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Abstract

Machine learning techniques have been widely used to understand the use of various so-

ciolinguistic characteristics. These techniques can also be applied to analyze artificial lan-

guages. This research focuses on the influence of socio-characteristics, especially region

and gender, on an artificial language (programming language). Software complexity fea-

tures, 103 programming features, and their correlations (using pearson correlation) are also

explored in this work. Machine learning and statistical techniques are used to determine

whether any dissimilarities or similarities exist in the use of C++ programming language.

We show that machine learning models can predict the region of programmers with 78.36%

accuracy and the gender of programmers with 62.63% accuracy. We hypothesize that fea-

ture frequency difference may be a reason for lower accuracy in the gender-based program

classification. We also demonstrate that some features such as for-loops and if-else condi-

tions are closely correlated to the complexity of a computer program.
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Chapter 1

Introduction

Language is a means of communication that we use to share our ideas and thoughts. Lan-

guage can be categorized into two broad categories (natural and artificial). People use

natural language, whereas artificial language refers to the language of machines. The usage

of natural language among humans depends on various socio-characteristics, such as social

status, economic status, age, gender, and region [1]. As an example of this, one group of

researchers found that male authors favored religious terminology rooted within the church,

whereas women authors favored secular language to discuss spirituality [2]. Similarly, the

usage of artificial language may also depend on an individual’s sociolinguistic characteris-

tics.

A programming language is a set of words and rules that are used to create instructions for

a machine to carry out particular tasks. Although there are many rules to follow when writ-

ing a computer program, programmers can write the program in slightly different ways, still

following these rules. Here, writing the program in slightly different ways means solving

the same problem but using one’s own style or approach. We hypothesize that programmers

often prioritize certain types of iteration (for loop, while loop, do-while loop) and selection

(if-else, switch) statements over other types. For example, some programmers may prefer

to use for loops rather than while loops. Similarly, programmers may use if-else selection

statements more often than switch selection statements, or vice versa. As well, there are al-

ternative ways of writing comparison and increment-decrement statements. Thus, it is very

likely that programmers may write the same functionality differently. Since programmers

1



1.1. CONTRIBUTIONS

can be from different ethnicities, ages, and genders, we may find that a certain group of

programmers writes programs with similar characteristics.

In this work, we explore computer program complexity features and 103 programming fea-

tures. A distinctive characteristic of something, in this case a program, can be termed a

feature. By computer program features, we mean different program characteristics such as

keywords, operators, program complexity, and the length of the program. We try to un-

derstand how programming features and complexity features are used within a particular

group (male/female or South Asian/North American) of programmers. We then explore

the relationship between programming features and complexity features. Lastly, we try to

determine whether machine learning models can classify computer programs. If they can,

will it be possible to identify male/female written programs or the programs of a particular

region using machine learning models? What accuracy is it possible to achieve? We then

select the most effective features and perform computer program classification again. Here

we will try to determine whether the performance of machine learning models changes

depending on the features.

1.1 Contributions

In this thesis the complexity features, programming features, and classification of com-

puter programs were studied. This study offers the following contributions:

• We explored computer program complexity and examined its correlation with 103

programming features.

• We showed which features may be more likely to produce bugs in computer programs

and which alternative features may reduce these expected bugs.

• The features most effective in classifying computer programs by the programmer’s

region and gender were identified in this work.

• Some features that make computer programs easier to understand and write were also

2



1.2. ORGANIZATION OF THESIS

identified. These features may help with teaching and writing computer programs,

especially for those learning programming for the first time.

• This programming and complexity feature analysis may help to identify portions of

a program that need improvement.

• This work may help project managers monitor and improve program readability and

complexity.

• By identifying complex code, our work may help software engineers write more read-

able programs.

• This work may have the potential to improve programming learning practices at a

personal and professional level.

• We showed that machine learning classifiers can categorize computer programs based

on a specific class. A region-based dataset and a gender-based dataset were used in

our work. We found that the performance of the machine learning classifiers was

much higher on region-based data than on gender-based data. This suggests that

gender-based data may have more variation than region-based data, which may in

term explain the reduced performance of the machine learning classifiers.

1.2 Organization of Thesis

This thesis consists of the following chapters: Chapter 2 provides the background and

related work necessary for understanding this thesis. Chapter 3 describes the implementa-

tion details and experiments of our research work. Chapter 4 provides analysis on features

that were used in this work. Finally, Chapter 5 describes the conclusion and possible future

directions of this work.

3



Chapter 2

Background and Related Work

2.1 Machine Learning

Machine learning is a subset of artificial intelligence developed from two different

fields: computational learning theory and pattern recognition. In 1959, Samuel stated that

“Machine learning is the field of study that gives computers the ability to learn without

being explicitly programmed” [3]. In 1997, Mitchell described this process: “A computer

program is said to learn from experience E with respect to some task T and some perfor-

mance measure P, if its performance on T, as measured by P, improves with experience

E” [4]. In other words, a computer program can learn from experience if its performance in

completing a task increases through some experiences.

Machine learning plays an important role in the investigation of many types of data,

including video/image [5] and text classification [6, 7]. Machine learning can give insights

about large volumes of data and difficult problems. There are many types of machine

learning techniques [3]. Based on whether these techniques require supervision or not,

machine learning techniques can be classified into two main types: supervised learning

algorithms and unsupervised learning algorithms. In this work, only supervised learning

algorithms are used.

4



2.2. WEKA

2.2 Weka

WEKA (Waikato Environment for Knowledge Analysis) is an open-source software

system developed to apply machine learning techniques in various real-world problems [8].

WEKA was used in our work because it supports various machine learning activities, in-

cluding data processing, data selection, data filtering, and machine learning model building.

WEKA also supports classification, clustering, association rules mining, and attribute selec-

tion [9]. WEKA requires the attribute relation file format (ARFF) to perform experiments.

The ARFF file represents a matrix with rows and columns, whereas columns represent at-

tributes/features and rows represent instances [10]. An ARFF file consists of three tags:

@relation, @attribute, and @data. The first tag provides information about the relation that

is in @relation <relation-name> format. The second tag refers to the attribute and can be

represented as @attribute <attribute-name> <data-type> format. The data is separated

by commas after the @data tag. A sample ARFF file is given in Figure 2.1. “@relation

sociolinguistics” represents the relation, “@attribute char numeric” represents an attribute,

and “0.0028, 0.0027, 0.0026, 0.0025, female” represents an instance of the sample ARFF

file.

Figure 2.1: Sample ARFF file.

In our work, WEKA was mainly used for classification and attribute selection purposes.

5



2.2. WEKA

A brief description of the attribute selection and classification algorithms is given in the

following subsections.

2.2.1 Supervised Learning

In supervised learning, the training data provided to the system contains the desired

results. Supervised learning models are constructed based on known data [2]. Data may be

identified with its desired class label. For example, if based on the season and the amount

of wind, the system is asked whether it will rain or not on a specific day, the known answer

should be provided while training the system. Learning from the data already known, the

system may be able to predict whether there will be rain on a given day.

The prediction labels can be either categorical values or numerical values. Based on the

prediction labels, supervised learning techniques can be divided into supervised classifica-

tion techniques and supervised regression techniques. If the prediction labels are numerical

values, the supervised technique is known as a supervised regression technique, whereas

categorical values are used in supervised classification techniques. Classification is a com-

mon supervised learning task. A typical example of classification is identifying “good and

“bad” email, also known as ham/spam filtering. Another typical example of a supervised

classification problem is predicting the weather of a given day based on temperature, wind

condition, and humidity. In both examples, the task of a supervised classification model

is to output a category. Regression is another common supervised learning task for deter-

mining the numerical value of a product, for example, the price of a house or the price of

an air ticket. This thesis uses only supervised classification. A brief description of several

supervised classification techniques is given in Section 2.2.2.

2.2.2 Classification Algorithms

WEKA offers various types of classifiers. Algorithms that implement classification are

known as classifiers. Meta, rule, tree, function, and Bayesian classifiers were used in our

work. These are described briefly in the following subsections.

6



2.2. WEKA

Meta Classifiers

Meta classifiers use other classification algorithms to improve their performance [11]. In

Figure 2.2, assume a meta classifier uses four classification algorithms (c1, c2, c3, c4) to

make a prediction. For a given input, the meta classifier should predict class true or false.

The meta classifier will use all four classification algorithms to make the prediction. The

example in Figure 2.2 assumes true, true, false, and true are the predicted classes from the

four classification algorithms. The meta classifier will perform majority voting and select

true as the predicted class. WEKA offers several meta classifiers. The bagging classifier

was used in our work to build one of the classification models. Bagging classifier samples

the training data and creates x classifications models. Usually, the value of x is increased

until the model’s performance stabilizes. The bagging classifier uses the predictions from

each of those classifications models to develop a final prediction [11].

Figure 2.2: Example of a meta classifier.

Rule Based Classifiers

Different rules-based classifiers use different methods to generate rules. For example,

ZeroR uses average values (numeric) or the majority class (nominal) from the test data to

classify new data [11] while Decision Table uses a set of if-then rules [12]. WEKA offers

several rule-based classifiers. In our work, the Decision Table classifier was used to build

one of the classification models. A sample dataset is given in Table 2.1. In this example a

7



2.2. WEKA

football player decides to play or not play based on the weather outlook and wind condition.

Table 2.1: Sample data for the Decision Table example.

Outlook Windy Class

sunny true play

overcast true play

rain true don’t play

sunny false play

overcast false don’t play

rain false don’t play

If a Decision Table classifier is trained using the dataset given in Table 2.1, the classifier

will create a set of if-then rules as follows:

if(outlook = overcast and windy = true) then class = play

if(outlook = overcast and windy = false) then class = don’t play

if(outlook = sunny) then class = play

if(outlook = rain) then class = don’t play

For a new instance, the Decision Table model will classify the new instance using the

rules created from the training data. For example, if a new instance (outlook = overcast,

windy = false) is given to the model, the Decision Table model will match the rule in the

set of if-then rules to classify it as don’t play. If new values or combinations of new values

are given, the decision table will select a default class (play or don’t play) [13].

8



2.2. WEKA

Tree Classifiers

All classifiers in the tree classifier category are based on tree-like structures. Trees are

constructed based on the feature and feature values. A node represents the test on a feature,

branches represent the outcome of a test, and leaf nodes denote class labels [11]. WEKA

offers several tree classifiers. The Random Forest classifier was used in our work to build

one of the classification models. Multiple decision trees are created and used together

to build the Random Forest classifier [11]. Each decision tree predicts a class and the

most predicted class becomes the prediction of the Random Forest classifier. In Figure

2.2, assume a Random Forest classifier uses three decision trees (Tree-1, Tree-2, Tree-3)

to make a prediction. For a given input, each decision tree predicts either class m or class

n. Finally, the most predicted class (class m) becomes the prediction of the Random Forest

classifier.

Figure 2.3: Example of a tree classifier.

Bayesian Classifiers

Bayesian classifiers are based on Bayes theorem [9], and Bayesian classifiers build the

model by identifying the relationships between features [14]. Bayesian classifiers construct

a probabilistic model of the features and use the model to classify new data [14]. Based

on the prior knowledge of an event, Bayes Network calculates the probability of that event

[11]. WEKA offers several Bayesian classifiers. The Bayes Net classifier was used in

our work to build one of the classification models. According to the Bayes theorem, the

9



2.2. WEKA

conditional probability of an event occurs (a) given that another event (b) occurs is p(a|b) =

(p(b|a) p(a)) / p(b), where p(b|a) refers to the probability of an event occurs (b) given that

another event (a) occurs and p(a) and p(b) are the probability of events a and b. Based on

the Bayes theorem, for each feature condition the probability is calculated and the feature

condition with the highest probability is selected for the classification [11]. For example,

two events “test result” and “cancer” can be represented as a simple Bayesian network.

The goal is to determine the probability of a person having cancer when the test result is

positive. According to the Bayes theorem, it can be written : P(cancer|positive result) =
P(positive result|cancer)∗P(cancer)

P(positive result)

Let us assume:

• 1% of people have cancer. Therefore, the probability of having cancer is P(cancer) =

.01,

• the probability of not having cancer is P(not cancer) = .99,

• if someone does have cancer, the probability of the test result being positive is

P(positive result|cancer) = 0.9,

• if someone does have cancer, the probability of the test result being negative is

P(negative result|cancer) = 0.1,

• if someone does not have cancer, the probability of the test result being positive is

P(positive result|not cancer) = 0.1, and

• if someone does not have cancer, the probability of the test result being negative is

P(negative result|not cancer) = 0.9.

