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Abstract

During the templated biopolymerization processes of transcription and trans-

lation, a macromolecular machine, either an RNA polymerase or a ribosome,

binds to a specific site on the template. Due to the sizes of these enzymes,

there is a waiting time before one clears the binding site and another can bind.

These clearance delays are relatively short, and one might think that they could

be neglected. However, in the case of transcription, these clearance delays are

associated with conservation laws, resulting in surprisingly large effects on the

bifurcation diagrams in models of gene expression networks. We study an ex-

ample of this phenomenon in a model of a gene regulated by a non-coding RNA

displaying bistability. Neglecting the binding-site clearance delays in this model

can only be compensated for by making ad hoc, unphysical adjustments to the

model’s kinetic constants.

Keywords: Gene expression modeling, delays, binding-site clearance,

processive enzymes

1. Introduction

A macromolecular machine such as an RNA polymerase or a ribosome that

binds to a nucleic acid polymer (DNA or RNA) excludes other machines from
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accessing the nucleotides to which the machine is bound. This observation

is the basis for Totally Asymmetric Exclusion Process (TASEP) and related

models of transcription and translation [1–6]. In particular, the binding of one

of these machines to initiate a biopolymerization process occludes the binding

site, which must be cleared before another machine can bind. These effects

can be incorporated in a simple way into gene expression models by including

a binding-site clearance delay into the initiation process [7], or by modeling

clearance explicitly [8–12].

In many mathematical models involving delays, the steady states do not

depend on the delays because, in a steady state, x(t − τ) = x(t). In particu-

lar, the number and coordinates of the steady states might be thought to be

properties that do not depend on whether or not delays are considered. Absent

other types of bifurcations, this line of reasoning would lead us to conclude that

bistability is a phenomenon that is independent of the delays. However, there

is one important case in which the steady states do depend on the delays, and

that is the case in which a conserved component of the system enters a process

from which it only exits with a delay. Gene promoter clearance is an example of

this: transcription initiation occludes the promoter, which only becomes avail-

able again once the transcription machinery has cleared the promoter (Fig 1).

In cells that are not actively replicating, the total amount of a given promoter

in a cell is fixed by the cell’s ploidy. In sufficiently slowly replicating cells, it

may still be a good approximation to treat the promoter concentration as fixed,

at least outside of the DNA synthesis phase of the cell cycle. Conserved quan-

tities like the promoter concentration that are recycled with a delay lead to

integral conservation relationships that depend on the size of the delay [14]. For

binding sites (gene promoters, ribosome binding sites), this can have the effect

of reducing the amount of free binding site available at any given time, with

potential effects (depending on the structure of the model) on the steady state

values of other variables [15]. Quite apart from the importance of these effects

in mathematical modeling, these are real biological phenomena that have also

been studied experimentally [16–19].
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Figure 1: Delays in transcription: The RNA polymerase (RNAP) and promoter form a com-

plex. A time τ1 elapses before the polymerase clears the promoter and the latter is once

again available for transcription initiation. Completion of the transcript requires a total time

τ2. Neglecting the difference in time between completion of the transcript and release of the

polymerase, which are not necessarily simultaneous events [13], RNAP is also recycled after

τ2. Because many transcripts are simultaneously transcribed by many polymerases, there is

no specific pool of polymerases associated with one particular transcript, so that the initiation

or termination of transcription will normally have a negligible effect on the the cellular RNAP

pool, hence our treatment of this pool as being fixed.

For transcription in particular, in prokaryotes, measured mean promoter

clearance times vary from 4 s to 40 min [11, 20–22]. In eukaryotes, the mean

promoter clearance time is of the order of 8 to 10 minutes [23, 24]. With rare

exceptions [7, 15, 25, 26], these clearance delays, which are short compared to

the time required to produce a mature transcript, are ignored in gene expression

models, although they are automatically included in any nucleotide-resolution

transcription or translation model [10, 26–28]. Given that these delays are

relatively short, they might be thought to be negligible. The effects of clear-

ance delays in a bistable model for NO detoxification in bacteria were briefly

mentioned in a recent study [15]. On further study of this model, one of us

found that there were relatively large changes in the bifurcation diagram of the

model depending on whether or not binding-site clearance delays were included

(E. A. M. Trofimenkoff, unpublished). One simple idea we pursued was that the

differences between models with and without delays might be due to differences

in the initiation frequencies of transcription and translation, since occlusion of

the binding site necessarily increases the mean time between initiations. At-

tempts to compensate for the absence of delays on this basis did not eliminate
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the differences in the bifurcation diagrams, and in fact sometimes made them

worse.

