Beck et al. Parasites & Vectors (2015) 8:434
DOI 10.1186/s13071-015-1040-x

Parasites
&Vectors

Open Access

RESEARCH

CrossMark

Where's the risk? Landscape epidemiology of ®
gastrointestinal parasitism in Alberta beef cattle

Melissa A. Beck'”, Douglas D. Colwell?, Cameron P. Goater' and Stefan W. Kienzle®

Abstract

Background: Gastrointenstinal nematodes (GIN) present a serious challenge to the health and productivity of
grazing stock around the globe. However, the epidemiology of GIN transmission remains poorly understood in
northern climates. Combining use of serological diagnostics, GIS mapping technology, and geospatial statistics, we
evaluated ecological covariates of spatial and temporal variability in GIN transmission among bovine calves
pastured in Alberta, Canada.

Methods: Sera were collected from 1000 beef calves across Alberta, Canada over three consecutive years (2008-2010)
and analyzed for presence of anti-GIN antibodies using the SVANOVIR Ostertagia osteragi-Ab ELISA kit. Using a GIS and
Bayesian multivariate spatial statistics, we evaluated the degree to which variation in specific environmental covariates
(e.g. moisture, humidity, temperature) was associated with variation in spatial and temporal heterogeneity in exposure

region of Alberta.

to GIN (Nematodirus and other trichostrongyles, primarily Ostertagia and Cooperia).

Results: Variation in growing degree days above a base temperature of 5 °C, humidity, air temperature, and
accumulated precipitation were found to be significant predictors of broad-scale spatial and temporal variation in
serum antibody concentrations. Risk model projections identified that while transmission in cattle from southeastern
and northwestern Alberta was relatively low in all years, rate of GIN transmission was generally higher in the central

Conclusions: The spatial variability in risk is attributed to higher average humidity, precipitation and moderate
temperatures in the central region of Alberta in comparison with the hot, dry southeastern corner of the province and
the cool, dry northwestern corner. Although more targeted sampling is needed to improve model accuracy, our
projections represent an important step towards tying treatment recommendations to actual risk of infection.
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Background

The distribution, occurrence, and intensity of parasites
varies enormously between samples of hosts from
different sites, seasons, and vyears, in part due to
interspecific sensitivity of infective stages to variable
environmental conditions [1]. However, an incomplete
understanding of the epidemiology of many direct and
indirect-lifecycle parasites continues to limit the identi-
fication of high-risk locations and peak transmission
periods. To address these key knowledge gaps, land-
scape epidemiologists seek to characterize variability in
rates of parasite transmission in the context of
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changing climatic and landscape characteristics that
arise naturally or through anthropogenic modification
[2]. Advances in this area have often involved the use of
modern Geographical Information Systems (GIS) tools,
statistical modelling, and improved diagnostic tech-
niques. Evaluation of spatial patterns for a number of
vector-borne and other parasitic infections, including
schistosomiasis (e.g. [3]) and malaria (e.g. [4]), have fa-
cilitated the prediction of transmission risk in unsur-
veyed areas, have directed large-scale intervention
programs [5], and have helped predict future outbreaks
relative to climate warming projections [6]. Despite ad-
vances in the use of these spatial tools (e.g. [7]), major
gaps central to understanding spatial heterogeneity in
gastro-intestinal nematode (GIN) transmission among
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domestic stock remain. The lack of accurate epidemio-
logical data is especially acute in northern latitudes in-
volving domestic stock as hosts [8].

GIN occur globally in grazing mammals, representing
a significant threat to the sustainability of livestock pro-
duction [9]. Infection is a common cause of reduced
weight gain, intestinal dysfunction, dysentery, anorexia,
and anaemia [10]. In Canada, livestock operations repre-
sent a significant component of the agrarian economy.
As elsewhere, GIN control programs continue to rely on
intensive anthelmintic use aimed at preventing the accu-
mulation of parasite burdens over successive grazing
seasons. This approach has been based on observed in-
creases in host productivity following the application of
anthelmintics [11, 12]. Macrocyclic lactone dosage for
roundworm and ectoparasite control is associated with
an estimated saving of $7.04 per head in calves and $4.2
per head in yearling cattle compared with control of ec-
toparasites alone [13, 14]. Despite these clear production
and health benefits, the blanket treatment of animals
can result in the overuse of anti-parasitics. This gives
rise to the threat of anthelmintic resistance affecting the
ability to control these parasites and is associated with
high costs to producers [9, 15].