The probability of a person having cancer when the test result is positive is

P(cancer|positiveresult) = P(positive result|cancer)∗P(cancer)
P(positive result) = (.90)∗(.01)

(.01)(.90)+(.99)(.10) = .083= 8.3%.

If someone receives a positive test result, there is an 8.3% chance of actually having cancer.

Therefore, there is always hope.

10



2.2. WEKA

Function Based Classifiers Function based classifiers use mathematical equations to pre-

dict the class [11]. These classifiers create a relationship between the dependent variable

and the independent variable [8]. For example, Logistic Regression takes input values (a)

and returns the output as f(a) (either 1 or 0) [8]. According to [8] [3], the probability of

logistic regression is calculated using Equation 2.1:

P =
1

1+ e−w0+−w1a1
(2.1)

• where w0 and w1 are constants which gives the best fit line for the test data [8], and

• f(a) is 1 when p >= 0.5, and f(a) is 0 if p < 0.5.

For multiple features, the probability of logistic regression is calculated using Equation

2.2

P =
1

1+ e−(w0+w1a1+w2a2+....+wnan)
(2.2)

• where w0, w1, w2, and wn are constants which gives the best fit line for the test data,

and

• a1, a2, and an are the feature values for an individual example.

Let us assume that a model has to predict whether a person is male or female based

on their height. Given w0 is -80, w1 is 0.5, and using Equation 2.1, the probability of

male given height (145cm): P(male|height = 145cm) = 1
1+e80+−0.5∗145 = 0.00055277863.

Therefore, there is near zero chance that the person is a male.

2.2.3 Attribute Selection

A dataset consists of many features. Some of them are useful for machine learning

classification, while some are not. To improve the performance of machine learning mod-

els, irrelevant features should be removed and a dataset should be created using only the

11



2.3. DATA

relevant features [15]. Removing irrelevant features and creating a dataset using only the

relevant features is called attribute selection. WEKA supports various types of attribute

selection mechanisms. An attribute selection mechanism consists of two steps: attribute

evaluator selection and search method selection [16]. An attribute evaluator takes a subset

of features and returns a numerical value that guides the search method, whereas a search

method traverses the search space to select a good subset of features [16].

Correlation-based Feature Selection (CFS) Subset Evaluator and Greedy Stepwise search

method were used in our work. CFS Subset Evaluator uses the Greedy Stepwise search

method to select a subset of features that work well together (a subset of features highly cor-

related with the class but have low intercorrelation) [16]. Greedy Stepwise search method

traverses from the full attribute set to an empty attribute set (or vice versa) [16].

If there are three features (a,b,c), there can be a total of 23 feature subsets:

{},

{a}, {b}, {c}

{a,b}, {a,c}, {b,c}

{a,b,c}

Searching through all the subsets can be time-consuming. Therefore, the Greedy Step-

wise search method starts from either an empty or full set and stops traversing if the addi-

tion/deletion of a feature to a subset decreases the predictive ability [17]. For example, if the

addition of a feature b to the subset a reduces the predictive ability, the search method will

not process subset a,b and its subsequent feature subsets [17]. As a whole, the CFS Subset

Evaluator takes each attribute’s predictive ability, searches through the feature subsets us-

ing the Greedy Stepwise search method, and selects a subset of attributes whose combined

predictive ability is higher than any other subset.
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2.3 Data

Data for machine learning can come from multiple sources and forms: for instance,

streams of binary data transmitted from satellites, information recorded automatically by

equipment such as fault logging devices, business information in SQL or other standard

database formats, or computer files created by human operators [16]. Data is the core of

every machine learning system or algorithm. The machine learning algorithm identifies

patterns or creates models based on the data it is provided. In machine learning, there is a

universe of objects that are of interest [18]. The universe of objects can be anything; for

instance, Wikipedia articles, images of faces, or computer programs in GitHub. There is

a requirement to process large amounts of data in machine learning. Usually, the machine

learning system is given a subset of data, also known as training data. The system extracts

information and patterns from the training data and performs classification on the test data.

2.3.1 Data Selection

Deciding the right data to use is the first step to solve any machine learning problem.

The dataset is selected largely depending on the problem being addressed. Different tech-

niques require different data types. Just as text or speech documents are needed to analyze

natural languages, computer programs are also required for the analysis of programming

languages. Open source computer programs were used for our research work. In this work,

one of our goals was to analyze the programming language. Two of the main parts of

our work were region-based computer program analysis and gender-based computer pro-

gram analysis. To perform region-based computer program analysis, we needed to collect

data from multiple regions. Programmers from all over the world upload their projects in

open source platforms such as GitHub. Therefore, we collected our data from GitHub. As

we wanted to analyze C++programs based on region and gender, C++ programs, authors’

gender, and the authors’ region were also collected. To perform feature analysis, we then

needed to count features from the computer programs. All the programs were collected in
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a text format, which helped us to perform feature analysis easily.

2.3.2 Processing Data

Sometimes it may not be possible to work with raw data. Data that is not processed

for use is called raw data and is collected directly from the source. Raw data can be noisy

and incomplete as it can contain redundant and ambiguous information. Therefore, the data

might need to be processed before applying machine learning approaches. For example,

C++ program files were collected from GitHub as raw data in our work. WEKA requires

ARFF data format to perform machine learning experiments; therefore, part of our work

included modifying the data format.

If there is any incomplete data, cleaning may be required. Removing incomplete data

and ambiguous information is known as data cleaning. For example, the programmers’

gender is required to perform gender-based program analysis. However, it is not possible to

determine the gender from some programmers’ names, so we had to clean or remove those

programmers’ data from our dataset. In addition, program files in our dataset had introduc-

tory comments that had to be removed. Selecting a subset of data from the entire dataset is

known as sampling. Sampling is required when there is more data than required for analy-

sis. For example, computer programs from GitHub were collected in our work. However,

there were fewer female written programs than male written programs. Therefore, we had

to sample and balance our data by taking the same number of programs from both male and

female written programs.

2.3.3 Transforming Data

Data transformation means transforming or consolidating data so that the resulting min-

ing process may be more efficient and the patterns found may be easier to understand [16].

Data transformation should be performed according to the requirement of the learning al-

gorithm. A good example of data transformation is the Term Frequency-Inverse Docu-

ment Frequency (TF-IDF) technique which is used to create the numerical representation
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of textual documents [19, 20]. [19] performed text categorization by transforming textual

documents into a numerical representation using the TF-IDF approach. [20] examined the

relevance of words to text documents by transforming text documents into a numerical rep-

resentation using the TF-IDF approach. In this thesis TF-IDF was implemented to convert

computer programs into their numerical representation to apply supervised learning tech-

niques.

2.4 Model Evaluation Technique

Machine learning models must be evaluated to determine which are most effective at

the classification task. The different machine learning algorithms available in WEKA may

perform differently based on the provided data. In this work, a technique using separate

test and training sets was used to evaluate machine learning models. In the separate test and

training sets evaluation technique, the total dataset is divided into two subsets: a test set and

a training set [18]. Machine learning models are trained using the training set, and then the

models are evaluated using the test set. In the WEKA toolset, this technique is referred to

as the percentage-split technique.

2.4.1 Evaluation Metrics

The performance or quality of machine learning models is determined using various

evaluation metrics such as precision, recall, f-measure, and accuracy [16]. These evaluation

metrics are determined from a confusion matrix. The confusion matrix is a nxn (n = distinct

number of classes) matrix based on the FN (false negative), FP (false positive), TN (true

negative), and TP (true positive) results from a machine learning experiment [18]. P refers

to the positive class, and N refers to the negative class.

• False negative (FN) is the number of positive class instances that are classified as

negative class instances,
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• false positive (FP) is the number of negative class instances that are classified as

positive class instances,

• true negative (TN) is the number of negative class instances that are classified as

negative class instances,

• true positive (TP) is the number of positive class instances that are classified as posi-

tive class instances,

• P is the number of positive class instances, and

• N is the number of negative class instances.

An example confusion matrix is given in Figure 2.4. North American programs refer

to NA, and South Asian programs refer to SA. Therefore TP, FP, TN, FN, P, and N can be

written as TSA, FSA, TNA, FNA, SA, and NA. The value of TSA, FSA, TNA, FNA, SA,

and NA are as follows:

Figure 2.4: Example confusion matrix showing a machine learning classification result.

• TSA (true South Asian programs): The model correctly classified 1574 computer

programs as South Asian programs.

• FSA (false South Asian programs): The model incorrectly classified 351 computer

programs as South Asian programs.

• TNA (true North American programs): The model correctly classified 1804 computer

programs as North American programs.
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• FNA (false North American programs): The model incorrectly classified 582 com-

puter programs as North American programs.

• SA (total South Asian programs): The model classified a total of 2156 South Asian

programs.

• NA (total North American programs): The model classified a total of 2155 North

American programs.

Using the value of TSA, FSA, TNA, FNA, SA, and NA, different evaluation metrics

can be calculated as follows:

• Accuracy: Accuracy is the ratio of the accurately labeled programs to the total pro-

grams. It can be calculated using the formula given in Equation 2.3.

Accuracy =
T SA+T NA

SA+NA
(2.3)

In this example, accuracy =
T SA+T NA

SA+NA
=

1574+1804
2156+2155

= .78358 = 78.358%

Therefore, the model is able to classify 78.358 out of 100 computer programs accu-

rately.

• Precision: Precision is the ratio of the correctly predicted South Asian programs

(TSA) to the total predicted South Asian programs (TSA+FSA). It can be calculated

using the formula given in Equation 2.4.

Precision =
T SA

T SA+FSA
(2.4)

In this example, precision =
T SA

T SA+FSA
=

1574
1574+351

= .81766 = 81.766%

Therefore, when the model classified a South Asian program, it is correct 81.766%

of the time.
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• Recall: Recall is the ratio of the correctly predicted South Asian programs (TSA)

to the total actual South Asian programs (TSA+FNA). It can be calculated using the

formula given in Equation 2.5.

Recall =
T SA

T SA+FNA
(2.5)

In this example, recall =
T SA

T SA+FNA
=

1574
1574+582

= .73006 = 73.006%

Therefore, the model is able to classify 73.006 out of 100 South Asian programs

accurately.

• F-measure: F-measure is the weighted average of recall and precision. It can be

calculated using the formula given in Equation 2.6.

F−measure =
2∗Recall ∗Precision

Recall +Precision
=

2∗T SA
2∗T SA+FSA+FNA

(2.6)

In this example, f-measure =
2∗1574

2∗1574+351+582
= .77138 = 77.138%

Therefore, the weighted average of recall and precision is 77.138%, which is referred

to as the f-measure.
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2.5 Related Work

Sociolinguistics is an area of study which investigates the relationships between lan-

guage and society with the goal being a better understanding of the structure of language

and how social factors can be better perceived through the study of language [21]. The use

of natural language among humans depends on factors such as social status, economic sta-

tus, gender, age, and region [1, 22]. These factors may affect the users of the programming

language or artificial language. For example, programmers in a particular region may learn

programming in a certain way that may affect their program writing style.

Many researchers have investigated the sociolinguistic factors of written documents in

different natural languages [23, 24]. [23] examined gender differences in English literature.

The authors explored differences in female and male writing in a subset of the British

National Corpus containing a total of 604 documents. The documents were of different

genres, such as fiction, nonfiction, and world affairs. A set of over 1000 features was

used. Features included function words, parts of speech, and commonly ordered triples of

parts of speech. An exponentiated gradient algorithm was used to select features that were

important to categorize a document. Significant differences in the use of noun modifiers and

pronouns were found in their work. Syntactic and lexical differences based on the authors’

gender were also found. In addition, [23] found that males use comparatively more noun

(car, country, app) specifiers, whereas females use more pronoun (their, her, myself, she,

you, I) specifiers.

[25, 9] focused on determining the impact of sociolinguistic characteristics of the author

on computer programs. Their goal was to determine whether computer programs could be

classified according to an author’s gender and in [9], also by an author’s region. Students

assignments were used as datasets. [25] used a set of 50 features to classify 100 C++ pro-

grams, whereas [9] used a set of 16 features to classify 160 computer programs. Supervised

learning techniques were used to categorize the computer programs. Both of the authors

examined features using various attribute selection algorithms. In addition, [25, 9] showed
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the relationship between features.

