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Abstract 

The interactions of atmospheric, landscape, hydrologic and agricultural processes on 

natural resources and greenhouse gas (GHG) emissions were assessed for a mountain 

watershed in south central British Columbia, Canada. A novel solar radiation model which 

uses the most available input data was developed in order to model solar radiation for the 

study watershed as input to the Generate Earth Systems Science (GENESYS) 

hydrometeorological model. Historical and future water supply and vegetation water 

demand under a range of climate scenarios using GENESYS were modelled for the 

watershed and the results revealed possible future changes in water supply and demand that 

are likely to stress future water resource management in the watershed. The GENESYS and 

Holos models were linked to estimate GHG emissions (CO2, CH4, and N2O) and soil carbon 

change for both crop and animal production processes in a simulated farm in the watershed 

under different climate and management scenarios and the results indicated that climate 

change is likely to affect future agricultural GHG emissions and suggested the available 

mitigation options.  
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Chapter 1 : Introduction 

This work assesses the interactions of atmospheric, landscape, hydrologic and 

agricultural processes on natural resources and greenhouse gas (GHG) emissions for a 

mountain watershed in south central British Columbia. GHGs are atmospheric trace gases 

that absorb long-wave radiation emitted from the Earth's surface, thereby warming the 

lower atmosphere. Primary GHGs include carbon dioxide (CO2), methane (CH4) and 

nitrous oxide (N2O).  

In mountain watersheds of western North America, water supply and demand are 

largely driven by temperature, humidity, precipitation, snow accumulation and melt, and 

by vegetation evapotranspiration (Barnett et al., 2005). The variations in water supply and 

demand are highly correlated with the energy availability especially energy gained from 

shortwave and longwave radiation exchanges (Sheppard, 1996). The amount of solar 

radiation received by the Earth's surface is necessary information for different 

hydrometeorological models. Collecting radiation data in most countries is costly because 

of the equipment maintenance and the data processing and so solar radiation data are 

usually only collected by a few meteorological stations (McKenney et al., 2008). There 

have always been different choices of solar radiation models, but finding models within the 

usual range of accuracy, with lower number of input parameters, with more available input 

data, and suitable for different climate conditions is still difficult.  

Climate change as a result of increasing atmospheric CO2 concentration and other 

GHGs will have a significant impact on mountain hydrology and consequently water 

supply and demand in areas with substantial agriculture (Barnett et al., 2005; Neilsen et al., 
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2006). These changes may result in substantial changes in GHG absorption, generation and 

energy, water, and GHG exchange between land cover systems and the atmosphere.  

Southern British Columbia, Canada, is one of the regions that is expected to 

experience higher air temperature, earlier snowmelt, lower snow water equivalent during 

the spring, more precipitation as rainfall than snow, more crop water requirements, longer 

growing season period, more winter runoff and less summer runoff, lower average peak 

stream discharge, higher winter and spring stream flow, and lower summer stream flow as 

result of increasing atmospheric GHG concentrations (Leith and Whitfield, 1998; Hamlet 

and Lettenmaier, 1999; Cohen et al., 2000; Morrison et al., 2002; Cohen et al., 2006; Merritt 

et al., 2006; Neilsen et al., 2006; Jost and Weber, 2012; Shrestha et al., 2012; Schnorbus et 

al., 2014; Najafi et al., 2017). 

Significant amounts of anthropogenic GHGs are released by agroecosystems to the 

Earth's atmosphere, which is about 8% of the total GHG emissions in Canada, excluding 

energy use-related CO2 emissions (Janzen et al., 2006). Agricultural soils also play a role 

as a source of carbon by storing carbon (Janzen et al., 2006). There are also many cost-

effective ways to mitigate agricultural GHG emissions that use current technologies and 

opportunities and can be applied rapidly (Burney et al., 2010). How agriculture will impact 

GHG emissions is reasonably well known, but how GHG increases and how associated 

atmospheric change will change agricultural systems is still unclear (IPCC, 2014).  

Mitigation potential in the agriculture sector can be determined through two different 

pathways; elimination of GHG from the atmosphere, or reduction of GHG emissions by 

choice of management in both crops and livestock; however, costs and potentials are 
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distributed differently among regions (IPCC, 2014). There are also some barriers like 

climate and non-climate policies, social, economic, institutional, ecological, technological, 

and educational barriers that increase the gap between actual and potential mitigation 

options (Smit and Skinner, 2002). However, more research and development in mitigation 

options in agriculture can remove the technological barriers (IPCC, 2014). Furthermore, on 

the global scale, some mitigation options are more applicable than others but in the regional 

scale, this may be different (IPCC, 2014). 

There is a clear need to assess climate change impacts on water supply and demands, 

and on agriculture-derived GHG emissions for different geographic regions and 

agricultural systems. These assessments are needed for local sectors to provide the related 

information necessary for mitigation practices (Stocker, 2014). The Generate Earth 

Systems Science input (GENESYS) spatial hydrometeorological model investigates 

current and future hydrometeorological conditions (MacDonald et al., 2009). The 

GENESYS model estimates hydrometeorological variables by applying a series of 

processed-based routines and commonly available meteorological data. It has been applied 

in studies of climate change impact assessments on hydrometeorology in western North 

American watersheds for different climate change scenarios (Lapp et al., 2005; MacDonald 

et al., 2009; Larson et al., 2011; MacDonald et al., 2011; MacDonald et al., 2012; 

MacDonald et al., 2013). The changes in hydrometeorological conditions are then applied 

to estimate climate-induced changes in GHG emissions (CO2, CH4 and N2O) and soil 

carbon stocks for both crop and animal production processes. The Holos GHG emissions 

estimation model was designed by scientists at Agriculture and Agri-Food Canada to 

estimate GHG emissions and soil carbon stock for Canadian farms, including both animal 
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management and cropping systems (Little et al., 2008). The model has been applied to 

estimate farm GHG emissions and also assess the impacts of management practices 

changes on farm GHG emissions (Janzen et al., 2006; Little et al., 2008; Stewart et al., 

2009; Beauchemin et al., 2010; Beauchemin et al., 2011; Bonesmo et al., 2012; Kröbel et 

al., 2012; Mc Geough et al., 2012; Hünerberg et al., 2014; Chai et al., 2016; Kröbel et al., 

2016; Legesse et al., 2016; Alemu et al., 2017a; Alemu et al., 2017b; Guyader et al., 2017).  

The Olalla watershed is a subwatershed in the Regional District of Okanagan-

Similkameen (RDOS), southern British Columbia, Canada with the total drainage area of 

about 181 km2 and elevation range from 476 to 2235 meters above sea level (m a.s.l).  The 

watershed has a generally dry climate, and is mostly covered by Interior Douglas Fir (IDF) 

(Regional District of Okanagan-Similkameen, 2011a; Hectares BC, 2015). The agricultural 

area in the watershed consists of un-irrigated rangeland (7.3% of the watershed area) and 

irrigated cropland (1.8% of the watershed area) (Hectares BC, 2015). Cattle ranching is the 

dominant agricultural activity in this area and 78% of the irrigated land is used to grow 

perennial hay and pasture, and 3% to grow annual field crops. Fruit production is the other 

important agricultural activity and 17% of the irrigated land is used to grow fruits. The 

remaining 2% of the irrigated area is for vegetable production (Statistics Canada, 2006). 

The irrigation season in the watershed is from April to the end of September for most 

irrigation users (Regional District of Okanagan-Similkameen, 2011b) and irrigation 

licences use wells close to the Keremeos Creek and its tributaries inside the Olalla 

watershed (BC Government, 2018).  
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1.1. Thesis objectives 

This research has four main objectives to better understand the impacts of climate 

change on water supply and demand, and agricultural GHG emissions in the Olalla 

watershed.   

1. Model solar radiation using an accurate proposed solar radiation model which uses 

the most available input data. 

2. Model historical and future water supplies under a range of climate scenarios using 

the GENESYS hydrometeorological model. 

3. Estimate historical vegetation water requirement and assess climate-driven changes 

in that parameter for a range of future climate scenarios using GENESYS.  

4. Link the GENESYS and Holos GHG emissions estimation models to estimate CO2, 

CH4 and N2O emissions and soil carbon change for agricultural - both crop and 

animal production - processes under different climate and management scenarios.  

1.2. Thesis structure 

Chapter 1 is the introduction chapter of the Thesis. The objectives noted above are 

presented in three following chapters (Figure 1.1). The first objective is presented in 

Chapter 2, the second and third objectives are presented in Chapter 3 and the fourth 

objective is presented in Chapter 4. Chapter 5, the conclusion and summary of the Thesis, 

outlines the main findings of the research.  
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Figure 1.1: Diagram representing Chapters 2, 3, and 4 of the Thesis and the way that they 

are linked 
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Chapter 2 : A novel time-effective model for daily distributed solar radiation 

estimates across variable terrain 

2.1. Introduction 

Solar radiation is a driver of photosynthesis and evapotranspiration, and accurate 

estimation of spatially continuous long-term solar radiation data is necessary information 

for many hydrometeorological models (Kodysh et al., 2013; Aladenola and Madramootoo, 

2014). 

Collecting radiation data in most countries is costly, difficult, and involves 

uncertainties, so solar radiation data are usually only recorded by a few meteorological 

stations (McKenney et al., 2008). For this reason, over the last few decades, many models 

have been developed for representing the spatio-temporal variability of global solar 

radiation including recent satellite-based models, or predictive models based on 

correlations of solar radiation with sunshine duration, air temperature, cloud observations, 

and other weather data (Table 2.1). These spatial models are based on solar geometries and 

take into account site latitude, local topography, and shadowing effects. However, they use 

different methods to calculate solar radiation, and they need different data for implementing 

atmospheric attenuation (Table 2.1). 
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Table 2.1: A brief summary of the spatially-based solar radiation models, their errors and 

testing locations. 

Model MBE 

(%) 

Main inputs Testing 

locations 

Bird (Bird and Hulstrom, 1981; 

Badescu et al., 2012; Gueymard 

and Ruiz-Arias, 2015) 

8.0 Air mass, surface albedo, surface air 

pressure, precipitable water vapor, 

ozone 

Sun-photometric 

sites  

CEM (Atwater and Ball, 1978; 

Badescu et al., 2012) 

5.0 Surface albedo, surface air pressure, 

precipitable water vapor, cloud 

observations 

USA  

ESRA (Rigollier et al., 2000; 

Badescu et al., 2012; Gueymard 

and Ruiz-Arias, 2015) 

5.0 Surface air pressure, Linke index Europe 

Ineichen (Ineichen, 2008; 

Gueymard and Ruiz-Arias, 2015) 

2.0 Atmospheric aerosol optical depth,  

precipitable water vapor 

Europe 

METSTAT (Maxwell, 1998; 

Badescu et al., 2012; Gueymard 

and Ruiz-Arias, 2015) 

5.0 Cloud observations, aerosol optical 

depth, precipitable water vapor, ozone, 

surface albedo, snow depth, days-

since-last snowfall, atmospheric 

pressure 

USA 

MRM5 (Gul et al., 1998; Muneer 

et al., 1998; Badescu et al., 2012; 

Gueymard and Ruiz-Arias, 2015) 

5.0 Sunshine fraction, dry- and wet-bulb 

temperature 

UK, Japan, 

Europe 

NSRDB – SUNY (Nottrott and 

Kleissl, 2010) 

5.0 Meteorological satellite images USA 

Paulescu (Paulescu and Schlett, 

2003; Badescu et al., 2012; 

Gueymard and Ruiz-Arias, 2015) 

-5.0 Surface air pressure, precipitable water 

vapor, ozone 

Sun-photometric 

sites 

RES2 81 (Gueymard, 2008; 

Gueymard and Ruiz-Arias, 2015) 

5.0 Precipitable water vapor, ozone, 

surface albedo, aerosol albedo, 

atmospheric pressure 

Sun-photometric 

sites 

r.sun (Šúri and Hofierka, 2004; 

Ruiz‐Arias et al., 2009) 

-4.5 Linke index Spain 

Solei32 (Miklánek and Mészároš, 

1993; Ruiz‐Arias et al., 2009) 

-4.5 Linke index Spain  

Solar Analyst (Dubayah and Rich, 

1995; Fu and Rich, 2002; Ruiz‐
Arias et al., 2009) 

-25.0 Direct atmospheric transmissivity, 

diffuse fraction (default values) 

Spain 

SRAD (Wilson and Gallant, 2000; 

Ruiz‐Arias et al., 2009) 

10.0 Monthly average sunshine fraction and 

cloudiness data 

Spain 

Zelenka (Zelenka et al., 1999) 10.0 Meteorological satellite images Switzerland, 

USA 

Atmospheric attenuation often varies substantially with surface radiation. However, 

most locations lack long-term radiation, cloudiness, and/or satellite data for many climate 

stations, which are needed in order to identify and estimate atmospheric attenuation. For 

example, models such as r.sun (Šúri and Hofierka, 2004; Ruiz‐Arias et al., 2009), Solei-32 

(Miklánek and Mészároš, 1993; Ruiz‐Arias et al., 2009) and, ESRA (Rigollier et al., 2000; 
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Badescu et al., 2012; Gueymard and Ruiz-Arias, 2015) calculate the overcast radiation from 

clear sky values and a clear-sky index called Linke (Table 2.1, (Kasten and Czeplak, 1980; 

Beyer et al., 1996)). The Linke must be derived from one of the three methods: 1) from the 

ratio between measured global radiation and computed values of clear sky global radiation, 

2) from other climatologic data such as cloudiness (Kasten and Czeplak, 1980), or 3) 

directly from short-wave surface irradiance measured by satellites (Beyer et al., 1996). 

Although satellite-based models may be suitable for solar radiation estimation in large 

regions, their disadvantages are high cost and lack of historical records, because these 

methods are comparably new (Olatomiwa et al., 2015). 

Sunshine duration is the most widely used meteorological parameter for solar 

radiation estimation, in the literature. This variable is more available and gives relatively 

better results than other variables (Sen, 2008). However, air temperature data can be used 

instead, when the sunshine duration is not available at a specific location and time period 

(Yacef et al., 2014) as air temperature data have been collected at many locations globally, 

and generally for a much longer period relative to any meteorological records (Gago et al., 

2011). However, using only air temperature, or air temperature along with wind speed or 

relative humidity data, to predict solar radiation may result in better estimation of solar 

radiation in clear sky conditions (higher solar radiation values) compared with cloudy sky 

conditions (lower solar radiation values) (Ogliari et al., 2013; Quan et al., 2013).  

Furthermore,  empirical models, either unified and continuous or as combinations of 

empirical models for certain ranges, can estimate solar radiation for specific climate or 

specific region, because they use empirical coefficients estimated using correlations 

between global solar radiation and other climate variables for that specific area (Yacef et 
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al., 2014). Accurate and simple models that are applicable for different types of climates or 

regions have been used in this way. Additionally, when hourly or other short-term 

estimation of solar radiation is necessary, it may be more practical to start with daily 

estimations and calculate hourly values form daily values (Collares-Pereira and Rabl, 

1979).  

According to the spatially-based solar radiation models’ average uncertainty reported 

in Table 2.1, all these models are comparable with the measured values with a mean bias 

error (𝑀𝐵𝐸) of about -5% to 10% except Solar Analyst (Dubayah and Rich, 1995; Fu and 

Rich, 2002; Ruiz‐Arias et al., 2009) that shows an underestimation of about 25% relative 

to the corresponding observed values and also its reliability decreases in cloudy sky 

conditions. Myers (2005) reviewed uncertainties in several solar radiation models and 

concluded that the best model uncertainties are representing the uncertainties in existing 

measured data which is corresponded to the mean absolute bias error (𝑀𝐴𝐵𝐸) of 25 to 100 

Wm-2. However, developing models with fewer input parameters under different climate 

conditions remains a challenge (Myers, 2005). Therefore, a daily global solar radiation 

model, within the usual range of accuracy, with lower input parameters, with more available 

input data, and suitable for different climate conditions can be usefully applied for accurate 

estimation of solar radiation necessary for different studies including hydrometeorological 

modeling. 

Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009), 

which has been implemented as a tool in ESRI ArcGIS, estimates solar radiation for any 

geographical locations specified by a latitude and longitude or for any study area as a sum 

of direct radiation (𝐷𝑅) and diffuse radiation (𝐹𝑅) (Fu and Rich, 2002). More specifically, 
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Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) 

considers atmospheric attenuation by using direct atmospheric transmissivity (𝜏), defined 

as the proportion of extraterrestrial radiation (𝐻0) transmitted as direct radiation at sea level 

along the shortest atmospheric path, plus diffuse fraction (𝐾𝐷), which is the fraction of 

global normal radiation flux that is diffused (Fu and Rich, 2002).  

In the current chapter, we present a daily solar radiation estimation method which 

uses ambient air temperature, a digital elevation model (DEM), latitude and longitude of 

the study location, time of year, and monthly radiation estimates from Solar Analyst (𝐺𝑅𝑚
) 

(Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) in order to estimate 

solar radiation for the hydrometeorological modelling presented in Chapter 3. Our objective 

is to provide improved, spatially and more widely applicable estimation by using air 

temperature-based empirical models for atmospheric transmissivity (𝐾𝑇) and diffuse 

fraction to vary total monthly radiation estimation from Solar Analyst (Dubayah and Rich, 

1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) and then calculate total daily radiation 

(𝐺𝑅𝑑𝑇𝑅𝐴𝐷
) as a fraction of total monthly radiation by applying a daily transmissivity-based 

ratio by using the TRAD (temperature-estimation of radiation) daily model, as air 

temperature data is readily available at most locations on the planet. Our model stems from 

the observation that the difference between maximum and minimum air temperature 

(∆𝑇) has a strong correlation with daily average shortwave radiation (Bristow and 

Campbell, 1984). Furthermore, hourly solar radiation can be decomposed from the daily 

values by using a ratio between daily and hourly radiation (Liu and Jordan, 1960; Tham et 

al., 2010).  
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2.2. Methods 

2.2.1. The TRAD (temperature-estimation of radiation) daily model 

Our presented TRAD daily model assumed that the daily variations in irradiation for 

each month are a function of daily variations in atmospheric transmissivity, the proportion 

of daily irradiance reaching the Earth's surface to the daily extra-terrestrial insolation, in 

the same month. Irradiation is the amount of solar energy arriving on a unit area over a 

stated time interval (Wh∙m-2) (Page, 1986). We proposed the TRAD model to estimate daily 

irradiation values in any ground station by Equation 2.1: 

𝐺𝑅𝑑𝑇𝑅𝐴𝐷  = [
𝐾𝑇𝑑𝐵−𝐶

∑ 𝐾𝑇𝑑𝐵−𝐶

𝑛
𝑑=1  ⁄ ] × 𝐺𝑅𝑚

                                                       (2.1) 

where, 𝐺𝑅𝑑𝑇𝑅𝐴𝐷  is irradiation for the day in question (Wh∙m-2), 𝐾𝑇𝑑𝐵−𝐶
 is the 

corresponding atmospheric transmissivity of that day calculated using the Bristow and 

Campbell model (Bristow and Campbell, 1984), using maximum and minimum air 

temperature inputs, ∑ 𝐾𝑇𝑑𝐵−𝐶

𝑛
𝑑=1  is sum of all daily atmospheric transmissivity values in 

the corresponding month, and 𝐺𝑅𝑚
 is total monthly irradiation (Wh∙m-2) from Solar Analyst 

(Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009). 𝐺𝑅𝑚
 is estimated 

using a DEM, latitude and longitude of the study location, average annual 𝐾𝑇𝑑𝐵−𝐶
 at sea 

level (𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)
) (Bristow and Campbell, 1984), and average annual daily diffuse fraction 

calculated by Carroll model (𝐾𝐷𝑑𝐶𝑎
) (Carroll, 1985).  