An improved understanding of the influence of cli-
matic characteristics on GIN transmission can aid in the
development and implementation of evidence-based
parasite control programs aimed at reducing this eco-
nomic burden and reducing the risk of anthelmintic re-
sistance. Each species of GIN has critical temperature
and moisture requirements for optimal development, be-
yond which development slows and the likelihood of lar-
val survival declines [16]. Suboptimal environmental
conditions, such as temperature and moisture extremes,
that impact the distribution and survival of free-living
larval stages (e.g. [17, 18]), likely resulting in variable
transmission across the landscape and over time. At
present, little information is available regarding the
broad-scale environmental factors that influence the
availability of GIN larvae on pasture in northern lati-
tudes. The use of GIS for the development of broad-
scale statistical models is therefore valuable for predic-
tion of risk of GIN transmission and in providing an
ecologically grounded baseline for management.

Here we focus on improving our understanding of
heterogeneity in risk of GIN in domestic beef cattle at a
province-wide scale. Our objectives were to: 1) define
the temporal and spatial variability in GIN transmission
across the province of Alberta, Canada; 2) use a GIS-
based approach to evaluate the broad-scale environ-
mental covariates of spatial and temporal heterogeneity
in transmission; and 3) create a model to predict risk of
infection. We combined standard indirect measures of
parasite transmission (ELISA detection of anti-GIN
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antibody concentrations) with GIS technology to
characterize variability in GIN exposure over three con-
secutive years in bovine calves. Bayesian inference was
used to model variability in parasite exposure in rela-
tion to key environmental characteristics.

Methods

Study area

The province of Alberta extends from 49 to 60° latitude
north, with an area of approximately 661,848 square km.
The province has three major biogeographical divisions
ranging from west to east which vary in elevation and
associated climate: the mountains, the foothills, and the
plains [19]. Our study area is focused on the 79, 000
square km plains region where grazing on native range-
lands and Crown and community pastures is most ex-
tensive (Fig. 1) [19]. The plains region comprises the
majority of the total area of the province, with elevation
varying from 800 m along the eastern border of the
province to approximately 1800 m along the foothills
belt in the west [20]. The southeastern corner of this re-
gion has an average annual precipitation (1971-2000) of
331 mm (CV: 84 %), and an annual maximum
temperature (1971-2000) of 21.7 °C (CV: 0.3 %) during
peak grazing season (Jun to Oct) that is associated with
a high rate of evapotranspiration, frequent hot dry
winds, and prolonged periods of low precipitation. Fur-
ther north, the annual precipitation increases to about
515 mm (CV: 7 %) in the centre of this zone, and then
decreases to 475 mm (CV: 6.0 %) in the far northwest
and 487 mm (CV: 13.0 %) in the northeast. Evapotrans-
piration likely decreases with a maximum annual
temperature of 16.8 °C (CV: 0.2 %) during the grazing
season in the northwest of this region and 18 °C (CV:
0.2 %) in the northeast. Average precipitation also in-
creases markedly from east to west, with approximately
368 mm (CV: 7.7 %) of rain along the eastern boarder of
the province to as much as 467 mm (CV: 8.5 %) on the
edge of the foothills [21].

Hosts

In fall (November through December) of 2008—2010, 1000
cross-bred (Angus cows X Hereford bulls) and purebred
Angus calves were sampled from a total of 26 auction mar-
kets across Alberta. Auction markets were distributed
throughout the study region and were opportunistically
sampled. Calves were sampled by feedlot staff working in
conjunction with Feedlot Health Management Services and
researchers from Agriculture and Agri-food Canada. We
targeted beef calves coming off their first year on pasture to
minimize variation in egg counts due to host age and
immunity. We also restricted the sampling window to a 6-
week period each fall to minimize heterogeneity due to in-
herent seasonal variation. Calves were born in April-May of
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Fig. 1 Sampling polygons for GIN survey in southern Alberta bovine calves. Southern Alberta was delineated into 26 service area polygons based
on analyses of minimum driving distance to auction markets in accordance with the existing road network.

each year and were maintained on pasture with their dams
until weaning in November through December. Calves are
transitioned to a finishing diet upon entry into a feedlot or
go into a feeding program to prepare them for grazing in
their second year [22]. All cattle were sampled prior to an-
thelmintic treatment, with a 10 % random sample [22] of
calves selected from each sampled “lot” (auction market).
Animals were handled under the guidelines of the Canadian
Council for Animal Care (Animal Care Committee protocol
# 08233, 0925 and 1044).