[25] used 50 features in their work. Computer programs were first transformed into a

numerical representation using the Term Frequency-Inverse Document Frequency (TF-IDF)

technique [25]. Machine learning models such as Nearest Neighbor (K*), Naive Bayes

(NB), Decision Tree (J48), and Support Vector Machines (SVM) were used to classify

programs according to the author’s gender. A total of five experiments were performed and

showed that machine learning models were able to classify computer programs by gender

of the author. In addition, correlations among all the features were also shown in their

work. The mean frequencies of symbols and words such as /, ==, >=, and bool were found

to be higher in male-written programs, whereas the mean frequencies of +, double, char

were higher in female written programs. Features such as / and + had a stronger positive

relationship in male written programs than in female written programs [25].

[9] used a set of 16 features to transform computer programs into a numerical represen-

tation using the TF-IDF technique. In addition, computer program classification according

to the author’s gender and region, as well as feature analysis were performed in their work.

The numbers of source code lines and the percentages of mixed lines were found to be

higher in male-written programs, whereas the percentage of comment lines, the percentage

of blank lines, and the number of blank lines were higher in female-written programs. The

mixed lines include both comments and code lines. A visual analysis of Canadian written

and Bangladeshi written programs was also performed in their work. The number of total

functions, number of total commentary words, mixed line percentage, number of mixed

lines, comment line percentage, and number of comment lines were found to be higher in

Canadian written programs, whereas the average number of function lines was higher in

Bangladeshi written programs [9].

[26] explored code readability and software quality in their work. A software read-

ability model based on features that can be automatically extracted from the program was

described in their work. C++ features such as keywords, arithmetic operators, identifiers
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were extracted in their work. 2.2 million lines of open source code from various released

projects were used to determine the relationships between their readability features and

software quality. Readability features were found to be strongly correlated with three soft-

ware quality measures: software defect log messages, automated defect reports, and code

change. Although a strong correlation was found between them, [26] did not mention

whether the correlation was positive or negative.

In [26] a total of 300 programming features were extracted by analyzing 226 stud-

ies published from 2010 to 2015. The authors identified software failures, code quality,

and code complexity were to be the most studied topics in the programming feature re-

search. The authors also identified four programming paradigms of features research such

as procedural programming, feature-oriented programming, aspect-oriented programming,

and object-oriented programming (OOP). Out of 300 programming features, OOP, McCabe

Cyclomatic complexity, and lines of code (loc) were found to be the most studied features.

OOP includes features such as coupling between objects, depth of inheritance, number of

children, and number of methods. Chidamber and Kemerer are pioneers in OOP feature

research, and described features such as inheritance, coupling, and cohesion. Overall, [27]

introduced us to various types of features, especially complexity features.

The authors described two types of complexity features: McCabe Cyclomatic complex-

ity and Halstead complexity. The Halstead complexity feature consists of several metrics

such as difficulty, effort, and expected bugs of a program. Both McCabe Cyclomatic com-

plexity and Halstead complexity features are widely known and commonly used in areas

such as complex networks, code smell detection, and software bug prediction [27].

Argamon [23, 25, 9] introduced us to sociolinguistics and its impact on programming.

[27] introduced us to various types of features and their usage. Finally, [26] gave us the

idea to explore programming features and complexity features and motivated us the most

to determine any correlation between those features.
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Chapter 3

Methodology and Experiments

In this work computer programs were represented as vectors of the features in numeric

form, and machine learning models were applied to identify patterns and similarities from

those vectors. The machine learning models learned from the training data and made pre-

dictions based on the testing data. Figure 3.1 illustrates our experimental process.

The first step of our work was to create the dataset. We collected open-source programs

from GitHub along with information on the programs’ authors such as name, gender, and

region. Since our goal was to perform region-based and gender-based analysis, we cre-

ated two balanced subsets by taking the same number of programs from both male/female

programs and South Asian/North American programs. A python script was written to se-

lect two random samples from all male/female programs and South Asian/North American

programs. The python script used a sample function that returned a random sample of pro-

grams from all the programs. Because both subsets were created by randomly selecting

program files, there is a possibility of overlapping subsets. However, as the experiments

and the feature analysis tasks are independent for each subset, the result of experiments and

feature analyses will be separate.

A total of 103 programming features were selected to transform the dataset into the

TF-IDF format. After transforming the datasets into the TF-IDF format, we imported them

into the WEKA software. WEKA supports various types of machine learning classifiers

that were used to classify computer programs.

WEKA’s randomized filter was used to shuffle the order of the instance in the datasets.
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Data randomization is important to increase diversity and reduce the chance of having a

biased dataset. Datasets were split into the test set and the training set using the percentage

split method in WEKA. After training and testing, we analyzed precision, recall, f-measure,

accuracy, and the confusion matrix for each experiment to determine which machine learn-

ing models maybe effective in computer program classification. An overview of our process

is shown in Figure 3.1. The following sections provide details on each stage of the process.

Figure 3.1: Steps in the experimental process.
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3.1 Dataset Creation

In this section we describe our dataset creation process. The dataset was mainly col-

lected with the help of Steven Deutekom, one of the undergraduate research assistants of

the University of Lethbridge. Open source programs were collected from GitHub along

with information on the programs’ authors such as name, gender, and region. With over

10 million Git repositories, GitHub has become the largest code host in the world [28] and

uses the Git version control system to support software development.

GitHub offers two types of visibility for hosted software projects: private and public.

GitHub does not share private projects whereas public projects can be seen and forked.

If a software developer creates a new project by copying another project and performs

some modifications, the newly created project is called a forked project. To collect data

from GitHub, the GHTorrent project was used which offers offline GitHub data through the

REST API [29]. The GHTorrent project is updated every few months.

GHTorrent offers GitHub data in two different formats: MySQL database and Mon-

goDB database. However, these databases are very large in size. Without proper hardware

and infrastructure, it is difficult and time-consuming to query large databases. Google Big-

Query solves the query problem by running “super-fast, SQL-like queries against append-

only tables, using the processing power of Google’s infrastructure” [30]. Therefore, Google

BigQuery was used to collect GitHub’s project information from the GHTorrent database.

By project information, we refer to the name of the project, the information of the program-

mer who created the project, and the information of the files in the project.

Although GHTorrent provides a great deal of information about the GitHub users, it

does not give any information about project author’s gender and full name. Therefore,

the GitHub API was used to collect the author’s full name and the Genderize.io API was

used to determine the gender based on the author’s first name. An API is software through

which a request goes to a server, which then returns data according to that request. The

Genderize.io API uses a dataset of 216286 unique names from 79 different countries and
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returns the gender of the name along with a probability [31]. The probability refers to how

likely a name is to be a male name or a female name [32].

GHTorrent does not contain any program files. It only contains file information such as

file id and file name. Thus, it was necessary to collect all the program files from GitHub. For

each project collected from the GHTorrent database, the entire repository was downloaded

locally. A repository or project may contain one or several files. Only files with correct

C++ extensions were collected so that unnecessary files (e.g., image and music files) would

not be added. In addition, only programs with between 10 and 1000 numbers of lines were

collected as a valid program to avoid collecting library files. Finally, programs along with

project information and author information were added into a local database. The overall

data collection process is given in Figure 3.2.

Figure 3.2: Data collection process.

• The first step was to load the GHTorrent project into the Google BigQuery web-

site (https://bigquery.cloud.google.com/dataset/ghtorrent-bq:ght) to extract computer

program files.

• As we did not require all of the GHTorrent database provided information, SQL

queries were executed to select only the information needed for this work. Figure

3.3 lists the fields that were extracted from the GHTorrent database.
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• The results of the SQL queries were then downloaded in JSON format.

• JSON files were read using a Python script. For each JSON item, an attempt was

made to get the programmer’s gender and full name. The full name was collected

using the GitHub API and the gender was collected using the Genderize.io API.

• If both full name and gender were found and the project contains only one contributor,

three of this information was added to the item. Otherwise, the process continues with

the next JSON item.

• The entire project repository was cloned locally. Cloning a project locally means

downloading the project from GitHub to a local computer.

• A project may contain one or several files. The entire project was searched to find all

the files that were contributed by the project owner.

• Each file was validated to see whether proper file extension could be found and the

line number was in the range of 10 to 1000. For example, a project may contain

not only program files but also image files, audio files, video files, and library files.

Therefore, file extensions were checked and only files with .cc and .cpp extensions

were collected. It is less likely that a single author writes more than 1000 lines in a

program file. Normally, library program files contain more than 1000 lines of code.

Therefore, files with between 10 and 100 line numbers were collected.

• Finally, programs along with author and project information were added into a local

database and the process was repeated for each JSON file item.

Two subsets of data were created from the collected dataset. For the gender-based

subset, only programs with authors that had a gender probability of more than 0.7 were

collected to make sure that male-written programs are written by male and female-written

programs are written by female programmers. Using this approach resulted in more male-

written programs than female-written programs. Thus a total of 6,017 female-written pro-
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Figure 3.3: Columns for GitHub data collection.

grams and another 6,017 male-written programs were randomly selected to create a bal-

anced subset. In total, the gender-based dataset included 12,034 computer programs.

The second subset consisted of programs written by North American and South Asian

programmers. Since there are a limited number of countries in North America and South

Asia, these two regions were selected. If we used Asia, Europe, or other regions with

many countries, a regional-based analysis task would have been more difficult. Figures 3.4

and 3.5 show the distribution of programs collected from all the South Asian and North

American countries. Countries with fewer than 100 programs were not included in the

region-based subset. Of these programs, a total of 6340 programs from the North American

region and another 6340 programs from the South Asian region were randomly selected in

order to balance the subset.
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Figure 3.4: Total programs collected from the South Asian region.
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Figure 3.5: Total programs collected from the North American region.

3.2 Data transformation

Machine learning models require a vector of numeric values as input and give nominal

values as output. For each program file, the features were counted using a python script.

The feature count was then used to transform the dataset into the term frequency-inverse

document frequency (TF-IDF) format. TF-IDF is a way to tell how important a term/

feature is to a document. The term frequency (t f ) refers us how many times a term/feature

is used in a program [33]. The inverse document frequency (id f ) tells us how important a

term/feature is in all the programs. The term frequency is calculated using Equation 3.1:

t f (term, d) =
td
nd

(3.1)

• where td is the count of the terms in the document (d), and

• nd is the number of terms in the document (d).

For example, if the frequency of the feature/term “switch” is 2 in a program (d) and the
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total number of term/feature in that program (d) is 200, the term frequency of “switch” in

that program (d) is t f (“switch”,d) = 0.01.

Document frequency (d f ) counts the occurrences of a term in the total number of doc-

uments (N). Since the inverse document frequency (id f ) tells us how important a term/fea-

ture is in all the programs, a larger id f value means the term is more important to all the

programs than other terms with less id f value. The inverse document frequency (id f ) is

calculated using Equation 3.2:

id f (term) = log
N

d f (term)
(3.2)

For example, if the total number of documents is 10 and the occurrences of the term

“switch” in the total number of documents is 5, the inverse document frequency (id f ) of

term “switch” is calculated as:

id f (“switch”) = log
10
5

= 0.301.

The term frequency-inverse document frequency (TF-IDF) can be calculated by multi-

plying t f by id f , so t f id f (term,d) = t f (term,d)∗ id f (term).

After counting all the features, the two subsets were transformed into term frequency-

inverse document frequency format using a python script. We then used the TF-IDF data in

WEKA to train and evaluate machine learning models.

3.3 Feature Selection

We used three sets of features in our work: the McCabe Cyclomatic complexity feature,

Halstead complexity features, and 103 programming features. [26] examined code read-

ability and used a list of readability features to determine features related to software com-

plexity. A software readability model was presented in their work. The readability model

is based on features that can be extracted from a computer program. C++ keywords, arith-
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metic operators, and identifiers were used as features in their software readability model.

Since one of our goals was to understand the relationship between program complexity and

programming features, we decided to use similar features in our work. A chart of all of the

types of features used in this work is given in Figure 3.6. The programming features are

listed in Table 3.1 and their meanings are given in Tables A.1 and A.2.

Figure 3.6: Types of features used in this work.

Table 3.1: List of programming features.
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The McCabe cyclomatic complexity is a software metric that indicates the complexity

of a program. It can be computed by counting the conditional and iterative statements in

the program [34]. A sample program and its corresponding graph are given in Figures 3.7

and 3.8. The McCabe cyclomatic complexity is calculated using Equation 3.3:

McCabe cyclomatic complexity: m = e−n+2p (3.3)

• where n is the number of vertices,

• e is the number of edges, and

• p is the number of vertices which have exit points.