Values of  𝐺𝑅𝑑𝑇𝑅𝐴𝐷  (Wh∙m-2) were calculated for different study locations for their 

available observed daily irradiance (W∙m-2) record periods. Daily irradiance (W∙m-2), the 
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instantaneous energy received on a unit area per unit time (Page, 1986), was calculated 

from  𝐺𝑅𝑑𝑇𝑅𝐴𝐷  (Wh∙m-2). The following section reviews daily atmospheric transmissivity 

and diffuse fraction models (Bristow and Campbell, 1984; Carroll, 1985) and also Solar 

Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) which was 

used in the daily irradiation estimation using TRAD. 

2.2.2. Daily atmospheric transmissivity and diffuse fraction models 

Daily atmospheric transmissivity using the Bristow and Campbell (1984) model was 

used to estimate daily diffuse fraction using Carroll’s model (Carroll, 1985). 𝐾𝑇𝑑𝐵−𝐶
 and 

𝐾𝐷𝑑𝐶𝑎
 were then used to calculate average annual 𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)

 and average annual 𝐾𝐷𝑑𝐶𝑎
 in 

order to estimate 𝐺𝑅𝑚
 values using Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 

2002; Ruiz‐Arias et al., 2009) (Equation 2.1). Then 𝐾𝑇𝑑𝐵−𝐶
 and 𝐺𝑅𝑚

 were used in the 

TRAD model to calculate  𝐺𝑅𝑑𝑇𝑅𝐴𝐷  . 

Bristow and Campbell (1984) proposed the following model for daily atmospheric 

transmissivity using the difference between maximum and minimum air temperature (∆𝑇): 

𝐾𝑇𝑑𝐵−𝐶
= 𝐴 × (1 − exp(−𝐵 × ∆𝑇𝐶))                                                               (2.2)    

In this equation, 𝐴, 𝐵, and C are empirical coefficients. Although empirical in nature, 

these coefficients represent the physics involved in the relationship, where 𝐴 represents the 

maximum clear sky atmospheric transmissivity characteristics of the study region, which 

varies with elevation and pollution content of the air. Bristow and Campbell (1984) 

developed and tested their method using data from three different sites in the northwestern 
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United States and showed that this method provides accurate estimates of daily atmospheric 

transmissivity at these stations. Thornton and Running (1999) reformulated the Bristow-

Campbell model (Bristow and Campbell, 1984) using daily measured temperature, 

humidity, and precipitation in order to calculate daily solar radiation in 40 stations in 

locations with different climates. Their model gives a spatially and temporally variable 

estimation of 𝐴 (Thornton and Running, 1999). However, Bristow and Campbell (1984) 

used a constant value of 𝐴 over all their study stations. 𝐵 and 𝐶 display the partitioning of 

energy which is characteristic of the region of interest. Bristow and Campbell (1984) found 

it adequate to hold 𝐶 constant at 2.4 for their study sites and consider 𝐵 related to monthly 

mean ∆𝑇 via Relation 2.3: 

𝐵 = 0.036 × exp(−0.154 × ∆𝑇̅̅̅̅ )                                                                    (2.3) 

In our study 𝐴, 𝐵 and 𝐶 were applied as they were used in Bristow and Campbell 

(1984). 𝐾𝑇𝑑𝐵−𝐶
 was corrected based on elevation of the stations by the following equation, 

in order to use in Solar Analyst to estimate 𝐺𝑅𝑚
(Dubayah and Rich, 1995; Fu and Rich, 

2002; Ruiz‐Arias et al., 2009): 

𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)
= 𝐾𝑇𝑑𝐵−𝐶

− (𝑡𝑙𝑎𝑝𝑠𝑒 × 𝑍 )                                                               (2.4) 

where 𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)
 is atmospheric transmissivity at sea level, 𝑡𝑙𝑎𝑝𝑠𝑒  is typically equal 

to 0.00008 m-1 and 𝑍 is elevation in m above the sea level (Hungerford et al., 1989; Wilson 

and Gallant, 2000)  

Liu and Jordan (1960) suggested that diffuse fraction should be a well-behaved 

function atmospheric transmissivity. Carroll (1984) proposed two relations for diffuse 
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fraction based on atmospheric transmissivity. We used atmospheric transmissivity from 

Bristow and Campbell (1984) model in Carroll’s model (Carroll, 1985). The following 

equations shows how we estimated diffuse fraction using Carroll’s model (Carroll, 1985) 

and 𝐾𝑇𝑑𝐵−𝐶
. 

for cloud-free conditions:          𝐾𝐷𝑑𝐶𝑎
= 0.88 − 1.024 × 𝐾𝑇𝑑𝐵−𝐶

                     (2.5)                

and for cloudy conditions:         𝐾𝐷𝑑𝐶𝑎
= 𝑀𝑖𝑛 {

1.11 − 1.16 × 𝐾𝑇𝑑𝐵−𝐶

𝑜𝑟
1.0

             (2.6) 

We applied the thresholds proposed by Colli et al. (2016) for classification of daily 

average sky conditions of a ground station (Table 2.2). The model was evaluated for three 

different groups of days based on different sky conditions including cloudy days, partly 

cloudy days, and sunny or clear days (Table 2.2). 

Table 2.2: Daily atmospheric transmissivity thresholds for day classification (Colli et al., 

2016). 

Daily atmospheric transmissivity Day classification 

daily atmospheric transmissivity≤0.30 cloudy 

0.30 < daily atmospheric transmissivity < 0.50 partly cloudy  

daily atmospheric transmissivity≥ 0.50  sunny and clear 

2.2.3. Application of Solar Analyst     

Total annual global solar radiation in monthly intervals (𝐺𝑅𝑚
) was calculated using 

Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) by a 

DEM, latitude and longitude of the study location, and estimates of average annual 

𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)
 and average annual 𝐾𝐷𝑑𝐶𝑎

. 



16 
 

Four calculations are contained in the upward-looking hemispherical algorithm 

applied in Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 

2009): viewshed, sunmap, skymap calculation, and a concluding calculation that uses the 

previous three calculations to estimate a solar radiation value. The total amount of global 

solar radiation in Wh∙m-2 is obtained by the sum of direct solar radiation (Wh∙m-2) for all 

sunmap sectors and diffuse solar radiation for all skymap sectors (Wh∙m-2) (Fu and Rich, 

2002). The direct solar radiation from a sunmap sector with a centroid at solar zenith angle 

(degrees) and solar azimuth angle (degrees) is a function of the solar constant value (1367 

W∙m-2), 𝜏, the elevation above sea level (meters), the time duration represented by the sky 

factor, the surface zenith angle (degrees), the surface azimuth angle (degrees), and the gap 

fraction for the sunmap sector. Correspondingly, diffuse solar radiation for each sky sector 

at the same centroid is related to diffuse fraction, the elevation above sea level (meters), the 

bounding zenith angles of the sky sector (degrees), the number of azimuthal divisions in 

the sky map, the time interval for analysis, fraction of visible sky for the sky sector (0-1), 

and the angle of incidence between the centroid of the sky sector and the intercepting 

surface (degrees). However, providing a correct value for 𝜏 is difficult because it is sensitive 

to the presence of clouds (Ruiz‐Arias et al., 2009). For this reason, we applied 𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)
 

and 𝐾𝐷𝑑𝐶𝑎
 in the calculation of 𝐺𝑅𝑚

 using Solar Analyst (Dubayah and Rich, 1995; Fu and 

Rich, 2002; Ruiz‐Arias et al., 2009).  
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2.2.4. Observed daily atmospheric transmissivity 

In the present study, observed daily atmospheric transmissivity on a horizontal 

surface was calculated using Equation 2.7, which defines atmospheric transmissivity 

(𝐾𝑡) as a ratio of a day’s radiation (𝐺𝑅) to that day’s extra-terrestrial radiation (𝐻0). 

𝐾𝑡 =
𝐺𝑅

𝐻0
                                                                                                                                (2.7) 

The value of 𝐺𝑅 (Wm-2) is determined from the available pyranometer 

measurements, but 𝐻0 (Jm-2) is calculated by the following method (Spencer, 1971): 

𝐻0 =
24×3600𝐺𝑠𝑐

𝜋
 (1 + 0.033 cos

360𝑛

365
) × (cos ∅ cos 𝛿 sin 𝜔𝑠 +

𝜋𝜔𝑠

180
sin ∅ sin 𝛿)       (2.8)             

𝐺𝑠𝑐 is the solar constant (1367 Wm-2), 𝐷 is Julian date, and ∅ is the latitude. 𝐻0 

then converted to Wm-2 to use in Equation 2.7.  

The declination 𝛿 is found from the equation below (Spencer, 1971) (23.45 is the 

Earth's rotational axis vector to the ecliptic plane in degrees): 

𝛿 = 23.45 sin (360
284+𝐷

365
)                                                                                 (2.9) 

The sunset hour angle 𝜔𝑠 in degrees  from  horizontal is calculated using the 

following equation (Spencer, 1971): 

           cos 𝜔𝑠 = − tan ∅ tan 𝛿                                                                                                  (2.10) 
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2.2.5. Hourly solar radiation model 

Accurate hourly solar radiation data are necessary in many studies, for example in 

solar photovoltaic projects. We can apply a ratio to the estimated daily solar radiation 

values from the previous steps (Equation 2.11) and decompose the hourly solar radiation 

values. Liu and Jordan (1960) improved the method of Whillier (Whillier, 1956) to 

calculate the ratio of hourly to daily global solar radiation using a set of regression curves. 

Collares-Pereira and Rabl (1979) validated their approach and presented Equation 2.11 for 

estimating this ratio, which only needs site latitude and day number; 

𝑟𝐺 =
𝜋

24
(𝑎 + 𝑏 cos 𝜔)

cos 𝜔−cos 𝜔𝑠

sin 𝜔−𝜔𝑠 cos 𝜔𝑠
                                                                    (2.11) 

where 𝑟𝐺 is the ratio of hourly to daily global radiation, 𝑎 and 𝑏 are dependent on 

sites (Equation 2.12 and 2.13), 𝜔 is hour angle in degrees and defined as the angular 

displacement of the sun east or west of the local meridian due to rotation of the Earth on its 

axis at 15 degrees per hour, morning negative, afternoon positive, and 𝜔𝑠 is the sunset hour 

angle in degrees that is calculated by Equation 2.10.  

𝑎 = 0.4090 + 0.5016 sin(𝜔𝑠 − 1.047)                                                          (2.12) 

𝑏 = 0.6609 − 0.4767 sin(𝜔𝑠 − 1.047)                                                          (2.13) 

Equation 2.11 has been developed based on data from measurement sites in the USA, 

but it also has been validated for 13 Indian locations (Hawas and Muneer, 1984) and 16 

sites in the UK (Tham et al., 2010). 
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2.2.6. Data availability for verification  

The Surface Radiation Budget Network (SURFRAD) was established in 1993 in the 

US (Augustine et al., 2000) and became an official part of the Global Climate Observing 

System (GCOS) in April 2004 (Augustine et al., 2005). Currently seven SURFRAD 

stations are operating in diverse climate regions in the USA, in Montana, Colorado, Illinois, 

Mississippi, Pennsylvania, Nevada, and South Dakota (Table 2.3 and Figure 2.1). The 

stations are not surrounded by trees or other obstacles, but may be located in areas with 

small shrubs or agriculture.    

An upward-looking pyranometer measures total global solar radiation (W∙m-2) on its 

main platform. Accuracy of the pyranometer is about 5%, which is achieved by standards 

of calibrations and operations recommended by the Baseline Surface Radiation Network 

(BSRN), sponsored by the World Climate Research Program (WCRP) of the World 

Meteorological Organization (WMO). SURFRAD data are available in daily files of one- 

or three-minute data. We extracted daily maximum and minimum air temperature (oC) and 

mean irradiance (W∙m-2) from the one- or three-minute data records for the available 

historical time period at each station. 

A small number of spurious values in air temperature and irradiance records were 

removed from the analysis. Irradiance data that had negative values due to cooling of the 

thermopile near dusk and dawn (Augustine et al., 2005) and values higher than the 

extraterrestrial solar radiation were filtered out as well. Missing data were not used in the 

analysis (Table 2.4). However, the amount of missing data was small (Table 2.4) as the 

data have already been quality controlled by SURFRAD (Table 2.4) (Augustine et al., 
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2000). Furthermore, in order to analyze the results in both a large and a small sample size 

in terms of years, we used 2015 as a case study. A 30 x 30 meter DEM covering all the 

SURFRAD sites was applied (NASA LP DAAC, 2011).  

The extracted observed daily maximum and minimum air temperature (oC) data were 

used in the proposed solar radiation method to estimate daily mean irradiance (W∙m-2, 

Equations 2.1-2.6) in order to compare it with the observed mean irradiance (W∙m-2) at 

different SURFRAD stations. The observed daily mean irradiance (W∙m-2) was also used 

to find observed daily atmospheric transmissivity (Equations 2.7-2.10) to compare it with 

the calculated daily atmospheric transmissivity values from the Bristow and Campbell 

(1984) model (Equations 2.2-2.4). 

Table 2.3: SURFRAD network information. 

Site Name Latitude Longitude Elevation Time Zone Installed 

Bondville, IL 40.0519° N 88.3731° W 230 m UTC-6 April 1994 

Boulder, CO 40.1249° N 105.2368° W 1689 m UTC-7  July 1995 

Desert Rock, NV 36.6237° N 116.0195° W 1007 m UTC-8 March 1998 

Fort Peck, MT 48.3078° N 105.1017° W 634 m UTC-7 November 1994 

Goodwin Creek, MS 34.2547° N 89.8729° W 98 m UTC-6 December 1994 

Penn State, PA 40.7201° N 77.9309° W 376 m UTC-5 June 1998 

Sioux Falls, SD 43.7340° N 96.6233° W 473 m UTC-6 June 2003 

Table 2.4: The time period and data used in the study. 

Site Name Time period Total years Missing data 

Bondville, IL Jan 1996 to Dec 1998  and Jan 2000 to Dec 2015 19 0.32% 

Boulder, CO Jan 1996 to Dec 2015 20 0.05% 

Desert Rock, NV Jan 1999 to Dec 2011 and Jan 2013 to Dec 2015 16 0.82% 

Fort Peck, MT Jan 1997 to Dec 2015 19 0.61% 

Goodwin Creek, MS Jan 1996 to Dec 2002 and Jan 2005 to Dec 2015 18 0.71% 

Penn State, PA Jan 1999 to Dec 2015 17 1.50% 

Sioux Falls, SD Jan 2004 to Dec 2006 and Jan 2008 to Dec 2015 11 0.10% 
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Figure 2.1: A geographical map of SURFRAD stations located in the USA. 

2.2.7. Statistical validation methods 

In the present study, the predictive efficiency of the model was tested using the mean 

bias error (𝑀𝐵𝐸) and the mean absolute bias error (𝑀𝐴𝐵𝐸). These terms are defined by 

the following equations;  

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)𝑛

𝑖=1                                                                                    (2.14) 

𝑀𝐴𝐵𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1                                                                                   (2.15) 

where 𝑥𝑖 is the 𝑖 th measured value, 𝑦𝑖 is the 𝑖 th calculated value, and 𝑛 is the total 

number of observations. The 𝑀𝐵𝐸 is a measure of the systematic error of a model. It 

evaluates the tendency of a model to under- or overestimate the measured values and is for 

an accurate model is equal to zero (Willmott and Matsuura, 2005). The 𝑀𝐴𝐵𝐸 is a measure 

of the goodness of the fit for a model, and a natural measure of average error and a good 

test for inter-comparisons of the average model performance error. For precise data 

modeling 𝑀𝐴𝐵𝐸 should be close to zero (Willmott and Matsuura, 2005). We also provide 
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the Pearson correlation coefficient between the observed and modelled data. The Pearson 

correlation produces a sample correlation coefficient, 𝑟, which measures the strength and 

direction of linear relationships, negative or positive, between paired continuous variables.  

2.3. Results and discussions  

2.3.1. All years: daily radiation verification 

Pearson correlation test results showed a strong positive correlation between the 

measured and estimated irradiance values, and this correlation increased from cloudy to 

sunny days (Table 2.5), except Fort Peck and Penn State, which had very small differences 

in correlation between partly cloudy and sunny days (Table 2.5). Considering all the 

stations together for all study years with data, in case of cloudy days, there was a significant 

positive correlation (r = 0.55; Table 2.5) and partly cloudy and sunny days showed a 

stronger positive correlation (r = 0.85 and r = 0.89 respectively; Table 2.5).  

The result showed the 𝑀𝐴𝐵𝐸 decreased significantly from cloudy (about 112%) and 

partly cloudy (about 38%) to sunny days (about 18%) (Table 2.5). This error was more than 

three times larger under cloudy sky conditions than partly cloudy and more than six times 

larger in cloudy days than sunny days (Figure 2.3b).   

𝑀𝐵𝐸 calculations showed the model overestimated the measured daily irradiance for 

cloudy days (about 88%) (Table 2.5; Figures 2.3d). In partly cloudy conditions, the 

overestimation (about 16%) slightly decreased compared to the cloudy days (Table 2.5; 

Figure 2.3d). However, clear or sunny days showed underestimations relative to the 
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observed values (about 8%) (Table 2.5; Figure 2.3d). The only exception was Fort Peck 

station with underestimations on partly cloudy days (Figure 2.3d). 

The results showed the model is less able to account for partly cloudy and cloudy 

days. However it gives a reasonable estimation for solar radiation during clear and sunny 

days, taking into account the average 8% percent underestimation or 18% error in overall 

model performance. One of the likely sources of error is using a value for  maximum 

atmospheric transmissivity of 0.7 in Bristow-Campbell model (1984) although this value is 

known to differ with elevation and air particle content (Bristow and Campbell, 1984). 

Variable maximum atmospheric transmissivity can be applied by using the reformulated 

Bristow-Campbell model by Thornton and Running (1998); however, their model uses 

precipitation and humidity data plus air temperature data. The 𝑀𝐴𝐵𝐸 and 𝑀𝐵𝐸 in 

estimating daily solar radiation in clear and sunny days using the model proposed in this 

study, which are around 18% and 8%, respectively, are reasonable compared to the same 

errors in estimation of daily solar radiation by Thornton and Running (1998) which are 

15% and 4%, respectively. The average 𝑀𝐵𝐸 of our model (8%) on clear and sunny days 

is also within the range of 𝑀𝐵𝐸 of the Solei-32 (Miklánek and Mészároš, 1993; Ruiz‐Arias 

et al., 2009), Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 

2009), SRAD (Wilson and Gallant, 2000; Ruiz‐Arias et al., 2009) and r.sun (Šúri and 

Hofierka, 2004; Ruiz‐Arias et al., 2009) models in the same sky condition, which is under 

10%. However, our model depends mainly on air temperature data, whereas other models 

need accurate radiation, cloudiness, and/or satellite data as input. The TRAD model 

(Equation 2.1) is also a function of total monthly radiation estimated by Solar Analyst 

(Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009). Atmospheric 
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attenuation for calculating total monthly radiation in Solar Analyst (Dubayah and Rich, 

1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) was applied by using the estimated 

average annual 𝐾𝑇𝑑𝐵−𝐶 (𝑠𝑙)
 and 𝐾𝐷𝑑𝐶𝑎

 , which may affect the results and consequently the 

daily solar radiation estimation in the TRAD model (Equation 2.1). Furthermore, the 

accuracy of the measured data should be considered (accuracy of the pyranometer is about 

5%). 

Desert Rock station showed the best overall model performance (𝑀𝐴𝐵𝐸 about 17%) 

between all other stations when considering all sky conditions (Table 2.5). This is because 

this station had the highest average percentage of clear and sunny days (89%) (Figure 2.2). 

2.3.2. All years: daily atmospheric transmissivity verification 

The Pearson correlation test between the estimated and measured daily atmospheric 

transmissivity values in cloudy and partly cloudy conditions applied for all the study years 

showed that there was a low positive correlation between the estimated and measured 

values in all stations, except for Desert Rock and Boulder in cloudy days and Sioux Falls 

in partly cloudy days (Table 2.5). These correlations also increased from cloudy and partly 

cloudy to sunny days in all stations except in Fort Peck (Table 2.5).  

