen 

(Populus tremuloides) on moderately graded, south or east facing slopes found at elevation 

> 1300m. Additional sites (N = 35) were surveyed for validation of this model. Clinging ants 

were detected at 73% of high- risk sites and at 20% of intermediate-risk sites, indicating 

excellent discriminatory model performance. These results provide one of the first fine-

scale (1m2 resolution) GIS-based risk maps for an emerging parasite in North America.  
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2.2 INTRODUCTION 

The survival, reproduction, and dispersal of hosts and their associated parasites vary 

enormously across a landscape. This heterogeneity is largely determined by a diverse, often 

fragmented abiotic and biotic environment (Hess et al., 2002). The identification of 

ecological features that give rise to parasite transmission opportunities is therefore 

fundamental to understanding the epidemiology of parasite transmission. This knowledge is 

also central to the direction of targeted management programs. However, a paucity of 

accurate and comprehensive epidemiological data continues to limit our understanding of 

the ecological limits on parasite distribution, rates of transmission, and on the likelihood of 

‘spill-over’ into novel geographic regions and species of host (Cleaveland et al. 2002; Cross 

et al., 2009). Early studies aimed at describing spatial heterogeneity in parasite prevalence 

or burden across an ecologically diverse landscape often involved a combination of 

painstaking field surveys and complex laboratory studies. In a classic study, Ollerenshaw & 

Rowlands (1959) combined meteorological and parasite prevalence data from individual 

ranches to forecast Fasciola hepatica (Trematoda) outbreaks on English rangelands. The 

Ollerenshaw Index continues to provide short-term forecasts for risk of fasciolaisis 

transmission and direct treatment on English rangelands.  

Increased accessibility and use of Geographic Information Systems (GIS), in 

combination with flexible and powerful statistical tools (i.e. Bayesian geostatistical 

modelling), has allowed for the visualization, analysis and synthesis of both biologically- and 

statistically-relevant models that connect landscape, climate and risk of parasite transmission 

at regional and continental scales (Reisen, 2010). In the case of important anthropogenic 

diseases, including schistosomiasis (Yang et al., 2005; Brooker, 2007) and tick-borne 

encephalitis (Merler et al., 1996), habitat and climate features have proven to be strong 
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predictors of parasite prevalence and intensity. For example, spatial models incorporating 

regional patterns in temperature and humidity accounted for 90% of the variation in 

Plasmodium spp. prevalence among non-migratory birds in Central Africa (Sehgal et al., 

2010). Similarly, geospatial models for complex lifecycle trematodes (e.g. F. hepatica) and 

soil-transmitted helminths have shown that broad-scale climatological and topographical 

features can be used to predict transmission across ecologically diverse landscapes 

(Kantzoura et al., 2011; Pullan et al., 2011).  

These models have contributed to an improved understanding of parasite transmission 

biology and have also proven useful in directing intervention strategies (Pullan et al., 2011). 

However, these broad-scale approaches, which typically surmise regional and continental 

variability in parasite prevalence, continue to underestimate the tremendous complexity and 

variability in the distribution of parasites and their hosts on a local-scale (Malone, 2005; 

Musella et al., 2010). Further, anthropogenically-significant parasites and pathogens 

continue to dominate inquiry in landscape epidemiology, leading to the neglect of 

subclinical parasites that may represent threats to the health of domestic stock and wildlife 

conservation. As a result, the ecology of fine-scale transmission patterns remains poorly 

understood for a broad range of parasites. This is particularly limiting within the context of 

invasive or emerging parasites, where a lack of epidemiological data restricts the ability to 

forecast future outbreaks.  

Rate of parasite transmission can vary by several orders of magnitude on a fine-scale, 

even across contiguous and connected landscapes. For instance, Malone (2005) showed a 

100-fold difference in F. hepatica prevalence between adjacent cattle farms owing to 

heterogeneity in local ecological characteristics. At this local scale, the likelihood and rate of 

host-parasite contact can be influenced by a variety of parasite-, host- and/or environment-
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specific factors (Altizer et al., 2003; Ostfeld et al., 2005; Vanderwaal et al., 2015). The 

influence of environmental heterogeneity has been shown to be paramount for indirect 

lifecycle parasites where successful transmission is limited by the microhabitat preferences 

and environmental thresholds for obligate vectors, intermediate hosts and/or definitive 

hosts (Vanderwaal et al., 2015). Evaluation of local heterogeneity in distribution of infected 

vectors or intermediate hosts is therefore needed to define the specific ecological barriers to 

parasite transmission and dispersal. This then holds key implications for defining risk of 

host-parasite contact, understanding historical introduction pathways and contemporary 

distribution patterns, and highlighting opportunities for parasite emergence. However, fine-

scale geospatial studies remain underutilized, with resolution of data often limited to 10’s of 

kilometers (Malone, 2005; Musella et al., 2010).  

The emergence of the lancet liver fluke, Dicrocoelium dendriticum in Cypress Hills 

Interprovincial Park, Alberta (CHP) presents a unique ecological model for studying site-

specific variation in parasite transmission from intermediate-to-final-host species. This 

generalist trematode is found in the liver and gall bladder of domestic and wild ruminants, 

but also in camelids, rabbits, pigs, dogs, horses, and humans (review by Otranto & Traversa, 

2002).  Through the movement and introduction of infected domestic livestock and wildlife, 

the distribution of this cosmopolitan parasite has expanded beyond its historical home 

range in Europe.  The lancet fluke is now present throughout Europe, Asia, North Africa, 

and in isolated patches across North America. Although D. dendriticum was absent in 

CHP prior to approximately 1990 (Goater & Colwell, 2007), prevalence of infection among 

sympatric hosts is among the highest reported globally (review by Duchácek & Lamka, 

2003; Goater & Colwell, 2007; Beck et al., 2014; Beck et al., 2015). The results of recent 

field surveys have found that 40-90% of all co-grazing white-tailed deer (Odocoileus 
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virginianus), mule deer (O. hemionus), elk (Cervus canadensis), and domestic beef cattle 

now harbour D. dendriticum in CHP (Beck et al., 2014; Beck et al., 2015; Goater & 

Colwell, 2007). This amplified rate of parasite transmission may be attributed to a range of 

host and environmental characteristics. For example, Beck et al. (2015) suggest that annual 

immigration of high densities of naïve and immunologically incompetent cattle each year 

contribute to D. dendriticum infective pool (i.e. egg shedding). However, despite the wide 

distribution of this generalist trematode, the fine-scale ecological requirements for 

transmission remain poorly understood.  

Transmission of this parasite is clearly tied to the landscape where the distributions of 

suitable definitive and invertebrate intermediate hosts overlap (reviews by Manga-González 

et al., 2001; Otranto & Traversa, 2002). Evaluation of infected intermediate host 

distribution patterns in CHP therefore provides an opportunity to identify fine-scale 

ecological covariates of D. dendriticum transmission. Using hierarchical logistic regression 

models we combined high-resolution land surface and vegetation characteristics with cross-

sectional field data to evaluate the fine-scale (1m2) ecological characteristics that may 

influence spatial heterogeneity in risk of ant-to-final host transmission.  

 

2.3 MATERIALS AND METHODS  

2.3.1 Cypress Hills Interprovincial Park, Alberta, Canada 

The Cypress Hills Interprovincial Park straddles the southern border of Alberta and 

Saskatchewan (49o30’ N, 110o0’W). Rising approximately 200m above the surrounding 

prairie (1,050-1,470m above sea level), the plateau of this island-like park is dominated by 

plants characteristic of the grassland natural ecoregion (Downing and Pettapiece, 2006), 

such as rough fescue (Festuca campestris) and shrubby cinquefoil (Potentilla fructicosa). 
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The forest cover dominating the slopes down to the surrounding grasslands is a mosaic of 

trembling aspen (Populus tremuloides), balsam poplar (Populus balsamifera), lodgepole 

pine (Pinus contorta) and white spruce (Picea glauca) (Hildebrant & Hubner, 1994). CHP 

is characterized by a cool and moist climate. Mean annual precipitation (607 mm) and 

mean daily maximum and minimum temperatures (17.5 °C and 6.1 °C) are characteristic 

of the cool, moist climate of this ecoregion (Environment Canada, 2014). In winter, 

temperatures on average range from −14.3 °C to −2.5 °C. Maximum lows often exceed 

−25 °C. Further details on the natural history of CHP are discussed in Chapter 1 and in 

Beck et al. (2014). 

  

2.3.2 Mapping data 

ArcGIS version 10.1 was used for study design and for all mapping analyses. Spatial 

analyses of the ecological covariates of ant-to-ungulate transmission required the following 

digital data sources: aerial photographs (Spatial Data Warehouse Ltd., 2006), existing road 

network, water features such as streams and lakes, CHP boundary, digital elevation model 

(DEM), and generalized land cover (GeoBase, 2012). For sampling point design, CHP was 

delineated into grassland and forest land-cover types. A 1m resolution DEM, used to 

calculate slope (terrain gradient in %) and aspect (direction of slope), was created by 

resampling and smoothing the original 30m resolution DEM.  

 

2.3.3 Sampling design 

For the purposes of this study, we assume that a grazing mammal’s risk of exposure to 

metacercariae will be highest where the numbers of ants clinging to vegetation is highest.  

Thus, rates of metacercariae-to-ungulate transmission will be highest where clinging ants are 
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most common. Sites where infected ants were detected were termed ‘positive’ and sites 

where they were absent were termed ‘negative’. ArcMap was used to randomly select a total 

of 110 sites within the boundaries of CHP (Fig. 2.1). One hundred points were randomly 

selected within treed areas and another 10 were selected from within the fescue-dominant 

grasslands that occur on the flat plateau. We focused on regions that were dominated by 

forest stands (aspen, poplar, spruce, or pine) as preliminary surveys indicated that clinging 

ants were never observed on grasslands (C.P. Goater, unpublished data).  

For each sampling point, three quadrats (15 X 20m) were surveyed from late May to 

late August of 2010 and 2011. The first quadrat was centered on the GPS coordinate of 

each randomly allocated sample point. The second and third quadrats were located 20 

meters upslope and 20 meters downslope, respectively, from the central point. This 3-

quadrat approach was used to evaluate within-site variation. Within each quadrat we 

assessed ecological characteristics coinciding with the presence/absence of D. dendriticum 

infected intermediate hosts. Sampling periods were targeted to early mornings, when 

temperatures were below 20oC. Results from field studies indicate that beyond this 

maximum threshold temperature, infected ants detach from vegetation (C.P. Goater, 

unpublished data).  

A systematic grid survey was conducted within each quadrat. Elk and deer populations 

move freely within CHP, while cattle subpopulations are restricted in their movement by 

fencing. Therefore, while access to elk and deer is assumed to be ubiquitous across the 

park, cattle occurrence was determined by the presence/absence of faecal pats in the 

quadrats. Ant nest density (nest/m2) was estimated within each quadrat by counting each 

visible nest. Terrestrial snail density was estimated from counts of three randomly placed 1 

m2 sub-quadrats following Forsyth (2004). A subsample of each snail genera present 
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(minimum of N = 5 individuals) was dissected in the lab to determine D. dendriticum 

presence. The total number of infected ants clinging to plants were counted in each quadrat 

during grid survey. A subsample of ants were collected directly from ant hills and from the 

collection of those in tetania attached to plants (minimum of N = 10), preserved in 90% 

ethanol and dissected to determine mean metacercariae intensity for each quadrat. Cover 

type classifications were determined as grass and shrubland-dominant, aspen-dominant, 

spruce-dominant, pine dominant, or mixed forest. Sites with at least 33% deciduous tree 

cover were considered mixed deciduous-conifer forest (Faber-Langendoen et al., 2007).  

 

2.3.4 Evaluation of spatial and temporal variation in the occurrence of infected ants 

Our preliminary analyses in 2010 showed that the presence of infected ants was 

associated with proximity to aspen. Additional randomly generated sampling points were 

surveyed in 2011 to evaluate the spatial and temporal consistency in the presence of 

clinging ants relative to the distribution of aspen. The locations of aspen stands were 

extracted from pan-chromatic (grey-scale) aerial photographs (1 m2 resolution) taken for the 

Alberta and Saskatchewan blocks of CHP by selecting pixel values indicative of aspen 

reflectance.  A distance gradient was then calculated from the location of aspen stands (Fig. 

2.2). Sampling points were then randomly generated within aspen-dominant, coniferous 

dominant, and fescue-dominant areas, respectively. This survey included: (1) 30 previously 

un-sampled aspen-dominated sites in CHP, Alberta; and (2) 30 additional sampling points 

within aspen and 10 points in fescue or coniferous dominant areas in CHP, Saskatchewan.  

At each sampling point I evaluated the co-location of aspen and infected clinging ants. I 

also evaluated the change in number of clinging ants, mean metacercariae intensity, and 

density of ant nests with increasing distance from aspen (m) via 25m transects beginning at 
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the exterior SE corner of each quadrat. Lastly, 10 positive sites were randomly selected 

from the 2010 survey and revisited in 2011 to evaluate whether the presence of infected 

ants varied from year to year.  

 

2.3.5 Statistical analysis and hierarchical modelling 

To further evaluate the landscape epidemiology of infected intermediate hosts we 

assessed a range of potential ecological covariates. These included: site survey data from the 

initial 110 sampling points (i.e. presence/absence of clinging ant, ant nest density, 

presence/absence of cattle, canopy type), distance to aspen, slope grade, elevation (m), and 

aspect. Site characteristics were expressed as mean ± SEM, pooling data from the three 

sampled quadrats surveyed for each geo-referenced sampling point. Average values were 

compared with Kruskal-Wallis tests. Slope values were summarized into three categories 

for site comparison: gentle (<7.5 o), intermediate (7.5o to 15o), and steep (>15o) (Osumi et al., 

2003). The proportions of positive or negative sites that are characterized by specific 

ecological characteristics were calculated for site comparison. Proportions were compared 

using Fisher’s exact tests. 95% confidence intervals (CI) are calculated for proportions (p) 

using the Wald method (Vollset, 1993; p±z√(pq/n), where z = 1- alpha/2 of the standard 

normal distribution and q=1-p).  Non-parametric univariate correlations were used to 

evaluate the relationships between the presence/absence of infected ants and potential 

ecological covariates. Covariates with regression coefficients with p < 0.05 were included in 

subsequent multivariate regression analyses. 

Bayesian inference was used to construct hierarchical binary response logistic 

regression models in OpenBUGS, version 3.2.2 (Speigelhalter et al., 2012) to determine 

the ecological covariates influencing the likelihood that infected ants were present (1= 
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infected ants present; 0 = infected ants absent). This approach allowed for the evaluation of 

the likelihood of models constructed using potential ecological covariates individually and 

in combination. A total of seven ecological characteristics were evaluated: ant nest density, 

presence/absence of specific canopy types, presence/absence of cattle, distance to aspen, 

slope grade, elevation, and aspect.  These factors were: (1) categorized if data were binary 

(e.g. cattle: present = 1; absent = 0); or (2) standardized by subtracting the mean and 

dividing by 2 standard deviations if data were continuous.  By standardizing continuous 

variables, we account for inconsistency in dimension and variance, which improves the 

efficiency of the sampling algorithm, and has no effect on the resulting model (Gelman & 

Hill, 2007). Aspect was the one exception, as its value represents an angle, where 0 or 360 

degrees represent North, 90 represents East, and 180 represents South. Aspect was linearly 

transformed as the cosine (northness) or the sine (eastness) of the aspect with values ranging 

from -1 to 1 (McDermid & Smith, 2008).  

As the likelihood of ant-to-final host transmission is characterized by the presence or 

absence of infected ants, we assigned a Bernoulli distribution for all models (values ranging 

from 0 to 1). Models were run as a linear function on a logit scale. An uninformative 

normal prior distribution was assigned to regression coefficients (mean = 0, tau = 1/ Ơ2 = 1.0 

X 10-4). All models also included date of sampling as a random effect. We assumed that the 

date of sampling, coded for month (June = 1; July=2; August = 3), to follow a uniform 

normal distribution. 

The first 260,000 Markov chain iterations were discarded for all models and an 

additional 100,000 iterations were stored for parameter estimation. This initial burn-in was 

required to ensure that the Markov chains converged and that the parameter space was 

correctly explored (McCarthy, 2007). Competing models were ranked based on their 
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deviance information criterion (DIC), following standard methods (Spiegelhalter et al., 

2002; see also Burnham & Anderson, 2002). From a set of models, the best model is the 

one with the lowest DIC value (i.e. the model that retains the most amount of information, 

best fits the data, and contains the fewest number of parameters). Differences between the 

DICi value of each model from the DICi of the best model (min DICi ) were calculated 

(ΔDIC = DICi – min DICi) for model comparison. Models within two ΔDIC units of the 

best performing model were considered to have strong support, four to seven DIC units 

having considerably less support, and greater than ten, no support (McCarthy, 2007).  

Risk of ant-to-ungulate transmission was calculated for each of the models within two 

ΔDIC of the top-performing model and was projected onto our study area. Prior to 

inclusion in risk calculation, the continuous variables (distance from aspen, elevation and 

slope) were standardized and aspect was linearly transformed as the cosine (northness) or 

the sine (eastness) of the aspect as above. Model outputs were averaged to account for 

model uncertainty (McCarthy, 2007). With the likelihood of ant-to-ungulate transmission 

ranging from 0 (no risk) to 1 (highest risk), we assigned values for low (< 0.3), intermediate 

(0.3-0.6) and high (0.7+) risk of transmission McCarthy, 2007).  

 

2.3.6 Model validation 

To validate our model for risk of ant-to-ungulate transmission, 35 additional sites were 

randomly selected in 2014 within the low (10 sites), intermediate (10 sites) and high-risk (15 

sites) zones in accordance with the mean model projection. The proportion of sites 

containing infected ants (± 95% CI) for each risk category was then determined. For 

positive sites, the following were also determined to evaluate consistency with the earlier 

dataset: distance from aspen, slope grade, aspect and elevation. The receiver operating 
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characteristic (ROC) statistic was used to test model specificity and sensitivity (Pullan, 2011).  

Overall diagnostic accuracy of the ROC curve was measured by the area under the curve 

(AUC), where an AUC value < 0.7 was considered to indicate poor discriminatory 

performance, 0.7 - 0.8 acceptable, 0.8 - 0.9 excellent and > 0.9 outstanding discriminatory 

performance (McCarthy, 2007). 

 

2.4 RESULTS 

2.4.1 Survey data and ecological covariates 

A range of mollusc species were identified at the surveyed sites based on 

morphological characteristics (Forsyth 2004), including: Cionella lubrica, Discus shimekii, 

Discus whitneyi, Vitrina sp., Zonitoides sp., and several Oreohelix spp. The sporocysts and 

cercariae of D. dendriticum were only found in Oreohelix spp. snails. However, due to 

variability in moisture conditions over the length of the collection season (May to August) 

comparisons of snail density and D. dendriticum prevalence in naturally infected snails 

were not obtained. Clinging ants were detected at 19 of the 110 sites surveyed in 2010 

(17.3%: 95% CI: 13.8 - 20.8 %). Of these positive sites, 95% (95% CI: 90.1 - 99.9 %) had 

either an aspen-dominant or mixed canopy (aspen and lodge pole pine and/or white 

spruce). Of all sites that contained aspen, 63.3% (95% CI: 54.8 – 71.9 %) had infected ants. 

All metacercariae-infected ants belonged to the Formicidae family (primarily Formica 

sanguinea, with some F. subaenescens and F. fusca; B.J. van Paridon, unpublished data). 

Clinging Formica spp. ants always contained encysted metacercariae and were found 

attached to various plants, including Lupinus pusillus, Thermopsis rhombifolia, Vicia 

americana, Amelanchier alnifolia, and Taraxacum officinale. Ants collected from the same 
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nests, but not found clinging to vegetation, were never infected. These findings allowed us 

to classify risk of infection based on the presence/absence of infected ants.  

Initial association analyses showed that mean metacercariae intensity at a site was 

strongly and positively correlated with the number of infected ants (Table 2.1).  The 

number of clinging ants, metacercariae intensity and ant nest density all significantly 

decreased with increasing distance away from aspen. Ant nest density was significantly 

higher at positive ( = 0.16 ± 0.02 nest/m2) versus negative ( = 0.10 ± 0.01 nest/m2) sites (p 

< 0.001). We also detected significant spatial and temporal variation in the numbers of 

clinging ants (p < 0.001), with counts ranging from 1 to 350 individuals/quadrat and peak 

numbers found clinging to plants in July ( = 35.5 ± 13.6).  

The significance of aspen was found to be both temporally and spatially consistent, 

with 70.4 % (95% CI: 61.6 - 79.2%) and 68.2% (95% CI: 58.3 - 78.1 %) of aspen sites 

surveyed in 2011 positive in the Alberta and Saskatchewan subsample locations, 

respectively. Mean metacercariae intensity (ranging from 1 - 250 larvae/host) did not 

significantly vary over time (p > 0.5) with averages of 40.5 ± 26.1, 27.6 ± 1.8, and 33.8 ± 8.3 

documented in June, July, and August, respectively. Although the total number of clinging 

ants varied between sites (p < 0.001) and over time (p < 0.01), the presence of infected 

intermediate hosts was temporally consistent with clinging ants detected at 100% of the sites 

surveyed in consecutive years.  

 

2.4.2 Spatial variation in risk of ant-to-ungulate transmission 

The original 110 survey sites were used exclusively in model development. Of the 

positive aspen sites, 60% (95% CI: 50.3 – 69.8 %) had a south to east facing aspect. In 

contrast, negative sites were found at locations ranging from north to south and east to west 

x x

x
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facing. On average, grade of slope varied significantly between positive and negative sites. 

77.5% (95% CI: 71.1 – 83.9%) of positive sites were found on intermediate (7.5o to 15o) to 

steep (>15o) slopes. In contrast, 85% (95% CI: 79.5 – 90.5%) of negatives fell on a gentle 

slope (< 7.5o). Although the distribution of positive versus negative sites did not differ 

significantly relative to site elevation (p > 0.05), 72.5% (95% CI: 64.2 – 80.7%) of positive 

sites were found at elevations >1300 m above sea level. 

When the presence/absence of clinging ants was modelled, proximity to aspen, slope 

grade, and slope aspect (eastness or northness) were found to be useful predictors (Table 

2.2). Inclusion of site elevation and date of sampling also significantly improved model 

performance. Various combinations of these parameters were included in the 4 top 

performing models. Risk of ant-to-ungulate transmission was calculated using each of these 

models (Table 2.3), and then averaged to account for model uncertainty and projected 

across CHP, Alberta (Fig. 2.3). Risk was consistently higher in aspen-dominant areas falling 

on south/east facing slopes with a moderate to high grade, with risk higher at sites above 

1300m in elevation.  

 

2.4.3 Model validation 

Clinging ants were not detected within the low risk sites. In contrast, 73.3% (95% CI: 

51 – 95.7%) of the 15 high-risk sites were positive, with an average of 12.7 ± 6.3 ants found 

clinging. Of these positive sites, 90% (95% CI: 71.4 - 100%) were found in aspen dominant 

areas or within 10 m of aspen, with clinging ants detected no more than 8.0 ± 2.9 m from 

aspen. Further, these sites were consistent with data collected for model development, with 

70% (95% CI: 41.6 – 98.4%) of positive sites falling on moderate to high-grade slopes, and 

65% (95% CI: 35.4 – 94.6%) on south/east facing slopes, 70% (95% CI: 41.6 – 98.4%) of all 
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positive sites found above 1300m. Clinging ants were detected at 20% (95% CI: 0 – 44.8%) 

of the intermediate risk sites surveyed. These two sites were on average 24.0 ± 2.0 m from 

aspen falling on moderate to high grade, north-east facing slopes. The area under the ROC 

curve (AUC) was >0.8 (95% CI: 0.7 – 1.0), indicating excellent discriminatory performance 

to classify areas of risk.  

 

2.5 DISCUSSION 

Past geospatial research has predominantly focused on characterizing the ecological 

covariates for transmission of anthropogenically-significant parasites and diseases (e.g 

Malone, 2005; Sehgal et al., 2010). Thus, the fine-scale ecological covariates of many 

complex lifecycle parasites remain poorly understood. This study presents the first high-

resolution (1m2) analysis aimed at predicting D. dendriticum ant-to-ungulate transmission. 

