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ABSTRACT 

     Grassland is an important part of the ecosystem in the Canadian prairies and its 

loss and fragmentation affect biodiversity, as well as water and carbon fluxes at local and 

regional levels. Over the years, native grasslands have been lost to agricultural activities, 

urban development and oil and gas exploration.  This research reports on new 

methodologies developed for mapping the spatial extent of native grasslands to an 

unprecedented level of detail and assessing how the grasslands are fragmented.  The test 

site is in the Newell County region of Alberta (NCRA). 72 Landsat and 34 SPOT images 

from 1985 to 2008 were considered for the analysis. With an airport runway used as a 

pseudo- invariant feature (PIF), relative radiometric correction was applied to 17 Landsat 

and 8 SPOT images that included the same airport runway. All the images were classified 

using the Support Vector Machine (SVM) classification algorithm into grass land, crop, 

water and road infrastructure classes. The classification results showed an average of 98.2 

% overall accuracy for Landsat images and SPOT images. Spatial extents and their 

temporal change were estimated for all the land cover classes after classifying the images. 

Fragmentation statistics were obtained using FRAGSTATS 3.3 software that calculated 

land cover pattern metrics (patch, class and landscape). Based on the available satellite 

image data, it is found that in Newell County there is almost no significant change found 

in the grassland and road infrastructure land cover in over two decades. Also, the 

fragmentation results suggest that fragmentation of grassland was not due to the result of 

road infrastructure.   
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1 INTRODUCTION 

Rangeland is an important contributor to Alberta’s economy and to its 

environmental health. Approximately 95,500 km², or 16 %, of Alberta’s land area 

belongs to rangeland (Castelli et al., 2005). It consists of vast natural landscapes in the 

form of grasslands, shrublands, woodlands, wetlands and deserts. Most rangeland areas 

are located in arid and semi-arid environments and, therefore, are very sensitive to 

climatic influences (James et al., 2003). Rangeland is described as non-forested, native 

vegetation and is highlighted by grasslands, savannas, and shrublands (e.g., Hunt et al., 

2003). Rangeland is an important part of the environment as it reduces soil erosion, 

sustains animal life with food and shelter, and acts as an ecological buffer zone (Lund, 

2007). One of the most important uses of Alberta’s rangeland is by the cattle industry for 

feeding livestock. The industry in Alberta is a $30 billion industry1 annually and up to 

20 % of the feed used for livestock comes from grazing rangeland areas. Human 

activities, such as camping, canoeing, and kayaking, also take place on rangeland. While 

providing feed to domestic livestock is important for Alberta’s economy, rangeland 

areas also host a collection of native plants and animal life (Mitchell and Somoliak, 

1971; Owens and Myers, 1973; Olsen, 1994). Rangeland health is important as it affects 

the ecological and economic well-being of plants, animals, and economies that depend 

on the sustainable management of rangeland.  

Native grasslands are a major part of rangeland. They play a significant role in 

water quality, soil conservation, wildlife habitat and recreation (Marsett et al., 2006). On 

                                                                 
1
“Why Conserve Rangelands: Economic Vitality.” Southern Alberta Land Trust Society. 

Accessed on December 31, 2012  http://www.salts-landtrust.org. 

http://www.salts-landtrust.org/
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the Canadian Prairies, there are approximately 10 M hectares in the natural grassland 

region, of which 49 % is in the dry mixed sub-region of Alberta. Over time, native 

grasslands have been lost to cultivated agriculture, urban development, and oil and gas 

exploration. Some research has been done to map native grassland change over time. 

Maps are an invaluable tool for planning the future of grassland areas. Mapping large 

areas such as grassland is both costly and time-consuming (Ustin et al., 2004). The loss of 

grasslands can contribute to climate change, decreased biodiversity and economic loss. 

Changes in the spatial extent and health of these ecosystems can have significant 

implications for the release of carbon dioxide (Janzen et al., 1997) as well as for wildlife 

habitats.  

Most studies of landscape fragmentation have been conducted in forests (Cakir et 

al., 2007) or in agricultural lands, places where the anthropogenic impacts on landscape 

connectivity are particularly evident as a result of large-scale conversion of one land-

cover type to another. Agricultural systems have a long history of fragmentation - the 

conversion of forests and grasslands to cropland by its very nature creates fragmented 

environments (Hobbs et al., 2008). The economic impact of grassland loss is not known. 

From an agricultural point of view, the loss of grassland or reduction in grassland health 

can have a very important effect on Canada’s billion-dollar cattle industry. With respect 

to the Prairie Farm Rehabilitation Administration (PFRA) community pastures in 

Saskatchewan and Manitoba, approximately $30 M in direct economic activity is 

generated annually with a further $60 M in indirect activity. A 10 % reduction in the 
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stocking rate, whether as a result of ‘wholesale’ elimination, fragmentation or health 

degradation of the grassland, would constitute a $12 M loss (Luciuk et al., 2003)2.  

In an agricultural context, land-use change detection using traditional remote 

sensing methods of image differencing and principal component analysis can be 

confounded by changes in agronomic practices as well as the seasonal dynamics of crops 

both within and across years (Smith and Kloppenburg., 2010). Post-classification 

methods in which the differences in classified images are derived rely heavily on the 

accuracy of the classification and yield estimations of land-use change that are often 

under or over estimated. Combinations of spectroradiometric change and post-

classification methods can minimize the errors that occur in image-based land-cover 

change analysis (Yuan et al., 1998).  

          Despite the importance of native grasslands, quantifiable estimates of their spatial 

extent and rate of change due to anthropogenic activity are not readily available because 

of the expense of collecting the data. The Native Prairie Baseline Inventory (NPBI) was 

compiled by Alberta Environment and Sustainable Resource Development (AESRD) in 

1992-1993 and provides information on native prairie on a quarter-section basis3. But 

many changes and developments have taken place since then. Currently, AESRD is 

involved in the development of a more detailed database called the Grassland Vegetation 

Inventory (GVI). Both NPBI and GVI are based upon acquisition of digital air photos and 

manual interpretation, which is time-consuming and costly and is hardly sustainable in 
                                                                 
2
 Luciuk, G.M., Bristol, B., Weins, T.W., and Boyle, D.M., 2003, The potential impact of 

endangered species legislation on federal grazing lands and the livestock industry. 
http://www.agr.gc.ca/pfra/pub/endang.htm, (accessed June 2011). 
 
3
 Native Prairie Vegetation Baseline Inventory.  http://www.albertapcf.org/background.htm, 

(accessed on December 31, 2012). 

http://www.agr.gc.ca/pfra/pub/endang.htm
http://www.albertapcf.org/background.htm
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the future. Satellite remote sensing offers a more affordable and timely option to bringing 

such inventories up to date.  

         In 2009, Agricultural and Agri-Food Canada started a Government Related 

Initiatives Program (GRIP) project to develop Earth observation tools for mapping the 

spatial extent and health of grasslands in Western Canada using optical remote sensing 

and RADAR (radio detection and ranging). The research in this thesis concerns the 

estimation of spatial extent of grasslands and their rate of change due to different 

activities and how the grasslands are fragmented, which results from road infrastructure 

or oil and gas exploration. This research includes satellite images from more than 2 

decades and also addresses the fragmentation statistics analysis of native grasslands 

unlike the GRIP project. These two aspects distinguish the research in this thesis from 

the GRIP project. 

1.1 Grassland Region Native Prairie 

The grassland region native prairie of Alberta approximates some 9,694,650 ha  of 

land, of which 2,857,480 ha are under Crown ownership, while 4,143,960 ha, nearly 

43% of the region, remains native prairie. Within these native areas, 2,328,630 ha  are 

under Crown ownership, while 1,815,060 ha  are on privately owned4. The natural 

grassland region is further subdivided into four sub-regions. These are Dry Mixed Grass, 

Mixed Grass, Northern Fescue, and Foothills Fescue.  

                                                                 
4
 http://www.albertapcf.org/native-prairie-inventories/npvi 

http://www.albertapcf.org/native-prairie-inventories/npvi


 

5 
 

1.2 Native Prairie Vegetation 

Any parcel of land in Alberta can be located by its legal and land description. 

Legal and land descriptions are based on the Alberta Township Survey (ATS) system. It 

is a grid network dividing the province into equal-sized parcels of land.  This way, 

Alberta is divided into 40 townships and 30 ranges. The Newell County Region of 

Alberta (NCRA) area falls into townships 15-16 and ranges 12-13. The map in Figure 1.1 

provides an overview of where the predominant areas of native prairie remain in southern 

Alberta. The map includes only those areas having more than 75% native vegetation. 

 
Figure 1.1: Native prairie vegetation map for southern Alberta. (Source: NPBI5). 

  

                                                                 
5
 http://www.albertapcf.org/native-prairie-inventories/npvi 

http://www.albertapcf.org/native-prairie-inventories/npvi
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1.3 Rangeland Management 

Rangeland management is the planning of land-use policies and practices to 

improve the health and productivity of rangeland areas (Stoddart, 1967). Often, 

management groups work toward policies that have conservationist goals or may modify 

land to increase its productivity (Smyth and Dumanski, 1993). In policy development, 

scientific researchers often contribute to problem identification, strategy formulation in 

problem solving, setting standards and implementing policy, and monitoring and 

evaluating existing strategies (Norse and Tschirley, 2000).  There are a number of 

important topics in which policies are being developed and in which rangeland 

composition plays a large role (Rasmussen and Brunson, 1996; Pyke and Herrick, 2003).  

Rangeland management operations have required research to develop new 

monitoring methods to help improve the health of rangeland. Multispectral, 

hyperspectral and geographic information system (GIS) data have been successfully 

combined to monitor grazing gradients for an area of rangeland (Harris et al., 2003). 

1.3.1 Rangeland Management Goals 

 

      One of AESRD’s main interests is the management of rangeland on Alberta’s public 

land6. With about 340,000 ha of grazing land used by livestock producers under various 

forms of dispositions, this management task is a significant responsibility that AESRD 

shares with ranchers and farmers.  

  

                                                                 
6
 Grazing and Range Management 

http://www.srd.alberta.ca/LandsForests/GrazingRangeManagement/Default.aspx 

http://www.srd.alberta.ca/LandsForests/GrazingRangeManagement/Default.aspx
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Key goals of rangeland management are to maintain7:  

 A diversity of native plant species, especially deep-rooted and productive forms;  

 Vigorous healthy plants with well-developed root systems; and 

 Adequate vegetative cover to protect soils from erosion and to conserve scarce 

moisture. 

1.3.2 Rangeland Management Principles 

            Rangeland management principles are applied to maintain or foster healthy 

productive rangeland. These include8: 

 Balancing livestock demands with the available forage supply; the rancher 

harvests forage to produce red meat but leaves adequate ungrazed residue to 

protect plants and soil. 

 Promoting even livestock distribution by using tools like fencing, salt placement 

and water development to spread the grazing over the landscape.  

 Avoiding grazing rangeland during vulnerable periods; early spring grazing can 

stress range plants when energy reserves are depleted as new growth is initiated.  

 Providing effective rest periods after grazing to allow range plants to recover from 

the stresses of grazing.  

            On Alberta rangeland, a planned and balanced cycle of forage harvest and 

renewal is required to protect this resource and sustain the many benefits that it provides. 