Faecal egg counts

The presence of eggs in samples of faeces was used to iden-
tify the GIN spp. present in each host. Faeces were collected
by rectal palpation, stored in individual labelled bags,
and frozen prior to analysis. A modified Wisconsin tech-
nique with a sugar solution [23] was used to process
faecal samples. Parasite eggs were identified to genus (e.g
Nematodirus spp.) according to descriptions in Olsen [24].
Due to similar egg morphologies, all trichostrongyle genera
were pooled and termed ‘trichostrongyles’.
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Serum antibody concentrations

Blood was collected by jugular venipuncture into vacu-
tainer tubes with serum separators (BD-Canada Inc.,
ON) from each calf, analyzed using SVANOVIR® Oster-
tagia ostertagi- Ab ELISA kits (Boehringer Ingelheim
SVANOVA, Uppsala, Sweden). The reference sera were
diluted 1:140 [25]. Optical density values read at 405 nm
were standardized as an optical density ratio (ODR)
using negative and positive control sera samples in-
cluded on each plate.

Mapping and meteorological data

All GIS-based mapping analyses were completed in
ArcGIS, version 10.1 (Source: ESRI). Spatial analysis re-
quired the following digital data sources: digital elevation
model (DEM, source: Geobase), generalized land cover
map (source: DB Geoservices Inc.), road network (source:
ESRI), geo-referenced auction market locations (Fig. 1), and
climate data (source: Alberta Agriculture and Rural
Development: http://agriculture.alberta.ca/acis/alberta-wea-
ther-data-viewer.jsp). For visualization, the Alberta base
map was obtained from free sourced data made avail-
able in joint by National Geographic, Esri, De Lorne,
NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI,
NRCAN, GEBCO, NOAA, and IPC.

Precise coordinates for grazing pastures were not
available. Thus, we calculated the likely service area for
each individual lot. These service area polygons were
created using the existing road network around each
georeferenced lot location, making the assumption that
producers select an auction market based upon mini-
mum driving distance. We assumed that unknown
sources of error, including lot preferences of producers,
cancel each other out. Areas in the province where graz-
ing is not common were excluded based on elevation
(over 1250 m), land cover type (e.g. coniferous forests,
lakes), and presence of urban development (Fig. 1).

Meteorological data were averaged from all geo-
referenced climate stations falling within each polygon.
The environmental variables considered in the study, es-
pecially those associated with temperature and moisture
availability, were selected based upon their known role
in determining nematode viability and infectivity [17, 26,
27]. We only used same-year environmental data, as
overwinter larval survival and development of eggs is
unlikely in this region [28]. It is therefore assumed that
GIN exposure is related to the seeding of pasture in the
spring by dams infected during the previous grazing
season(s).

Environmental data were collected from May to Octo-
ber to represent the growing season prior to the collection
of faecal and serum data at sacrifice [29]. This temporal
period represents the development period of larvae shed
when adult cattle are returned to pasture in May of each
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year, typically followed by peak GIN intensities in cattle
and on grazing pasture during the summer months [30].
Data were obtained for the following periods: May—Sep-
tember, June—September, July—September, August—Sep-
tember, May—October, June—October, July—October, and
August—October. These data included: (i) total accumu-
lated precipitation (mm), (ii) average daily accumulated
precipitation (mm); (iii) average, minimum, and maximum
air temperature (°C), (iv) average, minimum, and max-
imum relative humidity (%), (v) total accumulated growing
degree days (GDD) with a base 5 °C, and (vi) average daily
growing degree days (GDD) with a base 5 °C. Relative
humidity is a dimensionless ratio, expressed in percent, of
the amount of atmospheric moisture present relative to
the amount that would be present if the air were
saturated. Since the latter amount is dependent on
temperature, relative humidity is a function of both mois-
ture content and temperature. Accumulated GDDs were
calculated as the accumulation of days with an average
daily temperature exceeding 5 °C for each of the stated
temporal periods. Mean daily GDD is an average of the
daily increase in GDD with a base temperature of 5 °C for
each weather station.

Statistical analyses

ODR data were normalized by log (n+ 1) transform-
ation. Due to cross antigenicity, O. ostertagi- Ab ELISA
kits are indicative of exposure to a number of GIN gen-
era [7]. Chi-squared statistics were used to compare
prevalence (p) between samples, with 95 % confidence
intervals (CI) calculated using the Wald method (p+/-
zV(pq/n), where z = 1- alpha/2 of the standard normal dis-
tribution and q = 1-p) [31]. Mean ODR (+ SEM) values for
each polygon were compared using ANOVA with Tukey’s
post hoc comparisons for each sampling year.

For hypothesis testing, environmental data were paired
with mean ODR values from each polygon. Variables
were standardized by subtracting the mean and dividing
by two standard deviations [32]. This conversion ac-
counts for differences in dimension and variance, im-
proves the efficiency of the sampling algorithm, and has
no effect on the resulting model.