The limited dispersal and ecological thresholds for the first intermediate host species of D. 

dendriticum in CHP, Oreohelix spp. (review by Manga-González et al., 2001; Weaver et al., 

2006), along with the conspicuous ‘clinging’ behaviour of infected Formicid ant second 

intermediate host (review by Manga-González et al., 2001) allowed for the detection of local 

variation in intermediate host occurrence. Our top models therefore reveal the key 

ecological covariates of infected intermediate species distribution patterns, allowing for 

accurate predictions for risk of ant-to-ungulate transmission across a highly complex 

boreal/grassland habitat. 

Our results suggest that the presence of aspen is positively associated with the 

likelihood of ant-to-ungulate transmission. My data cannot pinpoint the suite of 

microhabitat conditions that underlie high rates of D. dendriticum transmission into ants 

under aspen canopies. But it is at these sites where the densities of both intermediate hosts 
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tend to be highest, where they tend to co-occur, and where, presumably, the opportunity 

for transmission of cercariae into ants is relatively high. Although formicid ants were 

present in a wide range of habitat types (e.g. fescue grasslands, spruce forests, lodgepole 

pine forests), the density of ant nests and the numbers of clinging ants increased with their 

proximity to stands of aspen-dominated forest. Puntilla (1996) has shown that formicid ants 

require a relatively open canopy for colony establishment and optimal development. 

Similarly, the diversity and density of terrestrial molluscs, especially the occurrence of 

Oreohelix spp., is associated with forest stands dominated by deciduous trees (Kralka, 

1986; Boag & Wishart, 1982; Hendricks, 2003). Aspen-dominant areas are commonly co-

located with a dense and complex understory, providing greater foraging opportunities, 

predator protection, and the availability of micronutrients such as calcium. The presence of 

this canopy and understory may also provide optimal ambient and soil temperatures, 

moisture and humidity conditions for the establishment and survival of the intermediate 

host species of D. dendriticum (Kralka, 1986; Weaver et al., 2006; Calder et al., 2011).  

My follow-up study in 2011 showed that habitat characteristics within aspen stands are 

also important predictors of D. dendriticum transmission into ants.  The two most 

important are slope aspect and grade. This result was unexpected, but it is consistent with 

what is known about the micro-distribution of Oreohelix spp. Members of this species 

complex typically occupy south-facing slopes at higher elevations (Hendricks, 2003). 

Infected Formica polyctena have also been document on southward-facing slopes in 

southwest Germany (Spindler et al., 1986). Additionally, the prevalence of D. dendriticum 

in grazing beef cattle in NW Spain was also significantly higher among cattle grazing on 

pastures with a high (>25%) slope grade (Diaz et al., 2007). As sites that are too wet are also 

not ideal for intermediate host species of D. dendriticum (Kralka, 1986), these moderate- 
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to high-grade slopes provide a well-drained habitat, particularly during heavy rains and 

during snow-melt. Although significant differences in elevation were not detected between 

positive and negative sites in my study, the inclusion of elevation did increase the 

performance of the model. These data are also consistent with the relatively broad elevation 

range (1,350 -2100m above sea level) that Oreohelix spp. are found to occur in the Black 

Hills of Wyoming and South Dakota (Anderson et al., 2007). 

The ecological covariates of the presence of infected zombie ants may also represent 

the overlap in habitat selection with sympatric definitive hosts known to graze in CHP. 

Fecal deposition patterns for Parelaphostrongylus tenuis and Fascioloides magna infected 

deer indicated a selection of upland deciduous forest (Vanderwaal et al., 2014). In CHP, 

signs of elk (i.e. pellet groupings) were also lower in areas with medium to heavy conifer, 

spruce, and shrub cover, (especially shrubby cinquefoil), very light grass cover, and heavy 

deadfall (Lee, 1970). The incidence of pellet groupings was also low at sites more than 

200m from canopy cover and at sites with slopes greater than 20 degrees and north-facing. 

Although habitat preference studies reveal that elk have a higher preference for forested 

habitat and steeper slopes than cattle, significant overlap in diet and habitat use has been 

documented (Lee, 1970). These observations are important because they indicate that 

while well-drained, aspen-dominated stands provide appropriate conditions for cercariae-

ant transmission, they are likely also hot spots for the contamination of the substrate with 

parasite eggs. In other words, well-drained, south-facing aspen stands appear to provide 

optimal conditions for transmission into intermediate hosts: a source of worm eggs from a 

range of definitive hosts, high densities of Oreohelix spp., and high densities of formicid 

ants.  
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The presence of aspen is the top factor in the spatial models presented here. Given the 

overriding importance of this component, it follows that factors that determine the 

distribution and density of this tree species are important in determining the introduction 

and subsequent spread of this invasive parasite. Aspen establishment in CHP has increased 

exponentially since 1980, with a 4.4% annual increase and a sharp peak in the mid-1990’s 

(Widenmaier & Strong, 2010). Peak aspen encroachment in the park approximately 

coincides with the timing of D. dendriticum emergence in sympatric elk, deer, and cattle 

(Goater and Colwell, 2007). Although it would be very difficult to assign direct causation 

between aspen enroachment and the emergence of D. dendriticum, the coincident timing is 

striking. The sharp increase in aspen establishment is likely a consequence of a long-term 

response to a 70-year fire- suppression program, although there has also been a general 

increase in number of frost-free days in the park (~6 days/decade; Curforth et al., 2004), an 

increase in summer precipitation by 3.9 mm/decade, and cooler average summer 

temperatures (Widenmaier & Strong, 2010).  Aspen encroachment and more favourable 

climate conditions may therefore have cumulatively provided ample ‘vacant’ habitat for ant 

and snail intermediate hosts that in turn influenced the frequency of contact (Cleaveland et 

al. 2007) between D. dendriticum infective stages and susceptible ungulate hosts. Forest 

composition and structure, resulting from forest management, has also significantly affected 

the distribution and prevalence of the meningeal worm, Parelaphostrongylus tenuis, in 

white-tailed deer (Vanderwaal et al., 2015). These changes impacted transmission 

opportunities by influencing intermediate host abundance and modifying the thermal 

conditions and vegetation composition of the microenvironment. Overall, these results 

provide an excellent example of the profound role that anthropogenic habitat modification 

(in this case, fire suppression) plays in determining key epidemiological rate parameters. 
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The results also highlight how anthropogenic factors can impact the rate of introduction of 

parasites outside their native ranges, and potentially, further spread into new habitats.  

The D. dendriticum transmission risk model may also have important management 

implications. Among naturally and experimentally infected animals, the presence of 

infection has resulted in changes in liver function (i.e. increased production of bilirubin, 

albumen, hepatic enzymes, etc.), liver cholangitis and fibrosis, anaemia and reduced weight 

gain (review by Manga-González et al., 2001). Chemical treatment for this parasitic infection 

is, however, ineffective in final hosts (review by Otranto & Traversa, 2002; Manga-González 

et al., 2005).  Additionally, the use of pesticides and molluscicides to limit transmission is 

inconceivable. The extrapolation of the model presented here within CHP, as well as in to 

other ecologically similar habitats, spatially delineates where risk of transmission is greatest 

to cattle and other definitive hosts. Projections of this model could therefore by useful in 

directing targeting grazing practices and in selecting specific sites for grazing exclusion 

fencing to reduce risk of exposure.  

I expect that the extrapolation of my model will likely have greatest significance within 

the distributional range of the Oreohelix spp. complex, including regions throughout the 

Rocky Mountains and the Black Hills of Wyoming and South Dakota (Weaver et al., 2006). 

However, wider application of this model on a global scale may be limited. Given the 

cosmopolitan distribution of this fluke, and the broad spectrum of intermediate and final 

host species that can be utilized, considerable species-specific variation in environmental 

tolerance ranges can be expected (Brooker et al., 2002). This is likely to be a common 

issue for the extrapolation of geospatial models at both broad and local scales (e.g. Brooker, 

2007). D. dendriticum has now been reported in North America from sites in 

Newfoundland to Canada’s far west coast (B.J. van Paridon, Ph. D. thesis, unpublished 
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observations). Oreohelix spp. are not present at either location. Further, high intensities of 

D. dendriticum (~10,000 flukes per liver) have been documented among grazing sheep on 

the island of Coll, Scotland (Sargison et al., personal communication), evidence of a high 

rate of snail-to-ant-to-ungulate transmission despite the distinct absence of treed areas. Thus, 

future research would need to account for differences in ecological zones and microhabitat 

requirements of acting intermediate hosts in each respective area. Future studies would also 

benefit from the incorporation of parasite transmission complexities, such as the density of 

intermediate and final host species and variability in parasite intensity among hosts.  

Elucidation of the fine-scale heterogeneity of the presence of D. dendriticum infected 

zombie ants provided valuable insights into the epidemiology of this invasive trematode. 

The spatial model presented here describes the microhabitat preferences of D. 

dendriticum infected ant and snail intermediate hosts and, in turn, spatially delineated 

where risk of intermediate host-parasite contact is amplified – i.e. in aspen dominant sites 

with calcareous, alkaline soils on a well-drained, south or east facing slope. These patterns 

can be used to project risk of parasite emergence beyond the contemporary distributional 

range. The local-scale approach depicted here may also be used to test the mechanisms by 

which heterogeneity in local environment influences other indirectly transmitted parasites. 

An improved understanding of parasite ecology will likely become increasingly important as 

opportunities for the biological introduction of non-indigenous species and the spill-over of 

novel parasites into naïve hosts will be amplified by impending global climate change and 

the continued encroachment on wildlife habitat (Cross et al., 2009; Hoberg, 2010; Hatcher 

et al., 2012).  
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Table 2.1: Summary statistics of pair-wise correlations for selected habitat characteristics 
and infection characteristics in ants infected with larval D. dendriticum. Values above the 
diagonal are Spearman rho correlations. Significance values are below the diagonal. 

  

Distance 
from aspen 
(m) 

Number of 
clinging ants 

Mean no. 
parasites/ant 

Nest density 
 

 Distance from aspen (m)   -0.667 -0.675 -0.320 
 Number of clinging ants < 0.001   0.963 0.375 
 Mean no. parasites/ant < 0.001 < 0.001   0.386 
 Nest Density 0.010 0.002 0.002   
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Table 2.2: Summary of top multivariate hierarchical models for risk of D. dendriticum 
transmission from ants to definitive hosts. Models are ranked based on the Deviance 
Information Criterion (DIC). Month of sampling is included in all models as a fixed effect.  

Rank Model Parameters DIC ΔDIC 

1 Distance from aspen (m), Elevation (m), Eastness, 
Northness, Slope (%) 51.6 0 

2 Distance from aspen (m), Elevation (m), Eastness,  
Slope (%) 51.9 0.2 

3 Distance from aspen (m), Eastness (m), Slope (%) 53.3 1.6 

4 Distance from aspen (m), Elevation (m), Eastness, 
Northness 53.3 1.6 

Null 
model 

- 129.1 77.5 
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Table 2.3: Model coefficient values for local ecological covariates of the presence of D. 
dendriticum-infected ants.  

Model Variable Parameter 
Mean SD B SE B 

1 Intercept - - -27.7 0.2 
  Distance from aspen 108.7 310.7 -171.2 0.3 
  Eastness - - 2.2 <0.1 
  Elevation 1360.9 67.1 -1.6 <0.1 
  Northness - - 0.9 <0.1 
  Slope  9.7 6.5 1.8 <0.1 
2 Intercept - - -24.9 0.2 
  Distance from aspen 108.7 310.7 -151.8 0.3 
  Eastness - - 1.9 <0.1 
  Elevation 1360.9 67.1 -1.8 <0.1 
  Slope  9.7 6.5 1.9 <0.1 
3 Intercept - - -23.7 0.2 
  Distance from aspen 108.7 310.7 -145.1 0.2 
  Eastness - - 1.9 <0.1 
  Slope  9.7 6.5 2.0 <0.1 
4 Intercept - - -26.3 0.5 
  Distance from aspen 108.7 310.7 -158.6 0.6 
  Eastness - - 1.8 <0.1 
  Elevation 1360.9 67.1 -1.7 <0.1 
  Northness - - 0.9 <0.1 

 
 
 
 
 
 
 
 
 
 

 
 

52 



 
Figure 2.1: Distribution of 110 study sites in Cypress Hills Interprovincial Park, Alberta 
sampled in snow-free months of 2010 and 2011. 
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Figure 2.2: A distance model for Cypress Hills Interprovincial Park, Alberta depicting the 
calculated distance (m) from aspen-dominant canopy. 
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Figure 2.3: Expected risk of ant-to-ungulate transmission for D. dendriticum in Cypress 
Hills Interprovincial Park, Alberta. Risk of infection ranged from 0 (no risk) to 1 (highest 
risk); low risk < 0.3, intermediate risk = 0.3-0.6, high risk ≥ 0.7.  
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Fluke abundance versus host age for an invasive trematode (Dicrocoelium dendriticum) of 
sympatric elk and beef cattle in southeastern Alberta, Canada 
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3.1 ABSTRACT  

Epidemiological parameters such as transmission rate, rate of parasite-induced host 

mortality, and rate of development of host defenses can be assessed indirectly by 

characterizing the manner in which parasite burdens change with host age. For parasites 

that are host generalists, estimates of these important parameters may be host-species 

dependent. In a cross-sectional study, we determined age–abundance profiles of infection 

in samples of sympatric free-ranging elk and domestic cattle infected with the lancet liver 

fluke, Dicrocoelium dendriticum. This parasite was introduced into Cypress Hills 

Interprovincial Park in southeastern Alberta, Canada in the mid-1990s, and now occurs in 

60–90% of co-grazing elk and beef cattle examined at necropsy. The livers of 173 elk were 

made available by hunters during the 1997– 2011 hunting seasons and livers from 35 cattle 

were purchased from ranchers. In elk, median worm abundance peaked in 6–24 month-

olds (median = 72, range = 0–1006) then significantly declined to <10 worms/host in 10–16 

year olds. The decline in fluke burden with age is not consistent with an age- related decline 

in exposure to metacercariae in intermediate hosts and high rates of fluke-induced host 

mortality are unlikely. Rather, the pattern of peak fluke burdens in elk calves and juveniles, 

followed by a decline in older animals is consistent with the development of a protective 

immune response in older hosts. There was no pattern of worm accumulation or decline in 

sympatric cattle, although statistical power to detect a significant effect was low. These 

results highlight the complexity and context- dependent nature of epidemiological processes 

in multi-host systems. 
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3.2 INTRODUCTION 

Heterogeneity in parasite burdens within and among host populations is one of the 

hallmarks of ecological epidemiology. Even under laboratory conditions where features 

such as parasite exposure rate, host immune status, host condition, and environmental 

characteristics are tightly controlled, heterogeneity in parasite burdens between hosts is 

often very high (Hudson & Dobson, 1995; Wilson et al., 2002; Tompkins et al., 2011). Not 

surprisingly, when among-host heterogeneity is evaluated within naturally occurring host-

parasite interactions, differences between hosts can vary by several orders of magnitude. In 

these complex, natural systems, epidemiological parameters such as transmission rate, rate 

of parasite- induced host mortality, and rate of development of host defenses can be 

assessed indirectly by characterizing the manner in which parasite burdens change with host 

age. Thus, the determination of the relationship between host age and parasite abundance 

has important epidemiological and management implications (Hudson & Dobson, 1995; 

Boag et al., 2001). These implications can be expected to be especially important for 

generalist parasites that are shared among sympatric host species, especially for those 

species of parasite that have been introduced outside their native range. Yet our 

understanding of general epidemiological processes, including the relationships between 

host age and parasite burden, remains limited for generalist parasites in multi-host systems 

(Wilson et al., 2002; reviews by Tompkins et al., 2011). 

The lancet liver fluke, Dicrocoelium dendriticum (Trematoda: Dicrocoeliidae), is a 

parasite of the bile ducts of grazing mammals. Evidence from experimental exposures of 

domestic stock to metacercariae (Manga-González & González-Lanza, 2005), together with 

molecular sequencing of worms collected from several species of domestic and wildlife 

hosts (B.J. van Paridon et al., unpublished Ph.D. Thesis), have confirmed that D. 
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dendriticum is a host generalist. This species has been widely introduced outside its native 

range in mainland Europe, including into various locations in western and eastern North 

America (Lewis, 1974; Goater & Colwell, 2007). In Cypress Hills Interprovincial Park 

(CHP) in south- eastern Alberta, where D. dendriticum was introduced in approximately 

the mid 1990s, prevalence now ranges from 60% to 90% in sympatric deer, elk, and beef 

cattle each year, with intensities frequently exceeding 1000 worms per host (Goater & 

Colwell, 2007). In samples of hosts from this location, the opportunity exists to evaluate the 

association between host age and worm abundance in different host species within a region 

of known sympatry. The purpose of this study is to evaluate relationship between host age 

and D. dendriticum abundance in sympatric free-ranging elk and cattle in CHP. 

 

3.3 MATERIALS AND METHODS 

3.3.1. Cypress Hills Interprovincial Park 

The Park straddles the southern Alberta-Saskatchewan border in southwestern Canada 

(49°37.5′N, 110°’W). It is a complex habitat mosaic that encompasses two distinct 

ecological sub-regions embedded within the extensive ‘Grassland Natural Region’ 

(Downing and Pettapiece, 2006). Vegetation characteristic of the mixed grass natural sub-

region is dominant in sites below approximately 1100 m in CHP, including extensive stands 

of plains rough fescue, western porcupine grass, sedges, and various forbs. At elevations 

>1100 m, vegetation characteristic of the montane natural subregion dominates, with 

characteristic grasses and forbs, interspersed with stands of lodgepole pine (Pinus contorta), 

white spruce (Picea glauca), trembling aspen (Populus tremuloides), and balsam poplar (P. 

balsamifera). Together, the combination of these two sub-regions that co-occur within the 

relatively narrow confines of the Park (531,000 hectares) creates an island-like habitat that is 
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distinctive from the adjacent and highly cultivated lowland grasslands (the extensive dry 

mixed grass natural subregion that is characteristically known as ‘prairie’). Regions of the 

park above approximately 1250 m were unglaciated by the Wisconsinan Laurentide Ice 

Sheet (Stalker, 1965). 

The community of sympatric large herbivores on the Alberta side of CHP includes 

approximately 700 elk, 300 mule deer (Odocoileus hemionus), 300 white-tailed deer 

(Odocoileus virginianus), and 4000 beef cattle (Alberta Tourism, Parks and Recreation, 

2013). Elk (Cervus canadensis) were re-introduced into the Park in 1938. Annual fall hunts 

have been regulated and monitored by Park’s personnel since 1978 to establish a density of 

350–700 resident elk. Beef cattle have grazed within almost all regions of the Park since 

1918, typically grazing cow–calf pairs or yearlings that are introduced in early June and 

removed in late October (Hegel et al., 2009). Upon removal from the Park cattle receive a 

dose of broad-spectrum antiparasitic drugs (i.e. ivermectin, moxidectin) which are 

ineffective against D. dendriticum infection (Ballweber & Baeten, 2012). 

 

3.3.2. Fluke counts 

Opportunistic collections of whole elk livers from hunters began in autumn 1997 and 

continued haphazardly until 2005. Collections occurred annually, each fall, from 2009 to 

2011. During each hunting season, data on kill site, gender, and approximate age (calves ≤ 6 

months, juveniles = 6 – 24 months, adults ≥ 24 months) were collected by Park’s personnel 

for all elk shot within the Park. Calf, juvenile, and adult cattle were purchased 

opportunistically from two of the three CHP stock associations between 2003 and 2013. All 

sampled cattle grazed within the park from early June to late October each year since birth. 

Data on host age and sex were made available from stockowners. 
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Livers from elk were harvested within 4 h of host death and frozen whole; cattle livers 

were examined immediately after slaughter. The dissection of individual livers for 

enumeration of worms followed methods described by Goater and Colwell (2007). Each 

liver was thawed, weighed, and cut into approximately 5-mm-wide strips. The sections were 

placed into saline-filled pans and gently palpated to dislodge flukes from the hepatic and 

bile ducts. Once all sections were processed, the pans were examined for the presence of 

flukes. Flukes were enumerated using a dissection microscope and then preserved in 

ethanol. 

 

3.3.3. Analyses 

We follow the terminology of Bush et al. (1997) to describe parasitological parameters. 

Prevalence is the proportion of infected hosts within a sample of hosts and abundance is 

the total number of parasites in an infected host, including those that were uninfected. We 

used mean abundance to describe the central tendency of worm counts within a sample of 

hosts. Due to limited sample sizes associated with the opportunistic sampling program, 

analyses involved data pooled between years. The distribution of worms within a sample of 

hosts was estimated by exponent k of the negative binomial distribution (NBD) using 

Quantitative Parasitology 3.0 (Reiczigel & Rozsa, 2005). The overall distributions of worms 

within the samples of elk and cattle were highly aggregated, and worm counts could not be 

transformed to normality. Thus, for comparison of worm counts between pairs of samples, 

we used non- parametric Mann–Whitney U tests. Kruskal–Wallis tests were used to 

evaluate differences in medians between multiple samples. 

The initial analysis of the association between host age, liver weight, and fluke 

abundance focused on 61 elk livers collected during the 2009–2011 hunting seasons. These 
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hosts were aged by evaluation of the cementum of a single I-1-lower incisor tooth per 

animal (Matson, 1981). Previous studies have confirmed that this method is the most 

accurate for ageing elk and other grazing ungulates (Hamlin et al., 2000). Ageing was 

completed in a commercial laboratory (Matson Laboratories Inc., Missoula, Montana) by 

two independent technicians that were blind relative to the source and identity of each 

animal. There was no significant difference in median abundance in relation to host gender 

(number of males = 115, number of females = 51; p = 0.71) so the genders were pooled for 

all subsequent analyses unless stated otherwise. 

For analyses, data on the relationship between host age and worm counts were fitted to 

a generalized linear model with an underlying negative binomial error distribution using 

maximum likelihood in R (R Core Team, 2014). This analysis is appropriate for count data 

that are highly aggregated and for data sets that involve unequal and small sample sizes 

(Pacala & Dobson, 1988). Associations between elk liver weight and worm abundance for 

each gender were also evaluated using maximum likelihood methods. 

We analyzed a second sample of 112 elk livers collected opportunistically during the 

1997–2005 hunting seasons to complement our assessment of age-related effects. Elk 

collected during this period were not aged via analysis of the cementum and therefore 

cannot be fitted to the age–infection profile used in the previous analysis. Rather, count 

data from individual hosts collected during this period were pooled with data from 

cementum-aged hosts (total n = 173), and then assigned into the broad age categories 

described in Goater and Colwell (2007): calf (~6 months old); juvenile (~6 – 24 months 

old); and adult (24+ months old). Confidence intervals for prevalence values were 

calculated using the Wald method (Vollset, 1993; p ± z√(pq/n), where z = 1 − α/2 of the 

standard normal distribution and q=1−p). 
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Variation in median worm abundance with cattle age was assessed from a sample of 35 

cattle that had grazed from early June to end of October in CHP for consecutive years. 

Differences in median intensities were assessed using non-parametric Mann–Whitney U 

tests. Data on the relationship between host age and worm abundance were fitted to a 

generalized linear model with an underlying NBD using maximum likelihood following the 

approach described earlier. 

 

3.4 RESULTS 

The overall distribution of D. dendriticum within the sample of 61 elk aged via 

cementum analyses did not differ significantly from the theoretical model of NBD (X2 = 

12.7, p > 0.05; k = 0.19). For the sample of 61 elk of known age, worm prevalence did not 

significantly differ (X2 = 2.7, p = 0.14) between juveniles (76%, 95% CI: 60 – 91%) and 

adults (65%, 95% CI: 49 – 82%). However, worm abundance varied significantly with host 

age (X2 = 5.3, p < 0.01), with data fitting the NBD (ln(Yi) = 5.18 − 0.24Xi; Di = −539.2; p < 

0.001; Fig. 3.1). The results also showed that some individuals were exposed to 

metacercariae within their first grazing period at approximately 3–6 months of age (Fig. 3.1). 

Worm counts were highly variable within 0.5 - 2-year olds (Fig. 3.1), with some individuals 

accumulating up to 1000 worms. Beyond 2 years of age, there was a sharp decrease in 

worm numbers, such that by approximately age 5, few hosts contained greater than 100 

worms. 