The NO detoxification model is relatively complex, and so is not a good plat-

form for deeper analysis. We therefore chose to examine the effects of binding-

site clearance delays in a mass-action elaboration of a model with bistable be-

havior due to the control of translation through a non-coding RNA (ncRNA)

proposed by Zhdanov [29]. From the point of view of our current study, this

model has several attractive features beyond its relative simplicity. It includes

transcription and translation, both of which are subject to binding-site clearance

effects. The mRNA is expressed constitutively, while expression of the ncRNA

is repressed by the protein encoded by the mRNA. This allows us to consider the

effects of binding-site clearance delays in both regulated and unregulated tran-

scription processes. Similar models with transcription and translation delays

have appeared elsewhere, and could also have formed the basis for this study

[30, 31].

In Sect. 2, we construct a delayed mass-action model [14] corresponding to

Zhdanov’s model, and derive the steady-state conditions for this model both

with and without delays. In Sect. 3, we show that this model has a bistable

regime, both analytically and numerically. In particular, we calculate some

bifurcation curves for the models with and without delays to demonstrate the

non-negligible effects of the clearance delays. In Sect. 4, we obtain parameter

transformations that will bring the two models into correspondence. We point

out that these transformations require unphysical adjustments to the kinetic

parameters. Finally, we discuss the implications of this work both for predictive

modeling and for model fitting.

2. The elaborated Zhdanov model

2.1. The model with delays

Zhdanov’s original model included an empirical functional form for the tran-

scription rate of the non-coding RNA assuming independent binding of n units
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of the protein to the promoter [29]. For this study, we needed to explicitly con-

sider the state of the promoter. We thus replaced Zhdanov’s empirical rate law

by cooperative binding of n proteins to the promoter. While this yields slightly

different kinetics, it has the benefit of not adding many chemical reaction steps

while allowing for the explicit representation of events at the promoter needed

here.

The model we studied is the following, expressed in the delayed mass-action

notation [14], with the time index (t) being suppressed in reactions containing

no delayed terms:

Pro1(t)
k1−−→ Pro1(t+ τ1) + mRNA (t+ τ2) (1a)

mRNA(t)
k2−−→ mRNA(t+ τ3) + P(t+ τ4) (1b)

mRNA
k3−−→ ∅ (1c)

P
k4−−→ ∅ (1d)

Pro2(t)
k5−−→ Pro2(t+ τ5) + ncRNA(t+ τ6) (1e)

Pro2 + nP
k6−−−⇀↽−−−
k−6

Pro2i (1f)

ncRNA
k7−−→ ∅ (1g)

mRNA + ncRNA
k8−−→ ∅ (1h)

The first four reactions are, respectively, transcription from promoter 1 (Pro1),

and translation of the gene for the protein (P), degradation of the mRNA, and

degradation of the protein. Reaction (1e) represents the transcription of the

non-coding RNA from promoter 2 (Pro2). Reaction (1f) describes the cooper-

ative binding of n molecules of the protein to promoter 2, which prevents the

binding of RNA polymerase to this promoter. Reaction (1g) represents degra-

dation of the ncRNA, while reaction (1h) is a single-step representation of the

binding of the non-coding RNA to the mRNA and of the subsequent degrada-

tion of the complex [32]. The delays τ2, τ4 and τ6 are the usual synthesis delays

encountered in many gene expression models [33–37]. The delay τ1 represents
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the time it takes for an RNA polymerase to clear promoter 1, during which time

another polymerase cannot bind. Similarly, τ5 is the promoter clearance time

for promoter 2. The delay τ3 accounts for the time needed for a ribosome to

clear its binding site on the mRNA.

