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Abstract

We study moments and zeros of L-functions in this thesis.

In Chapter 2, by following closely Soundararajan-Young’s method, we prove an asymptotic

for the fourth moment of quadratic Dirichlet L-functions under the generalized Riemann hypoth-

esis. Unconditionally, we are able to give a sharp lower bound that agrees with Keating-Snaith’s

conjecture.

In Chapter 3, we use a recursive method that was pioneered by Heath-Brown and devel-

oped by Young to give an asymptotic with an error O(X
1
2

+ε) for the smoothed first moment

of quadratic twists of modular L-functions. The result is analogous to Sono’s work on the sec-

ond moment of quadratic Dirichlet L-functions. It improves previous results of Iwaniec and

Soundararajan-Radziwi l l.

In Chapter 4, we obtain an explicit result for the number of zeros, in a box, of Dedekind

zeta functions, which improves a result of Trudgian. Our argument is based on previous works

of Bennett-Martin-O’Bryant-Rechnitzer, Kadiri-Ng and Trudgian.
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Chapter 1

Introduction

1.1 L-functions and examples.

Many problems in analytic number theory can be studied via the theory of L-functions. For

instance, the prime number theorem and the prime number theorem in arithmetic progressions

rely crucially on nonvanishing results of the Riemann zeta function and Dirichlet L-functions,

respectively. The Riemann zeta function and Dirichlet L-functions are two specific examples

of general L-functions which we now define. The definition is based on Selberg’s axiomatic

definition [93] (see also Iwaniec-Kowalski [55, Chapter 5]). Generally it is believed that all

L-functions arise from automorphic L-functions, but this is far from proven (see Cogdell [15,

Chapter 9] for the definition and further details on automorphic L-functions).

We say L(s, f), s ∈ C is an L-function if it satisfies the following conditions.

(1) L(s, f) has the Dirichlet series with the Euler product of degree d ≥ 1,

L(s, f) =
∑
n≥1

λf (n)n−s =
∏
p

(
1− α1(p)p−s

)−1 · · ·
(
1− αd(p)p−s

)−1
,

with λf (1) = 1, λf (n) ∈ C, αi(p) ∈ C. The series and the product must be absolutely

convergent in the region Re(s) > 1. We call αi(p) the local parameters of L(s, f) at p.

They satisfy

|αi(p)| < p for all p.

(2) We have the gamma factor

γ(s, f) = π−ds/2
d∏
j=1

Γ

(
s+ κj

2

)
.

The numbers κj ∈ C are called the local parameters of L(s, f) at infinity. We assume

1



1.1. L-FUNCTIONS AND EXAMPLES.

these numbers are either real or come in conjugate pairs. Moreover, Re(κj) > −1.

(3) We have the constant q(f) ≥ 1, called the conductor of L(s, f), such that αi(p) 6= 0 for

p - q(f) and 1 ≤ i ≤ d.

(4) From (2) and (3), we define the complete L-function

Λ(s, f) = q(f)
s
2γ(s, f)L(s, f).

It is holomorphic in the half-plane Re(s) > 1 and is analytically extended to an meromor-

phic function on the entire complex plane C of order 1 with at most poles at s = 0 and

s = 1. Moreover, it satisfies the functional equation

Λ(s, f) = ε(f)Λ(1− s, f̄),

where f̄ is an object associated with f (the dual of f) for which λf̄ (n) = λ̄f (n), γ(s, f̄) =

γ(s, f), q(f̄) = q(f). The complex number ε(f) is called the “root number” of L(s, f).

The absolute value of ε(f) must be 1.

We now give some well-known examples of L-functions.

Riemann zeta function.

The simplest example of an L-function is the Riemann zeta function defined by

ζ(s) :=

∞∑
n=1

1

ns
=

∞∑
n=1

(
1− 1

ps

)−1

for Re(s) > 1. One of the best references for ζ(s) is Titchmarsh [101]. The Riemann zeta

function is a degree 1 function with conductor 1. It can be analytically extended to the entire

complex plane with only a simple pole at s = 1 with residue 1. We define the Λ-function by

Λ(s) := π−
s
2 Γ( s2)ζ(s).

2



1.1. L-FUNCTIONS AND EXAMPLES.

It satisfies the functional equation Λ(s) = Λ(1 − s). Due to the existence of the simple pole at

s = 1, we also often use the so-called ξ-function:

ξ(x) := 1
2s(s− 1)π−

s
2 Γ( s2)ζ(s).

The function ξ(s) is entire and satisfies the functional equation ξ(s) = ξ(1− s).

Dirichlet L-functions.

A Dirichlet L-function is associated to a Dirichlet character. We call a group homomorphism

χ : (Z/qZ)× → C \ {0}

a Dirichlet character modulo integer q. Here (Z/qZ)× is the multiplicative group of integers

modulo q. This definition can be extended to all integers by setting χ(n) = χ(n̄) if (n, q) = 1,

and χ(n) = 0 if (n, q) > 1. The Dirichlet L-function associated to χ modulo q is defined by

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

for Re(s) > 1.

The principal character modulo q is defined to be χ(n) = 1 for all (n, q) = 1. If χ is not a

principal character, then L(1
2 , χ) admits analytic continuation to an entire function on the whole

complex plane. In the case that χ is principal, L(s, χ) = ζ(s)
∏
p|q(1− p−s), so L(s, χ) behaves

like the Riemann zeta function.

The definition of χ tells us that χ is a periodic function on Z of period q. However, if

we restrict (n, q) = 1, then the period of χ may be smaller than q. It can be proved that

this “smaller” period must be a divisor of q. We call χ a primitive character if the period

of χ restricted by (n, q) = 1 is exactly equal to q. A Dirichlet L-function associated to a

primitive Dirichlet character is called primitive Dirichlet L-function, which is of degree 1 and

with conductor q. In general, we are interested in studying primitive Dirichlet L-functions. The

main reason is that primitive characters are simpler to compute with, and results for primitive

characters can usually be extended to imprimitive characters with minor adjustments.

3



1.1. L-FUNCTIONS AND EXAMPLES.

In Chapter 2, we are interested in quadratic primitive characters. The set of Dirichlet

characters modulo q forms a group under multiplication. The Dirichlet characters of order 2 in

this group are called quadratic characters. It is clear that a Dirichlet character is quadratic if and

only if it is real and non-principal. Every primitive quadratic character can be denoted by the

Kronecker symbol (d· ), where d is a fundamental discriminant. (We also often use χd to denote

the Kronecker symbol.) A fundamental discriminant d is either d ≡ 1 (mod 4) and square-free,

or d = 4a with a ≡ 2, 3 (mod 4) and a being square-free. We can see that a fundamental

discriminant is essentially a square-free integer.

Let χ be primitive modulo q. The ξ-function is defined by

ξ(s, χ) := (πq )−
1
2

(s+a)Γ[1
2(s+ a)]L(s, χ).

Here the number a, depending on χ, is defined by

a =

 0 if χ(−1) = 1,

1 if χ(−1) = −1.

It is entire and satisfies the functional equation

ξ(1− s, χ̄) =
ia
√
q

τ(χ)
ξ(s, χ),

where τ(χ) is the Gaussian sum defined by τ(χ) =
∑q

m=1 χ(m)e
2πmi
q . One can see more detail

in Davenport [22, Chapter 9] and Montgomery-Vaughan [77, Chapter 10].

Modular L-functions.

Modular forms are very important in modern mathematics. For example, the famous Fer-

mat’s last theorem was solved by Wiles via proving the modularity theorem which asserts that

each elliptic curve L-function over Q arises from a modular form. Modular forms are also

extensively studied in analytic number theory (see Iwaniec-Kowalski [55, Chapters 14–16]).

4



1.1. L-FUNCTIONS AND EXAMPLES.

A modular form of weight κ for the full modular group

SL2(Z) :=


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1


is a complex function f over the upper half-plane H = {z ∈ C : Im(z) > 0} that satisfies the

following three conditions:

• f is holomorphic on H.

• For any z ∈ H and any matrix in SL2(Z), we have

f

(
az + b

cz + d

)
= (cz + d)κf(z).

• f is also holomorphic as z → i∞. (In other words, the Fourier series of f starts at n = 0.)

Hecke produced Dirichlet series by using the coefficients of the Fourier expansion of a modular

form at i∞. Let f be a modular form of weight κ for the full modular group SL2(Z) as defined

above. We further assume f is an eigenfunction of all Hecke operators (see [55, Page 370]). The

Fourier expansion of f at infinity is

f(z) =

∞∑
n=1

λf (n)n
κ−1
2 e(nz),

where λf (1) = 1 and |λf (n)| ≤ τ(n) for n ≥ 1. Here e(z) := e2πiz, and τ(n) is the number of

divisors of n. A modular L-function is defined by

L(s, f) :=
∞∑
n=1

λf (n)

ns
=
∏
p

(
1−

λf (p)

ps
+

1

p2s

)−1

for Re(s) > 1, and it has an analytic continuation to the entire complex plane. The completed

L-function is defined by

Λ(s, f) :=

(
1

2π

)s
Γ(s+ κ−1

2 )L(s, f).

5



1.1. L-FUNCTIONS AND EXAMPLES.

It satisfies the functional equation

Λ(s, f) = iκΛ(1− s, f).

Dedekind zeta functions.

Given a number field K, the Dedekind zeta function ζK(s) of K is defined by

ζK(s) =
∑
a6=0

1

N(a)s
=
∏
p

(
1− 1

N(p)s

)−1

,

for Re(s) > 1, where the sum is over non-zero integral ideals of K, and the product is over prime

ideals of K. The Dedekind zeta functions are used to study properties of number fields. For

example, they can be used to count the number of prime ideals in the ring of integers. If K = Q,

then ζK(s) = ζ(s). A Dedekind zeta function has an analytic continuation to a meromorphic

function on C with only a simple pole at s = 1. Let us assume the degree of the field extension

Q ⊂ K is nK , and the discriminant of K is dK . Then ζK(s) is an L-function of degree nK with

conductor dK . Let nK = r1 + 2r2, where r1 is the number of real embeddings that fix Q and r2

is the number of pairs of complex conjugate embeddings. The completed zeta function ξK(s) is

ξK(s) = s(s− 1)d
s
2
KγK(s)ζK(s),

where

γK(s) =

(
π−

s+1
2 Γ

(
s+ 1

2

))r2 (
π−

s
2 Γ
(s

2

))r1+r2
.

It satisfies the functional equation

ξK(s) = ξK(1− s).

More information on Dedekind zeta functions can be seen in the book of Neukirch [80, Chapter

VII].

In this thesis, we will study Dirichlet L-functions, twisted modular L-functions (which are

modular L-functions twisted by Dirichlet characters) and Dedekind zeta functions, respectively,

in Chapters 2, 3 and 4. We study these L-functions in two aspects. For the family of Dirichlet L-

6



1.2. MOMENTS OF L-FUNCTIONS.

functions and twisted modular L-functions, we study their moments; for Dedekind zeta functions,

we are interested in the number of non-trivial zeros in a box.

In the rest of this chapter, in Section 1.2, we discuss some background for the field of moments

of L-functions, and in Section 1.3, we introduce some history and motivation on counting zeros

of L-functions.

1.2 Moments of L-functions.

It is important to understand the distribution of values of L-functions. In particular, where

are the zeros of a L-function located, how often does an L-function get large and small, and how

often do the values lie in a given interval? In reality, it is hard to study a single function (e.g.,

Riemann hypothesis, Lindelöf hypothesis). It is often simpler to study a family of L-functions

with the hope that statistical results on average give intuitive ideas for a single L-function

and may provide partial results. We let F denote a family (or collection) of L-functions. Let

L(i)(s, f) denote the i-th derivative of an L-function L(s, f). The following types of problems

are extensively studied in analytic number theory.

1. Continuous moment of a single L-function.

Estimate ∫ T

0
|L(i)(σ0 + it, f)|kdt

where i ∈ Z≥0, k ≥ 0 and σ0 ∈ R.

2. Discrete moment averaged over a family of L-functions at a given point.

Estimate ∑
f∈F
|L(i)(s0, f)|k

where i ∈ Z≥0, k ≥ 0 and s0 ∈ C.

3. Discrete moment of a fixed L-function averaged over a set of complex numbers.

Estimate
N∑
j=1

|L(i)(sj , f)|k

where i ∈ Z≥0, k ≥ 0 and {sj} is a complex sequence.

7



1.2. MOMENTS OF L-FUNCTIONS.

We remark that in some situations we may prefer the problems without the sign of absolute

value. In Chapters 2 and 3 we study several problems related to Problem (2). Namely we

study moments of quadratic Dirichlet L-functions and moments of quadratic twists of modular

L-functions. On the other hand, some examples for Problem (1) and (3) will be given in

Subsection 1.2.2: continuous moments of ζ(s) and discrete moments of ζ ′(ρ).

1.2.1 Conjectures.

The field of moments of L-functions has attracted many mathematicians and many fruitful

results have been given in this field. One of many interesting problems in this field is to establish

asymptotic formulae for the moments of various families of L-functions. However, only a few

moments of L-functions have been asymptotically established. Fortunately, we have nice con-

jectures for moments of L-functions. In this section, we introduce two methods that are usually

used to formulate conjectures: the random matrix theory [62, 63] by Keating and Snaith, and

the recipe method [17] by Conrey, Farmer, Keating, Rubinstein and Snaith. We should remark

that the method of multiple Dirichlet series (see Diaconu-Goldfeld-Hoffstein [25]), which we do

not plan to mention in detail here, is another very powerful tool for making conjectures, as well

as giving rigorous proofs.

Symmetries.

There is a surprisingly close connection between the zeros of L-functions and the eigenvalues

of characteristic polynomials of matrices in random matrix theory. This was first observed in

a conversation between Dyson and Montgomery at a tea party in Princeton, where they found

[76] that the pair correlation of the nontrivial zeros of ζ(s) agrees with the pair correlation of

eigenvalues of large random Hermitian matrices. This discovery was strengthened by Odlyzko

[83] via a profound numerical study.

Later Katz and Sarnak [60, 61] observed that the low-lying zeros within a family of L-

functions follow the statistics of the eigenvalues near 1 of characteristic polynomials of the

matrix ensemble associated to this family. The possible matrix groups are: the unitary group

U(N), the orthogonal group O(N) and the symplectic group USp(N) (see definitions in Remark

1.1). Katz and Sarnak proposed a classification for families of L-functions, which consists of

unitary family, symplectic family, even orthogonal family and odd orthogonal family, according

8



1.2. MOMENTS OF L-FUNCTIONS.

to their associated symmetry types in random matrix theory. The following table gives several

examples for each symmetry type.

Table 1.1: Examples for different symmetry types

Symmetry type Examples∫ T
0 |ζ(1

2 + it)|2kdt;
Unitary

∑
χ is primitive modulo q |L(1

2 , χ)|k;∑
0<γ≤T

ζ( 1
2

+iγ)=0

|ζ ′(1
2 + iγ)|k

Symplectic
∑

d fund. disc.
0<d≤X

L(1
2 , χd)

k∑
f∈H2(q) |L(1

2 , f)|k, where

Even orthogonal H2(q) is a basis of Hecke new-forms of weight 2 and level q.∑
d fund. disc.

0<d≤X
L(1

2 , f ⊗ χd)
k, where

Odd orthogonal f is a holomorphic primitive cuspidal eigenform.

Remark 1.1. The unitary group, U(N), is the group of all N × N complex matrices U that

satisfy the condition UU † = IN , where U † denotes the complex transpose of U , and IN is the

N ×N identity matrix.

The symplectic group, USp(N), is the group of all N × N unitary matrices S that satisfy

the condition SJSt = J , where

J =

 0 IN

IN 0

 ,
and St means the transpose of S.

The orthogonal group, O(N) is the group of all N × N real matrices O that satisfy the

condition OOt = IN .

Random matrix theory conjectures.

It can be conjectured (see Conrey and Farmer [16]) that

1

Q∗
∑
f∈F

c(f)≤Q

V (L(1
2 , f))k ∼ gk

a(k)

Γ(1 +B(k))
(logQA)B(k), (1.1)

where V (x) depends on the symmetry type, A is a symmetry-dependent constant, c(f) is the

conductor of f and Q∗ is the number of f with c(f) ≤ Q. Here gk and B(k) are only determined

by the symmetry type of the family whereas a(k) is an arithmetic factor which depends on the

9



1.2. MOMENTS OF L-FUNCTIONS.

specific family involved. We note (1.1) are discrete moments and continuous moments can be

formulated in a similar manner.

The values of ak can be conjectured by an arithmetic method. The difficulty mainly lies

in determining gk. The precise values of gk were predicted by Keating and Snaith [62, 63] by

using a random matrix model, which, along with values of ak, completed the conjecture for

the leading main term in the asymptotic formula for the moments of each specific family of

L-functions. The idea of Keating and Snaith is to suggest the moments of L-functions in a

family are comparable to the moments of the characteristic polynomials of random matrices

corresponding to this family. For instance, for moments of the Riemann zeta function (the idea

is applied to other families as well), Keating and Snaith considered the characteristic polynomial

Z(U, θ) of a matrix U in the group U(N):

Z(U, θ) =

N∏
n=1

(
1− ei(θn−θ)

)
,

where eiθn , n = 1, 2, · · · , N are eigenvalues of U . Then they computed the following s-th (s is a

complex number) moment of characteristic polynomials of U(N):

〈|Z|s〉U(N) :=
1

(2π)NN !

∫ 2π

0
· · ·
∫ 2π

0
dθ1 · · · dθN

∏
1≤j<m≤N

∣∣∣eiθj − eiθm∣∣∣2
×

N∏
n=1

∣∣∣(1− ei(θn−θ)
)∣∣∣s .

The above complicated integral can be simplified by the Selberg integral. Indeed, one can prove

lim
N→∞

1

N s2
〈|Z|s〉U(N) =

G2(1 + s)

G(1 + 2s)
,

where G(s) is defined in (1.3). By comparing the above asymptotic formula with the main

term for the moments of the Riemann zeta function and letting N = log T
2π , Keating-Snaith

conjectured precise values for gk as follows.

Conjecture 1.2 (Keating-Snaith). For any real k > 0,

∫ T

0
|ζ(1

2 + it)|2kdt ∼ gkak
(k2)!

T (log T )k
2
,

10



1.2. MOMENTS OF L-FUNCTIONS.

where

gk := (k2)!
G2(1 + k)

G(1 + 2k)
,

and

ak :=
∏
p

(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m+ k)

m!Γ(k)

)2

p−m. (1.2)

Here G is the Barnes G-function defined by

G(z + 1) = (2π)
z
2 exp(−1

2(z2 + γz2 + z))

∞∏
n=1

(
1 +

z

n

)n
e−z+

z2

2n (1.3)

for all z ∈ C.

Conjectures by the recipe method.

For integral moments, Conrey, Farmer, Keating, Rubinstein and Snaith [17] proposed the

recipe method which successfully refined the conjecture of Keating and Snaith by obtaining

lower-order main terms. The heuristic of their method (called recipe method) is to evaluate the

contribution from diagonal terms, and assume certain off-diagonal terms, which are (relatively)

complicated, cancel out.

For example, for the 2k-th moment of the Riemann zeta function, we define the following

function

Z(s, α) := ζ(s+ α1) · · · ζ(s+ αk)ζ(1− s− αk+1) · · · ζ(1− s− α2k). (1.4)

Here αi are shifts which are very small, and α = (α1, . . . , α2k). Our goal is to heuristically

evaluate ∫ ∞
−∞

Z(1
2 + it, α)g(t)dt,

where g(t) is a suitable weight function. Note that letting αi → 0 in the above gives us exactly

the 2k-th (weighted) moment of the Riemann zeta function. For each zeta function, we use the

approximate functional equation

ζ(s) =
∑
m

1

ms
+ χ(s)

∑
n

1

n1−s + remainder. (1.5)

11



1.2. MOMENTS OF L-FUNCTIONS.

Here

χ(s) := πs−
1
2

Γ(1−s
2 )

Γ( s2)
.

It satisfies

χ(s) =

(
t

2π

) 1
2
−s
eit+

π
4
i

(
1 +O

(
1

t

))
.

Inserting (1.5) into (1.4) and multiplying out Z(s, α), we obtain 22k terms. We only keep those

terms in which the product of χ-factors is not oscillating rapidly. For instance, an obvious

non-oscillating term is the one obtained by always using the “first part” of the approximate

functional equation of each zeta factor of Z(s, α) in when expanding Z(s, α). Note this term

does not have any χ-factors.

Based on the above philosophy, along with a very delicate combinatorial computation, Con-

rey, Farmer, Keating, Rubinstein and Snaith made the following conjecture for all integral

moments of the Riemann zeta function.

Conjecture 1.3 (Conrey, Farmer, Keating, Rubinstein and Snaith). For k ∈ N,

∫ T

0
|ζ(1

2 + it)|2kdt = TPk2(log T ) +O(T
1
2

+ε),

where Pk2(x) is a polynomial of degree k2 that can be computed explicitly.

1.2.2 Historical results.

Here we provide historical results of three families of L-functions that have been broadly

investigated. This section may not cover all the existing results because there were so many

results in the past and new results keep coming out constantly.

Moments of the Riemann zeta function.

One of the famous problems in the theory of L-functions is the study of continuous moments

of the Riemann zeta function. Let k > 0 be real. Let

Ik(T ) :=

∫ T

0
|ζ(1

2 + it)|2kdt

12



1.2. MOMENTS OF L-FUNCTIONS.

denote the 2k-th moment of the Riemann zeta function. We introduce this moment here in

order to give an example for Problem (1) in Section 1.2 while we do not study this problem in

our thesis.

Hardy and Littlewood [39] studied Ik(T ) by proving

I1(T ) ∼ T log T.

Ingham [52] refined this result to

I1(T ) = TP1(log T ) +O(T
1
2

+ε), (1.6)

where P1(x) is a linear polynomial. The best error for (1.6) up to date is O(T
1515
4816

+ε) due to

Bourgain and Watt [7]. Previously Watt [106] proved the error O(T
131
416 (log T )

32587
8320 ). Moreover,

the fourth moment was obtained by Ingham [52],

I2(T ) =
T

2π2
(log T )4 +O(T (log T )3).

It was improved to

I2(T ) = TP4(log T ) +O(T
7
8

+ε)

by Heath-Brown [45], where P4(x) is a polynomial of degree 4. The sharpest error term now is

O(T
2
3

+ε) due to Zavorotnyi [109].

In spite of many attempts, computing higher moments of the Riemann zeta function seems

beyond current techniques. However, many exciting conjectures have been established. Conrey

and Ghosh conjectured [18] that

I3(T ) ∼ 43a3

9!
T (log T )9.

Conrey and Gonek [19] conjectured that

I4(T ) ∼ 24024a4

16!
T (log T )16

13



1.2. MOMENTS OF L-FUNCTIONS.

for certain precise constants a3, a4 (see values of them in (1.2)). The conjectures of Conrey-

Ghosh and Conrey-Gonek are maded by number theoretic techniques. Generally, Keating and

Snaith [63] made the conjecture for the leading main term of the 2k-th moment as shown in

Conjecture 1.2, and, Conrey, Farmer, Keating, Rubinstein and Snaith [17] refined this conjecture

via obtaining other principal lower-order main terms (see Conjecture 1.3).

We also have many results on the lower and upper bounds of the moments. The lower bound

Ik(T )� T (log T )k
2

was established by Ramachandra [89] for all positive integers k, by Heath-Brown [46] for all

positive rational numbers k, and under RH, by Ramachandra [88] for all positive real numbers

k. In the other direction, for real 0 ≤ k ≤ 2, assuming RH, Ramachandra [89, 90] and Heath-

Brown [46, 47] independently proved that

Ik(T )� T (log T )k
2
.

For all positive real numbers k, assuming RH, Soundararajan [98] proved that

Ik(T )� T (log T )k
2+ε.

Building on Soundararajan’s work and developing a number of new techniques, under RH,

Harper [40] proved that for all positive real numbers k,

Ik(T )� T (log T )k
2
.

Recently, Heap-Radziwi l l-Soundararajan [44] proved unconditionally that for any real number

k with 0 ≤ k ≤ 2,

Ik(T )� T (log T )k
2
.

14



1.2. MOMENTS OF L-FUNCTIONS.

Moments of quadratic Dirichlet L-functions.

The family of quadratic Dirichlet L-functions has been extensively studied. Let k > 0 and

∑[

|d|≤X

L(1
2 , χd)

k

denote the k-th moment of quadratic Dirichlet L-functions, where
∑[

means the sum over

fundamental discriminants. This is an example for Problem (2) in Section 1.2. This moment is

related to the Chowla’s conjecture that will be discussed in Subsection 1.2.3.

Jutila proved that

∑[

0<d≤X
L(1

2 , χd) =
H(1)

4ζ(2)
X

[
log

X

π
+

Γ′

Γ

(
1

4

)
+ 4γ − 1 + 4

H ′

H
(1)

]
+O(X

3
4

+ε),

where

H(s) :=
∏
p

(
1− 1

(p+ 1)ps

)
,

and

∑[

0<d≤X
L(1

2 , χd)
2 =

c

ζ(2)
X(logX)3 +O(X(logX)

5
2

+ε),

where

c =
1

48

∏
p

(
1− 4p2 − 3p+ 1

p4 + p3

)
.

Soundararajan established the third moment by proving

∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

3 = XQ6(logX) +O(X
11
12

+ε),

where Q6(x) is an explicit polynomial of degree 6, and
∑∗

means the sum over square-free

integers. Note that the above result is for χ8d instead of χd. The reason is to focus on the main

methods and techniques. The case of χd may require further techniques and computation based

on the argument for χ8d.

Keating-Snaith [62] made the following conjecture.

15



1.2. MOMENTS OF L-FUNCTIONS.

Conjecture 1.4 (Keating-Snaith). For any positive real number k,

∑∗

0<d≤X
(d,2)=1

L
(

1
2 , χ8d

)k ∼ 4ak
π2

G(k + 1)
√

Γ(k + 1)√
G(2k + 1)Γ(2k + 1)

X(logX)
k(k+1)

2 ,

where G(z) is the Barnes G-function, and

ak := 2−
k(k+2)

2

∏
(p,2)=1

(1− 1
p)

k(k+1)
2

1 + 1
p

(
(1 + 1√

p)−k + (1− 1√
p)−k

2
+

1

p

)
.

Conrey, Farmer, Keating, Rubinstein and Snaith [17] gave a more precise conjecture, includ-

ing all other principal lower order terms:

Conjecture 1.5 (Conrey, Farmer, Keating, Rubinstein and Snaith). For any k ∈ N,

∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

k = XQ k(k+1)
2

(logX) + o(X),

as X →∞ where Qn(x) is an explicit polynomial of degree n.

In this thesis, we proved Conjecture 1.4 for the the case k = 4 in Chapter 2 (see Theorem

2.1) under the generalized Riemann hypothesis using the method of Soundararajan and Young

[99]. For more details, the readers are referred to the introduction part of Chapter 2.

Discrete moments of ζ ′(ρ).

Gonek [36] and Hejhal [49] introduced the following 2k-th discrete moment of ζ ′(s) given by

Jk(T ) :=
∑

0<γ≤T
|ζ ′(ρ)|2k,

where k ∈ R, and the sum runs over the nontrivial zeros ρ = β+ iγ of ζ(s). Note the case k < 0

is also very interesting. These moments provide an example of the type Problem (3) in Section

1.2. One reason the moments Jk(T ) are studied is that they are related to the size of Merten’s

function M(x) defined by

M(x) :=
∑
n≤x

µ(n).

16



1.2. MOMENTS OF L-FUNCTIONS.

For example, Gonek (unpublished) and Ng [81] proved that

M(x)� x
1
2 (log x)

3
2 ,

assuming RH and the bound J−1(T ) � T . Furthermore, Ng [81] has shown the same assump-

tions imply that M(ey)e−
y
2 possesses a limiting distribution.

Assuming RH, Gonek [35] showed that

J1(T ) ∼ T

24
log4

(
T

2π

)
.

Ng [82] considered the fourth moment and proved that J2(T ) � T (log T )9. More precisely,

he showed the inequality

c1

π3
TL9

(
1 +O

(
logL

L

))
≤ J2(T ) ≤ c2

π3
TL9

(
1 +O

(
logL

L

))
,

where L := log
(
T
2π

)
, c1 = 0.0000687 · · · , and c2 = 0.0051561 · · · .