The flow graph in Figure 3.8 shows that the sample program has 5 vertices, 5 edges,

and 1 exit point, so the McCabe cyclomatic complexity is 5 - 5 + 2 = 2.

Figure 3.7: Sample program (if-else block).
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Figure 3.8: Flow graph of the sample program given in Figure 3.7.

We also used another set of complexity metrics known as Halstead complexity metrics,

which are calculated based on counts of operators and operands in a program to estimate

the work time or work load of the programmers [35].

In order to calculate Halstead complexity metrics, we use the following definitions:

• n1 is the number of distinct operators,

• n2 is the number of distinct operands,

• N1 is the total number of operators, and

• N2 is the total number of operands.

Based on this, the Halstead metrics can be calculated as follows:

Program vocabulary: n = n1+n2 (3.4)
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Program length: N = N1+N2 (3.5)

Difficulty: D =
n1
2
∗ N2

n2
(3.6)

Volume: V = N ∗ log2 n (3.7)

Effort: E = D∗V (3.8)

Expected bugs: B =
V

3000
(3.9)

Figure 3.9: Sample C++ program.

In Figure 3.9, we have 8 distinct operators, 5 distinct operands, 11 total operators, and

6 total operands. Now, using the above information, we can write:

• Number of distinct operators: n1 = 8(i f , (, ), , , =, ==, else),

• Number of distinct operands: n2 = 5(x, 7, isPrime, 1, 0),

• Total number of operators: N1 = 11,

• Total number of operands: N2 = 6,

• Program vocabulary: n = n1+n2 = 13,

• Program length: N = N1+N2 = 17,

• Difficulty : D = n1
2 ∗

N2
n2 = 4.8,

• Volume: V = N ∗ log2 n = 62.90747521,
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• Effort: E = D∗V = 301.955881, and

• Expected bugs B = V
3000 = .209691584.

A total of four experiments are described in Section 3.4. In experiments 1 and 3, a total

of 103 features were used, whereas CFS Subset Evaluator from WEKA was used to reduce

the features set in experiments 2 and 4. CFS Subset Evaluator returned two lists of the most

important features, one for each subset. All the features were removed from the two subsets

except for the features found from the CFS Subset Evaluator. Therefore, the only difference

between experiments 1, 2, 3, and 4 was the use of feature sets.

We examined the connection of programming features to the Halstead complexity met-

rics. As both Halstead complexity metrics and programming features use the same underly-

ing characteristics, we believe there are some relationships between the Halstead complex-

ity metrics and programming features. The relationships between the Halstead complexity

metrics and programming features are discussed in the Sections 4.4 and 4.5.

3.4 Experiments

In this section we describe four experiments. Two datasets containing region-based

program data and gender-based program data were transformed into the term frequency-

inverse document frequency (TF-IDF) format. These two datasets were then imported into

WEKA to perform machine learning experiments. WEKA was also used to shuffle and

split the datasets. WEKA’s randomized filter was used to shuffle the order of the instance

in the datasets and the percentage split (66% training data and 34% testing data) method

was used to split the datasets into a training set and a test set. At first, different training

and testing ratios with little change were used to determine if machine learning models’

performance changes. However, the performance did not change that much (around 1%

to 2%). Therefore, a fixed ratio (66% training data and 34% testing data) was used in this

work. WEKA also offers various types of machine learning models and so WEKA was used

34



3.4. EXPERIMENTS

to train all the machine learning models using the training set and evaluate those models

using the test set. WEKA required less than one second to train and evaluate each machine

learning model. WEKA also returns the value of precision, recall, f-measure, accuracy, and

confusion matrix after each experiment. These measures were then used to determine which

machine learning models are more or less effective in classification. Each experiment used

five machine learning algorithms to develop models to classify computer programs based

on either gender or region of the program’s author. The five algorithms are listed below.

• Bagging classifier was used from the meta type classifiers.

• Decision Table classifier was used from the rule based classifiers.

• Random Forest classifier was used from the tree classifiers.

• Logistic Regression classifier was used from the function based classifiers.

• Bayes Net classifier was used from the Bayesian classifiers.

Experiments 1 and 2 utilized the gender-based data, while experiments 3 and 4 attempted

to classify computer programs based on the program authors’ region. All 103 programming

features were used in the 1st and 3rd experiments. The top features were then selected using

the CFS Subset Evaluator, and these features were used in the 2nd and 4th experiments.

3.4.1 Experiment 1

The region-based dataset was used in experiment 1. This dataset consists of 12680 com-

puter programs, with 6340 programs from the North American region and the remaining

6340 from the South Asian region. A total of 103 programming features were selected to

transform the dataset into TF-IDF (term frequency-inverse document frequency) format.

The programs were then classified using the five machine learning models. The percentage

split (66% training data and 34% testing data) technique was used to evaluate the machine

learning models.
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3.4.2 Experiment 1 Results

Table 3.2 shows the results of experiment 1. The Random Forest classifier gave a bet-

ter result (accuracy=78.36%) than the other four classifiers. The Random Forest classifier

was able to correctly classify most of the North American programs (correctly classified

= (1804/2155)*100 = 83.7%). The Random Forest classifier was able to correctly classify

more North American programs than any other classifier. The Random Forest classifier

accurately classified more South Asian programs than any other classifier (correctly clas-

sified=(1574/2156)*100=73%). Bagging was the second most accurate classifier with an

accuracy of 75.48%. Overall, all classifiers were able to correctly classify more North

American programs than South Asian programs.

Table 3.2: Experiment 1 results.
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Table 3.3: Most relevant features as identified by CFS Subset Evaluator (Experiment 2).

Order of relevance Feature
1 while
2 goto
3 auto
4 const
5 int
6 long
7 typedef
8 namespace
9 friend
10 this
11 throw
12 true
13 try
14 using
15 <

16 +
17 ++
18 –
19 <=
20 %
21 bitwise NOT
22 >>

23 .
24 [

3.4.3 Experiment 2

In experiment 2, the CFS Subset Evaluator was used to determine which attributes are

more highly relevant for predictions. The evaluator returned the 24 most important at-

tributes. A list is given in Table 3.3. These 24 attributes were then used to transform the

region-based dataset into the TF-IDF format. The percentage split (66% training data and

34% testing data) technique was used to evaluate five machine learning models. The results

of experiment 2 are given in Section 3.4.4.
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3.4.4 Experiment 2 Results

The results of experiment 2 are shown in Table 3.4. The accuracy of most of the machine

learning classifiers decreased slightly in experiment 2 as compared to experiment 1. The

reduced accuracy of the machine learning classifiers might be a outcome of the removal of

79 attributes from the dataset. The accuracy of Random forest and Bagging classifiers de-

clined the most at around 3% and 2%, respectively. Of the five classifiers, only the accuracy

of Bayes Net increased slightly in experiment 2 (about 0.30%). Although removing irrele-

vant features changed all machine learning models’ accuracy, changes in accuracy were so

little that might be called insignificant. Since any machine learning model’s performance

will change slightly each time it is trained, we performed experiment 1 and experiment 2

multiple times. We found almost the same results in all cases. Overall, it can be seen that

removing irrelevant features changed accuracy only slightly.
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Table 3.4: Experiment 2 (reduced features) results.

3.4.5 Experiment 3

In experiment 3, we switched to the gender-based dataset for training and evaluation

of the machine learning models. The same 103 programming features were selected to

transform the programs into a vectorized form using the TF-IDF technique. Again, we

divided the dataset into the testing data set and the training data set using percentage split

(66% training data and 34% testing data). Finally, the five machine learning models were

trained using the training data set and evaluated using the testing data set. The results of

experiment 3 are given in Section 3.4.6.
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3.4.6 Experiment 3 Results

The results of experiment 3 are given in Table 3.5. We see that Random Forest has

surpassed all other learning models in terms of accuracy, precision, f-measure, and recall.

Random Forest achieved a 62.63% accuracy, while the other models’ accuracy was around

52% to 57%. If we look at the confusion metrics, we see that the Decision Table was able to

correctly classify less than 50% male computer programs. For this model, there were 2,082

actual male written computer programs, of which the model was able to correctly classify

only 977. In other words, the model was only able to correctly classify 48% male writ-

ten computer programs. On the other hand, Random Forest was able to correctly identify

62% of both male and female programs. Comparing experiments 1 and 2 with experiment

3 shows that the performance of machine learning models was higher in the region-based

dataset than in the gender-based dataset. One reason may be that the gender-based data has

more variation than region-based data. Since the gender-based dataset contains computer

programs from different parts of the world, the use of program features may also vary in

those programs. Therefore the gender-based dataset may more varied types of computer

programs, and this may be responsible for the low performance in this experiment. Com-

paring experiment 1 results with experiment 3 results shows that the accuracy of all machine

learning models declined around 16% to 18% in experiment 3 as compared to experiment

1.
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Table 3.5: Experiment 3 results.

3.4.7 Experiment 4

As in experiment 2, the CFS Subset Evaluator was used to determine which attributes

were most relevant to make predictions in experiment 3. The evaluator returned 27 features

that were most relevant. The CFS Subset Evaluator returns the best subset of features

relevant to make predictions for a particular dataset, which is why it returned 24 features

for the region-based dataset and 27 features for the gender-based dataset. As in experiment

2, we removed all but 27 attributes from the gender data set. These 27 attributes were

then used to transform the data set into TF-IDF format. Finally, the five machine learning

models were applied to see whether top relevant features are sufficient to classify computer

programs into their respective classes (female or male). The results of experiment 4 are
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given in Section 3.4.8.

3.4.8 Experiment 4 Results

The results of experiment 4 are given in Table 3.7. Again, most of the machine learn-

ing classifiers’ accuracy slightly decreased in experiment 4 as compared to experiment 3.

The accuracy of the Random forest classifier declined the most among all the classifiers at

around 3%. As in experiment 2, only the accuracy of Bayes Net increased slightly in exper-

iment 4 (about 1%). Overall, it can be seen that the machine learning models can classify

gender-based data with 52% to 60% accuracy. One way to improve the accuracy of machine

learning models might be reducing the variation in the gender-based dataset. Age-based or

region-based new subsets could be created from gender-based data to improve the accuracy

of machine learning models and this could be incorporated in future work.
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Table 3.6: Most relevant features as identified by CFS Subset Evaluator (Experiment 4).

Order of relevance Feature
1 while
2 auto
3 const
4 extern
5 int
6 long
7 register
8 static
9 typedef

10 void
11 namespace
12 static cast
13 this
14 public
15 ==
16 +
17 ++
18 &
19 *
20 ->
21 <=
22 /*
23 (
24 ,
25 <<

26 .
27 [
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Table 3.7: Experiment 4 (reduced features) results.

3.5 Threats to Validity

There are a few factors that may offer potential threats to the validity of our work.

• Programmers often include frameworks or libraries in their projects. It is difficult

to distinguish between authors’ written programs and library programs. One way to

differentiate between them may be to check the length of the programs. Since library

programs are very lengthy, only programs with length in the range 10 to 1000 lines

were added.

• Sometimes GitHub users use a different name from their actual name. This may give

incorrect gender information.
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• Determining the gender of Asian programmers’ names is especially difficult because

Genderize.io contains few names from Asian cultures, and some names seem to be

androgynous [36]. Therefore, Genderize.io appears to be less effective for Asian

names. In addition, programmer region information in GitHub may not always be

correct. Sometimes people can create fake GitHub account, or some may select a

predefined region while creating their accounts. Therefore, region and gender infor-

mation may not be a hundred percent correct.

• Only the C++ programming language was used in this work. Using other program-

ming languages could lead to different results.

• One of our understanding was that the gender-based dataset contains different types

of programs. Therefore the use of program features may also vary in those programs.

Since there is no way to determine program types from GitHub, we could not justify

our understanding.

• Although we performed region-based and gender-based computer program classifi-

cation and feature analysis, we did not consider the experience level or the age of the

programmers. Programs written by programmers with one year of experience will

likely not be the same as those written by programmers with ten years of experience.

It is expected that there will be differences in feature usage. Thus, if we could create

region-based and gender-based datasets with equally experienced programmers, our

findings might be different.
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Chapter 4

Discussion

In this chapter, we discuss feature frequencies, compare machine learning models, and pro-

vide correlations between the 103 programming features and the complexity features. We

compare the five machine learning models that were used in our four experiments. We

provide a summary of which models performed better and possible reasons for the better

performance. An analysis of the features’ frequency is provided in Section 4.3. We tried to

determine whether a feature is more or less likely to be used in the programs from a par-

ticular region or written by people of a particular gender. Finally, the correlations between

programming features, McCabe complexity feature, and Halstead complexity features are

discussed in Sections 4.4 and 4.5.

