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Abstract

We examine the problem of covering points with minimum number of axis-parallel lines

in three dimensional space which is an NP-complete problem. We introduce Lagrangian

based algorithms to approximate the point cover problem. We study the Lift-and-Project

relaxation of the standard IP to obtain lower bounds. This method is used to strengthen the

integrality gap of a problem. Our experimental results show that the Lagrangian relaxation

method gives very good lower bounds at reasonable computational cost. We present a

hybrid method where the Lift-and-Project LP is solved using the Subgradient Optimisation

technique. We propose an approximation algorithm which iteratively uses the Lagrangian

relaxation procedure. We also study a Branch-and-Bound method which gives an optimal

solution. We use a drop-in accelerator while conducting the simulations on large instances.
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Chapter 1

Introduction

1.1 Introduction

In this thesis, we will study the point cover problem where a set P of n points and a

set L of axis parallel lines going through the n points are given as input. The goal is to

find C ⊆ L with minimum cardinality, such that every point p ∈ P lies on some line l ∈C.

Here the axis parallel lines cover the points. The point cover problem was first studied by

Hassin and Megiddo [13], and it is a special case of the hitting set problem. Some variants

of the covering problems are: hitting a finite number of slopes with lines [13], the rectangle

stabbing problem [10], and so on.

The problem of covering points by axis parallel lines in 2D can be solved in polynomial

time. In this thesis, we study the point cover problem in three dimensional space, which is

an NP-complete problem. One real life application of this problem is in medical science,

particularly in radiotherapy [13]. Radiotherapy uses high energy X- rays, gamma rays, elec-

tron beams, or protons to destroy the affected cells. To apply these rays, radioactive needles

are inserted into a certain area of the body. The problem of finding the minimum number

of needles required to push into the body for applying these rays can be modeled as a point

cover problem. The purpose of this thesis is to design good approximation algorithms for

the point cover problem. We also explore some approaches to find good lower bounds in

order to strengthen the integrality gap of the standard integer programming formulation.

1



1.2. ORGANIZATION OF THE THESIS

1.2 Organization of the Thesis

In Chapter 2, we give the definitions used in this thesis. We include a description of

the basic concepts as a linear program, the solution strategies for an LP, approximation

algorithm design techniques, and some other methods used in this thesis. The Lagrangian

relaxation method is the main technique used in the design of the proposed algorithms. We

also give a general overview of the process of relaxing the standard integer program using

the lift-and-project method in Chapter 2.

In Chapter 3, we formally define the point cover problem along with the integer pro-

gram, the primal LP, and the dual LP. We show the transformation of the point cover prob-

lem into the set cover problem, and the vertex cover problem in hypergraphs. We also

discuss the previous research work done in this area.

In Chapter 4, we propose Lagrangian based algorithms to approximate the point cover

problem. We study the Lagrangian relaxation using the subgradient optimization tech-

nique, the lift-and-project method, and a hybrid approach to compute a lower bound for the

instance of point cover problem. We also propose an iterative Lagrangian relaxation algo-

rithm, and a branch-and-bound algorithm to obtain the integral solution of the point cover

problem.

In Chapter 5, we describe the experimental setup and the data set, and discuss the results

of experimentation. We give a comparative analysis of the results, and the computational

time of the upper and lower bounds. We compare the running time of our implementation

with and without GPU accelerators.

Finally, we conclude in Chapter 6 with some ideas on how to extend the work in this

thesis.

2



Chapter 2

Preliminaries and Related Concepts

2.1 Introduction

In this chapter, we will discuss the basic concepts and techniques used in this thesis.

We will describe the methods which have been used as solution strategies. We will also

describe the problems that are related to the point cover problem.

2.2 Important Definitions

The following definitions are taken from the books by Luca Trevisan [28], Vijay V.

Vazirani [30], Williamson and Shmoys [31], Thomas H. Cormen [5] and Anany Levitin [3].

Definition 2.1 (Approximation Algorithm). An α-approximation algorithm for an opti-

mization problem is a polynomial time algorithm that gives a solution within α times the

optimal value for every input instance. The value of α is also known as the approximation

ratio.

Let OPT (I) be the cost of the optimal solution to an instance of an optimization prob-

lem, and ALG(I) is the cost of the solution returned by an algorithm ALG. Assume that the

algorithm runs in polynomial time. We know that for a minimization problem: ALG(I) ≥

OPT (I), and for a maximization problem: OPT (I) ≥ ALG(I). For a minimization prob-

lem, the algorithm ALG is called an α-approximation algorithm if
ALG(I)
OPT (I)

≥ α for all I.

For a maximization problem, the algorithm ALG is called an α-approximation algorithm if
OPT (I)
ALG(I)

≥ α for all I.

3



2.2. IMPORTANT DEFINITIONS

Definition 2.2 (The Set Cover Problem). Given a universal set of elements E and m sub-

sets of those elements X1, X2, . . ., Xm, the goal is to find a collection Y of those subsets such

that every element of E belongs to some subset in Y and |Y | is minimum possible.

A set cover instance is said to have frequency f if every element in the universal set E

belongs to at most f subsets.

Definition 2.3 (The Vertex Cover Problem). Given an undirected graph G = (V , E) where

V is the set of vertices and E is the set of edges, a vertex cover VC is a subset of vertices such

that for every edge (u, v) ∈ E either u or v is an element of VC. The minimum vertex cover

problem is to look for a vertex cover VC where VC contains the fewest vertices possible.

Definition 2.4 (Matching). Given an undirected graph G = (V , E), a matching M is a

set of edges that is M ⊆ E such that no two edges of M share any vertices. A matching

is maximum if its size is the largest of all matchings of G. A matching M is said to be

maximal if M is not included in any other matching. A perfect matching is a matching

where every vertex of the given graph is connected to exactly one edge of the matching.

Perfect matchings are possible only on a graph with an even number of vertices.

Definition 2.5 (Stack). A stack is an ordered array of elements of a type. The insertion

and deletion operation in a stack obey last-in-first-out or LIFO policy. A stack can be

implemented by using an array. In a stack, insertion is done at the end of the array. This

end point is called the TOP. The insertion operation and the deletion operation are named

as PUSH and POP respectively.

The stack operations are :

a) PUSH(S,a) - Insert an element a into the last index of the stack.

b) POP() - Delete an element from the last index of the stack.

c) TOP(S) - This function returns the position of the last element of the stack.

To check whether the stack is empty or not, check the value of TOP(S). If the value is

0, the stack is empty. If an empty stack is popped, it is said that the stack underflows. If the

value of TOP(S) exceeds the maximum data size of the array, then this is an overflow.

4



2.3. LINEAR PROGRAMMING

Definition 2.6 (Depth-first Search). Many graph algorithms require traversing vertices or

edges of a graph in a systematic way. One of the simple graph search algorithms is depth-

first search.

The algorithm starts at an arbitrary vertex of a graph and marks the vertex as a visited

vertex. It then examines the incident edges in order to explore vertices which are not dis-

covered yet. In each iteration, the algorithm tries to discover an unvisited node which is

adjacent to the current node and traverses deeper until there is no longer any unexplored

vertex. Then the algorithm ”backtracks” to the parent of the current node and traverses

through the other branches of that parent node and continues further. This procedure con-

tinues until the search reaches a point from where no new vertices can be explored. If

there are still some unvisited vertices in the graph, we repeat the steps starting at another

unexplored node as a start vertex. Finally the algorithm halts when all the nodes are visited.

2.3 Linear Programming

In 1939, a Russian economist named Leonid Kantorovich [24] was the first to formulate

a problem as a linear program.

A linear program is the problem of optimizing (minimizing or maximizing) a linear

objective function satisfying a set of linear constraints. An objective function is a linear

combination of some real-valued decision variables. A linear function has the following

form

f = d1 p1 +d2 p2 + . . .+dn pn (2.1)

Here, p1, p2, . . ., pn are the decision variables and d1, d2, . . ., dn are the constant coeffi-

cients for those decision variables respectively.

A constraint is a linear inequality or equality (expressed as a linear combination of the

decision variables) that must be satisfied by the decision variables.

l1 p1 + l2 p2 + . . .+ ln pn RELOP r (2.2)

5



2.3. LINEAR PROGRAMMING

where RELOP ∈ { ≥, =, ≤}

r and l j where j = 1, 2, ......., n are real numbers.

p j ≥ 0, j = 1,2, . . . ,n (2.3)

Equation (2.2) is an example of a technological constraint and Equation (2.3) is an

example of a non negativity constraint.

For a maximization problem, the linear program seeks the largest possible value of the

objective function subject to the constraints. We can write a maximization linear program-

ming problem in canonical form [27] as follows:

maximize
n

∑
j=1

d j p j (2.4)

subject to
n

∑
j=1

li j p j ≤ ri ∀i ∈ {1,2, . . . ,m}

p j ≥ 0 ∀ j ∈ {1,2, . . . ,n}

Here, n is the number of variables and m is the number of constraints.

We can also write a minimization linear programming problem in canonical form [27]

as follows:

minimize
n

∑
j=1

d j p j (2.5)

subject to
n

∑
j=1

li j p j ≥ ri ∀i ∈ {1,2, . . . ,m}

p j ≥ 0 ∀ j ∈ {1,2, . . . ,n}

Here, n is the number of decision variables and m is the number of constraints.

6



2.3. LINEAR PROGRAMMING

Let OPT (I) be the value of the optimal integral solution of an optimization problem

and LP(I) be the value of the optimal LP solution, then

for a minimization problem, Integrality Gap = max
I

OPT (I)
LP(I)

for a maximization problem, Integrality Gap = max
I

LP(I)
OPT (I)

To represent a canonical LP into the standard form, we use vector and matrix notation

as below.

maximize dᵀp (2.6)

subject to Lp = r

p≥ 0

minimize dᵀp (2.7)

subject to Lp = r

p≥ 0

Equations (2.6) and Equations (2.7) are the standard forms of the maximization and

minimization problems respectively. Let n be the number of decision variables, and m be

the number of constraints. In equations (2.6) and (2.7), d is a row vector of the constant

coefficients of size n, and p is a column vector of the decision variables with size n. L is

called the coefficient matrix which is of size m x n, and r is a column vector of size m. A

solution is feasible if it satisfies all the constraints. A solution is infeasible if the assignment

of the decision variables does not satisfy every constraint. The aim of a linear program is

to seek a feasible solution that maximizes (for maximization problems) or minimizes (for

minimization problems) the value of the objective function. An instance of an LP either

in maximization or minimization canonical form can be transformed into an equivalent

7



2.3. LINEAR PROGRAMMING

standard form of LP by adding slack or subtracting surplus variables respectively.

2.3.1 Solving LP using Geometric Interpretation

When the number of decision variables is two, we can plot the constraints graphically.

Each decision variable is represented by one coordinate axis. We plot a constraint as an

equality. We find a region which is called a feasible region using the equality. Consider the

maximization problem below.

maximize f = 3p1 +2p2 (2.8)

subject to p1 + p2 ≤ 40

2p1 + p2 ≤ 50

p1 ≤ 20

p1 ≥ 0, p2 ≥ 0

We plot the equalities p1 + p2 = 40, 2p1 + p2 = 50, p1 = 20, p1 = 0 and p2 = 0 as shown

in the following figure.

Figure 2.1: Solving LP using Graph

8



2.3. LINEAR PROGRAMMING

In Figure 2.1, ABCDE is the feasible region which means any point in this region sat-

isfies all the constraints. There are infinitely many points which are the feasible points, but

the corner points determine the optimal value for a maximization/minimization problem.

The points A, B, C, D, E are the corner points. The value of the objective function for these

corner points are given below:

Table 2.1: Solution to the maximization LP (2.8)

Corner Point Coordinate (p1, p2) Objective Function Value

A (20, 0) 60

B (20, 10) 80

C (10, 30) 90

D (0, 40) 80

E (0, 0) 0

Here C is the point which gives the maximum objective function value of 90 for the LP

(2.8).

9



2.3. LINEAR PROGRAMMING

2.3.2 Simplex Method

The simplex method is a popular procedure for solving linear programming problems.

This method was invented by Dantzig in 1947 [6]. It is an iterative method. Here we

illustrate the simplex method by demonstrating each step using the LP mentioned in (2.8).

