LAB MATERIALS (SUPPORT) ON SELECTING APPROPRIATE TESTS, CHARTS, INTERPRETING EFFECT SIZES, SKEWNESS, AND SPSS PROCEDURES FOR DATA ANALYSIS

Visual representation	Nominal	Dichotomous	Ordinal	Normal
Frequency Distribution	Yes	Yes	Yes	ОК
Bar Chart	Yes	Yes	Yes	ОК
Pie Chart	Yes	Yes	Yes	ОК
Histogram	No	No	OK	Yes
Frequency Polygon	No	No	OK	Yes
Box and Whiskers Plot	No	No	Yes	Yes
Central Tendency				
Mean	No	ОК	Of ranks, OK	Yes
Median	No	OK = Mode	Yes	OK
Mode	Yes	Yes	ОК	ОК
Variability				
Range	No	Always 1	Yes	ОК
Standard Deviation	No	No	Of ranks, OK	Yes
Interquartile Range	No	No	Yes	OK
How Many Categories	Yes	Always 2	OK	Not if truly continuous
Shape				
Skewness	No	No	Yes	Yes

 Table 3.3. Selection of Appropriate Descriptive Statistics and Plots

Figure. 5.1. A Decision Tree to Help you Select the Appropriate Inferential Statistic from Tables 5.1-5.4 (Morgan et al., 2020, p.90-92)

Table 5.1. Selection of an Appropriate Inferential Statistic for Bivariate (Two Variable),Difference Questions or Hypotheses^a (Morgan et al., 2020, p.90).

Level of Measurement of the Dependent Variable	Appropriate	One Factor or Indeper with 2 levels or Categ Samples	ndent Variable g ories / Groups/ s	One Independent Variable 3 or more Levels or Groups	
	Statistics to report	Independent Samples or Groups (Between)	Repeated Measures or Related Samples (Within)	Independent Samples or Groups (Between)	Repeated Measures or Related Samples (Within)
Dependent Variable Approximates Normal/Scale Data and Assumptions are not Markedly Violated	MEANS, STANDARD DEVIATION	INDEPENDENT SAMPLES t Test Ch. 9	PAIRED SAMPLES <i>t</i> Test Ch. 9	ONE-WAY ANOVA Ch. 9	GLM REPEATED MEASURES ANOVA Ch. 9
Dependent Variables Clearly Ordinal or Parametric Assumptions Markedly Violated	MEDIAN (or MEAN RANKS), INTERQUARTILE RANGE	MANN-WHITNEY U Ch. 9	WILCOXON Ch. 9	KRUSKAL- WALLIS Ch. 9	FRIEDMAN
Dependent Variable Nominal or Dichotomous	MODE, MINIMUM & MAXIMUM	CHI-SQUARE Ch. 7	MCNEMAR	CHI- SQUARE Ch. 7	COCHRAN Q TEST

^a It is acceptable to use statistics that are in the box(es) below the appropriate statistic, but there is usually some loss of power. It is not acceptable to use statistics in boxes above the appropriate statistic or ones in another column.

Table 5.2. Selection of an Appropriate Inferential Statistic for Bivariate (Two Variable),Associational Questions or Hypotheses (Morgan et al., 2020, p.91)

Level (Scale) of Measurement of Both Variables	RELATE	Two Variables or Scores for the Same or Related Subjects	
Variables are both Normal/Scale and Assumptions not Markedly Violated	SCORES	PEARSON (r) or BIVARIATE REGRESSION (Ch. 8)	
Both Variables at Least Ordinal Data or Assumptions Markedly Violated	RANKS	KENDALL'S TAU-B or SPEARMAN (Rho) Ch. 8	
One Variable is Normal/ Scale and One is Nominal		ETA Ch. 7	
Both Variables are Nominal or Dichotomous	COUNTS OF PEOPLE	PHI or CRAMER'S V Ch. 7	

Table 5.3. Selection of the Appropriate Complex (Two or More Independent Variables) Statistic to Answer Difference Questions or Hypotheses (Morgan et al., 2020, p.92)