4.1 Comparison of Models

A comparison of the five machine learning models is given in this section. The accuracy

of the five models in all four experiments is given in Table 4.1. The gender-based dataset

was used in experiments 3 and 4, whereas experiments 1 and 2 attempted to categorize

computer programs based on the program author’s gender. A total of 103 features were used

in experiments 1 and 3, while top features were selected using the CFS Subset Evaluator

and used in experiments 2 and 4.

In all four experiments, the Random Forest model and the Bagging model performed

better than the other machine learning models. In almost all the experiments, the Bagging

and Random Forest models’ accuracy was 8% to 10% higher than other machine learning
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models. The higher accuracy could be because both Random Forest and Bagging mod-

els use multiple machine learning algorithms to make a prediction, as described in Sec-

tion 2.2.2. The Bagging model uses multiple machine learning models for the prediction

whereas the Random Forest model uses multiple decision trees to predict a class. Both of

them select the class most often predicted. In Sections 2.2.2, it can be seen that a single

algorithm was used by the Bayes Net, Decision Table, and Logistic Regression models. De-

cision Table creates a tree, Logistic Regression creates a mathematical equation, and Bayes

Net creates a probabilistic model to make their prediction. As Bagging and Random Forest

models use multiple machine learning algorithms to make predictions, their performance

was likely to be better than the other simpler machine learning models.

Table 4.1: Accuracy of five machine learning models.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Bayes Net 71.28% 71.61% 54.33% 55.25%

Logistic Regression 71.67% 70.38% 55.89% 55.11%

Decision Table 68.94% 68.94% 52.93% 52.96%

Random Forest 78.36% 75.83% 62.63% 59.60%

Bagging 75.48% 73.14% 57.45% 56.84%

4.2 Comparison with Previous Work

Two studies were performed previously in the area of sociolinguistics and computer

program classification. Naz [25] tried to classify computer programs according to the pro-

grammers’ gender. Naz used 100 student assignments as the dataset and 50 features as the

feature set. Naz used Naive Bayes and J48 machine learning classifiers in the experiment.

On the other hand, Rafee [9] tried to classify computer programs according to the program-
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mers’ gender and region. Rafee used 160 student assignments as the dataset and 16 features

as the feature set. Rafee used Bayes Net and Random Forest classifiers in the experiment.

Both Naz and Rafee used WEKA to train and evaluate machine learning classifiers. Naive

Bayes and Bayes Net are Bayesian classifiers, whereas J48 and Random Forest are Tree

classifiers. In this work, a Bayesian classifier (Bayes Net) and a tree classifier (Random

Forest) were used in the experiment. In this section, the comparison between this work

results and the results of two previous works are described.

The comparison of gender-based classification is given in Table 4.2 whereas the com-

parison of region-based classification is shown in Table 4.3. Comparing all the experiments

results shows that the Tree classifier performed better than the Bayesian classifier in almost

all the experiments. In our gender-based classification, the Random Forest classifier was

able to classify 62.63% of programs correctly. Naz’s Tree classifier also achieved similar

accuracy (accuracy = 63%). Rafee’s Tree (Random Forest) classifier performed better than

all other classifiers. The classifier was able to classify 80.6% of programs accurately. In

the region-based classification, both of our classifiers performed better. In our experiment,

the Bayesian classifier (Bayes Net) correctly classified 71.28% of programs, whereas the

Tree classifier (Random Forest) was able to achieve 78.36% accuracy. On the other hand,

Rafee’s Tree (Random Forest) classifier correctly classified 89.4% of programs.

Table 4.2: Accuracy of machine learning models (gender based classification).

Naz’s Result Rafee’s Result Our Result

Bayesian classifier 66% 70% 54.33%

Tree classifier 63% 80.6% 62.63%
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Table 4.3: Accuracy of machine learning models (region based classification).

Rafee’s Result Our Result

Bayesian classifier 85% 71.28%

Tree classifier 89.4% 78.36%

Finally, it is worth noting that open-source C++ programs from GitHub were used in

our work, whereas both Naz and Rafee used students’ assignments. There is the possi-

bility that those assignments’ programs were written in a specific coding style, whereas

open-source programs are likely to have more variations in coding style. In addition, a total

of 103 programming features were used in our experiment, whereas Naz and Rafee used

50 features and 16 features, respectively. Although our machine learning models did not

perform particularly well on classifying program authors as male or female, subsequent fre-

quency analysis identified differences in the use of programming features. We also discuss

later that since open-source programs may contain data from all over the world or different

styles of programs, this may be one reason that the performance of our machine learning

models decreased.

4.3 Analysis of Features

4.3.1 Frequency of Occurrence

In [23] and [25], the authors computed the frequency of features to identify any gender-

based differences in how those features were used by the authors. [23] counted the feature

frequencies per 1,000 tokens whereas [25] took the mean of frequency count per 100 tokens.

[23] found that the frequencies of pronouns such as she, I, her, and you were higher in

female-written documents, whereas the frequencies of determiners such as that, the, a, and

these were higher in male-written documents. [25] showed that the mean frequency of

features /, ==, >=, and bool were higher in male-written programs, whereas the mean
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frequency of features +, double and char were higher in female-written programs.

To build on [23] and [25] we offer a similar analysis. We first counted how many times

each feature appears in each program. After that, we were interested in the mean of each

feature frequency count. The mean of a feature will give us an idea of the usage of that

feature in programs of a specific region or gender. After calculating the mean frequency

of the features, we tried to understand whether these features are more or less likely to be

used in the programs from a particular region or written by people of a particular gender.

We discuss the feature frequency in more detail in the following two sections.

4.3.2 Frequency of Occurrence (region)

In this work we used a total of 12680 computer programs. 6340 programs were taken

from the North American region and the remaining 6340 from the South Asian region. In

Table B.1 (in Appendix B), we see that the average length (Loc: Line of Code) of North

American programs is 44.75 percent larger than that of the South Asian programs. LOC is a

computer program metric that is measured by counting the total number of lines in the text

of a program’s code. We also can see that although the programs of South Asia are shorter in

length, the average frequency of some programming features is higher than in the programs

of North America. Table B.1 (in Appendix B) lists the average deviation of each feature.

Since the North American programs and the South Asian programs have different average

lengths, average deviation of a feature was calculated by dividing the average count of that

feature with the average line of code (LOC) value. In addition, since features’ frequency

differences will be analyzed based on the average deviation of features, the length of the

programs should not be an issue in the frequency analysis task. In Table B.1, it can be seen

that the average line of code (LOC) of the South Asian programs is 106.480126, whereas

the North American programs average line of code is 154.131388. The average counts

of the feature int in the South Asian and North American programs are 14.758517 and

15.797634, respectively. So the average deviation of the feature int in the regional-based
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dataset would be (15.797634/154.131388) - (14.758517/106.480126) = -0.036109. So, the

average frequency of the feature int in each line of South Asian programs is 3.61% higher

than in each line of North American programs. The positive deviation of a feature means

that the frequency of that feature is higher in the North American programs than in the

South Asian programs. The negative deviation of a feature means that the frequency of that

feature is higher in the South Asian programs than in the North American programs.

Table B.1 also compares the average features’ frequency. To compare the average fre-

quency of a feature, the average count of that feature was divided by the average line of

code (LOC). From Table B.1, it can be seen that the average frequency of the feature int

in each line of code in the South Asian and North American programs are (14.758517 /

106.480126) = 0.1386034893 and (15.797634 / 154.131388) = 0.1024945938, respectively.

Therefore, the average frequency of the feature int in each line of South Asian programs is

(0.1386034893 / 0.1024945938) = 1.352300 times higher than in each line of North Amer-

ican programs. The positive comparison value of a feature means that the frequency of that

feature is higher in the North American programs than in the South Asian programs. The

negative comparison value of a feature means that the frequency of that feature is higher in

the South Asian programs than in the North American programs.

A total of 103 features were used in this work. It is not possible to discuss all of

them. Therefore some particular features from Table B.1 (in Appendix B) are discussed in

this section. Those features are listed in Table 4.4. Since increment-decrement operators,

arithmetic operators, comparison operators, logical operators, and control flow keywords

are used to take decision based on specific conditions, perform logical and mathematical

calculations, they are discussed in Sections 4.3.2 and 4.3.3. In addition, we also discuss

the use of fundamental data types and boolean values as they are the primary pieces of

information that a person needs to know. Without knowing them, it’s impossible to write a

C++ program.

In Table B.1, since the average deviations and comparison value of some features (int,
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+, −, ++, >, <, >=, <=, %, ||, !, &&, for, while, goto) are negative, this indicates

that their usage in the South Asian programs is slightly higher than in the North American

programs. There could be several reasons for the higher usage of these features. For exam-

ple, the South Asian programmers may write some different types of programs than North

American programmers, or the ways the South Asian programmers learn programming may

be different from the North American programmers. Since the use of increment-decrement

operators, comparison operators, and control flow features are higher in South Asian pro-

grams, there is a possibility that their use increases the complexity and difficulty of the

South Asian programs. On the other hand, North American programmers use more funda-

mental data types (char, double, bool, and float), operators (/, ∗,−−, ==, !=), control flow

keywords (switch, case, break, continue, if), Boolean values (true and false), and exception

handling operators (try and catch) than South Asian programmers.

Table 4.4: Selected average frequency values for the region-based dataset.

Features North America South Asia Difference Comparison

case 1.739748 0.845268 0.003349 1.421901

switch 0.326341 0.159306 0.000621 1.415197

break 1.617666 0.836278 0.002642 1.336336

continue 0.242429 0.142429 0.000235 1.175882

if 11.638013 7.077287 0.009041 1.136029

false 1.423975 0.574763 0.003841 1.711556

double 1.821451 0.933754 0.003048 1.347605

bool 1.342902 0.626341 0.002830 1.481191

52



4.3. ANALYSIS OF FEATURES

true 1.374921 0.649211 0.002823 1.463084

char 2.472082 1.598580 0.001026 1.068331

float 1.417666 0.920820 0.000550 1.063596

/ 5.693375 3.619716 0.002944 1.086608

* 33.272713 19.616877 0.031642 1.171752

−− 16.423186 5.125079 0.058421 2.213779

== 7.656940 4.186435 0.010361 1.263538

!= 1.836751 1.215773 0.000499 1.043699

else 2.596845 2.004416 -0.001976 -1.117286

for 5.596530 4.326341 -0.004320 -1.118985

goto 0.118770 0.124763 -0.000401 -1.520553

while 0.938959 1.137224 -0.004588 -1.753161

% 2.122713 2.052524 -0.005504 -1.399650

- 7.081861 5.699211 -0.007577 -1.164903

+ 5.127445 4.656151 -0.010461 -1.314464

++ 4.063565 4.111514 -0.012249 -1.464593

> 7.089748 6.786120 -0.017733 -1.385521

< 9.393533 9.236120 -0.025795 -1.423256

>= 0.551577 0.509621 -0.001207 -1.337407
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<= 0.550946 0.826498 -0.004187 -2.171477

|| 0.862618 0.552366 0.000409 1.078870

! 1.889117 1.817981 -0.004817 -1.393006

&& 1.336435 1.189590 -0.002501 -1.288463

int 15.797634 14.758517 -0.036109 -1.352300

difficulty 54.734456 51.162911 -0.125377 -1.353060

MVG 16.772871 12.444953 -0.008054 -1.074010

4.3.3 Frequency of Occurrence (gender)

Of the total 12034 computer programs, 6017 programs were written by male authors and

6017 programs were written by female authors. Table B.2 (in Appendix B) lists the average

deviation of each feature. The positive deviation of a feature means that the frequency of

that feature is higher in the male-written programs than in the female-written programs.

The negative deviation of a feature means that the frequency of that feature is higher in

the female-written programs than in the male-written programs. Table B.2 also compares

the average feature frequency. The positive comparison value of a feature means that the

frequency of that feature is higher in the male-written programs than in the female-written

programs. The negative comparison value of a feature means that the frequency of that

feature is higher in the female-written programs than in the male-written programs.