There is a connection between rangeland management and native grassland as it is a part 

                                                                 
7
 http://www.srd.alberta.ca/LandsForests/GrazingRangeManagement/Default.aspx 

8
 http://www.srd.alberta.ca/LandsForests/GrazingRangeManagement/Default.aspx 

http://www.srd.alberta.ca/LandsForests/GrazingRangeManagement/Default.aspx
http://www.srd.alberta.ca/LandsForests/GrazingRangeManagement/Default.aspx
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of rangeland, and spatial extent and current and future status of native grassland is not 

currently available in the prairie region of Canada. 

 

1.4 Remote Sensing 

        A broad definition of modern-day remote sensing would include human and 

machine vision, astronomy, space probes, the majority of medical imaging, non-

destructive testing, sonar, observing Earth from a distance, and still other areas (Schott, 

2007). Some of these activities can be considered the greatest achievements of 

humankind (Teillet, 2010). Remote sensing can be defined as a technology to acquire 

information about an object by detecting energy reflected or emitted by that object when 

the distance between the object and the sensor is much greater than any linear dimension 

of the sensor (Teillet et al., 2001).  

         Remotely sensed data of the Earth’s surface are acquired using active or passive 

means (Jensen, 2007). Active sensors provide their own energy source for illumination. 

They emit radiation that is directed towards the target to be investigated. The radiation 

reflected from that target is detected and measured by the sensor. For example, RADAR 

is an active sensor that uses a high-powered radio transmitter/receiver system to transmit 

a signal that is subsequently reflected by a distant object and the returned signal is 

detected by the receiver. Passive remote sensing measures electromagnetic energy that is 

either emitted or reflected by a target. In optical remote sensing, the sensors record 

energy in the visible, near infrared, short-wave and thermal infrared bands with 

wavelengths ranging from 0.3 µm to 15 µm.  
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         Optimal management of rangeland systems has been a goal of conservation groups, 

researchers, and producers for a number of years (Stoddart, 1967), prompting research in 

ecosystem modelling (Hanson et al., 1988; Welk, 2004). Hunt et al. (2003) provided an 

overview of the impacts that remote sensing technologies can have on range 

management. Rangeland managers have been introduced to use of remote sensing 

products and tools that help in decision making (Butterfield and Malmstrom, 2006;  

Marsett et al., 2006). For example,the use of Landsat data was introduced in land 

management decisions and weed control for livestock grazing operations (Butterfield and 

Malmstrom, 2006). 

          Grassland condition is very important economically, but it also reflects the number 

of grazers rangeland can support. It is crucial ecologically, as it indicates the integrity of 

wildlife habitat (Guo, 2003). Remote sensing has been used before as an approach to 

monitor grassland health (Guo, 2003) and change (Smith et al., 2009) in western Canada. 

1.4.1 Remote Sensing Applications 

 

            One of the key roles of remote sensing is to help address some of today’s societal 

issues. Some of the issues are climate change, water supply, food production, 

environment, natural resources, and sustainability. Remote sensing technology has been 

applied in these areas in different fields such as agriculture, water management, forestry, 

land cover, and many more. 
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1.4.2 Advantages   

 

            The advantages of remote sensing are: 

 Spatial coverage – Remote sensing allows the acquisition of large amounts of 

data on a timely basis. However, cloud cover can interfere with timely data 

acquisition by optical sensors. 

 Change detection - Remote sensing covers the same areas repeatedly and can be 

used to detect changes. 

 Spectral coverage – Remote sensing collects data in different wavelength regions 

of the electromagnetic spectrum not available to human vision or standard 

photographic systems. 

 Spatial resolution – Different remote sensing systems collect data with different 

footprints (different scales). At small scales, regional phenomena invisible from 

the ground are clearly visible in remote sensing image data. Examples include 

faults and other geological structures, a classic example of seeing the forest 

instead of the trees. 

 Digital image data – Remote sensing provides consistent interpretation of the 

data if sound methods of digital image processing are applied. 

 Cost effective - Remote sensing is a cost-effective technique when repeated 

fieldwork is not required and also a large number of users can share and use the 

same data. 
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1.5 Optical Remote Sensing 

Optical sensors measure radiation in visible to near infrared (VNIR; 300 nm - 

1000 nm), short-wave infrared (SWIR; 1000 nm - 3000 nm), mid-wave infrared (MWIR; 

3000 nm – 8000 nm) and long-wave infrared (LWIR; 8000 nm – 15000 nm) wavelength 

ranges of the electromagnetic spectrum. The MWIR and LWIR are the Thermal infrared 

(TIR). Because optical sensors typically have lower spatial resolution in the TIR, it is 

more difficult to extract linear features, e.g., roads, in this wavelength range. Depending 

on the number of spectral bands used, optical remote sensing can be classified into the 

following categories:  

 Panchromatic imaging systems: Only one wide band is used to detect radiation 

within a broad range of visible wavelengths. Imagery acquired in this single spectral band 

will necessarily be in black and white. Examples of imaging systems that include a 

panchromatic band are SPOT Haute Resolution Visible (HRV) and IKONOS.  

• Multispectral imaging systems: Multispectral imaging systems use multichannel 

detectors and record radiation in multiple bands (3 or more bands, 60-nm wide or wider, 

which are not necessarily contiguous). Examples are the Landsat Thematic Mapper (TM) 

and SPOT HRV.  

• Superspectral imaging systems: Such systems consist of more than 10 spectral 

bands that tend to be narrow, which helps to capture finer spectral characteristics of the 

targets. Examples of this kind of optical remote sensing system are the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the Medium Resolution Imaging 

Spectrometer (MERIS).  



 

12 
 

• Hyperspectral imaging systems (also known as imaging spectrometers): These are 

more advanced optical remote sensing systems that record image data in hundreds of 

narrow contiguous spectral bands. Hyperspectral remote sensing helps to provide 

information for applications such as mineral exploration, agriculture (crop maturity, 

moisture level, etc.), coastal management, etc. An example of this type of system is the 

EO-1 Hyperion.  

Optical satellite image data are analysed using digital image analysis, which 

encompasses a wide variety of techniques. For example, among many thousands of 

published studies, image classification techniques were compared to spectral vegetation 

indices for land cover mapping, modelling and analysis of landscape, including 

fragmentation, for a study area in western Honduras (Southworth et al., 2004). The study 

area typifies many regions of tropical developing countries, where a complex interaction 

of social and environmental factors has given rise to a dynamic mosaic of patches of 

reforestation and deforestation.  

1.6 Fragmentation and its Implication 

Monitoring land cover change and understanding its dynamics is increasingly  

important in sustainable development and management of ecosystems. Users from 

grassland, agriculture and land development communities are interested in the study of 

fragmentation of grassland. Fragmentation dissects the Earth’s surface into spatially 

isolated parts, rearranges the structure of ecosystems and shapes their functions 

worldwide.  Thus, fragmentation has a major impact in global change. Most scientific 

studies consider humans the cause of fragmentation of Earth’s ecosystems (Hobbs et al., 
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2008). The state of the Earth’s ecosystems cannot be fully understood without carefully 

considering the coupling between human societies and biological and physical processes. 

To that end, revealing the effects of fragmentation on people, as well as their roles in 

driving it, emerges as a critical part of understanding global change (MEA, 2005). 

The term fragmentation is used to imply the disconnecting of areas of the 

landscape from one another. As a result, it restricts access of people and animals to 

heterogeneity in resources, particularly vegetation and water.  

The main reason for the fragmentation of rangeland is conversion of one land 

cover type to another, which decouples a formerly intact landscape (Hobbs et al., 2008). 

Another type of fragmentation is compression. It occurs when the activity and mobility of 

animals or people contracts to isolated pockets within landscapes in the vicinity of 

settlements (Roth and Fratkin, 2005). Fragmentation of rangeland occurs most often as a 

result of changes in land tenure. These changes are made to facilitate protection or 

control of some key portion of the ecosystem, to implement private property rights, or to 

promote economic intensification (Galaty and Johnson, 1990; Perkins and Thomas, 

1993). The research in this thesis is focused on grassland, because currently in the 

Canadian prairies, there is no information available about spatial extent and current and 

future status of grassland, and also, how grassland is fragmentated over the decades. 

           Remote sensing techniques were used to monitor forest cover area located in 

Macka State Forest Enterprise (MSFE), located in  northeast Turkey, from 1975 to 2000 

(Cakir et al., 2007) and the spatial and temporal changes in forest cover analysed using 

GIS and FRAGSTATS. The latter is a fragmentation analysis software package that will 
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be described in Chapter 3. Forest cover changes were detected from a time series of 

satellite images including Landsat Multi-Spectral Scanner (MSS) in 1975, Landsat TM in 

1987, and Landsat Enhanced Thematic Mapper Plus (ETM+) in 2000. 

1.7 Objectives 

           Rangeland differs from grasslands in terms of landscape. Rangeland landscapes 

include grasslands, shrublands, and woodlands, whereas grasslands commonly consist of 

grasses and other non-woody plants. This research is more focused towards grasslands 

than rangeland, as the spatial extent and current and future status of native grasslands are 

not currently available in the prairie region of Canada and, therefore, are of considerable 

interest. The study is similar to the GRIP project for spatial extent estimation but adds a 

change analysis dimension by using 25 years of multispectral satellite imagery. Also, this 

research is new in terms of fragmentation statistics ana lysis for grassland areas. These 

new methodologies have the potential to help the grassland community of western 

Canada with respect to better usage of grasslands in the future.  

The objectives of this research are to use a time series of optical satellite image 

data to:  

 Estimate the spatial extent of native grasslands using multi-year, multi- spectral 

satellite imagery and, then, to estimate quantitatively the rate and location of 

grassland change; and 

 Estimate the fragmentation of grassland as a result of road infrastructures due to 

oil and gas exploration and other transportation. 
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The land cover types of interest for this research include grassland, road infrastructure, 

crops,  and water. 

1.8 Hypotheses 

         There are two main hypotheses tested in this thesis. The first is that remote sensing 

can provide a unique opportunity to assess and monitor changes in spatial extent as well 

as fragmentation of grasslands as a result of road infrastructure due to oil and gas 

exploration and other transportation purposes. The second hypothesis is that better 

results can be achieved in terms of spatial extent and fragmentation from SPOT-derived 

land cover over land cover derived from Landsat because of SPOT’s higher spatial 

resolution. 
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2 STUDY AREA AND DATA SETS 

2.1 Study Area 

 The study area used for this research is in the NCRA. The area is located northwest 

of Medicine Hat, Alberta at 50° 18´ N and 111° 38´ W and at an elevation of 750 m 

above sea level.  The region has below 1% water incursions (all within 100 m length in 

size), but it has some petroleum development infrastructure.  The main NCRA study area 

is a 13 km by 13 km region delimited by the following corner coordinates: (5576600 m 

N, 448600 m E), (5563600 m N, 448600 m E), (5563600 m N, 461600 m E) and 

(5576600 m N, 461600 m E). 

   The NCRA study area of interest is shown in Figure 2.1. This area was selected 

because it is the largest area common to all images considered for this research.  
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Figure 2.1: Landsat-5 TM July 2, 1987 image of NCRA, 13 km by 13 km, showing the 
near infrared (NIR) band in red (TM 4), the red band in green (TM 3) and the green band 

in blue (TM 2). (Source: Natural Resources Canada).  