For data pooled from 1997 to 2011, median worm abundance was significantly higher 

in calves and juveniles (n = 73) compared to adults (n = 100, p < 0.001; Table 3.1). 

Approximately 70% (95% CI: 62 – 76%) of the total sample of hosts contained less than 

100 worms; 5% (95% CI: 3 – 9%) contained greater than 1000 adult worms (Fig. 3.2). Of 
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the nine animals harboring over 1000 worms, five were calves and three were juveniles, with 

four of the five calves containing greater than 2000 worms. In contrast, 90 of the 120 

animals containing less than 1000 worms were adults.  

The distribution of worm counts within cattle did not differ significantly from the 

theoretical model of NBD (X2 = 11.9, p > 0.05; k = 0.39). Median worm abundance did not 

significantly differ between males and females (number of males = 6, number of females = 

29, p = 0.31). Approximately 84% (95% CI: 71–98%) of cattle under the age of 2 are 

infected with D. dendriticum while all adult cattle included in our sample were infected. 

Worm abundance did not significantly vary with cattle age (ln(Yi) = 5.3 + 0.1Xi; Di = −436; 

p > 0.05; Fig. 3.3). The power (Cohen, 1992) to detect the effect of age in cattle was very 

low (power: 0.24, n = 35, p < 0.01) as a result of low sample sizes and highly variable worm 

counts, particularly for >2 year old hosts. Fluke intensities were highly variable in cattle 

regardless of age (Fig. 3.3); ranging from 9 to 983 worms in calves and juveniles and from 1 

to 1490 in adults. The highest counts (1490 worms) occurred in a 4-year old cow. 

Adult elk had significantly higher median liver weights than calves/juveniles, for both 

males (n = 76, p < 0.001) and females (n = 28, p < 0.01). Liver weight in cows increased 

non-linearly with age (Yi = 3.7 − 2.54 × exp(−0.42 × Xi); R2 = 0.82, df = 10, SSER = 0.36), 

with livers tending toward an asymptote in adults older than 6 years (Fig. 3.4). Livers were 

not available for bulls older than 6 years of age. For <6 year old bulls, liver weight increased 

linearly with age (Yi = 2.75 + 0.33Xi; R2 = 0.54, F1,42= 34.22, p < 0.001). For bulls, worm 

abundance significantly declined as liver weight increased (ln(Yi) = 9.27 − 1.30Xi; Di = 

36.47; p < 0.05). This association was not statistically significant for cows (Di = 14.62; p > 

0.05). 

 
 

64 



3.5 DISCUSSION 

Results from the analyses of the two elk data sets indicate that the general pattern of 

worm counts with host age involves a peak at approximately 2 years of age, followed by a 

decline. These results are consistent with the earlier observations by Goater and Colwell 

(2007) on a restricted sample of elk collected from the same region. The results are also 

consistent with those from longitudinal field studies involving D. dendriticum in domestic 

cattle (González-Lanza et al., 1993) and sheep (Manga-González et al., 1991) in which fecal 

egg counts were higher in calves and juveniles compared to adults. These results indicate 

that, for elk, there is a rapid increase in worm numbers during the first 1–2 years, followed 

by a significant decline thereafter. In contrast, the clear age-related pattern in elk was absent 

in cattle that co-grazed on the same pasture. These contrasting results in elk versus cattle 

highlight the context-dependent nature of key epidemiological processes for generalist 

parasites in multi-host systems. 

Our analysis of the cementum-aged elk provides the strongest evidence for a significant 

age versus abundance relationship. These results indicate a rapid rise in worm abundance 

in 1–2 year old elk, with the accumulation of worms following single or multiple exposures 

to metacercariae between June and September. Unpublished data from our laboratory 

indicate that the density of metacercariae infected ants in CHP peaks in June and early July, 

coinciding approximately with the initiation of grazing that occurs 2–3 months after birth 

(Robbins et al., 1981). The density of infected ants on vegetation then declines on pasture 

toward the end of summer (C.P. Goater, unpublished data). On average, individual ants 

collected clinging to plants in the same areas of CHP as the hosts necropsied in this study 

harbour from 1 to 255 metacercariae (x = 27 ± 22, n = 143; C.P. Goater, unpublished data). 

Thus, the high variation in fluke abundance that was observed in naive calves and also 
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yearling elk is best explained by chance ingestion of infected ants that contain variable 

numbers of metacercariae. This pattern of stochastic encounter with infected ants likely 

repeats during their second spring/summer, when prevalence reaches 90% in 2-year-olds. 

Several mechanisms have been proposed to explain peaked patterns of abundance 

with host age (Anderson & Gordon, 1982; Duerr et al., 2003). The simplest explanation for 

the observed pattern in elk lies in the stochastic encounter of 2–3 month old calves with 

metacercariae in a small number of infected ants, followed by worm senescence at 1–2 

years. Experimental studies involving sheep exposed to known numbers of metacercariae 

show that adult worms live for at least 270 days (Hohorst & Lammler, 1962). Similar 

studies in our laboratory involving sheep and cattle show that 150- day-old worms continue 

to produce eggs (D.D. Colwell, unpublished data). Thus, it is conceivable that a single 

period of exposure of calves to metacercaria during their first grazing season, followed by 

worm senescence at 1–2 years could explain the peaked pattern of fluke abundance in elk. 

There are two reasons why this simple exposure/death scenario is unlikely in this 

system. First, there is no supportive evidence for an age-related change in habitat or diet 

that could lead to reduced rates of exposure to metacercariae in ants. Results from field 

studies on individual elk, including those in Cypress Hills Interprovincial Park (Lee, 1979), 

have shown that grasses and forbs dominate the diets of both juvenile and adult elk (Baker 

& Hobbs, 1982; Cook et al., 1996). Further, Wickstrom et al. (1984) showed that elk 

increase their intake of grasses and forbs as they age. Second, experimental exposures of 

sheep and cattle to known numbers of metacercariae have consistently shown rates of 

recovery between 10% and 20% (Campo et al., 2000; D.D. Colwell, unpublished data). 

Such low recovery of adults implies that many metacercariae within individual ants are not 

infective, or that the rate of metacercariae mortality during ingestion/ 
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migration/establishment is high. These results mean that single, or at least restricted, 

encounters with infected ants are unlikely to lead to the intensities of infection that we 

observed in elk. Rather, these hosts are probably frequently exposed to metacercariae 

throughout each grazing season, and rates of exposure increase due to increased vegetation 

intake as hosts age. 

Fluke-induced host mortality, concentrated in older hosts, could also explain peaked 

age–abundance patterns (Anderson & Gordon, 1982; Duerr et al., 2003). There exists no 

evidence that D. dendriticum contributes to host mortality, although the key experiments 

have not been done in wildlife. Experimental studies in sheep indicate that mortality is rare 

in infected hosts where fluke counts are significantly higher than observed in CHP 

(Sargison et al., 2012). Subtle and chronic effects range from minor irritation of the 

mucosal lining of the bile ducts, to mass fibrosis and cholangitis of liver tissue (Manga-

González & González-Lanza, 2005). In extreme cases, hepatobiliary changes in infected 

sheep cause reductions in weight gain and milk production, and can cause necrosis of the 

skin and other pathologies associated with general inflammatory defenses (Sargison et al., 

2012). Although cases of mortality associated with D. dendriticum appear to be rare, 

interactions with other forms of mortality such as predation, hunting, malnutrition, other 

parasites and pathogens, and extreme weather could result in the removal of heavily 

infected hosts. These interactions would have to occur consistently within almost all elk >2 

years of age to produce the decline in abundance observed in our data. Nonetheless, a key 

implication of the age–abundance pattern observed in elk is that studies aimed to 

understand the effect of D. dendriticum on wildlife should initially focus on calves, where 

peak-intensities coincide with small liver sizes. 

Exposure-dependent acquired immunity could also explain the decline in worm 
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abundance at 2 years in elk. Exposure-dependent immunity of this type has been invoked 

to explain age-related declines for macroparasites of humans, domestic stock, and 

laboratory animals (Woolhouse, 1998). The results of experimental studies indicate that 

established macroparasites often promote the production of anti-parasite antibodies, 

leading to protection against subsequent exposures (Srisawangwong et al., 2011). In natural 

systems, a delayed antibody-based response to nematodes has been documented in wood 

mice, Apodemus sulvaticus (Quinnell, 1992), and Soay sheep, Ovis aries (Gulland & Fox, 

1992). In both of these cases, a delayed immune response best explained convexity in the 

age–abundance pattern in field-collected hosts. Although anti- D. dendriticum antibodies 

have been detected in experimentally and naturally infected sheep (Manga-González & 

González-Lanza, 2005; Revilla-Nuín et al., 2005) and cattle (Wedrychowicz et al., 1995; 

Colwell & Goater, 2010), the protective nature of these antibody responses and their role in 

determining liver fluke burdens requires further research, particularly within wildlife hosts. 

The lack of an association between age and fluke burdens in beef cattle must be 

interpreted with caution due to low statistical power. But despite the low numbers of >2 

year old cattle in our sample, it is striking that two of these hosts were among the most 

heavily infected animals in the overall sample of hosts. The most heavily-infected cow was a 

4-year-old that had grazed within the Park since birth. Likewise, the heavily-infected 10-

year-old cow had also grazed in the Park since birth. These anecdotal observations on a few 

hosts contrast with the pattern observed in elk in which only 1 of 32 hosts that was >2 years 

of age contained more than 100 flukes. One explanation for these results is that these older, 

heavily-infected cattle were not exposed to metacercariae during earlier grazing seasons. 

Given the high prevalence in our sample of 1- and 2-year olds, this is unlikely. An 

alternative explanation is that in contrast to elk, some cattle accumulate worms as they age, 
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despite the presence of anti-D. dendriticum antibodies (Colwell & Goater, 2010). This 

interpretation is consistent with the results of studies involving domestic stock exposed to 

Fasciola hepatica, in which the presence of anti-fluke antibodies was not associated with 

protection from further infection (Cleary et al., 1996; Bossaert et al., 2000). 

As expected, the distribution of liver flukes was highly aggregated within the samples of 

cattle and elk. This characteristic pattern means that a restricted proportion of both 

populations of hosts is responsible for the contamination of pasture in CHP with liver fluke 

eggs. Our results indicate that host age, at least for elk, contributes to this pattern of 

aggregation. Crude calculations that take into account our data on worm prevalence, worm 

abundance, and estimates of host population size can be used to estimate the relative roles 

of the cattle population versus the elk population in the dissemination of eggs onto pasture. 

Winter aerial surveys in CHP indicate a fairly stable population of approximately 800 elk 

(Hegel et al., 2009). Based on studies completed on other well-studied elk populations, 

calves comprise approximately 20% of a total herd (Bender & Piasecke, 2010). Thus, in 

CHP, the subpopulation of calf elk (about 160 hosts) harbour about 60% of the ~60,000 

worms in the total worm population. In contrast, for cattle, approximately 2000 calves and 

their 2000 mothers introduced into CHP each spring will harbour approximately 1.1 X 106 

worms a few months later, with both age classes contributing roughly similar numbers of 

fluke eggs onto pasture. These crude calculations imply that the cattle population, on 

account of its larger size and the absence of a reduction in worm counts with host age, 

contributes roughly 95% of the total population of fluke eggs that are produced from these 

two species of hosts. Further empirical studies involving more species of potential definitive 

host, together with the application of epidemiological models, could increase our precision 

regarding the relative roles of different species of host in disseminating infective stages of 
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generalist parasites. 
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Table 3.1: Prevalence and abundance of D. dendriticum in hunter-shot elk from Cypress 
Hills Interprovincial Park, Alberta between 1997-2011. 

Age Years N 
Prevalence    
(± 95% CI) 

Mean 
Abundance   
( ± SD) Median Range 

All 
1997-2000 17 94 ± 11 91 ± 169 17 0-653 
2003-2005 95 79 ± 19 428 ± 769 37 0-4343 
2009-2011 61 71 ± 22 136 ± 239 10 0-1006 

Calves and 
Juveniles           
(≤2 years of 
age) 

1997-2000 5 80 ± 19 277 ± 270 194 0-653 
2003-2005 39 90 ± 14 774 ± 988 278 0-4343 
2009-2011 29 76 ± 20 237 ± 300 38 0-1006 
Pooled 73 84 ± 8 548 ± 811 192 0-4343 

Adults                 
(>2 years of 
age) 

1997-2000 12 100 29 ± 47 14 1-167 
2003-2005 56 71 ± 22 126 ± 264 11 0-1102 
2009-2011 32 66 ± 23 31 ± 53 4 0-243 
Pooled 100 73 ± 0.9 82  ± 203 35 0-1102 
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Figure 3.1: Age-abundance profiles for the trematode, D. dendriticum in a population of 
elk sampled from 2009 to 2011 from Cypress Hills Interprovincial Park, Alberta. The solid 
line represents the negative binomial distribution model fit using maximum likelihood; the 
dashed lines represent the 95% confidence intervals. 
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Figure 3.2: Stacked frequency distribution of adult D. dendriticum in calf, juvenile, and 
adult elk collected between 1997 and 2011 from Cypress Hills Interprovincial Park, 
Alberta. 
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Figure 3.3: Age-abundance profile of infection for the invasive trematode, D. dendriticum 
in beef cattle sampled from 2003 to 2013 from Cypress Hills Interprovincial Park, Alberta. 
The solid line represents the negative binomial distribution model fit using maximum 
likelihood; the dashed lines represent the 95% confidence interval. 
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Figure 3.4: Relationship between liver weight and host age for elk sampled from 2009 to 
2011 from Cypress Hills Interprovincial Park, Alberta. Regression lines are maximum 
likelihood estimates. 
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4.1 ABSTRACT 

Epidemiological rate parameters of host generalist parasites are difficult to estimate, 

especially in cases where variation in parasite performance can be attributed to host species. 

Such cases are likely common for generalist parasites of sympatric grazing mammals. In this 

study, we combined data from experimental exposures in cattle and sheep and natural 

infections in elk to compare the recruitment, morphology and reproduction of adult 

Dicrocoelium dendriticum, a generalist trematode that has emerged in sympatric grazing 

hosts in Cypress Hills Interprovincial Park, Alberta. Overall, there were no significant 

differences in the recruitment of metacercariae and in the pre-patency period of adults in 

experimentally-exposed cattle and sheep. All flukes reached reproductive maturity and the 

degree of reproductive inequality between individual flukes within each infrapopulation was 

moderate and approximately equal among the three host species. Neither fluke size nor per 

capita fecundity was constrained by density-dependence. Thus, fitness parameters 

associated with growth and reproduction were approximately equivalent among at least 

three species of definitive host, two of which were sympatric on pastures in this Park. The 

generalist life-history strategy of this trematode, which is known to extend to other stages of 

its life-cycle, has likely contributed to its invasion history outside its native range in Europe.  

 

4.3 KEY FINDINGS 

 Rates of adult fluke recruitment and time to egg shedding were similar in 

experimentally-infected sheep and cattle 

 All adult flukes, regardless of host species, contained eggs in utero  

 Reproductive inequalities were moderate within fluke infrapopulations and 

approximately equal among host species 
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 Fluke growth and reproduction was not density-dependent in any host species 

 Adult Dicrocoelium dendriticum is a broad host generalist 
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4.3 INTRODUCTION 

Parasitologists have long recognized that a parasite’s position along the host specialist - 

host generalist continuum influences fundamental aspects of host/parasite biology. Thus, 

the extent to which a parasite is a host specialist or host generalist impacts the nature of host 

immunological responses, the magnitude of transmission asymmetries among host species, 

and also influences key components of parasite fitness, such as growth, reproduction, and 

development (Combes, 2001; Poulin, 2007).  The direction and magnitude of parasite-

mediated natural selection and parasite-host co-evolution can also be expected to differ for 

host specialists versus generalists (e.g. Richner, 1998). Perhaps less well recognized is the 

notion that the degree of host specialization also has important implications for applied and 

theoretical epidemiologists. For parasites that are host specialists, key rate parameters such 

as transmission, growth, reproduction, senescence, and parasite-induced host mortality can 

be estimated from experiments involving a single (or few) species of host. It follows that 

control strategies will be much simpler in cases involving single species of parasite in a 

single species of host. But the epidemiological picture becomes much more complex for 

generalist parasites that have the potential to infect multiple species of sympatric host 

(Grenfell et al. 2002). In an early example, Hairston (1962) showed that the trematode 

Schistosoma japonicum developed in sympatric humans, dogs, pigs, and rats. Within each 

of these hosts, parameters such as prevalence, fluke intensity, fluke size and per capita fluke 

reproduction varied extensively. He then used simple models to demonstrate that effective 

control was only realistic if intervention was targeted at the rat host population. This 

example illustrates that for generalist parasites in multiple species of host, the relative 

performance of individual parasites in different hosts is a key epidemiological factor.  
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The relative performance of generalist parasites within multi-host communities is 

particularly important in the context of parasites that have been introduced outside their 

native host ranges. The rate of parasite ‘spill-over’ between hosts that have invaded a new 

habitat and sympatric species of host may be high (Cleaveland et al. 2002; Cross et al. 2009), 

but it is only epidemiologically important if the invasive parasites develop to maturity within 

their new hosts. Further, the extent to which the presence of one or more species of host 

within a multi-host community either dilutes or enhances (Keesing et al. 2006) overall rates 

of transmission into the host community will depend on parasite establishment and 

performance in different species of host. This means that the epidemiological 

consequences of invasion into a multi-host community will be determined by the rate of 

transmission of infective stages into different species of hosts, and also by variability in 

relative rates of parasite development among sympatric host species. The problem is that 

for generalist parasites in multi-host systems, including those that involve invasive parasites, 

information on relative fluke performance in different sympatric species of host is rarely 

available. For the few exceptions involving invasive parasites or hosts (e.g. the trematode 

Schistosoma japonicum in 4 species of mammal (Hairston, 1962); the acanthocephalan 

Metechinorhynchus salmonis in 10 species of fish (Holmes et al. 1977)), transmission 

dynamics within multi-host communities was strongly influenced by the relative 

performance of parasites within different species of host.  

The liver fluke, Dicrocoelium dendriticum (Trematoda: Dicrocoeliidae) has been 

widely introduced outside its homeland in central Europe, most likely through the 

movement of infected livestock (especially sheep) across international borders. The fluke is 

now common in northern and southern Europe, in northern Africa, and in isolated pockets 

in western and eastern North America (review by Otranto & Traversa, 2002; Rojo-Vásquez 
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et al. 2012). Evidence from the host survey literature indicates that the adult stage of D. 

dendriticum is a host generalist within and outside its native range, found in a wide array of 

cervine, ovine, and bovine hosts. Furthermore, evidence from experimental infections in 

sheep, beef cattle, and laboratory hamsters, together with faecal analyses for the 

characteristic eggs, has shown that at least some flukes reach reproductive maturity in all of 

these hosts (e.g. Manga-González et al. 1991; Campo et al. 2000; Sánchez-Campos et al. 

2000; Manga-González & González-Lanza, 2005). Once absent in Alberta, Canada, the 

fluke is now common within a range of co-grazing ungulates in Cypress Hills Interprovincial 

Park (CHP), a conservation reserve located in the southeastern corner of the province. 

Goater and Colwell (2007) showed that 60-90% of resident elk (Cervus canadensis) and 

beef cattle (Bos taurus) are infected from year to year and all infected hosts contain gravid 

flukes.  

The broad host spectrum of this fluke and its recent introduction into CHP provides an 

opportunity to evaluate relative performance of a generalist parasite within a multi-host 

system. In this study, we used experimental exposures in sheep and cattle to compare 

relative patterns of fluke recovery and intensity and to obtain comparative data on per 

capita fluke size and reproduction. Opportunistic collections of hunter-shot elk provided 

comparable data for infected wildlife collected from CHP. Our overall aim was to evaluate 

the performance of flukes collected from alternative hosts to provide a foundation for 

subsequent assessment of the roles of alternative host species in the overall transmission of 

D. dendriticum eggs onto shared pasture.   
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4.4 MATERIALS AND METHODS 

4.4.1 Cypress Hills Interprovincial Park 

CHP is a 531, 000 ha plateau rising approximately 200 m above the surrounding 

prairie (1,050-1,470 meters above sea level) in southeastern Alberta and southwestern 

Saskatchewan, Canada. The southern perimeter of the park is located approximately 100 

km north of the Canada/United States border (49o37.5’N, 110o’W). Sympatric elk (Cervus 

canadensis), mule deer (Odocoileus hemionus), white-tailed deer (O. virginianus) and beef 

cattle graze within the park. A managed elk hunt, initiated in 1978, runs annually each fall 

to maintain a density of 350-700 animals (Hegel et al. 2009). Further details regarding the 

natural and cultural history of CHP are in Hildebrant and Hubner (1994).  

 

4.4.2 Experimental infections 

A total of eighteen (2 control and 16 experimental) weaned Canadian Arcott sheep 

(ages: 6 mo. to 9 years old) were selected from a research flock maintained at the 

Agriculture and Agri-Food Canada Lethbridge Research Centre (LRC) in Lethbridge, 

Alberta. Twelve Holstein cattle (ages: 6 mo. to 2 years old) were purchased from a dealer 

and housed at the LRC for the duration of the infection trials (2 control and 10 

experimental). The steers and sheep were housed separately in a feedlot and fed a basic 

diet of hay/barley silage. All animals were handled and maintained under the guidelines 

specified by the Canada Council for Animal Care (LRC Animal Care Committee protocol 

numbers 08233, 0925 and 1044).  

Prior to exposure to metacercariae, sheep and cattle were treated once with a standard 

application of Ivomec® (Merial, Baie-D’Urfe, Quebec) to eliminate pre-existing helminth 

infections. For each infection trial, metacercariae were dissected from naturally-infected 
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formicid ants (Formica sanguinea, F. subaenescens and F. fusca; B.J. van Paridon & C.P. 

Goater, unpublished observations.) obtained from CHP in June 2011-2013 and packaged 

into gel capsules just prior to administration per os. Two sheep and two calves were 

assigned to Group A, the sham control, receiving capsules but no metacercariae. Group B 

(4 sheep and 4 calves) were orally inoculated with 625 metacercariae in 2011. Twelve sheep 

and six calves (Group C) were inoculated with ~1000 metacercariae, half in 2012 and the 

others in a third trial in 2013 (Table 1).  

Rectal faecal samples were collected approximately every two weeks for up to 22 weeks 

post infection (p.i.) to determine the approximate onset of fluke reproduction in individual 

hosts. Faecal samples were labelled and frozen prior to analyses. Faecal egg counts were 

conducted using the modified Wisconsin method as outlined by Zajac and Conboy (2005) 

with saturated zinc sulfate solution (specific gravity = 1.36).  

Animals were selected at random for slaughter at 110-150 days p.i. Live flukes were 

collected from sheep and cattle using standard methods described in Goater and Colwell 

(2007). Each liver was weighed and then cut into approximately 5mm-wide strips. Each strip 

was mechanically palpated into saline to dislodge the flukes from the bile duct. Live adult 

flukes were counted under a dissecting microscope and collected for subsequent analyses. 

These procedures allowed us to compare patterns of adult fluke recovery, mean fluke 

intensity, and fluke fecundity (Bush et al. 1997) in the two species of host.   

 

4.4.3 Natural infections in elk 

Logistical constraints prevented experimental exposures in wildlife. However, we 

collected data on fluke intensity and individual fluke fecundity (see below) in elk during the 

2009-2013 hunting seasons to provide a general comparison with data on adult flukes 
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collected at approximately the same time from sheep and cattle. Where possible, live adult 

flukes were collected for subsequent analyses in the laboratory.  

 

4.4.4 Morphology and reproduction of adult flukes 

Data on per capita fluke size and reproduction came from live adult flukes collected at 

necropsy from 5 randomly selected sheep and cattle, and 3 elk harvested in 2013. Flukes 

from sheep and cattle were between 110-150 days old. The ages of flukes originating from 

elk are unknown, but were assumed to be equal to, or greater than, their 60-day pre-patency 

period (review by Otranto & Traversa, 2002). All intact flukes from each host were 

removed and washed with RPMI 1640 culture media (Sigma-Aldrich Canada Co., Oakville, 

Ontario) at pH 7.4. A subset of adult flukes was randomly selected from each host, isolated, 

and then transferred immediately into 24-well tissue culture plates. Each well was filled with 

3 mL of RPMI 1640 and the plates were incubated at 37°C for 24 hrs to simulate host body 

temperature. This procedure is standard for the maintenance of live parasites for prolonged 

periods (Geary et al. 1993). Adult D. dendriticum continually shed eggs for up to 4 days 

within this media (M.A. Beck & C.P. Goater, unpublished observations). Following a 24 hr 

incubation period, the flukes were fixed in heated aceto-formal-alcohol (AFA) under light 

coverslip pressure.  