Although a total of 103 features were used in this work, only increment-decrement

operators, arithmetic operators, comparison operators, logical operators, and control flow

keywords are discussed in this section. The reason for using these features is described in

Section 4.3.2. These features are listed in Table 4.5.
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Table 4.5 shows that the difficulty of the female programmers programs is slightly

higher than the male programmers programs. Since a program’s difficulty is measured

based on operators, and female programmers use more arithmetic operators (/, ∗, and +),

fundamental data types (int, char, double, and float), comparison operators (! =, >, <,

>=, and <= ), logical operator (&& and ||) and iteration operators (for and while) (see

Table 4.5), the difficulty of their programs is slightly higher than the male programmers’

programs. By contrast, male programmers use more control flow keywords (switch, case,

break, if, and goto) and Boolean values (true and false) than female programmers. In ad-

dition, since the average deviations and comparison value of exception handling operators

(try and catch) are positive, this indicates that male programmers tend to use more exception

handling functionality than female programmers.

Table 4.5: Selected average frequency values for the gender-based dataset.

gender male female difference comparison

case 1.437760 1.159880 0.001452 1.165447

switch 0.296493 0.241150 0.000285 1.155970

break 1.250956 1.125976 0.000380 1.044557

if 10.382749 9.086588 0.005108 1.074313

false 1.300150 1.151903 0.000533 1.061199

−− 13.731926 9.860562 0.023074 1.309330

bool 1.207579 1.113346 0.000167 1.019776

true 1.252950 1.058169 0.000907 1.113264

== 7.965930 6.355493 0.008579 1.178437
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goto 0.065980 0.043377 0.000141 1.430119

% 2.066811 1.824996 0.000894 1.064776

- 6.514875 5.986040 0.001053 1.023259

! 1.767991 1.580522 0.000618 1.051717

catch 0.096061 0.086256 0.000031 1.047073

try 0.571880 0.534153 0.000027 1.006604

double 1.785940 1.743394 -0.000486 -1.038268

char 2.348845 2.272727 -0.000487 -1.029138

float 1.259099 1.236995 -0.000402 -1.044934

/ 4.830647 5.798737 -0.009509 -1.276759

* 26.986040 33.460861 -0.061190 -1.318799

!= 1.563902 1.548945 -0.000594 -1.053434

else 2.287519 2.225860 -0.000568 -1.034937

for 4.733588 4.780622 -0.002497 -1.074174

while 0.868041 0.980057 -0.001240 -1.200858

+ 4.595313 4.764168 -0.003356 -1.102688

++ 3.434934 3.882001 -0.004936 -1.202037

> 6.914575 6.722287 -0.001673 -1.034028

< 9.037394 9.270068 -0.005849 -1.090989
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>= 0.514376 0.501246 -0.000133 -1.036456

<= 0.518697 0.612764 -0.000946 -1.256493

|| 0.692870 0.690710 -0.000297 -1.060290

&& 1.317434 1.251122 -0.000094 -1.010070

int 14.109024 14.879009 -0.012208 -1.121651

difficulty 52.322587 52.904981 -0.028076 -1.075445

continue 0.183314 0.198438 -0.000197 -1.151357
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4.4 Relationship between Programming Features and Complexity Fea-

tures (region)

In this section, the correlations between the 103 programming features, the McCabe

complexity metric (MVG), and the Halstead complexity metrics are discussed. The first

step was to determine the frequency of the features of all the programs. A python script was

written that takes a program as input and calculates each feature’s frequency. The second

step was to calculate the Halstead complexity metrics and McCabe Cyclomatic complexity

value of a program. The Halstead complexity metrics were calculated based on the counts

of operators and operands of a program. All the 103 programming features were used as op-

erators. On the other hand, a metrics tool, LocMetrics, was used to measure the Cyclomatic

complexity value of a program. Since Cyclomatic complexity is calculated by counting

the conditional and iterative statements of a program [34], the usage of some keywords (if,

else, switch, for, and while), and conditional ternary operator (?) may have a greater effect

on the complexity value. Finally, another python script was written to compute the correla-

tions between programming features, the Cyclomatic complexity metric, and the Halstead

complexity metrics.

The correlation was computed using Pearson’s correlation coefficient [11]. Pearson’s

correlation coefficient calculates how strongly two features or variables are connected with

each other and ranges from +1 to -1. A correlation value of 0 between two features indi-

cates that there is no relationship between them. A positive correlation value indicates that

as the value of one feature increases, so does the value of other feature. A negative corre-

lation value indicates that as the value of one feature increases, the value of other feature

decreases.

Tables 4.6 to 4.8 provide correlation data for three types of programming features.

From control flow features (see Table 4.6), selection operators (if and else) and iteration

operators (for and while) are strongly connected to the complexity, difficulty, effort, and

expected bugs of programs in both regions. Since all the selection operators and iteration
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operators are used to calculate the Cyclomatic complexity and the Halstead complexity,

their correlations may be stronger. One important piece of information we get from the

correlation is that for-loops have a greater effect on the complexity, difficulty, effort, and

expected bugs of a program than while-loops. One reason may be that the use of for-loops

is much higher than the use of while-loops in the region-based dataset.

This can be seen clearly from the average frequencies (see Table 4.4). The average

frequency of for-loops is more than three times higher than the average frequency of while-

loops. Therefore, the higher usage of for-loops may be a reason for the higher correlation

value. Another reason could be programmers normally use more keywords to implement

for-loops than while-loops. For example, programmers tend to declare and use local vari-

ables in every for-loop scope, whereas global variables or variables which are not limited to

the while-loops scope are used to implement while-loops. Our understanding is that since

more declaration or use of variables increases the complexity of a program, for-loops seem

to have higher correlation values than while-loops.

In Table 4.7, only the top 5 highly correlated keywords are listed. It can be seen that

Boolean values (true and false), function-return operators, and fundamental data types (int

and bool) are strongly correlated with the complexity, difficulty, effort, and expected bugs

than other programming features in both regions. Boolean values are used in mathemat-

ical expressions and programming conditions. The return keyword is used to control the

function return mechanism and terminate function execution. Both Boolean values and the

return keyword are likely to increase the Cyclomatic complexity more as they are used to

control or create program execution paths. In contrast, since the Halstead complexity is cal-

culated by counting the keywords, fundamental data types probably increase the Halstead

complexity. If we look in Table 4.7, we can justify our understanding. It can be seen that the

correlation values of Boolean values and the return keyword are higher for the Cyclomatic

complexity than for the Halstead complexity, whereas the correlation value of keyword (int)

is higher for the Halstead complexity than for the Cyclomatic complexity.
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Table 4.8 shows the correlation data of operator type features. Three features such as {,

(, and = are strongly associated with complexity, difficulty, effort, and expected bugs in both

regions. ) and }were not considered as features in this work. Since round and curly brackets

are always used together, the correlation of ( and { with the McCabe complexity and the

Halstead complexity should reflect the correlation of ) and } with the complexity metrics.

From Section 3.3, it can be seen that the McCabe cyclomatic complexity is determined

from the program by counting the conditional and iterative statements. In contrast, the

Halstead complexity metrics are calculated based on counts of operators and operands in

a program. (, =, and { may be the most used operators in a C++ program, which may be

why the correlation may be stronger with the Halstead complexity. However, to construct

conditional statements (if and else), iterative statements (for, while, and do-while), (, =, and

{ are needed. So, the correlation with the McCabe cyclomatic complexity could be more

substantial for this reason.
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Table 4.6: List of top 5 programming features (Type: Control Flow) correlated with the
complexity, difficulty, effort, and expected bugs (region based dataset).

Features Corr-MVG Corr-Difficulty Corr-Effort Expected Bugs

N.A. S.A. N.A. S.A. N.A. S.A. N.A. S.A.

if 0.826061 0.853381 0.660064 0.688582 0.644988 0.717431 0.853381 0.779438

for 0.599727 0.70159 0.590386 0.640191 0.601629 0.678347 0.70159 0.735354

else 0.627211 0.639838 0.524861 0.538692 0.461758 0.537306 0.639838 0.553427

while 0.508014 0.433157 0.433476 0.435501 0.364374 0.295461 0.433157 0.324978

break 0.468032 0.416503 0.279956 0.289698 0.246711 0.257302 0.416503 0.314592
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Table 4.7: List of top 5 programming features (Type: Keyword) correlated with the com-
plexity, difficulty, effort, and expected bugs (region based dataset).

Features Corr-MVG Corr-Difficulty Corr-Effort Expected Bugs

N.A. S.A. N.A. S.A. N.A. S.A. N.A. S.A.

return 0.732984 0.699077 0.512226 0.498561 0.416941 0.423385 0.699077 0.49805

int 0.599727 0.665603 0.614284 0.6518 0.575756 0.639057 0.665603 0.713249

true 0.560532 0.437309 0.380816 0.364367 0.334621 0.375525 0.437309 0.40532

false 0.528282 0.429703 0.326049 0.346103 0.259737 0.336693 0.253255 0.372204

bool 0.515951 0.487518 0.392684 0.408478 0.303358 0.315336 0.487518 0.365677
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Table 4.8: List of top 10 programming features (Type: Operator) correlated with the com-
plexity, difficulty, effort, and expected bugs (region based dataset).

Features Corr-MVG Corr-Difficulty Corr-Effort Expected Bugs

N.A. S.A. N.A. S.A. N.A. S.A. N.A. S.A.

{ 0.827603 0.872833 0.732415 0.784903 0.64842 0.755858 0.872833 0.828944

( 0.749934 0.747197 0.765171 0.73059 0.754311 0.802068 0.747197 0.904406

= 0.730064 0.794745 0.765875 0.785845 0.727371 0.829346 0.794745 0.858133

!= 0.603159 0.603306 0.507423 0.530562 0.425862 0.437704 0.603306 0.462448

&& 0.539182 0.503173 0.482111 0.459431 0.423801 0.475318 0.503173 0.452703

& 0.491751 0.424097 0.477101 0.418026 0.393091 0.483102 0.331933 0.558185

< 0.465437 0.566129 0.547104 0.587359 0.480157 0.597492 0.566129 0.596961

[ 0.460916 0.529496 0.552039 0.628005 0.553716 0.652752 0.529496 0.551414

- 0.420523 0.427984 0.459867 0.538778 0.464771 0.591186 0.405049 0.612280

>= 0.433936 0.446485 0.381131 0.366865 0.330993 0.352079 0.244810 0.354131
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4.5 Relationship between Programming Features and Complexity Fea-

tures (gender)

In this section, the correlations among the 103 programming features, the McCabe com-

plexity metrics (MVG), and the Halstead complexity metrics are discussed. The Halstead

complexity metrics, the Cyclomatic complexity metric, and the correlations were calculated

using the method described in Section 4.4.

Tables 4.9 to 4.11 provide correlation data for three types of programming features.

From all the control flow features (see Table 4.9), the iteration operators (for and while) and

the selection operators (if and else) were strongly connected to the complexity, difficulty,

effort, and expected bugs of the programs. The same type of correlation was found in the

South Asian and North American programs as well. Here, for-loops also appear to have a

more significant effect on the complexity, difficulty, effort, and expected bugs of a program

than while-loops. In Table 4.5, it can be seen that the average frequency of for-loops is

more than four times higher than the average frequency of while-loops. Therefore, we

hypothesize that the higher usage of for-loop may be a reason for the higher correlation

value.

Out of 51 keywords, the top 5 keywords are listed in Table 4.10. By looking at the

correlation between the programming features (Type: Keyword) and the Cyclomatic com-

plexity and the Halstead metrics, it can be seen that fundamental data types (int and bool),

true, false, and function-return operators are strongly correlated with the complexity, dif-

ficulty, effort, and expected bugs than other programming features in both regions. Our

understanding is that since the fundamental data types are some of the most used keywords

in programs, these keywords are highly correlated with complexity than the other types of

keywords. On the other hand, Cyclomatic complexity is based on conditional statements.

Therefore, the Cyclomatic complexity of a program increases if the number of conditional

statements increases. Since Boolean values (true and false) are highly used in conditional

statements, they are also strongly correlated with the Cyclomatic complexity. In Table 4.10,
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it can be seen that both Boolean (true and false) keywords’ correlation values are higher

with the Cyclomatic complexity than with the difficulty, effort, and expected bugs of a

program.

Table 4.11 shows the correlation data of operator type features. Three features such

as {, (, and = are strongly associated with complexity, difficulty, effort, and expected bugs

in both regions. The same three features were found to be strongly correlated with the

complexity in the region dataset as well. Therefore, the reason also could be the same. Since

Halstead complexity metrics are calculated based on counts of operators and operands in

a program and operators such as (, =, and { are some of the most used operators in a C++

program, which may be why the correlation may be stronger with the Halstead complexity.