 

2.2 Data Sets 

Satellite digital image data from two satellite systems, Landsat TM and SPOT 

HRV, were available for the NCRA, where the land cover consists mainly of grassland.  

The SPOT image data were provided to the University of Lethbridge for research 

purposes by the Alberta Terrestrial Imaging Corporation (ATIC-Corp). The Landsat 

image data were downloaded from the United States Geological Survey (USGS) website.  

Specifically, the data set consists of 72 Landsat-5 TM images (hereafter referred 

to as Landsat images) and 34 SPOT HRV images (hereafter referred to as SPOT images). 

SPOT images were map rectified (UTM zone 12, NAD 83) using ground control points 

(GCPs) from entire images because the NCRA study area only included a small number 

of GCPs. The accuracy level of the SPOT HRV images was half a pixel. The Landsat 

N 
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images were downloaded from the USGS website, so these images were already map 

rectified. 

The Landsat images have six spectral bands in the solar reflective spectrum: blue, 

green, red, near- infrared (NIR), and two shortwave infrared bands (SWIR 1 and SWIR 

2). The Landsat images have 30-m spatial resolution, and radiometric and geometric 

processing level L1. Details of these Landsat technical features are well documented and 

they can be found on the USGS web site9. 

The SPOT images have three or four spectral bands in the solar reflective 

spectrum (green, red, NIR bands and, for the later SPOT sensors, a SWIR 1 band) and a 

20-m spatial resolution. SPOT-5 sensor images have 10-m spatial resolution. In this 

study, SPOT-5 images were resampled to 20-m resolution by using nearest neighbor 

resampling method. The SPOT images have radiometric and geometric processing level 

1A10. SPOT-1, 2 and 3 offer a 10-m spatial resolution panchromatic band and SPOT-5 

offers a 2.5 to 5-m panchromatic band. SPOT-1,2,4 and 5 sensor images were used in this 

research. No panchromatic imagery was available in the data sets used in this research. 

Radiometric correction was performed on the Landsat and SPOT images and it is 

described in Chapter 3.  

 

  

                                                                 
9
 http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html 

10
 http://www.astrium-geo.com/en/195-preprocessing-levels-and-location-accuracy 

http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html
http://www.astrium-geo.com/en/195-preprocessing-levels-and-location-accuracy
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2.3 NPBI Data Sets 

In this research, initially, the NPBI database was used to gather knowledge about 

the land cover. The NPBI database was created in 1992-93 by AESRD. Each quarter-

section of land is interpreted in terms of the percentage area of native vegetation present 

using the land cover classes given in Table 2.1. 

Table 2.1: Native Prairie Baseline Inventory (NPBI) generalized vegetation classification 
system. 

Class 
Percent of quarter-section covered by native 

vegetation (%)  

1 100-75 

2 74-51 

3 50-26 

4 25-1 

5 <1 

 

The vegetation is grouped into the cover types presented in Table 2.2, with each 

cover type interpreted to within 5%. 

Table 2.2:  Native vegetation group cover types defined in the Native Prairie Baseline 

Inventory. 

 

 

 

 

 

  

Vegetation cover 

type 

Designation 

Trees T 

Shrubs S 

Graminoid G 

Lake L 

Riparian R 

Wetland W 
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Figure 2.2 shows the ArcGIS shapefile of Class 1 of the 13-km by 13-km NCRA study 

area, i.e., with 75-100% native vegetation. It contains township and quarter section lines.  

 

Figure 2.2: Quarter-sections in the 13-km by 13-km NCRA study area with 75% or more 

native vegetation. 
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3 METHODOLOGIES 

This chapter presents the methods used to map the spatial extent and determine 

the fragmentation of grassland based on a time series of optical remote sensing data. 

Image preprocessing techniques are described, including identification of pseudo-

invariant features (PIFs), radiometric correction, and image analysis. Image classification 

and fragmentation analysis methods using support vector machine (SVM) and 

FRAGSTATS software, respectively, are also described. A flow chart of the 

methodologies is given in Figure 3.1.  

 

Figure 3.1:  A flowchart describing the logical data flow of the methodologies applied in 

this research. 
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3.1 Software 

Processing and analysis of digital images were carried out using the ITT 

Corporation11 digital image analysis software ENVI. FRAGSTATS 3.3 software was 

used for computing fragmentation statistics based on a wide variety of landscape metrics 

for categorical map patterns. The original FRAGSTATS software (version 2) was 

released in to the public domain in 1995 in association with the publication of a United 

States Department of Agriculture (USDA) technical report (McGarigal and Marks, 1995). 

The program was completely revamped in 200212. It is a stand-alone program written in 

Microsoft Visual C++ for use in the Windows Operating environment. It accepts raster 

images in a variety of formats as input, including ArcGrid, ascii, 16 or 32 bit binary, 

ERDAS, and IDRISI image files.  

3.2   Radiometric Correction 

Multitemporal remotely sensed images are very important for change  detection 

and understanding the behaviour of an area and its land cover and land use change, 

especially in agricultural applications. However, to assure a reliable use of this kind of 

data, a radiometric correction step is necessary. Optical sensors measure radiance, but for 

analyzing target characteristics, surface reflectance is preferred. Reflectance (ρ) is 

obtained by dividing radiance (L) by the irradiance (I) (Price, 1994) :                                                                

                 
 

 
                                      (1)                               

                                                                 
11

 Formerly International Telephone and Telegraph. 
 
12

 McGarigal, K., SA Cushman, MC Neel, and E Ene. 2002. FRAGSTATS: Spatial Pattern 
Analysis Program for Categorical Maps. Computer software program produced by the authors at 
the University of Massachusetts, Amherst. Available at the following web site: 
http://www.umass.edu/landeco/research/fragstats/fragstats.html.  

http://www.umass.edu/landeco/research/fragstats/fragstats.html
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Thus, first, a radiometric calibration step converts the digital count of a pixel to radiance 

in physical units using sensor radiometric calibration coefficients. Radiances can then be 

converted to top-of-atmosphere (TOA) reflectance using established transformation 

equations. The additional step of retrieving surface reflectances is non-trivial and 

involves atmospheric models or empirical normalisation methods (Richter, 1990; Song et 

al., 2001). The main problem is the difficulty of obtaining an atmospheric 

characterization on any given image acquisition date. A common normalisation approach 

is the manual selection and use of pseudo- invariant features (PIFs) in the temporal series 

of images in order to mitigate differences in atmospheric conditions from date to date  

(described in Section 3.4).   

3.3 Calculation of TOA Reflectance 

The key step in the radiometric correction process was to compute the TOA 

reflectances for each pixel in each image portion of interest. This process takes into 

account i) radiometric calibration parameters for the relevant acquisition date, ii) the solar 

zenith angle and iii) the exo-atmospheric solar irradiance for the relevant acquisition date. 

To obtain data in physical units for SPOT data, the digital counts (Q) provided in image 

products were converted to TOA spectral radiance (L is in (W / m² sr µm)) using the 

following equation: 

                                                       =  
  

    
                                                                      (2) 

where: 

   is the absolute calibration gain coefficient for band k estimated for the date of image 
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acquisition.  

    is the analog gain of on-board amplifier for spectral band k. 

   was then divided by the exo-atmospheric solar irradiance to obtain the TOA 

reflectance      . This was calculated by: 

                                          = 
     

 

         
                                                                           (3) 

where: 

   is exo-atmospheric solar spectral irradiance13’14 (W/ (m² µm)). 

    is the solar zenith angle in degrees. 

   is the Earth-Sun distance in Astronomical Units. 

The combination of equations (2) and (3) was used to convert SPOT image data from 

digital counts to TOA reflectance for all spectral bands for all images.  

For Landsat images, Q can be converted to radiance L by the following equation: 

                                            = 
       

  
                                                                             (4) 

where      and       are calibration gain and bias for spectral band k, respectively. The 

combination of equations (3) and (4) were used to convert Landsat image digital counts 

to    for all spectral bands for all images.  

                                                                 
13

The exo-atmospheric solar irradiance for SPOT bands is available at 
http://www.spot.com/web/SICORP/445-sicorp-the-spot-satellites.php 
 
14

The exo-atmospheric solar irradiance for Landsat bands is available at 
http://landsathandbook.gsfc.nasa.gov/pdfs/L5_cal_document.pdf  

http://www.spot.com/web/SICORP/445-sicorp-the-spot-satellites.php
http://landsathandbook.gsfc.nasa.gov/pdfs/L5_cal_document.pdf
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3.4 Pseudo-Invariant Features  

The best method for radiometric correction is to use field measurements of the 

reflectance of the targets of interest, but such data are rarely available. PIFs are ground 

targets whose reflectances are assumed to be constant over time. Selection of such ground 

targets for radiometric normalisation is dependent on the abilities and local knowledge of 

the analyst. There are some generally accepted criteria for a PIF or PIF set (Eckhardt et 

al., 1990): (i) the targets should contain only minimal amounts of vegetation because 

vegetation spectral reflectance is subject to change over time; (ii) the targets must be 

relatively flat areas so that changes in sun angle between images will produce the same 

proportional increases or decreases in insolation to all normalisation targets; (iii) the 

spatial pattern of the normalisation target should not change over time.         

Features used as PIFs in previous studies have included lakes, beaches, asphalt, 

concrete and gravel (Elvidge et al., 1995). In some studies, the selection of appropriate 

PIF sets is not problematic, and reasonable radiometric correction is possible. In other 

areas, however, the presence of suitable PIFs can be confounded by any combination of 

variable cloud cover, variable weather leading up to the date of image capture, high 

topographic complexity in the terrain and lack of suitable targets. For this study, an 

airport runway (Brooks airport,  50°38′01″N, 111°55′33″W) served as a PIF for 

atmospheric normalisation (Figure 3.2), but for only a subset of the images available in 

the time series. 
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Figure 3.2: PIF (airport runway marked in circle) in the study area, SPOT-1 HRV 1 
image June 24, 1986. 

 

 All the images were analysed visually to find the PIF and, finally, 17 Landsat and 

8 SPOT images were used, because the same airport runway was found in these images 

only. The change in the TOA reflectance of the runway was not very high over the time 

span of interest. There were some other PIF pixels found, but those were not suitable 

because they had a slope (roof tops of buildings) and it was confirmed by the data pre-

processing specialist (Xiaomeng Ren, personal communication). As there were some 

changes in the TOA reflectance of the airport runway over the time period of two 

decades, only one pixel, which was found consistent over the time, was used. Tables 3.1 

and 3.2 contain information about the Landsat and SPOT images that included the PIF.  

N 
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3.5  Reference Image 

One image from the Landsat series was chosen as a reference to which all other 

images for both the Landsat and SPOT satellite series were normalised. This image 

should be the least cloud-contaminated, so that the image can be used as the reference for 

atmospheric normalisation. The reference image that was chosen for the PIF-based 

atmospheric normalisation is the Landsat image acquired on July 19, 1999. Figure 3.3 

shows the chosen reference scene. 

3.6 Atmospheric Normalization 

             All the Landsat and SPOT images were atmospherically normalized relative to 

the selected reference Landsat image. Based on the mean of the PIF pixels in each image, 

atmospheric normalization coefficients were calculated for all the images separately. 