The very first step is the conversion of a given canonical LP into an standard LP by

introducing slack variables. For each inequality of (2.8) except for the non-negativity con-

straints, we introduce one slack variable. Let s1, s2 and s3 be the slack variables for the

three constraints. The standard LP for (2.8) is given below.

maximize f = 3p1 +2p2 (2.9)

subject to s1 = 40− p1− p2

s2 = 50−2p1− p2

s3 = 20− p1

p1 ≥ 0, p2 ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0

The LP in the form of (2.9) is called a dictionary. The variables on the right hand

side in the equality constraints are called the nonbasic variables. So the decision variables

are the nonbasic variables initially. The basic variables are those on the left hand side of

each equality constraint. The set of basic variables is also referred to as a basis. In other

words, the objective function and the basic variables are expressed as a linear combination

of the nonbasic variables in a dictionary. The basic feasible solution is obtained by setting

the nonbasic variables to zero. At first, p1 and p2 are set to 0; s1, s2, s3 are 40, 50, 20

respectively. The value of the objective function is 0.

In the next iteration, we create a new dictionary by bringing a nonbasic variable into

the basis and for that reason, one of the the basic variables must leave the basis. We move

a nonbasic variable into the basis if it increases (for maximization problems) or decreases

10



2.3. LINEAR PROGRAMMING

(for minimization problems) the objective function value, subject to the condition that all

variables are non-negative. Either p1 or p2 can enter into the basis. Let us bring p2 into

the basis as the entering variable. Next we determine how much the value of p2 can be

increased without violating the non-negativity constraints on the variables s1, s2 and s3.

Now we will look at the equations which contain p2 and seek the best possible bound.

s1 = 40− p2

As s1 ≥ 0, So 40− p2 ≥ 0 which implies p2 ≤ 40

s2 = 50− p2 implies p2 ≤ 50

Here we choose s1 as the leaving variable. p2 will enter the basis and s1 will leave

the basis. Incorporating these changes into the basis gives a new dictionary. We perform

elementary row operations to determine the dictionary corresponding to the new basis. We

want to make p2 a basic variable and s1 a nonbasic variable. First we will change the

equation involving p2 and s1 as follows

p2 = 40− p1− s1 (2.10)

Now we will rewrite the objective function and the rest of the two constraints using

equation (2.10).

The new dictionary is given below.

maximize f = 80+ p1−2s1 (2.11)

subject to p2 = 40− p1− s1

s2 = 10− p1 + s1

s3 = 20− p1

p1 ≥ 0, p2 ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0

11
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The solution is (p1, p2, s1, s2, s3) = (0, 40, 0, 10, 20), and the value of the objective

function is 80. This step is called a pivot.

In the next step p1 will be the entering variable. We compute the variable which will

leave the basis. We find that s2 is the leaving variable. The updated dictionary is as follows

maximize f = 90− s1− s2 (2.12)

subject to p2 = 30−2s1− s2

p1 = 10+ s1− s2

s3 = 10− s1 + s2

p1 ≥ 0, p2 ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0

The solution to this dictionary is (p1, p2, s1, s2, s3) = (10, 30, 0, 0, 10), and the value

of the objective function is 90. In this dictionary there are no nonbasic variables with a

positive coefficient, which indicates that this is the optimal solution for this problem.

Now we describe the simplex algorithm in general form. Let B be the set of basic

variables and N be the set of nonbasic variables.

In each iteration where p j ∈ N and d j>0

1. Move a p j→ B and some pi ∈ B will leave the basis.

2. Compute which pi ∈ B will leave basis using the following formula

min
ri

li j
∀i ∈ B, where li j 6= 0

3. Perform a pivot to update the dictionary.

4. If all new d js are negative, then stop. Otherwise go to step 1.

12



2.3. LINEAR PROGRAMMING

2.3.3 The LP-duality

Given a linear program which is called the primal LP, we can obtain the dual of this

linear program. If the primal LP is a minimization LP, then the dual LP will be for a

maximization problem and vice versa.

In general we can write the dual of the maximization problem presented in (2.4) as

below

minimize
m

∑
i=1

riqi (2.13)

subject to
m

∑
i=1

li jqi ≥ d j ∀ j ∈ {1,2, ....,n}

qi ≥ 0 ∀i ∈ {1,2, ....,m}

The dual program gives a lower bound on the optimal solution of a primal LP for the

minimization problems. For a maximization problem, the dual LP solution gives an upper

bound on the optimal value of the primal problem. This relation is known as the weak

duality theorem. If the primal and dual have feasible solutions and the objective function

values are equal, then we have strong duality. These ideas are collectively known as the

LP-duality theorem [29].

Theorem 2.7 (The Weak Duality Theorem [29]). If (p1, p2,.....,pn) is a feasible solution to

the primal (2.4) and (q1, q2,.....,qm) is a feasible solution to the dual (2.13), then

n

∑
j=1

d j p j ≤
m

∑
i=1

riqi

Theorem 2.8 (The Strong Duality Theorem [29]). If the primal problem has an optimal

solution (p∗1, p∗2,......, p∗n), then the dual also has an optimal solution (q∗1, q∗2,......, q∗m) such

that
n

∑
j=1

d j p∗j =
m

∑
i=1

riq∗i
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2.3. LINEAR PROGRAMMING

There is another theorem known as the complementary slackness theorem used to re-

cover an optimal dual LP solution when an optimal primal LP solution is known. Let us

first define the slack variables for the primal LP (2.4) and the dual LP (2.13).

si = ri−
n

∑
j=1

li j p j ∀i ∈ {1,2, ....,m}

v j = d j−
m

∑
i=1

li jqi ∀ j ∈ {1,2, ....,n}

Theorem 2.9 (The Complementary Slackness Theorem [29]). Suppose that p = (p1, p2,.....,pn)

is primal feasible and that q = (q1, q2,.....,qm) is dual feasible. Let (s1, s2,.....,sm) denote the

corresponding primal slack variables, and let (v1, v2,.....,vn) denote the corresponding dual

slack variables. Then p and q are optimal for their respective problems if and only if

p jv j = 0 ∀ j ∈ {1,2, ....,n}

siqi = 0 ∀i ∈ {1,2, ....,m}

2.3.4 Other Methods for Solving LP

There exist some other methods to solve a linear program. Khachiyan [20] devised

the ellipsoid method in 1979 that can solve linear programs in polynomial time. Another

method which is a polynomial time algorithm, and is very efficient in practice for solving

linear programs is the interior point method due to Karmarkar [19].
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2.5. APPROXIMATION ALGORITHM DESIGN TECHNIQUES USING LP

2.4 Integer Programming

A linear program with the constraint that one or more of the decision variables are

restricted to take an integer value in the solution is called an integer program.

maximize dᵀp (2.14)

subject to Lp≤ r

p ∈ Z

minimize dᵀp (2.15)

subject to Lp≥ r

p ∈ Z

Equations (2.14) and Equations (2.15) are the canonical forms of the IP of the maxi-

mization problem and the minimization problem respectively.

2.5 Approximation Algorithm Design Techniques using LP

Two basic techniques [30] for designing approximation algorithms using linear pro-

gramming are rounding, and the primal-dual schema.

2.5.1 Rounding

General steps to design an approximation algorithm using the rounding technique are

given below.

1. Write an integer program for the problem.

2. Relax the integrality constraints and obtain a linear program relaxation from the integer

program.

3. Solve the LP optimally in polynomial time.
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4. Convert the fractional solution into an integer solution by rounding the fractional vari-

ables. Choose any rounding scheme that fits the problem and try to ensure that the rounding

scheme does not increase the cost much.

5. Prove a bound on the approximation ratio.

2.5.2 The Primal-Dual Schema

The primal-dual schema is a sophisticated method for designing approximation algo-

rithms which uses the dual solution of the LP-relaxation. In 1955 Kuhn [22] devised the

Hungarian method to solve the assignment problem in polynomial time. Now the Hungar-

ian method is known as the primal-dual method. The primal-dual algorithm relies on the

complementary slackness theorem.

Generic steps in designing an approximation algorithm using the primal-dual method

are given below.

1. Write the LP relaxation of the primal problem and obtain the corresponding dual.

2. Start with a primal infeasible solution p = 0 and a dual feasible solution q = 0.

3. While some constraint i in the primal LP is not satisfied

a) Raise the corresponding dual variable qi to the largest extent possible until some dual

constraints become tight. Do this increase without violating the dual feasibility of q.

b) Find out the dual constraints j which have become tight.

c) Set the corresponding primal variable p j to 1.

d) Repeat steps 3a to 3c until a primal feasible solution is found.

4. Compare the primal solutions and the dual solutions to establish the performance ratio.

5. Prove a bound on the approximation ratio.

For a long list of approximation algorithms based on the primal dual schema, see the

book by Vazirani [30].
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2.6 The Lagrangian Relaxation Method

Held and Karp [14, 15] were the first to use the Lagrangian relaxation to obtain bounds

for the traveling salesman problem. Later, Geoffrion [11] named this technique as the

Lagrangian relaxation method.

It is a well-used and efficient approach to find the lower bounds for minimization prob-

lems. The steps for calculating a lower bound using the Lagrangian relaxation method are

listed below.

1. Formulate the given problem as an integer program.

2. Multiply each hard constraint with a lagrange multiplier and absorb those constraints

into the objective function.

3. Solve the relaxed integer program optimally.

2.6.1 Lagrangian Lower Bound Program (LLBP)

Let us consider an integer program P of a minimization problem. In the canonical form,

we can write P using matrix representation.

minimize dᵀp (2.16)

subject to Lp≥ r

p ∈ {0,1}n

Here, p is the column vector of the decision variables which are nonnegative and binary. d

is the row vector of the coefficients of the decision variables. L is the coefficient matrix of

the constraints. r is the column vector which contains values for the right hand side of the

constraints.

If we want to formulate the Lagrangian relaxation, we need to introduce a new vector

which is called the Lagrange multiplier vector λ, where each entry in λ is nonnegative.

After multiplying λ with Lp≥ r and bringing them into the objective function, the resulting
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2.6. THE LAGRANGIAN RELAXATION METHOD

integer program becomes

minimize dᵀp+λ(r−Lp) (2.17)

subject to p ∈ {0,1}n

The program above for a fixed λ is called the Lagrangian lower bound program (LLBP).

We can also write the problem (2.16) in summation notation which is shown below.

minimize
n

∑
j=1

d j p j (2.18)

subject to
n

∑
j=1

li j p j ≥ ri ∀i ∈ {1,2, ....,m}

p j ∈ {0,1} ∀ j ∈ {1,2, ....,n}

The LLBP of (2.18) is

minimize
n

∑
j=1

d j p j +
m

∑
i=1

λi(ri−
n

∑
j=1

li j p j) (2.19)

subject to p j ∈ {0,1} ∀ j ∈ {1,2, ....,n}

Objective function in (2.19) can be rewritten as

minimize
n

∑
j=1

[d j−
m

∑
i=1

λili j]p j +
m

∑
i=1

λiri (2.20)

subject to p j ∈ {0,1} ∀ j ∈ {1,2, ....,n}

Let z j = [d j -
m

∑
i=1

λili j], j=1, 2, 3, ......., n. We solve the LLBP optimally by setting p j=1

if z j ≤ 0, 0 otherwise.
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2.6. THE LAGRANGIAN RELAXATION METHOD

2.6.2 The Subgradient Optimisation Method

One important consideration to produce a better lower bound is to find the next set of

the Lagrange multipliers. The subgradient optimisation method is one of the approaches

used for deciding values for the Lagrange multiplier vector.

The subgradient optimisation approach is an iterative method which iteratively adjusts

the values of the Lagrange multipliers. The procedure starts with an initial set of multipliers

and tries to improve the value of the lower bound by updating the set of multiplies in each

iteration.

Below are the steps in the subgradient optimisation technique.

1. Take an initial vector λ for the Lagrange multipliers.

2. Choose the value of the parameter π satisfying 0 <π≤ 2.

3. Initialize ZUB with a feasible solution of the original problem.

4. Solve LLBP using the current set of multipliers λ.

5. Compute the subgradient gi for each relaxed constraint i using the current solution of p j.

gi = ri−
n

∑
j=1

li j p j

6. Define a scalar step size T which is dependent on the difference between the current

lower bound ZLB and the specified upper bound ZUB. T also depends on π and the subgra-

dient vector g as

T = π(ZUB−ZLB)/
m

∑
i=1

(gi)
2

7. Update λi by using the following formula.

λi = max(0,λi +T gi)
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2.6. THE LAGRANGIAN RELAXATION METHOD

8. Go to step (4) and again compute ZLB using the updated Lagrange multiplier vector.

In each step, this procedure calculates a new ZLB using the recent multiplier set, and

keeps track of the best solution found so far. For minimization problems, this technique

attempts to find the maximum lower bound on the optimal solution, and vice versa for

maximization problems.