The delayed mass-action reactions are to be interpreted as follows, consid-

ering the rate of change of the promoter concentration due to reaction (1a) as

an example: The instantaneous rate of transcription initiation from promoter 1

is k1[Pro1]. This is the pseudo-first-order rate at which promoters enter the

transcriptional process, as illustrated in Fig. 1. Promoters that initiate at time

t will be cleared at time t + τ1. The rate at which promoters are cleared of

RNA polymerase at time t therefore depends on the rate of initiation at t− τ1.

Thus, at time t, free promoters are removed from the pool at a rate k1[Pro1](t),

and returned to that pool at a rate k1[Pro1](t− τ1) ≡ k1[Pro1]τ1 , the subscript

denoting a delayed quantity.

Applying this reasoning to the full mechanism, we obtain the following delay-

differential equations (DDEs) for this model:

d[Pro1]d
dt

= −k1[Pro1]d + k1[Pro1]d,τ1 , (2a)

d[mRNA]d
dt

= k1[Pro1]d,τ2 − k2[mRNA]d

+ k2[mRNA]d,τ3 − k3[mRNA]d

− k8[mRNA]d[ncRNA]d,

(2b)

d[P]d
dt

= k2[mRNA]d,τ4 − k4[P]d

− nk6[Pro2]d[P]nd + nk−6[Pro2i]d,

(2c)

d[Pro2]d
dt

= −k5[Pro2]d + k5[Pro2]d,τ5

− k6[Pro2]d[P]nd + k−6[Pro2i]d,

(2d)

d[Pro2i]d
dt

= k6[Pro2]d[P]nd − k−6[Pro2i]d, (2e)

d[ncRNA]d
dt

= k5[Pro2]d,τ6 − k7[ncRNA]d

− k8[mRNA]d[ncRNA]d.

(2f)
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In these equations, the subscript d indicates concentrations in the model with

delays. As described above, a subscript τi indicates that the corresponding term

is evaluated at t− τi.

The total amount of each promoter must be conserved. The conservation of

promoter 1 is expressed by the following integral equation:

[TPro1]d = [Pro1]d(t) + k1

∫ t

t−τ1
[Pro1]d(θ) dθ, (3)

where [TPro1]d is the constant total amount of promoter. Note that k1[Pro1]d(θ)

is the rate at which promoters were becoming occluded at time θ ∈ [t − τ1, t].

Thus, the integral term in Eq. (3) represents the total amount of promoter that

became occluded by RNA polymerase between t−τ1 and t. Adding the amount

of occluded promoter to the amount of free promoter gives the total amount of

promoter 1, [TPro1]d.

To prove that [TPro1]d is a constant, take a time derivative of Eq. (3):

d[TPro1]d
dt

=
d[Pro1]d

dt
+ k1[Pro1]d(t)− k1[Pro1]d(t− τ1).

Using Eq. (2a), we find that d[TPro1]d/dt = 0, which completes the proof. We

can very similarly show that

[TPro2]d = [Pro2]d(t) + [Pro2i]d(t) + k5

∫ t

t−τ5
[Pro2]d(θ) dθ, (4)

the total amount of promoter 2, is a constant of the motion.

At a steady state, when [Pro1]d is constant, Eq. (3) reduces to

[TPro1]d = [Pro1]d(1 + k1τ1). (5)

Similarly, the steady-state values of [Pro2]d and [Pro2i]d satisfy, from Eq. (4),

[TPro2]d = [Pro2]d(1 + k5τ5) + [Pro2i]d. (6)

The following is therefore a full set of equations for the steady states of this

system:

k1[Pro1]d − k3[mRNA]d − k8[mRNA]d[ncRNA]d = 0, (7a)
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k2[mRNA]d − k4[P]d = 0, (7b)

k5[Pro2]d − k7[ncRNA]d − k8[mRNA]d[ncRNA]d = 0, (7c)

k6[Pro2]d[P]nd − k−6[Pro2i]d = 0, (7d)

[TPro1]d = [Pro1]d(1 + k1τ1), (7e)

[TPro2]d = [Pro2]d(1 + k5τ5) + [Pro2i]d. (7f)

Note the appearance of the delays τ1 and τ5 in Eqs. (7e) and (7f). The steady

states of this model thus depend on the promoter-clearance delays due to the

appearance of these delays in conservation relations. The steady states are

independent of the synthesis delays τ2, τ4 and τ6, as expected. The steady states

are also independent of the ribosome-binding-site clearance time τ3 because the

mRNA concentration is not a conserved quantity.