The 𝑀𝐴𝐵𝐸 for daily atmospheric transmissivity considerably higher for cloudy days 

(about 135%) than partly cloudy days (about 40%) (Table 2.5; Figure 2.3a). The 𝑀𝐵𝐸 test 

showed the Bristow-Campbell model (Bristow and Campbell, 1984) overestimated the 

measured daily atmospheric transmissivity for cloudy days (118%) (Figure 2.3c). 

Overestimations for partly cloudy days (about 25%) decreased compared to the cloudy days 

(Figure 2.3c). However, clear or sunny days showed underestimations (about 9%) (Figure 
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3c). The only exception was Fort Peck station with overestimations on partly cloudy days 

(Figure 2.3c). 

The result showed that the Bristow and Campbell (1984) model gives better 

estimation (about 15% error) of daily atmospheric transmissivity for sunny days than for 

partly cloudy or cloudy sky conditions, which also describes the performance of the daily 

solar radiation model using the TRAD model (Equation 2.1) in sunny and clear days. The 

average 𝑀𝐵𝐸 of Bristow and Campbell (1984) considering all study years and sky 

conditions together is around 4% (Table 2.5). 

 

Figure 2.2: Average percentage of each sky condition in the different sites. 
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Table 2.5: Statistical comparison of the observed daily atmospheric transmissivity and 

daily irradiance against the corresponding modelled values using 𝑀𝐵𝐸, 𝑀𝐴𝐵𝐸, and 

Pearson correlation coefficients (r) between the observed and modelled values for each 

study site individually, and also for all the seven sites together in their total study years 

(𝑀𝐵𝐸 and 𝑀𝐴𝐵𝐸  in % are related to the mean observed value). 

 

 

Station Name 

Daily atmospheric transmissivity  

 

n 
MBE MABE  

r (%)  (%)  

All sky conditions  

Bondville, IL 6.10 0.03 26.80 0.13 0.57** 6918 

Boulder, CO -3.20 -0.02 23.00 0.13 0.35** 7301 

Desert Rock, NV -12.50 -0.08 19.00 0.13 0.45** 5796 

Fort Peck, MT 20.0 0.09 33.00 0.15 0.46** 6897 

Goodwin Creek, MS 5.80 0.03 23.00 0.11 0.62** 6528 

Penn State, PA 10.10 0.05 29.70 0.14 0.61** 6116 

Sioux Falls, SD 8.60 0.04 32.20 0.16 0.13** 4013 

Combined data from all stations 3.77 0.02 25.10 0.13 0.50** 43569 

Daily atmospheric transmissivity ≤ 0.30 (Cloudy sky)  

Bondville, IL 108.0 0.19 130.2 0.23 0.12** 1503 

Boulder, CO 135.05 0.26 148.73 0.28 NSS 599 

Desert Rock, NV 127.05 0.23 138.81 0.26 NSS 209 

Fort Peck, MT 108.11 0.22 124.99 0.25 0.22** 1335 

Goodwin Creek, MS 119.97 0.19 136.73 0.22 0.06* 1309 

Penn State, PA 90.24 0.16 115.44 0.20 0.14** 1589 

Sioux Falls, SD 198.17 0.36 201.09 0.37 0.10** 665 

Combined data from all stations 117.65 0.21 135.58 0.24 0.15** 7209 

0.30 < 𝐝𝐚𝐢𝐥𝐲 𝐚𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐯𝐢𝐭𝐲 < 0.50 (Partly cloudy sky)  

Bondville, IL 22.16 0.08 38.44 0.15 0.18** 1409 

Boulder, CO 24.1 0.10 36.47 0.15 0.12** 1363 

Desert Rock, NV 20.88 0.08 35.18 0.15 0.15** 429 

Fort Peck, MT 34.50 0.14 48.49 0.19 0.17** 2313 

Goodwin Creek, MS 20.68 0.08 33.51 0.14 0.20** 1180 

Penn State, PA 17.04 0.06 38.26 0.15 0.22** 1598 

Sioux Falls, SD 33.98 0.13 45.93 0.18 NSS 805 

Combined data from all stations 25.48 0.10 40.49 0.16 0.16** 9097 

Daily atmospheric transmissivity ≥ 0.50 (Sunny and clear sky)  

Bondville, IL -7.49 -0.04 13.90 0.09 0.22** 4006 

Boulder, CO -12.05 -0.08 16.92 0.11 0.15** 5339 

Desert Rock, NV -15.53 -0.11 16.99 0.12 0.27** 5158 

Fort Peck, MT 1.16 0.01 13.28 0.08 0.23** 3249 

Goodwin Creek, MS -6.16 -0.04 11.82 0.08 0.30** 4039 

Penn State, PA -4.31 -0.03 13.90 0.09 0.28** 2929 

Sioux Falls, SD -10.64 -0.06 16.70 0.10 0.10** 2543 

Combined data from all stations -8.86 -0.05 15.02 0.10 0.19** 27263 

 

 

Station Name 

Daily irradiance  

 

n 
MBE MABE  

r (%)  (%)  

All sky conditions  

Bondville, IL 0.40 0.74 27.50 45.96 0.82** 6918 

Boulder, CO 3.30 6.35 27.70 52.63 0.78** 7301 

Desert Rock, NV -10.30 -24.25 17.30 40.65 0.88** 5796 

Fort Peck, MT -2.50 -3.90 24.80 39.87 0.88** 6897 
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Goodwin Creek, MS 3.10 5.60 24.40 44.59 0.80** 6528 

Penn State, PA 9.60 14.86 30.30 47.02 0.84** 6116 

Sioux Falls, SD 1.50 2.50 27.00 44.87 0.83** 4013 

Combined data from all stations 0.28 0.49 25.27 45.26 0.83** 43569 

Daily atmospheric transmissivity ≤ 0.30 (Cloudy sky)  

Bondville, IL 89.1 44.73 111.10 55.77 0.62** 1503 

Boulder, CO 145.77 89.29 157.89 96.70 0.45** 599 

Desert Rock, NV 143.53 74.73 155.15 80.78 0.41** 209 

Fort Peck, MT 41.75 21.74 77.98 40.61 0.67** 1335 

Goodwin Creek, MS 106.02 52.04 124.72 61.22 0.36** 1309 

Penn State, PA 76.50 38.88 102.46 52.07 0.55** 1589 

Sioux Falls, SD 90.78 51.20 115.01 64.87 0.63** 665 

Combined data from all stations 87.79 45.68 111.65 58.09 0.55** 7209 

0.30 < 𝐝𝐚𝐢𝐥𝐲 𝐚𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐯𝐢𝐭𝐲 < 0.50 (Partly cloudy sky)  

Bondville, IL 18.33 24.40 36.51 48.62 0.84** 1409 

Boulder, CO 33.76 46.98 44.79 62.34 0.85** 1363 

Desert Rock, NV 23.30 29.86 36.82 47.18 0.83** 429 

Fort Peck, MT -5.76 -6.32 38.78 42.55 0.87** 2313 

Goodwin Creek, MS 19.84 29.41 33.40 49.51 0.78** 1180 

Penn State, PA 17.84 22.92 38.48 49.45 0.82** 1598 

Sioux Falls, SD 18.20 22.36 40.60 49.90 0.85** 805 

Combined data from all stations 15.96 20.43 38.60 49.44 0.85** 9097 

Daily atmospheric transmissivity ≥ 0.50 (Sunny and clear sky)  

Bondville, IL -10.86 -24.25 18.57 41.47 0.90** 4006 

Boulder, CO -6.15 -13.35 20.84 45.24 0.90** 5339 

Desert Rock, NV -12.81 -32.22 15.40 38.72 0.92** 5158 

Fort Peck, MT -5.34 -12.91 15.60 37.72 0.87** 3249 

Goodwin Creek, MS -6.84 -16.12 16.05 37.81 0.88** 4039 

Penn State, PA -1.16 -2.61 19.03 42.78 0.89** 2929 

Sioux Falls, SD -7.90 -16.50 18.11 37.83 0.92** 2543 

Combined data from all stations -7.87 -18.13 17.63 40.61 0.89** 27263 
* significant at the 95% confidence level. 
** significant at the 99% confidence level. 
NSS not statistically significant. 
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Figure 2.3a-d: 𝑀𝐴𝐵𝐸 (%) of the estimated daily atmospheric transmissivity and 

estimated daily irradiance (2.3a and 2.3b) and 𝑀𝐵𝐸 (%) of the estimated daily 

atmospheric transmissivity and estimated daily irradiance (3c and 3d) for each sky 

condition in different sites for the entire study time period. 
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2.3.3. Year 2015: Daily radiation verification 

The result of Pearson correlation tests showed that there always was a strong positive 

correlation between the measured and estimated irradiance values, and this correlation 

increased from cloudy to sunny days in year 2015 (Table 2.6). However, exceptions were 

very small differences in correlation between partly cloudy and sunny days in Fort Peck 

and Penn State (Table 2.6).  

The result showed the 𝑀𝐴𝐵𝐸 declined significantly from cloudy (105%) and partly 

cloudy (about 38%) to sunny days (17%) (Table 2.6). This error was more than three times 

higher under cloudy days than partly cloudy, and more than six times higher in cloudy sky 

conditions than sunny (Figure 2.4b).   

𝑀𝐵𝐸 result indicated that the model overestimated the measured daily irradiance for 

cloudy days (about 83%) (Table 2.6; Figures 2.4d and 2.5a-h). In partly cloudy days, the 

overestimation (about 19%) decreased relative to the cloudy conditions (Table 2.6; Figures 

2.4d and 2.5a-h). However, clear or sunny sky condition showed underestimations relative 

to the observed values (6%) (Table 2.6; Figures 2.4d and 2.5a-h). The only exception was 

Fort Peck station with underestimations in partly cloudy days (Figures 2.4d and 2.5a-h). 

2.3.4. Year 2015: Daily atmospheric transmissivity verification 

In 2015, there was no correlation between the estimated and measured daily 

atmospheric transmissivity values in cloudy and partly cloudy days in any stations, except 

there were significant correlations in Fort Peck and Penn State in cloudy days and Goodwin 
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Creek and Penn State in partly cloudy days (Table 2.6). On sunny days, there was a positive 

correlation in all stations except Fort Peck and Bondville (Table 2.6). 

The 𝑀𝐴𝐵𝐸 for daily atmospheric transmissivity was considerably higher for cloudy 

days (145%) than partly cloudy days (42%) (Table 2.6; Figure 2.4a). The 𝑀𝐵𝐸 test showed 

Bristow-Campbell model (Bristow and Campbell, 1984) overestimated the measured daily 

atmospheric transmissivity for cloudy days (about 130%) (Figure 2.4c). Overestimations 

for partly cloudy days (about 28%) decreased compared to the cloudy days (Figure 2.4c). 

However, clear or sunny days showed underestimations (about 9%) (Figure 2.4c). The only 

exception was Fort Peck station with overestimations on sunny sky conditions (Figure 

2.4c). 

Table 2.6: Same as Table 2.5 in 2015. 

 

 

Station Name 

Daily atmospheric transmissivity  

 

n 
MBE MABE  

r (%)  (%)  

All sky conditions  

Bondville, IL 5.49 0.03 39.75 0.20 NSS 365 

Boulder, CO -1.93 -0.01 22.05 0.12 0.50** 365 

Desert Rock, NV -10.07 -0.06 17.85 0.11 0.42** 363 

Fort Peck, MT 22.25 0.11 33.66 0.15 0.50** 362 

Goodwin Creek, MS 8.36 0.04 22.07 0.10 0.72** 364 

Penn State, PA 10.84 0.05 29.86 0.14 0.57** 365 

Sioux Falls, SD 7.03 0.04 31.55 0.16 0.18** 365 

Combined data from all stations 5.23 0.03 27.51 0.14 0.44** 2549 

Daily atmospheric transmissivity ≤ 0.30 (Cloudy sky)  

Bondville, IL 181.88 0.31 197.90 0.34 NSS 72 

Boulder, CO 80.19 0.16 93.65 0.18 NSS 39 

Desert Rock, NV 120.71 0.26 124.55 0.27 NSS 13 

Fort Peck, MT 121.85 0.23 141.60 0.27 0.34** 73 

Goodwin Creek, MS 90.68 0.15 108.50 0.18 NSS 85 

Penn State, PA 105.79 0.19 121.69 0.22 0.25* 93 

Sioux Falls, SD 228.56 0.38 228.56 0.38 NSS 54 

Combined data from all stations 130.29 0.24 144.72 0.26 0.14** 431 

0.30 < 𝐝𝐚𝐢𝐥𝐲 𝐚𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐯𝐢𝐭𝐲 < 0.50 (Partly cloudy sky)  

Bondville, IL 33.93 0.13 51.27 0.20 -0.24* 84 

Boulder, CO 28.00 0.12 42.96 0.18 NSS 71 

Desert Rock, NV 20.53 0.08 32.23 0.13 NSS 33 

Fort Peck, MT 38.08 0.15 46.14 0.18 NSS 124 

Goodwin Creek, MS 25.85 0.10 36.20 0.14 0.28* 69 
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Penn State, PA 13.11 0.05 35.72 0.14 0.24* 95 

Sioux Falls, SD 29.65 0.11 44.26 0.17 NSS 81 

Combined data from all stations 28.18 0.11 42.42 0.17 NSS 555 

Daily atmospheric transmissivity ≥ 0.50 (Sunny and clear sky)  

Bondville, IL -17.23 -0.11 22.78 0.15 NSS 209 

Boulder, CO -10.75 -0.07 15.24 0.10 0.21** 255 

Desert Rock, NV -13.58 -0.09 15.63 0.11 0.19** 317 

Fort Peck, MT 5.18 0.03 12.18 0.07 NSS 165 

Goodwin Creek, MS -3.9 -0.02 10.05 0.06 0.28** 210 

Penn State, PA -4.36 -0.02 13.96 0.09 0.16* 177 

Sioux Falls, SD -11.14 -0.07 16.96 0.11 0.19** 230 

Combined data from all stations -9.15 -0.06 15.46 0.10 0.11** 1563 

 

 

Station Name 

Daily irradiance  

 

n 
MBE MABE  

r (%)  (%)  

All sky conditions  

Bondville, IL -0.58 -0.97 27.49 46.50 0.81** 365 

Boulder, CO 5.42 10.02 28.14 52.07 0.80** 365 

Desert Rock, NV -5.99 -13.75 16.10 36.96 0.87** 363 

Fort Peck, MT 0.31 0.49 22.64 36.03 0.88** 362 

Goodwin Creek, MS 7.25 12.80 23.93 42.28 0.83** 364 

Penn State, PA 9.61 15.15 31.00 48.84 0.82** 365 

Sioux Falls, SD 2.05 3.39 28.07 46.54 0.81** 365 

Combined data from all stations 2.19 3.89 24.89 44.15 0.83** 2549 

Daily atmospheric transmissivity ≤ 0.30 (Cloudy sky)  

Bondville, IL 79.23 37.31 105.08 49.48 0.70** 72 

Boulder, CO 87.81 58.79 100.27 67.13 0.42** 39 

Desert Rock, NV 114.58 69.23 117.61 71.05 0.80** 13 

Fort Peck, MT 54.45 25.46 94.30 44.09 0.72** 73 

Goodwin Creek, MS 82.64 46.45 100.43 56.45 0.55** 85 

Penn State, PA 77.68 40.07 98.18 50.65 0.66** 93 

Sioux Falls, SD 119.93 57.59 141.50 67.95 0.64** 54 

Combined data from all stations 82.78 43.16 105.03 54.76 0.63** 431 

0.30 < 𝐝𝐚𝐢𝐥𝐲 𝐚𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐯𝐢𝐭𝐲 < 0.50 (Partly cloudy sky)  

Bondville, IL 23.74 35.40 34.09 50.83 0.84** 84 

Boulder, CO 39.20 50.90 54.47 70.73 0.84** 71 

Desert Rock, NV 26.76 38.13 36.88 52.54 0.83** 33 

Fort Peck, MT -4.13 -4.75 31.57 36.33 0.90** 124 

Goodwin Creek, MS 27.26 38.95 38.81 55.46 0.83** 69 

Penn State, PA 15.39 20.47 36.50 48.55 0.84** 95 

Sioux Falls, SD 19.71 25.42 37.31 48.11 0.85** 81 

Combined data from all stations 18.95 25.06 37.83 50.03 0.85** 555 

Daily atmospheric transmissivity ≥ 0.50 (Sunny and clear sky)  

Bondville, IL -13.13 -28.78 19.95 43.73 0.90** 209 

Boulder, CO -4.03 -8.81 20.40 44.57 0.91** 255 

Desert Rock, NV -9.19 -22.56 13.82 33.94 0.92** 317 

Fort Peck, MT -2.73 -6.61 13.32 32.24 0.88** 165 

Goodwin Creek, MS -3.98 -9.40 13.62 32.22 0.91** 210 

Penn State, PA -0.45 -1.02 21.12 48.02 0.83** 177 

Sioux Falls, SD -8.28 -17.08 19.85 40.97 0.90** 230 

Combined data from all stations -6.33 -14.45 17.18 39.20 0.89** 1563 
* significant in 95% confidence level. 
** significant in 99% confidence level. 
NSS not statistically significant. 
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Figure 2.4a-d: 𝑀𝐴𝐵𝐸 (%) of the estimated daily atmospheric transmissivity and 

estimated daily irradiance (4a and 4b) and 𝑀𝐵𝐸 (%) of the estimated daily atmospheric 

transmissivity and estimated daily irradiance (4c and 4d) for each sky condition in 

different sites for 2015. 
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Figure 2.5a-h: Comparison of the measured versus predicted daily irradiance (W∙m-2) for 

Bondville, IL (5a), Boulder, CO (5b), Desert Rock, NV (5c), Fort Peck, MT (5d), 

Goodwin Creek, MS (5e), Penn State, PA (5f), Sioux Falls, SD (5g) and all the 

SURFRAD stations (5h) in 2015, as an example of a single year. 
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2.4. Conclusions 

In Chapter 2, a method for estimating daily solar radiation by using only maximum 

and minimum air temperature, topography, and time of year was presented, and will be 

used as an input for the hydrometeorological modelling presented in Chapter 3. The TRAD 

model, a daily solar radiation model that used estimated daily atmospheric transmissivity 

from the Bristow and Campbell (1984) model and calculated total monthly solar radiation 

values by Solar Analyst (Dubayah and Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 

2009) was developed. Estimated average annual atmospheric transmissivity at sea level and 

diffuse fraction according to models of Bristow and Campbell (1984) and Carroll (1985) 

(Carroll, 1985) to calculate total monthly solar radiation using Solar Analyst (Dubayah and 

Rich, 1995; Fu and Rich, 2002; Ruiz‐Arias et al., 2009) were used. In addition, hourly solar 

radiation values can be calculated using the ratio between daily and hourly radiation 

estimates suggested in previous literature, combined with the estimated daily insolation 

from the method presented in this chapter. The method was validated using seven different 

sites in climatologically different areas across the United States. Overall, results showed 

that daily solar radiation can be estimated very well with 𝑀𝐴𝐵𝐸 of about 40 to 53 Wm-2 

or 𝑀𝐵𝐸 of ±10% under all sky conditions between the seven sites by using the presented 

method, which is an improvement over previously used methods with 𝑀𝐵𝐸 of under 10% 

because the modified approach and model presented here also require significantly less 

input data. This method can be very useful especially for those stations with substantially 

higher number of sunny days than cloudy or partly cloudy days, assuming the availability 

of air temperature data. The estimated values for those days that the model is not able to 

estimate accurately can be corrected by using available measured data. The implemented 
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DEM environment of this method makes it applicable in many studies that need spatial 

estimation of solar radiation.  
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Chapter 3 : Climate change impacts on water supply and demand in an Okanagan-

Similkameen Subwatershed, British Columbia, Canada 

3.1. Introduction 

The hydrological cycle on the surface of the Earth cannot be treated as a simple 

system because human influence has altered this system, directly through various activities 

related to land and water resource management, and indirectly by increasing the variability 

of climate through increasing emissions of greenhouse gases (Mauser and Bach, 2009).  