Atmospheric normalization coefficients were calculated using the following formula: 

Atmospheric normalization coefficient =    
                                   

                                  
               (5) 
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Table 3.1: Landsat 30 meter  images containing the airport runway PIF. 

 

  

Image 

Number 

Scene ID Date Sensor Solar 

Zenith 

Angle (°) 

Solar 

Azimuth 

Angle (°) 

1 L5040025_02519870702 1987-07-02 Landsat 5 TM 34.2 132.8 

2 L5040025_02519880720 1988-07-20 Landsat 5 TM 36.1 135.9 

3 L5040025_02519890808 1989-08-08 Landsat 5 TM 40.5 138.2 

4 L5040025_02519920731 1992-07-31 Landsat 5 TM 39.2 135.1 

5 L5040025_02519940721 1994-07-21 Landsat 5 TM 37.7 131.7 

6 L5040025_02519960811 1996-08-11 Landsat 5 TM 42.3 135.8 

7 L5040025_02519970627 1997-06-27 Landsat 5 TM 33.3 134.7 

8 L5040025_02519980716 1998-07-16 Landsat 5 TM 34.5 138.2 

9 L5040025_02519990719 1999-07-19 Landsat 5 TM 35.1 138.2 

10 L5040025_02520000705 2000-07-05 Landsat 5 TM 33.3 137.0 

11 L5040025_02520010708 2001-07-08 Landsat 5 TM 33.2 138.3 

12 L5040025_02520020711 2002-07-11 Landsat 5 TM 34.1 136.6 

13 L5040025_02520030714 2003-07-14 Landsat 5 TM 34.4 137.3 

14 L5040025_02520040716 2004-07-16 Landsat 5 TM 34.1 139.8 

15 L5040025_02520050814 2005-08-14 Landsat 5 TM 37.4 144.72 

16 L5040025_02520060807 2006-08-07 Landsat 5 TM 37.6 147.3 

17 L5040025_02520080727 2008-07-27 Landsat 5 TM 35.8 142.7 
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Table 3.2: SPOT  20 meter images containing the airport runway PIF. 

Image 

Number 

Date Sensor Number 

of 

Bands  

Solar 

Zenith 

Angle 

(°) 

Azimuth 

Angle (°) 

 

Incidence 

Angle (°) 

1 1986-06-24 SPOT-1 HRV1 3 28.7 155.1 R2.4 

2 1988-08-08 SPOT-1 HRV1 3 37.6 148.0 R31.1 

3 1994-06-27 SPOT-2 HRV2 3 28.7 155.2 R0.9 

4 1999-07-26 SPOT-4 HRVIR2 4 32.5 155.2 R0.6 

5 2003-07-17 SPOT-2 HRV2 3 30.6 155.7 L3.0 

6 2003-08-12 SPOT-2 HRV2 3  36.4 158.9 L3.0 

7 2005-07-11 SPOT-5 HRG1 4 29.5 157.1 L8.6 

8 2006-07-21 SPOT-5 HRG 1 4  32.0 152.0 R7.1 

 

 

Figure 3.3: Landsat 5 TM image used as reference image, July 19, 1999.  

 

 

N 
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      Figure 3.4 shows the July 26, 1999 SPOT image. This figure is presented because it 

was acquired one week after the reference image was acquired. The Landsat reference 

image in Figure 3.3 and the SPOT-4 image in figure 3.4 look similar to each other.  

 

Figure 3.4: SPOT-4 HRVIR-2 image, July 26, 1999. 

           Tables 3.3 and 3.4 list the atmospheric normalization coefficients for the selected 

17 Landsat and 8 SPOT images. The variation in TOA reflectance is caused by the 

differences in atmospheric conditions. The atmospheric normalization coefficient values 

in Tables 3.3 and 3.4 are within a reasonable range, indicating that the atmospheric effect 

is low. 

  

N 
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Table 3.3: Atmospheric normalization coefficients for the Landsat images for the 
indicated dates and for the indicated spectral bands.  

Landsat Image Acquisition 
Date 

Band Coefficient Landsat Image 
Acquisition Date 

Band Coefficient 

1987-07-02 B1 0.95 2000-07-05 B2 0.99 

1987-07-02 B2 0.91 2000-07-05 B3 0.94 

1987-07-02 B3 0.94 2000-07-05 B4 1.02 

1987-07-02 B4 1.03 2000-07-05 B5 0.94 

1987-07-02 B5 1.06 2000-07-05 B7 0.94 

1987-07-02 B7 1.03 2001-07-08 B1 0.92 

1988-07-20 B1 0.93 2001-07-08 B2 0.90 

1988-07-20 B2 0.92 2001-07-08 B3 0.88 

1988-07-20 B3 0.91 2001-07-08 B4 0.98 

1988-07-20 B4 1.00 2001-07-08 B5 0.92 

1988-07-20 B5 0.99 2001-07-08 B7 0.90 

1988-07-20 B7 0.94 2002-07-11 B1 0.95 

1989-08-08 B1 0.90 2002-07-11 B2 0.92 

1989-08-08 B2 0.87 2002-07-11 B3 0.88 

1989-08-08 B3 0.84 2002-07-11 B4 0.95 

1989-08-08 B4 0.97 2002-07-11 B5 0.98 

1989-08-08 B5 0.99 2002-07-11 B7 0.94 

1989-08-08 B7 0.94 2003-07-14 B1 0.97 

1992-07-31 B1 0.98 2003-07-14 B2 0.93 

1992-07-31 B2 0.99 2003-07-14 B3 0.93 

1992-07-31 B3 1.00 2003-07-14 B4 0.91 

1992-07-31 B4 1.07 2003-07-14 B5 1.01 

1992-07-31 B5 1.12 2003-07-14 B7 0.99 

1992-07-31 B7 1.07 2004-07-16 B1 0.99 

1994-07-21 B1 1.02 2004-07-16 B2 0.98 

1994-07-21 B2 0.96 2004-07-16 B3 0.97 

1994-07-21 B3 0.98 2004-07-16 B4 1.03 

1994-07-21 B4 1.02 2004-07-16 B5 1.02 

1994-07-21 B5 1.05 2004-07-16 B7 1.01 

1994-07-21 B7 1.01 2005-08-04 B1 0.96 

1996-08-11 B1 0.92 2005-08-04 B2 0.90 

1996-08-11 B2 0.95 2005-08-04 B3 0.90 

1996-08-11 B3 0.92 2005-08-04 B4 0.90 

1996-08-11 B4 0.96 2005-08-04 B5 0.95 

1996-08-11 B5 1.07 2005-08-04 B7 0.92 

1996-08-11 B7 1.06 2006-08-07 B1 0.96 

1997-06-27 B1 1.07 2006-08-07 B2 0.94 

1997-06-27 B2 1.02 2006-08-07 B3 0.91 

1997-06-27 B3 1.04 2006-08-07 B4 0.91 

1997-06-27 B4 0.89 2006-08-07 B5 0.97 

1997-06-27 B5 1.03 2006-08-07 B7 0.97 

1997-06-27 B7 1.07 2008-07-27 B1 1.05 

1998-07-16 B1 1.03 2008-07-27 B2 1.01 

1998-07-16 B2 1.03 2008-07-27 B3 1.05 

1998-07-16 B3 1.02 2008-07-27 B4 0.99 

1998-07-16 B4 0.95 2008-07-27 B5 1.04 

1998-07-16 B5 0.99 2008-07-27 B7 1.06 

1998-07-16 B7 1.02    

1999-07-19 B1 1.00    

1999-07-19 B2 1.00    

1999-07-19 B3 1.00    

1999-07-19 B4 1.00    

1999-07-19 B5 1.00    

1999-07-19 B7 1.00    



 

32 
 

Table 3.4: Atmospheric normalization coefficients for the SPOT images for the indicated 
dates and for the indicated spectral bands. 

SPO T Image Acquisition Date Sensor Band Coefficient 

1986-06-24 SPOT-1 HRV 1 B1 0.90 

1986-06-24 SPOT-1 HRV 1 B2 0.91 

1986-06-24 SPOT-1 HRV 1 B3 0.94 

1988-08-08 SPOT-1 HRV 1 B1 0.84 

1988-08-08 SPOT-1 HRV 1 B2 0.85 

1988-08-08 SPOT-1 HRV 1 B3 0.93 

1994-06-27 SPOT-2 HRV 2 B1 0.91 

1994-06-27 SPOT-2 HRV 2 B2 1.00 

1994-06-27 SPOT-2 HRV 2 B3 1.00 

1999-07-26 SPOT-4 HRVIR 2 B1 0.98 

1999-07-26 SPOT-4 HRVIR 2 B2 0.99 

1999-07-26 SPOT-4 HRVIR 2 B3 1.00 

1999-07-26 SPOT-4 HRVIR 2 B4 0.97 

2003-07-17 SPOT-2 HRV 2 B1 0.96 

2003-07-17 SPOT-2 HRV 2 B2 0.97 

2003-07-17 SPOT-2 HRV 2 B3 0.90 

2003-08-12 SPOT-2 HRV 2 B1 0.87 

2003-08-12 SPOT-2 HRV 2 B2 0.87 

2003-08-12 SPOT-2 HRV 2 B3 0.91 

2005-07-11 SPOT-5 HRG 1 B1 1.05 

2005-07-11 SPOT-5 HRG 1 B2 1.04 

2005-07-11 SPOT-5 HRG 1 B3 1.04 

2005-07-11 SPOT-5 HRG 1 B4 0.93 

2006-07-21 SPOT-5 HRG 1 B1 0.96 

2006-07-21 SPOT-5 HRG 1 B2 0.90 

2006-07-21 SPOT-5 HRG 1 B3 0.97 

2006-07-21 SPOT-5 HRG 1 B4 0.83 

 

To assess the extent to which the TOA reflectance of the PIF may have changed 

over time, the temporal coefficient of variation     was computed via the following 

formula: 

                                      

                                    = 100 [
  

  
]     [%]                                                           (6) 

where: 
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     is the temporal coefficient of variation. 

   is the standard deviation of the TOA reflectances. 

   is the mean of the TOA reflectances. 

The CVs of the TOA reflectance of the PIF are as follows: 

Table 3.5: CV values based on the PIF TOA reflectance for Landsat images.  

Band B1 B2 B3 B4 B5 B7 

CV (%) 0.06502 0.05210 0.05739 0.04940 0.05359 0.05496 

 

Table 3.6: CV values based on the PIF TOA reflectance for SPOT images.  

Band B1 B2 B3 B4 

CV (%) 0.06474 0.06944 0.04972 0.07296 

    

           The CV values indicate that the PIF variability is within 0.1% and, therefore, the 

PIFs are indeed invariant. There were only three SPOT images (one SPOT- 4 and two 

SPOT- 5 images), containing the SWIR band (band 4). Therefore, the CV value for 

SWIR band  is higher compared to the other three bands for SPOT images. Only one 

pixel was used to calculate the CV values for Landsat and SPOT images, as only this 

pixel was found consistent over the two decades time period. 
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3.7 Digital Image Classification 

The classification of the digital images was carried out using ENVI 4.7. The 

Support Vector Machine (SVM; Brown et al., 1999) classifier was used for supervised 

classification of the images into four classes: grassland, road infrastructure (oil and gas, 

transportation and oil wells), crops, and water. SVM is a learning machine classifier in 

which input vectors are mapped in a non- linear, high-dimensional space (Cortes and 

Vapnik, 1995). 