The asymptotic formulae for the fourth and higher moments are still open problems. Inde-

pendently, Gonek [36] and Hejhal [49] conjectured that

Jk(T ) � T (log T )(k+1)2 .

By modelling characteristic polynomials of random matrices, Hughes, Keating and O’Connell

[51] refined this conjecture. They predicted that for any k > −3
2 ,

Jk(T ) ∼ c(k)a(k)
T

2π
log(k+1)2

(
T

2π

)
,

where

c(k) :=
G2(k + 2)

G(2k + 3)
,

a(k) :=
∏
p

(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m+ k)

m!Γ(k)

)2

p−m.

17
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Based on the ratios conjecture, Conrey and Snaith [20] proved that

J2(T ) = T P̃9

(
log

T

2π

)
+O(T

1
2

+ε),

where P̃9(x) is a polynomial of degree 9.

Many results on lower and upper bounds of the moments have been obtained. For any k ∈ R,

under RH, Milinovich [73] showed that

Jk(T )� T (log T )(k+1)2+ε.

This result was improved recently by Kirila [65] using Harper’s method [40] via showing assuming

RH, for k ≥ 1
2 ,

Jk(T )� T (log T )(k+1)2 .

On the other hand, under GRH, Milinovich and Ng [75] showed that for any k ∈ N,

Jk(T )� T (log T )(k+1)2 .

Gao [32] very recently obtained that under RH, for any real k > 0,

Jk(T )� T (log T )(k+1)2 .

For negative moments, Gonek [36] proved that

J−1(T )� T

assuming RH and the simplicity of the zeros of ζ(s). The RH condition was removed by Garaev

and Sankaranarayanan [33]. Milinovich and Ng [74] obtained a precise inequality

J−1(T ) ≥
(

3

2π3
− ε
)
T,

assuming RH and the simplicity of the zeros of ζ(s). With the same assumption, Heap, Li and

18



1.2. MOMENTS OF L-FUNCTIONS.

Zhao [43] proved that for any rational k ≥ 0,

J−k(T )� T (log T )(k−1)2 .

1.2.3 Applications.

In this section, we give four applications of bounds and asymptotics for moments of L-

functions. There are applications to the size of L-functions (Lindelöf hypothesis), the nonvan-

ishing results of L-functions, the Birch and Swinnerton-Dyer conjecture, and generalized Fermat

equations.

Lindelöf hypothesis.

The Lindelöf hypothesis states that for any ε > 0,

ζ(1
2 + it)�ε t

ε.

Hardy and Littlewood observed that the Lindelöf hypothesis is equivalent to the following upper

bound ∫ T

0
|ζ(1

2 + it)|2kdt�k,ε T
1+ε,

where k ∈ N. See details in Titchmarsh [101, Theorem 13.2]. This relation enables us to

convert the study of the Lindelöf hypothesis to the research on the moments of the Riemann

zeta function. This method has also been widely used in obtaining subconvexity bounds for

more general L-functions. For example, see Duke-Friedlander-Iwaniec [27] and Kowalski-Michel-

VanderKam [68].

Nonvanishing of Dirichlet L-functions.

It is a hard open problem in analytic number theory to show that L
(

1
2 , χ
)
6= 0 for all

primitive characters χ. In 1965, Chowla [14] conjectured this when χ is a quadratic character.

Assuming GRH, Katz and Sarnak (unpublished) and Özlük-Snyder [84] independently proved

L
(

1
2 ,
(
d
·
))
6= 0 for at least 15

16 of the fundamental discriminants |d| ≤ X. By establishing the

mollified first and second moments of quadratic Dirichlet L-functions, Soundararajan [97] showed

that there are at least 87.5% of the odd square-free integers d ≥ 0 such that L
(

1
2 ,
(

8d
·
))
6= 0.
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In the other direction, Balasubramanian and K. Murty [4] proved that a positive proportion

(though very small) of Dirichlet L-functions in the family of primitive characters modulo prime

modulo q do not vanish at s = 1
2 . Iwaniec and Sarnak [56] refined this by showing L(1

2 , χ) 6= 0

for at least 33.33% of the primitive characters modulo integral q. Bui [9] improved this result

further to 34%. Khan and Ngo [64] later refined this to 37.49% for prime modulo p.

Birch and Swinnerton-Dyer conjecture.

Let E be a modular elliptic curve with root number 1 over Q. In a celebrated paper [66],

Kolyvagin proved that if the Hasse-Weil L-function L(s, E) does not vanish at the central point

s = 1
2 , then the group of rational points of E is finite, provided that there exists a quadratic

character χd with d < 0 such that L(s, E ⊗ χd) has a simple zero at the central point and

such that χd(p) = 1 for every p that divides the conductor of E. Bump-Friedberg-Hoffstein [12]

and Murty-Murty [79] independently proved L′(1
2 , E ⊗ χd) 6= 0 for infinitely many fundamental

discriminants d with d < 0. (See the definition of L′(1
2 , E) in (3.1).) These results successfully

verify the assumption in Kolyvagin’s theorem. Their methods are to investigate the following

types of moments: ∑[

|d|≤X

cdL
′(1

2 , E ⊗ χd)

where cd are complex numbers. By establishing an asymptotic formula for such sums, they are

able to deduce the required nonvanishing result in Kolyvagin’s theorem. The readers are referred

to Chapter 3 and also Ireland-Rosen [53, Chapter 20] for further details.

Generalized Fermat equations.

Moments of L-functions and nonvanishing of L-functions have applications to generalized

Fermat equations. Ellenberg showed a connection between the generalized Fermat equation

x4 + y2 = zp (1.7)

and the nonvanishing of certain modular L-functions (see Ellenberg [28, p. 765]). Based on

this he showed that (1.7) has no integral solutions with gcd(x, y, z) = 1 for p ≥ 211. Bennett,

Ellenberg and Ng [5] showed that (1.7) has no integral solutions with gcd(x, y, z) = 1 for p ≥ 4.
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The nonvanishing result is obtained by computing the moment of a certain family of modular

L-functions.

1.2.4 Original results.

We now mention the original results in this thesis on moments of L-functions. In Chapter 2,

we prove an asymptotic formula for the fourth moment of quadratic Dirichlet L-functions under

the assumption of the generalized Riemann hypothesis. Unconditionally, we prove a sharp lower

bound for this family of L-functions. Our results confirm the conjecture of Keating and Snaith

for the case k = 4, assuming the generalized Riemann hypothesis. The argument is largely

based on Soundararajan and Young’s method [99] for the second moment of quadratic twists of

modular L-functions and Soundararajan’s work [97] on the third moment of quadratic Dirichlet

L-functions. More precisely, we use the argument of Soundararajan and Young [99] to shorten

the length of the Dirichlet polynomial involved via establishing the shifted version of the fourth

moment of quadratic Dirichlet L-functions. While the off-diagonal terms are bounded as an

error term in Soundararajan and Young’s work, these terms contribute to a main term in our

consideration. We use techniques from Soundararajan’s article [97] to analyze the off-diagonal

terms, which is the main new ingredient of our work. We obtain that

Theorem 1.6 (Chapter 2). Assume GRH for L(s, χd) for all fundamental discriminants d. For

any ε > 0, we have

∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

4 =
a4

26 · 33 · 52 · 7 · π2
X(logX)10 +O

(
X(logX)9.75+ε

)
.

Here
∑∗

denotes the summation over square-free integers, and a4 is a constant defined in (2.4).

We also prove a sharp lower bound unconditionally. This was also stated without proof by

Rudnick and Soundararajan [92].

Theorem 1.7 (Chapter 2). Unconditionally, we have

∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

4 ≥
( a4

26 · 33 · 52 · 7 · π2
+ o(1)

)
X(logX)10.
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Gao [31] recently established an asymptotic for the fourth moment of quadratic Hecke L-

functions in the Gaussian field with using some of techniques for the above theorems.

Another original result in this thesis concerns the family of quadratic twists of modular

L-functions. In Chapter 3, We obtain an error term of size O(X
1
2

+ε) for the smoothed first

moment of quadratic twists of modular L-functions. A similar argument allows us to give a

comparable result for the smoothed first moment of the first derivative of quadratic twists of

modular L-functions. The main idea we use is a recursive method. This method was first used

by Heath-Brown [48] to get upper bounds for mean values of sums of real characters, and later

by Young [107, 108] to study asymptotics for the first and third moments of quadratic Dirichlet

L-functions. Our result is analogous to Sono’s work [96] where he considered the second moment

of quadratic Dirichlet L-functions. Note that L(s, χd)
2 is analogous to L(s, f ⊗χd). These each

are degree two L-functions as described in Section 1.1. Many of the same techniques apply, for

example, approximate functional equation, Poisson summation formula, etc. We prove that

Theorem 1.8 (Chapter 3). Let κ ≡ 0 (mod 4) and κ 6= 0. Let Φ(x) : (0,∞)→ R be a smooth,

compactly supported function. We have

∑∗

(d,2)=1

L(1
2 , f ⊗ χ8d)Φ( dX ) =

8Φ̃(1)

π2
L(1, sym2 f)Z∗(0)X +O(X

1
2

+ε),

Here Z∗ is defined via (3.5) and the paragraph below Theorem 3.4, and Φ̃ is the Mellin transform

of Φ defined by

Φ̃(s) :=

∫ ∞
0

Φ(x)xs−1dx.

We also establish an asymptotic for the first moment of the derivative.

Theorem 1.9 (Chapter 3). Let κ ≡ 2 (mod 4). Let Φ(x) : (0,∞) → R be a smooth, compactly

supported function. We have

∑∗

(d,2)=1

L′(1
2 , f ⊗ χ8d)Φ( dX ) =

8Φ̃(1)

π2
L(1, sym2 f)Z∗(0)X

[
logX + 2

L′(1, sym2 f)

L(1, sym2 f)
+
Z∗′(0)

Z∗(0)

+ log
8

2π
+

Γ′(κ2 )

Γ(κ2 )
+

Φ̃′(1)

Φ̃(1)

]
+O(X

1
2

+ε).

We remark that a similar argument can lead to the first moment of higher derivatives of twised
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modular L-functions. The above two theorems improve the previous results (up to multiplying

by a smoothed function): O(X(logX)1−ρ), where ρ is an explicit positive real number, of Murty-

Murty [79], O(X
13
14

+ε) of Iwaniec [54], Stefanicki [100, Theorem 3] and Luo-Ramakrishnan [71,

Proposition 3.6], and O(X
7
8

+ε) of Soundararajan-Radziwi l l [87, Proposition 2]. Recall that such

results were used in completing Kolyvagin’s work on Birch and Swinnerton-Dyer conjecture as

described in Subsection 1.2.3.

1.3 Counting zeros of L-functions.

In this thesis we also prove results about the zeros of L-functions. Let us start with the

Riemann zeta function as an example in this section. Zeros of the Riemann zeta function

are intimately related to prime numbers via Riemann’s explicit formula (see (1.8)). The most

important conjecture concerning zeros of the Riemann zeta function is the Riemann hypothesis.

It asserts that all non-trivial zeros of ζ(s) lie on the critical line Re(s) = 1
2 . Similarly, it is widely

believed that all non-trivial zeros of a general L-function also lie on the critical line. Another

old problem related to zeros is to give a precise formula for the number of zeros of an L-function

in a box.

The following definitions are the number of zeros in a box of two L-functions: the Riemann

zeta function ζ(s) and the Dedekind zeta function ζK(s) associated to a number field K. Set

N(T ) := #{ρ = β + iγ ∈ C | ζ(ρ) = 0, 0 < β < 1, 0 < γ ≤ T},

NK(T ) := #{ρ = β + iγ ∈ C | ζK(ρ) = 0, 0 < β < 1, |γ| ≤ T}.

Note N(T ) = 1
2NK(T ) when K = Q. In Chapter 4, we shall prove a precise explicit asymptotic

formula for NK(T ).

1.3.1 Motivation and a brief history.

The Tchebychev ψ-function is

ψ(x) =
∑
n≤x

Λ(n),

where Λ(n) = log p if n = pk for some k ≥ 0, otherwise, Λ(n) = 0. The prime number theorem

is equivalent to the asymptotic ψ(x) ∼ x. It was independently proven by Hadamard [38] and
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1.3. COUNTING ZEROS OF L-FUNCTIONS.

de la Vallée Poussin [23, 24]. The basic idea of the proof is to express ψ as a sum over the zeros

of ζ(s). In fact, for x /∈ N,

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x2), (1.8)

where ρ runs through all non-trivial zero of ζ(s). A version of this formula was stated in Rie-

mann’s memoir and later proved by von Mangoldt. In order to prove the prime number theorem

one actually requires a version of (1.8) where the sum over zeros is truncated to
∑
|γ|≤T

xρ

ρ with

T > 0. Such a formula can be obtained via Perron’s formula. Thus estimates for ψ(x) can

be deduced from bounds for
∑
|γ|≤T

xρ

ρ . Bounds for this latter sum may be deduced from the

zero-free region for ζ(s) and the size of N(T ).

In his memoir, Riemann stated without proof that

N(T ) =
T

2π
log

T

2πe
+O(log T ), (1.9)

and it was proved by von Mangoldt. The equation (1.9) is crucial for the establishment of

the prime number theorem. Naturally, explicit versions for (1.9) are very useful in establish-

ing explicit versions of the prime number theorem (see Faber-Kadiri [29] and Trudgian [104]).

Moreover, the explicit version is also applied to sums of zeros of the Riemann zeta function (see

Brent-Platt-Trudgian [8]) and the full proof of the ternary Goldbach problem (see Helfgott [50]).

Explicit versions of (1.9) have been established. Namely, there exist positive constants

C1, C2, C3 such that for T ≥ T0 ≥ e,

∣∣∣N(T )− T

2π
log
( T

2πe

)∣∣∣ ≤ C1 log T + C2 log log T + C3. (1.10)

Below in Table 1.2, we list a table that consists of historical results for the values of C1, C2, and

C3.

The first explicit result for NK(T ) was established by Kadiri and Ng [58]. They showed that

for T ≥ 1, one has

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)∣∣∣ ≤ D1(log dK + nK log T ) +D2nK +D3, (1.11)
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1.3. COUNTING ZEROS OF L-FUNCTIONS.

Table 1.2: Explicit bounds for N(T ) in (1.10)

C1 C2 C3 T0

Von Mangoldt [105] (1905) 0.4320 1.9167 13.0788 28.5580
Grossmann [37] (1913) 0.2907 1.7862 7.0120 50

Backlund [3] (1918) 0.1370 0.4430 5.2250 200
Rosser [91] (1941) 0.1370 0.4430 2.4630 2

Trudgian [102] (2014) 0.1120 0.2780 3.3850 e
Hasanalizade, S. and Wong [42] 0.1038 0.2573 9.3675 e

with admissible triple (D1, D2, D3) = (0.506, 16.950, 7.663), where nK and dK are the degree

and absolute discriminant of K, respectively. They also mentioned that D1 could be taken as

small as (π log 2)−1 ≈ 0.459 at expense of larger D2 and D3. This was improved by Trudgian

[103] who showed (D1, D2, D3) = (0.316, 5.872, 3.655) is valid, and the constant D1 in (1.11) can

be made as small as 0.247 (with larger D2 and D3). Unfortunately, as pointed out by Bennett,

Martin, O’Bryant, and Rechnitzer [6], an error appeared in [103]. It will be fixed and also

improved in Chapter 4 by using the method of Bennett, Martin, O’Bryant and Rechnitzer [6],

and Kadiri and Ng [58], and Trudgian [103].

Our new results on NK(T ) shall be described precisely in the next subsection.

1.3.2 Original results.

We show in Chapter 4 that

Theorem 1.10 (Hasanalizade, S. and Wong, Chapter 4). Given a number field K of degree nK

and with absolute discriminant dK , for any T ≥ 1, we have

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)∣∣∣ ≤ 0.228(log dK + nK log T ) + 23.108nK + 4.520. (1.12)

The above theorem was used in the work of Kadiri-Wong [59] and the Master’s thesis of Das

[21]. The techniques of proofs of the above theorem includes Jensen’s formula from complex

analysis, bounds for the Riemann zeta function/Dedekind zeta functions, and Backlund’s trick.

Following a similar manner of the proof for Theorem 1.10, in a following paper [42] joint

with Hasanalizade and Wong, we study N(T ) and prove that
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Theorem 1.11 (Hasanalizade, S. and Wong). For any T ≥ e, we have

∣∣∣∣N(T )− T

2π
log

(
T

2πe

)∣∣∣∣ ≤ 0.1038 log T + 0.2573 log log T + 9.3675. (1.13)

See Table 1.2 for a comparison to historical results. Note that the estimate (1.13) of the

Riemann zeta function is better than (1.12) of Dedekind zeta functions. (The equation (1.13)

needs to be multiplied by a factor 2 when doing the comparison.) The reason is that for the

case of the Riemann zeta function, we have better upper bounds for ζ(1
2 + it) and ζ(1 + it) in

the literature while only trivial (convexity) bounds are available in the case of Dedekind zeta

functions.

1.4 Contributions of Authors

The Chapters 2, 3, 4 are slightly modified versions of the following three papers [41, 95, 94].

• The fourth moment of quadratic Dirichlet L-functions, Math. Z., 298, 713–745, 2021.

arXiv:1907.01107

• The first moment of quadratic twists of modular L-functions, submitted. arXiv:2103.12284

• (with Elchin Hasanalizade and Peng-Jie Wong) Counting zeros of Dedekind zeta functions,

to appear in Math. Comp., arXiv:2102.04663

Chapter 4 is based on collaborations with Elchin Hasanalizade and Peng-Jie Wong in the article

[41]. All authors contributed equally to this project. Specifically, I made significant contribu-

tions to Subsection 4.2.1, Lemma 4.11, Proposition 4.17, Section 4.4 and I prepared the Maple

computation file. Furthermore, all authors proofread the whole article.
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Chapter 2

The fourth moment of quadratic Dirichlet
L-functions

2.1 Introduction.

Let χd =
(
d
·
)

be a real primitive Dirichlet character modulo d given by the Kronecker symbol,

where d is a fundamental discriminant. The k-th moment of quadratic Dirichlet L-functions is

∑[

0<d≤X
L(1

2 , χd)
k, (2.1)

where
∑[

denotes the sum over fundamental discriminants, and k is a positive real num-

ber. One great motivation to study (2.1) comes from Chowla’s conjecture, which states that

L(1
2 , χd) 6= 0 for all fundamental discriminants d. The current best result toward this conjecture

is Soundararajan’s celebrated work [97] in 2000, where it was proven that L(1
2 , χ8d) 6= 0 for at

least 87.5% of the odd square-free integers d ≥ 0. The key to the proof is the evaluation of

mollified first and second moments of quadratic Dirichlet L-functions.

In 2000, using a random matrix model, Keating and Snaith [62] conjectured that for any

positive real number k,

∑[

|d|≤X

L(1
2 , χd)

k ∼ CkX(logX)
k(k+1)

2 , (2.2)

where Ck are explicit constants. Various researchers have studied versions of these moments

summed over certain subsets of the fundamental discriminants. For instance, in (2.1) we consider

positive fundamental discriminants. However, there are no difficulties in also studying negative

fundamental discriminants. Some articles even consider characters of the form χ8d, where d are

odd positive square-free integers. The main reason researchers study these special cases, rather
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2.1. INTRODUCTION.

than consider all fundamental discriminants, is to focus on the methods and techniques. It is

possible to establish results for all fundamental discriminants, but this would involve more cases

that need to be studied. The conjecture analogous to (2.2) for characters of the form χ8d, which

can be established by using Keating and Snaith’s method [62], was obtained in Andrade and

Keating’s paper [2, Conjecture 2]. For any positive real number k, it was conjectured that

∑∗

0<d≤X
(d,2)=1

L
(

1
2 , χ8d

)k ∼ 4ak
π2

G(k + 1)
√

Γ(k + 1)√
G(2k + 1)Γ(2k + 1)

X(logX)
k(k+1)

2 , (2.3)

where
∑∗

denotes the sum over square-free integers, G(z) is the Barnes G-function, and

ak := 2−
k(k+2)

2

∏
(p,2)=1

(1− 1
p)

k(k+1)
2

1 + 1
p

(
(1 + 1√

p)−k + (1− 1√
p)−k

2
+

1

p

)
. (2.4)

In this chapter, we prove the conjecture in (2.3) for k = 4 assuming the generalized Riemann

hypothesis (GRH).

Theorem 2.1. Assume GRH for L(s, χd) for all fundamental discriminants d. For any ε > 0,

we have ∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

4 =
a4

26 · 33 · 52 · 7 · π2
X(logX)10 +O

(
X(logX)9.75+ε

)
.

The proof of Theorem 2.1 largely follows Soundararajan and Young’s paper [99] in 2010 and

Soundararajan’s paper [97] in 2000. In [99], Soundararajan and Young proved an asymptotic

formula for the second moment of quadratic twists of a modular L-function, obtaining the

leading main term. Experts believed that the methods and techniques in [99] could be used to

evaluate the fourth moment of quadratic Dirichlet L-functions. Motivated by this expectation,

we established Theorem 2.1. In fact, Theorem 2.1 may be viewed as a version of [99, Theorem 1.2]

where f is an Eisenstein series. The main difference between this result and [99] is that the off-

diagonal terms (see just after (2.23) for a precise definition) contribute to the main term, whereas

in [99] they are part of the error term. We use techniques from [97, Sections 5.2, 5.3] to evaluate

the off-diagonal terms and this is the main new input. These terms may be written as a certain

multiple complex integral. One of the difficulties in evaluating this integral is that the integrand
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2.1. INTRODUCTION.

has high order poles, and this makes the calculation more intricate. It should be noted that

in 2017 Florea [30] proved an asymptotic formula for the fourth moment of quadratic Dirichlet

L-functions in the function field setting, with extra lower main terms.

Similar to [99, Theorem 1.1], we obtain an unconditional lower bound that matches the

conjectured asymptotic formula (2.3). This result was stated without proof by Rudnick and

Soundararajan [92] in 2006.

Theorem 2.2. Unconditionally, we have

∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

4 ≥
( a4

26 · 33 · 52 · 7 · π2
+ o(1)

)
X(logX)10.

We now introduce more refined conjectures for the moments of quadratic Dirichlet L-

functions and provide a brief history of related results. In 2005, Conrey, Farmer, Keating,

Rubinstein and Snaith [17] gave a more precise conjecture, including all other principal lower

order terms, ∑[

0<d≤X
L(1

2 , χd)
k = XP k(k+1)

2

(logX) + Ek(X), (2.5)

where k is a positive integer, Pn(x) is an explicit polynomial of degree n, and Ek(X) = ok(X).

For characters of the form χ8d, their conjecture may be written as

∑∗

0<d≤X
(d,2)=1

L(1
2 , χ8d)

k = XQ k(k+1)
2

(logX) + Êk(X), (2.6)

where Qn(x) is another explicit polynomial of degree n, and Êk(X) = ok(X).

In 1981, Jutila [57] established (2.5) for k = 1 with E1(X) = O(X
3
4

+ε). In 1985, Goldfeld

and Hoffstein [34] improved this to E1(X) = O(X
19
32

+ε) by using multiple Dirichlet series. Their

work implies the error O(X
1
2

+ε) for a smoothed version of the sum in (2.5) when k = 1. This was

later obtained by Young [107] in 2009, using a different technique based on a recursive method

and a study of shifted moments. We remark that Alderson and Rubinstein [1] conjectured that
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2.1. INTRODUCTION.

E1(X) = O(X
1
4

+ε). In 1981, the second moment was established by Jutila [57],

∑[

|d|≤X

L(1
2 , χd)

2 = C2X(logX)3 +O
(
X(logX)

5
2

+ε
)
.

In 2000, Soundararajan [97] improved this by obtaining the full main term in (2.6), in the case

k = 2, with the power savings Ê2(X) = O(X
5
6

+ε). In 2020, Sono [96] improved this to O(X
1
2

+ε)

for a smoothed variant of Ê2(X). In [97] Soundararajan was the first to prove an asymptotic

for the third moment, obtaining Ê3(X) = O(X
11
12

+ε). In 2003, Diaconu, Goldfeld and Hoffstein

[25] improved this to E3(X) = O(X0.85···+ε) by using multiple Dirichlet series techniques. In

2013, Young [108] further improved this to O(X
3
4

+ε) for a smoothed version of Ê3(X) by using

similar techniques to [107]. Recently, in 2018, Diaconu and Whitehead [26] improved Young’s

result by showing that a smoothed version of Ê3(X) is of size cX
3
4 +O(X

2
3

+ε), for some c ∈ R.

This verified a conjecture of Diaconu, Goldfeld and Hoffstein [25] of the presence of a secondary

lower order term. Zhang [110] had previously conditionally established a secondary term of size

X
3
4 in 2005.

For the family of quadratic Dirichlet L-functions, moments higher than four have not been

asymptotically evaluated. This seems beyond current techniques. However, there are celebrated

results on upper and lower bounds of the moments. In 2006, Rudnick and Soundararajan [92]

proved the lower bound ∑[

0<d≤X
L(1

2 , χd)
k �k X(logX)

k(k+1)
2

for all even natural number k ≥ 1. In 2009, Soundararajan [98] proved under GRH that for all

positive real k, ∑[

0<d≤X
L(1

2 , χd)
k �k,ε X(logX)

k(k+1)
2

+ε. (2.7)

In 2013, Harper [40], assuming GRH, improved this to

∑[

0<d≤X
L(1

2 , χd)
k �k X(logX)

k(k+1)
2 .

The method of this chapter is largely based on the arguments and techniques in [99] and

[97]. We use the approximate functional equation for Dirichlet L-functions and then employ the
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Poisson summation formula to separate the summation into diagonal terms, off-diagonal terms,

and error terms. Both diagonal and off-diagonal terms contribute to the main term. To bound

the error terms, by following the argument in [98, 99], under GRH, we established an upper

bound for the shifted moments of quadratic Dirichlet L-functions (see Theorem 2.6).

With further effort, one might be able to heuristically obtain all the main terms that are

expected from the conjecture of Conrey et al. in (2.6). However, the computation will be

complicated. It might be simplified by considering a shifted version of the fourth moment,

analogous to the calculation in [107]. Florea considered the function field version of the fourth

moment in [30]. In her work she was able to identify all the main terms as given by a conjecture

of Andrade-Keating [2, Conjecture 5] (the function field analogue of (2.6)). By using a recursive

method, Florea obtained extra lower main terms in this case. It is possible that her techniques

may be employed to obtain additional lower main terms in Theorem 2.1, and we hope to revisit

this in future work. However, one would need to apply the approximate functional equation

for the fourth power of the L-function rather than the second power (2.10). In addition, one

would have to eliminate the use of the parameters U1, U2 in (2.15). In our work, we use the

approximate functional equation for the second power of the L-function as it is necessary to

obtain the unconditional lower bound in Theorem 2.2.

The outline of this chapter is as follows. The proof of Theorem 2.1 and 2.2 proceed simul-

taneously. In Section 2.2, we introduce some tools. In Section 2.3, we set up the evaluation

of the fourth moment. We apply the Poisson summation formula to split the fourth moment

into diagonal, off-diagonal, and error terms. We evaluate the diagonal terms and off-diagonal

terms in Section 2.4 and Section 2.5, respectively. The error terms are bounded in Section 2.6.

The proofs of Theorem 2.1 and 2.2 are completed in Section 2.7. Finally, we give the proof of

Theorem 2.6 in Section 2.8.

Notation. In this chapter we shall use the convention that ε > 0 denotes an arbitrary small

constant which may vary in different situations. For two functions f(x) and g(x), we shall

use the notation f(x) = O(g(x)), f(x) � g(x) to mean there exists a constant C such that

|f(x)| ≤ C|g(x)| for all sufficiently large x. If we write f(x) = Oa(g(x)) or f(x) �a g(x), then

we mean that the corresponding constants depend on a. Throughout the chapter, the big O
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may depend on ε.

2.2 Basic tools.

In this section, we introduce several tools that shall be used in this chapter.