Bayesian inference was used to construct hierarchical
logistic regression models in OpenBUGS version 3.2.2
[33] to test each environmental variable separately, and
in combination, for each of the eight temporal periods.
The main advantage of the Bayesian approach is that
parameter uncertainty is fully accounted for when per-
forming prediction and inference, even when sample
sizes are small. With a hierarchical Bayesian approach
we obtain a full accounting of variability among individ-
ual polygons, years of sampling, and other environmen-
tal covariates, together with estimates of observation
errors [34, 35]. Risk of transmission was modelled as a
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linear function on a log scale. A non-informative prior
distribution (mean =0, tau = 1.0 X 10™*) was assigned to
the regression coefficients. Sampling year, assumed to
follow a uniform normal distribution was included in all
models as a random effect.

For all models, we discarded the first 60,000 iterations,
with another subsequent 40,000 iterations used to esti-
mate model parameters. This initial burn-in was re-
quired to ensure that the model chains converged and
that the parameter space has been correctly explored
[34]. Competing models were ranked by their deviance
information criterion (DIC), which is a measure of
model fit to the data. The best model is that with the
lowest DIC value. To compare models, the difference be-
tween the DIC; of each model and the DIC; of the best
fit model (minDIC,) was calculated for each model:

ADIC = DIC;-minDIC;

Models within two ADIC units of the top performing
model were considered to have strong support, within
four to seven ADIC units to have considerably less sup-
port, and greater than ten, no support [35, 36].

Expected ODR values (i.e. estimated risk of transmis-
sion) were calculated for each individual polygon using
all the models within two ADIC of the top-performing
model. Values were then averaged to obtain a mean ex-
pected ODR value for each polygon for each of the three
sampling years. Using this approach, we account for
model uncertainty [33]. Average annual expected trans-
mission risk was assigned values corresponding to low,
moderate and high mean ODR values of <0.3, 0.3 to 0.5,
and > 0.5, respectively. ‘High risk’ (ODR >0.5) was con-
sidered indicative of high rates of GIN exposure [37].

Temporal variability in environmental covariates was
evaluated using ANOVA with Tukey’s post-hoc compari-
sons for polygons where risk of high GIN exposure var-
ied between years. To assess the spatial accuracy of our
model predictions, we compared model prjected ODR
values with observed ODR values for each polygon using
Chi-squared analyses. Parametric correlation coefficients
were obtained comparing observed mean ODR values
and model projected ODR using data pooled for all three
years. Mean square error was then calculated to assess
model accuracy.

Model validation

To validate the GIN transmission risk model, we targeted
two polygons for follow-up analyses in 2013. Based on our
model projections, one polygon had consistently low risk
of GIN transmission, whereas a second had moderate to
high risk of economically significant parasite transmission.
The Agriculture and Agri-Food Canada, Lethbridge
Research Centre (LRC) field station located at One Four,
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Alberta (49.4° N, 110.7° W) was selected as the low risk
site, while a ranch near Stettler, Alberta, was the moderate
to high risk site. Blood was collected from each calf by
jugular venipuncture and analyzed as outlined above for a
total of 167 cross-bred calves from the LRC field station
and 75 calves from the Stettler ranch.

For initial comparison of parasite transmission
differences between the two ranches we calculated: (1)
mean ODR (+ SEM) for each ranch; (2) proportion of
calves with bootstrapped 95 % CI that were parasite
negative (ODR < 0.0); and (3) proportion of calves with
bootstrapped 95 % CI with high intensity infections
(ODR >0.5) [36]. Mean values were compared using
parametric t-tests, and differences in prevalence values
were evaluated using Chi-squared.

Climate data for 2013 were obtained from the Alberta
Agriculture and Rural Development. Using these envir-
onmental data, mean (£ SEM) expected ODR values
were calculated using the top performing models. We
compared model projections based on data obtained
from the closest climate station to each respective ranch
using Euclidean straight-line distances. We then vali-
dated our model using parametric t-tests to compare ob-
served and expected ODR values. Parametric t-tests are
also used to compare environmental means used in cal-
culating model projections of exposure risk between
these two sites.