The SVM classifier has been well known for some time in the field of machine 

learning and pattern recognition, and it was introduced more recently to the field of 

remote sensing (Huang et al., 2002; Melgani and Bruzzone, 2004). It is based on 

generating a hyperplane between the training samples that separates the two classes in 

multi-dimensional feature space. SVM was chosen in this research because it performs 

well with small training sets, even when high-dimensional datasets are classified, because 

it only considers training data close to the class boundary (Fauvel et al., 2006). The use of 

a kernel parameter in SVM influences the outome of the classification results by 

increasing the accuracy of remote sensing data processing.  Kernel parameter  is robust to 

noise and effective when dealing with low numbers of high-dimensional samples. It helps 

to produce accurate and robust classification results by linearizing data, even when the 

input data are non- linearly separable. 

Texture analysis using occurrence texture measures in ENVI was also considered 

for extracting linear features like roads. The texture features included Data range, Mean, 

Variance, Entropy, and Skewness for each spectral band. Each texture feature was used in 

ENVI to identify roads and infrastructure. Data range, Mean and Variance appeared to 
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identify more roads and infrastructure than Entropy and Skewness. It is better to extract 

more existing linear features so that existing road infrastructure and oil and gas 

exploration can be identified from the whole area and it will be easier to understand the 

fragmentation of the grassland. Therefore, Data range, Mean and Variance features of 

each spectral band were used together with the spectral bands of the original satellite 

images and then SVM classification was performed. Regions of interest (ROIs) were 

created for each land cover class and 50 % of the observations used for training of the 

classifier and 50 % for validation. The identification of the training and validation ROIs 

was done by visual examination of the images and with the help of local knowledge of 

the area from field expert. Figures 3.5 and 3.6 present the co-occurrence data range 

texture measure images of Landsat and SPOT images respectively.  

 

Figure 3.5: Occurence data range texture 
measure August 7, 2006, Landsat. 

 

 

Figure 3.6: Occurence data range texture 
measure July 21, 2006, SPOT. 

              

Occurrence data range texture measure images of Landsat (Figure 3.5) and SPOT (Figure 

3.6) show that the linear features are easy to identify after performing the texture 
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analysis. Existing road infrastructure can be extracted easily from the data range texture 

measure images of the study area. 

 

3.8 Spatial Extent Estimation 

The spatial extent of all the land cover classes was estimated from the SVM 

classification maps by calculating the amount of land covered by each class in the NCRA 

study area in hectares (ha). The statistics were computed from the satellite thematic maps 

produced after the SVM classification to find the number of pixels of each land cover 

class, then multiplied by the Landsat or SPOT pixel area to find the amount of land 

covered by each of the classes. Temporal analysis of the land cover amount in each class 

is presented in the results section. 

3.9 Fragmentation Statistics Analysis 

Fragmentation analysis was based on selected landscape metrics calculated using 

FRAGSTATS 3.3 for each individual land cover class as mapped by the image 

classification. FRAGSTATS offers a comprehensive choice of landscape metrics and has 

been used by investigators to quantify landscape structure (McGarigal et al., 2009). The 

fragmentation metrics involve qualitative and quantitative measures that express the 

characteristics of the landscape as a whole (Abdullah and Nakagoshi, 2006). The 

advantage of FRAGSTATS is that the calculations are implemented in a GIS framework 

and, consequently, the results are easy to apply to digital images and maps (McGarigal 

and Marks, 1995; Raines, 2002). 
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There are two versions of FRAGSTATS: one accepts Arc/Info polygon vector 

coverages and one accepts a raster image in various formats. The vector version of 

FRAGSTATS is in Arc/Info ARC Macro Language (AML), which is a high- level 

algorithmic language for generating applications in Arc/Info, developed on a SUN 

workstation running Arc/Info version 9.3. It will not run with earlier versions of Arc/Info. 

For this study, the raster version of FRAGSTATS was used.  

FRAGSTATS provides a very comprehensive set of spatial statistics and 

descriptive metrics of patterns at the patch level (characteristics of an individual patch),                 

class level (characteristics of one type of patch) and landscape level (characteristics of all 

classes in the landscape and their pattern) (Haines-Young and Chopping, 1996).  

3.9.1 Metrics Computed in FRAGSTATS 

Tables 3.6 to 3.13 outline the Area, Patch, Edge, Shape, Core, Nearest Neighbour, 

Diversity, Contagion, and connectivity metrics computed by the FRAGSTATS software. 

 

Table 3.7: Fragstats area metrics. 

Scale Acronym Metric (units) 

Patch Area Area (ha) 

Patch LSIM Landscape similarity index (percent) 

Class CA Class area (ha) 

Class/landscape TA Total landscape area (ha) 

Class/landscape LPI Largest patch index (percent) 
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Table 3.8: Fragstats patch metrics. 

Scale  Acronym Metric (units) 

Class/landscape NP Number of patches 

Class/landscape PD Patch density (number/100 ha) 

Class/landscape MPS Mean patch size (ha) 

Class/landscape PSSD Patch size standard deviation (ha) 

Class/landscape PSCV Patch size coefficient of variation 

 

Table 3.9: Fragstats edge metrics. 

Scale Acronym Metric (units) 

Patch PERIM Perimeter (m) 

Patch EDCON Edge contrast index (percent) 

Class/landscape TE Total edge (m) 

Class/landscape ED Edge density (m/ha) 

Class/landscape CWED Contrast-weighted edge density (m/ha) 

 

Table 3.10: Fragstats shape metrics. 

Scale Acronym Metric (units) 

Patch Shape Shape index 

Patch FRACT Fractal dimension 

Class/landscape LSI Landscape shape index 

Class/landscape MSI Mean shape index 

Class/landscape AWMSI Area-weighted mean shape index 

Landscape PAFRAC Perimeter area fractal dimension 
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Table 3.11: Fragstats core area metrics.  

Scale Acronym Metric (units) 

Patch CORE Core area (ha) 

Patch NCORE Number of core areas 

Patch CAI Core area index (percent) 

Class C % LAND Core area percentage of landscape 

Class/landscape TCA Total core area (ha) 

 

Table 3.12: Fragstats nearest neighbor metrics.  

Scale Acronym Metric (units) 

Patch NEAR Nearest neighbor distance (m) 

Patch Proxim Proximity index 

Class/landscape MNN Mean nearest neighbor distance (m) 

Class/landscape NNSD Nearest neighbor standard deviation 

Class/landscape NNCV Nearest neighbor coefficient of variation (m) 

Class/landscape ENN_MN Euclidean nearest neighbor distance mean (m) 

Class/landscape ENN_SD Euclidean nearest neighbor standard devaiation (m) 

Class/landscape Proximity_MN Proximity index mean 

Class/landscape Proximity_SD Proximity index standard deviation 

 

Table 3.13: Fragstats diversity metrics.  

Scale Acronym Metric (units) 

Landscape SHDI Shannon’s diversity index 

Landscape SIDI Simpson’s diversity index 

Landscape MSIDI Modified Simpson’s diversity index 

Landscape PR Patch richness (number) 

Landscape PRD 
Patch richness density (number/100 

ha) 
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Table 3.14: Fragstats contagion and interspersion metrics.  

 

 

Table 3.15: Fragstats connectivity metrics.  

Scale Acronym Metric (units) 

Class/landscape PCI Patch cohesion index 

Class/landscape CONNECT Connectance index (percent) 

Class/landscape TRAVERSE Traversability index (percent) 

 

Amongst the many possibilities tabulated above, this research adopted a suite of 10 

metrics commonly used to calculate vegetated land cover structure pattern metrics. These 

10 metrics are used in a Berkeley document on vegetation baseline data15 that are similar 

to the class of interest, which is grassland in this research. These metrics are:  

(a) Number of Patches (NP): Total number of patches in the landscape. 

                                           NP=N              (7) 

where N is the total number of patches in the landscape.  

(b) Largest Patch Index (LPI): Area of the largest patch in the landscape, expressed as 

a percentage of the total landscape area. 

                                                                 
15

 
http://gif.berkeley.edu/CE/Summer2007/GISanalysis_Exercise_August22_UCCE_Fragstats.pdf 

Scale Acronym Metric (units) 

Class/landscape IJI 
Interspersion and juxtaposition index 

(percent) 

Landscape CONTAG Contagion index (percent) 

Class CLUMPY Clumpiness index 

http://gif.berkeley.edu/CE/Summer2007/GISanalysis_Exercise_August22_UCCE_Fragstats.pdf
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                                LPI =  

        

 
100 %            (8) 

where 

    = area (m²) of patch ij and 

  = total landscape area (m²).       

(c) Landscape Shape Index (LSI):  A measure of total edge that adjusts for the size of 

the landscape. 

                          LSI =  
       

  
 

   

  
            (9) 

 where 

   
   =  total length (m) of edge in landscape between patch types (classes) i and k. 

 A = total landscape area (m²).  

 

(d)  Perimeter-Area Fractal Dimension (PAFRAC): Perimeter-area fractal dimension     

reflects shape complexity across a range of spatial scales (patch sizes).  



 

42 
 

 

                                                                                                                                   (10) 

       where 

      aij =     area (m2) of patch ij, 

      pij =    perimeter (m) of patch ij,  

      m = number of patch types, 

      n = number of patches, and 

      N =     total number of patches in the landscape.  

PAFRAC equals 2 divided by the slope of regression line obtained by regressing the 

logarithm of patch area (m2) against the logarithm of patch perimeter (m), that is, 2 

divided by the coefficient b1 derived from a least squares regression fit to the 

following equation: ln(area) = b0 + b1ln(perim). 
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(d)  Proximity Index _MN : The sum, across all patches of the corresponding patch 

type, of the corresponding patch metric values, divided by the number of patches of 

the same type. MN is given in the same units as the corresponding patch metric. 

Proximity index considers the size and proximity of all patches whose edges are 

within a specified search radius  of the focal patch.                                    

                                                                                              (11)  

where 

X = proximity, which is,  

PROX =   
    

    

 
    

Where 

     = area of patch ijs within a specified neighborhood of patch ij. 

     = distance between patch ijs and patch ij based on patch edge –to-edge distance 

computed from cell centre to cell centre.  

Xij = area of patch ij and 

   = number of patches of the same type. 

(e)  Proximity Index_SD : The square root of the sum of the squared deviations of each 

patch metric value from the mean metric value computed for all patches in the 
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landscape, divided by the total number of patches, that is, the root mean squared error 

(deviation from the mean) in the corresponding patch metric.  

                                                                 (12) 

(f)   Euclidean Nearest Neighbor_MN (ENN_MN): The sum, across all patches in  the 

landscape, of the corresponding patch metric values, divided by the total number of 

patches. MN is given in the same units as the corresponding patch metric. Euclidean 

nearest neighbor is a measure of the patch context and used extensively ro quantify 

patch isolation. 

                                                                                              (13) 

(g) Euclidean Nearest Neighbor_SD (ENN_SD): The square root of the sum of the 

squared deviations of each patch metric value from the mean metric value of the 

corresponding patch type, divided by the number of patches of the same type; that is, 

the root mean squared error (deviation from the mean) in the corresponding patch 

metric. 