2.2.1 Approximate functional equation.

For ξ > 0, define

ω(ξ) :=
1

2πi

∫
(c)
πsg(s)ξ−s

ds

s
, c > 0, (2.8)

where

g(s) := π−s

(
Γ( s2 + 1

4)

Γ(1
4)

)2

. (2.9)

Here, and henceforth,
∫

(c) stands for
∫ c+i∞
c−i∞ . It can be shown (see [97, Lemma 2.1]) that w(ξ) is

real-valued and smooth on (0,+∞), bounded as ξ near 0, and decays exponentially as ξ → +∞.

Define

A(d) :=
∞∑
n=1

τ(n)χ8d(n)√
n

ω
(nπ

8d

)
,

where τ(n) is the number of divisors of n. It was proved [97, Lemma 2.2] that for odd, positive,

square-free integers d,

L(1
2 , χ8d)

2 = 2A(d). (2.10)

2.2.2 Poisson summation formula.

The following lemma is [99, Lemma 2.2].

Lemma 2.3. Let Φ be a smooth function with compact support on the positive real numbers,

and suppose that n is an odd integer. Then

∑
(d,2)=1

(
d

n

)
Φ

(
d

Z

)
=

Z

2n

(
2

n

)∑
k∈Z

(−1)kGk(n)Φ̂

(
kZ

2n

)
,
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where

Gk(n) :=

(
1− i

2
+

(
−1

n

)
1 + i

2

) ∑
a (modn)

(a
n

)
e

(
ak

n

)
, (2.11)

and

Φ̂(y) :=

∫ ∞
−∞

(cos(2πxy) + sin(2πxy)) Φ(x)dx

is a Fourier-type transform of Φ.

The precise values of the Gauss-type sum Gk(n) have been calculated in [97, Lemma 2.3] as

follows.

Lemma 2.4. If m and n are relatively prime odd integers, then Gk(mn) = Gk(m)Gk(n). More-

over, if pα is the largest power of p dividing k (setting α =∞ if k = 0), then

Gk(p
β) =



0 if β ≤ α is odd,

φ(pβ) if β ≤ α is even,

−pα if β = α+ 1 is even,(
kp−α

p

)
pα
√
p if β = α+ 1 is odd,

0 if β ≥ α+ 2.

Here φ is the Euler totient function.

2.2.3 Smooth function.

Let Φ be a smooth Schwarz class function that is compactly supported on [1
2 ,

5
2 ], and 0 ≤

Φ(t) ≤ 1 for all t. For any integer ν ≥ 0, define

Φ(ν) := max
0≤j≤ν

∫ 5
2

1
2

|Φ(j)(t)|dt.

For any s ∈ C, define

Φ̌(s) :=

∫ ∞
0

Φ(t)t−sdt.
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Note that Φ̌(s) is a holomorphic function of s. Integrating by parts ν times gives us

Φ̌(s) =
1

(s− 1)(s− 2) · · · (s− ν)

∫ ∞
0

Φ(ν)(t)t−s+νdt.

Hence, for Re(s) < 1, we see that

Φ̌(s)�ν
3|Re(s)|

|s− 1|ν
Φ(ν). (2.12)

2.2.4 Some lemmas.

The following lemma is the sharpest upper bound up to date for the fourth moment of

quadratic Dirichlet L-functions, due to Heath-Brown [48, Theorem 2].

Lemma 2.5. Suppose σ + it is a complex number with σ ≥ 1
2 . Then

∑[

|d|≤X

|L(σ + it, χd)|4 � X1+ε(1 + |t|)1+ε.

Assuming GRH, the bound in Lemma 2.5 can be improved by the following theorem.

Theorem 2.6. Assume GRH for L(s, χd) for all fundamental discriminants d. Let z1, z2 ∈ C

with 0 ≤ Re(z1),Re(z2) ≤ 1
logX , and |Im(z1)|, |Im(z2)| ≤ X. Then

∑[

|d|≤X

|L(1
2 + z1, χd)|2|L(1

2 + z2, χd)|2 � X(logX)4+ε

(
1 + min

{
(logX)6,

1

|Im(z1)− Im(z2)|6

})
.

The proof of Theorem 2.6 is postponed to Section 2.8. Note that Section 2.8 is self-contained.

Theorem 2.6 is similar to [99, Corollary 5.1]. Indeed, the proof of it follows closely the proof of

[99, Corollary 5.1] and the argument in [98, Section 4]. Analogous results to Theorem 2.6 were

obtained by Chandee [13, Theorem 1.1] for the moments of the Riemann zeta function, and by

Munsch [78, Theorem 1.1] for the moments of Dirichlet L-functions modulo q.

We remark that Lemma 2.5 is used to bound the error terms in the proof of Theorem 2.2,

while both Lemma 2.5 and Theorem 2.6 are needed to bound the error terms in the proof of

Theorem 2.1.
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2.3 Setup of the problem.

Let Φ be a smooth function as described in Subsection 2.2.3. We consider the following

smoothed version of the fourth moment

∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ
(
d
X

)
.

Using the approximate functional equation (2.10), we have

∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ
(
d
X

)
=
∑∗

(d,2)=1

(
A8d(

1
2 ; 8d)

)2
Φ
(
d
X

)
, (2.13)

where

At(
1
2 ; 8d) := 2

∞∑
n=1

τ(n)χ8d(n)√
n

ω
(nπ
t

)
. (2.14)

Let X
9
10 ≤ U1 ≤ U2 ≤ X be two parameters that will be chosen later. Define

S(U1, U2) :=
∑∗

(d,2)=1

AU1(1
2 ; 8d)AU2(1

2 ; 8d)Φ
(
d
X

)
. (2.15)

We remark that (2.13) is approximately equal to (2.15) by choosing appropriate values for

U1 and U2. This will be explained in Section 2.7.

Combining (2.14) and (2.15), we obtain that

S(U1, U2) = 4
∑∗

(d,2)=1

∞∑
n1=1

∞∑
n2=1

τ(n1)τ(n2)χ8d(n1n2)
√
n1n2

h(d, n1, n2), (2.16)

where

h(x, y, z) := Φ
( x
X

)
ω

(
yπ

U1

)
ω

(
zπ

U2

)
. (2.17)
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Using the Möbius inversion to remove the square-free condition in (2.16) gives

S(U1, U2)

= 4
∑

(d,2)=1

∑
a2|d

µ(a)
∞∑

n1=1

∞∑
n2=1

τ(n1)τ(n2)χ8d(n1n2)
√
n1n2

h(d, n1, n2)

= 4
∑

(a,2)=1

µ(a)
∑

(d,2)=1

∑
(n1,a)=1

∑
(n2,a)=1

τ(n1)τ(n2)χ8d(n1n2)
√
n1n2

h(a2d, n1, n2)

= 4

 ∑
a≤Y

(a,2)=1

+
∑
a>Y

(a,2)=1

µ(a)
∑

(d,2)=1

∑
(n1,a)=1

∑
(n2,a)=1

τ(n1)τ(n2)χ8d(n1n2)
√
n1n2

h(a2d, n1, n2)

=: S1 + S2. (2.18)

In the above, we let S1 denote the terms with a ≤ Y , where Y is a parameter that satisfies

Y ≤ X. The value of Y will be chosen later. Also, we let S2 denote the terms with a > Y . The

terms S1 contribute to the main term. We will discuss S1 in Sections 2.4, 2.5, 2.6. The terms

S2 contribute to the error term by the following lemma.

Lemma 2.7. Unconditionally, we have S2 � X1+εY −1. Under GRH, we have

S2 � XY −1 log44X.

Proof. Write d = lb2, where l is square-free and b is positive. Grouping terms in S2 according

to c = ab, we deduce that

S2 = 4
∑

(c,2)=1

∑
a>Y
a|c

µ(a)
∑∗

(l,2)=1

∑
(n1,c)=1

∑
(n2,c)=1

τ(n1)τ(n2)χ8l(n1n2)
√
n1n2

h(c2l, n1, n2)

=
4

(2πi)2

∑
(c,2)=1

∑
a>Y
a|c

µ(a)

∫
( 1
2

+ε)

∫
( 1
2

+ε)

g(u)g(v)

uv
Uu1 U

v
2

×
∑∗

(l,2)=1

Φ

(
c2l

X

)
Lc(

1
2 + u, χ8l)

2Lc(
1
2 + v, χ8l)

2 du dv, (2.19)

where for Re(s) > 1, Lc(s, χ) is given by the Euler product of L(s, χ) with omitting all prime

factors of c. The last equation follows by the definition of h(x, y, z) in (2.17). Moving the lines
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of the integral to Re(u) = Re(v) = 1
logX , the double integral above is bounded by

� (log2X)τ4(c)

∫
( 1
logX

)

∫
( 1
logX

)
|g(u)g(v)|

∑∗

(l,2)=1

l≤ 5X
2c2

|L(1
2 + u, χ8l)|4 |du| |dv|. (2.20)

Here we use the inequalities 2ab ≤ a2 + b2 and |Lc(1
2 + u, χ8l)| ≤ τ(c)|L(1

2 + u, χ8l)|.

By Theorem 2.6, we see that for |Im(u)| ≤ X
c2

,

∑∗

(l,2)=1

l≤ 5X
2c2

|L(1
2 + u, χ8l)|4 �

X

c2
log11X. (2.21)

Also, by Lemma 2.5, we get that

∑∗

(l,2)=1

l≤ 5X
2c2

|L(1
2 + u, χ8l)|4 �

(
X

c2

)1+ε

(1 + |Im(u)|)1+ε. (2.22)

Substituting both (2.21) and (2.22) in (2.20), we can bound (2.20) by

� τ4(c)

c2
X log13X.

Together with (2.19), this yields

S2 � X log13X
∑

(c,2)=1

τ4(c)

c2

∑
a>Y
a|c

1� X log13X
∑
c>Y

τ5(c)

c2
� XY −1 log44X.

This completes the proof of the conditional part of the lemma. The unconditional part follows

similarly by substituting (2.22) in (2.20).

Now we consider S1. Using the Poisson summation formula (see Lemma 2.3) for the sum
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over d in S1, we obtain that

S1 = 2X
∑
a≤Y

(a,2)=1

µ(a)

a2

∑
k∈Z

(−1)k
∑

(n1,2a)=1

∑
(n2,2a)=1

τ(n1)τ(n2)
√
n1n2

Gk(n1n2)

n1n2

×
∫ ∞
−∞

h(xX, n1, n2)(cos + sin)

(
2πkxX

2n1n2a2

)
dx. (2.23)

Let S1(k = 0) denote the sum above over k = 0, which are called diagonal terms. Let

S1(k 6= 0) denote the sum over k 6= 0. Write S1(k 6= 0) = S1(k = 2) + S1(k 6= 2), where

S1(k = 2) denotes the terms with square k, and S1(k 6= 2) denotes the remaining terms. We

call S1(k = 2) off-diagonal terms. We will discuss S1(k = 0), S1(k = 2), and S1(k 6= 2) in

Section 2.4, 2.5, 2.6, respectively.

2.4 Evaluation of S1(k = 0).

In this section, we shall extract one main term of S1 from S1(k = 0). The argument here is

similar to [99, Section 3.2].

It follows from the definition of Gk(n) in (2.11) that G0(n) = φ(n) if n = 2, and G0(n) = 0

otherwise. By this fact and (2.23), we see that

S1(k = 0) = 2X
∑
a≤Y

(a,2)=1

µ(a)

a2

∑
(n1n2,2a)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

φ(n1n2)

n1n2

∫ ∞
−∞

h(xX, n1, n2)dx

= 2X
∑

(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

φ(n1n2)

n1n2

∑
a≤Y

(a,2n1n2)=1

µ(a)

a2

∫ ∞
−∞

h(xX, n1, n2)dx. (2.24)

Observe that

∑
a≤Y

(a,2n1n2)=1

µ(a)

a2
=

8

π2

∏
p|n1n2

(
1− 1

p2

)−1

+O
(
Y −1

)
.

Inserting this into (2.24), combined with

φ(n1n2)

n1n2

∏
p|n1n2

(
1− 1

p2

)−1

=
∏

p|n1n2

p

p+ 1
,
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we obtain that

S1(k = 0) =
16X

π2

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

∏
p|n1n2

p

p+ 1

∫ ∞
−∞

h(xX, n1, n2)dx

+O

XY ∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

∫ ∞
−∞
|h(xX, n1, n2)|dx

 . (2.25)

Now we simplify the error term above. Recall that w(ξ) is bounded as ξ near 0 and decreases

exponentially as ξ → +∞. It follows that

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

∫ ∞
−∞
|h(xX, n1, n2)|dx

�
∑

(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

(
1 +

n1

U1

)−100(
1 +

n2

U2

)−100

� log11X. (2.26)

The last inequality follows by separating the sum into two parts corresponding to whether

n1, n2 ≤ U1U2. Combining (2.25) and (2.26), we have

S1(k = 0) =
16X

π2

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)
√
n1n2

∏
p|n1n2

p

p+ 1

∫ ∞
−∞

h(xX, n1, n2)dx+O
(
XY −1 log11X

)
.

Recall h(x, y, z) from (2.17) and ω(ξ) from (2.8). We have

S1(k = 0)

=
16X

π2

∫ ∞
−∞

Φ (x) dx
1

(2πi)2

∫
(1)

∫
(1)

g(u)g(v)

uv
Uu1 U

v
2

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)

n
1
2

+u

1 n
1
2

+v

2

∏
p|n1n2

p

p+ 1
du dv

+O
(
XY −1 log11X

)
. (2.27)
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Lemma 2.8. For Re(α),Re(β) > 1
2 , we have

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)

nα1n
β
2

∏
p|n1n2

p

p+ 1
= ζ(2α)3ζ(2β)3ζ(α+ β)4Z1(α, β), (2.28)

where Z1(α, β) is defined by

Z1(α, β) :=
∏
p

Z1,p(α, β).

Here

Z1,2(α, β) :=

(
1− 1

4α

)3(
1− 1

4β

)3(
1− 1

2α+β

)4

,

and for p - 2,

Z1,p(α, β) :=

(
1− 1

p2α

)(
1− 1

p2β

)(
1− 1

pα+β

)4
[

1 +
4

pα+β
+

1

p2α
+

1

p2β
+

1

p2α+2β
− 1

p+ 1

×
(

3

p2α
+

3

p2β
+

4

pα+β
− 1

p4α
− 1

p4β
− 3

p2α+2β
+

2

p2α+4β
+

2

p4α+2β
− 1

p4α+4β

)]
.

Furthermore, Z1(α, β) is analytic and uniformly bounded in the region Re(α),Re(β) ≥ 1
4 +ε.

Proof. We have

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)

nα1n
β
2

∏
p|n1n2

p

p+ 1
=

∏
(p,2)=1

1 +
p

p+ 1

 ∞∑
r=1

∑
n1n2=p2r

τ(n1)τ(n2)

nα1n
β
2

 .

Note that

∞∑
r=1

∑
n1n2=p2r

τ(n1)τ(n2)

nα1n
β
2

=
(1 + 1

p2α
)(1 + 1

p2β
)

(1− 1
p2α

)2(1− 1
p2β

)2
+

4

pα+β

1

(1− 1
p2α

)2(1− 1
p2β

)2
− 1.
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2.4. EVALUATION OF S1(K = 0).

Thus,

∑
(n1n2,2)=1
n1n2=2

τ(n1)τ(n2)

nα1n
β
2

∏
p|n1n2

p

p+ 1
=

∏
(p,2)=1

1

(1− 1
p2α

)2(1− 1
p2β

)2

[
1+

4

pα+β
+

1

p2α
+

1

p2β
+

1

p2α+2β

− 1

p+ 1

(
3

p2α
+

3

p2β
+

4

pα+β
− 1

p4α
− 1

p4β
− 3

p2α+2β
+

2

p2α+4β
+

2

p4α+2β
− 1

p4α+4β

)]
.

Then (2.28) follows by comparing Euler factors on both sides. The remaining part of the lemma

follows directly from the definition of Z1(α, β).

It follows from (2.27) and Lemma 2.8 that

S1(k = 0) =
16X

π2

∫ ∞
−∞

Φ (x) dx
1

(2πi)2

∫
(1)

∫
(1)

g(u)g(v)

uv
Uu1 U

v
2 ζ(1 + 2u)3ζ(1 + 2v)3ζ(1 +u+ v)4

× Z1(1
2 + u, 1

2 + v) du dv +O
(
XY −1 log11X

)
. (2.29)

The double integral in (2.29) can be written as

1

(2πi)2

∫
(1)

∫
(1)

Uu1 U
v
2

uv(2u)3(2v)3(u+ v)4
E(u, v) du dv,

where

E(u, v) := g(u)g(v)ζ(1 + 2u)3(2u)3ζ(1 + 2v)3(2v)3ζ(1 + u+ v)4(u+ v)4Z1(1
2 + u, 1

2 + v).

Clearly, E is analytic for Re(u),Re(v) ≥ −1
4 + ε.

Now move the lines of the integral above to Re(u) = Re(v) = 1
10 without encountering any

poles. Next move the line of the integral over v to Re(v) = −1
5 . We may encounter two poles of

order at most 4 at both v = 0 and v = −u. Thus,

1

(2πi)2

∫
( 1
10

)

∫
( 1
10

)

Uu1 U
v
2

uv(2u)3(2v)3(u+ v)4
E(u, v) du dv

=
1

2πi

∫
( 1
10

)

(
Res
v=0

+ Res
v=−u

)[
Uu1 U

v
2

uv(2u)3(2v)3(u+ v)4
E(u, v)

]
du+O

(
U

1
10

1 U
− 1

5
2

)
. (2.30)

The integral of the residue at v = −u in (2.30) will contribute to an error term. In fact, we
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have

Res
v=−u

[
Uu1 U

v
2

uv(2u)3(2v)3(u+ v)4
E(u, v)

]
=

1

3!

∂3

∂v3

∣∣∣∣
v=−u

[
Uu1 U

v
2

uv(2u)3(2v)3
E(u, v)

]
=
Uu1 U

−u
2

384u11

[
E(u,−u)

(
u3 log3 U2 + 12u2 log2 U2 + 60u logU2 + 120

)
+ E(0,1)(u,−u)

(
3u3 log2 U2 + 24u2 lnU2 + 60u

)
+ E(0,2)(u,−u)

(
3u3 logU2 + 12u2

)
+ E(0,3)(u,−u)u3

]
,

where E(i,j)(u, v) := ∂i+jE
∂ui∂vj

(u, v). It follows that

1

2πi

∫
( 1
10

)
Res
v=−u

[
Uu1 U

v
2

uv(2u)3(2v)3(u+ v)4
E(u, v)

]
du� U

1
10

1 U
− 1

10
2 log3X. (2.31)

It remains to consider the integral of the residue at v = 0 in (2.30). Note that

I1(u) := Res
v=0

[
Uu1 U

v
2

uv(2u)3(2v)3(u+ v)4
E(u, v)

]
=

Uu1
384u11

[
E(u, 0)(u3 log3 U2 − 12u2 log2 U2 + 60u logU2 − 120)

+ E(0,1)(u, 0)(3u3 log2 U2 − 24u2 logU2 + 60u)

+ E(0,2)(u, 0)(3u3 logU2 − 12u2) + E(0,3)(u, 0)u3
]
.

Moving the line of the integral below from Re(u) = 1
10 to Re(u) = − 1

10 with encountering a pole

at u = 0, we see that

1

2πi

∫
( 1
10

)
I1(u)du

= Res
u=0

I1(u) +O(U
− 1

10
1 log3X)

=
E(0, 0)

11612160

(
− log10 U1 + 5 log9 U1 logU2 − 9 log8 U1 log2 U2 + 6 log7 U1 log3 U2

)
+O

(
log9X

)
+O

(
U
− 1

10
1 log3X

)
. (2.32)
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Combining (2.29), (2.30), (2.31) and (2.32), we obtain that

S1(k = 0)

=
16X

π2
Φ̃(1) · E(0, 0)

11612160

(
− log10 U1 + 5 log9 U1 logU2 − 9 log8 U1 log2 U2 + 6 log7 U1 log3 U2

)
+O

(
X log9X +XY −1 log11X

)
. (2.33)

where Φ̃(s) is defined in (2.38).

Now we compute E(0, 0) above. Clearly, E(0, 0) = Z1(1
2 ,

1
2). By the definition of Z1(u, v) in

Lemma 2.8, it follows that

Z1(1
2 ,

1
2) =

1

210

∏
(p,2)=1

(
1− 1

p

)6 [
1 +

6

p
+

1

p2
− 1

p+ 1

(
10

p
− 5

p2
+

4

p3
− 1

p4

)]

=
1

210

∏
(p,2)=1

(1− 1
p)6

1 + 1
p

(
1 +

7

p
− 3

p2
+

6

p3
− 4

p4
+

1

p5

)
. (2.34)

On the other hand, recalling the definition of a4 from (2.4), we have

a4 =
1

212

∏
(p,2)=1

(1− 1
p)10

1 + 1
p

(
(1 + 1√

p)−4 + (1− 1√
p)−4

2
+

1

p

)

=
1

212

∏
(p,2)=1

(1− 1
p)10

1 + 1
p

1

(1 + 1√
p)4(1− 1√

p)4

[
1

2

(
1− 1
√
p

)4

+
1

2

(
1 +

1
√
p

)4

+
1

p

(
1− 1

p

)4
]

=
1

212

∏
(p,2)=1

(1− 1
p)6

1 + 1
p

(
1 +

7

p
− 3

p2
+

6

p3
− 4

p4
+

1

p5

)
. (2.35)

Comparing (2.34) with (2.35), we conclude Z1(1
2 ,

1
2) = 4a4, which implies E(0, 0) = 4a4. Together

with (2.33), it follows that

Lemma 2.9. We have

S1(k = 0)

=
a4Φ̃(1)X

26 · 34 · 5 · 7 · π2

(
− log10 U1 + 5 log9 U1 logU2 − 9 log8 U1 log2 U2 + 6 log7 U1 log3 U2

)
+O

(
X log9X +XY −1 log11X

)
.
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2.5 Evaluation of S1(k = 2).

In this section, we compute another part of the main term of S1 which arises from S1(k = �).

Many of the techniques used here are from Sections 5.2, 5.3 of [97].

Recall from (2.23) that

S1(k 6= 0) = 2X
∑
a≤Y

(a,2)=1

µ(a)

a2

∑
k 6=0

(−1)k
∑

(n1,2a)=1

∑
(n2,2a)=1

τ(n1)τ(n2)
√
n1n2

Gk(n1n2)

n1n2

×
∫ ∞
−∞

h(xX, n1, n2)(cos + sin)

(
2πkxX

2n1n2a2

)
dx. (2.36)

To proceed, we need the following lemma.

Lemma 2.10. Let f(x) be a smooth function on R>0. Suppose f decays rapidly as x→∞, and

f (n)(x) converges as x→ 0+ for every n ∈ Z≥0. Then we have

∫ ∞
0

f(x) cos(2πxy)dx =
1

2πi

∫
( 1
2

)
f̃(1− s)Γ(s) cos

(
sgn(y)πs

2

)
(2π|y|)−sds, (2.37)

where f̃ is the Mellin transform of f defined by

f̃(s) :=

∫ ∞
0

f(x)xs−1dx. (2.38)

In addition, the equation (2.37) is also valid when cos is replaced by sin.

Proof. See [99, Section 3.3].

Taking f(x) = h(xX, n1, n2) in Lemma 2.10, we have

∫ ∞
−∞

h(xX, n1, n2)(cos + sin)

(
2πkxX

2n1n2a2

)
dx

=
X−1

2πi

∫
( 1
2

)
h̃(1− s;n1, n2)Γ(s)(cos + sgn(k) sin)

(πs
2

)(n1n2a
2

π|k|

)s
ds,

where

h̃(1− s;n1, n2) =

∫ ∞
0

h(x, n1, n2)x−sdx.
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Recall from (2.17) the definition of h(x, y, z). The above contour integral is

1

(2πi)3

∫
(ε)

∫
(ε)

∫
(ε)

Γ(s)

(
a2

|k|

)s
J (s, k)g(u)g(v)

1

nu−s1 nv−s2

Uu1 U
v
2X
−s

uv
ds du dv,

where

J (s, k) = Φ̃(1− s)(cos + sgn(k) sin)
(πs

2

)
π−s.

Move the lines of the triple integral to Re(s) = 1
2 + ε, Re(u) = Re(v) = 1

2 + 2ε, and change the

variables u′ = u− s, v′ = v − s. We obtain that

∫ ∞
−∞

h(xX, n1, n2)(cos + sin)

(
2πkxX

2n1n2a2

)
dx

=
1

(2πi)3

∫
(ε)

∫
(ε)

∫
( 1
2

+ε)
Γ(s)

(
a2

|k|

)s
J (s, k)g(u+ s)g(v + s)

1

nu1n
v
2

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)
ds du dv.

Substituting this in (2.36), we get that

S1(k 6= 0) = 2X
∑
a≤Y

(a,2)=1

µ(a)

a2

∑
k 6=0

(−1)k
1

(2πi)3

∫
(ε)

∫
(ε)

∫
( 1
2

+ε)
Γ(s)

(
a2

|k|

)s
J (s, k)g(u+s)g(v+s)

× Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

∑
(n1,2a)=1

∑
(n2,2a)=1

τ(n1)τ(n2)

n
1
2

+u

1 n
1
2

+v

2

Gk(n1n2)

n1n2
ds du dv. (2.39)

Lemma 2.11. Write 4k = k1k
2
2, where k1 is a fundamental discriminant (possibly k1 = 1), and

k2 is a positive integer. In the region Re(α),Re(β) > 1
2 , we have

∑
(n1,2a)=1

∑
(n2,2a)=1

τ(n1)τ(n2)

nα1n
β
2

Gk(n1n2)

n1n2
= L(1

2 + α, χk1)2L(1
2 + β, χk1)2Z2(α, β, a, k). (2.40)

Here Z2(α, β, a, k) is defined as follows:

Z2(α, β, a, k) :=
∏
p

Z2,p(α, β, a, k),

where

Z2,p(α, β, a, k) :=

(
1− χk1(p)

p
1
2

+α

)2(
1− χk1(p)

p
1
2

+β

)2

if p|2a,
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and

Z2,p(α, β, a, k) :=

(
1− χk1(p)

p
1
2

+α

)2(
1− χk1(p)

p
1
2

+β

)2 ∞∑
n1=0

∞∑
n2=0

τ(pn1)τ(pn2)

pn1α+n2β

Gk(p
n1+n2)

pn1+n2
if p - 2a.

In addition, Z2(α, β, a, k) is analytic in the region Re(α),Re(β) > 0, and we have

Z2(α, β, a, k)� τ4(a)τ8(|k|) log10X (2.41)

in the region Re(α),Re(β) ≥ 1
logX , where the implied constant is absolute.

Proof. The formula (2.40) follows from the joint multiplicativity of Gk(n1n2) with variables n1

and n2. In fact,

∑
(n1,2a)=1

∑
(n2,2a)=1

τ(n1)τ(n2)

nα1n
β
2

Gk(n1n2)

n1n2
=

∏
(p,2a)=1

∞∑
n1=0

∞∑
n2=0

τ(pn1)τ(pn2)

pn1α+n2β

Gk(p
n1+n2)

pn1+n2
.

Then we obtain (2.40) by comparing Euler factors on both sides.

For p - 2ak, by Lemma 2.4, we know that

Z2,p(α, β, a, k) =

(
1− χk1(p)

p
1
2

+α

)2(
1− χk1(p)

p
1
2

+β

)2(
1 +

2χk1(p)

p
1
2

+α
+

2χk1(p)

p
1
2

+β

)
. (2.42)

This shows that Z2(α, β, a, k) is analytic in the region Re(α),Re(β) > 0.

It remains to prove the upper bound of Z2(α, β, a, k). It follows from (2.42) that for p - 2ak,

∏
(p,2ak)=1

Z2,p(α, β, a, k) =
∏

(p,2ak)=1

(
1− 3

p1+2α
− 3

p1+2β
− 4

p1+α+β
+O

(
1

p3/2

))
� log10X.

For p|2a, we get that

∏
p|2a

Z2,p(α, β, a, k) ≤
∏
p|2a

(
1 +

1
√
p

)4

� τ4(a).