Results

Infection patterns

97.2 % (95 % CIL: 96.2-98.3 %) of the 1000 calves sampled
from 2008-2010 were sera-positive for GIN. Although the
overall proportion of sera-positive animals remained con-
sistent between years, and estimated prevalence did not
significantly vary among individual polygons in 2008
(Y*=3.1, p=0.86) and 2010 (y*=5.7, p =0.86), spatial
variation in mean ODR was significant in all three years
(Fig. 2; 2008: F3 g, = 24.4, p < 0.001; 2009: Fg 35, =2.4, p
<0.05; 2010: F;53,=5.7, p<0.001). The proportion of
infected hosts varied significantly among polygons in
2009 (x> = 35.2, p < 0.01), however, this variation can be
accounted for by an increase in the number of sera-
negative animals (n=20) from the LRC ranch. Data
from five polygons that were sampled in all three years
also showed significant annual variation in transmission.
These include data from the following five auction markets
presented in Fig. 1: High River, Innisfail, Lethbridge, Lloyd-
minster, and OneFour, Alberta. Colwell et al. [25] reported
significant variation in ODR between years for cattle sam-
pled from the LRC ranch at OneFour, Alberta (N 50.5° W
-113.4°), with values significantly higher in 2009 in com-
parison with 2008 and 2010. Despite significant variation,
risk of infection was consistently low (ODR < 0.35) in this
southeastern corner of the study area (Fig. 2). Annual
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Fig. 2 Observed mean antibody concentrations (ODR) in calves sampled at auction markets in Alberta from 2008 to 2010
-
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variation in ODR for cattle from the High River area paral-
leled results observed at the LRC ranch, while in 2009
ODR values were significantly lower in the Lloydminster
polygon in comparison with other sampling years. In con-
trast, annual differences in mean ODR were not detected
for a polygon along the southern border of the province
(Lethbridge), nor were annual differences detected in the
center of our survey area (Innisfail).

Of the > 1000 models run, three additional models
were within two ADIC of the top-performing model.
Various combinations of the following variables were
found to be significant predictors of transmission risk
in these models (Table 1): minimum air temperature,

average daily growing degree days with a base of 5 °C,
accumulated precipitation, daily average accumulated
precipitation, and minimum humidity. These top
models all relied on environmental data collected from
July to October of each respective grazing year. Models
calculated using environmental data for the other seven
temporal periods did not perform equally as well.
Expected ODR was calculated for each of the 4
models (Table 2), averaged to account for model un-
certainty [35] and projected across the study area for
all three years (Fig. 3). Model projected risk was con-
sistently low (ODR <0.35) in the far southeast. The
total area where risk of economically significant

Table 1 Summary of top performing multivariate hierarchical models for risk of GIN transmission. Models are ranked based on the
Deviance Information Criterion (DIC). Year is included in all models as a random fixed effect

Rank Model Parameters DIC ADIC
1 Daily average GDD (base 5 °C), Minimum temperature (°C) 54.71 0.00
2 Daily average GDD (base 5 °C), Minimum temperature (°C), Daily accumulated precipitation (mm/day) 56.02 1.31
3 Daily average GDD (base 5 °C), Minimum temperature (°C), Total accumulated precipitation (mm) 56.11 140
4 Daily average GDD (base 5 °C), Minimum temperature (°C), Minimum humidity (%) 56.27 156
Null Model - 106.20 5149
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Table 2 Regression model for tests of associations between means of regional environmental data and serum antibody
concentrations (ODR)

Model Variable Parameter Mean SD B SEB
1 Intercept -
Daily Average GDD (base 5 °C) 8.06 1.08 -040 <0.01
Minimum Temperature (°C) 529 1.01 0.20 <0.01
2 Intercept - - -0.64 <0.01
Daily Average GDD (base 5 °C) 8.06 1.08 -045 <0.01
Accumulated Precipitation (mm) 153.31 40.49 -0.05 <0.01
Minimum Temperature (°C) 529 1.01 0.22 <0.01
3 Intercept - - -0.64 <0.01
Daily Average GDD (base 5 °C) 8.06 1.08 -0.05 <0.01
Daily Accumulated Precipitation (mm) 1.25 033 -045 <0.01
Minimum Temperature (°C) 529 1.01 0.22 <0.01
4 Intercept - - -0.64 <0.01
Daily Average GDD (base 50C) 8.06 1.08 -0.45 <0.01
Humidity Minimum 3834 7.5 —-0.05 <0.01
Minimum Temperature (°C) 529 1.01 0.22 <0.01

SD standard deviation, B parameter coefficient, SE B standard error of the coefficient

2008 2009 2010

Risk of Infection

[ High
- Moderate

Low

O Kilometers
02040 80 120 160

Fig. 3 Model predicted spatial and temporal variation in risk of GIN transmission in Alberta bovine calves (2008-2010). Distribution of expected
risk of nematode transmission calculated for each year using Bayesian inference to construct hierarchical binary response logistic regression
models for ODR in cattle sampled at auction markets in southern Alberta from 2008 to 2010. Low, Moderate and High risk are differentiated
according to mean regional optical density ratio values of <0.3, 0.3-0.5, and >0.5 respectively for cattle serum
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infection was high increased in 2010 in comparison
with 2008. This change may be attributed to a general
increase in accumulated precipitation, fewer total
GDDs, lower average maximum temperature, and
higher minimum average temperature (Table 3). In
comparison, total number of GDD was notably higher
in these same polygons in 2009, with maximum
temperature ranges similar to that of 2008.