Table 4.9: List of top 5 programming features (Type: Control Flow) correlated with the
complexity, difficulty, effort, and expected bugs (gender based dataset).

Features Corr-MVG Corr-Difficulty Corr-Effort Expected Bugs

M F M F M F M F

if 0.827829 0.80507 0.630326 0.55446 0.632127 0.137192 0.80507 0.586889

for 0.607048 0.560593 0.567504 0.544222 0.567192 0.179577 0.560593 0.647172

else 0.603629 0.613961 0.488304 0.444405 0.463596 0.10035 0.613961 0.424223

break 0.490175 0.455766 0.320864 0.238629 0.312091 0.047219 0.455766 0.228462

while 0.487311 0.475132 0.425664 0.350213 0.337632 0.063801 0.475132 0.27802
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Table 4.10: List of top 5 programming features (Type: Keyword) correlated with the com-
plexity, difficulty, effort, and expected bugs (gender based dataset).

Features Corr-MVG Corr-Difficulty Corr-Effort Expected Bugs

M F M F M F M F

return 0.72278 0.75851 0.499921 0.495434 0.403828 0.099277 0.75851 0.374325

int 0.61539 0.580547 0.607819 0.564918 0.554707 0.146775 0.580547 0.558738

bool 0.536519 0.465603 0.405339 0.364009 0.323805 0.075057 0.465603 0.3189

false 0.495356 0.498857 0.376765 0.325201 0.320805 0.068957 0.498857 0.328998

true 0.455188 0.461288 0.330625 0.312386 0.281354 0.069546 0.371831 0.330530
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Table 4.11: List of top 10 programming features (Type: Operator) correlated with the com-
plexity, difficulty, effort, and expected bugs (gender based dataset).

Features Corr-MVG Corr-Difficulty Corr-Effort Expected Bugs

M F M F M F M F

{ 0.756108 0.805584 0.678357 0.697477 0.617441 0.228527 0.805584 0.705082

= 0.754728 0.704499 0.736812 0.664846 0.737431 0.182145 0.704499 0.696679

( 0.692031 0.731827 0.675768 0.660658 0.695603 0.1868 0.731827 0.745063

!= 0.618002 0.603739 0.475558 0.446522 0.408474 0.107157 0.603739 0.380252

++ 0.606217 0.564037 0.577188 0.519781 0.506134 0.145679 0.564037 0.514379

! 0.549109 0.466319 0.377375 0.320586 0.336797 0.075773 0.456242 0.356284

&& 0.52595 0.570535 0.44873 0.46076 0.391328 0.113068 0.570535 0.386531

. 0.492511 0.485082 0.56916 0.498274 0.621522 0.141522 0.485082 0.597269

|| 0.472578 0.48465 0.356146 0.346931 0.312361 0.102874 0.48465 0.313586

& 0.469704 0.529074 0.490674 0.482895 0.416663 0.112408 0.529074 0.422345
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Conclusion

In this work, one of our main goals was to explore complexity and programming features.

In addition, we tried to determine the correlation between 103 programming features and

complexity features. We also wanted to see how effective these features were in classifying

computer programs. Overall, we found that it is possible to classify computer programs

using 103 programming features, but not all features were equally effective. We showed

that the accuracy of using 103 features and 24 most effective features was almost the same in

the region-based classification. In the gender-based classification, we reduced 103 features

to 27 most effective features, and found almost the same accuracy. From the feature analysis

and machine learning experiments, some interesting observations were made:

• All four experiments demonstrate that the performance of machine learning models

was much higher on region-based data than on gender-based data. The higher per-

formance suggests that gender-based data has more variation than region-based data.

The gender-based dataset contains programs from all parts of the world, and the pro-

gramming learning style of programmers in each area may not be the same, so the

higher variation may be found in the gender-based dataset. Therefore, features usage

may also vary in those programs. Since the gender-based dataset may contain com-

puter programs from all over the world, the performance of machine learning models

also decreased.

• For both datasets, it was found that Random Forest and Bagging models performed

better than other machine learning models. It could be because both Random Forest
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and Bagging models use multiple machine learning algorithms’ prediction results. In

Section 2.2.2, it can be seen that Bagging uses multiple machine learning algorithms

for the predictions, and the most frequently predicted class becomes the Bagging

prediction. In Section 2.2.2, it is evident that Random Forest uses multiple decision

trees to predict a class and again selects the most frequently predicted class as its pre-

diction. Therefore, both Random Forest and Bagging models use multiple machine

learning algorithms to make predictions and select the class most often predicted.

Conversely, Decision Table, Logistic Regression, and Bayes Net (see Sections 2.2.2,

2.2.2, 2.2.2) use a single algorithm for the prediction. Decision Table creates a tree

to make its prediction, Logistic Regression creates a mathematical equation to make

its prediction, and Bayes Net creates a probabilistic model to make its prediction.

Since Random Forest and Bagging models use multiple machine learning algorithms

to make predictions, their performance was likely to be better than the other simpler

machine learning models.

• The performances of the machine learning models in region-based experiments (Ex-

periments 1 and 2) and gender-based experiments (Experiments 3 and 4) were almost

identical. The features sets were reduced and only the most important features were

used in Experiments 2 and 4. Although the reduced sets of features were used, the

change in the performance of the machine learning models was insignificant. This

demonstrates that it is possible to achieve almost the same performance by removing

irrelevant features in computer program classification.

• Regional and gendered differences in the frequency of features were found in the fea-

tures analysis section of our work. Although differences in the frequency of features

were found, machine learning models did not perform well in the computer program

classification, particularly for the gender-based program classification. Further analy-

sis may show a relationship between frequency differences and classification results.

In the case of the region-based and gender-based classifications, two most impor-
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tant features sets were found using the CFS Subset Evaluator. These features were

most likely to be responsible for the results of the classifications. Figure 5.1 shows

some top features and the frequency differences in the two datasets. There were 15

Figure 5.1: Comparison between feature frequency differences in gender and regional
datasets.

common features in the two top features sets. In the regional dataset, 14 out of 15

feature differences were higher. The small frequency difference of a feature in the

gender dataset means that the use of that feature was almost the same in both male

and female written programs, which might be a reason for the lower classification

results. The higher frequency difference of a feature in the regional dataset means

the use of that feature was either higher in South Asian programs or North American

programs. The larger differences might also be a reason for the comparatively good

classification results.

• South Asian programmers were found to use more increment-decrement operators,

comparison operators, and control flow features than North American programmers.
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South Asian programmers’ programs also appear to be more complex and difficult

than those of the North American programs. We might conclude that using more

increment-decrement operators, comparison operators, and control flow features may

increase the program complexity and difficulty of programs.
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5.1 Future Research Directions

Some of the potential future research directions of this work are given below:

• Only C ++ programs were used in this work. We would like to add some other popular

programming languages in future work.

• Only complexity features and 103 programming features were explored in this work.

We would like to explore some other features, such as object-oriented features and

aspect-oriented features in the future. It would be interesting to see the effectiveness

of object-oriented features and aspect-oriented features in the classification of com-

puter programs. In addition, we also would like to see if those two types of features

have any effect on computer program complexity.

• Our future plans also include feature analysis and program classification based on the

experience level and age of the programmers.

• In region-based dataset, most of the samples were from either India or USA. It would

be interesting to see if our experiment result changes for these two countries.

• We discussed that since the gender-based dataset may contain computer programs

from all over the world, the performance of machine learning models also decreased.

We would like to test our hypothesis by taking a single country from the gender-based

dataset.

• In text-mining and natural language processing tasks, one way to extract features is

to use n-grams. Features can be extracted by selecting sequence of tokens in this

method. In the future, it would be interesting to see how features from this method

perform in computer program classifications.

• Several features that appear to increase the complexity, difficulty, and expected bugs

of computer programs were found in this work. It would be very interesting to see

how we can reduce the program’s complexity by choosing alternative features.
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différence! text mining gender difference in french literature. Digital Humanities
Quarterly, 3(2), 2009.
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Appendix A

Detail of Features

The names of all the programming features with their meanings are given in Figures A.1
and A.2. The meanings were taken from the following resources:

• Operators Detail

– http://www.cplusplus.com/doc/tutorial/operators/

– https://en.cppreference.com/w/cpp/language/operator_assignment

– https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Style_
Conventions/Comments

– https://en.cppreference.com/w/cpp/language/operators

• Keywords Detail

– https://doc.bccnsoft.com/docs/cppreference_en/keywords/index.
html

Table A.1: C++ Operators and their meanings.

Description Keywords

Modulo %

Division /

Multiplication *

Subtraction -

Addition +
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A. DETAIL OF FEATURES

Increment ++

Decrement −−

Less than or equal to <=

Greater than >

Greater than or equal to >=

Less than <

Not equal to !=

Equal to ==

Comma ,

Member access (member of object) .

Member access (member of pointer) ->

Shift bits right >>

Shift bits left <<

Unary complement (bit inversion) ˜

Bitwise exclusive OR ˆ

Bitwise inclusive OR |

Bitwise AND &

Assignment =
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Single-line comments //

Multi-line comments /*

Multi-line comments //*

Array subscript [

Explicit type casting (parentheses) (

Curly brackets {

Boolean operation NOT !

Boolean logical operation AND &&

Boolean logical operation OR ||

Conditional ternary ?

Addition assignment +=

Subtraction assignment -=

Multiplication assignment *=

Division assignment /=

Modulo assignment %=

Bitwise right shift assignment >>=

Bitwise left shift assignment <<=

Bitwise AND assignment &=
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Bitwise XOR assignment ˆ=

Bitwise OR assignment |=

Table A.2: C++ Keywords and their meanings.

Description Keywords

Break out of a loop break

Jump to a different part of the program goto

Bypass iterations of a loop continue

Alternate case for an if statement else

Looping construct while

A block of code in a switch statement case

Execute code based off of different possible values for a variable switch

Looping construct for

Execute code based off of the result of a test if

Declare a wide-character variable wchar t

Create a function that can be overridden by a derived class virtual

Import complete or partial namespaces into the current scope using

Declare a class or undefined type typename
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Describes an object typeid

Execute code that can throw an exception try

The boolean value of true true

Declare protected members of a class protected

Override a const variable mutable

Make memory available delete

Throws an exception throw

Declare public members of a class public

Optimize calls to short functions inline

Cast from const variables const cast

A pointer to the current object this

Declare private members of a class private

Grant non-member function access to private data friend

Declare a class class

Create generic functions template

Create overloaded operator functions operator

The boolean value of false false

Handles exceptions from throw catch
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Perform a nonpolymorphic cast static cast

Allocate dynamic memory for a new variable new

Only use constructors when they exactly match explicit

Declare a boolean variable bool

Change the type of a variable reinterpret cast

Partition the global namespace by defining a scope namespace

Perform runtime casts dynamic cast

Insert an assembly instruction asm

Warn the compiler about variables that can be modified unexpectedly volatile

Declare functions or data with no associated data type void

Declare an unsigned integer variable unsigned

A structure that assigns multiple variables to the same memory location union

Create a new type name from an existing type typedef

Define a new structure struct

Create permanent storage for a variable static

Modify variable type declarations signed

Declare a short integer variable short

Return from a function return
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Request that a variable be optimized for speed register

Declare a long integer variable long

Declare a integer variable int

Declare a floating-point variable float

Tell the compiler about variables defined elsewhere extern

Create enumeration types enum

Declare a double precision floating-point variable double

Default handler in a case statement default

Declare immutable data or functions that do not change data const

Declare a character variable char

Declare a local variable auto
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Appendix B

Frequency of occurrence of features

Table B.1: List of the average frequency of all features used (region based dataset).