These incubation and preservation procedures provided flukes of excellent quality. 

Morphological data on body length (BL), body surface area (BA), and uterus area (UA) 

were obtained from digital images (resolution of 250 pixels mm) using ImageJ software 

(Abramoff et al. 2004) for flukes from sheep (N = 5-18 flukes/host, Total N = 80), cattle (N 

= 7-11 flukes/host, Total N = 47) and elk (N = 6-25 flukes/host, Total N = 39) following 

procedures adapted from Valero et al. (1999) for liver flukes (Fasciola hepatica) originating 
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from naturally-infected sheep. The fecundity of individual flukes was determined by 

counting the numbers of eggs at the bottom of each well for sheep (N = 85), cattle (N = 51) 

and elk (N = 54). Following these counts, flukes and eggs were preserved in 90% ethanol. 

To estimate total reproductive output/day, ex vivo egg counts over 24 hours were averaged 

for each host species and multiplied by fluke intensity to estimate total eggs shed/24hrs. 

 

4.4.5 Statistical Analyses 

Parasitological terms such as intensity and infrapopulation follow definitions in Bush et 

al. (1997). Parametric tests involving intensity and egg count data were used with 

assumptions of normality met using raw or square root (n+1) transformed data. Differences 

in mean values were evaluated using independent t-tests or ANOVAs with Tukey’s post 

hoc analyses. Pairwise comparisons of proportions used chi-square tests. 95% confidence 

intervals (CI) were calculated for proportions (p) using the Wald method (Vollset, 1993; 

p±z√(pq/n), where z = 1- alpha/2 of the standard normal distribution and q=1-p). 

Differences in rates of maturation and fluke recovery in experimentally infected cattle 

and sheep were evaluated using data on mean time to egg shedding and proportion of 

recovered flukes. Proportion of recovered flukes refers to the numbers of recovered adult 

flukes relative to the numbers of metacercariae administered. Assessment of density-

dependence in fluke growth and reproduction within each host species was evaluated with 

standard parametric regressions involving fluke intensity, fluke body surface area (BA), and 

ex vivo egg counts. Morphometric data were evaluated with a nested ANOVA to apportion 

variation in fluke BA into between-species, between individual hosts, and between 

individual fluke effects.  The percentage contribution by host species and individual hosts 

were calculated as a percentage of total variance (Rowe et al. 2009).  
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Comparisons of fluke reproduction included parametric comparisons of parasite eggs 

per gram (EPG) in host faeces on the date of necropsy and ex vivo egg counts from 

individual live flukes obtained during necropsy. A nested ANOVA design was used to 

apportion observed variation into between-species, between individual hosts, and between 

individual fluke effects.  Percentage contribution of each main effect was calculated as a 

percentage of total variance. Lorenz curves and Gini coefficients, adjusted for sample sizes, 

were then used to describe inequality in ex vivo fluke reproduction within infrapopulations 

of the three different definitive hosts according to methods described in Dobson (1986). 

Applied examples included Shostak and Dick (1987) and Poulin and Latham (2002). Prior 

to the estimation of reproductive inequalities, ex vivo egg counts were ranked from lowest 

to highest for each host species. Lorenz curves are then calculated by plotting cumulative 

percent (%) of daily reproductive output against the cumulative number of individual flukes. 

 

4.5 RESULTS 

4.5.1 Rates of maturation and fluke recovery in sheep and cattle 

Fluke eggs were first detected in lamb faeces at 7 to 9 weeks p.i., whereas eggs were 

first detected in cattle faeces at 8 to 12 weeks p.i. Although these data indicate earlier egg 

release in sheep, there was no significant difference in the timing of initial egg release 

between the two species of host (t20 = -1.11, p = 0.28). Flukes were present within the livers 

of all exposed hosts at necropsy (Table 1). Intensities ranged from 46-283 flukes in sheep 

and 1-324 in cattle. The proportion of recovered adult flukes (sheep: 18.4%; 95% CI = 0.0 - 

42.4%; cattle: 12.8%; 95% CI = 0.0 - 33.5%) did not significantly differ between hosts (χ2 = 

0.95, d.f. = 1, p = 0.33).  
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4.5.2 Density-dependent fluke performance  

The association between size of individual flukes, measured as BA, and per capita 

fluke fecundity was non-significant in sheep (r = 0.03, F1,75 = 0.05, p = 0.82) and elk (r = 0.05, 

F1,37 = 0.08, p = 0.78). This association was significantly positive for flukes from cattle (r = 

0.34, F1,45 = 5.88, p = 0.02), indicating that larger flukes tended to produced more eggs. BA 

varied significantly with intensity in cattle (r = 0.38, F1,45 = 7.35, p < 0.01) but not in sheep (r 

= 0.05, F1,78 = 0.18, p = 0.67). Ex vivo egg counts did not vary significantly with fluke intensity 

in cattle (r = 0.08, F1,49 = 0.35, p = 0.56) or sheep (r = 0.18, F1,81 = 2.77, p = 0.10). Analyses 

comparing ex vivo egg counts could not be completed for elk because fluke intensity data 

were only available for two hosts.  

 

4.5.3 Comparative morphology of adult flukes in cattle, sheep, and elk 

Morphological data on fluke BA, uterus area (UA), and body length (BL) were highly 

positively and significantly inter-correlated for flukes assessed from each host species, 

particularly for data involving BA and UA (Table 2; Range in R2 values : BA vs UA= 0.48 - 

0.88; BA vs UL= 0.62 - 0.88; BL vs UA= 0.41 - 0.58). Due to the magnitude of these 

significant inter-correlations, and for consistency with the literature involving other flukes, 

we focused our comparative analyses on BA.  

The frequency distributions of BA data for the total sample of flukes from each host 

species indicated that a high proportion of flukes from elk (0.77 ± 0.08) and from sheep 

(0.86 ± 0.09) were < 8 mm2. In comparison, a higher proportion (0.38 ± 0.14) of flukes had 

a BA ≥ 9 mm2 in cattle (Fig. 1). Overall, there was a significant difference in mean fluke BA 

between the three species of host (Table 2). Post-hoc comparisons showed that flukes in 

cattle were on average, 14% larger than those in sheep and elk. However, results from a 
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nested ANOVA (Table 3) showed that host species only accounted for 10.7% of the overall 

variation in fluke BA, while most of the variation was due to differences between host 

individuals (44.6%; F2,152 = 19.7, p < 0.001) and between individual flukes (44.7%).  

 

4.5.4 Comparative fluke reproduction 

Mean EPG for samples collected on the date of necropsy differed significantly (t20 = 

3.36, p < 0.01) among sheep (x = 38.5 ± 6.4) and cattle (x = 8.2 ± 3.3), with values 

approximately 80% higher in sheep.  

All recovered flukes were gravid. Each fluke contained hundreds to thousands of eggs 

in utero. Variation in egg output over the 24 hr incubation period (Fig. 2a) spanned 3 

orders of magnitude (range = 1 - 5820 eggs/day/fluke). In elk, approximately 72% (95% CI: 

60 - 84%) of flukes shed fewer than 1000 eggs in 24 hours, of which 14% (95% CI: 5 - 24%) 

shed fewer than 100 eggs. In contrast, only 44% (95% CI: 34 - 55%) and 45% (95% CI: 31 - 

59%) of flukes from sheep and cattle, respectively, shed fewer than 1000 eggs over the 24 hr 

incubation period. Approximately 14% (95% CI: 5 - 23%) of flukes from sheep and cattle 

shed more than 3000 eggs in a day, while less than 2% (95% CI: 0 - 5%) of flukes harvested 

from elk shed such high numbers of eggs.  

Estimates of mean egg production/day varied significantly among host species for 

flukes harvested from sheep (x =1530.0 ± 147.3), cattle (x = 1561.1 ± 173.7), and elk (x = 

701.4 ± 98.6). Tukey’s post-hoc comparisons showed that mean ex vivo egg counts did not 

significantly differ among sheep and cattle (pCS = 0.94), while counts for flukes harvested 

from elk were significantly lower (pCE < 0.001; pSE < 0.001). However, results from a nested 

ANOVA (Table 3) showed that host species and host individual only accounted for 19.8% 
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and 15.2% of the variation in egg counts, respectively, while 65.0% of the variation could be 

explained by differences between individual flukes (F12,175 = 3.9, p < 0.001).  

Since only a small proportion of the overall variation in fluke fecundity could be 

attributed to host species and host individuals, it is likely that inherent variation among 

individual flukes plays a significant role. Overall, reproductive inequalities were similar 

among fluke infrapopulations in cattle (G’RC = 0.44, 95% CI = 0.37 - 0.52), sheep (G’RS  = 0.47, 

95% CI = 0.39 - 0.52) and elk (G’RE  = 0.53, 95% CI = 0.44 - 0.59) with no apparent 

differences between host species (Fig. 2b). These results indicate that inequalities in 

reproduction arise from a small number of highly fecund flukes within each infrapopulation. 

If these data are assumed to represent random samples of flukes from the three host 

species, the Lorenz curves indicate that approximately 10% of flukes in any infrapopulation 

contribute about 30-35% of all eggs shed by a particular host. Lastly, estimates of total daily 

egg output using ex vivo egg counts (sheep: 26.4 ± 8.5 X 104 eggs/day; cattle: 23.6 ± 8.1 X 

104 eggs/day; elk: 16.4 ± 5.9 X 104 eggs/day) did not significantly differ among host species 

(F2,15 = 0.23, p = 0.79).  

 

4.6 DISCUSSION 

Our data show that rates of recruitment of adult D. dendriticum from metacercariae in 

ants were approximately equivalent between at least two species of sympatric host. The 

rates of fluke development and time to reproductive maturity were also approximately 

equal between species of host. Virtually all flukes, in all hosts, reached maturity, although 

rates of per capita fecundity were highly variable. The evidence for relatively equivalent 

fluke performance among hosts is strongest for flukes assessed from experimentally 

infected sheep and cattle, where confounding factors such as dose and fluke age were 
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controlled. The similarities in overall fluke performance were also consistent in naturally 

infected elk, with heterogeneity among individual flukes accounting for >50% of the total 

variation in reproductive performance and morphology among the fluke infrapopulations. 

Host-related differences were also absent in comparisons of estimated total daily egg output 

calculated using ex vivo egg counts. Taken together, these data show that D. dendriticum 

performance is approximately equivalent in all three species of hosts, two of which (cattle 

and elk) are sympatric within a known site of introduction in Alberta, Canada (Goater & 

Colwell, 2007; Beck et al. 2014).    

Our results from the experimental infections confirm those from prior experimental 

work involving other domestic hosts. Manga-González and González-Lanza (2005) exposed 

lambs to 1000-3000 metacercariae and then monitored rates of fluke recruitment, growth, 

and faecal egg production. Our results involving lambs and beef cattle were consistent with 

the results of this study relative to fluke recruitment, pre-patency period, and fluke size. 

Similarly, results indicating relatively equal performance among host species are consistent 

with data from field studies documenting similarities in fluke burden and fecal egg counts in 

sheep and goats (Jithendran & Bhat, 1996). These results indicate consistency in fluke 

performance between host species that are amenable to experimental exposures (e.g. sheep 

and cattle). While our data from flukes collected from naturally infected elk are less 

conclusive, patterns of overall fluke size and per capita reproduction are consistent with 

those from the two domestic hosts.  

Our analyses also indicate that fluke performance was not density-dependent. The 

growth and survival of adult D. dendriticum was independent of the numbers of flukes in 

individual hosts. There was no detectable increase in per capita fecundity with fluke size in 

experimentally-infected sheep or elk, although this relationship was moderately positive in 
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cattle. However, fluke performance did not decrease with an increase in fluke intensity in 

any of the three host species. These results were unexpected, particularly when overall 

variation in intensity spanned four orders of magnitude. Density-dependence is a frequent 

outcome within many host-parasite interactions (Shostak & Scott, 1993), including for the 

trematode Fasciola hepatica in rats (Valero et al. 2006) and for the nematode 

Trichostrongylus columbriformis in sheep (Dobson et al. 1990). The absence of density-

dependence may be related to the small size and hence, minimal nutrient requirements of 

individual flukes. The minor hepatocellular damage associated with infection may also not 

be sufficient to activate density-dependent immunity. Density-dependent fluke performance 

may be evident at the higher intensities observed within some hosts (especially deer) 

sampled in Cypress Hills Interprovincial Park (up to 5000 per liver (Goater & Colwell, 

2007) and other geographic regions (up to 10,000 per sheep on the Isle of Coll, Scotland 

(Sargison et al. personal communication)). Threshold density-dependent dynamics have 

been documented for T. columbriformis in sheep, in which decreased parasite fecundity 

was restricted to sheep that harboured upwards of three thousand individuals (Dobson et al. 

1990).   

Further evidence for the absence of strong density-dependent constraints on 

development and survival comes from the observation that virtually all flukes, within all 

infrapopulations, were gravid. All flukes from the three host species that were sampled for 

morphological assessments contained eggs in utero and all randomly selected individuals 

that were incubated within growth media produced eggs over 24 hours.  This pattern of 

reproduction was consistent for infrapopulations in sheep and cattle, where factors such as 

fluke age and dose were controlled and also for infrapopulations in naturally-infected elk. 

Although our data show that the numbers of eggs released by individual flukes was highly 
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variable within and between individual hosts, the onset of egg release 7-12 weeks p.i., and 

the probability of reaching reproductive maturity, was not. These results are in striking 

contrast to the patterns of reproduction that are reported in other vertebrate/helminth 

interactions, in which reproductive inequalities within infrapopulations tend to be much 

higher (Keymer et al. 1983; review by Dobson, 1986). Shostak and Dick (1987) showed 

that, on average, only 33% of individual cestodes (Triaenophorus crassus) collected from 

infrapopulations in pike (Esox lucius) were gravid, and only a fraction of these shed eggs ex 

vivo. Overall, 10% of these gravid flukes produced 85% of the total eggs shed. Similar 

examples involving other host/parasite interactions are described in Dobson (1986). In 

contrast, the most fecund 10% of D. dendriticum individuals sampled from the three hosts 

produced only 30-35% of the total eggs shed, and all flukes contributed eggs. These results 

suggest that the rates of development, growth, and reproduction of D. dendriticum in the 

biliary system of its definitive hosts are less constrained by factors such as inter- and 

intraspecific competition for host resources and/or by host responses. The implications of 

this contrasting pattern of fluke development, and especially reproduction, to patterns of 

population genetic structure and evolutionary potential provide interesting follow-up 

opportunities.   

Taken together, the general transmission strategy of adult D. dendriticum is one of low 

host specificity, approximately equivalent per capita fluke performance in different hosts, 

density-independent growth and reproduction, and modest reproductive inequality between 

individual flukes. In effect, this means that almost every metacercariae that is recruited into 

the liver of a wide range of host species will develop to maturity and release large (albeit 

variable) numbers of viable eggs onto shared pasture. Why might natural selection favour a 

generalist life-history strategy for D. dendriticum? One possibility is that low host specificity 
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optimizes overall rates of transmission for trematodes such as D. dendriticum that complete 

all of their life-cycle stages within terrestrial habitats. Thus, optimal rates of host exploitation 

for flukes that are recruited within the livers of several potential hosts may be one solution 

to offset the low probability of transmission during the various stages of the D. dendriticum 

life-cycle (Poulin, 2007). Comparable examples involving other terrestrial or semi-terrestrial 

parasites (e.g. fasciolid trematodes, trichinellid nematodes, and some taeniid cestodes) tend 

also to be broad host generalists during their adult stages (Goater et al. 2014).  

An alternative explanation is that exploitation by these small flukes within the bile ducts 

of large livers provides optimal quality and quantity of host resources to support high fluke 

fecundity, unencumbered by inter-specific or intra-specific competition (Poulin, 2007).  

This scenario may occur among sympatric grazing mammals in CHP where parasite 

intensities tend to be relatively low, and there are no co-occurring parasites in the livers 

(Goater & Colwell, 2007; Beck et al. 2014). A related possibility is that the liver of these 

ungulates may provide a relatively immuno-privileged microhabitat that does not constrain 

the growth and fecundity of D. dendriticum in potential definitive hosts. Evidence from 

serological assays involving experimentally-infected mammals has shown that anti-D. 

dendriticum antibodies are detectable at approximately 60 days post-infection in sheep 

(González-Lanza et al. 2000; Ferreras-Estrada et al. 2007). However, this immunological 

response may not provide adequate protection, as is apparent among sheep chronically 

exposed to F. hepatica (Pérez et al. 2002) and cattle experimentally infected with F. 

gigantica (Molina & Skerratt, 2005). Analyses of age-intensity patterns of infection in cattle 

sampled from CHP are also consistent with a lack of effective host immunity (Beck et al. 

2014). These results indicate that effective host defences are minimal, absent, or at least 

slow acting for many potential hosts of D. dendriticum. Given the role of host defence in 
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selecting for host specificity across a range of host/parasite interactions (Combes, 2001; 

Poulin, 2007), the absence of effective anti-D. dendriticum immunity may best explain the 

patterns of host utilization and parasite performance observed in this study. 

The ability of D. dendriticum to attain approximately equal fitness within a range of 

definitive hosts likely enhances opportunities for host encounter and for host switching, and 

likely also increases overall rates of dispersal (Combes, 2001; Hoberg & Brooks, 2008). 

Since this fluke utilizes a notoriously high number of species of terrestrial snail and 

formicid ants as first and second intermediate hosts (review by Manga-González et al. 2001) 

respectively, such opportunities likely extend through the entire life-cycle. Ultimately, a 

generalist strategy of this kind - one that extends throughout the various life-cycle stages - 

will influence rates of colonization, including into novel geographical areas and naïve host 

populations. This is consistent with historical and contemporary patterns of host switching 

and the translocation of D. dendriticum outside its native range in Europe into areas in 

North and South America, northern Europe, north Africa and the Middle East (review by 

Otranto & Traversa, 2002; Goater & Colwell, 2007; Rojo-Vásquez et al. 2012). Combined 

with rapid environmental change and increased mixing of wildlife and domestic stock as a 

result of anthropogenic changes in landscape use (review by Agosta et al. 2010), the 

reproductive strategy of D. dendriticum may increasingly facilitate the formation of novel 

host-parasite associations.  
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Table 4.1: Summary of the number of adult D. dendriticum recovered from the livers of 
experimentally-infected cattle and sheep with their associated faecal egg counts and number 
of eggs shed by flukes over for a 24 hour period. All values are mean +/- SEM. 

Group 
Infection 
Dose Host N 

Fluke 
Intensity 

Eggs/g 
faeces 

Mean Number 
of Egg/24 hrs 

A Control 
Sheep 2 0 0 0 
Cattle 2 0 0 0 

B 625 
Sheep 4 137.3 ± 18.0 46.8 ± 7.8 1093.4 ± 204.7 
Cattle 4 42.8 ± 30.2 3.8 ± 2.8 1043.2 ± 206.5 

C 1127 ± 186.1 
Sheep 12 183.3 ± 27.7 35.8 ± 8.1 2256.0 ± 261.9 
Cattle 6 198.7 ± 47.5 11.2 ± 4.9 1986.6 ± 241.8 
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Table 4.2: Morphometric data for adult D. dendriticum from experimentally-infected 
sheep and cattle and naturally infected elk from Cypress Hills Interprovincial Park, Alberta. 
Values shown are mean ± SEM and range.  

 Sheep             
(N = 80) 

Cattle             
(N = 47) 

Elk                    
(N = 39) 

ANOVA      
p-value 

Body area, BA (mm2) 
6.6 ± 0.1 7.8 ± 0.3  6.7 ± 0.3 

< 0.001 
3.9 - 10.6 4.5 - 11.4  3.6 - 9.4 

Uterus area, UA (mm2) 
2.8 ± 0.1 3.0 ± 0.1  2.4 ± 0.1 

0.002 
1.1 - 5.0 1.7 - 4.4  1.1 - 4.3 

Body length, BL (mm) 
5.7 ± 0.1 6.5 ± 0.1  5.8 ± 0.1 

< 0.001 
4.2 – 7.6 4.5 - 8.5  4.3 - 7.2 
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Table 4.3: Nested ANOVA results for the effects of host species and individual animal 
combinations on variation in fluke body area (mm2) and ex vivo egg count for flukes 
incubated for a 24-hour period. 

  Source df MS F value p-value Variance 
Component % 

BA 

Species 2 25.0 19.7 <0.001 0.3 10.7 
Individual 
hosts(Species) 10 17.3 13.7 <0.001 1.3 44.6 

Residual 152 1.3   1.3 44.7 
Total 164           

Ex vivo 
Egg 
Count 

Species 2 1.3X107 11.5 <0.001 3.6X105 19.8 
Individual 
hosts(Species) 12 4.6X106 3.9 <0.001 2.7X105 15.2 

Residual 172 1.2X106   1.2X106 65.0 

Total 186           
 
 
 

 
 

 

 

 

107 
 



 

Figure 4.1: Frequency distribution of body surface area for individual D. dendriticum from 
experimentally infected sheep (N = 80), cattle (N = 47) and elk (N = 39). 
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Figure 2: (A) Frequency distributions of daily reproductive output for individual D. 
dendriticum collected from experimentally infected sheep (n = 86), cattle (n = 51) and elk 
(n = 54); (B) Lorenz curves for cumulative percent (%) of daily reproductive output of 
flukes plotted against the cumulative number of individual flukes. Pairing of the cumulative 
percent of the fluke population responsible for a cumulative percent of total daily 
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reproduction in each species of hosts is achieved after ranking the flukes from least to most 
fecund. The solid line represents the line of equality (GR = 0). 
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5.1 ABSTRACT 

The emergence of parasites and pathogens outside their normal host and geographic 

range is a globally-recognized concern.  A key shortcoming of models that attempt to 

forecast the spread and impact of emerging parasites, especially host generalists, is that little 

data exist on the relative contribution of sympatric host species to the transmission of 

infective stages. In this study, we estimated relative rates of egg-to-pasture transmission for 

an emerging generalist trematode, Dicrocoelium dendriticum, among sympatric ungulates 

in Cypress Hills Interprovincial Park, Alberta (CHP). We combined estimates of host 

population size, prevalence, mean fluke abundance, per capita fluke fecundity, and host 

residency time to estimate the relative annual contribution of each host species to 

contamination of pasture with D. dendriticum eggs. Worm prevalence and abundance were 

significantly higher in samples of yearling and adult beef cattle and in juvenile elk than in 

adult elk and subpopulations of white-tailed and mule deer. Overall, the sub-population of 

roughly 4000 cow/calves that are pastured in CHP contribute approximately 80% of the 

estimated 300 billion eggs that contaminate pasture each year. Because transmission into 

snail intermediate hosts is known to occur in regions of CHP where beef cattle are 

excluded, the much smaller sub-populations of calf and yearling deer and elk also play a 

role in disseminating eggs within the region. These results emphasize the complex and 

interactive roles of domestic host density, relative immuno-competence, and host 

community structure, in understanding transmission dynamics of emerging, multi-host 

parasites. In addition to providing some of the first estimates of egg-to-pasture transmission 

rates for a multi-host parasite, these results can also inform management strategies for this 

and other emerging multi-host parasites. 
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5.2 INTRODUCTION 

A significant, but often neglected, concern associated with the translocation of domestic 

stock and wildlife, or the introduction of non-indigenous host species, is the ‘spill-over’ of 

parasites to and from infected hosts (Cleaveland et al. 2002; Cross et al., 2009). The 

emergence of these novel host-parasite interactions represents a significant threat from both 

economic and conservation perspectives (Keeling & Gilligan, 2000; Ostfeld & Keeling, 

2000; Tompkins et al., 2011). The epidemiological picture is particularly complex for 

generalist parasites that can infect several host species (Cleaveland et al., 2001; Streicker et 

al., 2013). Heterogeneities in relative host abundances, exposure risk, compatibility and 

susceptibility can translate to high variability in rates of parasite transmission (e.g. Haydon et 

al., 2002; Streicker et al., 2013). For these parasites, the epidemiological characterization of 

so-called ‘superspreaders’ or ‘superspreading groups’ of hosts (Cross et al., 2009; Morgan et 

al., 2006) becomes increasingly complicated, and intractable, as the complexity and 

structure of a host community increases.  