For p - 2a, p|k, using the trivial bound Gk(p
n) ≤ pn, we obtain that

∏
p|k,p-2a

Z2,p(α, β, a, k) ≤
∏

p|k,p-2a

(
1 +

1
√
p

)4 ∑
0≤n1+n2≤ordp(k)+1

(n1 + 1)(n2 + 1)� τ8(|k|).
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By the above three bounds, we have obtained (2.41).

By (2.39) and Lemma 2.11, it follows that

S1(k 6= 0)

=
2X

(2πi)3

∑
a≤Y

(a,2)=1

µ(a)

a2

∑
k 6=0

(−1)k
∫

(ε)

∫
(ε)

∫
( 1
2

+ε)
Γ(s)J (s, k)a2sg(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× 1

|k|s
L(1 + u, χk1)2L(1 + v, χk1)2Z2(1

2 + u, 1
2 + v, a, k) ds du dv. (2.43)

Note that when moving the lines of integration of the variables u, v to the left, then we may

encounter poles only when k = 2 (then k1 = 1). Thus, we break the sum in (2.43) into two

parts depending on whether k = 2.

Write

S1(k = 2) :=
2X

(2πi)3

∑
a≤Y

(a,2)=1

µ(a)

a2

∑
k 6=0
k=2

(−1)k
∫

(ε)

∫
(ε)

∫
( 1
2

+ε)
Γ(s)J (s, k)a2sg(u+ s)g(v + s)

× Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

1

|k|s
ζ(1 + u)2ζ(1 + v)2Z2(1

2 + u, 1
2 + v, a, k) ds du dv,

and

S1(k 6= 2) :=
2X

(2πi)3

∑
a≤Y

(a,2)=1

µ(a)

a2

∑
k 6=0,2

(−1)k
∫

(ε)

∫
(ε)

∫
(
1
2 +ε)

Γ(s)J (s, k)a2sg(u+ s)g(v + s)

× Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

1

|k|s
L(1 + u, χk1)2L(1 + v, χk1)2Z2(1

2 + u, 1
2 + v, a, k) ds du dv. (2.44)

We will give an upper bound for S1(k 6= 2) in the next section. In the rest of this section,

we focus on S1(k = 2) and obtain a main term. By the change of variables (replace k by k2),

we get that

S1(k = 2) =
2X

(2πi)3

∑
a≤Y

(a,2)=1

µ(a)

a2

∞∑
k=1

(−1)k
∫

(ε)

∫
(ε)

∫
(
1
2 +ε)

Γ(s)J (s, 1)a2sg(u+ s)g(v + s)

× Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

1

k2s
ζ(1 + u)2ζ(1 + v)2Z2(1

2 + u, 1
2 + v, a, k2) ds du dv. (2.45)
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Lemma 2.12. In the region Re(α),Re(β) > 0, Re(γ) > 1
2 ,

∞∑
k=1

(−1)k

k2γ
Z2(α, β, a, k2) = (21−2γ − 1)ζ(2γ)Z3(α, β, γ, a). (2.46)

Here Z3(α, β, γ, a) is defined by

Z3(α, β, γ, a) := ζ(2α+ 2γ)2ζ(2β + 2γ)2
∏
p

Z3,p(α, β, γ, a),

where for p|2a,

Z3,p(α, β, γ, a) :=

(
1− 1

p
1
2

+α

)2(
1− 1

p
1
2

+β

)2(
1− 1

p2α+2γ

)2(
1− 1

p2β+2γ

)2

, (2.47)

and for p - 2a,

Z3,p(α, β, γ, a) :=

(
1− 1

p
1
2

+α

)2(
1− 1

p
1
2

+β

)2 [(
1− 1

p

)(
1 +

1

p2α+2γ

)(
1 +

1

p2β+2γ

)
+

1

p

(
1− 1

p2α+2γ

)2(
1− 1

p2β+2γ

)2

+

(
1− 1

p

)
4

pα+β+2γ

+ 2

(
1− 1

p2γ

)(
1

p
1
2

+α
+

1

p
1
2

+β
+

1

p
1
2

+2α+β+2γ
+

1

p
1
2

+α+2β+2γ

)]
. (2.48)

Moreover,

(1) Z3(α, β, γ, a) is analytic and uniformly bounded in the region Re(α),Re(β) ≥ 1
2+ε, Re(γ) ≥

2ε.

(2) Z3(α, β, γ, a) is analytic and Z3(α, β, γ, a) � log14X in the region Re(α),Re(β) ≥ 1
2 +

1
logX , Re(γ) ≥ 2

logX . The implied constant is absolute.

Proof. We first compute the left-hand side of (2.46) without (−1)k. Note that

∞∑
k=1

1

k2γ
Z2(α, β, a, k2) =

∞∑
k=1

1

k2γ

∏
p

Z2,p(α, β, a, k
2) =

∏
p

∞∑
b=0

Z2,p(α, β, a, p
2b)

p2bγ
. (2.49)
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We remark here that Z2,p(α, β, a, 1) may not be 1. If p|2a, we have

∞∑
b=0

Z2,p(α, β, a, p
2b)

p2bγ
=

1

1− 1
p2γ

(
1− 1

p
1
2

+α

)2(
1− 1

p
1
2

+β

)2

. (2.50)

If p - 2a, we have

∞∑
b=0

Z2,p(α, β, a, p
2b)

p2bγ
=

(
1− 1

p
1
2

+α

)2(
1− 1

p
1
2

+β

)2

×
∞∑
b=0

1

p2bγ


∑

n1,n2≥0
n1+n2=2b+1

τ(pn1)τ(pn2)

pn1α+n2β

p2b√p
pn1+n2

+
∑

n1,n2≥0
n1+n2≤2b
n1+n2 even

τ(pn1)τ(pn2)

pn1α+n2β

φ(pn1+n2)

pn1+n2

 . (2.51)

Note that

∞∑
b=0

1

p2bγ

∑
n1,n2≥0

n1+n2=2b+1

τ(pn1)τ(pn2)

pn1α+n2β

p2b√p
pn1+n2

=
1

p−γ+ 1
2

1

(1− 1
p2α+2γ )2(1− 1

p2β+2γ )2

[
2

pα+γ

(
1 +

1

p2β+2γ

)
+

2

pβ+γ

(
1 +

1

p2α+2γ

)]
,

and

∞∑
b=0

1

p2bγ

∑
n1,n2≥0
n1+n2≤2b
n1+n2 even

τ(pn1)τ(pn2)

pn1α+n2β

φ(pn1+n2)

pn1+n2
=

1

1− 1
p2γ

×

[
1

p
+

(
1− 1

p

)
1

(1− 1
p2α+2γ )2(1− 1

p2β+2γ )2

((
1 +

1

p2α+2γ

)(
1 +

1

p2β+2γ

)
+

4

pα+β+2γ

)]
.

Inserting them into (2.51), combined with (2.49), (2.50), we obtain that

∞∑
k=1

1

k2γ
Z2(α, β, a, k2) = ζ(2γ)Z3(α, β, γ, a). (2.52)

Now we prove (2.46). It is clear that G4k(n) = Gk(n) for any odd n, so Z2(α, β, a, 4k2) =
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Z2(α, β, a, k2). Thus,

∞∑
k=1

(−1)k

k2γ
Z2(α, β, a, k2) =

1

4γ

∞∑
k=1

1

k2γ
Z2(α, β, a, 4k2)−

∑
k odd

1

k2γ
Z2(α, β, a, k2)

= (21−2γ − 1)

∞∑
k=1

1

k2γ
Z2(α, β, a, k2).

Together with (2.52), this yields (2.46).

The first property of Z3(α, β, γ, a) comes directly from its definition. Now we prove the

second property. We know that for Re(α),Re(β) ≥ 1
2 + 1

logX , Re(γ) ≥ 2
logX ,

Z3(α, β, γ, a)

� (log4X)
∏
p|2a

(
1 +

1

p
1+ 1

logX

)8 ∏
p-2a

(
1 +

6

p
1+ 6

logX

+
4

p
1+ 5

logX

+O

(
1

p2

))
� log14X,

as desired.

It follows from (2.45) and Lemma 2.12 that

S1(k = 2) =
2X

(2πi)3

∑
a≤Y

(a,2)=1

µ(a)

a2

∫
(ε)

∫
(ε)

∫
( 1
2

+ε)
Γ(s)J (s, 1)a2sg(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× ζ(1 + u)2ζ(1 + v)2(21−2s − 1)ζ(2s)Z3(1
2 + u, 1

2 + v, s, a) ds du dv.

Note that Z3(1
2 + u, 1

2 + v, s) is analytic in the region Re(u),Re(v) ≥ ε, Re(s) ≥ 2ε by (1)

of Lemma 2.12, so we move the lines of the integral above to Re(u) = Re(v) = 1, Re(s) = 1
10

without encountering any poles. (The only possible pole lies in ζ(2s) at s = 1
2 , but is cancelled

by the simple zero arising from 21−2s − 1.) Hence,

S1(k = 2) =
2X

(2πi)3

∑
a≤Y

(a,2)=1

µ(a)

a2

∫
(1)

∫
(1)

∫
( 1
10

)
Γ(s)J (s, 1)a2sg(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× ζ(1 + u)2ζ(1 + v)2(21−2s − 1)ζ(2s)Z3(1
2 + u, 1

2 + v, s, a) ds du dv. (2.53)
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Note that we may extend the sum over a to infinity with an error term

2X

(2πi)3

∑
a>Y

(a,2)=1

µ(a)

a2

∫
(1)

∫
(1)

∫
( 1
10

)
Γ(s)J (s, 1)a2sg(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× ζ(1 + u)2ζ(1 + v)2(21−2s − 1)ζ(2s)Z3(1
2 + u, 1

2 + v, s, a) ds du dv.

Move the lines of the integral above to Re(u) = Re(v) = 1
logX , Re(s) = 2

logX without encoun-

tering any poles. Then by (2) of Lemma 2.12, this is bounded by

� X log20X
∑
a>Y

(a,2)=1

1

a
2− 4

logX

×
∫

( 1
logX

)

∫
( 1
logX

)

∫
( 2
logX

)
(1 + |2s|)|J (s, 1)|

∣∣Γ(s)Γ(u+s
2 + 1

4)2Γ(v+s
2 + 1

4)2
∣∣ |ds| |du| |dv|

� X(log20X)Y −1

∫
( 2
logX

)
(1 + |2s|)|Γ(s)||Φ̃(1− s)|

∣∣(cos + sin)(πs2 )
∣∣ |ds|

� XY −1(log21X)Φ(5).

The last inequality is due to (2.12) and the fact |Γ(s)(cos + sin)(πs2 )| � |s|Re(s)− 1
2 . Together

with (2.53), it implies that

S1(k = 2) =
2X

(2πi)3

∑
(a,2)=1

µ(a)

a2

∫
(1)

∫
(1)

∫
( 1
10

)
Γ(s)J (s, 1)a2sg(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× ζ(1 + u)2ζ(1 + v)2(21−2s − 1)ζ(2s)Z3(1
2 + u, 1

2 + v, s, a) ds du dv

+O
(
XY −1(log21X)Φ(5)

)
. (2.54)

Let K1(α, β, γ; p),K2(α, β, γ; p) denote the expressions of (2.47) and (2.48), respectively. We

have the following lemma.

Lemma 2.13. In the region Re(α),Re(β) > 1
2 , 0 < Re(γ) < 1

2 ,

∑
(a,2)=1

µ(a)

a2−2γ
Z3(α, β, γ, a) =

ζ(2α+ 2γ)3ζ(2β + 2γ)3ζ(α+ β + 2γ)4

ζ(1
2 + α+ 2γ)2ζ(1

2 + β + 2γ)2
Z4(α, β, γ), (2.55)
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where

Z4(α, β, γ) := K1(α, β, γ; 2)

×
∏
p

(1− 1
p2α+2γ )(1− 1

p2β+2γ )(1− 1
pα+β+2γ )4

(1− 1

p
1
2+α+2γ

)2(1− 1

p
1
2+β+2γ

)2

∏
(p,2)=1

(
K2(α, β, γ; p)− 1

p2−2γ
K1(α, β, γ; p)

)
.

Moreover, Z4(α, β, γ) is analytic and uniformly bounded in the region Re(α),Re(β) ≥ 3
8 ,

− 1
16 ≤ Re(γ) ≤ 1

8 .

Proof. We have

∑
(a,2)=1

µ(a)

a2−2γ
Z3(α, β, γ, a)

= ζ(2α+ 2γ)2ζ(2β + 2γ)2
∑

(a,2)=1

µ(a)

a2−2γ

∏
p|2a

K1(α, β, γ; p)
∏
p-2a

K2(α, β, γ; p)

= ζ(2α+ 2γ)2ζ(2β + 2γ)2K1(α, β, γ; 2)
∏

(p,2)=1

(
K2(α, β, γ; p)− 1

p2−2γ
K1(α, β, γ; p)

)
.

This implies the equation (2.55). The later part of the lemma can be proved directly by the

definition of Z4(α, β, γ).

It follows from (2.54) and Lemma 2.13 that

S1(k = 2) =
2X

(2πi)3

∫
(1)

∫
(1)

∫
( 1
10

)
J (s, 1)(21−2s − 1)ζ(2s)g(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× ζ2(1 + u)ζ2(1 + v)
Γ(s)ζ(1 + 2u+ 2s)3ζ(1 + 2v + 2s)3ζ(1 + u+ v + 2s)4

ζ(1 + u+ 2s)2ζ(1 + v + 2s)2

× Z4(1
2 + u, 1

2 + v, s) ds du dv +O
(
XY −1(log21X)Φ(5)

)
, (2.56)

where Z4(1
2 + u, 1

2 + v, s) is analytic and uniformly bounded in the region Re(u),Re(v) ≥ −1
8 ,

− 1
16 ≤ Re(s) ≤ 1

8 .

Move the lines of the triple integral above to Re(u) = Re(v) = Re(s) = 1
100 without encoun-

tering any poles. Then move the line of the integral over v to Re(v) = − 1
50 + 1

logX . There is a

pole of order at most 2 at v = 0, and a pole of order at most 4 at v = −s, so the triple integral
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in (2.56) is

1

(2πi)2

∫
( 1
100

)

∫
( 1
100

)
I2(u, s) + I3(u, s) du ds+O

(
U

1
50

1 U
− 1

100
2 X−

1
100 (log2X)Φ(5)

)
, (2.57)

where I2(u, s), I3(u, s) are the residues of the integrand in (2.56) at v = 0 and v = −s, respec-

tively.

The double integral of I3(u, s) in (2.57) is bounded. To see this, note that

I3(u, v) = J (s, 1)(21−2s − 1)ζ(2s)g(u+ s)
Uu+s

1 X−s

u+ s

ζ(1 + u)2Γ(s)ζ(1 + 2u+ 2s)3

ζ(1 + u+ 2s)2

1

3!

d3

dv3

∣∣∣∣
v=−s(

g(v + s)Uv+s
2 ζ(1 + v)2ζ(1 + 2v + 2s)3(v + s)3ζ(1 + u+ v + 2s)4Z4(1

2 + u, 1
2 + v, s)

ζ(1 + v + 2s)2

)
.

Moving the line of the following integral in terms of u from Re(u) = 1
100 to Re(u) = 1

logX gives

1

(2πi)2

∫
( 1
100

)

∫
( 1
100

)
I3(u, s) du ds� U

1
100

1 X−
1

100 (log5X)Φ(5). (2.58)

Now we handle the double integral of I2(u, s) in (2.57). Write the integrand in (2.56) in the

form of

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

1

u2v2

(u+ 2s)2(v + 2s)2

s(2u+ 2s)3(2v + 2s)3(u+ v + 2s)4
F(u, v, s).

Clearly, F(u, v, s) is analytic in the region Re(u + 2s),Re(v + 2s) > 0, Re(u),Re(v) ≥ −1
8 and

− 1
16 ≤ Re(s) ≤ 1

8 . We have

I2(u, s) =
Uu+s

1 U s2X
−s

16(u+ 2s)3(u+ s)4s4u2

×
[
F(u, 0, s)(us logU2 + 2s2 logU2 − 10s− 3u) + F (0,1,0)(u, 0, s)(us+ 2s2)

]
.

Move the line of the double integral below from Re(u) = 1
100 to Re(u) = − 1

100 + 1
logX . There is

one possible pole at u = 0. Hence,

1

(2πi)2

∫
( 1
100

)

∫
( 1
100

)
I2(u, s) du ds =

1

2πi

∫
( 1
100

)
Res
u=0

(I2(u, s)) ds+O

(
U

1
100

2 X−
1

100 log8X

)
.

(2.59)
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Note that

Res
u=0

I2(u, s) =
U s1U

s
2X
−s

64s11

(
F(0, 0, s)(s2 logU1 logU2 − 5s logU1 − 5s logU2 + 26)

+ F (1,0,0)(0, 0, s)(s2 logU2 − 5s) + F (0,1,0)(0, 0, s)(s2 logU1 − 5s) + F (1,1,0)(0, 0, s)s2
)
.

We see that the expression in the brackets above is analytic for − 1
16 ≤ Re(s) ≤ 1

8 . Then we

move the line of the integral below to Re(s) = − 1
100 with only a possible pole at s = 0, and get

that

1

2πi

∫
( 1
100

)
Res
u=0

(I2(u, s)) ds =
F(0, 0, 0)

64

∑
j1+j2+j3+j4=10
j1,j2,j3,j4≥0

(−1)j3B(j4)

j1!j2!j3!j4!
(logj1 U1)(logj2 U2)(logj3 X)

+O

(
U
− 1

100
1 U

− 1
100

2 X
1

100 log2X + log9X

)
, (2.60)

where

B(j) =



26 if j = 0,

−5(logU1 + logU2) if j = 1,

2 logU1 logU2 if j = 2,

0 if j ≥ 3.

(2.61)

Next we compute F(0, 0, 0) above. Note that

F(0, 0, 0) = J (0, 1)g(0)2Z4(1
2 ,

1
2 , 0) = −1

2
Φ̃(1)Z4(1

2 ,
1
2 , 0).
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Recalling the definition of Z4(α, β, γ) from Lemma 2.13, we have

Z4(1
2 ,

1
2 , 0)

= K1(1
2 ,

1
2 , 0; 2)

∏
p

(
1− 1

p

)2 ∏
(p,2)=1

(
K2(1

2 ,
1
2 , 0; p)− 1

p2
K1(1

2 ,
1
2 , 0; p)

)

=
1

4
K1(1

2 ,
1
2 , 0; 2)

∏
(p,2)=1

(
1− 1

p

)7(
1 +

7

p
− 3

p2
+

6

p3
− 4

p4
+

1

p5

)

=
1

4ζ2(2)
K1(1

2 ,
1
2 , 0; 2)

∏
(p,2)=1

(1− 1
p)6

1 + 1
p

(
1 +

7

p
− 3

p2
+

6

p3
− 4

p4
+

1

p5

)

=
32a4

π2
.

The last equality is due to (2.35). Thus,

F(0, 0, 0) = −16Φ̃(1)a4

π2
.

Combining (2.56) with (2.57), (2.58), (2.59), (2.60), and the identity above, it follows that

Lemma 2.14. We have

S1(k = 2) = −a4Φ̃(1)X

2π2

∑
j1+j2+j3+j4=10

(−1)j3B(j4)

j1!j2!j3!j4!
(logj1 U1)(logj2 U2)(logj3 X)

+X ·O
(

log9X + U
1

100
1 X−

1
100 (log5X)Φ(5)

+ U
1
50

1 U
− 1

100
2 X−

1
100 (log2X)Φ(5) + Y −1(log21X)Φ(5)

)
.

2.6 Upper bounds for S1(k 6= 2).

In this section, we shall prove the following upper bounds for S1(k 6= �). The techniques

applied here are from [97, Section 5.4] and the last part of [99, Section 3].

Lemma 2.15. Unconditionally, we have

S1(k 6= 2)� U
1
2

1 U
1
2

2 Y X
εΦ(5).

Under GRH, we have

S1(k 6= 2)� U
1
2

1 U
1
2

2 Y (logX)217Φ(5).
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Proof. It follows from (2.44) that

S1(k 6= 2)

� X
∑
a≤Y

(a,2)=1

1

a2

∑[

k1 6=0,1

∞∑
k2=1

∣∣∣∣∣
∫

(ε)

∫
(ε)

∫
( 1
2

+ε)
Γ(s)J (s, k1)a2sg(u+ s)g(v + s)

Uu+s
1 Uv+s

2 X−s

(u+ s)(v + s)

× 4s

|k1k2
2|s
L(1 + u, χk1)2L(1 + v, χk1)2Z2(1

2 + u, 1
2 + v, a, k1k

2
2) ds du dv

∣∣∣∣∣. (2.62)

Separate the sum over k1 to the sum over |k1| ≤ T := U1U2Y
2X−1, and that over |k1| > T .

Clearly, X
4
5 ≤ T ≤ X3 since X

9
10 ≤ U1 ≤ U2 ≤ X and 1 ≤ Y ≤ X. For the first category, we

move the the lines of the integral to Re(u) = Re(v) = −1
2 + 1

4 logX , Re(s) = 3
4 , while for the

second category, we move the lines to Re(u) = Re(v) = −1
2 + 1

4 logX , Re(s) = 5
4 .

By (2.41), the terms in the first category are bounded by

� X
1
4U

1
4

1 U
1
4

2 log10X
∑
a≤Y

(a,2)=1

τ4(a)√
a

∫
(− 1

2
+ 1

logX
)

∫
(− 1

2
+ 1

logX
)

∫
( 3
4

)
|J (s, k1)Γ(s)g(u+ s)g(v + s)|

×
∑[

|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 |ds| |du| |dv|. (2.63)

Note that

∑[

|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 �
∑

1≤2l≤T

∑[

2l<|k1|≤2l+1

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4. (2.64)

By (2.64) and Lemma 2.5, it follows that

∑[

|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 � T
1
4

+ε(1 + |Im(u)|)1+ε. (2.65)

This bound can be improved under GRH. In fact, we split the left-hand side of (2.65) into

∑[

|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4

=
∑[

|k1|≤X
1
5

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 +
∑[

X
1
5<|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4.
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By Theorem 2.6, we have for |Im(u)| ≤ X
1
5 ,

∑[

|k1|≤X
1
5

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 � X
1
5 log11X.

Later in (2.84) of Section 2.8, under GRH, it will be proved that for −1
2 ≤ Re(u) ≤ −1

2 + 1
logX

and |Im(u)| ≤ X,

∑[

|k1|≤X

|L(1 + u, χk1)|8 � X(logX)37.

Using dyadic blocks and Cauchy-Schwarz inequality, combined with the above bound, we can

deduce that for |Im(u)| ≤ X
1
5 ,

∑[

X
1
5<|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 � T
1
4 log216 X.

Thus for |Im(u)| ≤ X
1
5 ,

∑[

|k1|≤T

τ8(|k1|)
|k1|

3
4

|L(1 + u, χk1)|4 � T
1
4 log216 X. (2.66)

Recall the definition of T . Substituting both (2.65) and (2.66) in (2.63), we have proved the

contribution of the terms in the first category is � U
1
2

1 U
1
2

2 Y (logX)217Φ(5). Similarly, we can

deduce that the contribution of the terms in the second category is also� U
1
2

1 U
1
2

2 Y (logX)217Φ(5).

The conditional part of the lemma is proved now. The unconditional part can be proved

similarly by substituting (2.65) in (2.63).

2.7 Proof of main theorems.

In this section, we complete the proof of Theorem 2.1 and Theorem 2.2. The argument is

similar to [99, Section 5].

2.7.1 Proof of Theorem 2.1

Recall the definition of S(U1, U2) from (2.15). Write U = X

(logX)250
. Take U1 = U2 = U and

Y = X
1
2U
− 1

4
1 U

− 1
4

2 .
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Using these values, we can simplify Lemmas 2.7, 2.9, 2.14 and 2.15. In the following, we give

the detail of the simplification for Lemma 2.14. The summation in Lemma 2.14 is

∑
j1+j2+j3+j4=10

(−1)j3B(j4)

j1!j2!j3!j4!
(logj1 U)(logj2 U)(logj3 X). (2.67)

We consider the case j4 = 0, and other cases can be done similarly. Assume j4 = 0 in (2.67).

Then by (2.61), we have

∑
j1+j2+j3=10

(−1)j3B(0)

j1!j2!j3!
(logj1 U)(logj2 U)(logj3 X)

= 26
∑

j1+j2+j3=10

(−1)j3

j1!j2!j3!
(logj1 U)(logj2 U)(logj3 X)

= 26(log10X)
∑

j1+j2+j3=10

(−1)j3

j1!j2!j3!
+O

(
log9+εX

)
=

26

10!
log10X +O

(
log9+εX

)
.

The second last equality is due to logj U = logj X +O(logj−1+εX) for j ≥ 0. The last equality

is obtained by ∑
j1+j2+j3=10

(−1)j3

j1!j2!j3!
=

1

10!

d10

dx10

∣∣∣∣
x=0

(exexe−x) =
1

10!
.

Similarly, we can compute other cases in (2.67). Combining all cases we can show (2.67) is

(
26

10!
− 10

9!
+

1

8!

)
log10X +O

(
log9+εX

)
=

1

24 · 34 · 52 · 7
log10X +O

(
log9+εX

)
.

Using this fact, Lemma 2.14 can be simplified to

S1(k = 2) = − a4Φ̃(1)

25 · 34 · 52 · 7 · π2
X log10X +O

(
X log9+εX +X(log−20X)Φ(5)

)
.

Now by (2.15), (2.18), combined with Lemmas 2.7, 2.9, 2.14 and 2.15, we can obtain that

S(U1, U2) =
∑∗

(d,2)=1

∣∣AU (1
2 ; 8d)

∣∣2 Φ
(
d
X

)
=

a4Φ̃(1)

26 · 33 · 52 · 7 · π2
X log10X +O

(
X log9+εX +X(log−20X)Φ(5)

)
. (2.68)
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Define BU (1
2 ; 8d) = L(1

2 , χ8d)
2 −AU (1

2 ; 8d). We claim that

∑∗

(d,2)=1

|BU (1
2 ; 8d)|2Φ

(
d
X

)
� X log9.5+εX. (2.69)

In fact, we have

BU (1
2 ; 8d) =

1

πi

∫
(c)
g(s)L(1

2 + s, χ8d)
2 (8d)s − U s

s
ds.

Since (8d)s−Us
s is entire, we move the line of the integral to Re(s) = 0. By the bound | (8d)it−U it

it | �

log(8d
U ), t ∈ R, we get that

BU (1
2 ; 8d)� log

(
8d

U

)∫ ∞
−∞
|g(it)||L(1

2 + it, χ8d)|2dt.

This implies that the left-hand side of (2.69) is

�
(

log
X

U

)2 ∫ ∞
−∞

∫ ∞
−∞
|g(it1)||g(it2)|

∑∗

(d,2)=1

|L(1
2 + it1, χ8d)|2|L(1

2 + it2, χ8d)|2Φ( dX )dt1dt2.

(2.70)

Split the integral according to whether |t1|, |t2| ≤ X. If |t1|, |t2| ≤ X, then use Theorem 2.6.

Otherwise, use Lemma 2.5. This will establish (2.69).

Note that

∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ
(
d
X

)
=
∑∗

(d,2)=1

(AU (1
2 ; 8d) +BU (1

2 ; 8d))2Φ
(
d
X

)
=
∑∗

(d,2)=1

AU (1
2 ; 8d)2Φ

(
d
X

)
+
∑∗

(d,2)=1

BU (1
2 ; 8d)2Φ

(
d
X

)
+ 2

∑∗

(d,2)=1

AU (1
2 ; 8d)BU (1

2 ; 8d)Φ
(
d
X

)
.

Using the Cauchy-Schwarz inequality on the third term, combined with (2.68) and (2.69), we
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obtain that

∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ( dX ) =
a4Φ̃(1)

26 · 33 · 52 · 7 · π2
X log10X +O

(
X log9.75+εX +X(log−5X)Φ(5)

)
.

(2.71)

In the following we remove the function Φ( dX ) in the above summation. Choose Φ such that

Φ(t) = 1 for all t ∈ (1 + Z−1, 2 − Z−1), Φ(t) = 0 for all t /∈ (1, 2), and Φ(ν)(t) �ν Z
ν for all

ν ≥ 0. This implies that Φ(ν) �ν Z
ν , and that Φ̃(1) = Φ̌(0) = 1 +O(Z−1). Then by (2.71), we

get that

∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ( dX )

=
a4

26 · 33 · 52 · 7 · π2
X log10X +O

(
X(log10X)Z−1 +X log9.75+εX +X(log−5X)Z5

)
.