When data from all three years were pooled, a significant
correlation was detected between mean observed ODR
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values and model projected ODR values (R =0.46, df= 26,
p <0.05), with 18 % of the variance in ODR explained and a
root mean square error of 0.082. Model predictions were
more consistently accurate for polygons with intermediate
risk on average, in comparison with polygons with a more
extreme low or high mean ODR. The polygons with
‘extreme’ low or high ODR relative to the rest of the study
area were characterized by higher variance in ODR values.
Our top four models all included daily average GDD with
a base temperature of 5 °C and minimum air temperature.

Table 3 Spatio-temporal patterns of environmental covariates of variability in GIN transmission risk on Alberta pasture between

2008 and 2010

Parameter Polygon Mean + SEM ANOVA
2008 2009 2010

GDD Total (base 5 °C) 8 867.5+10.0 9795 +46.5 865.1+35.0 Fr352=38

10 8145+317 8524+ 282 8032+ 124 Foos2=10

12 7958 799.6 7262 -

13 74922 769.6 6633 -

14 865.7+21.0 9029 +28.1 8049 +156 Frag2=49

15 9376+ 186 9504 + 180 8550+ 154 Fargsr =89

18 8818250 89224227 812142311 For30=34

19 8754+175 8936+ 132 8032+ 124 Flio42=108"
Acc. Precip. (mm) 8 986+80 2044 +327 1588+ 283 Fraso =44

10 1814+103 1372120 1782+139 Foogo=53"

12 1758 190.3 1743 -

13 1813 2066 285.2 -

14 1446+165 1903+74 27174165 Fra9,=207"

15 12746475 1834+ 7.1 2173+85 Fargso =344

18 1133 1241498 2080+216 -

19 1149+123 1200+638 21094218 Flio42=130"
Maximum Temp. (°C) 8 208+04 196+ 06 19.0+04 F7350= 35

10 1934032 185405 178403 Foogo =35

12 187406 178+08 174406 Fis62=10

13 187406 177408 167 +04 Fiso2 =36

14 189+ 04 178406 171404 Fraoo=34"

15 198+02 189+02 180+02 Farsso =229

18 194+04 185+04 175+03 Fer32=54"

19 192403 185+04 175403 Flioaz =66
Minimum Temp. (°C) 8 41404 46+04 45+03 Fr350=07

10 32403 30403 33403 Foog2 =03

12 33405 28405 34+05 Fiee2 =04

13 23+05 29+05 30+03 Fag0, =08

14 46+04 48+04 52+03 Fra92=07

15 45+0.1 48402 52+0.1 Fargso =65

18 40+04 47+03 54402 Forso =46

19 41403 38+03 45402 Flioaz=21

*p < 0.05; **p < 0.01; ***p < 0.001
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Model validation
Mean ODR values differed significantly (t40 = -3.84,
p<0.001, r=0.67) between the LRC ranch and the
Stettler ranch (Table 4). The proportion of animals
with ODR >0.50 also significantly differed between
sites (> = 11.79, p < 0.001; Table 4) with higher ODR
values on the Stettler ranch, indicative of an increased
number of animals harboring high parasite counts.
Despite higher average daily precipitation on the
LRC ranch in 2013 (Table 5) mean ODR was signifi-
cantly higher in Stettler (Table 4; ts=-7.6, p <0.001).
These data are consistent with our models with fewer
GDDs, and higher minimum humidity associated with
higher parasite intensities (Table 5). Mean expected
ODR values did not significantly differ from observed
mean ODR for the LRC ranch (t;49 = 1.647, p = 0.101)
and for the Stettler ranch (¢;; = -1.536, p = 0.13). How-
ever, model projections did underestimated mean ODR
at both locations (Table 4).

Discussion
Our results show that almost all cattle in Alberta are ex-
posed to at least one species of GIN in their first year.
These data are consistent with previous empirical stud-
ies and survey reports of calves sampled from pastures
in other north-temperate locations [16, 25]. Despite this
ubiquitous presence, the relative risk of GIN exposure,
as measured by antibody concentrations in host sera,
varied significantly between polygons and between years.
A suite of environmental variables, likely acting in con-
cert, explained a significant proportion of the overall vari-
ation in risk of exposure to GIN. Results from empirical
laboratory studies and experimental studies involving
tracer animals have shown that a large number of factors
influence larval transmission rates from pasture into cat-
tle. Thus, factors such as soil moisture, soil humidity, and
air temperature may act at local scales in a species-specific
and context-dependent manner [8, 16, 26]. Local-scale
variation of this sort explains the tremendous variation
that is typically observed between herds, even in cases
where herds are adjacent on a landscape. These local fac-
tors likely contributed to the approximately 80 % unex-
plained variation in ODR values observed in this study.
Yet despite this high level of background variation, the re-
sults of our study show that broad-scale variation in envir-
onmental factors that operate at the scale of 10’s or 100’s
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Table 5 Comparison of environmental data (July to October