2.2. The model without delays

If we set all of the delays to zero in the mechanism (1) [or, equivalently, in

the DDEs (2)], we get the following set of ordinary differential equations:

d[mRNA]nd
dt

= k1[Pro1]nd − k3[mRNA]nd

− k8[mRNA]nd[ncRNA]nd,

(8a)

d[P]nd
dt

= k2[mRNA]nd − k4[P]nd

− nk6[Pro2]nd[P]nnd + nk−6[Pro2i]nd,

(8b)

d[Pro2i]nd
dt

= k6[Pro2]nd[P]nnd − k−6[Pro2i]nd, (8c)

d[ncRNA]nd
dt

= k5[Pro2]nd − k7[ncRNA]nd

− k8[mRNA]nd[ncRNA]nd.

(8d)

The subscript ‘nd’ indicates quantities in the non-delayed model. Note that

in the absence of delays, [Pro1] becomes constant. Moreover, the conservation

relation (4) reduces to

[TPro2]nd = [Pro2]nd + [Pro2i]nd. (9)
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The steady-state conditions for this model are obtained straightforwardly

from Eqs. (8) and (9):

k1[Pro1]nd − k3[mRNA]nd − k8[mRNA]nd[ncRNA]nd = 0, (10a)

k2[mRNA]nd − k4[P]nd = 0, (10b)

k5[Pro2]nd − k7[ncRNA]nd − k8[mRNA]nd[ncRNA]nd = 0, (10c)

k6[Pro2]nd[P]nnd − k−6[Pro2i]nd = 0, (10d)

[TPro1]nd = [Pro1]nd, (10e)

[TPro2]nd = [Pro2]nd + [Pro2i]nd. (10f)

Equation (10e), which expresses the constancy of [Pro1], is included to highlight

the parallel structures of Eqs. (7) and (10).

2.3. Parameters

Some of the parameters used here were either directly borrowed from Zh-

danov’s work [29] or calculated to correspond to the parameters where bistability

was observed in his model. Others were estimated as briefly discussed below.

Zhdanov’s variables and parameters were scaled so that they represented

molecular counts per cell (presumably averaged over many cells, hence the con-

tinuous variables). Focusing on bacterial parameters, the number of genome

copies per cell varies with growth rate from 1.6 to 4 in Escherichia coli [38].

The total amount of the protein-coding promoter (Pro1) was therefore assumed

to be 2. The total amount of the ncRNA promoter (Pro2) was assumed to be 10,

since multiple copies of an ncRNA sequence can be present in a genome [32].

k1 and k5 were chosen to fall within the typical range for transcription ini-

tiation by bacterial RNA polymerase given by Record et al. [39]. This assumes

that transcription initiation rates for non-coding RNAs are similar to those for

coding RNAs.

τ1 and τ5 were chosen to be 0.09 min, at the lower end of values for prokary-

otes, on the assumption that promoter escape is the rate-limiting process for

promoter clearance [21]. At worst, these values of τ1 and τ5 will therefore be

underestimates.
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Table 1: Default parameter values. [t] denotes a value discussed in the text, and [a] represents

an assumed value.

Parameter Value Reference

Protein expression

[TPro1] 2 [t]

k1 1.2 min−1 [t]

k2 2.3 min−1 [41]

k3 0.1 min−1 [29]

τ1 0.09 min [t]

ncRNA expression

[TPro2] 10 [t]

k5 10 min−1 [t]

k6 0.1 molecule−nmin−1 [a]

k−6 5 min−1 [a]

k7 1 min−1 [a]

n 4 [29]

τ5 0.09 min [t]

mRNA-ncRNA complex formation and removal

k8 0.02 molecule−1min−1 [29]

No value is given for k4, as this will be used as a control parameter in the

bifurcation studies to follow. This rate constant can be varied experimentally

given that protein stability can be engineered [40].