Intra-annually, the hydrological cycle in mountain watersheds is driven mostly by 

precipitation, snow accumulation and subsequent melting, and by growing season 

evapotranspiration (Barnett et al., 2005). Changes in the hydrological cycle and subsequent 

changes in water yield, evapotranspiration, and soil moisture as a result of climate change 

can affect water supply, and subsequently affect the rates of vegetation growth and water 

use in mountain watersheds (Neilsen et al., 2006). Climate change will have a significant 

impact on mountain hydrology, altering water supply and demand, and increasing stress on 

water resources, vegetation cover, the agricultural sector, wildlife, human settlements, and 

economy, along with non-climate change anthropogenic forces (Hamlet and Lettenmaier, 

1999; Cohen et al., 2000; Miles et al., 2000; Cohen et al., 2006; Merritt et al., 2006; Neilsen 

et al., 2006; Harma et al., 2012).  

Anthropogenic climate change is predicted to alter climate and physical systems in 

mountain areas of southern British Columbia, Canada. Climate change is expected to result 

in higher air temperatures, earlier snowmelt, decreased spring snow water equivalent, more 

rainfall events than snow, increases in crop water requirements (especially during periods 
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of high water demand), longer growing season, increases in winter runoff, decreases in 

summer runoff, reductions in average peak annual discharge, increases in winter and spring 

stream flow, and decreases in summer stream flow in this region (Leith and Whitfield, 

1998; Hamlet and Lettenmaier, 1999; Cohen et al., 2000; Morrison et al., 2002; Cohen et 

al., 2006; Merritt et al., 2006; Neilsen et al., 2006; Jost and Weber, 2012; Shrestha et al., 

2012; Schnorbus et al., 2014; Najafi et al., 2017). 

Hydrologic climate change impact assessments are investigated using general or 

regional circulation models (GCMs or RCMs) and hydro-metrological models. However, 

GCMs or RCMs must be downscaled to provide higher temporal and/or spatial resolutions 

often required for use in hydro-metrological models for impact assessment studies, 

especially in complex landscapes such as mountain area (Wang et al., 2012; Wang et al., 

2016). There are two different methods for impact assessments using GCM or RCM 

scenarios; change factor (CF), in which GCMs or RCMs projected future climate changes 

are applied to the meteorology of a baseline, and statistical downscaling (SD), in which 

GCMs or RCMs climate variables are applied to statistical transfer functions in order to 

calculate meteorological series with point-scale (Diaz-Nieto and Wilby, 2005). Diaz-Nieto 

and Wilby (2005), explored the suitability of these methods under baseline (1961-1990) 

and climate change scenarios (2020’s, 2050’s and 2080’s) for low streamflow in the River 

Thames, UK. They showed stream flow will decrease in late summer and fall under both 

techniques in the future; however, the SD method shows more detailed and complex 

changes in the future compared with the CF method. On the other hand, the SD method is 

more time-consuming and needs a large range of transfer functions and high-quality 

observed data. Diaz-Nieto and Wilby (2005) concluded these two methods should be used 
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in a complementary way, because the CF method maps the future changes to the historical 

record and is more suitable for high-level assessments and vulnerable regions detections, 

while the SD method works better for impact assessments related to temporal sequencing 

and analysis of daily event persistence changes.  

The effects of climate change on spring and summer water supply and spring and 

summer water demand related to the vegetation cover in a snow-dominated watershed 

(Olalla watershed, southern British Columbia, Canada) in the time-frame of 1961 to 2100 

were assessed in Chapter 3. The GENESYS spatial hydrometeorological model 

(MacDonald et al., 2009) was applied to predict the potential changes for the ensembles of 

the 15 GCMs of the coupled model inter-comparison project (CMIP5) (Wang et al., 2012; 

Wang et al., 2016) for two Representative Concentration Pathways (RCP) greenhouse gas 

emission scenarios (RCP 4.5 and RCP 8.5) (Moss et al., 2010) for three different future 

periods, including 2020’s (2011-2040), 2050’s (2041-2070) and 2080’s (2071-2100) 

relative to the 1961-1990 base period. 

3.2. Materials and methods 

3.2.1. Study subwatershed 

The Olalla watershed is located in the Regional District of Okanagan-Similkameen, 

southern British Columbia, Canada. The total drainage area is about 181 km2 and 

contributes flows to the Water Survey of Canada stream gauge located at the Keremeos 

Creek below Wills intake (Environment Canada ID: 08NL045) (Figure 3.1). The stream 

gauge was installed in April 29, 1971, and continues to operate.  
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The watershed is inside the Southern Thompson Plateau hydrologic zone which has 

a generally dry condition and also Interior Douglas Fir biogeoclimatic zone (Hectares BC, 

2015; Regional District of Okanagan-Similkameen, 2011a). Normal (1961-1990) mean 

annual precipitation in the Olalla watershed is 520 mm with the highest (63 mm) and lowest 

(30 mm) precipitation received in December and October respectively (Wang et al., 2012; 

Wang et al., 2016), Figure 3.2). Normal (1961-1990) mean annual air temperature over the 

watershed is 4.7 C; July and January are the warmest and coolest months with average air 

temperatures of 14.5 C and -5.7 C, respectively ((Wang et al., 2012; Wang et al., 2016), 

Figure 3.2).  

Elevation in the watershed ranges between 476 to 2235 m a.s.l. The watershed is 

mostly dominated by rolling upland relief and glacial till material and has a broad flat valley 

infilled with post-glacial alluvial material (Regional District of Okanagan-Similkameen, 

2011a). Most of the watershed soil (about 95%) has a course texture (loamy sand or sandy 

loam) with a well- to rapidly-drained condition which means the soil has high infiltration 

rates and low runoff potential (BC Ministry of Environment, 2016). The area has diverse 

land cover, with 75.7 % of the watershed covered by coniferous forests, mostly Interior 

Douglas Fir (IDF), 9.8% by alpine, barren surfaces, and subalpine, 7.3% by range lands, 

1.8% by agriculture, 0.2% by open water, 2.4% by cutblocks and, 2.8% by predominantly 

built-up or developed lands and vegetation associated with these land covers (Hectares BC, 

2015).  

The town of Olalla in the valley of the watershed has grown over the past decades 

and there are different water licences including irrigation, conservation (storage), domestic, 

livestock and animal, waterworks and, others within the watershed (BC Government, 2018) 
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The most important recreation activity in the watershed is Apex Mountain Resort 

established in early 1960’s, and which has been further developed in the early 1990s and 

which may cause soil erosion and consequently sediment loading into the creek (Regional 

District of Okanagan-Similkameen, 2011a). There were two environmental emergencies in 

the watershed associated with the Apex Mountain Resort development: the failure of a 

sewage retention pond in 1991, and an erosion event in 1995 that caused a considerable 

amount of sediment loading into the watershed (Regional District of Okanagan-

Similkameen, 2011a). Furthermore, there is a little chance for the creek to attenuate peak 

flows or deposit sediments along its way as there are no significant open water or wetlands 

along the creek (Regional District of Okanagan-Similkameen, 2011a). 

A large wildfire burned a substantial portion of the forested area on the western ridge 

of the watershed in 1934 (Regional District of Okanagan-Similkameen, 2011a). The 

gradual recovery of the forest area after the fire can cause a downward trend in stream flow 

of the watershed after the fire (Regional District of Okanagan-Similkameen, 2011a). 

However, there has been no fire since, and because the formerly burned area is mostly 

covered by forest regrowth, currently no effect on the hydrologic regime of the watershed 

is assumed (Regional District of Okanagan-Similkameen, 2011a). Furthermore, the 

equivalent clearcut area (likely below 20%) in the Olalla watershed, including both infested 

by the Mountain Pine Beetle (MPB) and harvested area in the upper portion of the 

watershed, is not significant enough to affect the hydrologic regime (Regional District of 

Okanagan-Similkameen, 2011a).  

A flood prevention plan provided for RDOS in 2011 showed that the peak flows have 

apparently decreased by 50% since 1948 in the Olalla watershed (Regional District of 
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Okanagan-Similkameen, 2011a). They also reported that this may be the result of a long-

term climate change such as variation in runoff and precipitation in combination with land 

use and vegetation cover changes over the time, for example, related to recovery from 

wildfire. However, they considered the climate change assessment in the region beyond the 

scope of their work. 

 

Figure 3.1: The Olalla watershed, Regional District of Okanagan-Similkameen, southern 

British Columbia, Canada. 
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Figure 3.2: Average normal (1961-1990) mean monthly air temperature (C) and 

precipitation (mm) over the entire Olalla watershed. 

3.2.2. Hydrometric data 

There are four Environment Canada stream gauge records on Keremeos Creek 

(Environment Canada, 2015). Three of them were installed near the town of Olalla. The 

Olalla Creek at Olalla (08NL011) station operated for two years (1919-1921) and 

Keremeos Creek near Olalla (08NL10) operated from 1919 to 1971. The gauge was moved 

to Keremeos Creek below Willis intake (08NL045) on 29 April, 1971, which continues to 

operate, and serves as the stream gauge that was used in the current study. The drainage 

area changed slightly from 183 to 181 km2 ((Regional District of Okanagan-Similkameen, 

2011a), Figure 3.1). The fourth stream gauge station was located in Keremeos creek at 

Middle Bench road (08NL44) which was in operation for six years (1971-1977) (Figure 

3.1).  

Based on observed streamflow information at the Keremeos Creek below Willis 

intake (08NL045), the onset of snowmelt runoff in the Olalla watershed starts in April, 

when streamflow rises, with a peak in June and a receding in July and August (Figure 3.3).  
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Figure 3.3: Historical average monthly water volume (million m3) for the period of 1972 

to 1999 in Olalla watershed. 

There are no dams or reservoirs, groundwater points of diversions, or artesian wells 

in the watershed (BC Government, 2018). However, there are active domestic water 

licences that use water directly from the Keremeos Creek and its tributaries, and irrigation 

licences that use wells close to the creeks inside the Olalla watershed (BC Government, 

2018). The irrigation season in the region is from April to the end of September for most 

of the irrigation users (Regional District of Okanagan-Similkameen, 2011b). We supposed 

that half of the total irrigation period water use (0.73 million m3) is consumed during June 

and July and the other half during April, May, August and September (BC Government, 

2018). We also estimated total annual (12 months) of about 0.50 million m3 water use for 

the other licences including conservation (storage), domestic, livestock and animal, 

waterworks, and others (BC Government, 2018). Human water use was held constant 

during future simulations in order to test only the effect of changes in air temperature and 

precipitation on spring and summer water volume (million m3). The total monthly human 

water use was subtracted from the simulated total monthly water volume. 



44 
 

3.2.3. Meteorological data 

There are two climate stations within the watershed, with typically similar values of 

maximum air temperature (C), minimum air temperature (C), and precipitation (mm). 

Apex Mountain Lodge operated by Environment Canada at elevation of 1890 m (Figure 

3.1) has available daily climate data from 1965 to 1971 (from the beginning of June 1965 

to the end of October 1966 and from the beginning of December 1970 to the end of 

September 1971). There is also Apex Roadside or Apex Alpine at elevation of 1750 m with 

data from November 1997 to the present, which are close to the Apex Mountain Lodge and 

have hourly data collected electronically by Ministry of Transportation and Infrastructure 

(MoTI).  

A climate station with the longest climate records available as input is needed as 

applications of the GENESYS model (MacDonald et al., 2009). Therefore, Keremeos 2 

climate station, located at an elevation of 435 m a.s.l within the Keremeos village and in 

about five kilometres from the town of Olalla was selected as the base station 

((Environment Canada, 2016), Figure 3.1). This station is closest to the watershed with the 

longest historical records (1924 to 2000). Continuous daily maximum and minimum air 

temperature and precipitation were obtained for 1961 to 1999 (the year 2000 was not 

selected because of the long gaps in data) (Environment Canada, 2016). There was not a 

significant gap in data (0.4% of the whole dataset) in the selected period and these minor 

gaps were infilled using a nearby climate station (Cawston Similkameen) and linear 

regression (Figure 3.4 and Table 3.1). Apex Mountain Lodge Environment Canada climate 

station is also selected for testing meteorological simulations of the model. The 
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Environment Canada climate station was preferred to MoTI climate station as both have 

nearly two years of available recorded data for model testing. 

 

Figure 3.4: Observed daily climate variables at Cawston station (x) vs. Keremeos 2 

station (y). The line represents the 1:1 line. 

Table 3.1: Regression relationships between daily observed climate variables at 

Keremeos 2 station and Cawston station used to infill gaps in climate data at Keremeos 2 

station using available daily data at Cawston station. 

𝐲 = 𝐚 + 𝐛𝐱 𝐒𝐭𝐝. 𝐄𝐫𝐫𝐨𝐫𝐚 𝐭𝐚 𝐩 𝐒𝐭𝐝. 𝐄𝐫𝐫𝐨𝐫𝐛 

Daily maximum air temperature (C) 

𝐲 = −𝟎. 𝟐𝟏𝟏 + 𝟎. 𝟗𝟖𝟒𝐱 0.071 -2.95 <0.001 0.004 

Daily minimum air temperature (C) 

𝐲 = 𝟎. 𝟑𝟎𝟗 + 𝟎. 𝟗𝟏𝟔𝐱 0.065 4.73 <0.001 0.007 

Daily precipitation (mm) 

𝐲 = 𝟎. 𝟑𝟒𝟗 + 𝟎. 𝟕𝟐𝟗𝐱 0.038 9.16 <0.001 0.014 

𝐭𝐛 𝐩 𝐫𝟐 𝐑𝐌𝐒𝐄 𝐧 

Daily maximum air temperature (C) 

276.98 <0.001 0.98 1.6 C 1458 

Daily minimum air temperature (C) 

133.94 <0.001 0.93 2.1 C 1458 

Daily precipitation (mm) 

53.04 <0.001 0.54 1.9 mm 2405 

Daily solar radiation (Wm-2) was not available for the base station and calculated 

using the method presented in Chapter 2. Daily solar radiation for a non-slope surface or 

flat radiation for the base station is also calculated using the same method but without 

applying the DEM.  
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3.2.4. Spatial data  

The watershed was divided into Hydrological Response Units (HRUs) using a 

Geographic Information System (GIS) overlay analysis in Esri ArcGIS. HRUs were 

defined by combining 100-m elevation bands using a 30 × 30 meter DEM ranging from 

400 m to 2200 m (NASA LP DAAC, 2011), three solar radiation groups, and nine land 

cover types which resulted in delineation of 201 different HRUs. Land cover types included 

coniferous forests, cutblocks, barren surfaces, range lands, alpines, subalpine avalanche, 

agriculture, open water or wetlands, and also predominantly built-up or developed lands 

and vegetation associated with these land covers (Hectares BC, 2015). The normal (1961-

1990) annual solar radiation over the watershed was calculated using ArcGIS Solar Analyst 

and average annual atmospheric attenuation for the normal period using the method 

presented in Chapter 2, and divided into three categories, low, medium and high receiving 

solar radiation surfaces ranges from 61.6 to 219.8 wm-2.  

The following physiographic characteristics were defined for each HRU. We 

provided mean elevation (m), area (ranging from 1049 m2 to 6.9 km2) and monthly Leaf 

Area Index (LAI) from MODIS LAI data set (NASA LP DAAC, 2000) which were 

considered to be constant at monthly time steps. Normal (1961-1990) mean monthly solar 

radiation (wm-2) was estimated using Solar Analyst and normal (1961-1990) mean monthly 

atmospheric attenuation using the presented method in Chapter 2. Monthly maximum and 

minimum air temperature lapse rates (Ckm-1) were derived from normal (1960-1990) 

monthly air temperature grid layers and are assumed to be constant at different months 

(Wang et al., 2012; Wang et al., 2016). Monthly precipitation values also derived for each 

HRU using spatial raster layers of precipitation (Wang et al., 2012; Wang et al., 2016). 
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Field Capacity (FC, mm) values were defined over the watershed using a GIS overlay 

analysis with soil texture data (BC Ministry of Environment, 2016), soil depth data 

(Agriculture and Agri-Food Canada, 1996) and generalized relationships between soil 

texture classes and plant available water holding capacity  (Walker and Skogerboe, 1987). 

The GIS overlay analysis divided the watershed into five categories with average FC of 

around 38 mm, 90 mm, 135 mm, 210 mm, and 233 mm contributing to about 7%, 1%, 87%, 

1% and 4% of total watershed area, respectively.  

Monthly plant transpiration coefficients (PTCs) estimated for different land cover 

types in upper North Saskatchewan River Basin (UNSRB), Alberta (Nemeth, 2010) were 

used and then all monthly PTCs values were adjusted for our study area in order to take 

into account a drier climate in our watershed compared to UNSRB (BC Ministry of 

Agriculture Food and Fisheries, 2001). The monthly PTCs values for UNSRB were 

increased by 12% by finding an average ratio between PTCs for perennial crop and pasture 

in different stage of development recommended by BC Ministry of Agriculture Food and 

Fisheries (2001) for use in irrigation scheduling and PTCs for perennial crop and pasture 

presented by Nemeth (2010) in Alberta. PTCs for agricultural areas were calculated by 

taking the average between annual cropland and perennial crops or pasture for each month, 

and half of those monthly values were considered for urban and recreation activities (Table 

3.2). PTCs were also considered similar to deciduous forest for cutblocks and as half of the 

monthly PTCs values for coniferous forest for barren surfaces.   
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Table 3.2: Plant transpiration coefficients (PTCs) for different land cover types in the 

Olalla watershed. 

Land cover  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Water/wetland 0.18 0.13 0.16 0.26 0.44 0.61 0.53 0.51 0.35 0.22 0.19 0.23 

Range land 0.04 0.08 0.04 0.09 0.36 0.45 0.31 0.23 0.08 0.04 0.02 0.07 

Agriculture 0.00 0.00 0.00 0.25 0.58 0.99 1.00 0.65 0.50 0.07 0.03 0.00 

Barren surfaces 0.11 0.16 0.16 0.17 0.28 0.35 0.39 0.38 0.20 0.16 0.11 0.10 

Cutblocks 0.10 0.09 0.09 0.12 0.26 0.72 0.96 0.85 0.66 0.16 0.13 0.09 

Coniferous  0.21 0.32 0.32 0.34 0.57 0.70 0.77 0.76 0.39 0.32 0.22 0.20 

Built-up 0.00 0.00 0.00 0.12 0.29 0.50 0.53 0.33 0.25 0.04 0.01 0.00 

3.2.5. The GENESYS model 

The GENESYS spatial hydrometeorological model integrates both GIS-derived 

HRUs and a series of physical subroutines to estimate hydrometeorological variables at 

high spatial resolution on a daily time step over mountain watersheds. The GENESYS 

model links daily meteorological data from a low elevation base station to the defined 

physiographic characteristics of each HRU to extrapolate daily hydrometeorological 

variables over the watershed. The GENESYS model has been used in different studies to 

simulate the impacts of climate change on hydrology of mountainous watersheds (Lapp et 

al., 2005; MacDonald et al., 2009; Larson et al., 2011; MacDonald et al., 2011; MacDonald 

et al., 2012; MacDonald et al., 2013).  

As mentioned in Section 3.2.2, there are no dams or reservoirs in the Olalla watershed 

(BC Government, 2018) and domestic and irrigation water consumers use water directly 

from the creeks or wells close to them inside the Olalla watershed (BC Government, 2018). 

Also, the irrigation season in the region extends through spring and summer seasons 

(Regional District of Okanagan-Similkameen, 2011b). Furthermore, spring and summer 

seasons contribute to around 80% of total annual evapotranspiration over the watershed. 

For these reasons, the GENESYS model was applied to assess current and future changes 



49 
 

in spring and summer water supply and spring and summer water demand for the vegetation 

cover in the Olalla watershed. To determine the available and future water supply and 

demand using a number of GCMs, spring and summer water volume at the outlet of 

watershed and spring and summer vegetation evapotranspiration (𝐸𝑇𝑐) are used as the main 

predictors.  