Dependent Variable(s)	Two or More Independent Variables				
	All Between Groups	All Within Subjects	Mixed (Between and Within)		
One Normal/ Scale Dependent Variable	GLM, Factorial ANOVA or ANCOVA Ch. 9	GLM (ANOVA) With Repeated Measures on All Factors	GLM (ANOVA) with Repeated Measures on Some Factors		
Ordinal Dependent Variable	Nonparametric Tests	Nonparametric Tests	Mixed Models (Generalized Linear)		
Dichotomous Dependent Variable	LOG-LINEAR	Mixed Models	Mixed Models		

Table 5.4. Selection of the Appropriate Complex Associational Statistic for Predicting a
Single Dependent/ Outcome Variable from Several Independent Variables
(Morgan et al., 2020, p.92)

One Dependent or Outcome Variable	Several Independent or Predictor Variables				
	Normal or Scale	Some Normal Some Dichotomous (Two category)	All Dichotomous		
Normal/ Scale (Continuous)	MULTIPLE REGRESSION Ch. 8	MULTIPLE REGRESSION Ch. 8	MULTIPLE REGRESSION Ch. 8		
Dichotomous	DISCRIMINANT ANALYSIS	LOGISTIC REGRESSION	LOGISTIC REGRESSION		

Multivariate analysis of variance, **MANOVA**, is used if you have two or more normal (scale) dependent variables treated simultaneously.

Table 5.5. *Interpretation of the Strength of a Relationship (Effect Sizes)* – (Morgan et al., 2020, p.98).

General Interpretation of the Strength of a Relationship	The d Family ^a	The r Family ^b					
	d	r ²	<i>r</i> , <i>rho</i> , Φ	R ²	R	η^2	η (eta) ^d
Much larger than typical	≥ 1.00 ^{c, e}	.49	≥ .70	.49+	.70 +	.21	.45 +
Large or larger than typical	.80	.25	.50	.26	.51	.14	.37
Medium or typical	.50	.09	.30	.13	.36	.06	.24
Small or smaller than typical	.20	.01	.10	.02	.14	.01	.10

^a d values can vary from 0.0 to + or – infinity, but d greater than 1.0 is relatively uncommon.

^b r family values can vary from 0.0 to + or -1.0, but except for reliability (i.e., same concept measured twice), r is rarely above .70. In fact, some of these statistics (e.g., phi) have a restricted range in certain cases; that is, the maximum phi (Φ) is less than 1.0.

^c We interpret the numbers in this table as a range of values. For example, a d greater than .90 (or less than -.90) would be described as "much larger than typical," a d between, say, .70 and .90 would be called "larger than typical," and d between, say, .60 and .70 would be "typical to larger than typical." We interpret the other three columns similarly.

^d Partial etas are multivariate tests equivalent to *R*. Use *R* column.

^e Note: | | indicates absolute value of the coefficient. The absolute magnitude of the coefficient, rather than its sign, is the information that is relevant to effect size. R and η usually are calculated by taking the square root of a squared value, so that the sign usually is positive.

Effect Size formula for Cohen's d using different statistical methods:

Cohen's
$$d = \frac{M_1 - M_2}{SD_{pooled}}$$

Glass's $\Delta = \frac{M_1 - M_2}{SD_{control}}$
Hedges' $g = \frac{M_1 - M_2}{SD_{socied}}$

$$\eta^{2} = \frac{SS_{Effect}}{SS_{Total}}$$
$$\eta_{P}^{2} = \frac{SS_{Effect}}{SS_{Effect} + SS_{Error}}$$
$$\omega^{2} = \frac{SS_{Effect} - (df_{Effect})(MS_{Error})}{SS_{Total} + MS_{Error}}$$

Eta Squared, Partial Eta Squared, and Omega Squared Formulas

Cohen's f_2 method of effect size: Cohen's f_2 method measures the effect size when we use methods like <u>ANOVA</u>, multiple regression, etc. The Cohen's f_2 measure effect size for multiple regressions is defined as the following:

$$f^2 = \frac{R^2}{1 - R^2}$$

Where R^2 is the squared multiple correlation.