As this procedure is an iterative method, it requires a termination rule to stop. One idea

is limiting the number of iterations. Another way is to reduce the value of π systematically,

and stop when π is sufficiently small.

To illustrate the Lagrangian relaxation method and the subgradient optimisation tech-

nique, let us consider an example of a point cover problem.

minimize l1 + l2 + l3 + l4 + l5 (2.21)

subject to l1 + l2 + l3 ≥ 1

l2 + l3 + l5 ≥ 1

l1 + l4 + l5 ≥ 1

l j ∈ {0,1}, j = 1,2,3,4,5

Let us choose the first three constraints for relaxation, so there will be three lagrange

multipliers λ1, λ2, λ3. If we multiply the three multipliers with three constraints, and bring

them into the objective function, the LLBP becomes

minimize l1 + l2 + l3 + l4 + l5 +λ1(1− l1− l2− l3)+

λ2(1− l2− l3− l5)+λ3(1− l1− l4− l5)
(2.22)

subject to l j ∈ {0,1}, j = 1,2,3,4,5
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2.6. THE LAGRANGIAN RELAXATION METHOD

We can rewrite the LLBP as below.

minimize (1−λ1−λ3)l1 +(1−λ1−λ2)l2 +(1−λ1−λ2)l3 +(1−λ3)l4+

(1−λ2−λ3)l5 +λ1 +λ2 +λ3

(2.23)

subject to l j ∈ {0,1}, j = 1,2,3,4,5

Here,

z1 = 1 - λ1 - λ3

z2 = 1 - λ1 - λ2

z3 = 1 - λ1 - λ2

z4 = 1 - λ3

z5 = 1 - λ2- λ3

l j will be 1 if z j ≤ 0, and l j will be 0 if z j >0.

ZLB = z1l1 + z2l2 +z3l3 +z4l4 +z5l5 + λ1 + λ2 + λ3.

From Table 2.2, we can observe three iterations of the Lagrangian relaxation method

with the subgradient optimisation technique where π = 2, ZUB = 3, and initial (λ1, λ2, λ3) =

(0.3, 0.2, 0.8)

Table 2.2: Computation using the subgradient optimisation steps

z vector l vector ZLB ZMAX g vector T updated λ

(-0.1,0.5,0.5,0.2,0) (1,0,0,0,1) 1.2 1.2 (0,0,-1) 3.6 (0.3,0.2,0)

(0.7,0.5,0.5,1.0,0.8) (0,0,0,0,0) 0.5 1.2 (1,1,1) 1.667 (1.97,1.87,1.67)

(-2.6,-2.8,-2.8,-0.7,-2.5) (1,1,1,1,1) -6 1.2 (-2,-2,-2) 1.5 (0,0,0)
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2.7 The Lift-and-Project Method

The maximum ratio between the optimal integer solution and the solution of a relaxed

LP, over all the instances of the problem is known as the integrality gap. Lovasz and Schri-

jver [23] introduced one powerful system to strengthen the relaxation so that the integrality

gap is reduced. Sherali and Adams [25] devised a different system. All of these relaxation

methods are collectively known as relaxation hierarchies or the lift-and-project techniques.

Starting from an LP relaxation, the lift-and-project method tries to reduce the integrality

gap using a hierarchy of relaxations. At each level the space and time required to solve the

relaxation are increased. Solving the final relaxation may take exponential time, and the

intermediate relaxations may take either polynomial or exponential time depending on the

input size and the level.

We will describe the lift-and-project method to find a better relaxation of an integer

program in general.

Consider the integer program of a minimization problem in matrix form.

minimize dᵀp (2.24)

subject to Lp≥ r

p ∈ {0,1}m

The first step of the lift-and-project method is to homogenize the inequalities. As the

right hand side of the constraints are constants, so we introduce a supplementary variable

p0 in the right hand side of each constraint. The value of p0 is always 1 in any solution of

this LP. So the constraints become

Lp≥ r.p0 (2.25)

p ∈ {0,1}m, p0 = 1
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2.7. THE LIFT-AND-PROJECT METHOD

We can write the modified constraints (2.25) using the matrix notation as follows

[
L −r

] p

p0

≥ 0 (2.26)

p ∈ {0,1}m, p0 = 1

L′p′ ≥ 0 (2.27)

p′ ∈ {0,1}m+1, p0 = 1

The next step is to formulate an equivalent quadratic program. The value of each pi is

either 0 or 1 (in any solution) which implies the following equation.

pi(1− pi) = 0, ∀i ∈ {1,2, . . . ,m} (2.28)

Or, pi(p0− pi) = 0, ∀i ∈ {1,2, . . . ,m}, p0 = 1

The constant 1 is replaced by p0 to maintain the homogeneous criteria. The next step is

to multiply each constraint with pi and (p0-pi), ∀i ∈ {1,2, . . . ,m}.

(L′p′)pi ≥ 0, ∀i ∈ {1,2, . . . ,m} (2.29)

(L′p′)(p0− pi)≥ 0, ∀i ∈ {1,2, . . . ,m}, p0 = 1

We can write the constraints (2.29) as a summation shown below,

m

∑
k=0

l jk pi pk ≥ 0, ∀i ∈ {1,2, . . . ,m}, ∀ j ∈ {1,2, . . . ,n} (2.30)

m

∑
k=0

l jk(p0 pk− pi pk)≥ 0, ∀i ∈ {1,2, . . . ,m}, ∀ j ∈ {1,2, . . . ,n}
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Next, we linearize the quadratic program by replacing each pi p j term with a new non-

negative variable zi j.

zi j = pi p j, ∀i ∈ {1,2, . . . ,m}, ∀ j ∈ {1,2, . . . ,n}

The linearized version of the integrality constraint pi(p0− pi) = 0, ∀i ∈ {1,2, . . . ,m} is

z0i = zii, ∀i ∈ {1,2, . . . ,m}

The lifted version of the LP is

minimize dᵀp (2.31)

subject to pi = z0i = zii, ∀i ∈ {1,2, .....,m}

zi j = z ji, ∀i ∈ {0,1,2, .....,m}, ∀ j ∈ {0,1,2, .....,n}

m

∑
k=0

l jkzik ≥ 0 ∀i ∈ {1,2, .....,m}, ∀ j ∈ {1,2, .....,n}

m

∑
k=0

l jk(z0k− zik ≥ 0 ∀i ∈ {1,2, .....,m}, ∀ j ∈ {1,2, .....,n}

p0 = 1

The lifted LP is solved and only the solution of the variables pi are used to compute

the result of the original LP. This is the level-1 of the lift-and-project hierarchy. If we

want to implement some more levels of these hierarchies, we need to project the constraints

back onto the original space. We also need to derive new inequalities which contains only

pi variables. This can be done by adding together the 3rd and 4th type of constraints of

the lifted LP after multiplying them by a positive scalar. The 1st and 2nd constraints are

some properties of the linearized variables zi j. These two constraints help to cancel out all

the zi j terms so that the resultant inequality contains only pi variables. Now in the next

level, the initial constraints along with these new constraints will be the set of constraints
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of the integer program. When the level increases, the LP solution gives a tighter relaxation.

Each time an improved fractional solution is found which is closer to the optimal integral

solution.

2.8 The Branch-and-Bound Method

The branch-and-bound approach was proposed by Land and Doig in 1960. The method

enumerates every possible feasible solutions, while pruning those branches which can not

lead to a feasible solution. The enumeration can be visualized as a binary tree.

Below are the general steps for the minimization problems.

1. Solve the LP- relaxation optimally and obtain LB.

2. Compute a feasible integral solution UB. Consider the value of LB and UB at the root

node of the binary tree.

3. If the value of each decision variable of the LP solution is integer, return the objective

function value and stop.

4. If any one of the decision variables is fractional, take that variable into consideration for

branching.

5. Let l1 be the variable we have chosen for branching. Create two child nodes S1 and

S2. In subproblem S1, compute an upper bound LUB and a lower bound LLB using LP

by assuming l1=0. In subproblem S2, compute a lower bound RLB by solving LP and also

compute an upper bound RUB by taking l1=1.

6. Update UB with the minimum value among UB, LUB and RUB.

7. If UB is greater than the value of RLB, this indicates that this node needs to be explored

more. Solve S2 and go to step 4.

8. If the same condition is true for LLB, solve S1 and go to step 4.

9. If the value of UB is either equal to LLB or RLB, then do not solve the subproblems.

10. If none of the conditions stated in step 7, step 8 or step 9 is true, then also do not solve

the subproblems.
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11. Return the value of UB as the optimal integral solution for the given problem.

The steps from 4 to 9 are followed recursively to find the optimal integral solution.

Recursive algorithm above can be made iterative using the depth first search.

In this chapter, we discussed the terminologies, the related problems and the solution

strategies used in this thesis. In the next chapter, we will describe the definition and the

background of the problem which we have chosen to work with.
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Chapter 3

Point Cover Problem

3.1 Introduction

In this chapter, we will address the problem of covering points using minimum number

of axis parallel lines in three dimensional space. First, we will present the problem defini-

tion in Section 3.2. We will discuss reductions from a point cover instance to a set cover

instance and to a vertex cover instance in Sections 3.3 and 3.4 respectively. Then we will

formulate the problem as an integer program. We will also show the corresponding primal

and dual linear program relaxation of this IP. We will discuss the research work done so far

on this problem in Section 3.7.

3.2 Problem Definition

Input: A set of n points in three dimensional space.

Output: Minimum number of axis parallel lines to cover all the points.

Let the total number of points be n, and L be the set of all axis parallel lines going

through the n points. Each point can have at most 3 axis parallel lines in three dimensional

space, so |L| ≤ 3n.

Let us consider the following example. The points are (2, 3, 2), (2, 3, 3), (4, 3, 3). There

are three axis parallel lines for each of these three points. Any one of the x- axis, y- axis or

z- axis parallel line can be used to cover a point.

Let, L(x,y,z) be the set of axis parallel lines going through a point having coordinate (x,

y, z).
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(*, y, z) is the x- axis parallel line through point (x, y, z).

(x, *, z) is the y- axis parallel line through point (x, y, z).

(x, y, *) is the z- axis parallel line through point (x , y, z).

In our example,

L(2,3,2) = {(*, 3, 2), (2, *, 2), (2, 3, *)}

L(2,3,3) = {(*, 3, 3), (2, *, 3), (2, 3, *)}

L(4,3,3) = {(*, 3, 3), (4, *, 3), (4, 3, *)}

Here |L|=7, as two lines are common to two points. We want to find the set of axis

parallel lines that not only cover the points but also are fewest in number. Points (2, 3, 2)

and (2, 3, 3) can be covered by the same z- axis parallel line. There will be one point left

to be covered. We can choose any one of the x- axis, y- axis or z- axis parallel line to cover

point (4, 3, 3). This gives us one optimal solution.

Choosing a x- axis parallel line to cover points (2, 3, 3) and (4, 3, 3), and any one of the

x- axis, y- axis or z- axis parallel lines is another optimal solution for this example.

3.3 Reduction from the Point Cover Problem to the Set Cover Problem

We defined the set cover problem in Section 2.2. Here we will show how to formulate a

set cover instance given a point cover instance.

Consider an instance of the point cover problem where p1,p2,.....,pn are the points.

Lp1 ,Lp2 ,......,Lpn are the sets of axis parallel lines going through points p1,p2,.....,pn respec-

tively. L = {l1, l2, ..., lm} is the set of m axis parallel lines going through the n points.

The universal set U consists of all the n points, U={p1, p2,....., pn}. For every line li ∈

L, there is a subset Sli of points that lie on that line. The goal is to find a collection C of

{Sli|li ∈ L} such that every element of U belongs to some subset in C and |C| is minimum

possible.

We illustrate the reduction on the previous example and find out the minimum number

of subsets so that every element of U is covered.
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Here,

p1= (2, 3, 2)

p2= (2, 3, 3)

p3= (4, 3, 3)

U= {p1, p2, p3}

l1 = (*, 3, 2)

l2 = (2, *, 2)

l3 = (2, 3, *)

l4 = (*, 3, 3)

l5 = (2, *, 3)

l6 = (4, *, 3)

l7 = (4, 3, *)

Sl1 = {p1}

Sl2 = {p1}

Sl3 = {p1, p2}

Sl4 = {p2, p3}

Sl5 = {p2}

Sl6 = {p3}

Sl7 = {p3}

We can choose Sl3 and Sl4 which gives the minimum sized set cover. It is also optimum

to pick Sl3 and Sl6 , or Sl3 and Sl7 , or Sl4 and Sl1 , or Sl4 and Sl2 . Any one of these combinations

gives the minimum cover for this example.