Monthly air temperature lapse rates, for each HRU are applied to daily air 

temperature values at the base station to predict these daily values over the watershed based 

on the elevation difference from the base station. Then using a ratio of slope to flat solar 

radiation, maximum air temperature is adjusted for differences between slopes and 

consequently different radiant energy received (Hungerford et al., 1989). 

Daily solar radiation (Wm-2) for each HRU are generated using the corresponding 

monthly solar radiation (Wm-2) for that HRU and monthly and daily radiation (Wm-2) at 

the base station. The same technique was used by the model to calculate daily precipitation.  

Daily relative humidity values for the entire watershed is calculated (Glassy and 

Running, 1994) where the dew point air temperature is assumed to be equivalent to the 

minimum air temperature.  

Subsequently, GENESYS calculates a daily hydrological balance for each HRU 

when snow pack is available or removed using Equation 3.1 and Equation 3.2 respectively: 

𝑆𝑊𝐸𝑡 = 𝑆𝑊𝐸𝑡−1 + 𝑃𝑡 − 𝐼𝑡 − 𝑆𝑡 − 𝐼𝑓𝑡                                                                      (3.1) 

𝑆𝑀𝑡 = 𝑆𝑀𝑡−1 + 𝑃𝑡 + 𝐼𝑓𝑡 − 𝐸𝑇𝑐𝑡
− 𝑅𝑒𝑐ℎ𝑡 − 𝑅𝑢𝑛𝑡                                                    (3.2) 



50 
 

Where 𝑡 is the time step (days); 𝑆𝑊𝐸 is the snow water equivalent (mm); 𝑃 is 

simulated daily rain or snow (mm) separated from the total precipitation (Kienzle, 2008); 𝐼 

is snow interception modelled for the coniferous forest ((Hedstrom and Pomeroy, 1998), 

mm) or rain interception (mm) calculated for the whole forest (von Hoyningen-Huene, 

1981); 𝑆 is sublimation ((Taylor, 1998), mm), 𝐼𝑓 is soil infiltration (mm) calculated as a 

proportion of soil runoff until saturation that is controlled with FC happens, 𝑆𝑀 is soil 

moisture (mm) simulated using daily 𝐸𝑇𝑐 (mm), as one of the drivers, calculated for 

different vegetation types instead of applying daily reference evapotranspiration 

((Valiantzas, 2006), 𝐸𝑇𝑜, mm) to the soil moisture balance which is an improvement over 

the model. 𝐸𝑇𝑐 (mm) is vegetation evapotranspiration calculated by applying appropriate 

monthly 𝑃𝑇𝐶𝑠 in daily 𝐸𝑇𝑜  to reflect seasonal and vegetation cover differences in water 

requirement. A 𝐸𝑇𝑐 generating function using different vegetation coefficients was 

implemented into the latest version of GENESYS. The model needs to receive monthly 

PTCs values for different land cover types (Table 3.2) in order to calculate daily 𝐸𝑇𝑐 by 

using daily 𝐸𝑇𝑜 and Equation 3.3:  

          𝐸𝑇𝑐 = 𝑃𝑇𝐶𝑠 × 𝐸𝑇𝑜                                                                                           (3.3) 

When soil water content is below 50% of the FC, a proportional reduction factor is 

applied to the actual ETc (MacDonald et al., 2009) using Equation 3.4 where 𝑋𝐾 is the 

water supply control on evapotranspiration, SM is the daily soil moisture and FC is the field 

capacity (mm). 

          𝑋𝐾 = (2 𝑆𝑀
𝐹𝐶⁄ )1.5                                                                                          (3.4) 
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The influence of elevated CO2 on water availability through the direct effect of CO2 

on vegetation using increasing in stomatal resistance was not considered in the current 

study, as there is some doubt whether or not these effects will happen under field conditions 

(McKenney and Rosenberg, 1993). 𝑅𝑒𝑐ℎ is groundwater recharge (mm) which due to the 

complexity of ground water recharge quantifications in mountainous watersheds, in the 

current version of GENESYS, is not simulated physically. It simply increases or decreases 

exponentially with soil moisture content (Magruder et al., 2009). 𝑅𝑢𝑛 is soil runoff (mm) 

calculated using the Soil Conservation Service curve number (SCS-CN) method which uses 

estimation curve number (CN) values (Mockus, 1972). Finally, snow melt (mm) is 

modelled using a temperature index melt routine developed by Quick and Pipes (1977), 

which applies a variable melt factor (cmC-1) based on land cover types and time of year 

(DeWalle et al., 2002) and mean daily streamflow (Q, m3s-1) is simulated using the 

Muskingum routing method.  

Additionally, a sloped area under estimation factor (SAUEF) is applied to all water 

balance components described above in order to correct the simulated hydrological balance 

for the sloped areas of the watershed (Kienzle, 2011). 

3.2.6. GENESYS calibration and verification 

The time frame of 1961 to 1999 was selected in order to incorporate the 

meteorological data for driving the model and also to implement the application of climate 

change scenarios and also 1961 to 1990 was considered as climate normal or baseline 

period.  
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Application of the derived lapse rates from normal (1960-1990) monthly air 

temperature grids (Wang et al., 2012; Wang et al., 2016) for minimum air temperature 

resulted in overestimations in daily minimum air temperature. Therefore, the minimum air 

temperature lapse rates were calibrated and adjusted to observed monthly average 

minimum air temperature values at the Apex Mountain Lodge climate station in order to 

minimize the differences between measured and modelled monthly average air temperature 

data at this climate station and increase the performance of GENESYS to model air 

temperature. The adjusted monthly minimum air temperature and the derived maximum air 

temperature lapse rates from the normal grids (Wang et al., 2012; Wang et al., 2016) then 

were applied to daily minimum and maximum air temperature values at the base station to 

predict daily minimum and maximum air temperatures over the watershed based on the 

elevation difference from the base station.  

The monthly maximum and minimum air temperature lapse rates used in this study 

are presented in Table 3.3.  

Table 3.3: Monthly maximum and minimum air temperature lapse rates (Ckm-1). 

Variables Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Tmax 1.9 3.9 6.3 7.6 7.7 7.9 7.8 7.6 7.0 5.9 4.0 2.0 

Tmin  4.1 6.4 4.9 4.1 9.2 9.0 6.7 6.0 6.4 4.6 4.7 5.0 

Daily air temperature and snow water equivalent (SWE) simulations were tested for 

the HRU representing the Apex Mountain Lodge Environment Canada climate station 

against the available measured data. The linear regression between observed and simulated, 

and root mean square error (𝑅𝑀𝑆𝐸) of the simulated values, were determined (Figure 3.6). 

The GENESYS model was calibrated and verified using CN values, as it has been 

found using sensitivity tests that the CN values have considerable effects on streamflow 
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simulations in the model. The time period of available streamflow data (1972-1999) was 

separated into two periods of calibration (1972-1985) and verification (1986-1999). CN 

value is a function of soil type, land cover surface, and antecedent moisture conditions 

(AMC) (USDA, 1986). It was assumed that soil type and land cover do not change with 

time but CN values are different between three AMCs: dry, moderate moist and, wet soil 

moisture conditions (SCS, 1985).  

The Percent of Normal Precipitation (PNP) index at the base station was used as a 

flag to identify dry, moderate and wet years. The PNP was calculated by dividing actual 

annual precipitation by normal annual precipitation and multiplying by 100. Our climate 

normal period was 1961-1990. The entire study period (1961-2100) was classified using 

the calculated PNP values so that a year is considered to be dry if the PNP is less than 75, 

moderately moist if the PNP is between 75 and 125 and, wet if the PNP is higher than 125.  

The USDA (1986) standard CN values are represented for various soil and land cover 

types in moderately moist soil conditions, and need to be decreased for drier or increased 

for wetter conditions (USDA, 1986). CN values were provided for different surfaces in 

well- to rapidly-drained soil types, including the forested area (45%), alpine and sub-alpine 

(85 %), barren surface (77%) and for a combination of rangeland, cropland, open water, 

cutblocks, and built-up areas (70%) (USDA, 1986).  

Simulated total monthly water volume was calibrated for the period of 1972-1985 

using CN values by iteratively adjusting the CN values to minimize the model errors in the 

water volume simulation. CN values were increased by 15% for wetter years in the forested 

area of the watershed which contributes to nearly 76% of the total watershed area. However, 
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CN values during wetter years were held unchanged for other land covers in the watershed. 

Also, CN values related to the drier years were decreased by 10% for the forested area and 

35% for all the other land cover types in the watershed. The simulated total monthly water 

volume then was verified for the period of 1986-1999 using the calibrated CN values for 

dry, moderated and wet years. The calibrated CN values were applied to the entire study 

period (1961-2100).  

The linear regression between observed and simulated values of total monthly water 

volume, Nash–Sutcliffe (𝑁𝑆) model efficiency coefficient (Nash and Sutcliffe, 1970), mean 

bias error (𝑀𝐵𝐸) which is a measure of the systematic error of a model and evaluates the 

tendency of a model to under- or overestimate the measured values (Willmott and 

Matsuura, 2005), and mean absolute Bias error (𝑀𝐴𝐵𝐸) which is a measure of the goodness 

of the fit for a model and a natural measure of average error and a good test for inter-

comparisons of the average model performance error (Willmott and Matsuura, 2005), were 

applied to assess the predictive capability of the calibrated model to simulate monthly water 

volume. However, it was understood that the lack of observed data in the mountainous 

study watershed could limit the model calibration and verification. 

3.2.7. Future climate change scenarios 

Future prediction of air temperature and precipitation for the base station from 

ensembles of 15 GCMs of the CMIP5 were obtained from ClimateWNA where locally 

downscaled scale-free future monthly climate data are available for the entire province of 

British Columbia (Wang et al., 2012; Wang et al., 2016). ClimateWNA used change factor 

or delta change method to overlay a scale-free baseline dataset with historical anomaly 
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datasets at 50-km resolution along with GCMs projections at 100 to 300 km resolution in 

order to create scale-free point future datasets. The resulting data are not gridded but the 

user is able to make an estimate for each location. 

For each 15 GCMs there are two greenhouse gas emission scenarios (RCP 4.5 and 

RCP 8.5) for three different future periods including, 2020’s (2011-2040), 2050’s (2041-

2070) and 2080’s (2071-2100) in the form of monthly variables. Ensembles among the 15 

GCMs for the two emission scenarios and three time periods were obtained with data on 

future monthly maximum and minimum air temperature and precipitation for each scenario. 

To downscale the GCMs derived data, the CF method (Diaz-Nieto and Wilby, 2005) 

was used. This method was used in this study to apply the future changes relative to the 

1961-1990 period in order to adjust deriving data set to the GENESYS model based on the 

observed daily climate data at the base station (MacDonald et al., 2011; MacDonald et al., 

2012; MacDonald et al., 2013). 

Future monthly air temperature and precipitation changes relative to the baseline 

(1961-1990) were calculated for two scenarios and three time periods (Figure 3.5). Monthly 

maximum and minimum air temperature changes were added to each day in the historical 

record (Diaz-Nieto and Wilby, 2005). To apply changes in precipitation for each scenario 

to the observed values, the monthly precipitation changes relative to the baseline (future 

monthly precipitation / base monthly precipitation) were multiplied by the daily 

precipitation values at the base station (Diaz-Nieto and Wilby, 2005). Six groups of 30-

year datasets with applied changes in air temperature and precipitation were used as inputs 

to GENESYS to estimate hydrometeorological variables for the range of climate changes 
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scenarios in the Olalla watershed. However, the limitation of the FC method is any pattern 

of variability that may exist in the watershed scale will be assumed to remain unchanged in 

the future. However, the variability in local climate conditions at the study base station is 

considered (Diaz-Nieto and Wilby, 2005). 

 

Figure 3.5: Future seasonal changes in actual mean temperature (average of maximum 

and minimum, C) and precipitation (mm) relative to the 1961-1990 historical period for 

the Keremeos 2 station. DJF = December–February, MAM = March–May, JJA = June–

August, SON = September–November. 

Predicted air temperature increases were estimated for both greenhouse gas emission 

scenarios (RCP 4.5 and RCP 8.5) in each three different future periods including 2020’s, 

2050’s and 2080’s in all four seasons (Figure 3.5). However, future precipitation is forecast 

to increase in all seasons except summer where there is a decrease in precipitation (Figure 

3.5).  
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3.3. Results and discussion 

3.3.1 GENESYS calibration and verification 

Simulated daily maximum air temperature, using the derived lapse rates from normal 

(1960-1990) monthly air temperature grids (Wang et al., 2012; Wang et al., 2016), 

simulated daily minimum air temperature using the adjusted lapse rates, and simulated total 

monthly SWE compared very well with the historical measurements at the Apex Mountain 

Lodge climate station for the available period of recorded data (Figure 3.6 and Table 3.4). 

However, it should be taken into account that the Apex Mountain Lodge station is located 

at high altitude at a considerable distance from the base station (Figure 3.1). As mentioned 

in MacDonald et al. (2012), accuracy of the GENESYS model predictions for air 

temperature and snow may decrease with increasing elevation, as a function of increasing 

distance from the base station and also increasing variability of the air temperature and 

snow in mountain areas. 

 

Figure 3.6: Observed vs. modeled daily maximum and minimum air temperature (C) and 

total monthly snow water equivalent (SWE) (mm) at the Apex Mountain Lodge climate 

station (the line represents the 1:1 line). 
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Table 3.4: Statistical comparison of the observed (x) vs. modeled (y) daily maximum and 

minimum air temperature (C) and total monthly snow water equivalent (SWE) (mm) at 

the Apex Mountain Lodge climate station. 

𝐲 = 𝐚 + 𝐛𝐱 𝐒𝐭𝐝. 𝐄𝐫𝐫𝐨𝐫𝐚 𝐭𝐚 𝐩 𝐒𝐭𝐝. 𝐄𝐫𝐫𝐨𝐫𝐛 

Daily maximum air temperature (C) 

𝐲 = 𝟐. 𝟓𝟕𝟕 + 𝟎. 𝟖𝟓𝟗𝐱 0.226 11.38 <0.001 0.018 

Daily minimum air temperature (C) 

𝐲 = 𝟏. 𝟔𝟔𝟗 + 𝟎. 𝟖𝟗𝟔𝐱 0.135 12.33 <0.001 0.018 

Total monthly SWE (mm) 

𝐲 = −𝟏. 𝟏𝟏𝟖 + 𝟏. 𝟐𝟖𝟑𝐱 4.293 -0.26 <0.001 0.110 

𝐭𝐛 𝐩 𝐫𝟐 𝐑𝐌𝐒𝐄 𝐧 

Daily maximum air temperature (C) 

48.36 <0.001 0.79 4.4 C 605 

Daily minimum air temperature (C) 

49.47 <0.001 0.78 3.9 C 683 

Total monthly SWE (mm) 

11.66 <0.001 0.85 19 mm 27 

Simulated total monthly spring and summer (March to August) water volume were 

compared with the corresponding measured values for the calibration and verification 

periods at the Keremeos creek below Willis intake stream gauge location (08NL045) 

(Figure 3.7 and Table 3.5).  

The Nash–Sutcliffe efficiency of 0.88 for the verification period showed the 

calibrated model was able to predict total monthly spring and summer (March to August) 

water volume very well (Figure 3.7 and Table 3.5). 𝑀𝐵𝐸 test showed the model 

overestimated the measured values by 1.3%. Also, 𝑀𝐴𝐵𝐸 test showed the model had 

24.0% average model performance error (Figure 3.7 and Table 3.5). 
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Figure 3.7: Observed vs. modelled total monthly spring and summer (March to August) 

water volume (million m3) at the Olalla watershed, BC for the calibration (1972-1985, 

left) and verification (1986-1999, right) periods (the line represents the 1:1 line). 

Table 3.5: Statistical comparison of the observed (x) vs. modelled (y) total monthly 

spring and summer (March to August) water volume (million m3) at the Olalla watershed, 

BC for the calibration (1972-1985) and verification (1986-1999) periods. 

𝐲 = 𝐚 + 𝐛𝐱 𝐒𝐭𝐝. 𝐄𝐫𝐫𝐨𝐫𝐚 𝐭𝐚 𝐩 𝐒𝐭𝐝. 𝐄𝐫𝐫𝐨𝐫𝐛    𝐭𝐛 

Calibration (1972-1985) period 

𝐲 = 𝟎. 𝟒𝟒 + 𝟎. 𝟖𝟗𝐱 0.18 2.40 <0.001 0.03 26.09 

Verification (1986-1999) period 

𝐲 = 𝟎. 𝟏𝟖 + 𝟎. 𝟗𝟓𝐱 0.16 1.10 <0.001 0.04 25.42 

𝐩 𝐫𝟐 𝐧 𝐌𝐁𝐄 𝐌𝐀𝐁𝐄 𝐍𝐒 

Calibration (1972-1985) period 

<0.001 0.89 84 2.2% 24.8% 0.89 

Verification (1986-1999) period 

<0.001 0.89 84 1.3% 24.0% 0.88 

3.3.2. Future water supply  

In order to compare future changes in spring and summer water supply of the Olalla 

watershed, the 30-yr average spring and summer water volume for two emission scenarios 

and three future time periods, 2020’s, 2050’s, and 2080’s were compared with the 30-yr 

average spring and summer water volume for the 1961-1990 period. Timing of snowmelt 

was also analysed for different scenarios relative to the 1961-1990 period. 
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Snowmelt started in April and achieved a peak in June and then decreased through 

July and August for the 1961-1990 period (Figures 3.3 and 3.8). However, the onset of 

snowmelt is likely to shift earlier in March with the primary spring water volume between 

March and June with a peak in May for Scenario 1 and time period of 2020’s (Figure 3.8). 

This pattern is the same for all other future scenarios except Scenario 2 in the 2080’s, in 

which the timing of snowmelt may start two months earlier and extend through February 

and May with a peak in April (Figure 3.8).  An earlier timing of snowmelt in all scenarios 

is likely a function of air temperature increases over the watershed (Figure 3.5 and 3.8). 

According to the results, the peak water volume may decrease for different scenarios and 

time periods relative to the average historical value (Figure 3.8). The reduction in peak 

water volume is a function of likely decreases in the ratio of snow to total monthly 

precipitation due to air temperature increases in all scenarios and time periods (Knowles et 

al., 2006). If more of the precipitation occurs as rain than snow, the available water storage 

in the form of snow decreases and results lower snowmelt runoff (MacDonald et al., 2011). 

 

Figure 3.8: Snowmelt period scenarios relative to the base scenario for the Olalla 

watershed. 
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Snowmelt timing shifts to the beginning of the spring (March) for all the future 

scenarios except February for Scenario 2 in the 2080’s (Figure 3.8), which may result in 

higher flows in the early spring and lower in summer relative to the 1961-1990 period 

(Figure 3.9). These changes with a combination of possible increases in future spring 

precipitation and decreases in summer precipitation (Figure 3.5), may increase spring water 

volume and decrease summer water volume in the Olalla watershed (Figure 3.9). However, 

the possible declines in the peak water volume in different climate change scenarios may 

not offset the increases in total spring water volume because the shifts in peak occur from 

June in summer to May (April in Scenario 2 in the 2080’s) in spring (Figure 3.8).   

The results showed, relative to the 1961-1990 period, total early spring water supply 

may increase by 36%, 39%, and 38% in Scenario 1 and by 39%, 35%, and 36% in Scenario 

2 for the periods 2020’s, 2050’s and 2080’s, respectively (Figure 3.9). Although, total 

spring water supply increased substantially in all scenarios relative to the 1961-1990 period, 

these increases were not notably different among scenarios and time periods (Figure 3.9). 