Take Z = logX. We have

∑∗

X<d≤2X
(d,2)=1

L(1
2 , χ8d)

4 ≥
∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ( dX ) =
a4

26 · 33 · 52 · 7 · π2
X log10X +O

(
X log9.75+εX

)
.

(2.72)

Similarly, we can choose Φ(t) in (2.71) such that Φ(t) = 1 for all t ∈ [1, 2], Φ(t) = 0 for all

t /∈ (1−Z−1, 2 +Z−1), and Φ(ν)(t)�ν Z
ν for all ν ≥ 0. Taking Z = logX, we can deduce that

∑∗

X<d≤2X
(d,2)=1

L(1
2 , χ8d)

4 ≤
∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ( dX ) =
a4

26 · 33 · 52 · 7 · π2
X log10X +O

(
X log9.75+εX

)
.

(2.73)

Combining (2.72) and (2.73), we obtain that

∑∗

X<d≤2X
(d,2)=1

L(1
2 , χ8d)

4 =
a4

26 · 33 · 52 · 7 · π2
X log10X +O

(
X log9.75+εX

)
.

Applying the above with X = x
2 , X = x

4 , . . . , we have proved Theorem 2.1.
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2.7.2 Proof of Theorem 2.2.

Write U = X1−4ε. By the Cauchy-Schwarz inequality, we obtain that

∑∗

(d,2)=1

L(1
2 , χ8d)

4Φ
(
d
X

)
≥

(∑∗

(d,2)=1
AU (1

2 , 8d)L(1
2 , χ8d)

2Φ
(
d
X

))2

∑∗

(d,2)=1

(
AU (1

2 , 8d)
)2

Φ
(
d
X

) . (2.74)

Let A2 and B denote the numerator and denominator of the right-hand side in (2.74), respec-

tively.

We first handle B. By (2.15) and (2.18), combined with Lemmas 2.7, 2.9, 2.14 and 2.15,

taking Y = X
1
2U
− 1

4
1 U

− 1
4

2 and U1 = U2 = U , we get that

B = S(U1, U2) =
a4

(
1− 80

3 ε+O(ε2)
)

26 · 33 · 52 · 7 · π2
Φ̃(1)X log10X +O

(
X log9X +XΦ(5)

)
,

where the implied constant in O(ε2) is absolute.

For A, we have

A = 4
∑∗

(d,2)=1

∞∑
n1=1

∞∑
n2=1

τ(n1)τ(n2)χ8d(n1n2)
√
n1n2

h1(d, n1, n2),

where

h1(x, y, z) := Φ
( x
X

)
ω
(yπ
U

)
ω
(zπ

8x

)
.

Note that the difference between A and B lies in the difference between h(x, y, z) and h1(x, y, z).

By slightly modifying the argument for computing B, taking Y = X
1
2U−

1
4X−

1
4 , we can deduce

that

A =
a4

(
1− 40

3 ε+O(ε2)
)

26 · 33 · 52 · 7 · π2
Φ̃(1)X log10X +O

(
X log9X +XΦ(5)

)
,

where the implied constant in O(ε2) is absolute.

Choose Φ such that Φ(t) = 1 for all t ∈ (1 + Z−1, 2 − Z−1), Φ(t) = 0 for all t /∈ (1, 2), and

Φ(ν)(t) �ν Z
ν for all ν ≥ 0. Take Z = logX. Combining (2.74) with the estimates for A and
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B, we have

∑∗

(d,2)=1
X<d≤2X

L(1
2 , χ8d)

4 ≥
(
1 +O(ε2)

) a4

26 · 33 · 52 · 7 · π2
X log10X.

Having summed this with X = x
2 , X = x

4 , . . . , we obtain Theorem 2.2.

2.8 Proof of Theorem 2.6.

In this section, we shall prove Theorem 2.6. The proof here closely follows [99, Section 6].

The argument in this section does not depend on Section 2.2 – Section 2.7.

Let x ∈ R with x ≥ 10, and z ∈ C. Define

L(z, x) :=


log log x |z| ≤ (log x)−1,

− log |z| (log x)−1 < |z| ≤ 1,

0 |z| > 1.

Let z1, z2 ∈ C. We define

M(z1, z2, x) :=
1

2
(L(z1, x) + L(z2, x)) ,

and

V(z1, z2, x) :=
1

2
(L(2z1, x) + L(2z2, x) + L(2Re(z1), x) + L(2Re(z2), x)

+ 2L(z1 + z2, x) + 2L(z1 + z2, x)).

Remark 2.16. We see that the definition of M(z1, z2, x) is different from that in [99, Section 6]

by a factor −1, while V(z1, z2, x) is the same. The difference is due to the different symmetry

types of families of L-functions (see Katz-Sarnak [60]). The family of quadratic Dirichlet L-

functions is symplectic, whereas the family of quadratic twists of a modular L-function in [99]

is orthogonal. For further explanation, we refer readers to [99, p. 1111] and [98, p. 991].

Proposition 2.17. Assume GRH for L(s, χd) for all fundamental discriminants d. Let X

be large. Let z1, z2 ∈ C with 0 ≤ Re(z1),Re(z2) ≤ 1
logX , and |Im(z1)|, |Im(z2)| ≤ X. Let
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N (V ; z1, z2, X) denote the number of fundamental discriminants |d| ≤ X such that

log |L(1
2 + z1, χd)L(1

2 + z2, χd)| ≥ V +M(z1, z2, X).

Then for 10
√

log logX ≤ V ≤ V(z1, z2, X), we have

N (V ; z1, z2, X)� X exp

(
− V 2

2V(z1, z2, X)

(
1− 25

log log logX

))
;

for V(z1, z2, X) < V ≤ 1
16V(z1, z2, X) log log logX, we have

N (V ; z1, z2, X)� X exp

(
− V 2

2V(z1, z2, X)

(
1− 15V

V(z1, z2, X) log log logX

)2
)

;

finally, for 1
16V(z1, z2, X) log log logX < V , we have

N (V ; z1, z2, X)� X exp

(
− 1

1025
V log V

)
.

Proof. It is helpful to keep in mind that log logX+O(1) ≤ V(z1, z2, x) ≤ 4 log logX. By slightly

modifying the proof of the main proposition in [98], we obtain that for any 2 ≤ x ≤ X,

log |L(1
2 + zi, χd)|

≤ Re

 ∑
2≤n≤x

Λ(n)χd(n)

n
1
2

+
λ0

log x
+zi log n

log(xn)

log x

+ (1 + λ0)
logX

log x
+O

(
1

log x

)
, i = 1, 2,

where λ0 = 0.56 . . . is the unique real number satisfying e−λ0 = λ0. It follows that

log |L(1
2 + z1, χd)||L(1

2 + z2, χd)|

≤ Re

∑
pl≤x
l≥1

χd(p
l)

lp
l(

1
2 +

λ0
log x

)
(p−lz1 + p−lz2)

log( x
pl

)

log x

+ 2(1 + λ0)
logX

log x
+O

(
1

log x

)
. (2.75)
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The terms with l ≥ 3 in the the above sum contribute O(1). Using the fact
∑

p|d
1
p �

log log log d, we get that

Re

∑
p2≤x

χd(p
2)

2p
1+

2λ0
log x

(p−2z1 + p−2z2)
log( x

p2
)

log x


= Re

∑
p≤
√
x

1

2p
1+

2λ0
log x

(p−2z1 + p−2z2)
log( x

p2
)

log x

+O(log log logX). (2.76)

By RH, we can deduce that

∑
p≤y

(p−2z1 + p−2z2) log p =
y1−2z1

1− 2z1
+

y1−2z2

1− 2z2
+O

(√
y(logXy)2

)
. (2.77)

The above sum also has a trivial bound � y. Combining (2.76) with these two bounds, by

partial summation, we have

∑
p≤
√
x

1

2p
1+

2λ0
log x

(p−2z1 + p−2z2)
log( x

p2
)

log x
=M(z1, z2, x) +O(log log logX).

Inserting above estimates into (2.75), by M(z1, z2, x) ≤M(z1, z2, X), we obtain that

log |L(1
2 + z1, χd)||L(1

2 + z2, χd)|

≤ Re

 ∑
2<p≤x

χd(p)

p
1
2

+
λ0

log x

(p−z1 + p−z2)
log(xp )

log x

+M(z1, z2, X) +
4 logX

log x
+O(log log logX).

(2.78)

For brevity, put V := V(z1, z2, X). Set

A :=


1
2 log log logX 10

√
log logX ≤ V ≤ V,

V
2V log log logX V < V ≤ 1

16V log log logX,

8 V > 1
16V log log logX.

By taking x = logX in (2.78) and bounding the sum over p in (2.78) trivially, we know that

N (V ; z1, z2, X) = 0 for V > 5 logX
log logX . Thus, we can assume V ≤ 5 logX

log logX .

From now on, we set x = XA/V and z = x1/ log logX . Let S1 be the sum in (2.78) truncated
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to p ≤ z, and S2 be the sum over z < p ≤ x. It follows from (2.78) that

log |L(1
2 + z1, χd)||L(1

2 + z2, χd)| ≤ S1 + S2 +M(z1, z2, X) +
5V

A
.

Note that if d satisfies log |L(1
2 + z1, χd)||L(1

2 + z2, χd)| ≥ V +M(z1, z2, X), then either

S2 ≥ V
A , or S1 ≥ V1 := V (1− 6

A).

Write

meas(X;S1) := #{|d| ≤ X : d is a fundamental discriminant, S1 ≥ V1},

meas(X;S2) := #{|d| ≤ X : d is a fundamental discriminant, S2 ≥ V
A}.

For any m ≤ V
2A − 1, by [99, Lemma 6.3], we have

∑[

|d|≤X

|S2|2m � X
(2m)!

m!2m

 ∑
z<p≤x

4

p

m

� X(3m log log logX)m.

By choosing m = b V2Ac − 1, we get that

meas(X;S2)� X exp

(
− V

4A
log V

)
. (2.79)

We next estimate meas(X;S1). For any m ≤
1
2

logX−log logX

log z , by [99, Lemma 6.3], we obtain

that

∑[

|d|≤X

|S1|2m � X
(2m)!

m!2m

∑
p≤z

|a(p)|2

p

m

, (2.80)

where

a(p) =
Re(p−z1 + p−z2) log(xp )

p
λ0

log x log x
.
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By using (2.77) and the partial summation, we can show that

∑
p≤z

|a(p)|2

p
≤ 1

4

∑
p≤
√
X

1

p
(p−z1 + p−z1 + p−z2 + p−z2)2 = V(z1, z2, X) +O(log log logX).

Together with (2.80), this yields

meas(X;S1)� XV −2m
1

(2m)!

m!2m
(V +O(log log logX))m � X

(
2m

e
· V +O(log log logX)

V 2
1

)m
.

Taking m = bV
2
1

2V c when V ≤ (log logX)2

log log logX , and taking m = b10V c otherwise, we obtain that

meas(X;S1)� X exp

(
−V

2
1

2V

(
1 +O

(
log log logX

log logX

)))
+X exp (−V log V ) . (2.81)

Using the estimates (2.79) and (2.81), we can establish Proposition 2.17. This completes the

proof.

For convenience, in the following we show a rough form of Proposition 2.17. Let k ∈ R>0 be

fixed. For 10
√

log logX ≤ V ≤ 4kV(z1, z2, X), we have

N (V ; z1, z2, X)� X(logX)o(1) exp

(
− V 2

2V(z1, z2, X)

)
, (2.82)

and for V > 4kV(z1, z2, X), we have

N (V ; z1, z2, X)� X(logX)o(1) exp(−4kV ). (2.83)

Observe that

∑[

|d|≤X

|L(1
2 + z1, χd)L(1

2 + z2, χd)|k = −
∫ ∞
−∞

exp(kV + kM(z1, z2, X))dN (V ; z1, z2, X)

= k

∫ ∞
−∞

exp(kV + kM(z1, z2, X))N (V ; z1, z2, X)dV.

Inserting the rough bounds (2.82) and (2.83) into the integral above, we can deduce that

Theorem 2.18. Assume GRH for L(s, χd) for all fundamental discriminants d. Let X be large.

Let z1, z2 ∈ C with 0 ≤ Re(z1),Re(z2) ≤ 1
logX , and |Im(z1)|, |Im(z2)| ≤ X. Then for any positive
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real number k and any ε > 0, we have

∑[

|d|≤X

|L(1
2 + z1, χd)L(1

2 + z2, χd)|k �k,ε X(logX)ε exp

(
kM(z1, z2, X) +

k2

2
V(z1, z2, X)

)
.

In the rest of this section, we complete the proof of Theorem 2.6.

Proof of Theorem 2.6. By Theorem 2.18 and the fact that L(z, x) ≤ log log x for z ∈ C, x ≥ 10,

we can trivially get that

∑[

|d|≤X

|L(1
2 + z1, χd)|k|L(1

2 + z2, χd)|k �k,ε X(logX)2k2+k+ε. (2.84)

Now we assume |Im(z1)− Im(z2)| ≥ 1
logX . Write t1 = Im(z1) and t2 = Im(z2).

If t1t2 ≥ 0, then |t1− t2| ≤ |t1 + t2| ≤ max(2|t1|, 2|t2|), say |t1 + t2| ≤ 2|t1|. Note that L(y,X)

is a decreasing function for y ≥ 0. Thus, we have

L(z1, X), L(2z1, X), L(z1 + z2, X), L(z1 + z2, X) ≤ L(|t1 − t2|, X) +O(1)

≤ max(0,− log |t1 − t2|) +O(1).

This together with

L(z2, X), L(2z2, X), L(2Re(z1), X), L(2Re(z2), X) ≤ log logX

implies

2M(z1, z2, X) + 2V(z1, z2, X) ≤ 4 log logX + max{0,−6 log |t1 − t2|}+O(1). (2.85)

On the other hand, if t1t2 < 0, then |t1−t2| = |t1|+|t2| ≤ max{|2t1|, |2t2|}, say |t1−t2| ≤ |2t2|.

It implies that |t1| ≤ |t2| and that L(2t2, X) ≤ L(|t1 − t2|, X). Note |t1 − t2| = 2|t1|+ |t1 + t2|,

so |t1− t2| ≤ max{4|t1|, 2|t1 + t2|}. In fact, if |t1− t2| > 4|t1|, then 2|t1|+ |t1 + t2| > 4|t1|, which

implies |t1| ≤ 1
2 |t1+t2|. It means |t1−t2| = 2|t1|+|t1+t2| ≤ 2|t1+t2|. Without loss of generality,

we can say |t1 − t2| ≤ 4|t1|. It follows that L(z1, X),L(2z1, X) ≤ L(|t1 − t2|, X) + O(1). Now
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we have

L(z1, X), L(2z1, X), L(z2, X), L(2z2, X), L(z1 + z2, X) ≤ L(|t1 − t2|, X) +O(1)

≤ max(0,− log |t1 − t2|) +O(1).

This combined with

L(2Re(z1), X), L(2Re(z2), X), L(z1 + z2, X) ≤ log logX

also implies (2.85).

By inserting (2.85) into Theorem 2.18, we can show for |Im(z1)− Im(z2)| ≥ 1
logX ,

∑[

|d|≤X

|L(1
2 + z1, χd)|2|L(1

2 + z2, χd)|2 � X(logX)4+ε

(
1 +

1

|t1 − t2|6

)
. (2.86)

By combining (2.86) and (2.84) with k = 2, we have proved Theorem 2.6.
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Chapter 3

The first moment of quadratic twists of
modular L-functions

3.1 Introduction.

The study of moments of L-functions is of much interest to researchers in number theory due

to its fruitful applications. One example is that Bump-Friedberg-Hoffstein [12] and Murty-Murty

[79] independently proved L′(1
2 , E ⊗ χd) 6= 0 for infinitely many fundamental discriminants d

with d < 0, where E is a modular elliptic curve with root number 1 over Q and χd(·) :=
(
d
·
)

denotes the Kronecker symbol. The method of their work is to investigate moments of the

derivative of quadratic twists of modular L-functions. Their result verifies the assumption of

Kolyvagin’s theorem [66] on the Birch-Swinnerton-Dyer conjecture, where it was proven that if

the Hasse-Weil L-function L(s, E) does not vanish at the center point s = 1
2 , then the group

of rational points of E is finite, provided that there exists a quadratic character χd with d < 0

such that L(s, E ⊗ χd) has a simple zero at the central point and such that χd(p) = 1 for every

p that divides the conductor of E.

In particular, Murty-Murty [79] proved the asymptotic formula for the first moment of

the derivative of quadratic twists of modular L-functions with an error term O(X(logX)1−ρ),

where ρ is an explicit positive real number. It was later improved by Iwaniec [54] to a power

savings O(X
13
14

+ε) for a smoothed version. In [11] Bump-Friedberg-Hoffstein claimed the error

term O(X
3
5

+ε) without proof. Note that in [54, 79] they considered quadratic twists of elliptic

curve L-functions, but it is no doubt that the methods there would extend to all modular

newforms. This chapter obtains an error term of the size O(X
1
2

+ε). The improvement is due to

the recursive method developed by Young in his works on the moments of quadratic Dirichlet

L-functions [107, 108]. The argument here also allows us to obtain an error term of the same size

O(X
1
2

+ε) for the first moment of quadratic twists of modular L-functions, which improves the
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error term O(X
13
14

+ε) of Stefanicki [100, Theorem 3] and Luo-Ramakrishnan [71, Proposition 3.6]

and O(X
7
8

+ε) of Soundararajan-Radziwi l l [87, Proposition 2]. Also, with slightly more effort,

we can obtain similar results for the first moment of higher derivatives of twisted modular

L-functions.

To precisely state our result, we shall introduce some notation. Let f be a modular form

of weight κ for the full modular group SL2(Z). (Our argument may extend to congruent sub-

groups.) We assume f is an eigenfunction of all Hecke operators. The Fourier expansion of f at

infinity is

f(z) =
∞∑
n=1

λf (n)n
κ−1
2 e(nz),

where λf (1) = 1 and |λf (n)| ≤ τ(n) for n ≥ 1. Here e(z) := e2πiz, and τ(n) is the number of

divisors of n. The twisted modular L-function is defined by

L(s, f ⊗ χd) :=
∞∑
n=1

λf (n)χd(n)

ns
=
∏
p-d

(
1−

λf (p)χd(p)

ps
+

1

p2s

)−1

(3.1)

for Re(s) > 1, and it extends to the entire complex plane. The completed L-function is defined

by

Λ(s, f ⊗ χd) :=

(
|d|
2π

)s
Γ(s+ κ−1

2 )L(s, f ⊗ χd).

It satisfies the functional equation

Λ(s, f ⊗ χd) = iκε(d)Λ(1− s, f ⊗ χd), (3.2)

where ε(d) = 1 if d is positive, and ε(d) = −1 if d is negative. In this chapter we consider the

case d > 0, so ε = 1. The case d < 0 can be done similarly. We prove the following assertions.

Theorem 3.1. Let κ ≡ 0 (mod 4). Let Φ(x) : (0,∞) → R be a smooth, compactly supported

function. We have

∑∗

(d,2)=1

L(1
2 , f ⊗ χ8d)Φ( dX ) =

8Φ̃(1)

π2
L(1, sym2 f)Z∗(0)X +O(X

1
2

+ε),
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Here
∑∗

denotes the summation over square-free integers, Z∗ is defined via (3.5), (3.6), and

Φ̃ is the Mellin transform of Φ defined by

Φ̃(s) :=

∫ ∞
0

Φ(x)xs−1dx.

Theorem 3.2. Let κ ≡ 2 (mod 4). Let Φ(x) : (0,∞) → R be a smooth, compactly supported

function. We have

∑∗

(d,2)=1

L′(1
2 , f ⊗ χ8d)Φ( dX ) =

8Φ̃(1)

π2
L(1, sym2 f)Z∗(0)X

[
logX + 2

L′(1, sym2 f)

L(1, sym2 f)
+
Z∗′(0)

Z∗(0)

+ log
8

2π
+

Γ′(κ2 )

Γ(κ2 )
+

Φ̃′(1)

Φ̃(1)

]
+O(X

1
2

+ε).

In the above, the symmetric square L-function is defined by

L(s, sym2 f) := ζ(2s)

∞∑
n=1

λf (n2)

ns
=
∏
p

(
1−

αf (p)2

ps

)−1(
1−

αf (p)βf (p)

ps

)−1(
1−

βf (p)2

ps

)−1

,

where Re(s) > 1, αf (p) + βf (p) = λf (p) and αf (p)βf (p) = 1. We see that the main term

in Theorem 3.2 coincides with [85, Theorem 2.3]. Note that the form of the moment and the

definition of Z∗ in [85, Theorem 2.3] are slightly different from ours.

It is worth mentioning that recently Bui–Florea–Keating–Roditty-Gershon [10] obtained the

error term of the same size O(X
1
2

+ε) for the function field analogue. The second moment,

expected to be much more difficult, was computed asymptotically by Soundararajan and Young

[99] under the generalized Riemann hypothesis. Their method was also used by Petrow [85] for

studying moments of derivatives of twisted modular L-functions. The computation of asymptotic

formulas for higher moments is believed beyond current techniques, whereas we do have beautiful

conjectures due to Keating-Snaith [62] and Conrey-Farmer-Keating-Rubinstein-Snaith [17].

The moments of quadratic twists of modular L-functions are comparable to the moments

of quadratic Dirichlet L-functions. The iterative method, initially used by Heath-Brown [48] to

study mean values of real characters, was applied by Young [107] in obtaining the error term

O(X
1
2

+ε) in the asymptotic formula for the first moment of quadratic Dirichlet L-functions.

The error term O(X
1
2

+ε) was also essentially implicit in Goldfeld-Hoffstein’s work [34]. In
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addition, by using the recursive method, the third moment of quadratic Dirichlet L-functions

was improved to O(X
3
4

+ε) by Young [108], and recently the second moment was improved to

O(X
1
2

+ε) by Sono [96]. The moment in Theorem 3.1 is analogous to the second moment of

quadratic Dirichlet L-functions, so it should not be a coincidence that Sono’s work [96] and

Theorem 3.1 have the same error term O(X
1
2

+ε). The conjectured error term for the second

moment of quadratic Dirichlet L-functions is O(X
1
2

+ε), so it may be hard to improve Theorems

3.1 and 3.2.

The proof for Theorems 3.1 and 3.2 is similar to [96, 107, 108]. To adapt to the recursive

method, we consider the shifted first moment twisted by a quadratic character as follows:

M(α, `) :=
∑∗

(d,2)=1

χ8d(`)L(1
2 + α, f ⊗ χ8d)Φ( dX ), (3.3)

where ` is a positive, odd integer. Write ` = `1`
2
2, where `1 is square-free. We may make the

following conjecture.

Conjecture 3.3. Let h ≥ 1
2 . Let Φ(x) : (0,∞)→ C be a smooth, compactly supported function.

Assume |Re(α)| � 1
logX and |Im(α)| � (logX)2. Then for any ε > 0, we have

M(α, `) =
4XΦ̃(1)

π2`
1
2

+α

1

L(1 + 2α, sym2 f)Z(1
2 + α, `)

+ iκ
4γαX

1−2αΦ̃(1− 2α)

π2`
1
2
−α

1

L(1− 2α, sym2 f)Z(1
2 − α, `) +O(`

1
2

+εXh+ε).

(3.4)

Here the big O is depending on ε, h and Φ, and we define, for Re(γ) > 0,

Z(1
2 + γ, `) := L(1 + 2γ, sym2 f)−1

∏
(p,2)=1

Zp(
1
2 + γ, `), (3.5)
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where Zp(
1
2 + γ, `) is defined by

Zp(
1
2 + γ, `)

:=


p

1
2 +γ

(
p
p+1

) [
1
2(1− λf (p)

p
1
2+γ

+ 1
p1+2γ )−1 − 1

2(1 +
λf (p)

p
1
2+γ

+ 1
p1+2γ )−1

]
if p|`1,

p
p+1

[
1
2(1− λf (p)

p
1
2+γ

+ 1
p1+2γ )−1 + 1

2(1 +
λf (p)

p
1
2+γ

+ 1
p1+2γ )−1

]
if p - `1, p|`2,

1 + p
p+1

[
1
2(1− λf (p)

p
1
2+γ

+ 1
p1+2γ )−1 + 1

2(1 +
λf (p)

p
1
2+γ

+ 1
p1+2γ )−1 − 1

]
if (p, 2`) = 1.

The function Z(1
2 + γ, `) has an analytic continuation to the region Re(γ) > −1

4 , by Lemma

3.10.

The main term in (3.4) can be conjectured by heuristically following this chapter’s argument

or using the recipe method in [17]. To obtain Theorems 3.1 and 3.2, it suffices to prove the

following theorem.

Theorem 3.4. If Conjecture 3.3 is true for some h ≥ 1
2 (for any ε and any Φ that satisfy the

conditions described in Conjecture 3.3), then it is true for 4h−1
4h replacing h (for any ε and any

Φ that satisfy the conditions described in Conjecture 3.3).

Proof of Theorems 3.1 and 3.2. We see Conjecture 3.3 is true for h = 1 by Lemma 3.9 in the

next section. By Theorem 3.4 we can reduce it to h = 1, 3
4 ,

2
3 , · · · , which tends to h = 1

2 . Set

` = 1 and write

Z∗(α) := Z(1
2 + α, 1). (3.6)

Then Theorem 3.1 follows by letting α → 0 in (3.4). We can differentiate both sides of (3.4)

in terms of α. Note that the error term in (3.4) is holomorphic on the disc centred at (0, 0)

with radius � 1
logX . Hence the size of the derivative of the error term is still O(X

1
2

+ε) by

Cauchy’s integral formula. This gives Theorem 3.2 by letting α→ 0. Note that we can compute

asymptotic formulas for the first moment of higher derivatives of twisted L-functions in a similar

way.

The rest of the chapter will focus on proving Theorem 3.4. The idea is as follows. We first

apply the approximate functional equation in the twisted L-function in (3.3). Then the Möbius
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inversion is used to remove the square-free condition where the new parameter a is introduced.

We split the summation over a into two pieces. For large a, the Poisson summation formula

is employed to separate the summation into diagonal terms and non-diagonal terms (see their

definitions below (3.14)). On the other hand, for small a, we convert the summation back to

that with the square-free condition, where we will use the induction hypothesis (3.4). We obtain

partial main terms and error terms there. These partial main terms can be perfectly combined

with the diagonal terms after some simplification, finally leading to the main term in (3.4).

We remark that there are nice cancellations between specific terms in the moment of quadratic

Dirichlet L-functions (see [107, 108, 96]), which seem to not appear in our case.

3.2 Preliminary lemmas.

Lemma 3.5. Let G(s) be an even, entire function with G(0) = 1, bounded in any fixed strip

|Re(s)| ≤ A, and decaying rapidly as |Im(s)| → ∞. Let

ωα(ξ) :=
1

2πi

∫
(1)

G(s)

s
gα(s)ξ−sds,

where

gα(s) := (2π)−s
Γ(κ2 + α+ s)

Γ(κ2 + α)
,

and
∫

(c) denotes the contour integral
∫ c+i∞
c−i∞ . Set

Xα,d :=

(
|d|
2π

)−2α Γ(κ2 − α)

Γ(κ2 + α)
.

Then we have

L(1
2 + α, f ⊗ χd) =

∞∑
n=1

λf (n)χd(n)

n
1
2

+α
ωα

(
n

|d|

)
+ iκε(d)Xα,d

∞∑
n=1

λf (n)χd(n)

n
1
2
−α

ω−α

(
n

|d|

)
.
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Proof. Set

I :=
1

2πi

∫
(1)

(
|d|
2π

)s Γ(κ2 + α+ s)

Γ(κ2 + α)
L(1

2 + α+ s, f ⊗ χd)
G(s)

s
ds

=
1

2πi

∫
(1)

Λ(1
2 + α+ s)

Γ(κ2 + α)

G(s)

s

(
d

2π

)− 1
2
−α

ds. (3.7)

Move the line of integration to Re(s) = −1. The residue theorem gives

L(1
2 + α, f ⊗ χd) = I − I ′, (3.8)

where

I ′ :=
1

2πi

∫
(−1)

Λ(1
2 + α+ s)

Γ(κ2 + α)

G(s)

s

(
d

2π

)− 1
2
−α

ds.