In general, consider an instance of the point cover problem with n points and L axis

parallel lines. First, we create an instance of the set cover problem where the universal set

U consists of all points. There are |L| number of subsets where each subset Sli contains the

points that lie on line li. Let k be the minimum number of subsets that cover all the elements

of the universal set U , then there exists k axis parallel lines to cover n points of the given
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point cover instance. Again, if there are k lines to cover n points of the point cover instance,

then there exists k subsets which cover all the elements of U of the set cover instance. This

means that we approximate the point cover problem by reducing it to the set cover problem.

In general, the set cover problem can be approximated within a factor of O(logn) and no

better [7]. Therefore we need a more direct approximation algorithm for the point cover

problem which does not rely on the reduction to the set cover problem.

3.4 Transformation from the Point Cover Problem to the Vertex Cover

in Hypergraphs

3.4.1 Construction of a Bipartite Graph from 2D Point Cover Instance

It is proved by Hassin and Megiddo [13] that the point cover problem in two dimensions

can be transformed into a vertex cover problem in bipartite graphs. Here we discuss their

reduction. Given is a set of points in 2D, and a set of axis parallel lines consisting of vertical

and horizontal lines which cover all of the points. To transform this point cover instance

into a vertex cover instance, we need to construct a bipartite graph G with a vertex set V and

an edge set E. V consists of the potential axis parallel lines going through the points and

E contains all the points. We know that each edge of a graph has two endpoints. As each

point has one vertical line and one horizontal line, we can think of each line as a vertex, and

each point as a edge in the bipartite graph. The graph is bipartite because there is no point

that lies on two horizontal (vertical) lines. An example is shown below.

Figure 3.1: Construction of a Bipartite graph from a 2D Point cover instance
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A minimum vertex cover is the same as the minimum number of axis-parallel lines

required to cover all points in 2D and vice versa. The minimum vertex cover in a bipar-

tite graph can be computed in polynomial time using the König- Egerváry theorem. The

maximum matching problem is the dual of the minimum vertex cover. Bipartite matching

problem can be solved in polynomial time by formulating it as a maximum flow prob-

lem [8]. So the point cover problem in two dimensional space can be solved in polynomial

time optimally given the König- Egerváry theorem below.

Theorem 3.1. The size of the minimum vertex cover is the same as the size of the maximum

matching in a bipartite graph.

3.4.2 Construction of a Tripartite Hypergraph from 3D Point Cover Instance

A hypergraph H=(V , E) consists of a set of vertices V and a set of hyperedges E. A

hyperedge is a subset of vertices. A hypergraph is called 3-uniform if each edge has exactly

3 vertices. A 3-uniform hypergraph is called tripartite if the vertex set V can be partitioned

into three subsets such that every hyperedge contains exactly one vertex from each of these

three subsets.

Given an instance of the 3D point cover problem, we can construct an equivalent tri-

partite hypergraph by considering each axis parallel line as a vertex and each point as a

hyperedge. This idea of reduction is taken from the master’s thesis of Jahan [17]. Let us

consider an example in Table 3.1 of the point cover problem in 3D.

Table 3.1: An Example of the Point Cover Problem in 3D

Point x- axis parallel line y- axis parallel line z- axis parallel line

p1 = (2, 3, 2) x1 = (*, 3, 2) y1 = (2, *, 2) z1 = (2, 3, *)

p2 = (2, 3, 3) x2 = (*, 3, 3) y2 = (2, *, 3) z1 = (2, 3, *)

p3 = (4, 3, 3) x2 = (*, 3, 2) y3 = (4, *, 3) z2 = (4, 3, *)

31



3.5. INTEGER PROGRAM FOR POINT COVER PROBLEM

The axis parallel lines along the three axes are the three subsets of the vertex set V . The

corresponding hypergraph of this table is in Figure 3.2.

Figure 3.2: Construction of a Tripartite hypergraph from a 3D Point Cover problem instance

Here we can see that the minimum number of vertices required to cover each hyperedge

is 2 which is the same as the number of axis parallel lines needed to cover all points.

In general, a point cover instance in d-dimensions can be reduced to a vertex cover

instance in d-uniform d-partite hypergraphs. It is known that the vertex cover problem is

NP-complete for 3-uniform 3-partite hypergraphs [12]. We can approximate the point cover

problem by reducing it to the vertex cover problem in 3- uniform 3-partite hypergraphs.

3.5 Integer Program for Point Cover Problem

Consider a set of n points p1, p2, ......, pn in 3-dimensional space. S1, S2, S3, ......., Sn

are the sets of axis parallel lines associated with point p1, p2,......,pn respectively. Let S =
n⋃

i=1
Si. The goal is to pick lines from S which cover all of the n points, and the number of

selected lines should be as few as possible. A line is said to cover a point if the point lies on

that line. An integer programming formulation for the point cover problem is given below.

minimize
m

∑
i=1

li (3.1)

subject to ∑
li∈S j

li ≥ 1, ∀ j ∈ {1,2, ....,n}

li ∈ {0,1}, ∀i ∈ {1,2, ....,m}
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Here, l1, l2, l3,......., lm are the binary variables which correspond to the lines in S. The

value of an axis parallel line li will be 1 if that line is picked in the solution and 0 if the line

is not selected in the solution.

3.6 Linear Programming Relaxation

3.6.1 Primal LP Formulation

We can transform an integer program into a linear program by relaxing the integrality

constraints. In (3.1), li ∈ {0,1} (∀i ∈ {1,2, ....,m}) is the only integrality constraint. We

transform this into li ≥ 0, ∀i ∈ {1,2, ....,m}. The linear program relaxation for the point

cover problem is given below.

minimize
m

∑
i=1

li (3.2)

subject to ∑
li∈S j

li ≥ 1, ∀ j ∈ {1,2, ....,n}

li ≥ 0, ∀i ∈ {1,2, ....,m}

3.6.2 Dual LP Formulation

In Section 2.3, we describe how to formulate a dual program from a primal linear pro-

gram. For the point cover problem, we minimize the number of axis parallel lines going

through n points in the primal program. In the dual program, we maximize the number of

points subject to the packing constraints. Let Q1, Q2, ....., Qm be the sets of points which

lie on lines l1, l2, ......., lm respectively. Let Q =
m⋃

i=1
Qi. The goal is to choose points from Q

so that the maximum number of points are picked subject to some constraints.
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maximize
n

∑
j=1

p j (3.3)

subject to ∑
p j∈Qi

p j ≤ 1, ∀i ∈ {1,2, ....,m}

p j ≥ 0, ∀ j ∈ {1,2, ....,n}

3.7 Previous Research Work

Hassin and Megiddo [13] were the first to study the point cover problem. They described

the point cover problem as a special case of the hitting set problem. The hitting set problem

is as follows: given a universal set X={1, 2, ......., n}, and m subsets where each subset Yi

contains elements from X , the goal is to find a subset S of X that hits each Yi where i=1,

2, ......, m and |S| is minimum possible. The integer program for the hitting set problem is

similar to the set cover problem.

The point cover problem is a special case of the hitting set problem. They gave a greedy

algorithm and showed that it does not have a constant factor approximation ratio. The

greedy algorithm picks a line which covers the maximum number of points and creates a

subproblem by removing the covered points, and repeat until all the points are covered.

Johnson [18] and Chvatal [4] proved that the approximation ratio of this greedy algorithm

for the set cover problem is logn. This greedy heuristic does not provide a constant per-

formance ratio for the point cover problem even in two dimensional space. Hassin and

Megiddo [13] gave an example in 2 dimensional space.

In the example (shown in Figure 3.3), at first n disjoint sets are constructed where each

set Si (1 ≤ i ≤ n) contains n! points. Each set Si is divided into
n!
i

disjoint subsets where

each subset consists of i points.
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Figure 3.3: Example discussed by Hassin and Megiddo [13]

In Figure 3.3, there are n=3 sets S1, S2, S3 and each set contains 3!=6 points. Then S1

is divided into
6
1

= 6 subsets containing 1 point in each, S2 is partitioned into
6
2

= 3 subsets

each containing 2 points, and S3 is divided into
6
3

= 2 subsets consisting of 3 points in

each. If we use the greedy algorithm, it can choose either one of the the last two vertical

lines as these lines cover the maximum number of points for this instance, or any one of

the horizontal lines because each horizontal line also covers the same number of points.

This statement is true in each recursive step because in each iteration whether the algorithm

chooses a vertical line or a horizontal line in the solution, there exists at least one horizontal

and one vertical line which can cover the maximum number of points in that subproblem. If

the algorithm chooses the horizontal lines in each subproblem, then the point cover instance

is solved optimally. The optimal value is n!=3!=6. But if the algorithm chooses the vertical

lines in each iteration, then the solution contains 11 lines. In general, the greedy algorithm

uses n!H(n) lines where H(n)= ∑
n
j=1

1
j
.

There is another approximation algorithm discussed by Hassin and Megiddo [13]. While

there is an uncovered point, select both the horizontal and the vertical line going through

that point. Remove all the points that lie on both the lines. If the algorithm selects 2k

lines, then there are k points such that no two lie on a line. Therefore, the algorithm

is a 2-approximation algorithm for the point cover problem in 2D. In general, it is a d-

approximation algorithm for the point cover problem in d dimensional space.
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Another approximation algorithm [16] for the point cover problem is to solve the lin-

ear program and round the optimal fractional solution. Each line with fractional value at

least
1
d

is selected to be in the solution. This rounding gives an integral solution and the

performance ratio of this algorithm is d.

Gaur and Bhattacharya [9] gave a (d-1) approximation algorithm for the point cover

problem in d dimensions which was based on deterministic rounding.

Jahan [17] proposed an iterative rounding algorithm, and a branch-and-bound algorithm

based on the LP solution using the dual-simplex method to obtain an integral solution of

the point cover problem. She also gave another iterative rounding algorithm based on the

primal dual method.

The point cover problem in 2D can be solved in polynomial time which we discussed

in Section 3.4.1. But for higher dimensions where d≥3, the point cover problem is NP-

complete. The point cover problem in d dimensions can be reduced to the vertex cover

problem in d-uniform d-partite hypergraphs. Lovasz [2] gave a
d
2

approximation algorithm

for d-partite hypergraphs by rounding the optimal solution to the standard LP relaxation.

This implies that we can approximate the point cover problem in 3D with approximation

ratio
3
2

by reducing it to the vertex cover problem in 3-uniform 3-partite hypergraphs.

So far we have seen the best performance ratio of the point cover problem is
d
2

for d

dimensions, which implies a
3
2

approximation algorithm for the point cover problem in 3

dimensional space.

In the next chapter, we will present the algorithms which we have developed and imple-

mented to solve an instance of the point cover problem in 3 dimensional space.
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Chapter 4

Lagrangian Approaches to Solve the
Point Cover Problem

4.1 Introduction

In Section 3.7 of Chapter 3, we noted an algorithm with an approximation ratio of 2

for covering points with axis parallel lines in three dimensional space. In this chapter,

we introduce Lagrangian based algorithms to approximate the point cover problem. In

Section 4.2, we present three strategies for computing lower bounds. In Section 4.3, we

describe three approaches for computing upper bounds. We test the algorithms empirically.

4.2 Lower Bounds

4.2.1 The Lagrangian Relaxation Method

The first approach that we study to obtain a lower bound is a Lagrangian relaxation

of the standard integer program. We use the subgradient optimisation method to solve the

Lagrangian relaxation.

Let us revisit the integer program for the point cover problem ( 4.1) which was formu-

lated in Section 3.5.

minimize
m

∑
i=1

li (4.1)

subject to ∑
li∈S j

li ≥ 1, ∀ j ∈ {1,2, ....,n}

li ∈ {0,1}, ∀i ∈ {1,2, ....,m}
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Here, n is the total number of points. m is the total number of axis parallel lines for n

points. l1, l2, l3,......., lm are the binary variables corresponding to the lines. S1, S2, S3, ......,

Sn are the sets of axis parallel lines associated with point 1, 2, ....., n respectively, where S j

is the set of axis parallel lines that pass through point j. The value of an axis parallel line li

is 1 if that line is selected in the solution and 0 if the line is not selected.

Steps for Computing Lower Bound:

We follow the steps stated below to generate a lower bound using a Lagrangian relax-

ation.

1. At first, we formulate the Lagrangian lower bound program (LLBP) by introducing

a Lagrange multiplier vector λ where λ j is the Lagrange multiplier for constraint j. The

LLBP for the point cover problem is:

minimize
m

∑
i=1

li +
n

∑
j=1

λ j(1− ∑
li∈S j

li) (4.2)

subject to li ∈ {0,1}, ∀i ∈ {1,2, ....,m}

The general description of the process of formulating a LLBP from an integer program

is given in Section 2.6 of Chapter 2.