                                                                        (14) 
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(h) Clumpiness Index (CLUMPY):  The proportional deviation of the proportion of like 

adjacencies involving the corresponding class from that expected under a spatially 

random distribution. If the proportion of like adjacencies (Gi) is less than the 

proportion of the landscape comprised of the focal class (P i) and Pi < 0.5, then 

CLUMPY equals Gi minus Pi, divided by Pi; else, CLUMPY equals Gi minus Pi, 

divided by 1 minus Pi. 

 

Given    =   
   

    
 
   

 

CLUMPY =  
     

    
 (15) 

where, 

    = number of like adjacencies (joins) between pixels of patch type (class) i based 

on the double-count method. 

    = number of adjacencies (joins) between pixels of patch types (classes) i and k 

based on double count method. 

   = proportion of the landscape occupied by the patch type (class) i.  

 

(i) Connectance Index (CONNECT):   The number of functional joinings between all 

patches of the corresponding patch type (sum of cijk where cijk = 0 if patch j and k are 

not within the specified distance of each other and cijk = 1, if patch j and k are within 

the specified distance), divided by the total number of possible joinings between all 

patches of the corresponding patch type, multiplied by 100 to convert to a percentage.  
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                                                                           (16) 

       Where 

       cijk =   joining between patch j and k (0 = unjoined, 1 = joined) of the corresponding 

       patch type (i), based on a user specified threshold distance and 

       ni =     number of patches in the landscape of the corresponding patch type (class).  

Information about the metrics and the equations can be found on the University of      

Massachusetts web site16. The selected metrics are listed in order of patch, class and 

landscape in the following table.  

  

                                                                 
16

 http://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html 

http://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html
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Table 3.16: Selected metrics in order of class and landscape.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9.2 Input Data Formats 

          FRAGSTATS accepts several input data formats such as: 

(1) ArcGrid created with Arc/Info. 

(2) ASCII files without any header.  

(3) 32-bit binary file without any header.  

(4) 16-bit binary file without any header.   

(5) 8-bit binary file without any header.  

(6) ERDAS image files (.gis, .lan, and .img). FRAGSTATS accepts images from both 

ERDAS 7 (.gis and .lan) and ERDAS 8 (.gis, .lan, and .img).  

Metric Scale 

NP Landscape 

LPI Landscape 

LSI Landscape 

PAFRAC Landscape 

Proximity_MN Class 

Proximity_SD Landscape 

ENN_MN Landscape 

ENN_SD Class 

CLUMPY Class 

CONNECT Landscape 
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(7) IDRISI image files (.rdc). IDRISI currently supports signed 8- or 16-bit integers and 

32-bit floating point grids. This imposes some limitations when using FRAGSTATS 

on large grids. 

In this study, ascii files were created from the satellite thematic raster maps. All 

the thematic maps were then saved in ascii format for input into FRAGSTATS for the 

fragmentation statistics analysis. The run parameter window of the FRAGSTATS 

software is given in Figure 3.7, which shows the options for input data type, class 

property files and output statistics to measure. 

Class property files were created for fragmentation statistics analysis for each 

image date. FRAGSTATS software takes this file as an input of the cla ss description, 

reads the class names (e.g., grassland), computes the fragmentation statistics, and 

produces the output files.  An 8-cell patch neighbour rule was selected to consider 8 

adjacent cells, including 4 orthogonal and 4 diagonal neighbours. Thus, 2 cells of the 

same class that are diagonally touching will be considered to be part of the same patch. 
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            Figure 3.7: Run parameter window in FRAGSTATS software. 

3.9.3  Output Files 

 FRAGSTATS creates four output files.  A basename is given for the output files 

and FRAGSTATS appends the extensions .adj, .patch, .class, and .land to the basename. 

All files created are comma-delimited ASCII files and viewable. These files are named 

and formatted to facilitate input into database management programs.   

 The basename.adj file contains a simple header in addition to one record for each 

class in the landscape and is given in the form of a two-way matrix. Specifically, the first 

record contains the input file name, including the full path. The second record and first 
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column contain the class IDs and the elements of the matrix, which are the tallies of cell 

adjacencies for each pairwise combination of classes.  

 The basename.patch file contains the patch metrics for a landscape. The file 

contains one record for each patch in the landscape.  

 The basename.class file contains the class metrics. The file contains one record 

for each class in the landscape.  

 The basename.land file contains the landscape metrics. The file contains one 

record for the landscape. 
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4 RESULTS AND DISCUSSION 

Tables 4.1 and 4.2 show accuracy results extracted from the confusion matrices 

for the 17 Landsat image classifications and 8 SPOT image classifications. ROIs were 

created for each land cover type and 50 % of the ROIs were used for training of the 

classifier and 50 % for validation. The classification results showed an average of 98.2 % 

overall accuracy for Landsat images and 98.2 % for SPOT images. The classification 

accuracies being high is normal as half of the ROIs were used for validation. Also, the 

classes of interest in this study (grassland, road and oil infrastructure, crops and water)  

are so different from each other that it is easy to recognise the difference between 

grassland and non-grassland areas in the image data and to select the ROIs accordingly. 

The pixels-correct ratio in the tables indicates the total number of pixels that were 

correctly classified for all the classes.  

To intercompare Landsat versus SPOT results, the 17 Landsat and 8 SPOT 

thematic maps were reduced to 6 Landsat and SPOT thematic map same year pairs. 

These thematic map results are shown in this section. All the other thematic maps are 

shown in Appendix A. 
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Table 4.1: Overall accuracy of Landsat images classified by the SVM classifier.  

Results from Confusion Matrices 

 Overall Accuracy 

Image Date 

Pixels 

Correct 

Ratio 

Percentage 

Correct (%) 

July 02, 1987 (5198/5312)             97.8 

July 20, 1988 (4966/5066)             98.0 

          August 08, 1989 (5588/5649) 98.9 

           July 31, 1992 (5509/5561) 99.0 

           July 21, 1994 (5821/5906) 98.5 

          August 11, 1996 (3568/3650) 97.7 

           June 27, 1997 (3259/3429) 95.0 

           July 16, 1998 (4167/4308) 96.7 

July 19, 1999 (4605/4696)             98.0 

July 05, 2000 (4638/4739)             97.8 

July 08, 2001 (3462/3630)             95.3 

July 11, 2002 (2541/2546)             99.8 

July 14, 2003 (5052/5114)             98.7 

July 16, 2004 (2258/2266)             99.6 

August 4, 2005 (2827/2835)             99.7 

August 7, 2006 (3027/3030)             99.9 

July 27, 2008 (3556/3569)             99.6 
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Table 4.2: Overall accuracy of SPOT images classified by the SVM classifier.  

 

 

 

 

Results from Confusion Matrices 

 Overall Accuracy 

Image Date Pixels Correct 

Ratio 

Percentage Correct 

(%) 

 

June 24, 1986 (9475/9551) 99.2 

  August 8, 1988 (10025/10043) 99.8   

June 27, 1994 (4219/4236) 99.5  

July 26, 1999 7616/7671) 99.2  

July 17, 2003 (4854/4983) 97.4  

       August 12, 2003 (4968/4983) 99.6 

July 11, 2005 (5205/5579) 93.3  

July 21, 2006 (8666/8873) 97.6   
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4.1 Image Classification Results 

The thematic maps resulting from the Landsat and SPOT image classifications are 

shown in Figures 4.1- 4.12. The classification results have errors of commission, because 

the spectral signatures of bare patches and blow-out areas are similar to that of road 

infrastructure, such that class confusion led to errors. Oil and gas wells or roads are linear 

or regularly shaped features. In the classification process, the non- linear shaped features, 

which were mapped as road infrastructure, are not related to road infrastructure. Some 

years during the satellite image time series were drier than the average of a 25-year 

period. Less moisture resulted in the lack of vegetation growth and, thus, bare patches 

and blow-out areas appeared. These bare patches and blow-out area pixels were classified 

as road infrastructure. 

In the July 1988 Landsat thematic map (Figure 4.1), more road infrastructure 

pixels (red spots) can be seen compared to the August 1988 thematic map (Figure 4.2). 

Many of these red spots are not part of a linear feature and they are not related to road 

infrastructure. As noted above, it is known, based on field inspections (A.M. Smith, 

personal communication), that lack of moisture prevents the growth of the vegetation 

such that bare patches and blow-out areas appeared in those areas and those pixels were 

classified as road infrastructure. The July 1994 Landsat (Figure 4.3) and June 1994 SPOT 

(Figure 4.4) thematic maps differ in terms of road infrastructure in many areas. In these 

thematic maps (Figures 4.5 and 4.6), some areas include many pixels classified as road 

infrastructure (red spots) that are not related to road infrastructure, as they are non-linear 

or irregularly shaped features. Differences in road infrastructure are evident between the 

July 2003 Landsat and SPOT thematic maps, even though the images were acquired only 
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3 days apart (Figures 4.7 and 4.8). Similar differences can be seen between the Landsat-

based and SPOT-based thematic maps of 1988 (Figures 4.1 and 4.2), 2005 (Figures 4.9 

and 4.10), and 2006 (Figures 4.11 and 4.12).  

Clearly, the pixels classified as road infrastructure differ between the Landsat-

based and SPOT-based thematic maps. The different image captured dates (Tables 4.1 

and 4.2) possibly have an impact on this, because there may be differences in land cover 

on the different dates of any given same-year pair, typically approximately 3 weeks apart 

(see Tables 4.1 and 4.2). It is not possible to say which one is better between Landsat-

based and SPOT-based thematic maps without further data and analyses beyond the 

scope of this study. However, grassland in the Newell County area is generally dry and 

brown and changes very little with time in the absence of significant rain events. 

Therefore, it is likely though unproven that the differences between the Landsat and the 

SPOT results are due to the significant differences in spatial resolution (the surface area 

represented by SPOT pixels is less than half the surface area of Landsat pixels).  
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Figure 4.1: July 20, 1988 Landsat 
thematic map. 

 

     
 

Figure 4.2: August 8, 1988 SPOT 
thematic map. 

 

                            

      
 

Figure 4.3: July 21, 1994 Landsat  
thematic map.  

         
 

Figure 4.4: June 27,1994 SPOT  
thematic map.  
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Figure 4.5 July 19, 1999 Landsat 

thematic map.  

 

 

 

         
 

Figure 4.6: July 26, 1999 SPOT 
thematic map. 

 

 

 

 
 

Figure 4.7: July 14, 2003 Landsat  

thematic map.  

 

 

 

 
 

Figure 4.8: July 17, 2003 SPOT  

thematic map.  
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Figure 4.9: August 4, 2005 Landsat 

thematic map. 

 

       
 

Figure 4.10: July 11, 2005 SPOT 

thematic map.  

 

 

       
 

Figure 4.11: August 7, 2006 Landsat 
thematic map.  

        
 

Figure 4.12: July 21, 2006 SPOT  

thematic map.  
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4.2 Spatial Extent Estimation 

Spatial extent information was estimated from each of the 17 Landsat and 8 SPOT 

thematic maps. The number of points of each land cover class, derived from the SVM 

classification, was multiplied by the Landsat and SPOT pixel sizes to calculate the 

amount of  land covered by each class. Landsat pixels are 30 m by 30 m, hence 900 m² in 

area. SPOT pixels are 20 m by 20 m, hence 400 m² in area, less than half the area of 

Landsat pixels. Note that the SPOT-5 images were rescaled to 20-m spatial resolution. 