A parasite’s basic reproductive number (Ro), can be used to quantify and characterize 

the extent to which host species heterogeneity impacts parasite transmission dynamics. For 

macroparasites, Ro represents the number of reproductively mature offspring recruited 

over the lifetime of a single adult parasite (Anderson & May, 1991; Streicker et al., 2013) 

and can be used as a mathematical approximation for the ‘transmission threshold’ of a 

parasite (Goater et al., 2014). However, estimation of Ro is particularly complicated for 

parasites with multiple hosts and multiple developmental/ transmission stages. The impacts 

of host species heterogeneity on rate of transmission will vary relative to the degree of 

specificity of a parasite (Haydon et al., 2002; Streicker et al., 2013) and can therefore not be 
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defined a priori among a range of sympatric hosts. Alternatively, for complex lifecycle 

generalist parasites, measures of the relative contribution of each host species to the total 

number of infective stages (Streicker et al., 2013) or infected vectors (Kilpatrick et al., 2006) 

can be used to estimate a host’s relative contribution to transmission. This approach has 

been primarily limited to direct lifecycle pathogens and parasites (e.g. gastrointestinal 

nematodes) in small mammals or domesticated stock. Ideally, robust estimates of relative 

host contribution require invasive sampling of large numbers of equally sampled, sympatric 

hosts, along with accurate data on parasite fecundity and the relative abundance of hosts 

and their parasites (Poulin, 2007). Opportunities to collect these data are rare, particularly 

for parasites shared across the wildlife-domestic stock interface. As a result, we have a poor 

understanding of the extent to which the degree of host specificity influences the likelihood 

of parasite spill-over into naïve hosts and geographic regions for parasites shared among 

large sympatric mammals. 

The lancet liver fluke, Dicrocoelium dendriticum, is an emerging trematode that 

infects a range of species of large ungulate hosts in Cypress Hills Interprovincial Park, 

Alberta. Originating in central Europe, this host generalist is now present throughout 

Europe, Asia, north Africa and in isolated patches in North America (review by Otranto & 

Traversa, 2002; Rojo-Vásquez et al., 2012). While this parasite was rare in the small, island-

like Cypress Hills Interprovincial Park (CHP) in Alberta, Canada in the early 1990’s, this 

fluke is now present in 40-90% of all resident elk (Cervus canadensis), mule (Odocoileus 

hemionus), white-tailed deer (O. virginianus) domestic cattle (Goater & Colwell, 2007; Beck 

et al., 2014). With high prevalence and mean abundance among a range of CHP sympatric 

hosts, there is significant risk of parasite spill-over into new geographic regions and host 

populations beyond CHP through the translocation of infected definitive and intermediate 
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hosts.  Despite evidence of relatively equal performance of individual flukes (recruitment, 

morphology, and fecundity) among experimentally-infected hosts (Beck et al., 2015), 

parasite distribution patterns differ relative to host age in elk and cattle, with evidence of 

protective immunity limiting parasite recruitment only in older elk (Beck et al., 2014). 

However, the implications of these patterns on overall parasite transmission at the host 

community level remain poorly understood, particularly in relation to differences in host 

abundance and the transient cattle population that only graze in CHP during the snow-free 

months (Hegel et al., 2009; Alberta: Tourism, Parks and Recreation, 2013).  

Determining which hosts and host-specific characteristics amplify parasite transmission 

would allow for the identification of superspreading individuals or subgroups for 

transmission of this generalist parasite. The first aim of the present study is to characterize 

patterns of circulation of D. dendriticum among sympatric ungulate host species (cattle, elk, 

mule deer, and white-tailed deer) in CHP. Combining data on the prevalence of infection 

in different species of host, relative parasite abundance in each species of host, estimates of 

parasite fecundity (Beck et al., 2015), host abundance and host residency time in CHP, we 

also evaluated the relative roles of each host species, and sub-populations of hosts, to the 

transmission of eggs onto pasture.  

 

5.3 MATERIALS AND METHODS 

5.3.1 Cypress Hills Interprovincial Park, Alberta, Canada 

The parasite survey was conducted in CHP, an interprovincial conservation preserve 

extending from the south-eastern corner of Alberta into south-western Saskatchewan (see 

Chapter 1). A managed annual elk hunt, initiated in 1978, occurs each fall to maintain a 

density of 350-700 resident animals in the Park. An annual fall deer hunt also occurs within 
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the wildlife management units (WMU) surrounding the Park. Beef cattle have grazed within 

almost all regions of the Park since 1918, with cow-calf pairs and yearlings introduced in 

early June and removed in late October (Hegel et al., 2009). Further information on the 

history and ecology of CHP is presented in Chapter 1 and in Beck et al. (2014) and Beck et 

al. (2015). 

 

5.3.2 Data collection 

Whole elk livers were collected opportunistically from 2003-2005 during the fall 

hunting seasons (N = 119). An additional 113 livers were harvested during the 2009-2013 

fall hunting seasons. Mule deer (N = 22) and white-tailed deer (N = 16) livers were also 

collected during the 2009-2013 fall hunting seasons from the wildlife management units 

surrounding the Park (WMU 116, 118, and 119), an area >5700 square kilometers 

(Government of Alberta, Provincial Base Map, 2012). Host gender for elk and deer was 

established at time of collection and host age was approximated (calves: < 6 months, 

juveniles: 6-24 months, adults: > 24 months; Goater & Colwell, 2007; Beck et al., 2014). 

Known-aged beef cattle were purchased opportunistically between 2003-2014 from the 

three CHP stock associations. All cattle included in our survey had grazed within the park 

during the snow-free months (June-October) each year since birth. 

Intact livers were either frozen within four hours of host death or processed 

immediately when feasible following methods described in Goater and Colwell (2007) and 

Beck et al. (2014). Each liver was thawed, weighed, cut into approximately 5mm-wide strips 

and palpated to dislodge the parasites. Adult flukes were identified by morphological 

characteristics (Soulsby, 1982), assessed for reproductive maturity, and enumerated, using a 

dissection microscope.  
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Estimates of per capita parasite fecundity were based on data presented in Beck et al., 

(2015). Subsamples of live flukes were randomly selected from naturally infected elk (n = 6-

25 flukes/host, Total N = 53) and experimentally infected cattle (n = 7-11 flukes/host, Total 

N = 51) and sheep (n = 5-18 flukes/host, Total N = 85). The parasites were incubated in 

RPMI 1640 media for a period of 24 hours to obtain estimates of daily egg production. As 

live flukes were not available from white-tailed deer or mule deer, fecundity estimates for 

flukes from experimentally-infected sheep were used in subsequent calculations for these 

hosts given their roughly similar liver size, physiology, and diet (M.A. Beck, unpublished 

data; Lee, 1979; Spaulding et al., 2009). 

Host abundance for elk and deer populations were estimated from annual winter aerial 

surveys completed over four consecutive years (AB Sustainable Resources, 2011). CHP is 

home to large resident populations of sympatric elk (N = 800), mule deer (N = 300), and 

white-tailed deer (N = 300) (Hegel et al., 2004; Alberta. Tourism, Parks and Recreation, 

2013). The age structure of wildlife host populations was estimated based on a study in 

northwestern New Mexico where elk calves comprise approximately 20% of the annual 

population total (Bender & Piasecke, 2010). Cattle population abundance and population 

age structure is based on data from the CHP stock associations with approximately 2000 

calves and their 2000 mothers introduced to CHP each spring (Rangeland Conservation 

Service Ltd, AB Environment).  

For the purposes of estimating relative contribution to transmission per annum we 

assume that wildlife hosts (elk and deer) reside in CHP 365 days of the year. The residency 

period for cow-calf pairs and yearlings is approximately 90 days each year (Hegel et al., 

2009). Adult cows, exposed to D. dendriticum during previous grazing seasons, likely begin 

shedding eggs when returned to CHP pastures each year. However, relative contribution to 
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transmission per annum is abbreviated for all hosts in the first year of grazing. Based on 

experimental data from Campo et al. (2000), adult D. dendriticum do not shed eggs until 

49 - 79 days post infection (x = 59.0 ± 1.6). Therefore, length of the prepatency period is 

subtracted off the annual host residency times to estimate total eggs shed per annum for 

hosts in their first grazing year.  

 

5.2.3 Analyses 

We follow the parasitological terminology in Bush et al. (1997). Prevalence of infection 

is the proportion of hosts infected within a population of hosts and abundance is the total 

number of adult flukes present in an infected host, including zeros. All analyses were 

completed using data pooled between years unless otherwise stated. The distribution of 

adult flukes within samples of hosts was estimated using the exponent k of the negative 

binomial distribution (NBD) using Quantitative Parasitology 3.0 (Reiczigel & Rozsa, 2005). 

As fluke counts were highly aggregated, worm counts could not be transformed to 

normality. Median abundances were compared between samples with Mann-Whitney U 

tests and Kruskal-Wallis tests (for comparison of multiple medians). Confidence intervals 

for proportions were calculated using the Wald method (Volset, 1993; p ± z√(pq/n), where 

z = 1-α/2 of the standard Normal distribution and q =1-p), with values compared using Chi-

square tests.  

Following the definition in Baldwin and Goater (2003) we use the term ‘circulation’ to 

describe the rate of exchange of parasites among sympatric hosts. In the evaluation of D. 

dendriticum circulation patterns we follow some of the basic assumptions outlined by Aho 

and Kennedy (1987). These include the following: (1) CHP is a closed ecological system 

with movement of host populations limited to within the Park boundary; (2) all eggs shed by 
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individual flukes are viable and retain their infectivity for one year; and (3) density-

dependence does not restrict the establishment, survival, growth and fecundity of individual 

flukes. Assumption 3 is supported by the results in Beck et al., (2015), where comparison 

of fluke performance illustrated that fluke performance did not vary with host liver size. 

Additionally, 100% of flukes collected from naturally- infected elk and experimentally-

infected cattle and sheep were gravid at any given time.  

We estimated relative rates of egg-to-pasture transmission in two ways following the 

methods in Baldwin & Goater (2003). Circulation was first estimated as pi, the proportion 

of infected hosts (Ii/Hsi), where Ii is the number of infected individuals and Hsi is the total 

number of infected and uninfected animals sampled of host species i. The second estimate 

of circulation (Ci) was calculated as the proportion of all parasites in N host species found in 

host species i using the following equation: 

 

 𝐶𝐶𝑖𝑖 =  𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖
∑ 𝐻𝐻𝑗𝑗𝐴𝐴𝑗𝑗𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1

         (1)  

 

where A i is the mean parasite abundance for host species i. Hi is the estimated population 

size (infected and uninfected) of host species i. The total number of individual parasites 

found in host species i is 𝑐𝑐𝑖𝑖 =  𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖 and the total number of parasites in N host species is 

c = ∑ 𝐻𝐻𝑗𝑗𝐴𝐴𝑗𝑗𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1 . 

The relative contribution of different host species to total egg-to-pasture transmission 

(T1i) is calculated as the number of eggs released by all flukes within each sympatric host 

population per annum, based on the following equation adapted from Streicker et al., 

(2013): 
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𝑇𝑇1𝑖𝑖 =  𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖𝜆𝜆𝑖𝑖𝑟𝑟𝑖𝑖
∑ 𝐻𝐻𝑗𝑗𝐴𝐴𝑗𝑗𝑝𝑝𝑗𝑗𝜆𝜆𝑗𝑗𝑟𝑟𝑗𝑗𝑁𝑁
𝑗𝑗=1

        (2)     

 

where, λ i is per capita daily parasite reproduction for host species i  with the calculation 

weighted by the host residency time, r i, within the park. The total number of eggs shed onto 

pasture per annum by host species i is 𝑡𝑡𝑖𝑖 =  𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖𝑝𝑝𝑖𝑖𝜆𝜆𝑖𝑖𝑟𝑟𝑖𝑖 and the total contribution of N host 

species in the community to the contamination of pastures is t = ∑ 𝐻𝐻𝑗𝑗𝐴𝐴𝑗𝑗𝑝𝑝𝑗𝑗𝜆𝜆𝑗𝑗𝑟𝑟𝑗𝑗𝑁𝑁
𝑗𝑗=1 .  Egg 

shedding estimates were then adjusted as the relative proportion of the total reproductive 

output from all hosts. 

Patterns of adult D. dendriticum infection in CHP are variable relative to host age 

(Beck et al., 2014). To account for this we completed additional calculations among aged 

elk and cattle for (i) parasite circulation (pi and Ci calculations as above); and (ii) relative 

contribution to total transmission (T2i) using the following equation:  

 

𝑇𝑇2𝑖𝑖 =  𝐻𝐻𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎+ 𝐻𝐻𝑦𝑦𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦𝑝𝑝𝑦𝑦𝑦𝑦𝜆𝜆𝑦𝑦𝑦𝑦(𝑟𝑟𝑦𝑦𝑦𝑦−𝑙𝑙𝑦𝑦𝑦𝑦)
∑ 𝐻𝐻𝑗𝑗𝑃𝑃𝑗𝑗𝑝𝑝𝑗𝑗𝜆𝜆𝑗𝑗𝑟𝑟𝑗𝑗𝑁𝑁
𝑗𝑗=1

      (3) 

 

where ti is separated into eggs shed by the subpopulations of adult (a) hosts ( 𝑡𝑡𝑎𝑎𝑎𝑎 =

 𝐻𝐻𝑎𝑎𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝜆𝜆𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎)  and hosts < 2 years of age (𝑡𝑡𝑦𝑦𝑦𝑦 =  𝐻𝐻𝑦𝑦𝑦𝑦𝐴𝐴𝑦𝑦𝑦𝑦𝑝𝑝𝑦𝑦𝑦𝑦𝜆𝜆𝑦𝑦𝑦𝑦(𝑟𝑟𝑦𝑦𝑦𝑦 − 𝑙𝑙𝑦𝑦𝑦𝑦)). Parameter 

definitions are consistent with those presented in Equations 1 and 2 for adult hosts and for 

hosts <2 years of age (y). The additional parameter lyi is the length of the prepatency period 

of D. dendriticum for hosts of species i in their first year of exposure, which is subtracted 

off an estimated annual host residency time to estimate total contribution for eggs shed per 

annum. Again, egg-shedding estimates were adjusted as the relative proportion of the total 
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reproductive output attributed to these two host species. Differences in parasite 

performance in relation to host age have not been established for white-tailed deer and 

mule deer.  

 

5.4 RESULTS 

5.4.1 Infection patterns 

Parasite abundance was highly variable in all species of host (Fig. 5.1), with the overall 

distribution of flukes not differing significantly from the theoretical NBD model in elk (χ2 = 

27.6, p > 0.05; k = 0.159), cattle (χ2 = 10.6, p > 0.05; k = 0.377), mule deer (χ2 = 6.1, p > 

0.05; k = 0.124) and white-tailed deer (χ2 = 4.1, p > 0.05; k = 0.07). Median abundance 

varied significantly among host species (p < 0.001) with the highest value in cattle (Table 

5.1). The majority of wildlife hosts harboured low numbers of flukes, with 75.0% (95% CI: 

69.4 – 80.6%) of elk, 95.5% (95% CI: 86.8 – 100.0%) of mule deer, and 75.0% (95% CI: 

53.8 – 96.2%) of white-tailed deer infected with fewer than 100 flukes. In contrast, only 

34.1% (95% CI: 19.6 – 48.7%) of cattle harboured similarly low parasite counts. Only 3.9% 

(95% CI: 1.3 – 6.4%) of elk, 9.8% (95% CI: 0.0 – 18.8%) of cattle and 6.3% (95% CI: 0.0 – 

18.8%) of white-tailed deer harboured more than 1000 flukes. The highest parasite 

intensities were found in a fawn white-tailed deer (3942 flukes) and a calf elk (4343 flukes). 

 

5.4.2 Host species differences in prevalence and egg-to-pasture transmission  

Estimates of pi varied significantly among host species (χ2 = 23.3, df = 3, p = 0.001) with 

72.4% (95% CI: 66.7 – 78.2%) of elk, 92.7% (95% CI: 84.7 – 100.0%) of cattle, 36.4% (95% 
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CI: 16.3 – 56.5%) of mule deer and 62.5% (95% CI: 38.8 – 86.2) of white-tailed deer 

harboured gravid flukes.  

Combining data on prevalence, host abundance and mean fluke abundance we 

estimated that a total 1.8 X 106 flukes are shared among the four resident host species in a 

given year. Overall, the cattle population harboured 90.6% (95% CI: 80.7 – 99.2%) of all 

flukes. In contrast, the populations of mule deer, white-tailed deer and elk harboured 

<1.0% (95% CI: 0.0 – 1.5%), 3.4% (95% CI: 0.0 – 12.4%), and 5.8% (95% CI: 2.8 – 8.8%) 

of the total number of flukes, respectively.  

The proportionate contribution to the total production of D. dendriticum eggs onto 

pasture varied among host species. The cattle population shed a total of approximately 

232.4 X 109 eggs onto pasture each grazing season, thus contributing 78.7% (95% CI: 66.6 – 

90.8%) of all eggs shed onto pasture per annum in CHP (Table 5.2).  Mule deer, white-

tailed deer, and elk contributed approximately 0.4% (95% CI: 0.0 – 3.0%), 11.7% (95% CI: 

0.0 – 27.4%), and 9.2% (95% CI: 5.5 – 12.9%) of the eggs released onto pasture, 

respectively.  Although the predominant role of cattle in D. dendriticum circulation is 

surprising given their relatively short residency time in CHP each year, this suitable host is a 

numerically dominant feature on the landscape representing 73.2% (95% CI: 72.1 – 74.4%) 

of all suitable hosts.  

 

3.3 Host age and egg-to-pasture transmission 

Median abundance varied significantly with age in elk (p < 0.001) but not in cattle (p > 

0.05; Table 5.3). Estimates of Ci relative to age class differed between host species. With 

calves comprising approximately 20% of the total herd (Bender & Piasecke, 2010), of which 

approximately 84% were infected, the subpopulation of infected calf elk (about 121 hosts) 
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were estimated to contain about 69.6% (95% CI: 37.8– 80.2%) of the approximately 

105,000 worms in the total worm population and shed 65.8% (95% CI: 59.7– 71.8%) of the 

23.7 X 109 eggs shed by elk per annum. In contrast, the 2000 bovine calves and their 2000 

mothers introduced into CHP each spring are estimated to harbour approximately 1.1 X 

106 worms a few months later, with adults harbouring 66.7% (95% CI: 26.9 – 64.4%) of all 

D. dendriticum found in cattle. These crude calculations, combined with estimates of fluke 

fecundity (Beck et al., 2015) and host residency time, imply that the large subpopulation of 

adult cattle contributes roughly 71.8% (95% CI: 53.4 – 90.2%) of all fluke eggs that are 

produced from these two species of hosts. The total contribution by elk and bovine calves 

was small in comparison (elk: 10.5 ± 15%; cattle: 12.3 ± 15%). 

 

5.5 DISCUSSION 

Quantifying between- and within-species differences in rate of parasite transmission is 

key to understanding risk of dispersal and in designing targeted intervention strategies for 

emerging multi-host parasites. Our results indicate that D. dendriticum utilizes 4 sympatric 

host species in CHP. This is consistent with the other parasite survey data, where D. 

dendriticum has been documented in a broad range of domestic and wild ruminant species, 

as well as rabbits, pigs and horses in Europe (Goater & Colwell, 2007; review by Otranto & 

Traversa, 2002; Rojo- Vásquez et al., 2012). In CHP approximately 60-90% of cattle, elk 

and white-tailed deer are infected at any given time, with lower parasite prevalence in mule 

deer (~40%). Although variable, this pattern of occurrence is high relative to other 

geographic locations, with 32%, 54%, 21% and 27 to 63% of surveyed hosts found infected 

in Germany (1975), Slovakia (1984-1986), Hungary (1993) and northern Spain (1991-1993), 

respectively (review by Duchácek & Lamka, 2003).   
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Despite significant circulation among sympatric CHP ungulates, disparity in mean 

abundance and prevalence was apparent among species and hosts of differential age. This is 

a common epidemiological pattern in natural systems (Hudson & Dobson, 1995), where 

even small differences in host body size, behaviour and immune efficacy can significantly 

impact parasite transmission (Arneberg, 2002; Goater et al., 2014). As the infective parasite 

stages of D. dendriticum are found in discrete patches across the landscape (see Chapter 2), 

we expect that variation in host species distribution and diet could translate to differences in 

rate or frequency of exposure. However, the habitat and diet composition of sympatric wild 

and domestic definitive host species in CHP overlap significantly (Lee, 1979). Indeed, our 

data suggest that nearly all animals under the age of 2 are exposed to infective metacercariae 

at the initiation of grazing post-weaning. This is consistent with the age-infection profiles 

presented in Beck et al. (2014) and the generalist reproductive strategy presented in Beck et 

al., (2015). Alternatively, host-specific differences in immuno-competence could account 

for differences in patterns of infection between sympatric host populations. While average 

fluke abundance has been shown to decrease with age in elk, indicative of an acquired 

protective immunological response, such activity was not apparent in cattle (Beck et al., 

2014). Ineffective immunological activity following repeated exposure to metacercariae is 

consistent with the higher observed overall prevalence and abundance of infection in cattle, 

with susceptible hosts continuing to accumulate flukes over time. The low parasite success 

in mule deer provides further support that heterogeneity in immune efficacy may be an 

underlying driver of D. dendriticum transmission dynamics. Although other environmental 

and species-specific barriers to transmission cannot be ruled out, low recruitment of D. 

dendriticum in mule deer may be indicative of an innate resistance to infection. Innate anti-

parasite resistance is also thought to explain the absence of Fascioloides magna in Alberta 
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mule deer (Pybus et al., 2015). However, given the detection of anti-D. dendriticum 

antibodies in experimentally infected lambs (Gonzalez-Lanza et al., 2000) and cattle 

(Colwell & Goater, 2010), further studies are needed to evaluate how heterogeneities in 

host immuno-competence affect rate of parasite transmission at the host population and 

host community levels. 

Prior to this study, the relative contribution of each sympatric hosts species to the 

overall transmission of D. dendriticum within CHP was unknown (Goater and Colwell, 

2007). Combining estimates of host population size, liver worm burdens, egg production 

rates, and host residency time within CHP we determined that cattle contribute 

approximately 80% of the 295 billion eggs that contaminate pasture each year. The 

predominant role of cattle in D. dendriticum transmission is somewhat surprising given the 

transitory presence of this host species in CHP each year. However, cattle are a numerically 

dominant feature on the landscape representing approximately ~73% of the total number 

of hosts on pasture during the snow-free months. Of this total contribution, cattle >2 years 

of age are responsible for ~85% of all eggs shed onto pasture by the total cattle population. 

Thus, the population of cattle, confined to CHP grazing pastures, is disproportionately 

responsible for the majority of eggs shed onto pasture.  

Taken together, these data are consistent with the idea that host abundance and host 

community composition are key epidemiological features affecting overall rate of D. 

dendriticum transmission. It is typically assumed that for host generalist parasites, 

cumulative rates of transmission decrease in the presence of multiple, highly abundant 

species of hosts due to variability in host competence and susceptibility (i.e. 

dilution)(Dobson, 2004; Keesing et al., 2006; Ostfeld & Keesing, 2000). For example, a 

broad range of species can act as suitable reservoirs for Borrelia burgdorferi, the causative 
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bacterium of Lyme disease. However, host competence in the ability to amplify or transmit 

the virus varies significantly across a community of mammalian hosts (Ostfeld et al., 2006). 

However, if parasite performance is relatively equivalent among a broad range of hosts, the 

rate of transmission and risk of dispersal are amplified, rather than diluted, in the presence 

of a diverse and highly abundant assemblage of hosts. In such cases, the host species with 

the greatest population density is disproportionately responsible for parasite transmission 

(Dobson, 2004; Enzema, 2003). This is also consistent with classic epidemiological models 

for single host - single parasite interactions where the frequency of host-parasite contact and 

rate of transmission increases with density of hosts (Anderson and May, 1978; May and 

Anderson, 1978). Clear evidence of this pattern among naturally infected sympatric 

populations has, until now, remained limited.  