$$r = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{(\frac{(N_{1}-1)s_{1}^{2} + (N_{2}-1)s_{1}^{2}}{N_{1}} + N_{2}-2}} \text{ Social Science Statistics}^{r} \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{(\frac{(N_{1}-1)s_{1}^{2} + (N_{2}-1)s_{1}^{2}}{N_{1}} + N_{2}-2})(\frac{1}{N_{1}} + \frac{1}{N_{2}})}}{\sqrt{N \sum x^{2} - \sum (x^{2}) \left[N \sum y^{2} - \sum (y^{2}) \right]}}$$

Cohen's d follows a classification system based on their effect sizes (Cohen, 1992) i.e. Cohen's d = .10 = weak effect Cohen's d = .30 = moderate effect Cohen's d = .50 = strong effect

Cohen's d formula

$$d = \frac{\overline{x}_1 - \overline{x}_2}{s_{pooled}}$$

where

$$s_{pooled} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

https://www.psychometrica.de/effect_size.html

Effect Size for Chi-square Test

We review three different measures of effect size: Phi φ , Cramer's V and the Odds Ratio.

Phi 🛷

For the goodness of fit in 2×2 contingency tables, phi, which is equivalent to the correlation coefficient *r* (see <u>Correlation</u>), is a measure of effect size. Phi is defined by

$$\varphi = \sqrt{\frac{\chi^2}{n}}$$

where n = the number of observations. A value of .1 is considered a small effect, .3 a medium effect and .5 a large effect.

This is the effect size measure (labelled as w) that is used in power calculations even for contingency tables that are not 2 × 2 (see <u>Power of Chi-square Tests</u>).

Cramer's V

Cramer's V is an extension of the above approach and is calculated as

$$V = \sqrt{\frac{\chi^2}{n \cdot df^*}}$$

where $df^* = \min(r - 1, c - 1)$ and r =number of rows and c = number of columns in the contingency table. Per Cohen, you use the guidelines for phi divided by the square root of df.

SPSS CODEBOOK

This so-called codebook provides you with SPSS steps or procedures to assist you in getting your output from data analysis.

<u>Frequency Distribution</u>: Note that frequency table are only prepared for nominal & ordinal variables.

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies \rightarrow move variable(s) you want to make frequency distributions for into the variable(s) box \rightarrow Ensure Display frequency tables' box is checked \rightarrow Click OK

Bar Chart: Note that bar charts are only prepared for SPSS nominal & ordinal variables.

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies \rightarrow move variables(s) you want to make bar charts for into the variable(s) box \rightarrow Click Charts \rightarrow Select Bar Charts \rightarrow Click continue \rightarrow Ensure Display frequency tables box is NOT checked (unless you want to make a frequency distribution as well) \rightarrow Click OK

Pie Chart: Note that pie charts are only prepared for SPSS nominal & ordinal variables.

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies \rightarrow move variables(s) you want to make pie charts for into the variable(s) box \rightarrow Click Charts \rightarrow Select Pie Charts \rightarrow Click continue \rightarrow Ensure Display frequency tables box is NOT checked (unless you want to make a frequency distribution as well) \rightarrow Click OK

(Note that you may double click on the output to make amendment to any of the charts)

<u>Histograms with Normal Curve Superimposed</u>: Note that histograms are only prepared for SPSS scale (normal/approximately normal/continuous) variables.

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies \rightarrow move variable(s) you want to make a histogram for into the variable(s) box \rightarrow Click Charts \rightarrow Select Histograms \rightarrow Ensure Show normal curve box is selected \rightarrow Click continue \rightarrow Ensure Display frequency tables box is NOT checked (unless you want to make a frequency distribution as well) \rightarrow Click OK

Measures of Central Tendency and Measures of Variability

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies \rightarrow move variable(s) you want to generate these statistics for into the variable(s) box \rightarrow Click Statistics \rightarrow Select all the statistics you desire from the various options shown \rightarrow Click continue \rightarrow Ensure Display frequency tables box is NOT checked (unless you want to make frequency distributions as well) \rightarrow Click OK

Phi and Cramer's V: Used for dichotomous/nominal variables only

Analyze \rightarrow Descriptive Stats \rightarrow Crosstabs \rightarrow move 1 of the variables to the Row(s) box and 1 of the variables to the Column(s) box (doesn't matter which of the variables you put in each of these boxes) \rightarrow Statistics \rightarrow Phi and Cramer's V \rightarrow Continue \rightarrow OK