According to the results presented in Figure 3.9, total summer water volume may decrease 

for all future scenarios relative to the historical period. Relative to the 1961-1990 period, 

total summer water supply may be reduced by 36%, 58%, and 64% in Scenario 1 and by 

64%, 66%, and 79% in Scenario 2 for the periods of 2020’s, 2050’s and 2080’s, 

respectively (Figure 3.9). In both scenarios 1 and 2, the reductions in summer water supply 

increased substantially from 2020’s to 2080’s and the highest reductions between all 

scenarios and time periods was for Scenario 2 in the 2080’s (Figure 3.9). Furthermore, 

negative changes in summer water supply were higher than positive changes in spring water 

supply in the Olalla watershed and as a result total spring and summer (March to July) 
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water supply decreased for eight percent, 20%, and 24% in Scenario 1 and for 24%, 27%, 

and 35% in Scenario 2 for the periods of 2020’s, 2050’s and 2080’s, respectively relative 

to the 1961-1990 period (Figure 3.9). This has important implications for irrigation water 

supply and management. 

Nearly all agricultural lands in the Rural Keremeos area (Area G in the RDOS 

regional district) are under irrigation, about 78% of the irrigated lands are hay and pasture, 

17% are fruits (cherries, apples, peaches, and grapes), 3% are field crops and 2% are 

vegetables (Statistics Canada, 2006). Longer growing season and a warmer climate may 

favour agriculture in the region but this may also increase irrigation water demand (Cohen 

et al., 2006) during critical periods. Also, suitable climate conditions for fruit growing may 

expand to higher elevations (Zebarth et al., 1997) and this would increase fruit production 

in the watershed. However, climate change may increase spring water supply in the 

watershed, and if so this may not be very beneficial practically because a water supply 

increase during the wet season, even possibly resulting in excess water, may not be 

available during summer as there are no reservoirs in the watershed to store the water. 

Likely decreases in future summer water volume would stress summer water supply in the 

dry season. The simulated decline in summer water supply (Figure 3.9) may increase 

competition between agriculture and other sectors, such as domestic needs, in the dry 

season. Furthermore, the time of less water during the summer season overlaps with the 

highest irrigation demand (around June and July) and threats crop productivity in the 

watershed where most of the crops are under irrigation (Cohen et al., 2006). This may be 

more pronounced in our study watershed because its irrigation water is supplied by licences 

that use water directly from the creek or wells very close to the creek (BC Ministry of 
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Environment Lands and Parks, 1981; Regional District of Okanagan-Similkameen, 2011b). 

The future situation may need transitioning to more efficient irrigation systems such as drip 

irrigation, or, this may also result in management decisions to grow other types of crops 

suited to the more efficient irrigation systems.  

Although the frequency of droughts has not yet been attributed to climate change 

caused by human activities, the effects of climate change on hydrology may result in greater 

number and intensity of droughts (Barnett et al., 2005). Stewart et al., (2004) showed a one-

month advance in snowmelt makes the summer drought periods longer and will have 

serious effects on the water supply, wildfire management and ecosystem in western North 

America. Lower summer water supply in the watershed (Figure 3.9) may accelerate the 

effects of possible future droughts in the watershed. Decreases in summer water supply 

(Figure 3.9) may also influence summer groundwater availability in the watershed as 

groundwater system is closely connected to the surface water in the region (Cohen et al., 

2000).   

 

Figure 3.9: Spring and summer water supply scenarios relative to the 1961-1990 for the 

Olalla watershed. MAM = March–May, JJA = June–August, MAMJJA = March–August. 
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3.3.3. Future vegetation water demand 

The results demonstrate future climate change is likely to increase spring ETc over 

the watershed, although not equally across HRUs (Figure 3.10). Average spring vegetation 

water demand over the watershed is likely to increase relative to the historical period by 

20%, 32% and, 37% in Scenario 1 and 37%, 36% and, 47% in Scenario 2 for 2020’s, 2050’s 

and 2080’s, respectively (Figure 3.12). For the summer season, Scenarios 1 and 2 showed 

a likely decrease in ETc over the watershed (Figure 3.11). Summer vegetation water 

demand may decrease in contrast to the 1961-1990 period by 10%, 18% and, 20% in 

Scenario 1 and 20%, 21% and, 29% in Scenario 2 for 2020’s, 2050’s and 2080’s, 

respectively (Figure 3.12). However, similar to the spring season these changes are not 

uniform over all vegetation covers in the watershed (Figure 3.11). The increases in ETc 

during spring were more than reductions in ETc during summer season (Figure 3.12). 

However, the total spring and summer (March to July) evapotranspiration may not change 

significantly in future relative to the historical period (Figure 3.12). 

The actual inter-annual evapotranspiration is controlled and limited by both the 

availability of surface energy and soil moisture (Boé and Terray, 2008). Warmer air 

temperature (Figure 3.5) and correspondingly higher surface energy during spring would 

increase actual evapotranspiration. This is because, ETc is controlled by surface energy in 

winter, fall, and spring in hydro-meteorological models like GENESYS that include a 

limiting impact of soil moisture on evapotranspiration (Boé and Terray, 2008). However, 

the models realized evapotranspiration is mostly controlled by soil moisture deficits during 

summer (Boé and Terray, 2008). Warmer air temperature and lower precipitation during 
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summer (Figure 3.5) and resultant lower soil moisture decreases evapotranspiration in this 

season.  

Evapotranspiration in drier climates is a major component of water balance, and 

changes in evapotranspiration as a result of climate change may affect runoff (Merritt et 

al., 2006). The likely increases in spring evapotranspiration (Figure 3.12) may offset the 

likely increases in spring water supply (Figure 3.9). However, the likely decreases in 

summer evapotranspiration (Figure 3.12) may not be able to offset the likely decreases in 

summer water supply (Figure 3.9). Since the highest irrigation demand is during summer, 

future dry condition during summer along with population growth, warmer air temperature, 

and a longer growing season may threaten summer water availability in the watershed. 

The uninform pattern of changes in evapotranspiration across the Olalla watershed in 

spring and summer (Figures 3.10 and 3.11) may also result in changes in vegetation cover 

type over the watershed. Also, in all scenarios, the upper 10% of the modeled changes 

occurred in elevations above 1400 m and 1200 m in spring and summer, respectively 

(Figures 3.10 and 3.11), which reflects  the greater effect of climate change in higher 

elevations. In higher elevations, air temperature will rise above the threshold that 

precipitation can occur as snow instead of rain, and these thresholds were not met in the 

past in these elevations (MacDonald et al., 2012). Furthermore, higher spring 

evapotranspiration particularly in higher altitudes, may favour orchard production in these 

elevations (Zebarth et al., 1997).   
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Figure 3.10: Spatial change in 30-year mean spring vegetation evapotranspiration (mm) 

at the Olalla watershed for the two emission scenarios for 2020’s, 2050’s, and 2080’s 

periods relative to the 1961-1990 period. ETC is vegetation evapotranspiration. 
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Figure 3.11: Spatial change in 30-year mean summer vegetation evapotranspiration (mm) 

at the Olalla watershed for the two emission scenarios for 2020’s, 2050’s, and 2080’s 

periods relative to the 1961-1990 period. ETC is vegetation evapotranspiration. 

 

Figure 3.12: Spring and summer water demand scenarios over the Olalla watershed 

relative to the historical period. MAM = March–May, JJA = June–August, MAMJJA = 

March–August. 
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3.4. Conclusions  

Current and future changes in spring and summer water supply and spring and 

summer vegetative water demand were investigated in Chapter 3 using the GENESYS 

spatial hydrometeorological model in the Olalla watershed, RDOS, BC, for two greenhouse 

gas emission scenarios (RCP 4.5 and RCP 8.5) and three different future periods relative 

to the 1961-1990 period. 

The results of Chapter 3 showed that timing of snowmelt may occur one month earlier 

in all scenarios except Scenario 2 in the 2080’s, which may be two months earlier relative 

to the 1961-1990 period as a result of increases in air temperature. There may be increases 

in future total spring water supply and decreases in summer water supply relative to the 

1961-1990 period. These changes are likely due to increases in spring precipitation and 

decreases in summer precipitation along with the shifts in timing of snowmelt towards 

earlier in the spring. Furthermore, negative changes in summer water supply are higher than 

positive changes in spring water supply in the Olalla watershed. Average spring vegetation 

water demand may increase but summer vegetation water demand decrease for all scenarios 

relative to the historical period. These changes in evapotranspiration may be due to 

increases in surface energy during spring and decreases in soil moisture during summer, 

which as main drivers control evapotranspiration in these seasons. Also, changes in 

evapotranspiration may be higher in spring than summer and positive or negative changes 

more pronounced for the area located in elevation above 1400 m in spring and 1200 m in 

summer.  
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Increases in spring water supply may offset the increases in spring vegetation water 

demand; however, decreases in summer water supply cannot offset the decreases in spring 

vegetation water demand in the Olalla watershed. These changes are expected to put stress 

on water resources, agriculture, recreation activities, management, vegetation, wildlife, 

human settlements, and economic activities, along with non-climate change anthropogenic 

forces in the watershed. Hydro-climatology estimates generated by the study presented in 

Chapter 3 can help different sectors provide possible mitigation strategies in order to 

overcome the negative impacts of climate change in the Olalla watershed. 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Chapter 4 : The effect of climate change on farm-level greenhouse gas (GHG) 

emissions in an Okanagan-Similkameen sub-watershed, British Columbia, Canada 

4.1. Introduction 

Agriculture is a considerable source of GHG emissions as a result of higher rates of 

production associated with industrialized farming practices (Kröbel et al., 2016). However, 

the response of agricultural GHG emissions to changes in atmospheric composition and 

subsequent climate change, and changes in agricultural rates and processes, are still unclear 

(IPCC, 2014) and require more study to provide local sectors with most relevant 

information for the development of mitigation practices (Stocker, 2014).  Furthermore, 

there are disagreements between different studies on the positive or negative effects of 

warmer air temperature on soil carbon stocks (Davidson and Janssens, 2006). Warmer air 

temperature may accelerate decomposition of soil carbon (Gregorich et al., 2017) and 

transfer more carbon to the atmosphere (positive feedback); however, more plant-derived 

soil carbon capture may exceed increases in decomposition (negative feedback) (Davidson 

and Janssens, 2006).  

There continues to be demand for cost-effective ways to mitigate GHG emissions 

from agriculture (Burney et al., 2010). Soil carbon stocks have been recognized as one of 

the most profitable strategies to offset net farm-level GHG emissions (Antle et al., 2002; 

Kröbel et al., 2016), though the offset will subsequently decline because carbon storage 

diminishes over time as the soil reaches a new carbon content equilibrium. Soil carbon 

stocks react to management changes where the balance between carbon inputs and outputs 

is changed, for instance by switching from annual to perennial cropping (Kröbel et al., 
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2016). In order to mitigate the possible negative effect of climate change on farm-level 

GHG emissions, climate-induced changes in hydrometeorology can be implemented in 

GHG emissions models along with different agricultural management techniques to 

increase soil carbon stocks.  

Chapter 4 applies a coupled modelling approach to investigate current and future 

hydrometeorological conditions using the GENESYS spatial hydrometeorological model 

described in Chapter 3 (MacDonald et al., 2009).  

The changes in hydrometeorological conditions are then applied in the Holos GHG 

emissions estimation model (Little et al., 2008). The Holos model was designed by 

scientists at Agriculture and Agri-Food Canada to estimate GHG emissions for Canadian 

farms, including both animal management and cropping systems (Little et al., 2008). The 

main purposes of the model are estimating GHG emissions and informing management 

strategies for reducing GHG emissions. The model has been applied to estimate farm GHG 

emissions from beef and dairy production systems and also assess the impacts of 

management practices changes on farm GHG emissions (Janzen et al., 2006; Little et al., 

2008; Stewart et al., 2009; Beauchemin et al., 2010; Beauchemin et al., 2011; Bonesmo et 

al., 2012; Kröbel et al., 2012; Mc Geough et al., 2012; Hünerberg et al., 2014; Chai et al., 

2016; Kröbel et al., 2016; Legesse et al., 2016; Alemu et al., 2017a; Alemu et al., 2017b; 

Guyader et al., 2017).  

This coupled modelling approach is used to estimate climate-induced changes in 

GHG emissions (CO2, CH4 and, N2O) and soil carbon stocks for both crop and animal 

production processes. Chapter 4 considered two RCP scenarios (RCP 4.5 and RCP 8.5) for 
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three different future periods, including 2020’s (2011-2040), 2050’s (2041-2070) and 

2080’s (2071-2100) relative to a base period (1961-1990) using the ensembles of 15 GCMs 

of the CMIP5 (Moss et al., 2010; Wang et al., 2012; Wang et al., 2016). These future 

conditions were used for a simulated farm in the Olalla watershed described in Chapter 3. 

The effect of climate change on farm-level GHG emissions in the Okanagan-Similkameen 

region has never been assessed before.  

4.2. Methods 

4.2.1. Study area 

The Olalla watershed, whose physical and climate characteristics were described in 

Chapter 3, has diverse land cover types, with about 76% of the watershed covered by 

coniferous forests, mostly IDF and the agricultural area in the watershed consists of un-

irrigated rangeland (7.3% of the watershed area) and irrigated cropland (1.8% of the 

watershed area) ((Hectares BC, 2015), Figure 4.1). Elevation in the watershed ranges from 

476 to 2235 m a.s.l, where the agricultural area is located below 900 m a.s.l elevation and 

the rangelands are located between 500 and 2100 m a.s.l elevation. 
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Figure 4.1: Simulated farm (cropland and rangeland area) in watershed. 

The town of Olalla in the valley of the watershed has been growing in size and 

population over recent decades (Regional District of Okanagan-Similkameen, 2017). Cattle 

ranching is the dominant agricultural activity in this area, considering that land is used for 

the production of alfalfa, alfalfa mixtures, and hay and also fruit production is the other 

important agricultural activity (Statistics Canada, 2006). Nearly all croplands in the 

watershed is under irrigation and about 78% of the irrigated land is used to grow perennial 

hay and pasture, 17% to grow fruits, and 3% to grow annual field crops (Statistics Canada, 

2006). There is no detailed information on vegetable grown in the area; however, it was 
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assumed that the remaining 2% of the irrigated area is for vegetable production ((Statistics 

Canada, 2006)).  

The irrigation season in the watershed is from April to the end of September for most 

irrigation users (Regional District of Okanagan-Similkameen, 2011b). There are no dams 

or reservoirs, groundwater points of diversion or artesian wells in the watershed (BC 

Government, 2018) as mentioned in Section 3.2.2. However, there are active domestic 

water licences that use water directly from the Keremeos Creek and its tributaries, and 

irrigation licences that use wells close to the creeks inside the Olalla watershed (BC 

Government, 2018).  

A research conducted in the region in order to find the preferences of farmers among 

three different policies options in a time of water shortage including water trading in a water 

market, mandatory reduction in water supply, and priority reallocation of water among 

farmers based on the type of crop grown or proportional distribution (Conrad et al., 2017). 

The result showed the farmers growing forage, ranch, orchards, and mixed use in the region 

would mostly prefer a moderate level (e.g., 15%) of reduction, not an extensive level, 

during a water shortage period among other policies options (Conrad et al., 2017). 

4.2.1.1. Simulated farm  

A simulated farm was used to represent a typical farm in the Olalla watershed in order 

to estimate the whole-farm GHG emissions for current and future scenarios (Figure 4.1). 

The simulated farm included a cow-calf operation and a feedlot, as well as land for grazing 

(range), perennial mixed-hay (pasture), annual barley silage, and barley grain for cattle feed 

and bedding supplements ((Beauchemin et al., 2010; Alemu et al., 2017b), Tables 4.2 to 
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4.4). Further, the farm was assumed to grow vegetables as a minor form of production, 

including beans, cabbages, onions, peas, peppers, potatoes, sugar beets, tomatoes, and 

watermelons ((Dorenboss and Kassam, 1979; Janzen et al., 2003; Statistics Canada, 2006), 

Tables 4.1 to 4.3). The agricultural land also includes small orchards of 18-year-old apple 

trees (Fiji hybrid), at the peak of carbon sequestration capability ((Wu et al., 2012), Tables 

4.1 to 4.4). The growing season in the simulated farm was from April to the end of 

September (Regional District of Okanagan-Similkameen, 2011b).   

Table 4.1: The information related to the simulated farm in the Olalla watershed. 

Ecodistrict Ecozone Soil texture Soil type Global warming 

potentials 

CO2 CH4 N2O 

1010 Montane Cordillera Coarse Brown Chernozem 1 28 265 

Crops 

Annual Perennial Fruits Native grasslands 

Barley 

silage 

Barley 

grain 

Vegetables 

Area (ha) 

3 8 7 282 62a 1441 

Yield (kgha-1) b 

9530 5975 12000 6724 41696  
a In all crops, the area of crop is equal to the total irrigated area, but for apple trees, the total irrigated (drip 

irrigation) area is about 37 ha. The area covered by an 18-yr tree is 3.75 m2. 
b Yield data were obtained from Alemu et al. (2017b) and Wu et al. (2012). 
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Table 4.2: Climate, soil and water requirement, yield and total irrigated area for the crops 

in the simulated farm in the Olalla watersheda. 

Crop 

Temperature 

requirement, 

optimum and 

range (C) 

Soil requirement 

Fertilizer 

requirements 

(kgha-1growing 

period-1) b 

 

Water 

requirement 

(mmgrowing 

season-1) 

Sensitivity 

to water 

supply 

(kET) c 

N P 

Barley 15-23, 5-30 

Wide range of 

soils from deep 

sands and shallow 

soils to loams to 

heavy clays 

45 50 450-650 
Medium to 

high (1.15) 

Vegetables d 15-30 , 10-35 

Deep, medium 

textured, well 

drained 

170 110 300-900 
Medium to 

high (1.15) 

Mixed hay  24-26, 10-30 

Deep, medium 

textured, well 

drained 

40 65 800-1600 

Low to 

medium 

high (1.10) 

Fruits (apple 

trees) 
15-25, 10-35 

Deep, medium 

textured 
149 149 900-1010 High (1.20) 

a Data were obtained from Dorenboss and Kassam, (1979) 
b Highest recommended rates of N and P fertilizers are used, because the soil in the Olalla watershed is not 

very fertile. 
c KET of the total growing period: low (0.7<KET<0.8), medium-low (0.85<KET<0.95), medium-high (1.05< 

KET<1.15), high (KET>1.2). 
d The values for the vegetables are for a set of crops such as beans, cabbages, onions, peas, pepper, potatoes, 

sugar beets, tomatoes, and watermelons.   

Table 4.3: Crop-specific characteristics used for the simulated farm in the Olalla 

watersheda. 

Crop Moisture 

content (ww-1) 

Above ground 

residue N content (kg 

Nkg-1) 

Below ground 

residue N content (kg 

Nkg-1) 

Yield ratio 

Barley silage 0.07 0.013 0.007 0.72 

Barley grain 0.12 0.007 0.010 0.38 

Vegetables  0.80 0.020 0.010 0.40 

Mixed hay  0.13 0.015 0.015 0.40 

Fruits (apple 

trees) 

0.84 0.010 0.010 0.04 

Crop Above ground 

residue ratio 

Below ground 

residue ratio 
Fuel energy (GJha-1) Herbicide 

energy (GJha-1) 

Barley silage 0.08 0.20 1.78 0.23 

Barley grain 0.47 0.15 1.78 0.23 

Vegetables  0.40 0.20 1.78 0.23 

Mixed hay  0.10 0.50 1.78 0.23 

Fruits (apple 

trees) 

0.67 0.30 1.78 0.23 

a Data were obtained from Janzen et al. (2003). 
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Table 4.4: Fruit tree characteristics used for the simulated farm in the Olalla watersheda. 

Tree type Fiji apple 

Assumed age (yr) 18 

Area covered by an 18 yr tree (m2) 3.75 

Stand length (yr) 30 

Rows 315 

Row length 787 

Planting space (m) 2.5 

Total number of trees 99162 

a, b (coefficients for annual carbon accumulation) 0.9211, 1.0351 
                                            a Data were obtained from Wu et al. (2012). 