Although our data provide a suitable approximation and insight into the circulation and 

relative contribution of naturally infected sympatric hosts to the contamination of pasture, 

further sampling is necessary. As our empirical study relied on data collected from small 

samples of experimentally-infected hosts and opportunistically sampled wildlife, the 

detection of superspreading individuals is problematic (Streicker et al., 2013). Further, the 

assumption that all eggs shed by individual flukes are viable and retain their infectivity for 

one year may overestimate the relative contribution of cattle to the contaminatio Manga-

González & Ferreras, 2014n of CHP pasture. Egg shedding in experimentally infected cattle 

and sheep increased to a peak in late fall and early winter (Manga-González & González-

Lanza, 2005). If the kinetics of D. dendriticum egg deposition is applied to CHP, peak egg 

shedding likely occurs at the end of the snow-free-grazing season and continues after cattle 

have been removed from the Park. Further, controlled field studies have documented 

resistance of D. dendriticum eggs to low temperatures (<-20oC), while egg mortality peaks 
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(up to 100%) with summer temperatures highs in July and August (Manga-González & 

Ferreras, 2014; Manga-González & González-Lanza, 2005). Together this may limit the 

relative contribution of cattle to the accumulation of viable parasite eggs on pasture. Future 

work should therefore aim to weight estimates according to fluctuations in host and 

intermediate host richness and abundance, as well as heterogeneity in parasite distribution 

patterns (i.e. measure of aggregation within a host population) and temporal variability in 

parasite transmission and reproduction (e.g. Dobson, 2004; Morgan et al., 2006).  

The data presented here show that a large proportion of sympatric ungulates are 

infected in CHP in a given year. The translocation of domestic stock and wild ungulate 

populations therefore represents a significant risk for parasite spill-over to naïve species of 

host. Further, the low host specificity and associated broad range of hosts utilized by this 

generalist parasite (Duchácek & Lamka, 2003; Beck et al., 2015) increases the likelihood of 

emergence beyond CHP (Hatcher et al., 2012). This presents a significant management 

challenge. Where transmission is predominantly influenced by the abundance of hosts, as is 

the case for D. dendriticum in CHP, management and intervention may be effective if 

focused on a single species (Streicker et al., 2013). However, the targeting of a single species 

of host will likely be insufficient. With peak intensities and high prevalence of infection in 

white-tailed deer and young elk, subgroups of these host species represent potential 

‘superspreaders’ for D. dendriticum transmission. The relatively free movement of these 

wildlife hosts within and outside the park offers significant risk for the geographical 

translocation and spill-over of D. dendriticum into novel host populations. For example, 

white-tailed deer population density and distribution range continues to expand at northern 

peripheries due to changes in climate and land use (Vanderwaal et al., 2015), presenting a 

significant risk for transmission of this and other parasites (e.g. Parelaphostrongylus tenuis 
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and Fascioloides magna) to new geographic regions. As such, effective management of this 

and other invasive parasites may require a combined targeting of select species and specific 

‘super-infected’ or ‘super-shedding’ individuals (Streicker et al., 2013). 

The likelihood of parasite emergence is determined by a combination of traits intrinsic 

to the parasite (e.g. degree of specificity, reproductive output) and the range of host species 

(e.g. variable host competence), as well as factors extrinsic to the final hosts (e.g. suitable 

environment, vector/intermediate host abundance) (Hatcher et al., 2012; Ostfeld & Keesing, 

2000). However, assessing risk of parasite transmission across the wildlife-livestock 

boundary is usually extremely difficult. Accurate data are often scarce and open to bias, 

with large and equal sample sizes needed to detect heterogeneities in patterns of infection 

among and within a range of suitable hosts (Poulin, 2007). The data presented here allow 

us to conclude that for extreme host generalists, that possess the ability to transmit and 

perform equally well in a broad range of host species, host abundance and community 

composition significantly affect rate of transmission. As human development and livestock 

grazing continues to encroach on shrinking wildlife habitat, the incidence of emerging novel 

host-parasite interactions is likely to increase alongside the availability of higher densities of 

suitable hosts (Daszak, 2000). A greater understanding of how individual host species and 

host community structure affect the transmission and establishment of parasites should 

therefore become a priority in parasite epidemiology (Lafferty et al., 2006; Johnson et al., 

2008). The data and analysis framework presented here are therefore an important step in 

the investigation of transmission risk of multi-host generalist parasites. Combining the real 

data presented here in multi-host transmission models, which incorporate the complex 

dynamics of transmission, may therefore provide key insights into the trajectories of parasite 
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dispersal, the underlying drivers of invasion, and the likelihood of emergence in key host 

populations.  
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Table 5.1: Adult D. dendriticum infection summary in livers of beef cattle and hunter shot 
elk, mule deer, and white-tailed deer in, and adjacent to, Cypress Hills Interprovincial Park, 
Alberta, Canada. 
Species N Ai  

(Mean ± SEM) 
Median Range pi   

(95% CI) 
Elk         232 184.7 ± 32.1 13 0-4343 72.4 (66.7 - 78.2) 
Cattle 41 444.6 ± 98.8 266 0-117 92.7 (84.7 - 100.0) 
Mule Deer 22 19.6 ± 9.3 0 0-181 36.4 (16.3 - 56.5) 
Whitetail Deer 16 290.2 ± 230.3 7 0-3942 62.5 (38.8 - 86.2) 

Ai : mean worm abundance 
 pi  : proportion of infected hosts  
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Table 5.2: Relative percent contribution of potential definitive host species to annual 
contamination of D. dendriticum eggs onto pasture in Cypress Hills Interprovincial Park, 
Alberta, Canada. Contribution is calculated as % of total eggs shed per annum by all 
surveyed species of hosts. 

Host N λi Hi Ai pi ri ti                 
(X 109) 

Ti 
 (95% CI) 

Elk 232 701 800 184.7 0.7 365 27.2 9.2 (5.5-12.9) 

Cattle 41 1561 4000 444.6 0.9 90 232.4 78.7 (66.6-90.8) 

Mule Deer 22 1494 316 19.6 0.4 365 1.2 0.4 (0.0-3.0) 

White-
tailed Deer 16 1494 346 290.2 0.6 365 34.5 11.7 (0.0-27.4) 

  λi : per capita parasite fecundity; based on ex vivo counts in Beck et al. (2014) with values 
for deer based on experimentally infected sheep  
Hi : estimate of host population size 
 Ai : mean worm abundance 
 pi  : proportion of infected hosts  
 ri : estimate of time spent in the park annually (days) 
ti : estimate of total eggs shed on pasture annually 
Ti : relative contribution to total transmission annually (percent of total eggs shed to pasture 
annually) 
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Table 5.3: Relative percent contribution of calf and adult elk and cattle to annual 
contamination of D. dendriticum eggs onto pasture in Cypress Hills Interprovincial Park, 
Alberta, Canada. Contribution is calculated as % of total eggs shed per annum by all 
surveyed hosts. 

Host Age (years) λi Hi Ai pi ri ti                 
(X 109) 

Ti 
 (95% CI) 

Elk Calves (<2)  701 160 597.4 0.8 306 15.6 10.5  
(6.5-14.4) 

  Adults (>2) 701 640 76.2 0.7 365 8.1 5.4  
(2.5-8.4) 

Cattle Calves (<2) 1561 2000 224.9 0.8 31 18.3 12.3  
(2.2-22.3) 

  Adults (2+) 1561 2000 380.0 1.0 90 106.8 71.8  
(58.0-85.6) 

  λi : per capita parasite fecundity; based on ex vivo counts in Beck et al. (2014)  
 Hi : estimate of host population size 
 Ai : mean worm abundance 
 pi  : proportion of infected hosts  
 ri : estimate of time spent in the park annually (days) 
ti : estimate of total eggs shed on pasture annually 
Ti : relative contribution to total transmission annually (percent of total eggs shed to pasture 
annually) 
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Figure 5.1: Frequency distributions for D. dendriticum in elk, mule deer, white-tailed deer, 
and cattle in Cypress Hills Interprovincial Park, Alberta, Canada.  
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CHAPTER 6: GENERAL DISCUSSION 

 

6.1 CHAPTER SYNTHESIS   

A broad understanding of the drivers for parasite emergence is dependent, in part, on 

an appreciation of why a parasite occurs in a particular region and in particular groups of 

hosts. These factors contribute to defining the trajectories for spread and the underlying 

drivers for parasite invasion (Hoberg, 2010; Hoberg & Brooks, 2015). However, a paucity 

of robust epidemiological data often precludes reliable estimates of parasite distribution and 

rates of transmission, particularly for emerging, indirectly-transmitted host generalist 

parasites (Morgan et al., 2006; Hoberg & Brooks, 2008). Insufficient data on heterogeneity 

in transmission over space, between species of host, and among individuals continues to 

limit the development and implementation of evidence-based surveillance and intervention 

strategies for a large number of parasites and pathogens (Wilson et al., 2002). The 

emergence of Dicrocoelium dendriticum in Cypress Hills Interprovincial Park (CHP) has 

provided a unique opportunity to evaluate the environmental and host-specific factors that 

generate, maintain, and constrain parasite distribution and likely influence the opportunity 

for parasite spill-over into novel hosts and geographic regions.  

In Chapter 2, I presented the first high-resolution (1m2), GIS-based analysis aimed at 

predicting hot spots of D. dendriticum ant-to-ungulate transmission within CHP. As 

expected, ant-to-ungulate D. dendriticum transmission varied significantly over space. A 

suite of fine-scale ecological covariates can accurately predict spatial variation in risk of ant-

to-ungulate transmission – i.e. aspen dominated sites on well-drained, south or east-facing 

slopes, where temperature and moisture retention is presumably moderated by the 

presence of local vegetation. These habitat features were consistent with the microhabitat 
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requirements of the first intermediate host, the Oreohelix spp. mollusc (Boag & Wishart, 

1982; Kralka, 1986; review by Manga- González et al., 2001; Hendricks, 2003) and also 

aligned with increased densities of clinging ants, higher ant nest density, and the conditions 

required for Formicid ant colony establishment (Punttila, 1996). The models presented in 

Chapter 2 therefore provided key insights into the ecology of D. dendriticum transmission. 

GIS-based projections of this model can be used to characterize spatial variability in risk of 

ant-to-ungulate transmission and for extrapolating risk of parasite emergence beyond its’ 

contemporary distributional range.  

Although characterizing spatial heterogeneity in transmission is essential to 

understanding historical and contemporary patterns of transmission, forecasts of parasite 

dispersal that fail to incorporate the host component are likely to be inaccurate. In a 

particularly elegant set of experiments, the distribution of the tapeworm Hymenolepis 

diminuta was highly aggregated among experimentally exposed flour beetles (Tribolium 

confusum) even when infective stages were evenly distributed over space (Keymer & 

Anderson, 1979). Indeed parasite success and rate of transmission are significantly 

influenced by heterogeneities within and among populations of hosts (Haydon et al., 2002; 

Wilson et al., 2002). My results in Chapter 3 indicated that there are cases where the rate of 

parasite transmission varies relative to individual heterogeneity and species-specific 

differences in host competence. Average D. dendriticum abundance peaked in 6-24 

months old CHP elk and sharply declined with host age (Beck et al., 2014). The most 

parsimonious explanation for this pattern was the development of a protective immune 

response among chronically exposed adult elk (>2 years of age). In comparison, fluke 

abundance did not vary significantly with age in free-ranging cattle. Although patterns of 

infection varied among adult hosts, peak parasite counts among naturally exposed calf elk 
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and cattle suggest that all animals are highly susceptible to infection within their first two 

years of life (Goater & Colwell, 2007; Beck et al., 2014). Relatively equivalent parasite 

performance (i.e. recruitment, morphology and reproduction) was also found among 

parasite naïve hosts that were both naturally (elk) and experimentally (sheep and cattle) 

exposed to D. dendriticum (Beck et al., 2015a). It is therefore expected that hosts <2 years 

of age shed relatively high numbers of eggs onto pasture in each successive grazing season. 

The relative contribution to transmission by the subpopulations of adult hosts of each 

species then varies according to host immuno-competence following repeated exposure, 

with subpopulations of highly infected hosts responsible for the majority of egg-to-pasture 

transmission (Beck et al., 2014). 

It is not until we combine estimates of host population size, fluke burden, egg 

production rates, and host residency time within CHP that host species-related differences 

in transmission can be illuminated (Chapter 5). The comparison of relative contributions to 

the contamination of CHP pasture in Chapter 5 established a high per capita transmission 

rate among cattle. This population of domestic hosts was estimated to contribute 

approximately 80% of the 300 billion eggs that contaminate pasture each year. This result is 

not unexpected given the 8-fold difference in cattle population density within CHP 

compared to other species of sympatric ungulates. However, as final host-to-snail 

transmission is known to occur in regions of CHP where beef cattle are excluded, the much 

smaller sub-populations of young elk (< 2 years old) and white-tailed deer must also play a 

role in disseminating eggs within the region. 

Taken together, the data presented in this thesis improve our understanding of the 

drivers of the emergence and establishment of D. dendriticum in CHP. Since D. 

dendriticum was introduced to CHP in the late 1980’s, the prevalence of D. dendriticum 
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has risen significantly in all sympatric grazing hosts (Goater & Colwell, 2007). Currently, 40-

80% of all elk, white-tailed deer, mule deer and cattle are infected (Goater & Colwell, 2007; 

Beck et al., 2014). As a key variable in the ant-to-ungulate transmission risk model, the 

presence of aspen-dominated habitat appears to have provided optimal conditions for 

obligate arthropod and molluscan intermediate hosts (Chapter 2). Further, the 

concentration of high densities of sympatric hosts (Chapter 5) and the low host specificity of 

D. dendriticum (Beck et al., 2015a) may have allowed this host generalist to maximize its’ 

transmission opportunities. Low host specificity boosts parasite transmission success by 

effectively increasing the density of suitable hosts, amplifying the opportunity and rate of 

host-parasite contact (Combes, 2001; Hoberg & Brooks, 2008).  

The translocation of high densities of infected cattle and select subgroups of sympatric 

wildlife (i.e. young elk and deer) represent a significant risk for the spill-over of D. 

dendriticum into novel geographic regions and species of host (Combes, 2001; Hoberg & 

Brooks, 2008). The expanded distribution of D. dendriticum is a concern to livestock 

producers and conservationists as D. dendriticum may negatively impact host health. 

Cholangitis, liver fibrosis, anaemia and reduced weight gain (review by Manga-González et 

al., 2001), along with changes in liver function (i.e. increased production of bilirubin, 

albumen, hepatic enzymes) (Theodoridis et al., 1991; Manga-González & González-Lanza, 

2005), have been documented in naturally- and experimentally-infected hosts. The models 

and data presented in this thesis may therefore be important tools for accurately predicting 

risk of D. dendriticum emergence and directing evidence-based management programs. 

Further, the spatial models that I developed could conceivably be used to predict where 

risk of ant-to-ungulate transmission is highest, allowing for targeted intervention or 

exclusion of hosts from areas where host-parasite contact is most likely. Additionally, 
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comparisons of parasite performance and reproductive output allowed for the identification 

of supershedding individuals and subpopulations of hosts. Together, these data allow for 

the determination of where, when and in which hosts, risk of transmission is the greatest. 

 

6.2 METHODOLOGY/ADVANCES 

6.2.1 GIS and Bayesian geostatistical analyses 

 Although the use and accessibility of GIS tools has increased over the last two decades 

(Reisen, 2010), they remain underutilized in many areas of epidemiological research. 

Contemporary research has predominantly focused on deciphering broad-scale patterns of 

disease and parasite prevalence in relation to generalized ecological and climate covariates. 

This region-based approach is useful in evaluating generalized patterns in parasite 

transmission (e.g. Beck et al., 2015b) and in directing broad-scale management strategies 

(Pullan et al., 2011; Hay et al., 2013). However, as conditions can vary drastically on 

regional and local scales, even between adjacent and connected patches of land, this low-

resolution approach underestimates local heterogeneity (Malone, 2005; Musella et al., 

2010). The high-resolution (1m2) GIS-based modelling approach presented in Chapter 2 is 

rare for landscape epidemiological studies. The evaluation of fine-scale covariates of 

parasite transmission allowed me to define a suite of specific microhabitat conditions and 

environmental limitations that characterize the overlap in distribution of parasite, 

intermediate, and final host species (Malone, 2005; Musella et al., 2010). Thus, these data 

provided insights into the transmission ecology of this parasite on a fine-scale, with key 

implications for forecasting the risk of parasite dispersal.  The local-scale approach 

demonstrated in Chapter 2 may also be useful for understanding spatial variability in rates 

of transmission for other indirectly transmitted generalist parasites.  
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 Accurate occurrence data for most parasites are sparse. Spatial statistical analyses aim 

to provide detailed predictions of distributions by relating presence or prevalence of 

infection to specific environmental predictors (Elith and Leathwick, 2009). My modelling 

approach made use of an Information Theoretic approach within a Bayesian framework 

where a priori assumptions about parasite biology and transmission were not required. 

Ecologists and epidemiologists are increasingly making use of Bayesian inference to model 

the role of selected covariates and their effects on the spread or risk of disease. Bayesian 

methods are of particular interest to epidemiologists because they can be used to make 

probabilistic predictions (i.e. what is the probability of the hypotheses being true given the 

observed data?), while conventional statistics are restricted to statements about long-run 

averages obtained from hypothetical replicates of sample data (McCarthy, 2007). The 

flexibility of the Bayesian framework can accommodate both continuous and binary data 

(e.g. presence/absence of infection), providing ways to account for the many sources of 

variation inherent in parasite epidemiology. This includes variation in the predictors 

themselves (e.g. long range climate data), unobserved processes, and spatial and temporal 

autocorrelation, even when sample sizes are small (Barker, 2008). Model outputs provide 

assessments of relative model performance in regards to: (1) how well the different models 

fit the data (i.e. describing central tendency and variance of the data), predictions which are 

both unbiased and precise; and (2) parsimony, i.e. all else being equal, a simple model is 

better than a more complicated model. The best model is the one that explains the 

maximum level of detail in the simplest possible way (McCarthy, 2007). Overall, the results 

I present in Chapter 2 and in Beck et al. (2015b) demonstrate the applicability of this 

approach at both local and regional scales.  
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 Regardless of the modelling method chosen, validation is an important, and yet 

often neglected step. On the rare occasions when model validation has been completed, 

analyses often rely on the cross-validation of data that are withheld from model 

development (i.e. data splitting). Model accuracy is then assessed based on how well models 

predict the withheld data (Elith and Leathwick, 2009). Where presence or abundance data 

are sparse and/or inconsistent, such withheld data are unlikely to provide an reliable test of 

model accuracy. Alternatively, evaluations of model performance should aim to use 

independent, well-structured presence-absence, prevalence or abundance datasets for 

validation. This approach was utilized in the validation of the D. dendriticum ant-to-

ungulate transmission risk model (Chapter 2) and in the regional-risk assessment for spatial 

variability in gastro-intestinal nematode (GIN) transmission (Beck et al., 2015b). Such 

datasets have rarely been used to evaluate model-based predictions. Ideally, models should 

be developed and tested in iterative cycles that take account of the desired uses of the 

model, investigate the ecological rationality of the modelled responses, and explore errors 

in predictions (Elith and Leathwick, 2009; Hay et al., 2013). 

 

6.2.2 Diagnostics 

 The opportunistic sampling of sympatric grazing ungulates in CHP (cattle, elk, mule 

deer, and white-tailed deer) allowed for the direct comparison of actual parasite counts and 

the collection of adult flukes for subsequent comparisons of parasite performance 

(Chapters 3-5). This gold standard is rare, particularly for a host generalist with wild hosts 

utilized during at least one developmental stage in the parasite lifecycle (Wilson et al., 2002). 

These data provided a unique opportunity to compare intra- and interspecific variability in 

parasite circulation, recruitment, development, per capita fecundity, and relative 
145 

 



contributions to overall transmission among a range of sympatric hosts.  However, this 

approach was constrained by sampling heterogeneity and low host sample sizes. 

 Use of alternative diagnostic tools may present a unique opportunity for accurate 

evaluation of spatial patterns for the transmission of a broad range of parasites, especially 

when host sacrifice is not a feasible option. The results in Beck et al. (2015b) provide a 

good example, demonstrating the pairing of a modern diagnostic measure of parasite status 

(antibody detection in serum by ELISA), with local and regional environmental 

characteristics to evaluate spatio-temporal heterogeneity in GIN transmission. I anticipate 

that the development and use of antigen-capture assays will increasingly be utilized as a non-

invasive diagnostic alternative. This diagnostic technique has been used as a proxy for 

intensity for the trematode F. hepatica in lambs (Mezo et al., 2004) and the cestode 

Anoplocephala perfoliata in horses (Skotarek et al., 2010). Following the development of 

coproantigen detection methods, experimental comparison of diagnostic techniques will be 

necessary. Comparative assessment of suitable diagnostic techniques, including faecal egg 

count detection, antibody detection in serum by ELISA, and coproantigen detection by 

ELISA against parasite counts at necropsy as the gold standard against which these indirect 

diagnostic techniques are measured is the logical next step (Skotarek et al., 2010). 

  

6.3 STUDY LIMITATIONS 

6.3.1 Local-scale mapping 

The applicability of the ant-to-ungulate transmission risk model presented in Chapter 2 

is likely to be limited to ecological similar landscapes. Given the cosmopolitan distribution 

of this host generalist fluke, and the broad range of intermediate and final host species that 

can be utilized (reviews by Manga-González et al. 2001; Otranto & Traversa, 2002), species-
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specific differences in environmental tolerances should be expected (Brooker et al., 2002). 

Further, fine-scale studies may not account for the influence of broad-scale climate patterns 

on parasite transmission (e.g Beck et al., 2015b) and host distribution (e.g. Brooker et al., 

2006). This is likely a common issue in epidemiological studies. Future research involving 

D. dendriticum at the landscape scale must therefore account for differences in ecological 

requirements for the intermediate hosts in each geographic region and aim to evaluate the 

significance of broad-scale ecological covariates.  

 

6.3.2 Opportunistic sampling   

 Epidemiological studies often rely on the opportunistic collection of data.  This 

typically results in sampling heterogeneities that in turn, constrain analyses and inference 

accuracy. As a result, mean parasite intensities and the degree of parasite aggregation may 

be underestimated (Shaw & Dobson, 1995; Woolhouse et al., 1997). This sampling ‘bias’ is 

common across different age categories, with a decline in sample sizes as hosts’ age (Wilson 

et al., 2002). This was shown to be a limiting issue in our evaluation of the distribution of D. 

dendriticum among individual elk and cattle with respect to host age (Beck et al., 2014). 

Statistically, there is much debate over how to best capture the degree of aggregation within 

a sample of hosts. In their comparison of a number of aggregation indices, Gregory and 

Woolhouse (1993) found that this overdispersed distribution is best described by the 

negative binomial distribution exponent k (Anderson & May 1978; May & Anderson 1978; 

Shaw & Dobson, 1995). Sample size issues can be minimized when using maximum-

likelihood estimates of k (Pacala & Dobson, 1988; Gregory & Woolhouse, 1993). 

Application of this index allowed for the comparison of age-abundance patterns in CHP elk 

and domestic cattle, despite decreasing sampling sizes in older animals (Beck et al., 2014). 
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However, such indices may still underestimate parasite aggregation, particularly when the 

parasite population is highly aggregated within the host population(s). Future research must 

therefore aim to follow a stratified sampling approach relative to population demographics, 

with large, equal samples of individuals belonging to the broad range of host species 

(Wilson et al., 2002; Poulin, 2007). 

 Reliance on opportunistic sampling in a small geographic area also limited our ability 

to compare the performance of D. dendriticum across a broad range of host species. All 

three ruminant hosts in our study belong to the order Artiodactyla (Spaulding et al., 2009). 