By changing the variable s→ −s and the functional equation (3.2),

I ′ = −iκε(d)
1

2πi

∫
(1)

Λ(1
2 − α+ s)

Γ(κ2 + α)

G(s)

s

(
|d|
2π

)− 1
2
−α

ds

= −iκε(d)Xα,d
1

2πi

∫
(1)

(
|d|
2π

)s Γ(κ2 − α+ s)

Γ(κ2 − α)
L(1

2 − α+ s, f ⊗ χd)
G(s)

s
ds. (3.9)

Insert (3.7) and (3.9) back into (3.8) and write L(1
2 ± α + s, f ⊗ χd) as their Dirichlet series.

This completes the proof.

Remark 3.6. Write

Z(α, s) := ζ(2 + 4α+ 4s)(1 + 4α+ 4s)(1− 4α− 4s).

We can take

G(s) = es
2Z(α, s)Z(α,−s) · Z(−α, s)Z(−α,−s)

Z(α, 0)2Z(−α, 0)2
.

The purpose of adding some zeta factors into G(s) is that they cancel out certain terms in

Z(1
2 ± α± s). See Lemma 3.10 and (3.48) for an example.

The following lemma is a generalized version of Poisson summation formula established by
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Soundararajan [97, Lemma 2.6] (also see [99, Lemma 2.2]).

Lemma 3.7. Let Φ be a smooth function with compact support on the positive real numbers,

and suppose that n is an odd integer. Then

∑
(d,2)=1

(
d

n

)
Φ

(
d

Z

)
=

Z

2n

(
2

n

)∑
k∈Z

(−1)kGk(n)Φ̂

(
kZ

2n

)
,

where

Gk(n) :=

(
1− i

2
+

(
−1

n

)
1 + i

2

) ∑
a (modn)

(a
n

)
e

(
ak

n

)
,

and

Φ̂(y) :=

∫ ∞
−∞

(cos(2πxy) + sin(2πxy)) Φ(x)dx

is a Fourier-type transform of Φ.

The Gauss-type sum Gk(n) above can be explicitly computed in the following lemma (see

[97, Lemma 2.3]).

Lemma 3.8. If m and n are relatively prime odd integers, then Gk(mn) = Gk(m)Gk(n). More-

over, if pα is the largest power of p dividing k (setting α =∞ if k = 0), then

Gk(p
β) =



0 if β ≤ α is odd,

φ(pβ) if β ≤ α is even,

−pα if β = α+ 1 is even,(
kp−α

p

)
pα
√
p if β = α+ 1 is odd,

0 if β ≥ α+ 2.

Here φ is the Euler totient function.

We need the following upper bound for the first moment of twisted modular L-functions. It

is analogous to [48, Theorem 2] of Heath-Brown.

Lemma 3.9. For σ ≥ 1
2 , we have

∑[

|d|≤X

|L(σ + it, f ⊗ χd)| �ε X
1+ε(1 + |t|)

1
2

+ε,
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3.2. PRELIMINARY LEMMAS.

where
∑[

denotes the summation over fundamental discriminants.

Proof. It follows from [99, Corollary 2.5] and the Cauchy-Schwarz inequality.

Lemma 3.10. (1) The function Z(1
2 +γ, `) defined in (3.5) is analytic and absolutely convergent

in the region Re(γ) > −1
4 .

(2) Let Re(γ) > 0. Then for any integer N ≥ 0, we have

L(1 + 2γ, sym2 f)Z(1
2 + γ, `) = L(1 + 2γ, sym2 f)

ζ(2N+1 + 2N+2γ)

ζ(2 + 4γ)
ZN (1

2 + γ, `).

Here ZN (1
2 + γ, `) is analytic and is bounded by `ε in the region Re(γ) > max(−1

2 + ε,−1
2 +

1
2N+2 + ε

2N+2 ). Note Z0 = Z.

Proof. Recall the definition of L(1 + 2γ, sym2 f)Z(1
2 + γ, `) in (3.5). We see that in the region

Re(γ) > 0, for (p, 2`) = 1,

Zp(
1
2 + γ, `) =

(
1−

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1(
1 +

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1(
1 +

1

p1+2γ
+ P (γ)

)
, (3.10)

where

P (γ) = − 1

p+ 1

[
1 +

1

p1+2γ
−

(
1−

λf (p)

p
1
2

+γ
+

1

p1+2γ

)(
1 +

λf (p)

p
1
2

+γ
+

1

p1+2γ

)]

We see that P (γ) = O( 1
p1+ε

) when Re(γ) > −1
2 + ε. In (3.10), we factor out 1 + 1

p1+2γ by

1 +
1

p1+2γ
+ P (γ) =

1

1− 1
p1+2γ

(
1− 1

p1+2γ

)(
1 +

1

p1+2γ
+ P (γ)

)
=

1

1− 1
p1+2γ

(
1− 1

p2+22γ
+ P (γ)− 1

p1+2γ
P (γ)

)
(3.11)

Note that P (γ) − 1
p1+2γP (γ) = O( 1

p1+ε
) when Re(γ) > −1

2 + ε. It is clear that the expression

1− 1

p2+22γ
+P (γ)− 1

p1+2γP (γ) is exactly the Euler factor of Z(1
2 + γ, `) in the case of (p, 2`) = 1.

This proves that Z(1
2 + γ, `) is analytic and absolutely convergent in the region Re(γ) > −1

4 .
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3.3. SETUP OF THE PROBLEM.

Factoring out 1− 1

p2+22γ
in (3.11), we obtain

1− 1

p2+22γ
+ P (γ)− 1

p1+2γ
P (γ)

=
1

1 + 1

p2+22γ

(
1 +

1

p2+22γ

)(
1− 1

p2+22γ
+ P (γ)− 1

p1+2γ
P (γ)

)
=

1

1 + 1

p2+22γ

(
1− 1

p22+23γ
+ P (γ)− 1

p1+2γ
P (γ) +

1

p2+2γ
P (γ)− 1

p3+6γ
P (γ)

)

Note that the terms with P (γ) are O( 1
p1+ε

) when Re(γ) > −1
2 + ε.

Repeating the above process continuously we can get

1

1 + 1

p2+22γ

(
1− 1

p22+23γ
+ P (γ)− 1

p1+2γ
P (γ) +

1

p2+2γ
P (γ)− 1

p3+6γ
P (γ)

)

=
N∏
m=1

1

1 + 1

p2m+2m+1γ

(
1− 1

p2N+1+2N+2γ
+Q(γ)

)

=
1− 1

p2+4γ

1− 1

p2N+1+2N+2γ

(
1− 1

p2N+1+2N+2γ
+Q(γ)

)
,

where Q(γ) is a certain expression satisfying Q(γ) = ON,ε(
1

p1+ε
) when Re(γ) > −1

2 + ε.

Note the expression 1− 1

p2N+1+2N+2γ
+Q(γ) is the Euler factor of ZN (1

2 +γ, `) when (p, 2`) = 1.

For Re(γ) > max(−1
2 + ε,−1

2 + 1
2N+2 + ε

2N+2 ), we have

∏
(p,2`)=1

(
1− 1

p2N+1+2N+2γ
+Q(γ)

)
� 1.

In addition, it is easy to derive the Euler factors of ZN (1
2 + γ, `) corresponding to p|2` and to

prove that they contribute � `ε, as desired.

3.3 Setup of the problem.

By (3.3) and Lemma 3.5, we get

M(α, `) = M+(α, `) +M−(α, `),
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3.3. SETUP OF THE PROBLEM.

where

M+(α, `) :=
∑∗

(d,2)=1

Φ

(
d

X

) ∞∑
n=1

λf (n)χ8d(`n)

n
1
2

+α
ωα

( n
8d

)
,

M−(α, `) := iκ
∑∗

(d,2)=1

Φ

(
d

X

)
Xα,8d

∞∑
n=1

λf (n)χ8d(`n)

n
1
2
−α

ω−α

( n
8d

)
.

Remark 3.11. Define Φz(x) := xzΦ(x). We then can write

M−(α, `) = iκγαX
−2α

∑∗

(d,2)=1

Φ−2α

(
d

X

) ∞∑
n=1

λf (n)χ8d(`n)

n
1
2
−α

ω−α

( n
8d

)
,

where

γα :=

(
8

2π

)−2α Γ(κ2 − α)

Γ(κ2 + α)
. (3.12)

Notice that M−(α, `) is equal to iκγαX
−2αM+(−α, `) with Φ−2α in place of Φ. Thus we just

need to evaluate M+(α, `), and the results for M−(α, `) can be obtained immediately.

The square-free condition in M+(α, `) can be removed by using Möbius inversion. This gives

M+(α, `) =
∑

(d,2)=1

∑
a2|d

µ(a)Φ

(
d

X

) ∞∑
n=1

λf (n)χ8d(`n)

n
1
2

+α
ωα

( n
8d

)
=

∑
(a,2`)=1

µ(a)
∑

(d,2)=1

∑
(n,a)=1

λf (n)χ8d(`n)

n
1
2

+α
ωα

( n

8a2d

)
Φ

(
a2d

X

)

=: M+
N (α, `) +M+

R (α, `), (3.13)

where M+
N (α, `) and M+

R (α, `) denote the sums over a ≤ Y and a > Y , respectively. Here

Y (≤ X) is a parameter chosen later.

We use the Poisson summation formula to split M+
N (α, `). Using Lemma 3.7 on the summa-

tion over d in M+
N (α, `), we derive

M+
N (α, `) =

X

2

∑
(a,2`)=1
a≤Y

µ(a)

a2

∑
(n,2a)=1

λf (n)

n
1
2

+α

∑
k∈Z

(−1)k
Gk(`n)

`n

×
∫ ∞
−∞

(cos + sin)

(
2πkxX

2n`a2

)
ωα

( n

8xX

)
Φ(x)dx. (3.14)
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3.3. SETUP OF THE PROBLEM.

Let M+
N (α, `, k = 0) denote the term k = 0 above, and let M+

N (α, `, k 6= 0) denote the remaining

terms. We call M+
N (α, `, k = 0) diagonal terms and M+

N (α, `, k 6= 0) off-diagonal terms.

On the other hand, we convert M+
R (α, `) in (3.13) back to the summation over square-free

integers, and then appeal to the induction hypothesis (3.4). To see this, recall that

M+
R (α, `) =

∑
(a,2`)=1
a>Y

µ(a)
∑

(d,2)=1

∑
(n,a)=1

λf (n)χ8d(`n)

n
1
2

+α
ωα

( n

8a2d

)
Φ

(
a2d

X

)
.

Write d = eb2, where e is square-free and b is positive. Group terms according to c = ab. It

follows that

M+
R (α, `)

=
∑

(c,2`)=1

∑
a>Y
a|c

µ(a)
∑∗

(e,2)=1

∑
(n,2c)=1

λf (n)χ8e(`n)

n
1
2

+α
ωα

( n

8c2e

)
Φ

(
c2e

X

)

=
∑

(c,2`)=1

∑
a>Y
a|c

µ(a)
1

2πi

∫
(1)

∑∗

(e,2)=1

χ8e(`)Φs

( e

X ′

)
Lc(

1
2 + α+ s, f ⊗ χ8e)X

s8sgα(s)
G(s)

s
ds,

(3.15)

where X ′ := X
c2

. Here Lc(s, f ⊗ χ8e), Re(s) > 1 is given by the Euler product of L(s, f ⊗ χ8e)

with omitting all prime factors of c. In the first equation, the condition (c, `) = 1 is due to

χ8ed2(`) = 0 if (d, `) 6= 1. We use the following lemma to change Lc(
1
2 + α+ s, f ⊗ χ8e) back to

the form of L(1
2 + α+ s, f ⊗ χ8e). It is similar to Lemma 9 of Kowalski and Michel [67].

Lemma 3.12. Let d be a fundamental discriminant. Then

∏
p|c

(
1−

λf (p)χd(p)

ps
+
χd(p

2)

p2s

)
=
∑
m|c

∑
n|c

µ(m)µ(mn)2λf (m)χd(m)χd(n
2)

1

ms

1

n2s
. (3.16)
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3.3. SETUP OF THE PROBLEM.

Proof. Note that the summand on the right-hand side of (3.16) is jointly multiplicative. Thus

∑
m|c

∑
n|c

µ(m)µ(mn)2λf (m)χd(m)χd(n
2)

1

ms

1

n2s

=
∏
p|c

∑
0≤r1,r2≤orderp(c)

µ(pr1)µ(pr1+r2)2λf (pr1)χd(p
r1)χd(p

2r2)
1

pr1s
1

p2r2s

=
∏
p|c

(
1−

λf (p)χd(p)

ps
+
χd(p

2)

p2s

)
,

as desired.

It follows from (3.15) and Lemma 3.12 that

M+
R (α, `) =

∑
(c,2`)=1

∑
a>Y
a|c

µ(a)
∑
r1|c

µ(r1)λf (r1)

r
1
2

+α

1

∑
r2|c

µ(r1r2)2

r1+2α
2

1

2πi

∫
( 1
logX

)

×
∑∗

(e,2)=1

χ8e(`1r1`
2
2r

2
2)Φs

( e

X ′

)
L(1

2 + α+ s, f ⊗ χ8e)
1

rs1r
2s
2

Xs8sgα(s)
G(s)

s
ds.

We can truncate the above integral for |Im(s)| � (logX)2 with an error O(1) by the rapid

decay of |G(s)| as |Im(s)| → ∞. For |Im(s)| � (logX)2, we are allowed to employ the inductive

hypothesis (3.4). Hence we have

M+
R (α, `) = M+

R,1(α, `) +M+
R,2(α, `) +M+

R,3(α, `) +O(1),
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3.4. EVALUATION OF M+
N (α, λ,K = 0).

where

M+
R,1(α, `) :=

1

`
1
2

+α

1

∑
(c,2`)=1

∑
a>Y
a|c

µ(a)
∑
r1|c

µ(r1)λf (r1)

r1+2α
1

∑
r2|c

µ(r1r2)2

r1+2α
2

1

2πi

∫
( 1
logX

)

4X1+sΦ̃(1 + s)

π2c2

× L(1 + 2α+ 2s, sym2 f)Z(1
2 + α+ s, `r1r

2
2)

8s

`s1r
2s
1 r

2s
2

gα(s)
G(s)

s
ds. (3.17)

M+
R,2(α, `) :=

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a>Y
a|c

µ(a)
∑
r1|c

µ(r1)λf (r1)

r1

∑
r2|c

µ(r1r2)2

r1+2α
2

1

2πi

∫
( 1
logX

)

4X1−2α−sγα+s

π2c2−4α−4s

× Φ̃(1− 2α− s)L(1− 2α− 2s, sym2 f)Z(1
2 − α− s, `r1r

2
2)
`s18s

r2s
2

gα(s)
G(s)

s
ds.

(3.18)

M+
R,3(α, `) :=

∑
(c,2`)=1

∑
a>Y
a|c

µ(a)
∑
r1|c

µ(r1)λf (r1)

r
1
2

+α

1

∑
r2|c

µ(r1r2)2

r1+2α
2

1

2πi

∫
s= 1

logX
+it

|t|�(logX)2

×O
(

(`r1r
2
2)

1
2

+ ε
100X ′h+ε

) 1

rs1r
2s
2

Xs8sgα(s)
G(s)

s
ds. (3.19)

Note that in (3.17) and (3.18) we have extended the range of integrals from |Im(s)| � (logX)2

to the vertical line Re(s) = 1
logX with an error O(1).

Now we have separated M+(α, `) into several parts. In summary, we have obtained

M(α, `) = M+(α, `) +M−(α, `), (3.20)

and

M+(α, `) = M+
N (α, `) +M+

R (α, `),

M+
N (α, `) = M+

N (α, `, k = 0) +M+
N (α, `, k 6= 0),

M+
R (α, `) = M+

R,1(α, `) +M+
R,2(α, `) +M+

R,3(α, `) +O(1).

(3.21)

We can also split M−(α, `) similarly using Remark 3.11. We will evaluate M+
N (α, `, k = 0),

M+
N (α, `, k 6= 0), respectively, in Sections 3.4, 3.5. The analysis for M+

R,1(α, `), M+
R,2(α, `) and

M+
R,3(α, `) will be done in Section 3.6. We complete the proof of Theorem 3.4 in Section 3.7.
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3.4. EVALUATION OF M+
N (α, λ,K = 0).

3.4 Evaluation of M+
N (α, `, k = 0).

Recall M+
N (α, `, k = 0) in (3.14). By the definition of Gk(n) in Lemma 3.7, we know G0(n) =

φ(n) if n = 2, and G0(n) = 0 otherwise. Here n = 2 means n is a square number. Hence

M+
N (α, `, k = 0) =

X

2

∑
(a,2`)=1
a≤Y

µ(a)

a2

∑
(n,2a)=1
`n=2

λf (n)

n
1
2

+α

φ(`n)

`n

∫ ∞
−∞

ωα

( n

8xX

)
Φ(x)dx

=
X

2

∑
(a,2`)=1
a≤Y

µ(a)

a2

1

2πi

∫
(1)

Φ̃(s+ 1)Z1(1
2 + α+ s, a, `)8sXsgα(s)

G(s)

s
ds, (3.22)

where

Z1(1
2 + γ, a, `) :=

∑
(n,2a)=1
`n=2

λf (n)

n
1
2

+γ

φ(`n)

`n
.

For simplicity we use E1(γ; p), E2(γ; p), E3(γ; p) to denote the three Euler factors in (3.6),

respectively. For Re(γ) > 0, write

A(γ, a, `) :=
∏
p|`1

E1(γ; p)
∏
p-`1
p|`2

E2(γ; p)
∏

(p,2a`)=1

(
E3(γ; p) +

1

p2 − 1

)
. (3.23)

Lemma 3.13. For Re(γ) > 0, we have

Z1(1
2 + γ, a, `) =

1

`
1
2

+γ

1 ζ2a(2)
A(γ, a, `).

Proof. For each prime p, let b1, b2 be integers such that pb1 ||`1 and pb2 ||`2. We change the

variable n→ `1n
2. We can do this because `n = 2 implies `1n = 2. It gives

Z1(1
2 + γ, a, `) =

1

`
1
2

+γ

1

∑
(n,2a)=1

λf (`1n
2)

n1+2γ

∏
p|`1`2n

(
1− 1

p

)

=
1

`
1
2

+γ

1

∏
(p,2a)=1

∞∑
r=0

λf (pb1+2r)

p(1+2γ)r

∏
q|pb1+b2+r

(
1− 1

q

)
.

In the following, we consider three cases for the sum over r above.
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3.5. UPPER BOUND FOR M+
N (α, λ,K 6= 0).

If (p, 2a`) = 1, then b1 = b2 = 0. Thus

∞∑
r=0

λf (p2r)

p(1+2γ)r

∏
q|pr

(
1− 1

q

)
= 1 +

(
1− 1

p

) ∞∑
r=1

λf (p2r)

p( 1
2

+γ)2r

= 1 +

(
1− 1

p

)1

2

(
1−

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1

+
1

2

(
1 +

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1

− 1

 . (3.24)

If (p, 2a) = 1, p|`1, then b1 = 1 since `1 is square-free. Hence

∞∑
r=0

λf (p1+2r)

p(1+2γ)r

(
1− 1

p

)
= p

1
2

+γ

(
1− 1

p

) ∞∑
r=0

λf (p1+2r)

p( 1
2

+γ)(1+2r)

= p
1
2

+γ

(
1− 1

p

)1

2

(
1−

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1

− 1

2

(
1 +

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1
 . (3.25)

If (p, 2a) = 1, p - `1, p|`2, then b1 = 0, b2 ≥ 1. This gives

∞∑
r=0

λf (p2r)

p(1+2γ)r

(
1− 1

p

)
=

(
1− 1

p

)1

2

(
1−

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1

+
1

2

(
1 +

λf (p)

p
1
2

+γ
+

1

p1+2γ

)−1
 .

(3.26)

We then complete the proof by taking out the factor 1− 1
p2

from (3.24), (3.25) and (3.26).

It follows from (3.22) and Lemma 3.13 that

Lemma 3.14. We have

M+
N (α, `, k = 0)

=
4X

π2`
1
2

+α

1

∑
(a,2`)=1
a≤Y

µ(a)

a2

∏
p|a

1

1− 1
p2

1

2πi

∫
(1)

Φ̃(s+ 1)A(s+ α, a, `)
1

`s1
8sXsgα(s)

G(s)

s
ds.
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3.5. UPPER BOUND FOR M+
N (α, λ,K 6= 0).

3.5 Upper bound for M+
N (α, `, k 6= 0).

We shall prove an upper bound for M+
N (α, `, k 6= 0) in this section. Recall in (3.14) that

M+
N (α, `, k 6= 0) =

X

2

∑
(a,2`)=1
a≤Y

µ(a)

a2

∑
(n,2a)=1

λf (n)

n
1
2

+α

∑
k 6=0

(−1)k
Gk(`n)

`n

×
∫ ∞
−∞

(cos + sin)

(
2πkxX

2n`a2

)
ωα

( n

8xX

)
Φ(x)dx. (3.27)

Lemma 3.15. Let f(x) be a smooth function on R>0. Suppose f decays rapidly as x→∞, and

f (n)(x) converges as x→ 0+ for every n ∈ Z≥0. Then we have

∫ ∞
0

f(x) cos(2πxy)dx =
1

2πi

∫
( 1
2

)
f̃(1− u)Γ(u) cos

(
sgn(y)πu

2

)
(2π|y|)−udu, (3.28)

In addition, the equation (3.28) is also valid when cos is replaced by sin.

Proof. See [99, Section 3.3].

By Lemma 3.15, the integral in (3.27) is

1

2πi

∫
( 1
2

)
X−uΓ(u)(cos + sgn(k) sin)

(πu
2

)(`na2

π|k|

)u ∫ ∞
0

Φ(x)x−uωα

( n

8xX

)
dxdu

=
1

(2πi)2

∫
( 1
2

)

∫
(1)

× Φ̃(1 + s− u)X−u+sΓ(u)(cos + sgn(k) sin)
(πu

2

)( `a2

π|k|

)u
8s

1

ns−u
gα(s)

G(s)

s
dsdu.

Move the contour of the above integral to Re(u) = 1
2 +ε,Re(s) = 1

2 +2ε, and change the variable

s′ = s− u. This implies

1

(2πi)2

∫
( 1
2

+ε)

∫
(ε)

Φ̃(1 + s)XsΓ(u)(cos + sgn(k) sin)
(πu

2

)( `a2

π|k|

)u
× 8s+u

1

ns
gα(s+ u)

G(s+ u)

s+ u
dsdu.
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3.5. UPPER BOUND FOR M+
N (α, λ,K 6= 0).

Together with (3.27), it follows that

M+
N (α, `, k 6= 0)

=
X

2`

∑
(a,2`)=1
a≤Y

µ(a)

a2

∑
k 6=0

(−1)k
1

(2πi)2

∫
( 1
2

+ε)

∫
(ε)

Φ̃(1 + s)XsΓ(u)(cos + sgn(k) sin)
(πu

2

)( `a2

π|k|

)u

× 8s+ugα(s+ u)
G(s+ u)

s+ u
Z2(1

2 + α+ s, a, k, `)dsdu,

(3.29)

where

Z2(γ, a, k, `) :=
∑

(n,2a)=1

λf (n)

nγ
Gk(`n)

n
.

Lemma 3.16. Write 4k = k1k
2
2, where k1 is a fundamental discriminant (possibly k1 = 1) and

k2 is positive. Then for Re(γ) > 1
2 , we have

Z2(γ, a, k, `) = L(1
2 + γ, f ⊗ χk1)Z3(γ, a, k, `). (3.30)

Here

Z3(γ, a, k, `) :=
∏
p

Z3,p(γ, a, k, `),

where

Z3,p(γ, a, k, `) := 1−
λf (p)χk1(p)

p
1
2

+γ
+
χk1(p)2

p1+2γ
if p|2a, and

Z3,p(γ, a, k, `) :=

(
1−

λf (p)χk1(p)

p
1
2

+γ
+
χk1(p)2

p1+2γ

) ∞∑
r=0

λf (pr)

prγ
Gk(p

r+ordp(`))

pr
if p - 2a.

Moreover, Z3(γ, a, k, `) is analytic in the region Re(γ) > 0 and is uniformly bounded by

aε|k|ε`
1
2

+ε(`, k2
2)

1
2 in the region Re(γ) > ε

2 .

Proof. The proof is similar to [97, Lemma 5.3]. Note that Gk(n) is multiplicative. Hence

Z2(γ, a, k, `) =
∏

(p,2a)=1

∑
r=0

λf (pr)

prγ
Gk(p

r+ordp(`))

pr
.
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Then the identity (3.30) follows directly from a comparison of both sides.

When p - 2ak`, by the definition of Z3,p(γ, a, k, `) and Lemma 3.8, we know

Z3,p(γ, a, k, `) =

(
1−

λf (p)χk1(p)

p
1
2

+γ
+
χk1(p)2

p1+2γ

)(
1 +

λf (p)χk1(p)

p
1
2

+γ

)

= 1 +
χk1(p)2

p1+2γ
−
λf (p)2χk1(p)2

p1+2γ
+
λf (p)χk1(p)3

p
3
2

+3γ
. (3.31)

Hence Z3(γ, a, k, `) is analytic in the region Re(γ) > 0.

It remains to prove the upper bound of Z3(γ, a, k, `). For p - 2ak`, by (3.31) and the fact

|λf (n)| ≤ τ(n), we get

∏
(p,2ak)=1

Z3,p(γ, a, k, `)� 1. (3.32)

For p|2a, we have

∏
p|2a

Z3,p(γ, a, k, `)� aε. (3.33)

For p - 2a, p|k`, we let pb1 ||k, pb2 ||`. We can assume b2 ≤ b1 +1 since Gk(p
r+b2) = 0 otherwise (by

Lemma 3.8). We claim Z3,p(γ, a, k, `)� (1 + b1 + b2)2pmin(b2,b b12 c+
b2
2

). In fact, the trivial bound

Gk(p
n) ≤ pn gives Z3,p(γ, a, k, `)� (1 + b1 + b2)2pb2 , which proves the case b2 ≤ b b12 c+ b2

2 . The

remaining cases include: b1 even and b2 = b1 +1, or b1 odd and b2 = b1, or b1 odd and b2 = b1 +1.

For b1 even and b2 = b1 + 1, by Lemma 3.8, we know Z3,p(γ, a, k, `) � pb1
√
p = pb

b1
2
c+ b2

2 . The

other two cases can be done similarly. This combined with (3.32) and (3.33) gives the upper

bound for Z3(γ, a, k, `).

By (3.29) and Lemma 3.16, we have

M+
N (α, `, k 6= 0)

=
X

2`

∑
(a,2`)=1
a≤Y

µ(a)

a2

∑
k 6=0

(−1)k
1

(2πi)2

∫
( 1
2

+ε)

∫
(ε)

Φ̃(1 + s)XsΓ(u)(cos + sgn(k) sin)
(πu

2

)( `a2

π|k|

)u

× 8s+ugα(s+ u)
G(s+ u)

s+ u
L(1 + α+ s, f ⊗ χk1)Z3(1

2 + α+ s, a, k, `)dsdu.
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3.6. EVALUATION OF M+
R (α, λ).

Move the lines of the integral to Re(s) = −1
2 − α + ε, Re(u) = 1 + ε without encountering any

poles. Together with Lemma 3.9 and Lemma 3.16, it follows that

Lemma 3.17. We have

M+
N (α, `, k 6= 0)� `

1
2

+εX
1
2

+εY.

3.6 Evaluation of M+
R (α, `).

In this section we shall simplify M+
R,1(α, `), and derive upper bounds for M+

R,2(α, `),

M+
R,3(α, `) by proving the follow lemma.