2. We initialize each Lagrange multiplier with a random fractional value between 0 and

1. We also decide values for some user defined parameters. ZUB is an upper bound and we

assume ZUB as the total number of points, because to cover n points at most n axis parallel

lines are required. We set π to an initial value of 2.

3. We solve the LLBP optimally using the current value of Lagrange multipliers using

the procedure in Section 2.6 of Chapter 2. After solving the LLBP, we find a solution ZLB

(a lower bound) and a vector l where each li has a value 0 or 1.
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4. We compute the subgradient g j for each constraint j using the following formula

g j = 1− ∑
li∈S j

li (4.3)

5. We calculate the step size T as follows:

T = π(ZUB−ZLB)/
n

∑
j=1

(g j)
2 (4.4)

6. We update the new Lagrange multipliers using the following equation.

λ j = max(0,λ j +T g j) (4.5)

7. We repeat steps 3 to 6 for 200 iterations. We also reduce the value of π by half if the

value of ZLB does not increase for four consecutive iterations.

Algorithm:

Below is our algorithm for computing a lower bound of the point cover problem by

solving the Lagrangian relaxation using a subgradient optimisation method.
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Algorithm 1: Subgradient Method to solve Lagrangian Relaxation Running Time

Input: A minimization IP for the point cover problem in standard form.

Output: A Lower Bound on the value of the objective function.

1: initialize λ, ZUB, π, iteration as described. O(1)

2: ZLB MAX ←−∞. O(1)

3: while iteration ≤ 200 do

4: Compute l. O(n)

5: Calculate ZLB by solving the LLBP. O(n)

6: ZLB MAX ← max(ZLB MAX , ZLB). O(1)

7: Compute subgradient by using equation 4.3. O(n)

8: Compute the step size using the formula 4.4. O(1)

9: Update lagrange multipliers using equation 4.5. O(n)

10: if ZLB MAX does not improve for four iterations then O(1)

11: π← π

2
. O(1)

12: end

13: end

14: return ZLB MAX . O(1)

We use 200 iterations to terminate the process. It is also possible to use the value of π

as a termination rule.

Time Complexity of the Algorithm:

Assuming that the number of points in an input instance is n, then the number of rows in

the constraint matrix is also n and the size of the vector l can be at most 3n. For Algorithm

1, the running time of each step is in the column on the right hand side.
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There are 200 iterations of step 3 to step 13. In summary, Algorithm 1 takes O(n) time

where n is the total number of points in the input instance.

4.2.2 The Lift-and-Project Method using LP

In the lift-and-project method [23, 25], we lift an integer program with n variables to

one with n2 variables by adding auxiliary variables and linear inequalities. After solving

the modified system, we project it back to the lower dimensional space to obtain a solution

to the original LP.

Steps for Computing Lower Bound:

We illustrate the steps of the lift-and-project method below. The detailed description of

each step is provided in Section 2.7 of Chapter 2.

1. The first step is to homogenize the equations. After homogenizing, all the terms in a

constraint have the same degree. We introduce an auxiliary variable l0 which is always 1.

So the integer program becomes

minimize
m

∑
i=1

li (4.6)

subject to ∑
li∈S j

li ≥ l0, ∀ j ∈ {1,2, ....,n}

l0 = 1, li ∈ {0,1}, ∀i ∈ {1,2, ....,m}

2. The second step is to formulate a quadratic program from the homogenized integer

program (4.6). We start by changing the constraint li ∈ {0,1} into a quadratic constraint.

li(1− li) = 0, ∀i ∈ {1,2, ....,m} (4.7)
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We use the extra variable l0 to remain inside a homogeneous setting, we can rewrite

equation (4.7) as follows

li(l0− li) = 0, ∀i ∈ {1,2, ....,m} (4.8)

l0li− lili = 0, ∀i ∈ {1,2, ....,m}

We know that there are at most three axis parallel lines for each point. Let us write the first

constraint of the homogeneous version of IP (4.6) for a particular point p, where li, l j and

lk are the three axis parallel lines going through point p as,

li + l j + lk ≥ l0 (4.9)

To obtain a quadratic equation of (4.9), we multiply this with li and (l0-li).

li(li + l j + lk− l0)≥ 0 (4.10)

(l0− li)(li + l j + lk− l0)≥ 0

We multiply all the constraints with li and (l0-li) for all i. If L is the set of all axis parallel

lines going through n points, we need to multiply with each li in L. So finally we get 2n|L|

constraints from n constraints.

3. We simulate the quadratic program using a linear program. We linearize the quadratic

program by introducing extra nonnegative variables yi j for term lil j. The properties of yi j

variables which will be included in the constraint set of the linear program are given below.

a) yi j = y ji which is the symmetry of the product.

b) li = y0i as y0i = lil0 =li.

c) y0i = yii , this property can be derived from equation (4.8).
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4. We solve the linearized version of the LP using the dual simplex method in MAT-

LAB.

5. We project the solution of the lifted LP back onto the variables li using property c.

Algorithm:

The algorithm for computing lower bound using the lift-and-project method is described

below:

Algorithm 2: Lift-and-Project method for Computing Lower Bound

Input: A minimization integer program in standard form.

Goal: A lower bound on the value of the optimal solution.

1: Construct a Quadratic Program as shown in Step 2.

2: Linearize the quadratic program as shown in Step 3.

3: Solve the modified problem as an LP using the dual-simplex method.

4: Project the solutions onto the space of li variables as shown in Step 3(c).

Time Complexity of the Algorithm:

Assume that the total number of points for an input instance of the point cover problem

is n. So the total number of axis parallel lines is at most 3n which we denote by L.

The quadratic program can be generated in O(2nL) time. The linearization of the LP

can be done in O(nL) time. This indicates that the generation of the constraint matrix can

be done in polynomial time in the lift-and-project method.

Now, deciding whether the running time of Algorithm 2 is polynomial or exponential

depends on the running time of the dual simplex method which is in step 3. It has been

shown by Klee and Minty [21] that the worst case complexity of simplex is exponential.

Spielman and Teng [26] observed that the simplex algorithm ”usually” takes polynomial

time. In practice, so far we have observed that the simplex method takes linear time to

solve an input instance of the point cover problem. Projection of the results back onto

lower dimensions takes O(nL) time. Therefore, Algorithm 2 takes O(nL) time in practice.
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As the value of L is at most 3n, we can also say that Algorithm 2 takes O(n2) time in

practice.

4.2.3 Solve the Lift-and-Project LP using the Subgradient Optimisation

This is a hybrid method in which we solve the lift-and-project LP using the subgradient

optimisation procedure. We use the algorithm proposed in Section 4.2.1, the only difference

is that the constraint matrix is formulated using the lift-and-project method.

Steps for Computing a Lower Bound:

1. We introduce a quadratic program based on the initial integer program. The detailed

description is given in Section 4.2.2.

2. We linearize the quadratic program.

3. We add symmetry constraints on the variables.

4. Then we solve this modified linear program using the subgradient method for La-

grangian relaxation proposed in Section 4.2.1.

Time Complexity of the Algorithm:

In this algorithm, we create the constraint matrix by using the lift-and-project method

and solve the linear program by using the subgradient optimisation method. In Section 4.2.2,

we computed that it takes O(nL) time to generate the linear program, where n is the number

of points and L is the number of axis parallel lines in the input instance. In Section 4.2.1,

we observed that the subgradient method takes O(n) time as the number of constraints is n.

Here, the number of constraints generated by using the lift-and-project method is 2nL. So

the running time of our proposed hybrid algorithm is O(nL). As the value of L is at most

3n, we can also say that our proposed hybrid algorithm takes O(n2) time in practice.
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4.3 Algorithms for Computing an Upper Bound

In this section, we describe three approaches for computing an upper bound. We named

the three approaches as the Iterative Rounding Algorithm 2, the Iterative Lagrangian Relax-

ation Algorithm, and the Branch-and-Bound technique using the Subgradient Optimisation

Method.

4.3.1 The Iterative Rounding Algorithm 2

The scheme of iterative rounding was proposed by Jahan [5] in her master’s thesis for

the point cover problem. We remove few conditions and change one parameter, and imple-

ment the modified version. These modifications give an improved approximation factor in

practice.

Steps:

The steps of the algorithm are given below.

1. We initialize a threshold variable α with a value 2, which we use to round the frac-

tional values.

2. We solve the primal LP using the dual simplex method in MATLAB.

3. We retrieve the solution of the dual LP.

4. If none of the variables of the primal solution contains any fractional value, that

means it is an integral solution. We return the upper bound and stop the algorithm.

5. If there are n points and the dual solution is at least
n
α

, this indicates that it is possible

to get a α- approximate integral solution by covering each point with a unique line.

6. If both of the conditions stated in Step 4 and Step 5 are false, then we find a primal

variable with value
1
α

or more and round it to 1. We go to Step 2 for the next iteration

without changing the current solution of the variables which have been rounded to 1.

7. If all of the dual variables have value greater or equal to
1
α

, then the condition stated

in step 5 is satisfied, therefore there is a point with dual value ≤ 1
α

. The algorithm uses all
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the lines passing through this point in the primal solution. We go to Step 2 after choosing

the corresponding variables to 1.

Algorithm:

Below is the iterative rounding algorithm 2.

Algorithm 3: Iterative Rounding Algorithm 2.

Input: A minimization linear program in standard form.

Goal: Upper bound where the values of all variables are integral.

1: initialize the rounding factor α.

2: find the optimal primal LP solution X using the dual simplex method.

3: find the optimal dual LP solution Y using the dual simplex method.

4: if there exists no variables with fractional value in Primal LP then

5: return X .

6: else if Y ≥ n
α

then

7: return the greedy solution of the IP.

8: else if there exists a primal variable with fractional value ≥ 1
α

then

9: round the first fractional variable to 1.

10: goto Step 2 with the modified LP.

11: else if there exists a dual variable with value ≤ 1
α

then

12: pick the 3 lines going through the first such point.

13: goto Step 2 with the modified LP.

14: end

This is a recursive procedure which we call from the main function with the initial LP.

When any change is made to any variables, the updated values of the current iteration are

passed to the next iteration.
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Modifications made to the Algorithm of Jahan [17]:

Jahan [17] used a constant ε with value 0<ε ≤ 1 and considered the value of α as
1
4

+

√
1
4
+d(1− ε). We considered the value of α as 2 which is not dependent on the value

of ε. There was a condition after step 7 in Jahan’s Algorithm [17]: if the value of the

dual LP solution Y is less or equal to
d
ε

then return the cheapest cover by exploring all the

subsets of lines with size no more than
d2

ε
. In our case we did not include this step in the

implementation.

Time Complexity of the Algorithm:

In Algorithm 3, most of the operations require linear time and the number of recursive

calls is at most 3n. So the complexity of this algorithm is dependent on the running time

of the dual simplex method. For the reasons discussed in Section 4.2.2, we can say that

it is possible to compute the upper bound of the point cover problem using the iterative

rounding algorithm 2 in polynomial time, O(n2) is observed in practice.

4.3.2 The Iterative Lagrangian Relaxation Algorithm

We implement another iterative method for computing upper bounds for the point cover

problem. This iterative method extends the solution of the variables (obtained by solving

the current Lagrangian lower bound program) by solving a recursive problem. We already

know that the upper bound generated by using this algorithm is always an integral solution

because in the vector generated by solving the Lagrangian relaxation all the variables have

a value either 0 or 1.

Steps:

1. At first, we solve the LP using the subgradient optimisation algorithm described in

Section 4.2.1. We use the value of the solution vector l, which we get while solving LLBP.

The method of solving LLBP and the output vector l is discussed in Section 2.6.
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2. We derive a subproblem by removing those points which are covered by the solution

l to LLBP.

3. Repeat Step 1 and 2 until all of the points are covered. Details are in Algorithm 4.

Algorithm:

Algorithm 4: The Iterative Lagrangian Relaxation Algorithm.

Input: A minimization integer program in standard form.

Goal: Integral Solution.

1: UB← 0.

2: while all points are not covered do

3: initialize λ, ZUB, π and iteration.

4: ZLB MAX ←−∞.

5: f inal l= vector of all 1s.

6: while iteration ≤ 200 do

7: Compute l given the current lagrange multipliers.

8: Calculate ZLB given l and the lagrange multipliers.

9: ZLB MAX ← max(ZLB MAX , ZLB).