4.2.2. Datasets used 

4.2.2.1. Hydrometeorological data  

The available streamflow data recorded from 1972 to 1999 at the Keremeos Creek 

below Willis intake (08NL045) and the air temperature (ºC) and snow water equivalent 

(SWE) (mm) data (1965 to 1971) from Apex Mountain Lodge station in the watershed 

(Figure 4.1; (Environment Canada, 2015)) were used for model calibration and validation 

described in Chapter 3. The station ‘Keremeos 2’ (435 m elevation) - within the eight 

kilometers from the town of Olalla with daily maximum and minimum air temperature (ºC) 

and precipitation (mm) data for the period of 1961 to 1999 - was selected as the base station 

((Environment Canada, 2016), Figure 4.1) to run the model. Daily solar radiation (W m-2) 

for the weather station were also calculated using daily air temperature data and the daily 

solar radiation estimation method described in Chapter 2 (Mirmasoudi et al., 2018). 

4.2.2.2. Climate models 

Future prediction of air temperature and precipitation for the base station from 

ensembles of 15 GCMs of the CMIP5 were obtained from ClimateWNA (Wang et al., 2012; 

Wang et al., 2016) . Locally downscaled scale-free future monthly climate data are 
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available for the entire BC province (Wang et al., 2012; Wang et al., 2016). The CF 

downscaling method (Diaz-Nieto and Wilby, 2005) was used to implement future monthly 

maximum and minimum air temperature and precipitation changes for the ensembles of the 

15 GCMs for two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) for three 

different future periods including, 2020’s (2011-2040), 2050’s (2041-2070) and 2080’s 

(2071-2100) relative to the normal period of 1961-1990 in order to perturb deriving data 

set to the GENESYS model based on the measured daily climate data at the base station. 

Six 30-year meteorological datasets of the base station, for six climate change scenarios, 

with applied changes in air temperature, and precipitation were used as inputs to the 

GENESYS model to estimate hydrometeorological variables spatially for the Olalla 

watershed.  

4.2.3. The GENESYS hydrometeorological model  

The GENESYS spatial hydrometeorological model described in Chapter 3 was used 

to estimate hydrometeorological variables on a daily time step over the watershed. The 

watershed was divided into 201 HRUs using the method described in Chapter 3. The total 

agricultural area, both croplands and rangelands, included 47 different HRUs.   

The GENESYS model links daily meteorological data from the base station to the 

defined physiographic characteristics of each HRU to extrapolate hydrometeorological 

variables. Daily air temperature values for each HRU were estimated using monthly air 

temperature lapse rates and daily air temperature values at the base station. Daily 

precipitation estimates for each HRU were generated using the relationship between 

monthly values at the HRU and monthly and daily values at the base station. Daily potential 
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evapotranspiration (PET, mm) for each HRU and, mean daily streamflow (Q, m3s-1) at the 

outlet of the watershed were calculated under snow-covered and snow-free conditions.  

4.2.3.1. Modelling setup and parameterization 

For each HRU, the following parameters were identified: mean elevation (m), area 

(km2), monthly leaf area index (LAI) (NASA LP DAAC, 2000), normal (1961-1990) mean 

monthly solar radiation (Wm-2) (Mirmasoudi et al., 2018), monthly maximum and 

minimum air temperature (Ckm-1) and precipitation (mm) lapse rates (Wang et al., 2012; 

Wang et al., 2016), field capacity (FC, mm) ranging from 38 to 233 mm and monthly plant 

transpiration coefficients (PTCs). The estimated PTCs for different land cover types in 

upper North Saskatchewan River Basin (UNSRB), Alberta (Nemeth, 2010) were adjusted 

to the study area in order to take into account a drier climate in this watershed compared to 

UNSRB (BC Ministry of Agriculture Food and Fisheries, 2001). It was assumed that half 

of the total growing season water use (0.73 million m3) is consumed during June and July 

and the other half during April, May, August and September (BC Government, 2018). It 

was also assumed that total annual (12 months) water use for the other licences including 

conservation (storage), domestic, livestock and animal, waterworks and, others was 0.50 

million m3 (BC Government, 2018). Total annual human water use (1.23 million m3) was 

held constant during future simulations in order to test only the effect of changes in air 

temperature and precipitation on spring and summer water volume (million m3). The total 

monthly human water use was subtracted from the simulated total monthly water volume. 

The GENESYS model outputs including mean monthly air temperature, mean total 

growing season precipitation, and mean total growing season PET were estimated for the 
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simulated farm associated HRUs (cropland and rangeland HRUs). Also, total growing 

season water supply at the outlet of the Olalla watershed was calculated. These outputs 

from the GENESYS model were then used as inputs into Holos to estimate GHG emissions 

for the base and future climate scenarios at the simulated farm. 

4.2.4. The Holos greenhouse gas model  

Holos is a farm-level model that estimates GHG emissions from cropping system 

annually and from livestock on a monthly time step (Little et al., 2008). The model links 

farm characteristics including crops and animals, and a series of algorithms such as the 

Intergovernmental Panel on Climate Change (IPCC) Tier 2 methodology (IPCC, 2006) 

adjusted for Canadian agriculture system in order to estimate GHG emissions from a whole 

farm. Holos calculates average annual GHG (CO2, CH4, and N2O) emissions from enteric 

fermentation, manure management, cropping, and energy consumption. Carbon 

sequestration from tree planting and land use management is also calculated in Holos and 

an equilibrium level for soil carbon content is estimated based on environmental and 

management conditions of the prior 30-year time frame (Kröbel et al., 2016).  

Soil carbon was assumed to be constant and soil carbon change emissions are 

insignificant, unless changes in climate, crop yield, land use or management techniques 

occur (e.g., conventional versus reduced versus no tillage), which can be applied according 

to the year when adaptation occurred. When changes in soil carbon are taken into account, 

the equilibrium state needs to be re-adjusted continually (Kröbel et al., 2016). Soil carbon 

for native grassland systems was assumed to be at equilibrium levels (Smith, 2014). Some 

inputs in Holos are necessary to define, such as total area, crop types and cropping system 
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details, irrigation, and also number and types of animals, but there are also default values 

for some of the inputs, which can be overridden by the model user (Little et al., 2008), e.g., 

ecodistrict characteristics (Marshall et al., 1999) such as default values for soil type, soil 

texture, growing season precipitation, growing season potential evapotranspiration and 

land topography data. There are also region-specific emission factors for herbicide 

application, and energy use from machine operations (GJha-1) which are associated with 

the ecodistrict characteristics and can be modified by the user (Little et al., 2008). 

There are also more detailed inputs in Holos such as the ability to modify emission 

factors for manure systems and to design animal diets, as well different housing options, 

manure storage and handling options, initial and final body weight for animals, and also 

animal energy requirements and feed intake. Beside GHG emission investigations, the 

model takes into account different management strategies such as tillage type 

(conventional, reduced or no-tillage), fallowing, perennial crops and grassland seeding for 

GHG mitigations in a farm system.  

4.2.4.1. Modelling setup and parameterization 

The output hydrometeorological variables from the GENESYS model were used as 

inputs to Holos to modify ecodistrict variables. All ecodistrict-related inputs except soil 

type and soil texture were modified for model simulations. It was assumed that the farm 

GHG emissions are estimated for complete one-year beef production periods (Beauchemin 

et al., 2010) representative for each climate scenario (one year for baseline and six different 

years for each climate change scenario).  
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4.2.4.2. Crop modeling 

As neither GENESYS nor Holos actually model crop growth, but the effect of 

different rates of evapotranspiration is relevant in both models, an approach, by the FAO 

Irrigation and Drainage Paper No. 33 (Dorenboss and Kassam, 1979), was utilized where 

a simple equation is used that relates relative crop yield to the corresponding relative 

changes in evapotranspiration. In this adjustment,  𝑌𝑏 and 𝑌𝑠 are the base and scenario 

yields, 𝐸𝑇𝑏 and 𝐸𝑇𝑠 are the base and the scenario evapotranspiration, and 𝐾𝐸𝑇 is a yield 

response factor representing the sensitivity of yield to changes in evapotranspiration 

((Dorenboss and Kassam, 1979), Equation 1). Equation 4.1 is a water production function 

and can be applied to all agricultural crops including herbaceous vegetation, trees, and vines 

(Dorenboss and Kassam, 1979).  

(1 −
𝑌𝑏

𝑌𝑠
) = 𝐾𝐸𝑇 (1 −

𝐸𝑇𝑏

𝐸𝑇𝑠
)                                                                                  (4.1) 

In order to model the sensitivity of the crops to water supply, different yield response 

factors were applied for each cropping systems (annual, perennial, and fruit trees) 

(Dorenboss and Kassam, 1979) to relative changes in evapotranspiration for different 

climate change scenarios versus the base period to estimate the relative crop yield changes 

(Table 4.2).  

Coefficients for annual carbon accumulation of apple trees (𝑎 and 𝑏, Table 4.5) were 

also calculated for this study (Kort and Turnock, 2000), using the information related to 

apple trees carbon capture ability with age (kg Cm-2yr-1) (Wu et al., 2012).  

𝐶𝑡𝑟𝑒𝑒 = (𝑎 (𝑎𝑔𝑒 − 2))
𝑏
                                                                                     (4.2) 
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Where, 𝐶𝑡𝑟𝑒𝑒 is carbon capture (kg Cyear-1), 𝑎𝑔𝑒 is the tree age (year) and 𝑎 and 𝑏 

are coefficients for annual carbon accumulation of apple trees (Kort and Turnock, 2000).  

Soil direct N2O emissions due to nitrogen fertilizer use, tillage, soil texture, 

topography, and irrigation and indirect N2O emissions as a result of leaching and runoff 

and volatilization (Janzen et al., 2003; IPCC, 2006; Rochette et al., 2008; Wu et al., 2012; 

Rochette et al., 2018) and also CO2 emissions due to energy use, herbicide manufacturing, 

nitrogen and phosphor production, and irrigation (Nagy, 2000; Dyer and Desjardins, 2007; 

Neitzert et al., 2007) from the apple production system in the simulated farm were 

calculated outside of Holos and then added to the final results because the current version 

of the model (Holos 3.0) does not have the fruit tree component to take into account 

fertilizers, herbicides, and irrigation applications (Table 4.3 and 4.4).  

4.2.4.3. Beef modeling 

The number of animals in the simulated farm system was estimated using the amount 

of land utilized for each total rangeland area, cropping operation, and hay production during 

a life cycle over an 8-year period. Further, Dry Matter (DM) intake, land productivity, 

utilization rate, harvest loss and feeding loss were required for the analysis (Alemu et al., 

2017b). It was assumed that the breeding stock is established at the beginning of the 8-year 

cycle, which included newborn calves, young and growing heifers and bulls, mature cows 

and bulls, and lactating cows for nursing breeding stocks (Table 4.5). It was also assumed 

that there is an 85% annual calving rate for the progeny, all cows are pregnant and the sex 

ratio is 1:1 ((Alemu et al., 2017b), Table 4.5). Also, it was assumed that about 97% of the 

calves survived (mortality rate of 3%), and were backgrounded and finished on the farm 
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((Alemu et al., 2017b), Table 4.5). Calves were born in April, weaned in October and then 

backgrounded and finished under different diets to achieve the final weight ((Beauchemin 

et al., 2010; Alemu et al., 2017b), Tables 4.5 and 4.6).  

The farm was assumed to not produce the total amount of barley grain necessary for 

the assumed cattle ranching system, and therefore must import about 162 tonnes of grains 

(27 ha of corresponded land) for an 8-year cycle. Further, a total of 818 tonnes of mixed 

hay (122 ha of corresponding land) was exported from the watershed in an 8-year cycle. It 

was assumed that the simulated farm was responsible for the CO2 emissions from imported 

feed transportation and this emission was added to the energy related CO2 emissions. 

However, the CO2 emissions from the exported feed transportation was not considered to 

be included in the total GHG emissions of the simulated farm. The average CO2 emissions 

for shipping of goods by modern trucking was assumed to be between 60 to 150 grams of 

CO2 per metric tonnes of freight per kilometer of transportation (Emergency Community of 

Airport Entrepreneurs Hamburg EV, 2018). It was assumed that 162 tonnes of grains was 

imported from a farm located in Keremeos village or within about eight kilometers from 

the simulated farm, and the corresponded average CO2 emission was estimated at about 

0.136 Mg for an 8-year cycle, which is about 0.023 Mg for each year of beef production 

system (there are six complete beef production system in an 8-year cycle and the grain is 

only used for the progenies). 
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Table 4.5: The beef cattle farming system for the simulated farm in the Olalla watershed. 

Animal category 
Number of 

animals 

Months on a 

specific diet 

No. of days on 

a specific diet 
Diet type Manure 

Newborn heifer 

calves 

32 Apr 30 
Milk and mixed 

hay 

Deep-

bedding 

32 May-Oct 184 
Milk and native 

pasture 
Pasture 

Young heifers 32 Nov-Mar 151 Mixed hay 
Deep-

bedding 

Growing Heifers 

32 Apr 30 Mixed hay 
Deep-

bedding 

32 May- Oct 184 Native pasture Pasture 

32 Nov-Mar 151 Mixed hay 
Deep-

bedding 

Lactating Cows 
33 Apr 30 Mixed hay 

Deep-

bedding 

33 May-Oct 184 Native pasture Pasture 

Cows b 

32 Apr 30 Mixed hay 
Deep-

bedding 

32 May- Oct 184 Native pasture Pasture 

32 Nov-March 151 Mixed hay 
Deep-

bedding 

Newborn bull 

calves 

1 Apr 30 
Milk and mixed 

hay 

Deep-

bedding 

1 May-Oct 184 
Milk and native 

pasture 
Pasture 

Young growing 

bulls 
1 Nov-Mar 151 Mixed hay 

Deep-

bedding 

Growing bulls 

1 Apr 30 Mixed hay 
Deep-

bedding 

1 May- Oct 184 Native pasture Pasture 

1 Nov-Mar 151 Mixed hay 
Deep-

bedding 

Bulls 

1 Apr 30 
Mixed hay Deep-

bedding 

1 May- Oct 184 Native pasture 
Native 

pasture 

1 Nov-March 151 Mixed hay 
Deep-

bedding 

Newborn calves 

27 Apr 30 
Milk and mixed 

hay 

Deep-

bedding 

27 May-Oct 184 
Milk and native 

pasture 
Pasture 

Backgrounders 

26 Nov-Apr 15th 166 Mixed hay 
Deep-

bedding 

26 
Apr 16th-Aug 

13th 
120 Native pasture Pasture 

Finishers 26 
Aug 14th-Dec 

18th 
127 

90% barley grain, 

10% barley silage 

Deep-

bedding 

Animal category 
Housing 

Initial weight 

(kg)a 

Final weight 

(kg) 
ADG (kgday-1) 

 

Newborn heifer 

calves 

Confined 39  0.86  

Enclosed 

pasture 
 223 
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Young heifers Confined 223 372 0.99  

Growing Heifers Confined 372  0.58  

Enclosed 

pasture 
  

  

Confined  583   

Lactating Cows Confined 583  0.35  

Enclosed 

pasture 
 657 

  

Cows b Confined 657  0.00  

Enclosed 

pasture 
  

  

Confined  657   

Newborn bull 

calves 

Confined 39  0.89  

Enclosed 

pasture 
 229 

  

Young growing 

bulls 
Confined 229 379 

0.99  

Growing bulls Confined 379  1.18  

Enclosed 

pasture 
  

  

Confined  810   

Bulls Confined 810  0.19  

Pasture     

Confined  880   

Newborn calves Confined 39  0.87  

Enclosed 

pasture 
 226 

  

Backgrounders Confined 226  0.65  

Enclosed 

pasture 
 435 

0.86  

Finishers Confined 435 637 1.60  
a Average initial and final body weight and average daily weight gain (ADG) for animal categories on the 

farm is for the light continuous grazing management (Alemu et al., 2017b). 
b It is assumed that both the initial and final weight for cows are 657 kg. 

Table 4.6: Quality of diet (total digestible nutrient (TDN), crude protein (CP)) and 

methane conversion factor (Ym) values for the light continuous grazing management used 

for different feed types in the simulated farm in the Olalla watershed. 

Feed type TND (%) CP (kgkg-1) Ym (%) 

Natural rangeland 62.6  10.7 7.0 

Mixed hay 63.3 16.1 7.0 

Finishing diet 80.7 12.3 4.0 

Furthermore, the model assumed the manure cannot be imported or exported, and 

emissions were estimated at the farm (Beauchemin et al., 2010; Alemu et al., 2017b). The 

deep-bedded system for confined housing of the cattle during fall and winter months was 

provided by barley straw grown in the farm and the manure was accumulated in the housing 
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system and transported to the barley silage and barley grain croplands once a year 

((Beauchemin et al., 2010; Alemu et al., 2017b), Table 4.5). The manure was deposited on 

the pasture during the summer months when the animals were grazing on pasture 

((Beauchemin et al., 2010; Alemu et al., 2017b), Table 4.5).  

All GHGs were represented as CO2 equivalent to account for the global warming 

potential of the respective gases: CH4 kg × 23 + N2O kg × 298 + CO2 kg ((IPCC, 2001), 

Table 2). All the equations used for GHG emissions estimation from cattle ranching and 

crop cultivation are fully described in Beauchemin et al. (2010) and Alemu et al. (2017) 

(Beauchemin et al., 2010; Alemu et al., 2017b).  

4.3. Results and discussion 

4.3.1. The GENESYS hydrometeorological model 

4.3.1.1. Monthly air temperature  

The hydrometeorological modelling resulted in 30-year mean monthly air 

temperature increases of up to 5°C, or 51% relative to the 1961-1990 period at the simulated 

farm in the Olalla watershed. Predicted mean monthly air temperature increases were 

estimated for both greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) in each three 

different future periods including 2020’s, 2050’s and 2080’s. Mean monthly air 

temperature changes increased from 2020’s towards 2080’s in Scenario 1; however, 

Scenario 2 showed the same pattern but similar results for 2020’s and 2050’s. The period 

2080’s in Scenario 2 showed the highest increases in mean monthly air temperature 

between all other scenarios and time periods (Table 4.7).  
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4.3.1.2. Growing season PET and growing season precipitation  

The hydrometeorological modelling also showed 30-year mean total growing season 

PET increases of up to 41 mm or 12%. Results also suggest the 30-year mean total growing 

season precipitation decreased by up to 24 mm or 11%. Estimated mean total growing 

season PET increases and mean total growing season precipitation decreases were predicted 

for both greenhouse gas emission scenarios in each three different future periods. For both 

total growing season PET and precipitation, 2020’s showed the lowest changes and 2050’s 

and 2080’s with similar results showed the highest changes in Scenario 1; however, 2020’s 

and 2050’s showed similar results and lower changes than 2080’s in Scenario 2. The period 

2080’s in Scenario 2 showed the highest increase in mean total growing season PET and 

the highest decrease in mean total growing season precipitation between all other scenarios 

and time periods (Table 4.7). 

4.3.1.3. Water supply 

The results showed, relative to the 1961-1990 period, total growing season water 

supply decreased by 10.8%, 25.8%, and 31.4% in Scenario 1 and by 30.9%, 34%, and 

49.5% in Scenario 2 for the periods 2020’s, 2050’s and 2080’s, respectively as a result of 

climate change. The likely water supply reductions for different climate change scenarios 

and time periods relative to the 1961-1990 period, along with the higher competition for 

water between other sectors, will require increased surface and ground water allocations 

for agricultural purposes and, thus, raise energy use and CO2 emissions. This is because the 

estimated reduction in water supply is more than 15%, the rate of reduction in water supply 

in a time of water shortage considered by the farmers in the region to be acceptable (Conrad 
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et al., 2017), in all the scenarios except Scenario 1 in the 2020’s. Therefore, for the purpose 

of model application and assessment, it was assumed more surface and groundwater 

allocations would compensate the water supply reductions in the future. Therefore, the 

conversion of area irrigated to equivalent CO2 (kg CO2ha-1) was increased for different 

climate change scenarios and time periods relative to the 1961-1990 period. The applied 

percentage of increase in irrigation energy was assumed to be the same as the percentage 

of decreases in water supply for different climate change scenarios and time periods relative 

to the 1961-1990 period (Tables 4.7 and 4.8).  