3. Bistability

3.1. Geometric argument

We can show that this model has the potential for bistability by a geometric

argument. Equation (7e) can be solved analytically for [Pro1]d:

[Pro1]d =
[TPro1]d
1 + k1τ1

. (11)
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Thus, [Pro1]d is a fixed fraction of [TPro1]d. Accordingly, in the equations

that follow, we leave [Pro1]d as is, with the understanding that we could use

Eq. (11) to compute the promoter concentration as needed. We also temporarily

drop the d subscripts as there is no possibility of confusion between models

here. We then carry out a series of successive eliminations using Eqs. (7a)–(7d)

and (7f), resulting in the following equation for the steady-state value of [P]:

f([P]) = g([P]) with

f([P]) = (k1k2[Pro1]− k3k4[P])

(
1

k2
+

k7
k4k8[P]

)
, (12a)

g([P]) =
k5[TPro2]

K6[P]
n

+ 1 + k5τ5
, (12b)

where K6 = k6/k−6 is a binding constant. Note that f([P]) → ∞ as [P] → 0

and that
df

d[P]
= −k3k4

k2
− k1k2k7[Pro1]

k4k8[P]
2 < 0 (13)

for [P] > 0. f([P]) = 0 intersects the [P] axis at

[P]0 =
k1k2[Pro1]

k3k4
. (14)

g([P]) on the other hand is a strictly decreasing Hill function with a maximum

value

gmax =
k5[TPro2]

1 + k5τ5
, (15)

and reaches half this maximum value at

[P]1/2 =

(
1 + k5τ5
K6

)1/n

. (16)

This combination of geometric properties of f and g allows for one, two

(at saddle-node bifurcations) or three steady states. Figure 2 shows a typical

case with three intersections. If f([P]) decreases too fast, there will only be

one intersection with the initial plateau of g([P]) at small [P]. On the other

hand, if f([P]) decreases very slowly, there may only be one intersection with

the asymptotic plateau at large values of [P].

In the case that there are three intersections, we can obtain some rough

estimates for the stable (outer) steady states as follows: The first intersection

11



Figure 2: f([P]) (Eq. (12a), red, dotted) and g([P]) (Eq. (12b), blue, solid) for the parameters

of Table 1 with k4 = 5 min−1. Steady states of the model occur at intersections of f([P]) and

g([P]).

tends to occur in the plateau where g([P]) ≈ gmax. This occurs at small [P]

where

f([P]) ≈ k1k2k7[Pro1]

k4k8[P]
. (17)

Thus, the low-[P] steady state occurs near

[P]1 ≈
k1k2k7[Pro1](1 + k5τ5)

k4k5k8[TPro2]
, (18)

numbering the three steady states from left to right. Because g([P]) decreases

very quickly for [P] > [P]1/2, it has a small value where the high-[P] steady

state occurs. Thus, [P]3 . [P]0. These are very rough estimates, but they will

be useful later for understanding the effects of some of the parameters on the

bifurcation structure.

Note that these arguments still hold if we set τ1 = τ5 = 0, i.e. the model

without delays will also display bistability, as expected given the close relation-

ship of this model to Zhdanov’s [29].
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Figure 3: Steady-state solutions for the models with binding-site clearance delays (red) and

without these delays (blue) for the parameters of Table 1. Solid segments indicate stable

steady states, and dotted segments are branches of unstable steady states.

3.2. Numerical comparison of models with and without delays

Using the parameters of Table 1, we computed bifurcation diagrams for the

models with and without delays by solving Eqs. (7) and (10), respectively. The

results are shown in Fig. 3. These models display bistability, just as Zhdanov’s

model does [29]. However, the range of bistability for the model without binding-

site clearance delays is wider than for the full model. In other words, leaving out

the clearance-site delays, which are small and might be thought to be negligible,

exaggerates the tendency of this system toward bistability. Moreover, it should

be noted that the values of τ1 and τ5 chosen are at the low end of the observed

range [20–22]. If we choose a larger value for τ1, the steady-state curve shifts

dramatically to the left [Fig. 4(a)], i.e. the quantitative differences seen in Fig. 3

are amplified when τ1 increases. However, bistability is not typically lost by

increasing τ1. To understand this, recall that increasing τ1 decreases [Pro1]

[Eq. (11)]. The approximate equations for the two stable steady states, Eqs.
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(14) and (18), both depend on the combination of parameters

φ = k1k2[Pro1]/k4. (19)

Thus, if we decrease [Pro1], a bifurcation diagram against k4 simply shifts to

smaller values of the control parameter. Having said that, the range over which

bistability occurs may decrease to the point where it is not relevant experimen-

tally. Similar comments could be made for other combinations of parameters

appearing in Eq. (19).