10: if (ZLB==ZLB MAX ) then

11: f inal l ← min(l, f inal l)

12: end

13: if ZLB MAX does not improve in consecutive 4 iterations then

14: return π← π

2
15: end

16: Compute Subgradient and the Step size.

17: Update Lagrange multiplier vector.

18: end

19: Find the points that are covered.

20: UB←UB + sum( f inal l).

48



4.3. ALGORITHMS FOR COMPUTING AN UPPER BOUND

21: Create a subproblem by removing the covered points.

22: goto step 2.

23: end

24: return UB.

Time Complexity of the Algorithm:

While trying to obtain an upper bound using Algorithm 4, we use the subgradient pro-

cedure in each recursive call and determine the points which are covered. In the worst case,

we need at most n recursive calls to the subgradient procedure. We show in Section 4.2.1

that the running time of the subgradient algorithm with the Lagrangian relaxation technique

is O(n). So, the running time of algorithm 4 is O(n2).

4.3.3 The Branch-and-Bound Method using the Lagrangian Relaxation Approach

We use an exhaustive search technique which possibly involves solving a large num-

ber of linear programs to find an optimal integral solution. To solve the LP, Lagrangian

relaxation program with the subgradient optimisation method is used.

Branching Strategy:

Let, l be the solution vector of the variables obtained by solving LLBP. l contains all the

axis parallel lines going through n points, and the vector l is integral. So, we can not branch

at a node based on the fractional output of a decision variable which is the traditional way

of branching from a node. First we arrange all the lines in some random order. We choose

one line at a time in that order. The root node is at level 1. We explore the root node by

creating two subproblems- left subproblem S1 and right subproblem S2, setting the value

for the first line as 0 and 1 respectively.

In S1, we have a subproblem where l1 is set to 0, this means we do not pick l1

in the solution. We compute an upper bound LUB, and a lower bound LLB for the left
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subproblem. In S2, we have a subproblem where l1 is in the solution. We compute an upper

bound RLB, and a lower bound RUB for the right subproblem considering l1 as 1.

In general, if we are currently in level i and we need to explore a node, then we set the

i-th line as 0 and 1 and two new subproblems are created. At level i, the value of the last

(i-1) lines is already set. By observing the path from the root to a node, it is possible to get

the values of l1, l2, l3,......li−1, as shown in Figure 4.1.

Figure 4.1: Branch and Bound

Enumeration Tree:

At a given level, we go deeper using the idea of DFS which is described in Section 2.6

of Chapter 2. As we perform DFS at a node, we need to keep track of the other nodes which

we explore later. One of the way is to use a recursive function, but recursive function needs

a stack space which may be an issue when the depth of recursion is large. We use a stack

to implement recursion, which is described in Section 2.5.

We want to evaluate a branch where li is set to 1 first. In order to evaluate a branch

where li is set to 1, we need to push the opposite branch onto the stack and then push the

desired one. The subproblems will be visited in the right order.

In our implementation, we use a vector named index, initially empty. The size of this

index vector grows by 1 at each level. If the value at the i-th position is 0, that means the

corresponding line is not picked in the solution. If it is 1, the line is picked in the solution.

We are actually enumerating, but we do not need to explore all the nodes because of our
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pruning technique.

Algorithm:

Algorithm 5: Branch-and-Bound Algorithm.

Input: A minimization linear program in standard form.

Goal: An Optimal Integral Solution.

1: Compute LB using the Lagrangian relaxation algorithm described in 4.2.1.

2: Compute UB using the Iterative lagrangian relaxation algorithm discussed in 4.3.2.

3: initialize index, lc and rc vectors as empty.

4: push the vector index into the stack.

5: while stack is not empty do

6: pop index vector from stack

7: node← node + 1

8: lc← [index;0]

9: rc← [index;1]

10: Solve the left subproblem S1 and get LLB and LUB.

11: Solve the right subproblem S2 and get RLB and RUB.

12: UB← min(UB, LUB, RUB).

13: if UB > LLB then

14: push lc vector into the stack.

15: end

16: if UB > RLB then

17: push rc vector into the stack.

18: end

19: if (UB = RLB) ∨ (UB = LLB) then

20: if UB = RLB then

21: return UB

22: end
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23: if UB = LLB then

24: return UB

25: end

26: end

27: if none of the above condition satisfies then

28: return UB

29: end

30: end

31: return UB and number of nodes.

Time Complexity of the Algorithm:

The branch-and-bound strategy can be visualized as a binary tree where the left child is

the case when line li is not picked in the solution, and the right child is the case where line

li is included with value 1 in the solution. The tree has a search space of at most O(2L) ≈

O(23n) nodes because the depth of the tree can be at most L. The work done at each internal

node is polynomial. Therefore, Algorithm 5 has a running time exponential in the number

of points n.

In this chapter, we described our proposed algorithms for obtaining the upper bound of

the point cover problem. We also discussed a few methods which we studied for computing

the lower bound. We will present the experimental results and our observation in the next

chapter.
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Chapter 5

Experiment and Evaluation

5.1 Introduction

In this chapter, we present our experimental results and analyses of the algorithms dis-

cussed in Chapter 4. First, we give a brief description of the specifications of the computer

used for the experiments. We then mention the process of generating the inputs to the algo-

rithms. Finally, we make some observations and analyze the output of the algorithms. We

perform experiments on large instances and observe the approximation ratio of the point

cover problem (empirical).

5.2 General Empirical Evaluation

This section will describe the lower bound and the upper bound results of the proposed

algorithms.

5.2.1 Experimental Setup

We performed most of the experiments using MATLAB R2016b. For large instances,

we used Octave with drop in acceleration using GPU [1]. The platform where MATLAB

R2016b is installed has the following specifications:

Processor Model Name: Intel Core i7-5500U CPU

Clock Speed: 2.40GHz

RAM Size: 8.00 GB

System Type: 64-bit Operating System
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Environment: Windows 10

5.2.2 Data Set

We generated points in 3D grid randomly. In the initial stage, we experimented with

instances on a 10x10x10 grid. Points were selected at random with probability p, p in

[0.1,0.2,....1] with skips of 0.1. For each probability, we generated 5 instances. After ana-

lyzing the results, we observed that the instances with probability 0.4 are typically ”hard”

to solve for all the proposed algorithms. Then we decided to generate 1000 input instances

on an 8x8x8 grid where for each input instance, each point is picked with a probability of

0.4.

5.2.3 The Lower Bounds

We used four ways to compute a lower bound of the point cover problem. The simplex

method is used to solve the linear program relaxation optimally. We also implemented a

LP-based lift-and-project algorithm described in Section 4.2.2. In both the cases, ”linprog”

method of MATLAB R2016 is used to solve the LP. LP and the lift-and-project LP are also

solved using the subgradient optimisation method to solve a Lagrangian relaxation for both

the problems.

The total number of points in each instance varies from 170 to 240. We generated 1000

instances whose probability of selecting a point is 0.4. A few distinct group of instances

have the same number of points. For that reason, we plot the results of all four algorithms

against the serial number of the instances where the instances are sorted according to the

increasing order of the number of points.
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Figure 5.1: Lower Bounds

In Figure 5.1, we plot the instance number along the x-axis, and the fractional solutions

of different methods along the y-axis. Based on the figure, we can say that the lift-and-

project method is marginally better than the LP. Out of 1000 instances, the lower bound

computed using the lift-and-project method is either equal or better than the LP lower bound

in 925 cases. We also observe from the graph that when the number of points increases,

there is a possibility of not finding better lower bound than the LP lower bound. This

occurred because we took a timespan of 600 seconds to solve the lift-and-project LP. If we

increase the timespan with the increase of the number of points, the chance of getting better

results also increases. On the other hand, the lower bound found by using the Lagrangian

relaxation is close to the LP lower bound, but there is a tiny gap between the two. There

is no noticeable improvement when the lift-and-project LP is solved using the subgradient

optimisation method.

5.2.4 Time to Compute the Lower Bounds

As we already know, the number of variables and constraints increases in the lift-and-

project procedure and this modified LP takes greater time and space to solve depending on

the input size. For a few instances in our data set, we solved the lift-and-project LP using

MATLAB and it takes around 10800 seconds to solve. So we chose a time-limit of 600
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seconds and solved the 1000 instances. Only 75 instances generated lower bound worse

than the LP lower bound within that timespan. The lift-and-project method solved using

the method of Lagrangian relaxation took more time than either the Lagrangian relaxation

or the LP, because of the large constraint matrix size and the increase in the number of

variables.

We notice that the Lagrangian relaxation solved using the subgradient optimisation

method, and the LP take the least time to compute a good lower bound among the four

strategies. We graphically plot the ratio of the running time of the subgradient optimization

method, and the dual-simplex method used to solve the LP to observe which method is

faster. Time is computed in seconds in both cases. We sort the instances according to the

increasing order of the number of points.

Figure 5.2: Ratio of the time between Lagrangian Relaxation and Linear Program

Based on Figure 5.2 where the ratio between the computational time of the Lagrangian

relaxation method and the LP (LP is solved using the dual simplex method) is set along

the y-axis, we can say that more than 78% of the instances can be solved faster using the

Lagrangian relaxation method than with the dual simplex method.

We observe that it is not clear whether the ratio between the computational time of the

Lagrangian relaxation and the LP increases or decreases as a function of the number of

56



5.2. GENERAL EMPIRICAL EVALUATION

points. The reason is that all of the instances we take from the 8x8x8 grid can be solved

within less than half of a second using these two methods. See Table A.1 in Appendix A

to get an idea of the computational time of the Lagrangian relaxation and the LP, and the

changes of the ratio with the increase of the number of points. We present the time of the

first 25 instances and the last 25 instances.

To show whether this ratio increases or decreases with the increase of the number

of points, we take 100 instances randomly which take more than one second to solve

an instance of the point cover problem. We take 5 instances from each Grid 10x10x10,

12x12x12, 15x15x15, 18x18x18, 20x20x20, 22x22x22, 25x25x25, 28x28x28, 30x30x30,

32x32x32, 33x33x33, 34x34x34, 35x35x35, 36x36x36, 37x37x37, 38x38x38, 39x39x39,

40x40x40, 41x41x41, and 42x42x42 where the number of points varies from 386 to 29925.

In Table A.2 in Appendix A, we present the computational time to solve these instances

using the Lagrangian relaxation method, the computational time to solve the LP using the

dual-simplex method, and the ratio between these two computational times.

We graphically plot the ratio of the time of computing lower bound using the Lagrangian

relaxation and the LP with the increase of the number of points.

Figure 5.3: Ratio of time between Lagrangian Relaxation and Linear Program
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Figure 5.3 shows that the ratio between the computational time of solving an instance

using the Lagrangian relaxation method and the dual-simplex method decreases with the

increase of the number of points for most of the instances except those small instances

which can be solved within a second.

5.2.5 The Upper Bounds

To determine the number of axis-parallel lines required to cover all the points, we used

an integer program, the iterative rounding algorithm 2, the iterative lagrangian relaxation

algorithm and the branch-and-bound technique using the Lagrangian relaxation. The algo-

rithms are explained in Section 4.3 of Chapter 4. To solve the integer program optimally, we

used the ”intlinprog” method of MATLAB 2016b where the dual-simplex algorithm is used

as RootLPAlgorithm. Intlinprog seeks the optimal solution among the heuristics method,

cut-generation method, and branch-and-bound method.

Figure 5.4: Upper Bounds
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In Figure 5.4, we graphically represent the upper bound computed by the four algo-

rithms. Here, the instances are sorted in the increasing order of the number of points. Our

proposed branch-and-bound algorithm based on the Lagrangian relaxation gives the opti-

mal result as expected. As the IP and the branch-and-bound approach give the same result,

so in the figure there is one line for both. It can also be seen that the iterative lagrangian

relaxation algorithm gives the weakest upper bound among the four algorithms. The itera-

tive rounding algorithm 2 is much better than the iterative lagrangian relaxation approach

because for 663 instances out of 1000 it computes the optimal result.

5.2.6 Time to Compute the Upper Bounds

We notice that the branch-and-bound method using the Lagrangian relaxation approach

takes longer time than the rest of the three approaches for every instance. We graphically

plot the computational time taken by each method in Figure 5.5. Again we sort the instances

according to the increasing order of the number of points. We do not include the plotting

time of generating upper bounds using our proposed branch-and-bound algorithm because

it takes a relatively large amount of time compared to the other three approaches.