4.3.2. Ecodistrict emission factor and the fraction of nitrogen lost by leaching and runoff 

The results suggested that changes in growing season precipitation and potential 

evapotranspiration (Table 4.7) decreased the ecodistrict N2O emission factor by up to 31% 

(kg N2O-N(kg N)-1) (Rochette et al., 2008; Rochette et al., 2018) and the fraction of 

nitrogen lost by leaching and runoff (kg N(kg N)-1) by up to 23% (Rochette et al., 2008), 

for different climate change scenarios and time periods relative to 1961-1990 period (Table 

4.7).  

Both greenhouse gas emission scenarios in each of three future periods showed 

decreases in the ecodistrict N2O emission factor and the fraction of nitrogen lost by leaching 

and runoff. The lowest changes in the ecodistrict N2O emission factor and the fraction of 

nitrogen lost by leaching and runoff was shown for 2020’s and the highest changes was for 

2050’s and 2080’s with similar results in Scenario 1; however, 2020’s and 2050’s showed 

similar results and lower changes than 2080’s in Scenario 2. The greatest decreases in the 
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ecodistrict N2O emission factor and the fraction of nitrogen lost by leaching and runoff was 

for 2080’s in Scenario 2 (Table 4.7). 

4.3.3. Crop yield  

Results suggested different crop yield increased between 7 to 14% for different 

climate change scenarios and time periods relative to the 1961-1990 period (Tables 4.7 and 

4.8). Different crop yield increased for both Scenario 1 and 2 in the 2020’s, 2050’s and, 

2080’s and also these changes increased from 2020’s to 2080’s in Scenario 1. However, 

2020’s and 2050’s in Scenario 2 showed similar results and 2080’s in Scenario 2 showed 

the highest increases in crop yield between all other scenarios and time periods (Table 4.7). 

As a result, both the below and above ground residue yield and corresponding direct and 

indirect N2O emissions due to crop nitrogen inputs increased alongside.  

4.3.4. Annual carbon accumulation of apple trees 

Crop yield increases in apple trees resulted in an increase in annual carbon 

accumulation of apple trees for different climate change scenarios and time periods relative 

to the 1961-1990 period (8 – 14% or 1.55 to 2.77 kg Cyr-1). These changes were applied 

to future scenarios by selection of 𝑎 and 𝑏 coefficients fitted for each scenario (Table 4.8). 
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Table 4.7: The GENESYS-derived mean monthly temperature (C), growing season 

precipitation (mm), and growing season potential evapotranspiration (mm) in the area of 

simulated farm and also, total growing season water volume (million m3) at the outlet of 

watershed and related ecodistrict emission factor (kg N2O-N(kg N)-1), and fraction of 

Nitrogen lost by leaching and runoff (kg N(kg N)-1) for the normal period of 1961-1990 

and for the two emission scenarios and three future time periods, 2020s, 2050s, and 

2080s. 

 Baseline Scenario 1 Scenario 2 

Month(s) 1961-1990 2020s 2050s 2080s 2020s 2050s 2080s 

30-year mean monthly temperature (C) 

Jan -2.9 -1.7 -0.5 0.0 0.0 0.1 1.9 

Feb 1.6 2.8 4.0 4.5 4.5 4.6 6.5 

Mar 6.5 8.3 9.6 10.2 10.2 10.3 12.0 

Apr 11.1 13.3 14.3 14.7 14.7 14.7 16.4 

May 15.2 16.7 17.6 18.1 18.1 18.1 19.7 

Jun 18.9 20.6 21.5 22.1 22.1 22.4 24.4 

Jul 22.3 24.4 25.7 26.6 26.6 26.9 29.6 

Aug 22.5 24.4 25.8 26.7 26.7 26.9 29.8 

Sep 17.6 19.1 20.2 21.0 21.0 21.2 23.6 

Oct 10.8 11.6 12.5 13.0 13.0 13.2 14.9 

Nov 3.0 3.8 4.9 5.4 5.4 5.6 7.2 

Dec -2.3 -1.0 0.0 0.4 0.4 0.7 2.4 

Average annual 10.4 11.9 13.0 13.6 13.6 13.7 15.7 

  30-year mean total growing season precipitation (mm) 

April-Sep 214 207 197 199 200 197 190 

  30-year mean total growing season potential evapotranspiration (mm) 

April-Sep 351 374 381 385 385 384 392 

30-year mean total growing season water volume (million m3) at the outlet of the watershed 

April-Sep 19.4 17.3 14.4 13.3 13.4 12.8 9.8 

30-year mean total growing season ecodistrict emission factor (kg N2O-N(kg N)-1) 

April-Sep 0.0086 0.0083 0.0065 0.0066 0.0066 0.0065 0.0059 

30-year mean total growing season fraction of Nitrogen lost by leaching and runoff (kg N(kg N)-1) 

April-Sep 0.1733 0.1690 0.1423 0.1431 0.1440 0.1419 0.1327 
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Table 4.8: The change in different crop yield, coefficients (a and b) and estimated annual 

carbon accumulation of apple trees (kg Cyr-1), and conversion of area irrigated to kg CO2 

(kg CO2ha-1) for different climate change scenarios relative to 1961-1990 for the 

simulated farm in the Olalla watershed. 

 Value Change for Scenario 1 Change for Scenario 2 

 Baseline 2020s 2050s 2080s 2020s 2050s 2080s 

Yield a 

Barley silage and 

grain 

9530 and 5975 

kgha-1 

7.5% 9.8% 11.1% 11.1% 10.8% 13.4% 

Vegetables b 12000 kgha-1 7.5% 9.8% 11.1% 11.1% 10.8% 13.4% 

Mixed hay  6724 kgha-1 7.2% 9.4% 10.7% 10.7% 10.3% 12.8% 

Fruits (apple trees) 41696 kgha-1 7.9% 10.3% 11.6% 11.6% 1.3% 14.0% 

The coefficients (a and b) and estimated annual carbon accumulation of apple trees  

Ctree 19.74 kg Cyr-1 7.9% 10.3% 11.6% 11.6% 11.3% 14.0% 

a 0.9909 7.9% 10.3% 11.6% 11.6% 11.3% 14.0% 

b 1.0351 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Conversion of area irrigated to kg CO2 

 367 kg CO2ha-1 10.8% 25.8% 31.4% 30.9% 34.0% 49.5% 
a Yield data were obtained from Alemu et al. (2017b) and Wu et al. (2012). 
b The values for the vegetables are for a set of crops such as beans, cabbages, onions, peas, pepper, potatoes, 

sugar beets, tomatoes, and watermelons.   

4.3.5. GHG emissions and soil carbon storage 

The results suggest emissions decreased for enteric CH4 between 1% to 4%, and also 

decreased for both manure CH4 and manure direct N2O between 3% to 7% for different 

climate change scenarios and time period relative to the 1961-1990 period (Figures 4.2 and 

4.3). These emissions are functions of the net energy requirements of the livestock (Little 

et al., 2008). According to a study by Ngwabie et al. (2011), at moderate levels, air 

temperature seems to affect the behaviour of dairy cows where the daily indoor air 

temperature ranged from about 5 C to about 20 C, the daily activity of the cows decreased 

with increasing indoor air temperature. They concluded the corresponding CH4 emissions 

of the cows decreased when their activity decreased (Ngwabie et al., 2011). Air temperature 

increases as a result of climate change (Table 4.7) may decrease the animal net energy 

requirement, and consequently enteric CH4, manure CH4, and manure N2O emissions for 

different climate change scenarios and time period relative to the 1961-1990 period.  
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Total manure and crop indirect N2O decreased between 1% to 27% for different 

climate change scenarios and time period relative to the 1961-1990 period (Figures 4.2 and 

4.3) as a result of the reduction in the fraction of nitrogen lost by leaching and runoff. 

However, crop direct N2O increased between 8% to 31% (Figures 4.3 and 4.4), because 

crop residue and nitrogen returns from crop residue to the soil increased for future scenarios 

relative to the 1961-1990 period. Crop direct N2O is expected to be reduced due to lower 

emission rates from land-applied manure, and also the reduction in ecodistrict emission 

factors (Figure 4.3 and Table 4.7). However, the results suggest the effect of the increasing 

soil nitrogen returns through crop residues on crop direct N2O outweighs the effect of the 

reduction of emissions from land applied manure and the overall reduction of the ecodistrict 

emission factor on crop direct N2O. 

CO2 emissions from energy use are anticipated to increase between 5% to 23% for 

different climate change scenarios and time period relative to the 1961-1990 period 

(Figures 4.2 and 4.3) due to the higher energy demand for irrigation purposes.  

Soil carbon storage due to fruit tree orchards would increase between 8% to 14% 

under the modelled conditions, for different climate change scenarios and time period 

relative to the 1961-1990 period (Figures 4.4 and 4.5) as a result of the increase in annual 

carbon accumulation of apple trees.  

Finally, the results suggest that the carbon storage capability in the simulated farm at 

the Olalla watershed may increase from 6% to 8% for different climate change scenarios 

and time period relative to the base period (Figures 4.4 and 4.5). However, the simulation 

results without including fruit tree orchards at the simulated farm in the Olalla watershed 
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revealed that the total farm GHG emissions may increase from 4% to 14% as result of 

climate change for different climate change scenarios and time period relative to the 1961-

1990 period. This shows the important effect of fruit tree orchards as a source of carbon 

capture in farm GHG emissions mitigation (Figure 4.6). 

 

Figure 4.2: Various GHG emissions (CO2 equivalents, Mg) resulting from the simulated 

farm in the Olalla watershed for the normal period of 1961-1990 and for the two emission 

scenarios and three future time periods, 2020s, 2050s, and 2080s. 

 

Figure 4.3: Changes in various GHG emissions resulting from the simulated farm in the 

Olalla watershed for the two emission scenarios and three future time periods, 2020s, 

2050s, and 2080s relative to the 1961-1990 normal period. 
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Figure 4.4: Various carbon storage (CO2 equivalents, Mg) resulting from the simulated 

farm in the Olalla watershed for the normal period of 1961-1990 and for the two emission 

scenarios and three future time periods, 2020s, 2050s, and 2080s. 

 

Figure 4.5: Changes in various carbon storage resulting from the simulated farm in the 

Olalla watershed for the two emission scenarios and three future time periods, 2020s, 

2050s, and 2080s relative to the 1961-1990 normal period. 

 

Figure 4.6: Changes in various GHG emissions resulting from the simulated farm in the 

Olalla watershed for the two emission scenarios and three future time periods, 2020s, 

2050s, and 2080s relative to the 1961-1990 normal period without fruit tree orchards. 
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4.4. Conclusions 

The concentration of GHGs in the atmosphere is increasing and agricultural area has 

been recognized as a significant source of GHG emissions. Chapter 4 estimated CO2, CH4, 

and N2O emissions and soil carbon stocks for a simulated farm contributed to both beef and 

crop production at the Olalla watershed, BC.  

The results of Chapter 4 suggest there may be a reduction in emissions related to 

enteric CH4, manure CH4, manure direct N2O, and indirect N2O for different climate change 

scenarios and time periods. However, there may be increases in crop direct N2O and energy 

CO2 for different climate change scenarios and time periods. Furthermore, soil carbon 

stocks, driven by fruit tree orchards, may also increase. This study suggests the carbon 

capture in the simulated farm at the Olalla watershed may increase depending on different 

climate change scenarios and time periods. However, if the simulation was conducted 

without fruit tree orchards, the total GHG emissions may increase for different climate 

change scenarios and time periods at the simulated farm in the Olalla watershed which 

represents a typical farm in the region. This shows the important effect of fruit tree orchards 

as a mitigation option for reducing farm GHG emissions in the region in the future. This 

mitigation option is likely to be more practical in the region as the results of Chapter 3 

indicated that higher spring evapotranspiration especially in higher elevations, may favour 

orchard production in these altitudes.  
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Chapter 5 : Summary and conclusions  

This research investigated climate change impacts on water supply and demand, and 

agricultural greenhouse gases (GHG) emissions in the Olalla watershed, an Okanagan-

Similkameen subwatershed, British Columbia, Canada in the time-frame of 1961 to 2100 

for the ensembles of 15 general circulation models (GCMs) for two Representative 

Concentration Pathways (RCP) scenarios (RCP 4.5 and RCP 8.5) for three different future 

periods, including 2020’s (2011-2040), 2050’s (2041-2070) and 2080’s (2071-2100) 

relative to the 1961-1990 base period.  

The Thesis addressed the following four different objectives, which were presented 

in Chapters 2, 3, and 4:   

1. Model solar radiation using an accurate proposed solar radiation model which uses 

the most available input data. 

2. Model historical and future water supplies under a range of climate scenarios using 

the Generate Earth Systems Science (GENESYS) hydrometeorological model. 

3. Estimate historical vegetation water requirement and assess climate driven changes 

in that parameter for a range of future climate scenarios using GENESYS.  

4. Link the GENESYS and Holos GHG emissions estimation models to estimate CO2, 

CH4 and N2O emissions and soil carbon change for agricultural - both crop and 

animal production - processes under different climate and management scenarios.  

This Thesis answered the research questions in the following manner: 
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1. Modeled daily solar radiation for the closest base climate station to the Olalla 

watershed and normal (1961-1990) mean monthly and annual solar radiation over the 

watershed using the proposed TRAD (temperature-estimation of radiation) model 

which uses ambient air temperature, a Digital Elevation Model (DEM), time of year, 

and monthly radiation estimates from Esri Solar Analyst.  

2. Modeled historical and future water supply and vegetation water demand under a 

range of climate scenarios using the GENESYS model in the Olalla watershed and 

reveled possible future changes in water supply and demand that may stress future 

water resources management in the watershed.  

3. Linked the GENESYS and the Holos models and estimated GHG emissions (CO2, 

CH4 and, N2O) and soil carbon change for both crop and animal production processes 

in a simulated farm in the Olalla watershed under different climate and management 

scenarios, showed how climate change may affect future agricultural GHG emissions, 

and introduced the available mitigation options.  

In Chapter 2, a daily solar radiation estimation method which uses ambient air 

temperature, a DEM, time of year, and monthly radiation estimates from Solar Analyst 

model was proposed. Accurate and precise estimation of spatio-temporal variability of solar 

radiation is critical for climate studies. Some commonly used models evaluate this 

variability using methods in which the data required for estimating atmospheric attenuation 

may not be easily accessible for some study areas. The objective was to use air temperature-

based empirical models for atmospheric transmissivity and diffuse fractions to vary total 

monthly radiation estimation from Solar Analyst, and then calculate total daily radiation as 
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a fraction of total monthly radiation by applying a daily transmissivity-based ratio, as air 

temperature data is readily available at most locations on the planet.  

The results of Chapter 2 revealed that daily solar radiation can be estimated very well, 

with a Mean Absolute Bias Error (MBE) of around 40 to 53 Wm-2 or a MBE of ±10%, 

under all sky conditions at seven sites in diverse climate regions, using significantly less 

input data. The presented method is an improvement over previously used methods with a 

MBE of under 10% but more input parameters. The results also showed the method is more 

useful for those stations with substantially higher numbers of sunny days than cloudy or 

partly cloudy days because the uncertainty of the model decreased from cloudy to sunny 

sky conditions. The implemented DEM environment of this method makes it applicable in 

many studies that need high resolution estimations of solar radiation across complex terrain. 

Hourly solar radiation values are modelled using a ratio between daily and hourly radiation, 

based on literature values and estimated daily insolation. The proposed solar radiation 

estimation method was used to estimate daily solar radiation for the base climate station 

closest to the Olalla watershed and normal (1961-1990) mean annual and monthly solar 

radiation over the watershed.  

In Chapter 3, the effects of climate change on spring and summer water supply and 

spring and summer water demand related to the vegetation cover in the Olalla watershed in 

the Regional District of Okanagan-Similkameen (RDOS), southern British Columbia, 

Canada, in the time-frame of 1961 to 2100 were investigated. The GENESYS spatial 

hydrometeorological model was applied to predict the potential changes for the ensembles 

of 15 GCMs for two RCP scenarios (RCP 4.5 and RCP 8.5) for three different future 
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periods, including 2020’s (2011-2040), 2050’s (2041-2070) and 2080’s (2071-2100) 

relative to the 1961-1990 base period.  

Chapter 3 results indicate that the timing of snowmelt will likely occur one month 

earlier for all scenarios except Scenario 2 in the 2080’s, where the timing of snowmelt may 

be two months earlier relative to the 1961-1990 period. There may be increases in the future 

total spring water supply from 35% to 39% and decreases in summer water supply from 

36% to 79% relative to the 1961-1990 period based on the scenarios. Average spring 

vegetation water demand may increase from 20% to 47% but summer vegetation water 

demand may decrease from 10% to 29% relative to the 1961-1990 period based on the 

scenarios. These changes are expected to put stress on the future water resource 

management, on agricultural and forest productivity, and on ecosystem functions in the 

watershed.  

The concentration of GHGs in the atmosphere is increasing and agricultural areas are 

recognized as a significant source of GHG emissions, and may be increasing GHG emission 

in a warmer world (Kröbel et al., 2016). Chapter 4 analyses evaluated CO2, CH4 and N2O 

emissions and soil carbon storage changes for a simulated farm with both beef and crop 

production in the Olalla watershed. In Chapter 4, the GENESYS model output representing 

a range of future climate scenarios (current and future hydrometeorological conditions in 

the study area) were adapted to provide the Holos model inputs. Adapting the GENESYS 

output facilitated Holos modelling of farm GHG emissions under two greenhouse gas 

emission scenarios (RCP 4.5 and RCP 8.5) for three different future periods (2011-2040, 

2041-2070 and 2071-2100) relative to the 1961-1990 base period.  
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The results of Chapter 4 showed that there may be reductions in emissions related to 

enteric CH4, manure CH4, manure direct N2O, and indirect N2O for different climate change 

scenarios and time periods. However, there may also be increases in crop direct N2O and 

energy CO2 for the same scenarios. Furthermore, soil carbon storage under fruit tree 

orchards would be expected to increase. According to this result, the simulated farm at the 

Olalla watershed is a carbon sink and the carbon capture will likely increase to higher 

levels, depending on different climate change scenarios and time periods. However, if the 

simulation was conducted without fruit tree orchards as a carbon sink, the simulated farm 

at the Olalla watershed is a carbon emitter and the carbon emissions will likely increase for 

different climate changes scenarios and time periods. This shows the important effect of 

fruit tree orchards as a mitigation option for reducing farm GHG emissions in the future 

which is likely to be more practical in the region as Chapter 3 indicated higher spring 

evapotranspiration especially in higher elevations, may favour orchard production in these 

altitudes. 

5.1. Recommendations for future research  

This Thesis modelled climate change impacts on water supply and demand, and 

agricultural GHG emissions in an Okanagan-Similkameen subwatershed, British 

Columbia, Canada. A number of recommendations for future research and development 

have been identified.  

 The proposed TRAD model presented in Chapter 2 should be developed as an 

independent software package or an extension to ESRI Solar Analyst in order to be 

available for different users and applications.  
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 In Chapter 3, the impacts of climate change on water supply and vegetation water 

demand were assessed; however, focus should be placed on subsequent changes in 

land cover as a result of the anticipated changes in water supply and vegetation water 

demand. These land cover changes should be studied especially with a particular 

focus on the changes in forest and agricultural land covers, for example, suitability 

assessment of climate conditions for fruit growing in higher elevations. 

 In Chapter 4, fruit growing was introduced as a mitigation option for GHG emissions 

from agriculture in the watershed. However, the economic feasibility should be 

identified by using the economic assessment option in the Holos model. Other 

cropping system management strategies other than fruit tree orchards that may result 

in lower GHG emissions and be economically viable may also be taken into account.  
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