Phylogenetic relatedness of these host species (domestic cattle and sheep, wild elk), and in 

turn the conservation of host traits, could lend itself to equal host utilization and similarities 

in parasite performance (Poulin, 2007; Hoberg and Brooks, 2008). Low taxonomic 

distinctiveness plays a significant role in determining host breadth for helminth parasites of 

freshwater fish, with low specificity documented in parasites of a speciose host family 

(Poulin, 1992). However, reproductively mature D. dendriticum have also been 

documented in camels, rabbits, pigs, dogs, horses, humans and experimentally-infected 

laboratory hamsters (Manga-González et al. 1991; Campo et al. 2000; Sánchez-Campos et 

al. 2000; review by Otranto & Traversa, 2002; Manga-González & González-Lanza, 2005). 

Future research is therefore needed to evaluate potential differences in parasite 

performance among more distantly related taxa with focus on physiological, immunological, 

and genetic variability among a diverse array of host species.  

 

6.3.3 Ex vivo comparisons of fluke performance  

 Accurate data on variability in individual parasite fecundity are exceedingly rare. The 

opportunistic collection and incubation of individual D. dendriticum allowed for 
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comparisons of daily fluke fecundity ex vivo. However, this measure of fecundity may not 

be representative of individual performance in vivo with flukes disconnected from the 

original size of the infrapopulation. Individual fluke fecundity was measured while each 

fluke was maintained alone in wells of culture plates, in an artificial medium, with ample 

food and no competitors. Further research is therefore needed to assess host-related 

patterns in parasite performance and to validate whether our conclusions of equal 

performance and the absence of density-dependent parasite performance (Beck et al., 

2015a) remain valid in vivo.  

 

6.4 PROSPECTS FOR FUTURE RESEARCH 

6.4.1 GIS application and integration  

 The utility of the D. dendriticum risk model for ant-to-ungulate transmission may be 

limited to similar ecological areas. However, D. dendriticum has been reported across 

Europe (review by Otranto & Traversa, 2002) and North America (B.J. van Paridon, Ph.D. 

thesis, unpublished observations). The fine-scale model presented in Chapter 2 does not 

account for the species-specific ecological preferences of the broad range of intermediate 

host species utilized across the cosmopolitan distribution of this invasive parasite. Perhaps 

the way forward is to combine assessments on multiple geospatial scales, effectively scaling 

up and scaling down to cover similar geographic areas. A similar approach was taken to 

evaluate the broad and fine-scale ecological covariates for the distribution and abundance of 

Fasciola hepatica in Columbia (Valencia-Lopez et al., 2012). Notably, this approach would 

allow for the determination of local scale variation in host-parasite contact, as well as 

defining the broad-scale ecological and climatological covariates of host movement and host 

density. The resulting models would provide biologically and statistically accurate forecasts 
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for parasite transmission patterns and risk of emergence under various climatic regimes and 

different climate change projections.  

 

6.4.2 Modelling transmission and forecasting emergence 

 Formalizing our understanding of D. dendriticum transmission dynamics in 

mathematical models could accommodate forecasts of the direction and rate of spread for 

this invasive parasite. Such models have application in the development of evidence-based 

intervention strategies. Models have been used successfully in this way for several important 

livestock diseases (e.g. MacKenzie & Bishop, 2001; Keeling, 2005). However, additional 

complexities in wildlife systems limit the applicability of livestock-based models. Patterns of 

host movement, host population size, density and contact rates are likely to vary 

considerably among species of host, with key implications for the transmission of complex 

lifecycle, multi-host parasites across the wildlife-livestock boundary (Morgan et al., 2006). 

Focusing on the likely drivers of transmission for directly transmitted pathogens, Morgan et 

al. (2006) provided model-based predictions for the roles of wildlife and livestock in the 

epidemiology of pathogen transmission.  Extensions of these models may provide key 

insights into parasite epidemiology. However, the parameterization, exploration and 

validation of transmission models of complex life-cycle, multi-host parasites are likely to be 

far more complex than those presented for direct lifecycle generalists. The epidemiological 

patterns of D. dendriticum presented in Chapters 2-5 of this thesis, however, present an 

important first step. 

 Future model-based examination of intra- and interspecific data must address some 

of the key areas of data scarcity identified throughout the data chapters of this thesis. Data 

on variation in host abundance, home range size, and geographic overlap among suitable 
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hosts may be useful in understanding the circulation of parasites among a range of hosts 

and the relative contribution of each host species to overall parasite transmission. 

Incorporation of the determinants of heterogeneity in intermediate and final host species 

spatial distributions and habitat use will allow for projections of biologically relevant 

transmission opportunities (Morgan et al., 2006). Models must also aim to account for the 

role that physiological, immunological, and genetic heterogeneity across the host range play 

in determining host suitability and susceptibility when the spatial opportunity for 

transmission arises (Lafferty and Holt 2003).  

  

6.4.3 Dicrocoelium dendriticum as an extreme host generalist 

 It is generally assumed that natural selection favours the development of high host 

specificity in parasites, with functional trade-offs limiting the fitness of generalists (Combes, 

2001). Indeed, generalists tend to be found at lower abundance and lower community 

richness in comparison with specialist parasites (e.g. Vázquez et al., 2005). However, D. 

dendriticum appears to possess the ability to perform equally well in a broad range of hosts 

(Beck et al., 2015a; Chapter 5). This low host specificity also extends throughout the life-

cycle of this parasite. D. dendriticum utilizes over 90 spp. of terrestrial snail and a diverse 

number formicid ant spp. as first and second intermediate hosts, respectively (review by 

Manga-González et al. 2001). A generalist strategy of this sort may facilitate the introduction, 

establishment and emergence of novel parasites in new hosts and geographic regions. 

However, the mechanisms allowing this parasite to adapt and exploit a broad host complex 

remain poorly understood. Such research could provide key insights into the ecological 

epidemiology of this invasive parasite and for understanding the generalist parasite 

phenomenon itself. 
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6.5 IMPLICATIONS 

 Anthropogenically-accelerated climate warming and increasing pressure on the 

landscape are expected to significantly alter the distribution and structure of contemporary 

host-parasite assemblages and may ultimately increase the likelihood of parasite spill-over 

into novel hosts and new geographic regions (Cleaveland et al., 2002; Kutz et al., 2004; 

Agosta et al., 2010). Generalist parasites represent the greatest risk, with transmission into 

novel hosts likely to increase with biotic mixing. The data presented in this thesis 

demonstrate that D. dendriticum possesses the ability to attain approximately equal fitness 

in a broad range of hosts. This fluke also utilizes a notoriously high number of species of 

terrestrial snail and formicid ants as first and second intermediate hosts (review by Manga-

González et al. 2001), respectively. A generalist strategy of this sort likely enhances 

opportunities for host encounter and host switching, and increases overall rates of parasite 

dispersal (Combes, 2001; Hoberg and Brooks, 2008).  

 However, as the results of my analyses of the ecological epidemiology of D. 

dendriticum transmission demonstrate, patterns of emergence are likely to vary significantly 

over space, between populations, and among individuals. Indeed, climate and 

development-induced changes in intermediate and final host distribution patterns may 

disrupt the transmission patterns of complex lifecycle parasites (Rogers & Randolph, 2006). 

In some instances, transmission may be accelerated, while in others, mismatch in 

environmental tolerance may limit intermediate-to-final host transmission (Pickles et al., 

2013). Ultimately, an increased focus of research on the identification and monitoring of 

individuals, populations and locations that amplify rate of transmission is necessary to 

understand the complexities of parasite transmission and patterns of emergence (Hoberg & 

Brooks, 2015).  
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1.1 ABSTRACT 
Gastrointenstinal nematodes (GIN) present a serious challenge to the health and 

productivity of grazing stock around the globe. However, the epidemiology of GIN 
transmission remains poorly understood in northern climates. Combining use of serological 
diagnostics, GIS mapping technology, and geospatial statistics, we evaluated ecological 
covariates of spatial and temporal variability in GIN transmission among bovine calves 
pastured in Alberta, Canada. Sera were collected from 1000 beef calves across Alberta, 
Canada over three consecutive years (2008-2010) and analyzed for presence of anti-GIN 
antibodies using the SVANOVIR Ostertagia osteragi-Ab ELISA kit. Using a GIS and 
Bayesian multivariate spatial statistics we evaluated the degree to which variation in specific 
environmental covariates (e.g. moisture, humidity, temperature) was associated with 
variation in spatial and temporal heterogeneity in exposure to GIN (Nematodirus and other 
trichostrongyles, primarily Ostertagia and Cooperia). Variation in growing degree days 
above a base temperature of 5oC, humidity, air temperature, and accumulated precipitation 
were found to be significant predictors of broad–scale spatial and temporal variation in 
serum antibody concentrations. Risk model projections identified that while transmission in 
cattle from southeastern and northwestern Alberta was relatively low in all years, rate of 
GIN transmission is generally higher in the central region of Alberta. The spatial variability 
in risk is attributed to higher average humidity, precipitation and moderate temperatures in 
the central region of Alberta in comparison with the hot, dry southeastern corner of the 
province and the cool, dry northwestern corner. Although more targeted sampling is 
needed to improve model accuracy, our projections represent an important step towards 
tying treatment recommendations to actual risk of infection. 
 
1.2 KEY WORDS 
Gastrointestinal nematodes, GIS, Bayesian, Multivariate hierarchical models, Cattle. 
 
1.3 INTRODUCTION 

The distribution, occurrence, and intensity of parasites varies enormously between 
samples of hosts from different sites, seasons, and years, in part due to interspecific 
sensitivity of infective stages to variable environmental conditions (Wilson et al., 2002). 
However, an incomplete understanding of the epidemiology of many direct and indirect-
lifecycle parasites continues to limit the identification of high-risk locations and peak 
transmission periods. To address these key knowledge gaps, landscape epidemiologists 
seek to characterize variability in rates of parasite transmission in the context of changing 
climatic and landscape characteristics that arise naturally or through anthropogenic 
modification (Reisen, 2010). Key advances in this area have often involved the use of 
modern Geographical Information Systems (GIS) tools, statistical modelling, and improved 
diagnostic techniques. Evaluation of spatial patterns for a number of vector-borne and other 
parasitic infections, including schistosomiasis (e.g. Clements et al., 2008) and malaria (e.g. 
Seghal et al., 2010), have facilitated the prediction of transmission risk in unsurveyed areas, 
have directed large-scale intervention programs (Pullan et al., 2011), and have helped 
predict future outbreaks relative to climate warming projections (Fox et al., 2011). Despite 
advances in the use of these spatial tools (e.g. Bennema et al., 2009), major gaps central to 
understanding spatial heterogeneity in gastro-intestinal nematode (GIN) transmission 
remain. The lack of accurate epidemiological data is especially acute in northern latitudes 
involving domestic stock as hosts (Hoberg et al., 2008). 
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GIN occur globally in grazing mammals, representing a significant threat to the 
sustainability of livestock production (Morgan et al., 2013). Infection is a common cause of 
reduced weight gain, intestinal dysfunction, dysentery, anorexia, and anaemia (Hoberg et al., 
2001). In Canada, livestock operations represent a significant component of the agrarian 
economy. As elsewhere, GIN control programs continue to rely on intensive anthelmintic 
use aimed at preventing the accumulation of parasite burdens over successive grazing 
seasons. This approach has been based on observed increases in host productivity following 
the application of anthelmintics (MacGregor et al., 2001; Reinhardt et al., 2006). 
Macrocyclic lactone dosage for roundworm and ectoparasite control is associated with an 
estimated saving of $7.04 per head in calves and $4.2 per head in yearling cattle compared 
with control of ectoparasites alone (Bauck et al., 1989; Kim Jee et al., 1992). Despite these 
clear production and health benefits, the blanket treatment of animals can result in the 
overuse of anti-parasitics. This gives rise to the threat of anthelmintic resistance affecting the 
ability to control these parasites and is associated with high costs to producers (Sutherland 
& Leathwick, 2011; Morgan et al., 2013).   

An improved understanding of the influence of climatic characteristics on GIN 
transmission can aid in the development and implementation of evidence-based parasite 
control programs aimed at reducing this economic burden and reducing the risk of 
anthelmintic resistance. Each species of GIN has critical temperature and moisture 
requirements for optimal development, beyond which development slows and the 
likelihood of larval survival declines (Sutherland & Scott, 2010).  Suboptimal environmental 
conditions, such as temperature and moisture extremes, that impacts the distribution and 
survival of free-living larval stages (e.g. Ng’ang’a et al., 2004; Wang et al., 2014), likely result 
in variability in transmission. At present, little information is available regarding the broad-
scale environmental factors that influence the availability of GIN larvae on pasture in 
northern latitudes. The use of GIS for the development of broad-scale statistical models is 
therefore valuable for prediction of risk of GIN transmission and in providing an 
ecologically grounded baseline for management.  

Here we focus on improving our understanding of heterogeneity in risk of GIN in 
domestic beef cattle at a province-wide scale. Our objectives were to: 1) define the temporal 
and spatial variability in GIN transmission across the province of Alberta, Canada; 2) use a 
GIS-based approach to evaluate the broad-scale environmental covariates of spatial and 
temporal heterogeneity in transmission; and 3) create a model to predict risk of infection. 
We combined standard indirect measures of parasite transmission (ELISA detection of 
anti-GIN antibody concentrations) with GIS technology to characterize variability in GIN 
exposure over three consecutive years in bovine calves. Bayesian inference was used to 
model variability in parasite exposure in relation to key environmental characteristics.  
 
1.4 METHODS 
1.4.1 Study area 

The province of Alberta extends from 49o to 60o latitude north, with an area of 
approximately 661,848 square km. The province has three major biogeographical divisions 
ranging from west to east which vary in elevation and associated climate: the mountains, the 
foothills, and the plains (Bailey et al., 2010). Our study area is focused on the 79, 000 
square km plains region where grazing on native rangelands, Crown land and community 
pastures is most extensive (Fig. 1) (Bailey et al., 2010). The plains region comprises the 
majority of the total area of the province, with elevation varying from 800 m along the 
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eastern border of the province to approximately 1800 m along the foothills belt in the west 
(GeoBase, 2000). The southeastern corner of this region has an average annual 
precipitation (1971-2000) of 331 mm (CV: 8.4 %), and an annual maximum temperature 
(1971-2000) of 21.7oC (CV: 0.3%) during peak grazing season (Jun to Oct) that is associated 
with a high rate of evapotranspiration, frequent hot dry winds, and prolonged periods of 
low precipitation. Further north, the annual precipitation increases to about 515 mm (CV: 
7%) in the centre of this zone, and then decreases to 475 mm (CV: 6.0%) in the far 
northwest and 487 mm (CV: 13.0%) in the northeast. Evapotranspiration likely decreases 
with a maximum annual temperature of 16.8oC (CV: 0.2%) during the grazing season in the 
northwest of this region and 18oC (CV: 0.2%) in the northeast. Average precipitation also 
increases markedly from east to west, with approximately 368 mm (CV: 7.7%) of rain along 
the eastern boarder of the province to as much as 467 mm (CV: 8.5%) on the edge of the 
foothills (Daly, 2010). 
 
1.4.2 Hosts 

In fall (November through December) of 2008-2010, 1000 cross-bred (Angus cows X 
Hereford bulls) and purebred Angus calves were sampled from a total of 26 auction 
markets across Alberta. Auction markets were distributed throughout the study region and 
were opportunistically sampled. Calves were sampled by feedlot staff working in 
conjunction with Feedlot Health Management Services and researchers from Agriculture 
and Agri-food Canada. We targeted beef calves coming off their first year on pasture to 
minimize variation in egg counts due to host age and immunity. We also restricted the 
sampling window to a 6-wk period each fall to minimize heterogeneity due to inherent 
seasonal variation. Calves were born in April-May of each year and were maintained on 
pasture with their dams until weaning in November through December. Calves are 
transitioned to a finishing diet upon entry into a feedlot or go into a feeding program to 
prepare them for grazing in their second year (Waldner et al., 2004). All cattle were 
sampled prior to anthelmintic treatment, with a 10% random sample (Waldner et al., 2004) 
of calves selected from each sampled “lot” (auction market). Animals were handled under 
the guidelines of the Canadian Council for Animal Care (Animal Care Committee protocol 
# 08233, 0925 and 1044).  
 
1.4.3 Faecal egg counts 

The presence of eggs in samples of faeces was used to identify the GIN spp. present in 
each host. Faeces were collected by rectal palpation, stored in individual labelled bags, and 
frozen prior to analysis. A modified Wisconsin technique with a sugar solution (Zajac & 
Conboy et al., 2012) was used to process faecal samples. Parasite eggs were identified to 
genus (Nematodirus spp.) according to descriptions in Olsen (1974). Due to similar egg 
morphologies, all trichostrongyle genera were pooled and termed ‘trichostrongyles’.  
 
1.4.4 Serum antibody concentrations 

Blood was collected by jugular venipuncture into vacutainer tubes with serum 
separators (BD-Canada Inc., ON) from each calf, analyzed using SVANOVIR® Ostertagia 
ostertagi- Ab ELISA kits (Boehringer Ingelheim SVANOVA, Uppsala, Sweden). The 
reference sera were diluted 1:140 (Colwell et al., 2014). Optical density values read at 405 
nm were standardized as an optical density ratio (ODR) using negative and positive control 
sera samples included on each plate. 
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1.4.5 Mapping and Meteorological data 
All GIS-based mapping analyses were completed in ArcGIS, version 10.1 (Source: 

ESRI). Spatial analysis required the following digital data sources: digital elevation model 
(DEM, source: Geobase), generalized land cover map (source: DB Geoservices Inc.), road 
network (source: ESRI), geo-referenced auction market locations (Fig. 1), and climate data 
(source: Alberta Agriculture and Rural Development: 
 http://agriculture.alberta.ca/acis/alberta-weather-data-viewer.jsp). For visualization, the 
Alberta base map was obtained from free sourced data made available in joint by National 
Geographic, Esri, De Lorne, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, 
NRCAN, GEBCO, NOAA, and IPC. 

Precise coordinates for grazing pastures were not available. Thus, we calculated the 
likely service area for each individual lot. These service area polygons were created using 
the existing road network around each georeferenced lot location, making the assumption 
that producers select an auction market based upon minimum driving distance. We 
assumed that unknown sources of error, including lot preferences of producers, cancel 
each other out. Areas in the province where grazing is not common were excluded based 
on elevation (over 1250m), land cover type (e.g. coniferous forests, lakes), and presence of 
urban development (Fig. 1).  

Meteorological data were averaged from all geo-referenced climate stations falling 
within each polygon. The environmental variables considered in the study, especially those 
associated with temperature and moisture availability, were selected based upon their 
known role in determining nematode viability and infectivity (Stromber, 1997; Barger, 
1999; Ng’ang’a et al., 2004). We only used same-year environmental data, as overwinter 
larval survival and development of eggs is unlikely (Ranjanet al., 1992). It is therefore 
assumed that GIN exposure is related to the seeding of pasture in the spring by dams 
infected during the previous grazing season(s).  

Environmental data were collected from May to October to represent the growing 
season prior to the collection of faecal and serum data at sacrifice (Vanderstichel et al, 
2012). This temporal period represents the development period of larvae shed when adult 
cattle are returned to pasture in May of each year, typically followed by peak GIN 
intensities in cattle and on grazing pasture during the summer months (Charlier et al., 2007). 
Data were obtained for the following periods: May-September, June-September, July-
September, August-September, May-October, June-October, July-October, and August-
October. These data included: (i) total accumulated precipitation (mm), (ii) average daily 
accumulated precipitation (mm); (iii) average, minimum, and maximum air temperature 
(oC), (iv) average, minimum, and maximum relative humidity (%), (v) total accumulated 
growing degree days (GDD) with a base 5oC, and (vi) average daily growing degree days 
(GDD) with a base 5oC. Relative humidity is a dimensionless ratio, expressed in percent, of 
the amount of atmospheric moisture present relative to the amount that would be present if 
the air were saturated. Since the latter amount is dependent on temperature, relative 
humidity is a function of both moisture content and temperature. Accumulated GDDs 
were calculated as the accumulation of days with an average daily temperature exceeding 
5oC for each of the stated temporal periods. Mean daily GDD is an average of the daily 
increase in GDD with a base temperature of 5oC for each weather station. 
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1.4.5 Statistical analyses 
ODR data were normalized by log (n+1) transformation. Due to cross antigenicity, O. 

ostertagi ELISA kits are indicative of exposure to a number of GIN genera (Bennema et al., 
2009). Chi-squared statistics were used to compare prevalence (p) between samples, with 
95% confidence intervals (CI) calculated using the Wald method (Vollset, 1993; p+/- 
z√(pq/n), where z = 1- alpha/2 of the standard normal distribution and q=1-p). Mean ODR 
(± SEM) values for each polygon were evaluated using ANOVA with Tukey’s post hoc 
comparisons for each sampling year.  

Environmental data were paired with mean ODR values from each polygon. Variables 
were standardized by subtracting the mean and dividing by two standard deviations 
(Gleman & Hill, 2007).  This conversion accounts for differences in dimension and 
variance, improves the efficiency of the sampling algorithm, and has no effect on the 
resulting model. 

Bayesian inference was used to construct hierarchical logistic regression models in 
OpenBUGS version 3.2.2 (Spiegelhalter et al., 2012) testing each environmental variable 
separately, and in combination, for each of the eight temporal periods. The main advantage 
of the Bayesian approach is that parameter uncertainty is fully accounted for when 
performing prediction and inference, even when sample sizes are small. With a hierarchical 
Bayesian approach we obtain a full accounting of variability among individual polygons, 
years of sampling, and other environmental covariates, together with estimates of 
observation errors (Burnham & Anderson, 2002; Elith & Leathwick, 2009). Risk of 
transmission was modelled as a linear function on a log scale. A non-informative prior 
distribution (mean = 0, tau = 1.0 X 10-4) was assigned to the regression coefficients. 
Sampling year, assumed to follow a uniform normal distribution was included in all models 
as a random effect.  

For all models, we discarded the first 60,000 iterations, with another subsequent 
40,000 iterations used to estimate model parameters. This initial burn-in was required to 
ensure that the model chains converged and that the parameter space has been correctly 
explored (Elith & Leathwick, 2009). Competing models were ranked by their deviance 
information criterion (DIC), which is a measure of model fit to the data. The best model is 
that with the lowest DIC value. To compare models, difference between the DICi of each 
model and the DICi of the best fit model (minDICi) was calculated for each model: 

   
ΔDIC = DICi – minDICi        (1) 
 

Models within two ΔDIC units of the top performing model were considered to have strong 
support, within four to seven ΔDIC units to have considerably less support, and greater 
than ten, no support (Burnham & Anderson, 2002; McCarthy, 2007). 

 Expected ODR values (i.e. estimated risk of transmission) were calculated for each 
individual polygon using all the models within two ΔDIC of the top-performing model. 
Values were then averaged to obtain a mean expected ODR value for each polygon for 
each of the three sampling years.  Using this approach, we account for model uncertainty 
(McCarthy, 2007). Average annual expected transmission risk was assigned values 
corresponding to low, moderate and high mean ODR values of <0.3, 0.3 to 0.5, and > 0.5, 
respectively. ‘High risk’ (ODR >0.5) was considered indicative of high rates of GIN 
exposure (Charlier et al., 2005). 
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Temporal variability in environmental covariates was evaluated using ANOVA with 
Tukey’s post-hoc comparisons for polygons where risk of high GIN exposure varied 
between years. To assess the spatial accuracy of our model predictions, we compared 
model projected ODR values with observed ODR values for each polygon using Chi-
squared analyses. Parametric correlation coefficients were obtained comparing observed 
mean ODR values and model projected ODR using data pooled for all three years. Mean 
square error was then calculated to assess model accuracy.  
 
1.4.7 Model Validation 

To validate the GIN transmission risk model, we targeted two polygons for follow-up 
analyses in 2013. Based on our model predictions, one polygon had consistently low risk of 
GIN transmission, whereas a second had moderate to high risk of economically significant 
parasite transmission. The Agriculture and Agri-Food Canada, Lethbridge Research Centre 
(LRC) field station located at One Four, Alberta (49.4o N, 110.7o W) was selected as the 
low risk site. A ranch near Stettler, Alberta (52.3o N, 112.7o W) was selected as the 
moderate to high-risk site. Blood was collected from each calf by jugular venipuncture and 
analyzed as outlined above for a total of 167 cross-bred calves from the LRC field station 
and 75 calves from the Stettler ranch.  