Figure 5.5: Time of Computing Upper Bound
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In Figure 5.5, we plot the number of the instance along the x-axis, and the time of

different approaches excluding the branch-and-bound method along the y-axis. Here, all

times are computed in seconds. We observe that the computation of upper bounds using the

iterative lagrangian relaxation algorithm takes the smallest amount of time among the three

approaches.

5.2.7 Comparison between Integer Program and Branch-and-Bound

We observe that the integer program and the branch-and-bound technique both give

optimal solutions for the point cover problem as expected. We also notice that the compu-

tational time for solving an instance using the branch-and-bound technique is much more

than the amount of time needed by the IP. Following the same experimental setup described

in Section 5.2.1, we use the instances generated with probability 0.4 on different grid sizes

starting from 10x10x10 to 100x100x100. While trying to solve an instance on 70x70x70

grid where the total number of points is 137630, our proposed branch-and-bound algorithm

computes an optimal solution of value 4900, as the number of axis-parallel lines required

to cover those points. On the other hand, IP could not solve this. This inability of the

IP to solve an instance optimally repeats for larger instances than this. We can say that

the branch-and-bound using the Lagrangian relaxation method can solve some of the large

instances optimally which the IP cannot solve.
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5.3 Evaluation on Large Instances

In this section, we give a brief description of all the platforms used for evaluating lower

bounds and upper bounds by using the Lagrangian relaxation method on large instances.

5.3.1 Experimental Setup

We have used Octave 4.0.2 for conducting all the experiments presented in this section.

Octave 4.0.2 was installed on a computer with following specifications:

Processor Model Name: Intel Core i7-4770 CPU

Clock Speed: 3.40GHz

RAM Size: 8.00 GB

System Type: 64-bit Linux Operating System

Environment: CentOS release 6.7

GPU:NVIDIA Corporation GK107GL [Quadro K600]

Accelerators: OpenBLAS, CUDA 8.0 with NVBLAS

5.3.2 Data Set

For performing our simulations on large instances, we generated 25 instances with prob-

ability 0.4 on different 3-dimensional grids, varying in size from 10x10x10 to 120x120x120.

The minimum number of points in any instance is 400, and the maximum number of points

in an instance is 692047.

5.3.3 Ratio of UB and LB using Lagrangian Relaxation as a function of problem size

According to the discussion in Section 5.2.4, we know that among the four approaches

for computing the lower bound, the Lagrangian relaxation using the subgradient optimisa-

tion technique requires the least computational effort. Therefore, we used the Lagrangian

relaxation procedure described in Section 4.3.2 and Section 4.2.1 for computing both the

upper bound and lower bound respectively for all the instances of the large data set. The

experiments on these large instances were conducted using Octave 4.0.2. We also used one
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library named NVBLAS to accelerate GNU Octave [1]. NVBLAS can detect all compute-

capable GPUs on the system and use them to accelerate basic linear algebra routines. For

each instance, we compute the best performance ratio, the worst performance ratio, and the

average performance ratio where the performance ratio is defined as UB/LB. In Table 5.1,

we report these experimental results along with the range of the number of points for each

grid. We can see that the approximation ratio is less or equal to
3
2

in all the cases.

Table 5.1: Best, Worst and Average Case Ratio of Point Cover Problem

Grid Size Input Range Best Ratio Worst Ratio Average Ratio

10X10X10 385-440 1.0238 1.1145 1.0607

20X20X20 3103-3287 1.0029 1.2857 1.0794

30X30X30 10612-10943 1.0257 1.2511 1.1226

40X40X40 25472-25838 1.0201 1.2075 1.0964

50X50X50 49417-50359 1.0656 1.2988 1.1204

60X60X60 86009-86775 1.0544 1.1583 1.1001

70X70X70 136653-137901 1.0412 1.2663 1.0893

80X80X80 204271-205355 1.0541 1.1580 1.0907

90X90X90 290932-292520 1.0258 1.1228 1.0833

100X100X100 399038-400876 1.0329 1.1361 1.0805

110X110X110 531458-532836 1.0472 1.1178 1.08418

120X120X120 689632-692047 1.0313 1.0990 1.0663
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5.3.4 Computational Time of With and Without GPU Acceleration

In this section, we discuss the importance of using the GPU to speed by the subgradient

optimisation method. It is possible to access the computing power of GPU using the BLAS

library. So we decide to use NVBLAS along with OpenBLAS. NVBLAS can use all the

GPUs on the system to vectorize BLAS routines. So, several matrix calculations become

very fast. In the Lagrangian relaxation technique, most of the steps can be vectorized. As a

result, use of a GPU accelerates the subgradient optimisation method.

We use 25 instances each on 40x40x40, 50x50x50, 60x60x60, and 70x70x70 grids. The

probability of selecting a point is 0.4. We solve these instances with the same initializations,

number of iterations for generating solutions for each subproblem, and steps of algorithms

using NVBLAS library. We did not use any BLAS accelerator library in the second case.

Figure 5.6 shows the time required in both the cases to compute the lower bound and upper

bound using the Lagrangian relaxation method solved with the subgradient optimisation

method. All the times are repeated in seconds (See Table A.3 in Appendix A for details).

Figure 5.6: Time taken by using NVBLAS and Without using NVBLAS

In Figure 5.6, we plot the number of the instance sorted on the increasing order of the

number of points along the x-axis, and the time required to solve the point cover problem

with and without NVBLAS along the y-axis. It shows that use of NVBLAS reduces the
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computational cost. The gap increases with the increase in the input size.

Figure 5.7: Speedup of time by using NVBLAS

In Figure 5.7, we again plot the number of sorted instances along the x-axis and the

speedup of all of these instances along the y-axis. We define speedup as the ratio of the

time required to solve the point cover problem without using NVBLAS and the time taken

by using NVBLAS.

5.4 Approximation Ratio

We compute the approximation ratio for the iterative rounding algorithm 2, the iterative

lagrangian relaxation algorithm, and the branch-and-bound method using the Lagrangian

relaxation where the LP solution is used as a lower bound on the optimal solution. LP is

solved using the dual simplex method.
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Figure 5.8: Approximation Ratio using LP as Lower Bound

In Figure 5.8, the number of the instance is along the x-axis, and the three performance

ratios are along the y-axis. The graph indicates that the ratio in the three cases is no more

than
3
2

.

Next we use the solution of the lift-and-project relaxation as the lower bound to compute

the ratio. We added some extra inequalities to the LP-relaxation in lift-and-project which

tightens the formulation and thereby strengthens the lower bound. We graphically plot in

Figure 5.9 the performance ratio between the iterative rounding algorithm2, the iterative

lagrangian relaxation algorithm, and the branch-and-bound method where the solution of

the lift-and-project method is used as a lower bound on the optimal solution.
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Figure 5.9: Approximation Ratio using Lift-and-Project as Lower Bound

We have also seen that the Lagrangian relaxation can compute very good lower bounds

with a reasonable computational time. Figure 5.10 depicts that the subgradient optimi-

sation technique can compute lower bounds that are close to the optimal solution to the

LP-relaxation, and our experiments found that there is little or no negative impact on the

approximation ratio.

Figure 5.10: Approximation Ratio using Lagrangian Relaxation method as Lower Bound
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These findings for approximation ratio are also true for instances generated with proba-

bility p, where p is in any value between 0.1 and 1. We test this on instances on a 10x10x10

grid where each point is chosen with probability p. We repeat each experiment 5 times for

each value of p. Based on the experimental evaluation, we can say that the approximation

ratio for the point cover problem in 3 dimensional space is at most
3
2

.
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Chapter 6

Conclusion

6.1 Summary

Given a set of n points in 3D, the goal is to pick the fewest number of lines which

are parallel to the axes so that every point lies on one of the lines. This is referred to

as the point cover problem in 3D. We studied the approximation ratio for the point cover

problem empirically. We have proposed two Lagrangian based algorithms. The iterative

Lagrangian relaxation algorithm which gives an integral solution for a point cover instance,

has a good performance ratio in practice. The branch-and-bound method gives optimal

integral solution. We explored the lift-and-project relaxation which gives marginally better

lower bounds than the standard LP. We also computed the lower bound of the point cover

instances using the subgradient optimisation method to solve the Lagrangian relaxation

problem. The strength of the Lagrangian relaxation approach is that it requires minimum

computational time. To solve large instances, we use drop-in accelerators which result

in faster computation. Finally we noted that the approximation ratio of the point cover

problem in 3D appears to be
3
2

empirically.

The following tables represent the current state of the point cover problem.
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Complexity:

Table 6.1: d-dimensional Point Cover Problem

Dimension Complexity Reference

2 Polynomial [13]

3 or more NP-complete [13]

Approximation Ratio for Point Cover Problem in d dimensions:

Table 6.2: Approximation Ratio for d-dimensional Point Cover Problem

Author Approximation Ratio Reference

Hassin and Megiddo d [13]

Gaur and Bhattacharya d-1 [9]

Lovasz
d
2

[2]

Algorithms for 3D Point Cover Problem:

Table 6.3: Methods and Algorithms explored in this thesis

Method Purpose Based On Running Time

Lagrangian Relaxation Lower Bound Subgradient Optimisation approach O(n)

Lift-and-Project Lower Bound Lifted LP O(n2)

Hybrid Lower Bound Lift-Project and Lagrangian O(n2)

Iterative Rounding Upper Bound Primal-Dual O(n2)

Iterative Lagrangian Upper Bound Lagrangian O(n2)

Branch-and-Bound Upper Bound Lagrangian Exponential
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6.2 Future Research Work

In this thesis, we implemented the lift-and-project method for level-1 of the hierarchy

of relaxations. It is expected that solving the relaxations for larger levels will improve the

values of the lower bounds. This improvement may help to obtain better approximation

factor.

Rounding schemes based on the solution to the lift and project method need to be ex-

plored more.

We examined the approximation ratio experimentally. The theoretical question whether

the integrality gap is
3
2

for the point cover problem in 3D remains open.

The weighted version of the point cover problem need to be explored.
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Appendix A

Results of the Experimentation

A.1 Computational Time of the LP and the Lagrangian Relaxation
Method

Table A.1: Computational Time of LP and Lagrangian Relaxation Method

Instance No. No. of Points LP Lagrangian Ratio=Lag/LP
1 171 0.16266152 0.13087585 0.8045901083
2 173 0.18945079 0.13235212 0.6986094912
3 173 0.17557789 0.17349274 0.9881240742
4 173 0.19734759 0.15602836 0.7906271366
5 175 0.219025 0.16949678 0.7738695583
6 175 0.18565539 0.15899286 0.8563869867
7 176 0.14877607 0.16275638 1.0939688083
8 177 0.22814134 0.13256918 0.5810835511
9 178 0.30354368 0.13634082 0.4491637579

10 178 0.33564665 0.13651643 0.4067266275
11 178 0.15356293 0.16305206 1.0617931033
12 179 0.29293917 0.16723816 0.5708972276
13 179 0.15467814 0.18019854 1.1649903471
14 179 0.15412524 0.1354589 0.8788884935
15 179 0.1984628 0.15513363 0.7816761126
16 180 0.15618432 0.15535923 0.9947172034
17 180 0.18990644 0.15046042 0.7922870862
18 180 0.18006437 0.17551337 0.974725705
19 180 0.23036042 0.1439422 0.6248564749
20 181 0.15057237 0.16881697 1.1211683126
21 181 0.17282533 0.16488425 0.9540514113
22 181 0.16117671 0.13575843 0.8422955773
23 181 0.16932416 0.16388654 0.9678863312
24 182 0.20086568 0.13386 0.6664154872
25 182 0.22778285 0.14308507 0.6281643679

976 228 0.23729931 0.17330816 0.7303357098
977 228 0.19275557 0.17402258 0.9028147928
978 228 0.22996561 0.17830311 0.7753468443
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A.2. COMPUTATIONAL TIME OF THE LP AND THE LAGRANGIAN RELAXATION
METHOD WITH THE INCREASE OF THE NUMBER OF POINTS

Table A.1: Computational Time of LP and Lagrangian Relaxation Method

Instance No. No. of Points LP Lagrangian Ratio=Lag/LP
979 228 0.193417 0.18915271 0.9779528687
980 228 0.18944882 0.24398352 1.287859803
981 228 0.21168938 0.17957343 0.8482873822
982 229 0.3671016 0.20145636 0.5487754889
983 229 0.20757207 0.1995511 0.9613581442
984 230 0.26999122 0.16637035 0.6162065196
985 230 0.28523524 0.21347671 0.7484233365
986 230 0.20817155 0.16829825 0.8084594172
987 231 0.20141405 0.20967773 1.0410283195
988 231 0.18573401 0.21962448 1.1824677667
989 231 0.17634273 0.16489621 0.935089357
990 233 0.2454459 0.16879561 0.6877100412
991 233 0.18848828 0.18398385 0.9761023338
992 233 0.21294474 0.19302262 0.9064446485
993 234 0.26535969 0.19284359 0.7267252611
994 235 0.23859953 0.17814373 0.7466223006
995 235 0.27033732 0.16775218 0.6205291227
996 236 0.27994845 0.19883411 0.710252584
997 239 0.20230793 0.19106908 0.9444468143
998 239 0.19532611 0.2096068 1.0731120381
999 240 0.27126818 0.21933948 0.8085706182