Features North America South Asia Difference Comparison

effort 778314.251108 446596.360192 855.504690 1.203974

timeRequired 43239.680617 24810.908900 47.528038 1.203974

programLength 915.756782 592.684385 0.375253 1.067417

−− 16.423186 5.125079 0.058421 2.213779

, 48.341325 27.589432 0.054533 1.210468

. 35.604890 18.989590 0.052664 1.295303

* 33.272713 19.616877 0.031642 1.171752

( 72.118612 46.877129 0.027660 1.062830

// 17.148107 9.484700 0.022182 1.249022

-> 10.958833 6.249369 0.012410 1.211450

const 3.663249 1.412618 0.010501 1.791510
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B. FREQUENCY OF OCCURRENCE OF FEATURES

== 7.656940 4.186435 0.010361 1.263538

if 11.638013 7.077287 0.009041 1.136029

& 5.104890 2.611514 0.008595 1.350428

˜ 1.223344 0.191325 0.006140 4.417274

this 2.181703 0.940536 0.005322 1.602499

false 1.423975 0.574763 0.003841 1.711556

case 1.739748 0.845268 0.003349 1.421901

unsigned 1.078233 0.402524 0.003215 1.850539

/* 1.847003 0.947003 0.003090 1.347391

double 1.821451 0.933754 0.003048 1.347605

/ 5.693375 3.619716 0.002944 1.086608

bool 1.342902 0.626341 0.002830 1.481191

true 1.374921 0.649211 0.002823 1.463084

try 0.711356 0.197319 0.002762 2.490552

break 1.617666 0.836278 0.002642 1.336336

new 2.185804 1.280757 0.002153 1.179022

numberDeliveredBugs 2.390292 1.449402 0.001896 1.139304

auto 0.468297 0.129022 0.001827 2.507466
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B. FREQUENCY OF OCCURRENCE OF FEATURES

static 0.533596 0.176656 0.001803 2.086708

void 3.681546 2.373028 0.001600 1.071778

return 5.790852 3.833912 0.001565 1.043465

? 0.690379 0.310883 0.001560 1.534151

throw 0.315931 0.075079 0.001345 2.907041

ˆ 0.332808 0.088801 0.001325 2.589127

| 0.830915 0.440694 0.001252 1.302558

default 0.367035 0.124132 0.001216 2.042684

char 2.472082 1.598580 0.001026 1.068331

delete 0.578864 0.293218 0.001002 1.363840

static cast 0.197634 0.054416 0.000771 2.509068

switch 0.326341 0.159306 0.000621 1.415197

float 1.417666 0.920820 0.000550 1.063596

catch 0.103312 0.017666 0.000504 4.040080

!= 1.836751 1.215773 0.000499 1.043699

reinterpret cast 0.094164 0.014669 0.000473 4.434676

|| 0.862618 0.552366 0.000409 1.078870

ˆ= 0.085331 0.016877 0.000395 3.492923
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enum 0.088328 0.025237 0.000336 2.417899

+= 1.164353 0.773186 0.000293 1.040347

register 0.168139 0.085174 0.000291 1.363763

&= 0.072871 0.024132 0.000246 2.086118

operator 0.303628 0.183754 0.000244 1.141517

continue 0.242429 0.142429 0.000235 1.175882

virtual 0.081861 0.032965 0.000222 1.715542

|= 0.116719 0.059779 0.000196 1.348871

signed 0.047950 0.017192 0.000150 1.926813

-= 0.210883 0.131073 0.000137 1.111491

volatile 0.024290 0.003628 0.000124 4.625277

short 0.143849 0.087066 0.000116 1.141394

asm 0.025552 0.008044 0.000090 2.194473

const cast 0.019558 0.005836 0.000072 2.315190

extern 0.083754 0.051577 0.000059 1.121830

mutable 0.010410 0.003312 0.000036 2.171390

explicit 0.013565 0.005678 0.000035 1.650448

typeid 0.004259 0.001262 0.000016 2.331448
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wchar t 0.022871 0.015615 0.000002 1.011860

LOC 154.131388 106.480126 0.000000 1.000000

typename 0.113407 0.078707 -0.000003 -1.004607

template 0.213565 0.148738 -0.000011 -1.008125

protected 0.010568 0.008991 -0.000016 -1.231509

dynamic cast 0.018612 0.016404 -0.000033 -1.275790

*= 0.118454 0.086120 -0.000040 -1.052390

//* 0.080915 0.061987 -0.000057 -1.108904

union 0.020189 0.020820 -0.000065 -1.492755

%= 0.006940 0.011987 -0.000068 -2.500193

<<= 0.020505 0.021451 -0.000068 -1.514294

private 0.090852 0.073975 -0.000105 -1.178618

>>= 0.018454 0.025710 -0.000122 -2.016667

friend 0.021767 0.030284 -0.000143 -2.013897

inline 0.095899 0.108202 -0.000394 -1.633216

goto 0.118770 0.124763 -0.000401 -1.520553

struct 0.838644 0.627760 -0.000454 -1.083524

/= 0.126656 0.140536 -0.000498 -1.606144
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B. FREQUENCY OF OCCURRENCE OF FEATURES

public 0.200631 0.222397 -0.000787 -1.604551

class 0.475710 0.424448 -0.000900 -1.291531

{ 19.316719 13.459148 -0.001074 -1.008572

>= 0.551577 0.509621 -0.001207 -1.337407

else 2.596845 2.004416 -0.001976 -1.117286

typedef 0.102524 0.299842 -0.002151 -4.233401

&& 1.336435 1.189590 -0.002501 -1.288463

using 0.665615 0.833912 -0.003513 -1.813509

namespace 0.573975 0.780757 -0.003608 -1.968999

<= 0.550946 0.826498 -0.004187 -2.171477

for 5.596530 4.326341 -0.004320 -1.118985

while 0.938959 1.137224 -0.004588 -1.753161

! 1.889117 1.817981 -0.004817 -1.393006

% 2.122713 2.052524 -0.005504 -1.399650

long 0.705363 1.167508 -0.006388 -2.395906

>> 0.795426 1.303312 -0.007079 -2.371762

- 7.081861 5.699211 -0.007577 -1.164903

MVG 16.772871 12.444953 -0.008054 -1.074010
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+ 5.127445 4.656151 -0.010461 -1.314464

++ 4.063565 4.111514 -0.012249 -1.464593

<< 11.025079 8.971767 -0.012727 -1.177928

> 7.089748 6.786120 -0.017733 -1.385521

= 25.148423 19.399842 -0.019030 -1.116632

< 9.393533 9.236120 -0.025795 -1.423256

int 15.797634 14.758517 -0.036109 -1.352300

[ 14.428391 14.995899 -0.047222 -1.504448

difficulty 54.734456 51.162911 -0.125377 -1.353060
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Table B.2: List of the average frequency of all features used (gender based dataset).

gender male female difference comparison

−− 13.731926 9.860562 0.023074 1.309330

( 68.006482 62.597972 0.010149 1.021432

== 7.965930 6.355493 0.008579 1.178437

& 4.807213 3.761675 0.005735 1.201521

if 10.382749 9.086588 0.005108 1.074313

void 3.507728 2.850424 0.003386 1.157006

const 3.426957 2.874855 0.002626 1.120758

case 1.437760 1.159880 0.001452 1.165447

auto 0.603789 0.388898 0.001352 1.459717

this 2.085258 1.801396 0.001204 1.088353

unsigned 0.954296 0.751537 0.001102 1.193856

static 0.505900 0.336048 0.001056 1.415411

- 6.514875 5.986040 0.001053 1.023259

long 0.662623 0.485458 0.001040 1.283318

// 14.859232 13.841449 0.000977 1.009332

true 1.252950 1.058169 0.000907 1.113264
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B. FREQUENCY OF OCCURRENCE OF FEATURES

% 2.066811 1.824996 0.000894 1.064776

/* 1.487286 1.307961 0.000684 1.069102

throw 0.271232 0.170683 0.000638 1.494067

! 1.767991 1.580522 0.000618 1.051717

template 0.270899 0.178660 0.000575 1.425605

false 1.300150 1.151903 0.000533 1.061199

+= 0.943493 0.819345 0.000512 1.082658

register 0.157886 0.080937 0.000511 1.834070

default 0.344025 0.257271 0.000501 1.257241

| 0.599801 0.504404 0.000450 1.118016

return 5.433771 5.053016 0.000422 1.011044

break 1.250956 1.125976 0.000380 1.044557

MVG 15.394050 14.426791 0.000353 1.003234

switch 0.296493 0.241150 0.000285 1.155970

typedef 0.152568 0.107030 0.000275 1.340223

|= 0.119827 0.078444 0.000259 1.436198

class 0.515706 0.451886 0.000249 1.072982

/= 0.167193 0.124979 0.000244 1.257767
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enum 0.095230 0.058002 0.000239 1.543654

static cast 0.171680 0.133788 0.000209 1.206485

virtual 0.075453 0.046867 0.000182 1.513661

bool 1.207579 1.113346 0.000167 1.019776

extern 0.081270 0.055177 0.000161 1.384814

&= 0.052019 0.028586 0.000154 1.710913

goto 0.065980 0.043377 0.000141 1.430119

typename 0.139937 0.116005 0.000118 1.134162

reinterpret cast 0.069304 0.050524 0.000111 1.289674

friend 0.027090 0.013129 0.000093 1.939977

const cast 0.019777 0.006648 0.000090 2.796976

public 0.204088 0.180322 0.000087 1.064114

volatile 0.020941 0.009141 0.000080 2.153887

asm 0.028918 0.016952 0.000077 1.603861

-= 0.176832 0.158385 0.000060 1.049702

? 0.569553 0.528004 0.000057 1.014183

signed 0.051022 0.041050 0.000052 1.168594

private 0.081436 0.069802 0.000051 1.096902
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<<= 0.019113 0.011966 0.000045 1.501755

wchar t 0.018946 0.012631 0.000039 1.410260

short 0.144923 0.131295 0.000038 1.037787

catch 0.096061 0.086256 0.000031 1.047073

try 0.571880 0.534153 0.000027 1.006604

explicit 0.010470 0.006482 0.000025 1.518647

protected 0.013462 0.009473 0.000024 1.336107

typeid 0.008808 0.005817 0.000019 1.423631

dynamic cast 0.027921 0.024597 0.000013 1.067255

>>= 0.017783 0.015290 0.000011 1.093495

LOC 140.597308 132.189297 0.000000 1.000000

union 0.011468 0.011468 -0.000005 -1.063606

ˆ= 0.020276 0.019943 -0.000007 -1.046138

%= 0.007479 0.011135 -0.000031 -1.583534

mutable 0.007977 0.016952 -0.000072 -2.260279

inline 0.088084 0.092903 -0.000076 -1.121795

&& 1.317434 1.251122 -0.000094 -1.010070

>= 0.514376 0.501246 -0.000133 -1.036456
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*= 0.094565 0.108526 -0.000148 -1.220630

continue 0.183314 0.198438 -0.000197 -1.151357

//* 0.048363 0.072461 -0.000204 -1.593572

namespace 0.570218 0.566063 -0.000227 -1.055856

˜ 0.368955 0.378095 -0.000236 -1.089954

struct 0.680406 0.678744 -0.000295 -1.061008

|| 0.692870 0.690710 -0.000297 -1.060290

Expected Bugs 2.055864 1.980541 -0.000360 -1.024637

float 1.259099 1.236995 -0.000402 -1.044934

using 0.606282 0.628719 -0.000444 -1.102967

double 1.785940 1.743394 -0.000486 -1.038268

char 2.348845 2.272727 -0.000487 -1.029138

else 2.287519 2.225860 -0.000568 -1.034937

!= 1.563902 1.548945 -0.000594 -1.053434

ˆ 0.198604 0.267243 -0.000609 -1.431196

delete 0.495596 0.553266 -0.000660 -1.187372

operator 0.291341 0.380256 -0.000804 -1.388210

<= 0.518697 0.612764 -0.000946 -1.256493
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>> 0.728270 0.837959 -0.001159 -1.223802

while 0.868041 0.980057 -0.001240 -1.200858

> 6.914575 6.722287 -0.001673 -1.034028

{ 17.816354 17.015124 -0.001999 -1.015774

for 4.733588 4.780622 -0.002497 -1.074174

new 1.902775 2.197441 -0.003090 -1.228317

+ 4.595313 4.764168 -0.003356 -1.102688

++ 3.434934 3.882001 -0.004936 -1.202037

-> 10.232009 10.326409 -0.005343 -1.073419

< 9.037394 9.270068 -0.005849 -1.090989

= 23.239488 22.661958 -0.006145 -1.037174

/ 4.830647 5.798737 -0.009509 -1.276759

. 29.114010 28.812697 -0.010892 -1.052598

int 14.109024 14.879009 -0.012208 -1.121651

<< 8.944823 10.078777 -0.012625 -1.198441

[ 12.854246 15.290344 -0.024244 -1.265177

difficulty 52.322587 52.904981 -0.028076 -1.075445

, 40.341699 42.988865 -0.038276 -1.133398
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* 26.986040 33.460861 -0.061190 -1.318799

timeRequired 36225.642496 41319.617340 -54.923838 -1.213168

effort 652061.564934 743753.112126 -988.629079 -1.213168
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