Figure 4.13 presents the temporal behaviour, from 1985 to 2008 based on the 17 Landsat 

images, of the spatial extent of grassland and road infrastructure within the 13-km by 13-

km ROI. These two classes are shown because their spatial extents are of greater interest 

than those of crops and water. 

 

              Figure 4.13: Landsat-derived land cover spatial extent in hectares (ha).  
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The results in Figure 4.13 show that, for both grassland and road infrastructure 

classes, the coefficients of determination (R2) and the slopes are very low, indicating that 

no statistically significant change in spatial extent can be detected from Landsat image 

data from 1985 to 2008 for either class. Here, only a linear trend was examined. The 

images were captured on different dates in the various years. Therefore, there may be 

seasonal differences in the amount of grassland growth at the different times. 

While there is no significant change over the time span, there are indications of 

year-to-year variations in spatial extent of both grassland and road infrastructure and that 

the changes in the two land cover types tend to mirror each other. Therefore, the Landsat-

based spatial extents of grassland and road infrastructure land cover are compared to each 

other in Figure 4.14. In this figure, the negative correlation is clear, the high R2 indicating 

that the reduction in grassland is almost certainly due to the gain in road infrastructure.  

 

Figure 4.14: Landsat-derived land cover spatial extent comparison between grassland and 
road infrastructure.  
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Land-cover spatial extent information was also derived from the 8 SPOT-based 

thematic maps as shown in Figure 4.15.   

 

 

Figure 4.15: SPOT-derived land cover spatial extent in hectares (ha).  
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for the SPOT-base results in Figure 4.16. The negative correlation in the spatial extents of 

grassland and road infrastructure is clear (R2 = 0.84) 

 

           Figure 4.16: SPOT-derived land cover spatial extent comparison between 

grassland and road infrastructure.  
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Figure 4.17: Land cover spatial extent comparison between results based on Landsat and 

SPOT. 

           

Figure 4.18 compares the Landsat-based and SPOT-based grassland spatial extent 

for the same years. The R2 is low and the slope is far from unity, indicating the Landsat-

based and SPOT-based results differ. As noted earlier, the different image captured dates 

and/or the different pixel sizes may be the cause of this, but there is no way of verifying 

these possibilities.  
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Figure 4.18: Grassland land cover spatial extent - Landsat versus SPOT for the same 

years. 

 

               Figure 4.19 compares the Landsat-based and SPOT-based road infrastructure 

spatial extent for the same years. Here, the R2 is higher than the value for grassland in 

Figure 4.18 and, hence, the results based on Landsat and SPOT are correlated to some 

extent. The slope is far from unity, however, and so actual spatial extent results from 

Landsat and SPOT differ. The characteristics of road infrastructure are such that the rate 

of its change over time is not very high, whereas it is more common to have changes in 

grassland land cover in a short period of time. Therefore, it is likely that time differences 

in image acquisition in a given year did not affect the road infrastructure spatial extent 

comparison in Figure 4.19. 
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Figure 4.19: Road infrastructure land cover spatial extent - Landsat versus SPOT for the 
same years. 

 

4.3 Precipitation Levels 

 Precipitation levels were checked for the years spanned by this study to see if it 

has any relation with the grassland growth. For this purpose, Brooks weather station data 

were obtained from the Environment Canada website 17. This is the nearest weather 

station to the Newell County study area. Precipitation data were summed cumulatively 

from September 1 of the previous year to August 31 of the image capture year. This 

process was done for the years from 1985 to 2007. These precipitation sums were 

compared to grassland spatial extents based on Landsat (Figure 4.20) and SPOT (Figure 

4.21) to determine if there was any relation between the grassland spatial extent and 

precipitation levels.  

                                                                 
17

 http://www.weatheroffice.gc.ca/canada_e.html  
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Figure 4.20:  Accumulated precipitation  from September 31 of previous year to August 

31 of  image capture year versus Landsat-derived grassland land cover.  

 

Figure 4.21: Accumulated precipitation  from September 31 of previous year to August 

31 of  image capture year versus SPOT-derived grassland land cover.  
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 The graphs show that, from the given image data sets, the grassland growth is not 

related in any obvious way to precipitation levels. Nevertheless, it is known, based on 

field inspections (A.M. Smith, personal communication), that the frequency and timing of 

rainfall events relative to the grassland growth cycle, and lack of moisture can result in 

diminished grassland growth. Thus, bare patches and blow-out areas can appear in places 

where grassland growth was less, leading to possible classification of those patches as 

road infrastructure instead of grassland.  

 

4.4 Fragmentation Statistics  

          Fragmentation statistics were computed from the Landsat and SPOT thematic maps 

for each land cover class using the FRAGSTATS 3.3 software. In this section, 

fragmentation results for the Number of Patches (NP) are presented.  

                The NP values for the grassland and road infrastructure classes derived from 

Landsat are presented in Figure 4.22.  
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Figure 4.22: Number of patches  (NP) fragmentation metric derived from Landsat. 

 

           Only a linear trend is examined in Figure 4.22, and it shows that there is no 

statistically significant change in either class over the two decades encompassed by the 

image data set. There appear to be year-to-year variations in NP for both classes, but, 

unlike the case for spatial extent, there is no hint of a mirror- like relationship between the 

grassland NP and the road infrastructure NP. This suggests that the gains or losses in the 

number of grassland patches are not attributable to losses or gains in the number of road 

infrastructure patches. Instead, there are hints in Figure 4.22 that the year-to-year 

variabilities of the two classes may be slightly positively correlated. Figure 4.23 

compares NP for grassland to NP for road infrastructure derived from Landsat thematic 

maps. The low R² proves, based on the information available, that the gains or losses in 

the number of grassland patches are not attributable to losses or gains in the number of 

road infrastructure patches. 
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Figure 4.23: Landsat-based NP for grassland versus NP for road infrastructure. 

 

Figure 4.24 presents the NP for grassland and road infrastructure classes over 

time as derived from SPOT imagery. It also shows a linear trend and the results indicate 

that there has been a significant change, especially for road infrastructure. However, the 

R²s are such that only part of the change is explained by data.  
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             Figure 4.24: Number of patches (NP) fragmentation metric derived from SPOT.  

 

           Figure 4.25 compares NP for grassland to NP for road infrastructure derived from 

SPOT thematic maps. The low R² proves that the gains or losses in the number of 

grassland patches are not attributable to losses or gains in the number of road 

infrastructure patches. However, the R² is not very low compared to the plot in Figure 

4.23, because of the 2005 year.  

y = 8.03x - 15741 
R² = 0.24 

y = 49.56x - 96879 
R² = 0.51 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

N
u

m
b

er
 o

f 
P

a
tc

h
es

 (
N

P
) 

Year 

Grassland Road Infrastructure 



 

71 
 

 

Figure 4.25: SPOT-based NP for grassland versus NP for road infrastructure.  

 

Figure 4.26 compares Landsat-based and SPOT-based NP for grassland for the 

same years. The relatively high R² shows positive correlation between Landsat and 

SPOT-based grassland NP. However, this high R² is anchored by the 2005 year. Note that 

the slope is far from unity and, while the Landsat-based and SPOT-based NP results are 

correlated, the actual values differ by approximately a factor of 2. Therefore, based on the 

information available, Landsat and SPOT cannot be expected to yield comparable 

grassland NP fragmentation values. 
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 Figure 4.26: Grassland NP-Landsat versus SPOT for same years.  

 

               Figure 4.27 compares Landsat-based and SPOT-based NP for road 

infrastructure for the same years. Unlike the grassland comparison (Figure 4.26), the R² is 

low. Thus, Landsat and SPOT yield very dissimilar and uncorrelated NP fragmentation 

values for the road infrastructure. 
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     Figure 4.27: Road infrastructure NP-Landsat versus SPOT for same years.  

 

  As for the spatial extent results, there is no way of ascertaining, in this study, 

why the Landsat and SPOT results for NP differ as much as they do. While it is likely 

that the different pixel sizes are the cause, there is no way of verifying this likelihood. 

Also, there may be seasonal differences in the land cover due to different image 

acquisition dates, which might have an impact on the results.  

            Figure 4.28 presents the Largest Patch Index (LPI) values for grassland and road 

infrastructure derived from Landsat. LPI is an important metric in terms of fragmentation 

analysis in this research, as it quantifies the percentage of total landscape area comprised 

by the largest patch of a given class and, therefore, it provides information about which 

land cover class patch is predominant in that landscape area.  
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Figure 4.28: Largest Patch Index (LPI) fragmentation metric derived from Landsat. 

 

            Only a linear trend is examined in Figure 4.28, and it shows that there is almost 

no statistically significant change in either land cover class over the two decades 

encompassed by the image data set. However, the loss in grassland LPI in 1997 from 

1996 and the gain in grassland LPI in 1998 from 1997 are significant individually. But in 

these years gains or losses in the grassland LPI are not attributable to the losses or gains 

in the road infrastructure LPI. 

            Figure 4.29 compares LPI for grassland to LPI for road infrastructure derived 

from Landsat thematic maps. It shows high R² and a negative correlation, which indicates 

that the gains or losses in the Landsat-based LPI of grassland may be attributable to 

losses or gains in the LPI of road infrastructure. Only six similar years were found 

containing Landsat and SPOT data and there was no data available for groups of years 
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which fall in the middle of the trend. This anchored the high R² value. The result suggests 

that the largest patch of grassland occupies almost 85% of the total grassland area 

compared to the largest patch of road infrastructure occupying 0.5% in 1994. In cases the 

largest road infrastructure patch approaches 5% compared to the largest grassland patch 

occupying almost 70% of the total grassland area in 1988. Therefore, it can be concluded 

that the gains or losses in the Landsat-based LPI of grassland may be attributable to 

losses or gains in the LPI of the road infrastructure.                    

 

Figure 4.29: Landsat-based LPI for grassland versus LPI for road infrastructure.  

 

            Figure 4.30 presents the LPI values for grassland and road infrastructure derived 

from SPOT. The R² is low for both grassland and road infrastructure. LPI derived from 

SPOT shows almost no significant change in either land cover class over the two decades 

encompassed by the image data set. Figure 4.30 suggests that the loss of grassland LPI in 

2005 is likely attributable to the gain in road infrastructure LPI, although there is no way 

to verify this. 
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Figure 4.30: Largest Patch Index (LPI) fragmentation metric derived from SPOT.  

 

 Figure 4.31 compares LPI for grassland to LPI for road infrastructure derived 

from SPOT thematic maps. It shows a negative correlation and very high R², similar to 

the Landsat case (Figure 4.29), which indicates that the gains or losses in the SPOT-based 

LPI of grassland may be attributable to losses or gain in the LPI of road infrastructure. 

The distribution of the points is peculiar in the plot because only six similar years were 

found containing Landsat and SPOT data and there is no data available for groups of 

years in the middle of the trend. Also, the very high R² is anchored by the 2005 year. 
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Figure 4.31: SPOT-based LPI for grassland versus LPI for road infrastructure.  