1000 240 0.24292855 0.19010042 0.7825363466

A.2 Computational Time of the LP and the Lagrangian Relaxation
Method with the increase of the number of points

Table A.2: Computational Time of LP and Lagrangian Relaxation Method with the increase
of points

Instance No. No. of Points Lagrangian LP Ratio=Lag/LP
1 386 0.33785115 0.34849009 0.969471327
2 397 0.36587883 0.48452485 0.755129133
3 399 0.44818778 0.43617641 1.027537872
4 401 0.45655998 0.38862784 1.174799983
5 419 0.4869202 1.53173928 0.317887128
6 662 0.54802392 0.65892585 0.831692853
7 696 0.61472334 0.5987096 1.026747091
8 699 0.63203603 0.66105415 0.956103263
9 701 0.56047369 0.63562607 0.881766366

10 730 0.58237113 0.67877617 0.857972268
11 1307 1.21790404 1.32374437 0.920044736
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A.2. COMPUTATIONAL TIME OF THE LP AND THE LAGRANGIAN RELAXATION
METHOD WITH THE INCREASE OF THE NUMBER OF POINTS

Table A.2: Computational Time of LP and Lagrangian Relaxation Method with the increase
of points

Instance No. No. of Points Lagrangian LP Ratio=Lag/LP
12 1330 1.2789958 1.38746862 0.921819623
13 1333 1.19296563 1.39775932 0.853484297
14 1372 1.2721913 1.3840777 0.919161764
15 1408 1.24658974 1.42124241 0.877112681
16 2284 2.1818524 2.68708642 0.811977011
17 2305 2.21626926 2.68514612 0.82538125
18 2313 2.22260801 2.78444602 0.798222696
19 2372 2.26573804 2.66945028 0.848765777
20 2390 2.28516236 2.75428277 0.829676018
21 3173 3.40820043 4.06832738 0.837739963
22 3188 3.34946899 4.34104039 0.771582084
23 3197 3.55552617 4.3402653 0.819195585
24 3201 3.34298624 4.02689794 0.830164134
25 3247 3.68927966 4.04943802 0.911059668
26 4273 4.89308591 5.94179327 0.823503223
27 4288 4.92618502 6.13081677 0.803512029
28 4304 4.70542031 6.08026098 0.773884596
29 4308 4.88691892 6.02299428 0.811376982
30 4314 4.85709366 6.42787386 0.755629897
31 6159 7.62903308 10.3235803 0.738991015
32 6205 7.54185223 10.47762721 0.71980536
33 6214 7.62991627 10.40719033 0.733138919
34 6214 7.71385361 10.36604889 0.74414598
35 6272 7.65722612 10.23415493 0.748203068
36 8745 12.20573628 16.92797021 0.721039565
37 8761 12.1216682 17.8508989 0.679050857
38 8769 11.98342267 17.63201595 0.679639963
39 8781 12.01163793 17.07492977 0.703466315
40 8801 12.15930336 18.46267997 0.65858821
41 10697 15.82711457 26.3240157 0.601242407
42 10802 15.89251976 27.84254123 0.5707999
43 10863 15.85024558 23.41006809 0.677069606
44 10893 15.79860577 24.04419311 0.657065334
45 10903 15.60908149 23.94577042 0.651851296
46 12993 20.28454365 33.48768504 0.605731439
47 13062 20.51137323 34.32085209 0.597635897
48 13087 20.37272605 32.9641855 0.618026071
49 13118 20.48937879 33.09644051 0.619081039
50 13185 20.69314017 34.03552993 0.607986425
51 14307 23.39270541 37.95632733 0.616305819
52 14319 23.95968278 40.84299628 0.58662892
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A.2. COMPUTATIONAL TIME OF THE LP AND THE LAGRANGIAN RELAXATION
METHOD WITH THE INCREASE OF THE NUMBER OF POINTS

Table A.2: Computational Time of LP and Lagrangian Relaxation Method with the increase
of points

Instance No. No. of Points Lagrangian LP Ratio=Lag/LP
53 14329 23.59556394 39.13663082 0.60290228
54 14382 24.02108945 39.55267149 0.607319014
55 14431 23.81850566 39.0258058 0.610327069
56 15622 26.50307367 42.7973987 0.619268331
57 15760 26.64119998 44.61708323 0.597107611
58 15770 26.62669498 42.80439034 0.622055232
59 15778 26.73293311 44.62121079 0.599108196
60 15846 26.65286996 44.5885881 0.597750929
61 17024 30.02956462 50.12350168 0.599111467
62 17054 29.87829762 53.62160133 0.557206366
63 17179 30.25664587 58.05551698 0.521167452
64 17236 30.2630611 50.75369013 0.596273119
65 17266 30.18518607 53.89892004 0.560033226
66 18499 33.67063855 60.29505654 0.558431163
67 18612 33.88561442 58.5517242 0.578729574
68 18620 33.89835731 55.67496865 0.608861722
69 18748 34.21632609 59.40765223 0.575958228
70 18821 34.59865747 59.8214035 0.57836586
71 20020 37.9010492 63.01133627 0.601495722
72 20183 38.34088529 67.87788657 0.5648509
73 20223 38.24127519 72.20160146 0.529645803
74 20230 38.36561477 67.97431426 0.564413414
75 20284 38.43031066 68.45081985 0.561429516
76 21737 42.93217383 73.96099839 0.580470447
77 21831 42.58458146 78.16176836 0.544826228
78 21933 43.26736727 75.27733879 0.574772806
79 21935 43.04828777 74.55681742 0.57738902
80 21977 43.14683479 80.52764676 0.535801511
81 23534 48.5892974 86.82735129 0.559608196
82 23700 49.97738643 89.35590175 0.559307057
83 23720 50.15979901 92.92978488 0.539760197
84 23787 49.22913392 89.73833782 0.548585311
85 23908 49.98813903 91.70363383 0.545105324
86 25463 59.22364418 105.4835207 0.561449255
87 25603 57.81003775 103.5810209 0.558114192
88 25679 58.58381535 117.0920523 0.500322731
89 25695 58.03815473 102.4704988 0.566388916
90 25814 58.52383368 102.8077501 0.569255077
91 27473 62.85989792 116.5279916 0.539440327
92 27620 63.28233459 115.3572699 0.548576909
93 27636 63.29936356 116.6784544 0.542511159
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A.3. COMPUTATIONAL TIME OF WITH AND WITHOUT GPU ACCELERATION

Table A.2: Computational Time of LP and Lagrangian Relaxation Method with the increase
of points

Instance No. No. of Points Lagrangian LP Ratio=Lag/LP
94 27800 63.67780197 114.6823171 0.555253884
95 27808 63.55710925 115.8313413 0.548703905
96 29551 70.39958297 131.0772785 0.537084564
97 29660 71.59167096 131.1743301 0.545775007
98 29681 71.14310546 129.7992471 0.548101064
99 29874 71.17153735 137.4333704 0.517862126

100 29925 71.4143264 134.6768748 0.530264209

A.3 Computational Time of With and Without GPU Acceleration

Table A.3: Computational Time of With and Without GPU Acceleration

Instance No. No. of Points Time using GPU Time without GPU
1 25461 318.04425597 330.991467
2 25472 314.314816 324.092417
3 25512 300.13999796 331.95254803
4 25528 309.38550496 312.34453297
5 25546 314.49518991 319.19082499
6 25548 307.60876989 315.36793709
7 25562 168.66989493 176.81585813
8 25566 297.97137594 312.61812711
9 25579 302.40286589 323.84906697
10 25585 312.22351003 320.37393999
11 25591 309.90674806 326.58080602
12 25594 319.43344188 321.15510082
13 25599 301.03564501 319.01747394
14 25609 293.16456294 309.97395897
15 25610 289.21303797 301.48260117
16 25619 318.25178909 323.83185911
17 25624 318.92374086 326.16241002
18 25642 314.53492022 321.60654998
19 25654 305.73132205 312.99264789
20 25659 169.49292111 172.28679681
21 25672 313.45464206 328.70869088
22 25706 318.65650606 325.10213614
23 25743 315.19987702 321.361727
24 25773 321.44861412 348.25937891
25 25838 171.15226507 179.67805219
26 49417 899.76188087 944.642205
27 49717 937.169168 1012.05268502
28 49740 926.48536897 970.76637602
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A.3. COMPUTATIONAL TIME OF WITH AND WITHOUT GPU ACCELERATION

Table A.3: Computational Time of With and Without GPU Acceleration

Instance No. No. of Points Time using GPU Time without GPU
29 49754 923.63528991 956.14299893
30 49872 916.30364299 972.34356093
31 49875 915.61665392 1002.07415414
32 49926 891.53042006 906.86642504
33 49953 935.60552001 947.94741607
34 49967 850.32315207 883.24571681
35 49971 957.57573104 992.07419491
36 49999 998.34050798 1029.80877209
37 50022 914.42648697 915.76118302
38 50069 828.35769081 832.47390485
39 50070 912.23548293 948.79875302
40 50071 928.36034989 951.8848722
41 50085 847.68281198 912.41999316
42 50105 953.19365692 1006.62699699
43 50111 977.56206298 1024.366781
44 50113 918.35353088 921.55054903
45 50149 996.38089609 1039.1573329
46 50184 945.38641906 1026.11563706
47 50218 962.171839 969.58551502
48 50229 973.42926598 1037.68111014
49 50241 940.93364692 986.68950701
50 50359 915.2476449 1002.25708008
51 86009 2503.54798007 2729.35510588
52 86032 2478.11793685 2589.2290771
53 86112 2399.87756395 2527.68258095
54 86203 2502.37859392 2769.5541532
55 86214 2622.03546596 2872.83082819
56 86221 2504.6092031 2779.54746103
57 86231 2448.01519108 2585.71871591
58 86263 2481.92986917 2718.35880208
59 86359 2463.49725199 2614.92249918
60 86406 2572.06392789 2784.81406403
61 86409 2555.0643189 2656.06323695
62 86412 2453.451401 2617.01851797
63 86432 2480.48099804 2729.13641119
64 86448 2496.15551591 2654.80474806
65 86452 2610.06334305 2777.36864495
66 86489 2476.51195383 2700.37539887
67 86495 2436.04026103 2673.46112299
68 86588 2525.09114504 2672.61701393
69 86594 2482.98562908 2710.029145
70 86620 2571.21352696 2762.24724007
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A.3. COMPUTATIONAL TIME OF WITH AND WITHOUT GPU ACCELERATION

Table A.3: Computational Time of With and Without GPU Acceleration

Instance No. No. of Points Time using GPU Time without GPU
71 86620 2482.57678294 2741.89629292
72 86642 2572.98255801 2735.92816496
73 86649 2594.49782491 2862.74506807
74 86775 2546.45425105 2674.06930113
75 87007 2296.59162211 2419.20680904
76 136653 5902.26078892 6418.43068886
77 136862 6305.93570709 6816.59370708
78 136876 6090.13843513 6125.56376815
79 136971 6310.34727216 6732.56026101
80 137007 6001.10991001 6023.22960806
81 137037 6102.83052993 6297.74626994
82 137050 5891.550349 5900.66991091
83 137065 6015.3551662 6025.57502198
84 137081 6172.67253613 6743.78702903
85 137146 6136.72223806 6736.96398187
86 137220 6172.44345784 7014.98454094
87 137237 6129.73195887 6134.55212092
88 137268 5763.63133788 6073.32990718
89 137285 6075.69588804 6642.50709891
90 137290 6278.99620414 6605.55852795
91 137296 6116.40306902 6709.67184997
92 137297 6190.68700194 6919.01981187
93 137308 6197.86958385 6868.31784606
94 137351 6275.41291499 6954.7600131
95 137416 6324.27853703 6864.3508749
96 137526 5043.57970595 5065.14795899
97 137590 6192.6621089 6750.16857195
98 137600 6153.42388296 6650.48366308
99 137630 6056.20077395 6443.56807709

100 137901 6015.29155087 6839.995754
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