2013) collected for model validation polygons. Environmental
data are collected from the closest meteorological station by

Euclidean straight-line distance for ranches near One Four, Al-
berta and Stettler, Alberta. Values are mean + SEM

Environmental Parameters LRC Stettler T-stat

Total Acc. Precip. (mm) 251.7 163.3 -

Daily Acc. Precip. (mm) 20+06 13+04 to44=95
GDD Total (base 5 °C) 12319 10129 -

GDD Daily Average (base 5C) 100+06 82+05 tya=23"
Air Temperature Minimum (°C)  7.8+£06 59405 toas =23
Humidity Minimum (%) 36013 413414 toyu=-27

*p < 0.05; **p < 0.01; **p < 0,001

of kilometers explain a significant proportion of the over-
all variation in GIN infections in young cattle across
Alberta.

The significance of the July to October temporal
period in our top performing models is consistent with
an increase in the availability of infective L3 on pasture
throughout the grazing season [16]. Distinct seasonality
has also been detected in a number of pasture-based
studies with an increase in egg shedding to a peak in
late August to early October [26]. This coincides with
the peak in GIN spp. (e.g. Ostertagia, Cooperia, Nema-
todirus, and Trichostrongylus spp.) intensities detected
in grazing tracer calves and dairy cattle in the fall and
winter in northern temperate climates [29, 38]. Given
these patterns, it follows that variability in environmen-
tal conditions during the July to October period would
significantly impact the availability of L3 larvae on
pasture.

Relative to spatial heterogeneity in nematode transmis-
sion, the significance of the number of GDDs may repre-
sent a required minimum number of days above a
threshold temperature for larval development. This
minimum requirement is also consistent with the signifi-
cance of minimum air temperature, with risk generally
increasing with higher average low temperatures. In the
case of O. ostertagi, optimal temperatures for develop-
ment range between 20 and 25 °C [26]. Rates of develop-
ment slow, or may cease completely, as temperatures
declines below this optima. Thus, a minimum number
of GDDs may be needed for development, with
the number of infective larvae available on pasture

Table 4 Comparison of observed and model-based projections of ODR in 2013. Projected values are based on data from the closest
meteorological station in straight-line distance for ranches near One Four, Alberta and Stettler, Alberta

Site N Observed Model Projected
ODR (mean = SEM)  Proportion of calves with ODR <0.0 (95 % Cl) Proportion of calves with ODR >0.5 (95 % Cl) ODR (mean + SEM)

LRC 167 0.36 +0.02 0.05 (0.02-0.08) 0.25 (0.18-0.31) 0.16+0.01

Stettler 75 051+ 0.04 0.03 (0.01-0.05) 043 (0.35-0.50) 0.25+0.01
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increasing in a given year with the number of cumulative
GDDs. This pattern has been demonstrated for the
development of F. hepatica on pasture [39]. However, at
the other extreme, rates of development decrease when
temperatures exceed the maxima for larval survival [26].
In a national survey of Canadian dairy cattle, Vandersti-
chel et al. [29] documented higher exposure to GIN on
farms in areas with lower average land surface tempera-
tures. The decreased risk of transmission with higher
total GDDs may represent an increased number of con-
secutive days reaching beyond maximum threshold tem-
peratures acting to limit parasite survival and
development [17, 26, 27].