<u>ETA</u>

Analyze \rightarrow Descriptive Stats \rightarrow Crosstabs \rightarrow move 1 of the variables to the Row(s) box and 1 of the variables to the Column(s) box (doesn't matter which of the variables you put in each of these boxes) \rightarrow Statistics \rightarrow ETA \rightarrow Continue \rightarrow OK

Kendall's Tau

Analyze \rightarrow Correlate \rightarrow Bivariate Correlations \rightarrow move the 2 variables of interest to the variables box \rightarrow Click Kendall's tau-b \rightarrow Click 2-tailed \rightarrow OK

Spearman's Rho

Analyze \rightarrow Correlate \rightarrow Bivariate Correlations \rightarrow move the 2 variables of interest to the variables box \rightarrow Spearman \rightarrow Click 2-tailed \rightarrow OK

Pearson r

Analyze \rightarrow Correlate \rightarrow Bivariate Correlations \rightarrow move the 2 variables of interest to the variables box \rightarrow Click Pearson \rightarrow Click 2-tailed \rightarrow OK

Bivariate Regression (also called Simple Linear Regression):

Analyze \rightarrow Regression \rightarrow Linear \rightarrow Move DV to Dependent variable box and IV to the Independent variable(s) box \rightarrow Statistics \rightarrow ensure Estimates and Model fit are selected (they should be already by default) \rightarrow Continue \rightarrow OK

Multiple Regression

Analyze \rightarrow Regression \rightarrow Linear \rightarrow Move DV to Dependent variable box and IVs to the Independent variable(s) box \rightarrow Statistics \rightarrow Click on Estimates, Model fit, and Descriptives \rightarrow Continue \rightarrow OK

Binary Logistic Regression

Analyze \rightarrow Regression \rightarrow Binary Logistic \rightarrow Move the DV to DV box and move the IVs to Covariates box \rightarrow Leave the method as Enter but click Options \rightarrow Check CI for exp(B), be sure that 95 is in the box (this will provide 95% CI for the odds ratio of each predictor's contribution to the equation) \rightarrow Click OK.

Chi-Square Test

Analyze \rightarrow Descriptive Statistics \rightarrow Crosstabs \rightarrow move 1 of the variables to the Row(s) box and 1 of the variables to the Column(s) box (doesn't matter which of the variables you put in each of these boxes) \rightarrow Statistics \rightarrow Chi-Square \rightarrow Continue \rightarrow Cells \rightarrow Select observed and expected \rightarrow Continue \rightarrow OK

McNemar test

Analyze \rightarrow Nonparametric Tests \rightarrow Related Samples \rightarrow Select "Customized analysis" under Objective \rightarrow Click Fields, select "Use custom field assignments" and Move the 2 variables to Test Fields \rightarrow Click Settings, select Customized tests \rightarrow Select McNemar's test (2 samples) \rightarrow click Run

Independent-samples t-test

Analyze \rightarrow Compare means \rightarrow independent samples t-test \rightarrow Put the IV in the Grouping Variable box and the DV in the Test Variable(s) \rightarrow Define groups (you may need to click on the Grouping Variable box first) \rightarrow Type in the codes for the groups being compared (i.e., codes for the values of the IV) \rightarrow Click OK

Mann-Whitney U Test

Analyze \rightarrow Nonparametric Tests \rightarrow Independent Samples \rightarrow Select "Customized analysis" under Objective \rightarrow Click Fields, select "Use custom field assignments" and Move the dependent variable to Test Fields and Independent variable to Groups \rightarrow Click Settings, select Customized tests \rightarrow Select Mann-Whitney U test (2 samples) \rightarrow click Run

Alternative (old) route:

Analyze \rightarrow Non-parametric \rightarrow Legacy Dialogue \rightarrow 2 Independent Samples \rightarrow Move IV to grouping variable box and DV in test variable box \rightarrow Define groups (you may need to click on the Grouping Variable box first) \rightarrow Type in the codes for the groups being compared (i.e., codes for the values of the IV) \rightarrow Continue \rightarrow Select Mann Whitney \rightarrow OK