Lemma 3.18. We have

M+
R,1(α, `)

=
4X

π2`
1
2

+α

1

∑
a>Y

(a,2`)=1

µ(a)

a2

∏
p|a

1

1− 1
p2

1

2πi

∫
(1)

Φ̃(1 + s)A(α+ s, a, `)
1

`s1
Xs8sgα(s)

G(s)

s
ds. (3.34)

M+
R,2(α, `)� `εX

1
2

+εY. (3.35)

M+
R,3(α, `)� `

1
2

+ε X
h+ε

Y 2h−1
. (3.36)

We give a proof for the above lemma in the rest of the section. Recall M+
R,1(α, `) in (3.17).

By interchanging summations and integrals, we know

M+
R,1(α, `) =

4X

π2`
1
2

+α

1

∑
a>Y

(a,2`)=1

µ(a)
1

2πi

∫
(1)

Φ̃(1 + s)
∑

(r1,2`)=1

µ(r1)λf (r1)

r1+2α+2s
1

∑
(r2,2`)=1

µ(r1r2)2

r1+2α+2s
2

× L(1 + 2α+ 2s, sym2 f)Z(1
2 + α+ s, `r1r

2
2)

∑
(c,2`)=1
a,r1,r2|c

1

c2

1

`s1
Xs8sgα(s)

G(s)

s
ds.

(3.37)
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R (α, λ).

Lemma 3.19. For Re(γ) > 0,

∑
(r1,2`)=1

µ(r1)λf (r1)

r1+2γ
1

∑
(r2,2`)=1

µ(r1r2)2

r1+2γ
2

∑
(c,2`)=1
a,r1,r2|c

1

c2
L(1 + 2γ, sym2 f)Z(1

2 + γ, `r1r
2
2)

=
1

a2

∏
p|a

1

1− 1
p2

A(γ, a, `).

(3.38)

Proof. The left-hand side of (3.38) is

∑
(r1,2`)=1

µ(r1)λf (r1)

r1+2γ
1

∑
(r2,2`)=1

µ(r1r2)2

r1+2γ
2

∑
(c,2`)=1
a,r1,r2|c

1

c2

∏
p|`1r1

E1(γ; p)
∏
p-`1r1
p|`2r2

E2(γ; p)
∏

(p,2`r1r2)=1

E3(γ; p).

(3.39)

Note

∑
(c,2`)=1
a,r1,r2|c

1

c2
=

∑
[r1,r2,a]|c
(c,2`)=1

1

c2
=

1

[r1, r2, a]2

∑
(c,2`)=1

1

c2
=

1

a2

([r1, r2], a)2

[r1, r2]2
ζ2`(2). (3.40)

We also see that

∏
p-`1r1
p|`2r2

E2(γ; p) =
∏
p|`2r2

E2(γ; p)
∏

p|(r1,r2)

E2(γ; p)−1
∏

p|(`1,`2)

E2(γ; p)−1. (3.41)

Inserting (3.40) and (3.41) into (3.39), the expression (3.39) now is

ζ2`(2)

a2

∏
p|`1

E1(γ; p)
∏
p|`2
p-`1

E2(γ; p)
∏

(p,2`)=1

E3(γ; p)
∑

(r1,2`)=1

∑
(r2,2`)=1

H(r1, r2), (3.42)

where

H(r1, r2)

:=
µ(r1)λf (r1)

r1+2γ
1

µ(r1r2)2

r1+2γ
2

([r1, r2], a)2

[r1, r2]2

∏
p|r1

E1(γ; p)
∏
p|r2

E2(γ; p)
∏

p|(r1,r2)

E2(γ; p)−1
∏
p|r1r2

E3(γ; p)−1.

89



3.6. EVALUATION OF M+
R (α, λ).

Clearly H(r1, r2) is joint multiplicative. Then

∑
(r1,2`)=1

∑
(r2,2`)=1

H(r1, r2)

=
∏

(p,2`)=1

(
1−

λf (p)

p1+2γ

(p, a)2

p2
E1(γ; p)E3(γ; p)−1 +

1

p1+2γ

(p, a)2

p2
E2(γ; p)E3(γ; p)−1

)
.

It follows that

∏
(p,2`)=1

E3(γ; p) ·
∑

(r1,2`)=1

∑
(r2,2`)=1

H(r1, r2)

=
∏

(p,2a`)=1

(
E3(γ; p)−

λf (p)

p3+2γ
E1(γ; p) +

1

p3+2γ
E2(γ; p)

)∏
p|a

1

=
∏

(p,2a`)=1

(
1− 1

p2

)(
E3(γ; p) +

1

p2 − 1

)
. (3.43)

Substituting (3.43) in (3.42) completes the proof.

We can complete the proof for (3.34) by using (3.37) and Lemma 3.19.

Next recall M+
R,2(α, `) in (3.18), which is of the form

M+
R,2(α, `) =

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a>Y
a|c

µ(a)T (c, α, `).

We extend the sum over a > Y to that over all positive integers. Then

M+
R,2(α, `) =

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a|c

µ(a)T (c, α, `)− iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a≤Y
a|c

µ(a)T (c, α, `). (3.44)

We know
∑

a|c µ(a) = 1 when c = 1, and is zero otherwise. Thus

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a|c

µ(a)T (c, α, `)

=
iκ

`
1
2
−α

1

1

2πi

∫
( 1
logX

)

4X1−2α−sγα+sΦ̃(1− 2α− s)
π2

L(1− 2α− 2s, sym2 f)

× Z(1
2 − α− s, `)`

s
18sgα(s)

G(s)

s
ds.
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3.6. EVALUATION OF M+
R (α, λ).

Move the line of the above integral from Re(s) = 1
logX to Re(s) = 1

2 − ε. We encounter no poles

due to Lemma 3.10 and Remark 3.6. It follows that

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a|c

µ(a)T (c, α, `)� `εX
1
2

+ε. (3.45)

For the second term of (3.44), we move the contour of the integral in T (c, α, `) to Re(s) = 1
10

without encountering any poles. We have

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a≤Y
a|c

µ(a)T (c, α, `)

=
iκ

`
1
2
−α

1

∑
a≤Y

(a,2`)=1

µ(a)
∑

(r1,2`)=1

µ(r1)λf (r1)

r1

∑
(r2,2`)=1

µ(r1r2)2

r1+2α
2

1

2πi

∫
( 1
10

)

× 4X1−2α−sγα+sΦ̃(1− 2α− s)
π2

×
∑

(c,2`)=1
a,r1,r2|c

1

c2−4α−4s
L(1− 2α− 2s, sym2 f)Z(1

2 − α− s, `r1r
2
2)
`s18s

r2s
2

gα(s)
G(s)

s
ds.

Treat
∑

(c,2`)=1
a,r1,r2|c

1
c2−4α−4s as in (3.40). The above is

iκ

`
1
2
−α

1

∑
a≤Y

(a,2`)=1

µ(a)
∑

(r1,2`)=1

µ(r1)λf (r1)

r1

∑
(r2,2`)=1

µ(r1r2)2

r1+2α
2

1

2πi

∫
( 1
10

)

4X1−2α−sγα+sΦ̃(1− 2α− s)
π2

× 1

a2−4α−4s

([r1, r2], a)2−4α−4s

[r1, r2]2−4α−4s
ζ2`(2− 4α− 4s)L(1− 2α− 2s, sym2 f)

× Z(1
2 − α− s, `r1r

2
2)
`s1
r2s

2

8sgα(s)
G(s)

s
ds.

Move the contour of the integral above to Re(s) = 1
2 − ε without encountering any poles by

Lemma 3.10 and Remark 3.6. In particular, the pole of ζ(2− 4α− 4s) is canceled by the factor

1− 4α− 4s in G(s). By the fact

∣∣∣∣([r1, r2], a)2−4α−4s

a2−4α−4s

1

[r1, r2]2−4α−4s

∣∣∣∣ ≤ 1

rε1
,

91



3.7. PROOF OF THEOREM 3.4.

we obtain

iκ

`
1
2
−α

1

∑
(c,2`)=1

∑
a≤Y
a|c

µ(a)T (c, α, `)� `εX
1
2

+εY. (3.46)

Combining (3.44), (3.45) and (3.46) gives (3.35).

Finally, recall M+
R,3(α, `) in (3.19). Note h ≥ 1

2 . Then

M+
R,3(α, `)� `

1
2

+ ε
10

∑
(c,2`)=1

(
X

c2

)h+ε∑
a>Y
a|c

∑
r1|c

∑
r2|c

(r1r
2
2)

ε
10 � `

1
2

+ε X
h+ε

Y 2h−1
,

which gives (3.36).

3.7 Proof of Theorem 3.4.

By Lemmas 3.14, 3.18,

M+
R,1(α, `) +M+

N (α, `, k = 0)

=
4X

π2`
1
2

+α

1

∑
(a,2`)=1

µ(a)

a2

∏
p|a

1

1− 1
p2

1

2πi

∫
(1)

Φ̃(s+ 1)A(s+ α, a, `)
1

`s1
8sXsgα(s)

G(s)

s
ds,

(3.47)

where A(s+ α, a, `) is defined in (3.23). It can be deduced that

∑
(a,2`)=1

µ(a)

a2

∏
p|a

1

1− 1
p2

A(s+ α, a, `) =
∏
p|`1

E1(α+ s; p)
∏
p-`1
p|`2

E2(α+ s; p)
∏

(p,2`)=1

E3(α+ s; p)

= L(1 + 2α+ 2s, sym2 f)Z(1
2 + α+ s, `).

This combined with (3.47) gives

M+
R,1(α, `) +M+

N (α, `, k = 0)

=
4X

π2`
1
2

+α

1

1

2πi

∫
(1)

Φ̃(s+ 1)L(1 + 2α+ 2s, sym2 f)Z(1
2 + α+ s, `)

1

`s1
8sXsgα(s)

G(s)

s
ds,

(3.48)
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Move the integration to the line Re(s) = −1
2 + ε with encountering one simple pole at s = 0 by

Lemma 3.10 and Remark 3.6. This gives

M+
R,1(α, `) +M+

N (α, `, k = 0) =
4X

π2`
1
2

+α

1

Φ̃(1)L(1 + 2α, sym2 f)Z(1
2 + α, `) +O(X

1
2

+ε`ε).

(3.49)

By Remark 3.11, we know

M−R,1(α, `) +M−N (α, `, k = 0)

= iκ
4γαX

1−2α

π2`
1
2
−α

1

Φ̃(1− 2α)L(1− 2α, sym2 f)Z(1
2 − α, `) +O(X

1
2

+ε`ε). (3.50)

Similarly we can derive same upper bounds for M−N (α, `, k 6= 0), M−R,2(α, `) and M−R,3(α, `) as

those for M+
N (α, `, k 6= 0), M+

R,2(α, `) and M+
R,3(α, `) in Lemmas 3.17, 3.18. Therefore it follows

from (3.20), (3.21), (3.49), (3.50), and Lemmas 3.17, 3.18 that

M(α, `) =
4X

π2`
1
2

+α

1

Φ̃(1)L(1 + 2α, sym2 f)Z(1
2 + α, `)

+ iκ
4γαX

1−2α

π2`
1
2
−α

1

Φ̃(1− 2α)L(1− 2α, sym2 f)Z(1
2 − α, `)

+O(`
1
2

+εX
1
2

+εY ) +O

(
`
1
2

+ε X
h+ε

Y 2h−1

)
.

Taking Y = X
2h−1
4h completes the proof of Theorem 3.4.
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Chapter 4

Counting zeros of Dedekind zeta functions

4.1 Introduction.

Given a number field K, the Dedekind zeta function ζK(s) of K is defined by

ζK(s) =
∑
a6=0

1

N(a)s
,

for Re(s) > 1, where the sum is over non-zero integral ideals of K. It is known that ζK(s) has an

analytic continuation to a meromorphic function on C with only a simple pole at s = 1, and its

zeros ρ = β+iγ encode deep arithmetic information of K. For instance, the generalised Riemann

hypothesis, asserting that if ζK(ρ) = 0 and β ∈ (0, 1), then β = 1
2 , leads to the strongest form

of the prime ideal theorem. A related prominent question is to count the zeros of ζK(s) in the

critical strip 0 < Re(s) < 1. For T ≥ 0, we set

NK(T ) = #{ρ ∈ C | ζK(ρ) = 0, 0 < β < 1, |γ| ≤ T},

counted with multiplicity if there are any multiple zeros. The estimate of NK(T ) is crucial for

proving effective versions of the Chebotarev density theorem as well as bounding the least prime

in the Chebotarev density theorem (see [70, 69]). Moreover, to make these results explicit, it is

natural to further require a determination of the implied constants for the estimate of NK(T ).

Adapting the arguments of Backlund [3], McCurley [72], and Rosser [91], in [58], Kadiri and

Ng showed that for T ≥ 1, one has

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)∣∣∣ ≤ D1(log dK + nK log T ) +D2nK +D3, (4.1)

with admissible (D1, D2, D3) = (0.506, 16.950, 7.663), where nK and dK are the degree and
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absolute discriminant of K, respectively; also, D1 can be taken as small as (π log 2)−1 ≈ 0.459

at expense of larger D2 and D3. This was improved by Trudgian [103] (not only for Dedekind

zeta functions but also for Dirichlet L-functions). In particular, as asserted in [103], the estimate

(4.1) is valid with (D1, D2, D3) = (0.316, 5.872, 3.655), and the constant D1 in (4.1) could be

made as small as 0.247 (with larger D2 and D3). Unfortunately, as pointed out by Bennett,

Martin, O’Bryant, and Rechnitzer [6], there is an error in [103] that appears as the ranges of

various parameters used in the argument of [103] were not verified properly. In [6], Bennett et

al. fixed this problem for Dirichlet L-functions.

The objective of this chapter is to prove the following theorem.

Theorem 4.1. Given a number field K of degree nK and with absolute discriminant dK and r1

real places, for any T ≥ 1, we have

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)
+
r1

4

∣∣∣ ≤ 0.22737 log
(dK(T + 2)nK

(2π)nK

)
+ 23.02528nK + 4.51954.

(4.2)

In addition, writing the right of (4.2) as C1 log
(dK(T+2)nK

(2π)nK

)
+ C2nK + C3, we have further

admissible triples (C1, C2, C3) recorded in Table 4.2 in Section 4.4. Moreover, recalling that for

T ≥ T0, log(T + 2) − log T ≤ log(1 + 2
T0

), from the above theorem and the triangle inequality,

we derive the following improved bound for NK(T ).

Corollary 4.2. Given a number field K of degree nK and with absolute discriminant dK , for

any T ≥ 1, we have

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)∣∣∣ ≤ 0.228(log dK + nK log T ) + 23.108nK + 4.520. (4.3)

Furthermore, by Table 4.2, writing the right of (4.3) as D1(log dK +nK log T ) +D2nK +D3,

we have the following Table 4.1 of admissible (D1, D2, D3) that not only repair but also improve

all triples given in [103, Table 2]. (Note that, for all number fields K, our D2 and D3 yield a

smaller vlaue of D2nK +D3 than the one given by Trudgian [103].)

The proof of Theorem 4.1 follows closely the arguments of Bennett, Martin, O’Bryant, and

Rechnitzer [6], Kadiri and Ng [58], and Trudgian [103], which are an adaption of the methods of

Backlund [3], McCurley [72], and Rosser [91]. We also take advantage of the refined estimates for
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4.2. THE MAIN TERM AND THE GAMMA FACTOR.

Table 4.1: Admissible (D1, D2, D3) in Corollary 4.2 and in [103]

Trudgian [103] Our improvement

T ≥ 1 T ≥ 10 T ≥ 1 T ≥ 10

D1 D2 D3 D2 D3 D1 D2 D3 D2 D3

0.247 8.851 3.024 8.726 2.081 0.245 6.735 4.213 6.449 3.124
0.265 7.521 3.178 7.396 2.101 0.264 5.276 4.082 4.968 3.051
0.282 6.776 3.335 6.651 2.123 0.281 4.478 4.010 4.149 3.012
0.299 6.262 3.494 6.138 2.146 0.296 3.971 3.969 3.622 2.990

gamma factors obtained in [6]. Moreover, following the strategy of Bennett et al. [6], we extend

Rademacher’s convexity bound for ζK(s) (cf. Propositions 4.13 and 4.14) that, together with

“Backlund’s trick” (see Section 4.3.2), plays a central role in improving the leading constants C1

and D1. Furthermore, we track all the parameters and related inequalities in a similar manner

of Bennett et al. [6] to fix the aforementioned error appearing in [103]. Last but not least, we

note that we obtain our results by a direct numerical computation (with help from Maple) and

that it may be possible to use the “interval analysis” as in [6] to prove an estimate similar to [6,

Theorem 1.1]. Nonetheless, since Corollary 4.2 is already as strong as [6, Corollary 1.2], and it

is sufficient for most applications, we shall not devote ourselves to do such an interval analysis

here.

4.2 The main term and the gamma factor.

4.2.1 The main term.

Let K be a number field of degree nK and with absolute discriminant dK . We let r1 and r2

be the numbers of real and complex places, respectively, of K and note that nK = r1 + 2r2. We

define the completed zeta function ξK(s) as

ξK(s) = s(s− 1)d
s/2
K γK(s)ζK(s), (4.4)

where

γK(s) =
(
π−

s+1
2 Γ
(s+ 1

2

))r2(
π−

s
2 Γ
(s

2

))r1+r2
.

We recall that ξK(s) extends to an entire function of order 1 and satisfies the functional equation

ξK(s) = ξK(1− s). (4.5)
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4.2. THE MAIN TERM AND THE GAMMA FACTOR.

As in the introduction, we set

NK(T ) = #{ρ ∈ C | ζK(ρ) = 0, 0 < β < 1, |γ| ≤ T}.

To estimate NK(T ), we shall apply the argument principle as follows. For any fixed σ1 > 1,

we consider the rectangle R with vertices σ1 − iT, σ1 + iT, 1− σ1 + iT , and 1− σ1 − iT (that

is away from zeros of ξK(s)).1 As ξK(s) is entire, it follows from the argument principle that

NK(T ) =
1

2π
∆R arg ξK(s).

Let C be the part of the contour of R in Re(s) ≥ 1
2 and C0 be the part of the contour of R in

Re(s) ≥ 1
2 and Im(s) ≥ 0. Since ξK(s) = ξK(s̄), the functional equation (4.5) then yields

∆R arg ξK(s) = 2∆C arg ξK(s) = 4∆C0 arg ξK(s),

which implies that

NK(T ) =
2

π
∆C0 arg ξK(s). (4.6)

Writing B = dK/π
nK , by (4.4), we have

∆C0 arg ξK(s) = ∆C0 arg s+ ∆C0 argBs/2

+ (r1 + r2)∆C0 arg Γ
(s

2

)
+ r2∆C0 arg Γ

(
s+ 1

2

)
+ ∆C0 arg ((s− 1)ζK(s)) .

(4.7)

1Throughout our argument, we will always assume T is away from zeros of ξK(s). As shall be seen in Section
4.4, with this assumption, we will prove (4.27) for T away from zeros of ξK(s). Nonetheless, if T is the exact
height of a zero, we know that NK(T ) = NK(T + ε) for all sufficiently small ε > 0 (in other words, T + ε is away
from zeros). Then, by the triangle inequality, applying (4.27) with T + ε, we see that∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)

+
r1
4

∣∣∣
≤

∣∣∣NK(T + ε)− T + ε

π
log

(
dK

(T + ε

2πe

)nK
)

+
r1
4

∣∣∣ +
∣∣∣T + ε

π
log

(
dK

(T + ε

2πe

)nK
)
− T

π
log

(
dK

( T

2πe

)nK
)∣∣∣

≤ C1 log
(dK(T + ε+ 2)nK

(2π)nK

)
+ C2nK + C3 +

∣∣∣T + ε

π
log

(
dK

(T + ε

2πe

)nK
)
− T

π
log

(
dK

( T

2πe

)nK
)∣∣∣.

Now, taking ε→ 0+, we conclude that (4.27) is also valid when T is the exact height of a zero.
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It is clear that

∆C0 arg s = arctan(2T ),

∆C0 argBs/2 =
T

2
logB =

T

2
log
( dK
πnK

)
,

∆C0 arg Γ(s) = ∆C0(Im log Γ(s)) = Im log Γ
(1

2
+ iT

)
.

(4.8)

To control the gamma factor, we shall appeal to the improved numerical bound established

in [6, Sec. 3]. For a ∈ {0, 1}, we set

ga(T ) =
2

π
Im log Γ

(1

4
+
a

2
+ i

T

2

)
− T

π
log
( T

2e

)
− 2a− 1

4
.

It follows from [6, Proposition 3.2] that for a ∈ {0, 1} and T ≥ 5/7,

|ga(T )| ≤ 2− a
50T

.

Hence, setting

gK(T ) = (r1 + r2)g0(T ) + r2g1(T ), (4.9)

we then obtain

|gK(T )| ≤ 2nK
50T

− r2

50T
. (4.10)

Now, gathering (4.6), (4.7), (4.8), and (4.9), we obtain

NK(T ) =
2

π
arctan(2T ) + gK(T ) +

T

π
log
(
dK

( T

2πe

)nK)
− r1

4
+

2

π
∆C0 arg((s− 1)ζK(s)). (4.11)

Let C1 denote the vertical line from σ1 to σ1 + iT and C2 denote the horizontal line from σ1 + iT

to 1
2 + iT . We require the following two estimates.

Lemma 4.3. For s = σ + it with σ > 1, one has

ζK(2σ)

ζK(σ)
≤ |ζK(s)| ≤ ζ(σ)nK ,
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4.2. THE MAIN TERM AND THE GAMMA FACTOR.

where, as later, ζ(s) denotes the Riemann zeta function.

Lemma 4.4. For σ1 > 1,

|∆C1 arg(s− 1)ζK(s)| ≤ π

2
+ nK log ζ(σ1).

Proof. Note that

∆C1 arg(s− 1)ζK(s) = ∆C1 arg(s− 1) + ∆C1 arg ζK(s) = arctan
( T

σ1 − 1

)
+ ∆C1 arg ζK(s).

Now, the lemma follows from the estimate

|∆C1 arg ζK(s)| = | arg ζK(σ1 + iT )| ≤ | log ζK(σ1 + iT )| ≤ log ζK(σ1) ≤ nK log ζ(σ1),

where the last inequality is due to Lemma 4.3.

Thus, by Lemma 4.4 and (4.11), we arrive at

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)
+
r1

4

∣∣∣ ≤ 2 + gK(T ) +
2nK
π

log ζ(σ1) +
2

π
|∆C2 arg((s− 1)ζK(s))|.

(4.12)

4.2.2 Bounding the gamma factor.

For a ∈ {0, 1}, 0 ≤ d < 9/2 and T ≥ 5/7, we set

Ea(T, d) =
∣∣∣Im log Γ

(σ + a+ iT

2

)∣∣∣ 12+d

σ= 1
2

+ Im log Γ
(σ + a+ iT

2

)∣∣∣ 12−d
σ= 1

2

∣∣∣,
and we define

EK(T, d) = (r1 + r2)E0(T, d) + r2E1(T, d). (4.13)
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Following [6, p. 7], we let

Ea(T, d) =
2T/3

(2a+ 2d+ 17)2 + 4T 2
+

2T/3

(2a− 2d+ 17)2 + 4T 2
− 4T/3

(2a+ 17)2 + 4T 2

+
T

2
log
(

1 +
(2a+ 17)2

4T 2

)
− T

4
log
(

1 +
(2a+ 2d+ 17)2

4T 2

)
− T

4
log
(

1 +
(2a− 2d+ 17)2

4T 2

)
+

(8 + 6π)/45

((2a+ 2d+ 17)2 + 4T 2)3/2
+

(8 + 6π)/45

((2a− 2d+ 17)2 + 4T 2)3/2
+

2(8 + 6π)/45

((2a+ 17)2 + 4T 2)3/2

+

3∑
k=0

(
2 arctan

2a+ 1 + 4k

2T
− arctan

2a+ 2d+ 1 + 4k

2T
− arctan

2a− 2d+ 1 + 4k

2T

)
+

2a+ 2d+ 15

4
arctan

2a+ 2d+ 17

2T
+

2a− 2d+ 15

4
arctan

2a− 2d+ 17

2T

− 2a+ 15

2
arctan

2a+ 17

2T
.

We shall further set

EK(T, d) = (r1 + r2)E0(T, d) + r2E1(T, d). (4.14)

As shown in [6, p. 6], Ea(T, d) ≤ Ea(T, d) for 0 ≤ d < 9/2 and T ≥ 5/7, and thus

EK(T, d) ≤ EK(T, d) (4.15)

for 0 ≤ d < 9/2 and T ≥ 5/7. In addition, from [6, Lemma 3.4] and our definition of EK(T, d),

we have the following lemma.

Lemma 4.5. For 0 ≤ δ1 ≤ d < 9/2 and T ≥ 5/7,

0 < EK(T, δ1) ≤ EK(T, d).

Furthermore, for d ∈ [1
4 ,

5
8 ] and T ≥ 5/7,

EK(T, d)

π
≤ (r1 + r2)

640d− 112

1536(3T − 1)
+ r2

(640 + 216)d− 112− 39

1536(3T + 3− 1)
+
nK
210

.
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4.3 Backlund’s trick and the Jensen integral.

4.3.1 Introducing the auxiliary function fN .

For the sake of convenience, we shall set Z(w) = (w − 1)ζK(w). In order to analyse the

variation of the argument of Z(w) on C2, we shall introduce an auxiliary function

fN (s) =
1

2

(
Z(s+ iT )N + Z(s− iT )N

)

for N ∈ N. For σ ∈ R, it is clear that

fN (σ) =
1

2

(
Z(σ + iT )N + Z(σ − iT )N

)
=

1

2

(
Z(σ + iT )N + Z(σ + iT )N

)
= Re(Z(σ + iT )N ).

We need the following definition that measures the variation of the argument of Z(w)N on C2.

Definition 4.6. Let bN denote the non-negative integer, depending on N , such that

bN ≤
1

π

∣∣∣∆C2 argZ(w)N
∣∣∣ < bN + 1.

From this definition and the fact that argZ(w)N = N argZ(w), we immediately obtain

bN
N
≤ 1

π

∣∣∣∆C2 argZ(w)
∣∣∣ < bN + 1

N
. (4.16)

In addition, we have the following lemma concerning the zeros of fN (σ).

Lemma 4.7. In the notation of Definition 4.6, the function fN (σ) has at least bN zeros in

[1
2 , σ1].

Proof. By Definition 4.6, there are at least bN different values of σ such that 1
2 + 1

π argZ(σ +

iT )N ∈ Z. Thus, for such values of σ, Z(σ + iT )N is purely imaginary, which means that

fN (σ) = Re(Z(σ + iT )N ) = 0

for at least bN different values σ.

We shall also require the following lemma regarding the limiting behaviour of fN .
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Lemma 4.8. For any c > 1, there is an infinite sequence of natural numbers (Nm)∞m=1 such

that fNm(c) 6= 0. Moreover, we have

lim sup
m→∞

(
− 1

Nm
log |fNm(c)|

)
≤ log

( 1√
(c− 1)2 + T 2

ζK(c)

ζK(2c)

)
.

Proof. Write Z(c+ iT ) = Reiφ for some R,φ ∈ R. It is clear that Z(c− iT ) = Re−iφ. Also, as

Z(c+ iT ) 6= 0 for any c > 1, we know that R > 0. Thus, we have

fN (c)

Z(c+ iT )N
=

1

2

(
1 +
Z(c− iT )N

Z(c+ iT )N

)
=

1

2
(1 + e−2Nφi)

for any N ∈ N.

Now, applying Dirichlet’s approximation theorem, for any φ, there is an infinite sequence of

natural numbers (Nm)∞m=1 such that as m→∞, −2Nmφ→ 0 modulo 2π and Nm →∞. Thus,

fNm (c)

Z(c+iT )Nm
→ 1 as m→∞, and hence

lim
m→∞

(
− 1

Nm
(log |fNm(c)|−Nm log |Z(c+iT )|)

)
=
(

lim
m→∞

−1

Nm

)(
lim
m→∞

log
∣∣∣ fNm(c)

Z(c+ iT )Nm

∣∣∣) = 0.