The significance of accumulated precipitation is also
consistent with the transmission biology of infective 3rd
stage larvae (L3) on pasture. While L3’s can survive for
long periods within desiccated faeces, they cannot mi-
grate vertically onto surrounding herbage in the absence
of sufficient rainfall [18]. For Haemonchus contortus, an
average of 2 mm daily rainfall failed to release substan-
tial numbers of larvae [18]. In contrast, heavy rain has
been found to yield high numbers of L3, with a daily
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average minimum of between 2 and 4 mm needed for
larval migration on vegetation. Spatial variability in rela-
tive humidity can similarly affect the rate of desiccation
of GIN eggs and free-living larval stages on pasture.
These patterns are consistent with accounts of a cessa-
tion in larval development in the absence of sufficient
moisture, regardless of the prevailing temperature [26].
Combined with our data, these results show that relative
humidity and the amount and temporal distribution of
rainfall are important drivers for GIN transmission, with
the number and survival of free-living L3 on pasture in-
fluenced by regional precipitation patterns. Similar re-
sults were found in the assessment of environmental
covariates of GIN in dairy cattle across Canada [29].
Trade-offs between relative moisture conditions,
temperature, and number of GDDs can help explain
the spatial and temporal trends described in our risk
maps. Low risk of L3 transmission was consistent in
the southeastern and northwestern corners of the
province. Average annual precipitation is generally
higher in the northwest and lowest in the southeast
(Fig. 4). The reverse is apparent for 30-year average
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annual temperatures [21] and number of GDDs for
these regions. Data from the southeast are consistent
with data from field and laboratory studies document-
ing that extremely arid conditions generally limit the
development, survival and transmission of GIN. For ex-
ample, the development of O. ostertagi L3 dropped
from 30 to 5 % following an increase in temperature
from 25 °C (optimal environmental conditions) to 32 °C
[26]. In contrast, despite higher average annual precipi-
tation in the northwest in comparison with the south-
east, similarities in risk of transmission may be related
to typically lower temperatures with fewer cumulative
GDDs above a base temperature of 5 °C delaying larval
development and limiting the number of infective lar-
vae available on pasture [26, 39]. Stromberg [26] re-
ports that O. ostertagi development rate is slowed at
lower temperatures, taking up to 42 days at 5 °C. Other
studies suggest that development may not occur at or
below 5 °C [26]. We can therefore assume that just as
the excessively dry and warm south and east parts of
the province are not conducive to high rates of trans-
mission, neither are the wetter, colder regions that are
characteristic of the north and west. In comparison
with these two relative extremes, intermediate tempera-
tures and moisture availability characterize the trans-
mission hotspot identified in the centre region of our
study area.

Temporal variability in the area of high risk for eco-
nomically significant transmission (Fig. 3) can also be
attributed to differences between regions in accumu-
lated precipitation, cumulative GDDs, and average tem-
peratures. The increased total area in 2010 in
comparison with 2008 is consistent with reports that
increased precipitation, along with fewer consecutive
days above maximum threshold temperatures for para-
site survival and development, promote increased para-
site transmission [17, 26, 27]. Similarly, the absence of
high risk projections for 2009, along with overall expan-
sion of the total area where risk was low along the eastern
border of the province, can be explained by lower average
precipitation and the increased GDDs that characterized
that year’s unusually hot and dry summer.

Validation of our multivariate model demonstrated
that projections at the regional level remained relevant
in projecting ranch-specific risk. However, model pro-
jections did under estimate mean ODR values. This, as
well as a large proportion of variation unaccounted for
by our model, may be related to incidence of discrete
rain events providing opportunity for drastic rise in
availability in infective L3 [18]. These events were also
presented as the most parsimonious explanation for high
rates of L3 transmission in 2009 in an analysis of annual
variation in serum antibody concentrations at the LRC
ranch despite lower total accumulated precipitation [25].
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The data for this study largely stemmed from regional-
based parasite data. Information on the precise origin of
host individuals, herd density and management strat-
egies were not available. This limited the resolution and
accuracy of our analyses. Additionally, our interpreta-
tions of risk were based on the assumption that detected
antibodies (ODR) were indicative of exposure to a num-
ber of GI genera including O. ostertagi and Trichostron-
gylus spp. (see also 25). This assumption is supported by
data from tracer calves in Alberta [40, 41]. Future re-
search may benefit from the use of alternative diagnostic
techniques that allow for the differentiation and quanti-
fication of specific parasite spp. present in each host
[42]. Comparisons of more local-scale variation in risk
of transmission using higher resolution spatial data may
provide further insight into the epidemiology of parasite
transmission. These data are important given that, des-
pite life cycle similarities, species-specific sensitivity to
environmental factors (e.g. tolerance of prolonged dry
periods) is common (e.g. [18]).

Conclusions

Despite the need to increase the overall robustness of
model predictions, our model provides a baseline for
evidence-based anthelmintic intervention. The data pre-
sented here demonstrate that in years with wetter- and
warmer-than-average spring and summer conditions, we
can expect higher rates of nematode transmission into
yearlings in the fall, especially at sites in the center of
our study area where transmission conditions appear to
be optimal. Following further verification that links
serum antibody concentrations to actual nematode bur-
dens, these results can be used to guide future studies of
GIN transmission biology and to maximize treatment ef-
ficiency [5, 43]. The next step is to attain more accurate
data on: 1) parasite species-specific variation in intensity;
2) animal origin, history, and pasture characteristics; and
3) species-specific climate thresholds for GIN transmis-
sion. Of significance here will also be the determination
of whether GIN can overwinter on pasture in this re-
gion. Such information will provide a platform for
explaining species-specific distributional patterns and
allow for optimization of anthelmintic applications.
Combined with projected changes in climate, increased
pressure on the landscape to support a growing global
population, and rising incidence of anthelmintic resist-
ance, the ability to reliably define variability in risk of
parasite transmission will be increasingly important [43].
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