Paired-samples t-test

Analyze \rightarrow Compare means \rightarrow paired samples t-test \rightarrow Put the 2 variables side-by-side in the Paired Variables box \rightarrow OK

Wilcoxon Matched-pair Signed-rank-test

Analyze \rightarrow Nonparametric Tests \rightarrow Related Samples \rightarrow Select "Customized analysis" under Objective \rightarrow Click Fields, select "Use custom field assignments" and Move the 2 variables to Test Fields \rightarrow Click Settings, select Customized tests \rightarrow Select Wilcoxon matched-pair signed-rank (2 samples) \rightarrow click Run

One-Way ANOVA Test

Analyze \rightarrow Compare means \rightarrow One-way ANOVA \rightarrow Move IV to Factor's box and DV to variables box \rightarrow Post-hoc \rightarrow Select Games Howell and Tukey \rightarrow Options \rightarrow Select Descriptives, Homogeneity of Variance Test, and Means Plot \rightarrow Continue \rightarrow OK

Kruskal-Wallis H Test

Analyze \rightarrow Non-parametric tests \rightarrow Independent Samples \rightarrow select Customize analysis \rightarrow Fields \rightarrow select Use custom field assignments, moved DV to test fields and IV to Groups \rightarrow Settings \rightarrow Customize tests \rightarrow select "Kruskal-Wallis 1-way ANOVA (k samples)" \rightarrow Run

Alternative (old) route:

Analyze \rightarrow Non-parametric \rightarrow Legacy Dialogue \rightarrow K Independent Samples \rightarrow Move IV to grouping variable box and DV to test variable box \rightarrow Define range (you may need to click on the Grouping Variable box first) \rightarrow Type in highest code and the lowest code for the values of the IV \rightarrow Continue \rightarrow Kruskal-Wallis H \rightarrow Options \rightarrow Select Descriptives \rightarrow Continue \rightarrow OK

Friedman's Two-Way ANOVA by Rank Test

Analyze \rightarrow Nonparametric Tests \rightarrow Related Samples \rightarrow Select "Customized analysis" under Objective \rightarrow Click Fields, select "Use custom field assignments" and Move all the variables to Test Fields \rightarrow Click Settings, select Customized tests \rightarrow Select Friedman's Two-Way Analysis of Variance by Ranks \rightarrow click Run

Two-Way (Factorial) ANOVA Test

Analyze \rightarrow General Linear Model \rightarrow Univariate \rightarrow Move IVs to the Fixed Factors box and DV so the Dependent Variable box \rightarrow Plots \rightarrow Move one IV to the Horizontal Axis Box and the other IV to the Separate Lines Box (doesn't matter which variable you put in each of these boxes, but your graph might not look the same as others if you don't do it the same as others) \rightarrow Add \rightarrow Continue \rightarrow Options \rightarrow Descriptive Statistics, Estimates of Effect size, and Homogeneity Tests \rightarrow Continue \rightarrow Post-Hoc \rightarrow Move variables to Post-Hoc tests box \rightarrow Tukey (and Games-Howell if it allows this) \rightarrow Continue \rightarrow OK

GLM Repeated Measures ANOVA Test

Analyze \rightarrow General Linear Model \rightarrow Repeated Measures \rightarrow You may change the name of IV in the "Within-Subjects Factor Name" box from 'Factor' to 'Time' \rightarrow Define the number of repetition in the Number of Levels box \rightarrow click "Add" \rightarrow Click Define \rightarrow move your variables to the respective boxes (i.e., move all the repeated variable to "Within-Subjects Variables (factor 1 or Time) \rightarrow (if there is between subjects variables and covariates in your dataset, please move them to their appropriate boxes) \rightarrow Click Options \rightarrow click the boxes for "Descriptive statistics, Estimates of Effect size, Homogeneity tests ... \rightarrow Continue \rightarrow OK

Cochran Q Test

Analyze \rightarrow Nonparametric Tests \rightarrow Related Samples \rightarrow Select "Customized analysis" under Objective \rightarrow Click Fields, select "Use custom field assignments" and Move the 3 variables to Test Fields \rightarrow Click Settings, select Customized tests \rightarrow Select Cochran's Q (k samples) \rightarrow click Run

FIGURE 15.6 Examples of normal and skewed distributions