 

                Figure 4.32 compares Landsat-based and SPOT-based LPI for grassland for same 

years. The distribution of the points is unusual because only six similar years were found 

containing Landsat and SPOT data, and the 2005 year is anchoring the low R². 

 

Figure 4.32: Grassland LPI - Landsat versus SPOT for the same years.  
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             Figure 4.33 compares Landsat-based and SPOT-based LPI for road infrastructure 

for the same years. In this Figure, all the points are showing big differences between 

Landsat and SPOT road infrastructure LPI. The distribution of the points is so unusual 

because only six similar years were found containing Landsat and SPOT data and, 

therefore, there is no data available for groups of years in the middle of the trend and the 

2005 year is anchoring the low R².  

 

Figure 4.33: Road infrastructure LPI - Landsat versus SPOT for same years.  

 

 The differences between the Landsat-based and SPOT-based LPI results for 

grassland and road infrastructure are possibly due to the different image acquisition dates 

and spatial resolutions of the two sensors.  

               The fragmentation results presented in this section are for NP and LPI. The  
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between Landsat-based and SPOT-based results are similar generally for the other 

fragmentation metrics (Appendix B).  
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5 CONCLUSIONS 

Remote sensing technology is useful in monitoring grassland hea lth for planning 

and improving both economic and social uses. This work requires appropriate data for 

identifying grassland for accurate classifications. The thesis research goals were to 

estimate the spatial extent of grassland and the fragmentation of grassland, as well as 

their changes over time mainly as a result of road infrastructures due to oil and gas 

exploration and other transportation purposes using multi-year multispectral satellite 

imagery. The classes of interest for this research are grassland, road infrastructure, crops 

and water. The SVM classifier was used for the image classification process. The 

classification results showed an average of 98.2 % overall accuracy for Landsat images 

and 98.2 % for SPOT images.  

Based on the resulting thematic classifications, spatial extent was estimated for all 

four land cover classes. The results are presented for grassland and road infrastructure 

classes because their spatial extents and fragmentations are of greater interest than those 

of crops and water. 

The first objective of this research was to estimate the spatial extent of native 

grasslands using multi-year, multi-spectral satellite imagery and, then, to estimate 

quantitatively the rate and location of grassland change. The results present the changes 

of spatial extent of grassland over 25 years. Based on Landsat and SPOT satellite image 

data, the results say that in Newell County there is almost no significant change found in 

the grassland and road infrastructure land cover in over two decades. Significant year-to 

year variations in spatial extent of both grassland and road infrastructure are found and 

the changes in the two land cover types are negatively correlated, indicating that the 
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reduction in grassland is almost certainly due to the gain in road infrastructure. Therefore, 

the findings suggest that, in each specific year of the time period of two decades,  

grassland reduced to the gain in road infrastructure. Hence, the merit of the methodology 

is proved. 

The second objective of this research was to estimate the fragmentation of 

grassland as a result of road infrastructures due to oil and gas exploration and other 

transportation. Fragmentation metrics were computed using the FRAGSTATS 3.3 

software. The overall temporal trend results of over two decades show that there is no 

significant change in number of patches (NP) results derived from Landsat. However, NP 

results derived from SPOT show some significant change. There appears to be year-to-

year variations in NP results for both classes, but, unlike the case for spatial extent, there 

is no mirror- like relationship between the grassland NP and the road infrastructure NP. If 

anything, the correlation between the two classes is slightly positive. It is found that the 

gains or losses in the number of grassland patches are not attributable to losses or gains in 

the number of road infrastructure patches. So it cannot be said that that the grassland was 

fragmented by the road infrastructure. Therefore, the second objective of estimating 

fragmentation of grassland as a result of road infrastructure is not met in this research 

with the provided data sets. The overall trend results for LPI over two decades show that 

there is no significant change in LPI results derived from either Landsat or SPOT. Also, it 

is found from the results, that gains and losses in Landsat and SPOT-based LPI of 

grassland are attributable to the losses or gains in the LPI of road infrastructure. While it 

is likely that the differences between the Landsat-based and SPOT-based fragmentation 

metrics occur may be due to the different image acquisition dates (Landsat and SPOT 
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images were captured a few weeks apart), which may have resulted in the differences of 

the land cover, and also the spatial resolution differences of the Landsat and SPOT (the 

surface area represented by SPOT pixels is less than half the surface area of Landsat 

pixels), there is no way of verifying these factors.  

 Three factors affected the results in this research. The first factor that may have 

significant impact on the results is the weather. It is known that the frequency of rain 

events and amount of rainfall in southern Alberta can affect grassland growth. The 

spectral reflectance signatures of bare patches due to lack of moisture and blow-out areas 

are similiar to that of road infrastructure such that bare patches and blow-out areas were 

classified as road infrastructure.  

The second factor that possibly had an impact on the results is the spatial 

resolution of the sensors. The Landsat-based and SPOT-based results for spatial extent 

and fragmentation metrics differ may be due to the spatial resolution. Road infrastructure 

can be extracted more accurately from SPOT images compared to Landsat images 

because of the higher spatial resolution of SPOT images. The surface area represented by 

SPOT pixels is less than half the surface area of Landsat pixels. Hence, spatial resolution 

of the sensors possibly had an impact on the fragmentation results, but there is no way of 

proving this. 

 The last factor that may have affected the results is the image acquisition date. 

The Landsat and SPOT images were captured a few weeks apart in most cases, which 

may have resulted in differences in the land cover, grassland in particular. However, there 
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is no information available to ascertain whether or not this factor affected the results for 

spatial extent and/or fragmentation.  

This research examined new ways of quantifying native grassland change and 

providing  information on the spatial extent and fragmentation of native grasslands. This 

research will help to assess the current and future status of native grasslands, particularly 

in the prairie region of Canada and also the land managers and government agencies to 

provide input into decision support systems and land management programs. Remote 

sensing is known to be useful for estimating the spatial extent of vegetated areas such as 

grassland. The research presented in this thesis advanced this capability to estimate the 

spatial extent of grassland for over 25 years of span. The possibility that remote sensing 

image data can be used to obtain fragmentation statistics for analysis was also explored. 

The results indicate that it is possible to estimate fragmentation of grassland in a study 

area using remote sensing image data. However, it cannot be concluded that the 

fragmentation of the grassland was due to the road infrastructure.  

Given the data sets and the results of the spatial extent and fragmentation 

statistics, the first hypothesis, that remote sensing provides an unique opportunity to 

assess and monitor fragmentation of grassland, is accepted. Using remote sensing, 

satellite images of over two decades were classified and thematic maps were produced. 

Fragmentation metrics were calculated for the land cover classes from the Landsat and 

SPOT thematic maps of over two decades and fragmentation of grassland was estimated.  

Landsat and SPOT  image data yield spatial extent and fragmentation results that 

differ. While it is likely that the SPOT-based results are better, the limited number of data 
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sets for comparison (six) is such that this question could not be answered within the 

scope of this study. Hence, the second hypothesis, that better spatial extent and 

fragmentation results can be achieved with SPOT rather than Landsat due to SPOT’s 

higher spatial resolution, is not accepted. 

Future research should be done with higher spatial resolution images, which can 

help to extract linear features like roads more accurately and potentially yield better 

results. Also, it is possible to use linear feature extraction, which will helpt to extract 

linear features and better results can be achieved. Increased frequency in image capture 

times may improve the process of tracking spatial extent and fragmentation of the classes 

of interest.  
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7 APPENDICES 

7.1 Appendix A: Additional thematic maps from Landsat and  SPOT. 

This appendix contains the rest of  the Landsat-based and  SPOT-based thematic 

maps other than the thematic maps decribed in the results. Thematic classification maps 

from 11 Landsat and 2 SPOT images are presented here. In the figures that follow, some 

pixels in otherwise grassland areas have been classified as road infrastructure (red spots 

in the thematic maps), as discussed earlier. For example, more pixels are classified as 

road infrastructure in the 1989 Landsat thematic map than in the 1992 Landsat thematic 

map. The 1997 Landsat thematic map shows a lower amount of road infrastructure  

compared to 1996. The 2004 Landsat and 2003 SPOT thematic maps show large amounts 

of road infrastructure development.  
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Appendix Figure 1: July 2, 1987  
Landsat thematic map.   

        

Appendix Figure 2: August 8, 1989 
Landsat thematic map. 

                                                                                  

      

Appendix Figure 3: July 31, 1992 

Landsat thematic map. 
 

        

Appendix Figure 4: August 11, 1996 

Landsat thematic map. 
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Appendix Figure 5: June 27, 1997 
Landsat thematic map 

       

Appendix Figure 6: July 16, 1998 
Landsat thematic map. 

 

 

 

 

Appendix Figure 7: July 5, 2000  
Landsat thematic map. 

 

Appendix Figure 8: July 8, 2001 
Landsat thematic map. 
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Appendix Figure 9: July 11, 2002 
Landsat thematic map. 

 

       

Appendix Figure 10: July 16, 2004 
Landsat thematic map. 

                     

     

 

Appendix Figure 11: July 27, 2008 
Landsat thematic map. 

 

 

 

Appendix Figure 12:  June 24, 1986 
SPOT thematic map. 
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Appendix Figure 13: August 12, 2003 SPOT thematic map 
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7.2 Appendix B: Additional fragmentation statistics results. 

This section contains fragmentation metric results derived from the temporal 

Landsat and SPOT image sequences other than Number of Patches (NP) and Largest 

Patch Index (LPI), which were described in the results section. The differences between 

the fragmentation metrics for Landsat-based and SPOT-based results are likely due to the 

differences in the spatial resolutions of the sensors and possibly due to the differences in 

image capture times. Some grassland and road infrastructure metrics are numerically 

similar. Also, some metrics have highly variable grassland and very little variation in 

road infrastucture. Possibly, differences in spatial resolution of the sensors and also the 

differences in acquired image times are reasons behind these findings. However, further 

research would be required to confirm these possible explanations.  
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Appendix Figure 14 

 

      Appendix Figure 15 
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         Appendix Figure 16 

 

Appendix Figure 17 
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Appendix Figure 18 

 

Appendix figure 19 
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Appendix Figure 20 

 

Appendix Figure 21 

y = -27.77x + 69134 
R² = 0.00 

y = 11.67x - 23111 
R² = 0.14 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 
P

ro
x

im
it

y
 I

n
d

ex
 S

ta
n

d
a
rd

 D
ev

a
ia

ti
o
n

 

(P
R

O
X

_
S

D
) 

Year 

Proximity Index Standard Deviation - Landsat 

Grassland Road Infrastructure 

y = -365.61x + 760062 
R² = 0.15 

y = 42.69x - 84835 
R² = 0.18 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

P
ro

x
im

it
y
 I

n
d

ex
 S

ta
n

d
a
rd

 D
ev

ia
ti

o
n

 

(P
R

O
X

_
S

D
) 

Year 

Proximity Index Standard Deviation- SPOT 

Grassland Road Infrastructure 



 

102 
 

 

Appendix Figure 22  

 

Appendix Figure 23 
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Appendix Figure 24 

 

Appendix Figure 25 
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Appendix Figure 26 

 

Appendix Figure 27  
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     Appendix Figure 28 

 

  Appendix Figure 29 
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