Moreover, by the left inequality of Lemma 4.3, we have

|Z(c+ iT )| ≥
√

(c− 1)2 + T 2
ζK(2c)

ζK(c)
,

which, combined with the above identity, gives

0 ≥ lim sup
m→∞

(
− 1

Nm
log |fNm(c)|+ log

(√
(c− 1)2 + T 2

ζK(2c)

ζK(c)

))
= lim sup

m→∞

(
− 1

Nm
log |fNm(c)|

)
+ log

(√
(c− 1)2 + T 2

ζK(2c)

ζK(c)

)
.

Herein, we complete the proof.

Let D(c, r) be the open disk centred at c with radius r. Let (Nm)∞m=1 be given as in

Lemma 4.8. For any N ∈ (Nm)∞m=1, we set

SN (c, r) =
1

N

∑
z∈SN (D(c,r))

log
r

|z − c|
,
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where SN (D(c, r)) denotes the set of zeros of fN (s) in D(c, r). As in [6, Theorem 5.1], we have

the following version of Jensen’s formula.

Theorem 4.9 (Jensen’s formula). For c ∈ C and r > 0, if fN (c) 6= 0, then

SN (c, r) = − 1

N
log |fN (c)|+ 1

2π

∫ π

−π

1

N
log |fN (c+ reiθ)|dθ.

Applying Jensen’s formula and Lemma 4.8, we obtain the following upper bound for SN (c, r).

Proposition 4.10. Let c, r, and σ1 be real numbers such that

c− r < 1

2
< 1 < c < σ1 < c+ r.

Let Fc,r : [−π, π] → R be an even function such that Fc,r(θ) ≥ 1
Nm

log |fNm(c+ reiθ)|. Then we

have

lim sup
m→∞

SNm(c, r) ≤ log
( 1√

(c− 1)2 + T 2

ζK(c)

ζK(2c)

)
+

1

π

∫ π

0
Fc,r(θ)dθ.

4.3.2 Backlund’s trick.

We start with the following technical estimate.

Lemma 4.11. Let 0 ≤ d < 1/2 and T ≥ 5/7. Then we have

∣∣∣ arg
(

(σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣ 12+d

σ= 1
2

∣∣∣ ≤ ∣∣∣ arg
(

(σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣ 12−d

σ= 1
2

∣∣∣
+NEK(T, d) +N

π

2
,

where EK(T, d) is defined as in (4.13).

Proof. By the functional equation (4.5) and the fact that ξK(s) = ξK(s̄), we have

arg ξK(σ + iT )
∣∣∣ 12+d

σ= 1
2

= − arg ξK(σ + iT )
∣∣∣ 12−d
σ= 1

2

. (4.17)

Since

arg(σ + iT ) + argB(σ+iT )/2 = arctan
T

σ
+
T

2
logB,
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by (4.4), we have

arg ξK(σ + iT ) = arctan
T

σ
+
T

2
logB + (r1 + r2)Im log Γ

(σ + iT

2

)
+ r2Im log Γ

(σ + iT + 1

2

)
+ arg

(
(σ + iT − 1)ζK(σ + iT )

)
.

(4.18)

As we know that for ±xy < 1,

arctanx± arctan y = arctan
x± y
1∓ xy

,

for 0 ≤ d < 1/2, we have

∣∣∣ arctan
T

1
2 + d

− arctan
T
1
2

+ arctan
T

1
2 − d

− arctan
T
1
2

∣∣∣
=
∣∣∣ arctan

T
1
2

+d
− T

1
2

1 + T
1
2

+d
T
1
2

+ arctan

T
1
2
−d −

T
1
2

1 + T
1
2
−d

T
1
2

∣∣∣
≤ π

2
.

(4.19)

Now, applying the triangle inequality, by (4.17), (4.18), and (4.19), we obtain

∣∣∣ arg
(

(σ − 1 + iT )ζK(σ + iT )
)∣∣∣ 12+d

σ= 1
2

∣∣∣ ≤ ∣∣∣ arg
(

(σ − 1 + iT )ζK(σ + iT )
)∣∣∣ 12−d
σ= 1

2

∣∣∣+ EK(T, d) +
π

2
.

Recalling that

arg
(

(σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣ 12±d

σ= 1
2

= N arg
(

(σ − 1 + iT )ζK(σ + iT )
)∣∣∣ 12±d
σ= 1

2

,

we conclude the proof.

As argued in [6] and [103], we require the following version of “Backlund’s trick”.

Proposition 4.12 (Backlund’s trick). Let c and r be real numbers. Set

σ1 = c+
(c− 1/2)2

r
and δ = 2c− σ1 −

1

2
.

104



4.3. BACKLUND’S TRICK AND THE JENSEN INTEGRAL.

If 1 < c < r and 0 < δ < 1
2 , then

∣∣∣ arg
(

(σ + iT − 1)ζK(σ + iT )
)∣∣∣1/2
σ=σ1

∣∣∣ ≤ πSN (c, r)

2 log(r/(c− 1/2))
+
EK(T, δ)

2
+
π

N
+

π

2N
+
π

4
.

Proof. By the conditions on c and r and the definitions of σ1 and δ, we know that

c− r < 1

2
− δ ≤ 1

2
≤ 1

2
+ δ = 2c− σ1 ≤ c ≤ σ1 < c+ r.

As log r
|z−c| > 0 for z ∈ D(c, r), we see that

SN (c, r) =
1

N

∑
z∈SN (D(c,r))

log
r

|z − c|
≥ 1

N

∑
z∈SN ((c−r,σ1])

log
r

|z − c|
.

Recall that by Lemma 4.7, there are at least bN values of σ satisfying σ ∈ [1/2, σ1] and fN (σ) = 0,

where bN is defined as in Definition 4.6. For 1 ≤ k ≤ bN , we then set δk as the smallest non-

negative real number such that

fN (1/2 + δk) = 0 and k − 1 ≤ 1

π

∣∣∣ arg
(

(σ + iT − 1)ζK(σ + iT )
)N ∣∣∣1/2+δk

σ=1/2

∣∣∣. (4.20)

Writing zk = 1
2 + δk, we let x1 denote the number of zk with zk ∈ [1/2, 1/2 + δ) = [1/2, 2c− σ1)

and let x2 denote the number of zk with zk ∈ [2c− σ1, σ1]. We note that x2 = bN − x1 and that

0 ≤ δ1 < δ2 < · · · < δx1 < δ ≤ δx1+1 < · · · < δbN ≤ σ1 − 1/2.

From (4.15), (4.20), and Lemma 4.11, it follows that

k − 1 ≤ 1

π

∣∣∣ arg
(

(σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣ 12−δk

σ= 1
2

∣∣∣+
1

π
NEK(T, δk) +

N

2

whenever 1 ≤ k ≤ x1 (which implies that δk < δ < 1
2).

For each j ≥ 1, if there exists a k (chosen to be minimal) such that

k − 1− 1

π
NEK(T, δk)−

N

2
≥ j,
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then fN has at least j zeros in [1/2− δk, 1/2) since

1

π

∣∣∣ arg
(

(σ + iT − 1)ζK(σ + iT )
)N ∣∣∣1/2−δk

σ=1/2

∣∣∣ ≥ k − 1− 1

π
NEK(T, δk)−

N

2
≥ j.

For such an instance, we define δ−k as the smallest values of these zeros (to avoid possible

repetition), and we shall say that the zero zk = 1/2 + δk has a pair z−k = 1/2 − δ−k. We note

that δ−k ≤ δk by the construction.

By the same argument as in [6, p. 11], we have

SN (c, r) ≥
2bN −

NEK(T,δ)+Nπ
2

+π

π

N
log
( r

c− 1/2

)
,

and thus

bN
N
≤ SN (c, r)

2 log(r/(c− 1/2))
+
EK(T, δ)

2π
+

1

4
+

1

2N
,

which combined with (4.16) completes the proof.

4.3.3 Constructing and bounding Fc,r.

We first recall the convexity bound for ζK(s) established by Rademacher [86, Theorem 4].

Proposition 4.13. Let η ∈ (0, 1
2 ] and s = σ + it. If −η ≤ σ ≤ 1 + η, then one has

|ζK(s)| ≤ 3
∣∣∣1 + s

1− s

∣∣∣(dK( |1 + s|
2π

)nK) 1+η−σ
2

ζ(1 + η)nK .

Also, for σ ∈ [−1
2 , 0), one has

|ζK(s)| ≤ 3
∣∣∣1 + s

1− s

∣∣∣(dK( |1 + s|
2π

)nK) 1
2
−σ
ζ(1− σ)nK . (4.21)

We note that the second inequality follows from the first bound by taking η = −σ. More-

over, Rademacher’s argument [86] can be used to extend (4.21) for σ < 0 as follows (cf. [6,

Theorem 5.7]). For x ∈ R, let [x] be the integer closest to x; when there are two integers equally

close to x, we shall choose the one closer to 0.
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Proposition 4.14. Let s = σ + it with σ < 0. Then we have

|ζK(s)| ≤
( dK

(2π)nK

) 1
2
−σ
|1 + s− [σ]|nK( 1

2
+[σ]−σ)

−[σ]∏
j=1

|s+ j − 1|nKζ(1− σ)nK .

Proof. From the functional equation (4.5) we have

|ζK(s)| ≤ d1/2−σ
K

∣∣∣γK(1− s)
γK(s)

∣∣∣|ζK(1− s)|

= d
1/2−σ
K π(σ− 1

2
)nK
∣∣∣Γ(1

2 + 1−s
2 )

Γ(1
2 + s

2)

∣∣∣r2∣∣∣Γ(1−s
2 )

Γ( s2)

∣∣∣r1+r2
|ζK(1− s)|.

As σ < 0, by Lemma 4.3, we have |ζK(1−s)| ≤ ζ(1− σ)nK . It remains to estimate the ratios

of gamma functions. It was obtained in the proof of [6, Theorem 5.7] that for a, b ∈ {0, 1} and

k ∈ Z,

Γ(a2 + 1−s
2 )

Γ(a2 + s
2)

=
Γ( b2 + 1−(s+k)

2 )

Γ( b2 + s+k
2 )

2−k
( k∏
j=1

(s+ j − 1)
)sin(π2 (s+ k + 1− b))

sin(π2 (s+ 1− a))
.

Setting a = 0 and a = 1 and taking b ≡ k (mod 2) and b ≡ k + 1 (mod 2), respectively, we

can make sine factors ±1. Thus, upon choosing k = −[σ] and applying [86, Lemmata 1 and 2]

to
Γ( b

2
+

1−(s+k)
2

)

Γ( b
2

+ s+k
2

)
, we conclude that

∣∣∣Γ(1−s
2 )

Γ( s2)

∣∣∣r1+r2
≤
(1

2
|1 + s− [σ]|

)( 1
2

+[σ]−σ)(r1+r2)
2[σ](r1+r2)

(−[σ]∏
j=1

|s+ j − 1|
)r1+r2

and

∣∣∣Γ(1
2 + 1−s

2 )

Γ(1
2 + s

2)

∣∣∣r2 ≤ (1

2
|1 + s− [σ]|

)( 1
2

+[σ]−σ)r2
2[σ]r2

(−[σ]∏
j=1

|s+ j − 1|
)r2

.

Collecting above estimates and recalling the fact that nK = r1 + 2r2, we obtain the desired

result.

Lemma 4.15. Let η ∈ (0, 1
2 ], s = σ + it, and T > 0. If σ ≥ 1 + η, then we have

1

N
log |fN (s)| ≤ 1

2
log((σ − 1)2 + (|t|+ T )2) + nK log ζ(σ).
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If −η ≤ σ ≤ 1 + η, then we have

1

N
log |fN (s)| ≤ log 3 +

nK(1 + η − σ) + 2

4
log((σ + 1)2 + (|t|+ T )2)

+
1 + η − σ

2
log
( dK

(2π)nK

)
+ nK log ζ(1 + η).

If σ ≤ −η, then we have

1

N
log |fN (s)| ≤ nK log ζ(1− σ) +

1

2
log((σ − 1)2 + (|t|+ T )2)

+
1− 2σ

2
log
( dK

(2π)nK

)
+

(1− 2σ + 2[σ])nK
4

log((1 + σ − [σ])2 + (|t|+ T )2)

+
nK
2

−[σ]∑
j=1

log((σ + j − 1)2 + (|t|+ T )2).

Proof. Since σ ≥ 1 + η > 1, by Lemma 4.3, we derive

|fN (s)| ≤ 1

2

(
|s+ iT − 1|N |ζK(s+ iT )|N + |s− iT − 1|N |ζK(s− iT )|N

)
≤
(

(σ − 1)2 + (|t|+ T )2
)N

2
ζ(σ)nKN .

Now, the first estimate follows from taking logarithms and dividing both sides by N .

Secondly, if −η ≤ σ ≤ 1 + η, then by Proposition 4.13, we see that |fN (s)| is at most

1

2

(
3N |s+ iT + 1|N + 3N |s− iT + 1|N

)(
dK

(√(σ + 1)2 + (|t|+ T )2

2π

)nK) (1+η−σ)N
2

ζ(1 + η)nKN

≤ 3N
(

(σ + 1)2 + (|t|+ T )2
)N

2
(
dK

(√(σ + 1)2 + (|t|+ T )2

2π

)nK) (1+η−σ)N
2

ζ(1 + η)nKN .

Again, taking logarithms yields the second bound.

Lastly, for σ ≤ −η, it follows from Proposition 4.14 that

|fN (s)| ≤
(

(σ − 1)2 + (|t|+ T )2
)N

2
( dK

(2π)nK

)N( 1
2
−σ)
|(1 + σ − [σ])2 + (|t|+ T )2|

(1−2σ+2[σ])NnK
4

×
(−[σ]∏
j=1

((σ + j − 1)2 + (|t|+ T )2)
)nKN

2
ζ(1− σ)nKN .

We then conclude the proof by taking logarithms.
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Following [6], to proceed further, we introduce some notation and auxiliary functions. We

first set

Lj(θ) = log
(j + c+ r cos θ)2 + (|r sin θ|+ T )2

(T + 2)2
.

and note that Lj(θ) is an even function of θ. Moreover, if θ ∈ [0, π] and T ≥ 5/7, by the

inequality log x ≤ x− 1, one has Lj(θ) ≤
L?j (θ)

T+2 , where

L?j (θ) = 2r sin θ − 4 +
7

19
((j + c+ r cos θ)2 + (r sin θ − 2)2).

In light of the choice of Fc,r(θ) (for Dirichlet L-functions) in [6, Definition 5.10], we shall use

the following Fc,r(θ) for ζK(s).

Definition 4.16. For θ ∈ [−π, π], we let σ = c+ r cos θ, with c− r > −1
2 , and t = r sin θ. For

σ ≥ 1 + η, we define

Fc,r(θ) = nK log ζ(σ) +
1

2
L−1(θ) + log(T + 2).

For −η ≤ σ ≤ 1 + η, we define

Fc,r(θ) = nK log ζ(1 + η) +
nK(1 + η − σ) + 2

4
L1(θ) +

nK(1 + η − σ) + 2

2
log(T + 2)

+
1 + η − σ

2

(
log

dK
(2π)nK

)
+ log 3.

For σ < −η, we define

Fc,r(θ) = nK log ζ(1− σ) +
1

2
L−1(θ) + log(T + 2) +

1− 2σ

2
log
(dK(T + 2)nK

(2π)nK

)
+

(1− 2σ + 2[σ])nK
4

L1−[σ](θ) +
nK
2

−[σ]∑
j=1

Lj−1(θ).

We note that Fc,r(θ) is an even function of θ satisfying Fc,r(θ) ≥ 1
N log |fN (c + reiθ)|. In
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order to bound Fc,r(θ), following [6], for c ∈ R and r > 0, we define

θy =


0 if c+ r ≤ y;

arccos y−cr if c− r ≤ y ≤ c+ r;

π if y ≤ c− r.

For the sake of convenience, we define

κ1 =

∫ θ−η

θ1+η

1 + η − σ
2

dθ +

∫ π

θ−η

1− 2σ

2
dθ,

For J1, J2 ∈ N, we shall set

κ2(J1) =
π

4J1

(
log ζ(c+ r) + 2

J1−1∑
j=1

log ζ
(
c+ r cos

πj

2J1

))
,

and

κ3(J2) =
π − θ1−c

2J2

(
log ζ(1− c+ r) + 2

J2−1∑
j=1

log ζ
(

1− c− r cos
(πj
J2

+
(

1− j

J2

)
θ1−c

)))
.

In addition, we define

κ4 =
1

4

∫ θ−η

θ1+η

(1 + η − σ)L?1(θ)dθ,

κ5 =
1

4

∫ θ−1/2

θ−η

(1− 2σ)L?1(θ)dθ.

Similar to [6, Proposition 5.13], we have the following proposition regarding the upper bound

of
∫ π

0 Fc,r(θ)dθ.

Proposition 4.17. Let c, r, and η be positive real numbers satisfying

−1

2
< c− r < −η < 1 + η < c (4.22)
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and 0 < η ≤ 1
2 . Then for T ≥ 5

7 , we have

∫ π

0
Fc,r(θ)dθ ≤ nK

∫ θ1+η

0
log ζ(σ)dθ +

1

2(T + 2)

∫ θ1+η

0
L?−1(θ)dθ + θ1+η log(T + 2)

+ nK(log ζ(1 + η))(θ−η − θ1+η) +
(

log
dK(T + 2)nK

(2π)nK

)
κ1

+
nK
T + 2

κ4 +
1

2(T + 2)

∫ θ−η

θ1+η

L?1(θ)dθ + (θ−η − θ1+η) log(3(T + 2))

+ nK

∫ π

θ−η

log ζ(1− σ)dθ +
1

2(T + 2)

∫ π

θ−η

L?−1(θ)dθ + (π − θ−η) log(T + 2)

+
nK
T + 2

κ5.

Proof. We first write

∫ π

0
Fc,r(θ)dθ =

∫ θ1+η

0
Fc,r(θ)dθ +

∫ θ−η

θ1+η

Fc,r(θ)dθ +

∫ π

θ−η

Fc,r(θ)dθ.

By the definition of Fc,r(θ), we have

∫ θ1+η

0
Fc,r(θ)dθ = nK

∫ θ1+η

0
log ζ(σ)dθ +

1

2

∫ θ1+η

0
L−1(θ)dθ +

∫ θ1+η

0
log(T + 2)dθ

≤ nK
∫ θ1+η

0
log ζ(σ)dθ +

1

2(T + 2)

∫ θ1+η

0
L?−1(θ)dθ + θ1+η log(T + 2).

Secondly, we compute

∫ θ−η

θ1+η

Fc,r(θ)dθ = nK

∫ θ−η

θ1+η

log ζ(1 + η)dθ +
(

log
dK

(2π)nK

)∫ θ−η

θ1+η

1 + η − σ
2

dθ + log 3

∫ θ−η

θ1+η

1dθ

+

∫ θ−η

θ1+η

nK(1 + η − σ) + 2

4
L1(θ)dθ + log(T + 2)

∫ θ−η

θ1+η

nK(1 + η − σ) + 2

2
dθ.

(4.23)

The first three integrals on the right of (4.23) are

nK(log ζ(1 + η))(θ−η − θ1+η) +
(

log
dK

(2π)nK

)∫ θ−η

θ1+η

1 + η − σ
2

dθ + (log 3)(θ−η − θ1+η).

As 1 + η − σ ≥ 0 for θ ∈ [θ1+η, θ−η], it follows that the last two integrals on the right of (4.23)
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are

nK
4

∫ θ−η

θ1+η

(1 + η − σ)L1(θ)dθ +
1

2

∫ θ−η

θ1+η

L1(θ)dθ + nK log(T + 2)

∫ θ−η

θ1+η

1 + η − σ
2

dθ

+ (θ−η − θ1+η) log(T + 2)

≤ nK
(T + 2)

κ4 +
1

2(T + 2)

∫ θ−η

θ1+η

L?1(θ)dθ + nK log(T + 2)

∫ θ−η

θ1+η

1 + η − σ
2

dθ

+ (θ−η − θ1+η) log(T + 2).

Lastly, we have

∫ π

θ−η

Fc,r(θ)dθ = nK

∫ π

θ−η

log ζ(1− σ)dθ +
1

2

∫ π

θ−η

L−1(θ)dθ +

∫ π

θ−η

log(T + 2)dθ

+
(

log
dK(T + 2)nK

(2π)nK

)∫ π

θ−η

1− 2σ

2
dθ + nK

∫ θ− 1
2

θ−η

1− 2σ

4
L1(θ)dθ

+ nK

∞∑
j=1

∫ θ−j− 1
2

θ−j+1
2

(1− 2σ − 2j

4
Lj+1(θ) +

1

2

j∑
k=1

Lk−1(θ)
)
dθ.

(4.24)

The first four integrals on the right of (4.24) are

≤ nK
∫ π

θ−η

log ζ(1− σ)dθ +
1

2(T + 2)

∫ π

θ−η

L?−1(θ)dθ + log(T + 2)(π − θ−η)

+
(

log
dK(T + 2)nK

(2π)nK

)∫ π

θ−η

1− 2σ

2
dθ.

Note that as −1
2 < c − r, we have θ−j+ 1

2
= θ−j− 1

2
= π for j ≥ 1. Thus, the remaining integral

and sum on the the right of (4.24) is

nK

∫ θ− 1
2

θ−η

1− 2σ

4
L1(θ)dθ ≤ nK

T + 2

∫ θ− 1
2

θ−η

1− 2σ

4
L?1(θ)dθ =

nK
T + 2

κ5.

Putting all the estimates together, we complete the proof.

To control “zeta integrals” in the above proposition, we shall borrow two estimates from [6,

Lemmata 5.14 and 5.15] as follows.

Lemma 4.18. Let c, r and η be positive real numbers, satisfying (4.22), and J1 and J2 be positive
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integers. If θ1+η ≤ 2.1, then for σ = c+ r cos θ, one has

∫ θ1+η

0
log ζ(σ)dθ ≤ log ζ(1 + η) + log ζ(c)

2

(
θ1+η −

π

2

)
+

π

4J1
log ζ(c) + κ2(J1).

In addition, assuming further r > 2c− 1, one has

∫ π

θ−η

log ζ(1− σ)dθ ≤ log ζ(1 + η) + log ζ(c)

2
(θ1−c − θ−η) +

π − θ1−c
2J2

log ζ(c) + κ3(J2).

4.4 Completing the proof

. Gathering (4.12) and Propositions 4.10 and 4.12, for

− 1

2
< c− r < 1− c < −η < 0 <

1

4
≤ δ = 2c− σ1 −

1

2

<
1

2
< 1 < 1 + η < c < σ1 = c+

(c− 1/2)2

r
< c+ r, (4.25)

satisfying θ1+η ≤ 2.1, we have

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)
+
r1

4

∣∣∣
≤ 5

2
+ gK(T ) +

2nK
π

log ζ(σ1) +
log
(

1√
(c−1)2+T 2

ζK(c)
ζK(2c)

)
log r

c− 1
2

+
1

π log r
c− 1

2

∫ π

0
Fc,r(θ)dθ +

EK(T, δ)

π
,

(4.26)

where gK(T ) and EK(T, δ) are defined as in (4.9) and (4.14), respectively, and

log
ζK(c)

ζK(2c)
=

∫ 2c

c
−
ζ ′K
ζK

(σ)dσ ≤ nK
∫ 2c

c
−ζ
′

ζ
(σ)dσ ≤ nK log

ζ(c)

ζ(2c)
.

Finally, using (4.10), Lemma 4.5, Proposition 4.17, and Lemma 4.18 to bound (4.26) and recall-

ing that r1 + 2r2 = nK , for any T0 ≥ 5
7 , we obtain

∣∣∣NK(T )− T

π
log
(
dK

( T

2πe

)nK)
+
r1

4

∣∣∣ ≤ C1 log
(dK(T + 2)nK

(2π)nK

)
+ C2nK + C3 (4.27)
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whenever T ≥ T0, where

C1 = κ1

(
π log

r

c− 1
2

)−1
,

C2 =
1

25T0
+

2

π
log ζ(σ1) +

640δ − 112

1536(3T0 − 1)
+ max

{
0,

856δ − 151

1536(3T0 + 2)
− 640δ − 112

1536(3T0 − 1)

}
+

1

210

+
(
π log

r

c− 1
2

)−1( log ζ(1 + η) + log ζ(c)

2

(
θ1+η −

π

2

)
+

π

4J1
log ζ(c) + κ2(J1)

)
+
(
π log

r

c− 1
2

)−1( log ζ(1 + η) + log ζ(c)

2
(θ1−c − θ−η) +

π − θ1−c
2J2

log ζ(c) + κ3(J2)
)

+
(
π log

r

c− 1
2

)−1(
(log ζ(1 + η))(θ−η − θ1+η) + max

{
0,
κ4 + κ5

T0 + 2

}
+ π log

ζ(c)

ζ(2c)

)
,

C3 =
5

2
+
(
π log

r

c− 1
2

)−1(
π log

(
1 +

2

T0

)
+ (θ−η − θ1+η) log 3

)
+ max

{
0,
(
π log

r

c− 1
2

)−1( 1

2(T0 + 2)

(∫ θ1+η

0
L?−1(θ)dθ +

∫ θ−η

θ1+η

L?1(θ)dθ +

∫ π

θ−η

L?−1(θ)dθ
))}

.

For T0 = 1 and T0 = 10, choosing J1 = 64 and J2 = 39, via a Maple numerical computation,

we have the following table of admissible (C1, C2, C3).

Table 4.2: Choices of parameters (c, r, η) and resulting admissible (C1, C2, C3)

T ≥ 1 T ≥ 10
c r η C1 C2 C3 C2 C3

1.000011314 1.064340602 4.2826451 · 10−6 0.22737 23.02528 4.51954 22.97204 3.30668
1.042877508 1.259860485 0.01737451737 0.24493 6.66558 4.21201 6.60397 3.12362
1.079779637 1.410370323 0.03441682600 0.26304 5.22032 4.08149 5.15251 3.05074
1.114294066 1.538391756 0.05247813411 0.28032 4.43521 4.00936 4.36214 3.01124
1.145720440 1.645584376 0.07107039918 0.29590 3.93889 3.96852 3.86136 2.98903

One may find functioning Maple code at https://arxiv.org/abs/2102.04663
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Norm. Sup. (4), 25(5):567–615, 1992.

[5] M. A. Bennett, J. S. Ellenberg, and N. C. Ng. The Diophantine equation A4 +2δB2 = Cn.
Int. J. Number Theory, 6(2):311–338, 2010.

[6] M. A. Bennett, G. Martin, K. O’Bryant, and A. Rechnitzer. Counting zeros of Dirichlet
L-functions. Math. Comp., 90(329):1455–1482, 2021.

[7] J. Bourgain and N. Watt. Decoupling for perturbed cones and the mean square of |ζ(1
2+it)|.

Int. Math. Res. Not. IMRN, (17):5219–5296, 2018.

[8] R. P. Brent, D. J. Platt, and T. S. Trudgian. Accurate estimation of sums over zeros of
the Riemann zeta-function. Published online in Math. Comp., 2021.

[9] H. M. Bui. Non-vanishing of Dirichlet L-functions at the central point. Int. J. Number
Theory, 8(8):1855–1881, 2012.

[10] H. M. Bui, A. Florea, J. P. Keating, and E. Roditty-Gershon. Moments of quadratic twists
of elliptic curve L-functions over function fields. Algebra Number Theory, 14(7):1853–1893,
2020.

[11] D. Bump, S. Friedberg, and J. Hoffstein. A nonvanishing theorem for derivatives of auto-
morphic L-functions with applications to elliptic curves. Bull. Amer. Math. Soc. (N.S.),
21(1):89–93, 1989.

[12] D. Bump, S. Friedberg, and J. Hoffstein. Nonvanishing theorems for L-functions of mod-
ular forms and their derivatives. Invent. Math., 102(3):543–618, 1990.

[13] V. Chandee. On the correlation of shifted values of the Riemann zeta function. Q. J.
Math., 62(3):545–572, 2011.

[14] S. Chowla. The Riemann hypothesis and Hilbert’s tenth problem. Mathematics and its
Applications, Vol. 4. Gordon and Breach Science Publishers, New York-London-Paris,
1965.

[15] J. W. Cogdell. Analytic theory of L-functions for GLn. In An introduction to the Langlands
program (Jerusalem, 2001), pages 197–228. Birkhäuser Boston, Boston, MA, 2003.
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