For initial comparison of parasite transmission differences between the two ranches we 
calculated: (1) mean ODR (± SEM) for each ranch; (2) proportion of samples with 
bootstrapped 95% CI that were parasite negative (ODR < 0.0); and (3) proportion of calves 
with bootstrapped 95% CI with high intensity infections (ODR > 0.5) (Charlier et al. 2005). 
Mean values were compared using parametric t-tests, and differences in prevalence values 
were evaluated using Chi-squared. 

Climate data for 2013 were obtained from the Alberta Agriculture and Rural 
Development. Using these environmental data, mean (± SEM) expected ODR values were 
calculated using the top performing models. We compared model projections based on 
data obtained from the closest climate station to each respective ranch using Euclidean 
straight-line distances. We then validated our model using parametric t-tests to compare 
observed and expected ODR values. Parametric t-tests are also used to compare 
environmental means used in calculating model projections of exposure risk between these 
two sites. 
 
1.5 RESULTS 
1.5.1 Infection patterns 

97.2% (95% CI: 96.2-98.3%) of the 1000 calves sampled from 2008-2010 were sera-
positive for GIN. Although the overall proportion of sera-positive animals remained 
consistent between years, and estimated prevalence did not significantly vary among 
individual polygons in 2008 (χ2=3.1, p = 0.86) and 2010 (χ2= 5.7, p = 0.86), spatial variation 
in mean ODR was significant in all three years (Fig. 2; 2008: F3,281 = 24.4, p < 0.001; 2009: 
F9,321= 2.4, p < 0.05; 2010: F7,237 = 5.7, p < 0.001). The proportion of infected hosts varied 
significantly among polygons in 2009 (χ2= 35.2, p< 0.01), however, this variation can be 
accounted for by an increase in the number of sera-negative animals (n = 20) from the LRC 
ranch. Data from five polygons that were sampled in all three years also showed significant 
annual variation in transmission. These include data from the following five auction 
markets presented in Fig. 1: High River, Innisfail, Lethbridge, Lloydminster, and OneFour, 
Alberta. Colwell et al. (2014) reported significant variation in ODR between years for cattle 
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sampled from the LRC ranch at OneFour, Alberta (N 50.5o W -113.4o), with values 
significantly higher in 2009 in comparison with 2008 and 2010. Despite significant variation, 
risk of infection was consistently low (ODR < 0.35) in this southeastern corner of the study 
area (Fig. 2). Annual variation in ODR for cattle from the High River area paralleled results 
observed at the LRC ranch, while in 2009 ODR values were significantly lower in the 
Lloydminster polygon in comparison with other sampling years. In contrast, annual 
differences in mean ODR were not detected for a polygon along the southern border of the 
province (Lethbridge), nor were annual differences detected in the center of our survey 
area (Innisfail). 

Of the > 1000 models run, three additional models were within two ΔDIC of the top-
performing model. Various combinations of the following variables were found to be 
significant predictors of transmission risk in these models (Table 1): minimum air 
temperature, average daily growing degree days with a base of 5oC, accumulated 
precipitation, daily average accumulated precipitation, and minimum humidity. These top 
models all relied on environmental data collected from July to October of each respective 
grazing year. Models calculated using environmental data for the other seven temporal 
periods did not perform equally as well. 

Expected ODR was calculated for each of the 4 models (Table 2), averaged to account 
for model uncertainty (McCarthy, 2007) and projected across the study area for all three 
years (Fig. 3). Model projected risk was consistently low (ODR <0.35) in the far southeast. 
The total area where risk of economically significant infection was high increased in 2010 in 
comparison with 2008. This change may be attributed to a general increase in accumulated 
precipitation, fewer total GDDs, lower average maximum temperature, and higher 
minimum average temperature (Table 3). In comparison, these same polygons had 
increased total number of GDD in 2009, with maximum temperature ranges similar to that 
of 2008.  

When data from all three years were pooled, a significant correlation was detected 
between mean observed ODR values and model projected ODR values (R = 0.46, df = 26, 
p < 0.05), with 18% of the variance in ODR explained and a root mean square error of 
0.082. Model predictions were more consistently accurate for polygons with intermediate 
risk on average, in comparison with polygons with a more extreme low or high mean ODR. 
The polygons with ‘extreme’ low or high ODR relative to the rest of the study area are 
characterized by higher variance in ODR values. Our top four models all include daily 
average GDD with a base temperature of 5oC and minimum air temperature. 
 
1.5.2 Model Validation 

Mean ODR values differed significantly (t240 = -3.84, p < 0.001, r = 0.67) between the 
LRC ranch and the Stettler ranch (Table 4). The proportion of animals with ODR > 0.50 
also significantly differed between sites (χ2 = 11.79, p<0.001; Table 4) with higher ODR 
values on the Stettler ranch, indicative of an increased number of animals harbouring high 
parasite counts.  

Despite higher average daily precipitation on the LRC ranch in 2013 (Table 5) mean 
ODR was significantly higher in Stettler than on the LRC ranch (Table 4; t6 = -7.6, p< 
0.001). These data are consistent with our comparison of model outputs for individual 
polygons with fewer GDDs, and higher minimum humidity associated with higher parasite 
intensities (Table 5). Mean expected ODR values did not significantly differ from observed 
mean ODR for the LRC ranch (t169 = 1.647, p = 0.101) and for the Stettler ranch (t77 = -1.536, 
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p=0.13). However, model projections did underestimated mean ODR at both locations 
(Table 4). 
 
1.6 DISCUSSION 

Our results show that almost all cattle in Alberta are exposed to at least one species of 
GIN in their first year. These data are consistent with previous empirical studies and survey 
reports of calves sampled from pastures in other north-temperate locations (Sutherland & 
Scott, 2010; Colwell et al., 2014). Despite this ubiquitous presence, the relative risk of GIN 
exposure, as measured by antibody concentrations in host sera, varied significantly between 
polygons and between years. 

 A suite of environmental variables, likely acting in concert, explained a significant 
proportion of the overall variation in risk of exposure to GIN. Results from empirical 
laboratory studies and experimental studies involving tracer animals have shown that a large 
number of factors influence larval transmission rates from pasture into cattle. Factors such 
as soil moisture, soil humidity and air temperature act at local scales in a species-specific 
and context-dependent manner (Stromberg et al., 1997; Hoberg et al., 2008; Sutherland & 
Scott, 2010). Local-scale variation of this sort explains the tremendous variation that is 
typically observed between herds, even in cases where herds are adjacent on a landscape. 
These local factors likely contributed to the approximately 80% unexplained variation in 
ODR values observed in this study. Yet despite this high level of background variation, the 
results of our study show that broad-scale variation in environmental factors, that operate at 
the scale of 10’s or 100’s of kilometers, explain a significant proportion of the overall 
variation in GIN infections in young cattle across Alberta.  

The significance of the July to October temporal period in our top performing models 
is consistent with an increase in the availability of infective L3 on pasture throughout the 
grazing season (Sutherland & Scott, 2010). Distinct seasonality has also been detected in a 
number of pasture-based studies with an increase in egg shedding to a peak in late August 
to early October (Stromberg, 1997). This coincides with the peak in GIN spp. (e.g. 
Ostertagia, Cooperia, Nematodirus, and Trichostrongylus spp.) intensities detected in 
grazing tracer calves and dairy cattle in the fall and winter in northern temperate climates 
(Rickard & Zimmerman, 1992; Vanderstichel et al., 2012). Given these patterns, it follows 
that variability in environmental conditions during the July to October period would 
significantly impact the availability of L3 larvae on pasture. 

Relative to spatial heterogeneity in nematode transmission, the significance of the 
number of GDDs may represent a required minimum number of days above a threshold 
temperature for larval development. This minimum requirement is also consistent with the 
significance of minimum air temperature, with risk generally increasing with higher average 
low temperatures. In the case of O. ostertagi, optimal temperatures for development range 
between 20-25oC (Stromberg, 1997). Rates of development slow, or may cease completely, 
as temperatures declines below this optima. Thus, a minimum number of GDDs may be 
needed for development through one generation, with the number of potential generations 
increasing in a given year with the number of cumulative GDDs. This pattern has been 
demonstrated for the development of F. hepatica on pasture (Valencia-Lopez et al., 2012). 
However, at the other extreme, rates of development decrease when temperatures exceed 
the maxima for larval survival (Stromberg, 1997). In a national survey of Canadian dairy 
cattle, Vanderstichel et al. (2012) documented higher exposure to GIN on farms in areas 
with lower average land surface temperatures. The decreased risk of transmission with 
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higher total GDDs may represent an increased number of consecutive days reaching 
beyond maximum threshold temperatures acting to limit parasite survival and development 
(Stomberg, 1997; Barger, 1999; Ng’ang’a et al., 2004). 

The significance of accumulated precipitation is also consistent with the transmission 
biology of infective 3rd stage larvae (L3) on pasture. While L3’s can survive for long periods 
within desiccated faeces, they cannot migrate vertically onto surrounding herbage in the 
absence of sufficient rainfall (Wang et al., 2014). For Haemonchus contortus, an average of 
2mm daily rainfall failed to release substantial numbers of larvae (Wang et al., 2014). In 
contrast, heavy rain has been found to yield high numbers of L3, with a daily average 
minimum of between 2 and 4 mm needed for larval migration on vegetation. Spatial 
variability in relative humidity can similarly affect the rate of desiccation of GIN eggs and 
free-living larval stages on pasture. These patterns are consistent with accounts of a 
cessation in larval development in the absence of sufficient moisture, regardless of the 
prevailing temperature (Stromberg, 1997). Combined with our data, these results show that 
relative humidity and the amount and temporal distribution of rainfall are important drivers 
for GIN transmission, with the number and survival of free-living L3 on pasture influenced 
by regional precipitation patterns. Similar results were found in the assessment of 
environmental covariates of GIN in dairy cattle across Canada (Vanderstichel et al., 2012). 

Trade-offs between relative moisture conditions, temperature, and number of GDDs 
can help explain the spatial and temporal trends described in our risk maps. Low risk of L3 
transmission was consistent in the southeastern and northwestern corners of the province. 
Average annual precipitation is generally higher in the northwest and lowest in the southeast 
(Fig. 4). The reverse is apparent for 30-year average annual temperatures (Daly et al, 2004) 
and number of GDDs for these regions. Data from the southeast are consistent with data 
from field and laboratory studies documenting that extremely arid conditions generally limit 
the development, survival and transmission of GIN. For example, the development of O. 
ostertagi L3 dropped from 30% to 5% following an increase in temperature from 25oC 
(optimal environmental conditions) to 32oC (Stromberg, 1997). In contrast, despite higher 
average annual precipitation in the northwest in comparison with the southeast, similarities 
in risk of transmission may be related to typically lower temperatures with fewer cumulative 
GDDs above a base temperature of 5oC delaying larval development and limiting the 
number of infective larvae available on pasture (Stromberg, 1997; Valencia-Lopez, 2012). 
Stromberg (1997) reports that O. ostertagi development rate is slowed at lower 
temperatures, taking up to 42 days at 5oC. Other studies suggest that development may not 
occur at or below 5oC (Stromberg, 1997). We can therefore assume that just as the 
excessively dry and warm south and east parts of the province are not conducive to high 
rates of transmission, neither are the wetter, colder regions that are characteristic of the 
north and west. In comparison with these two relative extremes, intermediate temperatures 
and moisture availability characterize the transmission hot spot identified in the centre 
region of our study area.  

Temporal variability in the area of high risk for economically significant transmission 
can also be attributed to differences between regions in accumulated precipitation, 
cumulative GDDs, and average temperatures. The increased total area in 2010 in 
comparison with 2008 is consistent with reports that increased precipitation, along with 
fewer consecutive days above maximum threshold temperatures for parasite survival and 
development, promote increased parasite transmission (Stromberg, 1997; Barger, 1999; 
Ng’ang’a et al., 2004). Similarly, the absence of high risk projections for 2009, along with 
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overall expansion of the total area where risk was low along the eastern border of the 
province, can be explained by lower average precipitation and the increased GDDs that 
characterized that year’s unusually hot and dry summer.  

Validation of our multivariate model demonstrated that projections at the regional level 
remained relevant in projecting ranch-specific risk. However, model projections did 
underestimate mean ODR values. This, as well as a large proportion of variation 
unaccounted for by our model, may be related to incidence of discrete rain events 
providing opportunity for drastic rise in availability in infective L3 (Wang et al., 2014).  
These events were also presented as the most parsimonious explanation for high rates of 
L3 transmission in 2009 in an analysis of annual variation in serum antibody concentrations 
at the LRC ranch despite lower total accumulated precipitation (Colwell et al., 2014).  

The data for this study largely stemmed from regional-based parasite data. Information 
on the precise origin of host individuals, herd density and management strategies were not 
available. This limited the resolution and accuracy of our analyses. Additionally, our 
interpretations of risk were based on the assumption that detected antibodies (ODR) were 
indicative of exposure to a number of GI genera including O. ostertagi and 
Trichostrongylus spp. (see also Colwell et al., 2014). This assumption is supported by data 
from tracer calves in Alberta (Stockdale & Harries, 1979; Kennedy, 1990). Future research 
may benefit from the use of alternative diagnostic techniques that allow for the 
differentiation and quantification of specific parasite species present in each host (Ai et al., 
2011). Comparisons of more local-scale variation in risk of transmission using higher 
resolution spatial data may provide further insight into the epidemiology of parasite 
transmission. These data are important given that, despite life-cycle similarities, species-
specific sensitivity to environmental factors (e.g. tolerance of prolonged dry periods) is 
common (Wang et al., 2014).  

Despite the need to increase the overall robustness of model predictions, our model 
provides a baseline for evidence-based anthelmintic intervention. The data presented here 
demonstrate that in years with wetter- and warmer-than-average spring and summer 
conditions, we can expect higher rates of nematode transmission into yearlings in the fall, 
especially at sites in the center of our study area where transmission conditions appear to be 
optimal. Following further verification that links serum antibody concentrations to actual 
nematode burdens, these results can be used to guide future studies of GIN transmission 
biology and to maximize treatment efficiency (Hess et al., 2002; Pullan et al., 2011). The 
next step is to attain more accurate data on: 1) parasite species-specific variation in intensity; 
2) animal origin, history, and pasture characteristics; and 3) species-specific climate 
thresholds for GIN transmission. Of significance here will also be the determination of 
whether GIN can overwinter on pasture in this region. Such information will provide a 
platform for explaining species-specific distributional patterns and allow for optimization of 
anthelmintic applications. Combined with projected changes in climate, increased pressure 
on the landscape to support a growing global population, and rising incidence of 
anthelmintic resistance, the ability to reliably define variability in risk of parasite 
transmission will be increasingly important (Hess et al., 2002).  
 
 
 
 
 

169 
 



1.7 LIST OF ABBREVIATIONS 
CV: Coefficient of variation 
DIC: Deviance Information Criterion 
ELISA: Enzyme-linked immunosorbent assay 
ESA: European Space Agency 
GEBCO: General Bathymetric Chart of the Oceans 
GDD: Growing degree days 
GIN: Gastrointestinal nematode 
GIS: Geographic Information Systems 
IPC: Integrated Food Security Phase Classification 
LRC: Lethbridge Research Centre 
METI: Maritime Environmental Training Institute 
NASA: National Aeronautics and Space Administration 
NOAA: National Oceanic and Atmospheric Administration 
NRCAN: Natural Resources Canada 
ODR: Optical density ratio 
SEM: Standard error of the mean 
UNEP-WCMC: United National Environmental Program – World Conservation 
Monitoring Centre 
USGS: United States Geographical Survey 
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Table 1: Summary of the top performing multivariate hierarchical models for risk of GIN 
transmission. Models are ranked based on the Deviance Information Criterion (DIC). Year 
is included in all models as a random fixed effect.  
Rank Model Parameters DIC ΔDIC 

1 Daily average GDD (base 5oC), Minimum 
temperature (oC) 54.71 0.00 

2 
Daily average GDD (base 5oC), Minimum 
temperature (oC), Daily accumulated 
precipitation (mm/day) 

56.02 1.31 

3 
Daily average GDD (base 5oC), Minimum 
temperature (oC), Total accumulated 
precipitation (mm) 

56.11 1.40 

4 Daily average GDD (base 5oC), Minimum 
temperature (oC), Minimum humidity (%) 56.27 1.56 

Null Model - 106.20 51.49 
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Table 2: Regression model for tests of associations between means of regional 
environmental data and serum antibody concentrations (ODR). 

Model Variable Parameter 
Mean SD B SE B 

1 Intercept - - -0.64 <0.01 
  Daily Average GDD (base 5oC) 8.06 1.08 -0.40 <0.01 
  Minimum Temperature (oC) 5.29 1.01 0.20 <0.01 
2 Intercept - - -0.64 <0.01 
  Daily Average GDD (base 5oC) 8.06 1.08 -0.45 <0.01 
  Accumulated Precipitation (mm) 153.31 40.49 -0.05 <0.01 
  Minimum Temperature (oC) 5.29 1.01 0.22 <0.01 
3 Intercept - - -0.64 <0.01 
  Daily Average GDD (base 5oC) 8.06 1.08 -0.05 <0.01 

  Daily Accumulated Precipitation 
(mm) 1.25 0.33 -0.45 <0.01 

  Minimum Temperature (oC) 5.29 1.01 0.22 <0.01 
4 Intercept - - -0.64 <0.01 
  Daily Average GDD (base 5oC) 8.06 1.08 -0.45 <0.01 
  Humidity Minimum 38.34 7.15 -0.05 <0.01 
  Minimum Temperature (oC) 5.29 1.01 0.22 <0.01 

SD Standard deviation, B Parameter coefficient, SE B Standard error of the coefficient 
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Table 3: Spatio-temporal patterns for the environmental covariates of variability in GIN 
transmission risk on Alberta pasture between 2008-2010. 

Parameter Polygon 
Mean ± SEM 

ANOVA 
2008 2009 2010 

GDD 
Total (base 
5oC) 

8 867.5 ± 10.0  979.5 ± 46.5 865.1± 35.0 F735,2 = 3.8 
10 814.5 ± 31.7 852.4 ± 28.2 803.2 ± 12.4 F996,2 = 1.0 
12 795.8 799.6 726.2 - 
13 749.2 769.6 663.3 - 
14 865.7 ± 21.0 902.9 ± 28.1 804.9 ± 15.6 F729,2 = 4.9 
15 937.6 ± 18.6 950.4 ± 18.0 855.0 ± 15.4 F4788,2 = 8.9*** 
18 881.8 ± 25.0 892.2 ± 22.7 812.1 ± 23.1 F673,2 = 3.4 
19 875.4 ± 17.5 893.6 ± 13.2 803.2 ± 12.4 F1104,2 = 10.8** 

Acc. 
Precip. 
(mm) 

8 98.6 ± 8.0 204.4 ± 32.7 158.8 ± 28.3 F735,2 = 4.4 
10 181.4 ± 10.3 137.2 ± 12.0 178.2 ± 13.9 F996,2 = 5.3* 
12 175.8 190.3 174.3 - 
13 181.3 206.6 285.2 - 
14 144.6 ± 16.5 190.3 ± 7.4 271.7 ± 16.5 F729,2 = 20.7* 
15 127.46 ± 7.5 183.4 ± 7.1 217.3 ± 8.5 F4788,2 = 34.4*** 
18 113.3 124.1± 9.8 208.0 ± 21.6 - 
19 114.9 ± 12.3 120.0 ± 6.8 210.9 ± 21.8 F1104,2 = 13.0** 

Maximum 
Temp. (oC) 

8 20.8 ± 0.4 19.6 ± 0.6 19.0± 0.4 F735,2 = 3.5* 
10 19.3 ± 0.32 18.5 ± 0.5 17.8 ± 0.3 F996,2 = 3.5* 
12 18.7 ± 0.6 17.8 ± 0.8 17.4 ± 0.6 F366,2 = 1.0 
13 18.7 ± 0.6 17.7 ± 0.8 16.7 ± 0.4 F489,2 = 3.6* 
14 18.9 ± 0.4 17.8 ± 0.6 17.1 ± 0.4 F729,2 = 3.4* 
15 19.8 ± 0.2 18.9 ± 0.2 18.0± 0.2 F4788,2 = 22.9*** 
18 19.4 ± 0.4 18.5 ± 0.4 17.5 ± 0.3 F673,2 = 5.4** 
19 19.2 ± 0.3 18.5 ± 0.4 17.5 ± 0.3 F1104,2 = 6.6*** 

Minimum 
Temp. (oC) 

8 4.1 ± 0.4 4.6 ± 0.4 4.5 ± 0.3 F735,2= 0.7 
10 3.2 ± 0.3 3.0 ± 0.3 3.3 ± 0.3 F996,2 = 0.3 
12 3.3 ± 0.5 2.8 ± 0.5 3.4 ± 0.5 F366,2 = 0.4 
13 2.3 ± 0.5 2.9 ± 0.5 3.0 ± 0.3 F489,2 = 0.8 
14 4.6 ± 0.4 4.8 ± 0.4 5.2 ± 0.3 F729,2 = 0.7 
15 4.5 ± 0.1 4.8 ± 0.2 5.2 ± 0.1 F4788,2 = 6.5** 
18 4.0 ± 0.4 4.7 ± 0.3 5.4 ± 0.2 F673,2 = 4.6** 
19 4.1 ± 0.3 3.8 ± 0.3 4.5 ± 0.2 F1104,2 = 2.1 

* p< 0.05; ** p < 0.01; *** p < 0.001  
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Table 4: Comparison of observed and model-based projections of ODR in 2013. Projected 
values are based on data from the closest meteorologicalstation in straight-line distance for 
ranches near One Four, Alberta and Stettler, Alberta. 

Site N 

Observed Model Projected 

ODR  
(mean ± SEM) 

Proportion of 
calves with ODR 
<0.0  
(95% CI) 

Proportion of 
calves with ODR 
>0.5  
(95% CI) 

ODR 
(mean ± SEM) 

LRC 16
7 0.36 ± 0.02 0.05 (0.02-0.08) 0.25 (0.18-0.31) 0.16 ± 0.01 

Stettler 75 0.51 ± 0.04 0.03 (0.01-0.05) 0.43 (0.35-0.50) 0.25 ± 0.01 
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Table 5: Comparison of environmental data (July to October 2013) collected for model 
validation polygons. Environmental data are collected from the closest meteorological 
station by Euclidean straight-line distance for ranches near One Four, Alberta and Stettler, 
Alberta. Values are mean ± SEM. 

Environmental Parameters LRC Stettler T-stat 

Total Acc. Precip. (mm) 251.7 163.3 - 
Daily Acc. Precip. (mm) 2.0 ± 0.6 1.3 ± 0.4 t244 = 9.5 
GDD Total (base 5oC) 1231.9 1012.9 - 
GDD Daily Average (base 5C) 10.0 ± 0.6 8.2 ± 0.5 t244= 2.3* 

Air Temperature Minimum (oC) 7.8 ± 0.6 5.9 ± 0.5 t244= 2.3* 

Humidity Minimum (%) 36.0 ± 1.3 41.3 ± 1.4 t244= -2.7** 
*p< 0.05; ** p < 0.01; *** p < 0.001  
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Figure 1: Sampling polygons for GIN survey in southern Alberta bovine calves. Southern 
Alberta was delineated into 26 service area polygons based on analyses of minimum driving 
distance to auction markets in accordance with the existing road network.  
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Figure 2: Observed mean antibody concentrations (ODR) in calves sampled at auction 
markets in Alberta from 2008 to 2010. 
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Figure 3: Model predicted spatial and temporal variation in risk of GIN transmission in 
Alberta bovine calves (2008-2010). Distribution of expected risk of nematode transmission 
calculated for each year using Bayesian inference to construct hierarchical binary response 
logistic regression models for ODR in cattle sampled at auction markets in southern 
Alberta from 2008-2010. Low, Moderate and High risk are differentiated according to 
mean regional optical density ratio values of <0.3, 0.3-0.5, and >0.5, respectively, for cattle 
serum. 
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Figure 4: Alberta 30yr climate maps (1970-2000) for mean (i) accumulated precipitation 
(mm), (ii) maximum temperature (oC), and (iii) minimum temperature (oC) for July to 
October. Surface values were calculated as an average of monthly data created by Daly et al. 
(2010). 
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