The steady-state curve is even more sensitive to τ5, and bistability disap-

pears completely for sufficiently large values of this clearance delay [Fig. 4(b)],

completely altering the dynamics of the gene circuit. Thus the clearance de-

lays τ1 and τ5 have quite different effects, despite the similar roles they play in

the respective transcription steps 1a and 1e. Note that the largest value of τ5

considered in Fig. 4(b), 3 min, is well within the experimentally observed range

in prokaryotes [11, 20–22]. Thus, evolution can tune the DNA sequence near

the promoter, and hence the promoter clearance delay, to favor either a single

steady state or bistability, according to the functional requirements of a gene

circuit.

Given that gene copy numbers change as the cell replicates its DNA, we

briefly consider what happens when we change [TPro1] and [TPro2]. From Eqs.

(11) and (18), it is clear that the low-[P] steady state ([P]1) depends on the ratio

of [TPro1] to [TPro2]. Thus, replicating the entire genome does not affect this

steady state. On the other hand, Eqs. (11) and (14) together imply that the

high-[P] branch of steady states ([P]3 ∼ [P]0), should depend roughly linearly on

[TPro1], keeping other parameters constant. If we define the number of genome

copies c such that

([TPro1], [TPro2]) = c(1, 5), (20)

which maintains the ratio of the two promoters in Table 1, and vary c, we obtain

the bifurcation diagram shown in Fig. 5. As suggested by the foregoing analysis,

the lower branch of steady states is essentially independent of c, while the upper

branch increases roughly linearly with c away from the saddle-node point.
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Figure 4: (a) Steady-state solutions for the models with (red) and without (blue) binding-site

clearance delays for the parameters of Table 1 except τ1 = 1 min. (b) Steady-state solutions

of the model with delays for the parameters of Table 1, but at different values of τ5.
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Figure 5: Effect of the number of copies of the genome on the steady states of the model.

The copy number c is defined by Eq. (20). Other parameters are set as in Table 1 with

k4 = 5 min−1.
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4. Relationship between models with and without delays

Let us compare the steady-state equations of the two models. The first four

equations of sets (7) and (10), the equations obtained directly from the rate

equations, are identical. From the point of view of their steady-state structures,

the difference between the two models occurs in the conservation relations for

the promoters, Eqs. (7e)–(7f) on the one hand, or (10e)–(10f) on the other. In

order to bring the two models into agreement, it is only necessary to arrange

for them to have the same solutions for the free promoter concentrations [Pro1]

and [Pro2]. Then [P] will have the same value in both models because Eqs.

(7a)–(7c) and (10a)–(10c) are identical.

Combining Eqs. (10e) and (11), we find that [Pro1]d = [Pro1]nd if

[TPro1]nd =
[TPro1]d
1 + k1τ1

. (21)

This relationship corrects for the reduction in the concentration of available

Pro1 in the model without delays due to the occlusion of the binding site during

a time τ1.

The situation is more complex at promoter 2 due to the equilibrium (1f).

From Eq. (7d) or the identical (10d), we get

[Pro2i] = K6[Pro2][P]n, (22)

with implied subscripts d or nd according to the model. We can then substitute

this expression into (7f) and (10f) and solve for the promoter concentrations:

[Pro2]d =
[TPro2]d

1 + k5τ5 +K6[P]n
, (23a)

[Pro2]nd =
[TPro2]nd
1 +K6[P]n

. (23b)

To bring Eqs. (23a) and (23b) into a common form, divide the numerator and

denominator of (23a) by 1 + k5τ5:

[Pro2]d =

[TPro2]d
1 + k5τ5

1 +
K6[P]n

(1 + k5τ5)

. (24)
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Comparing Eqs. (23b) and (24), we see that the two cannot be brought into

correspondence if the two models are to use the same value of the binding con-

stant K6. Labeling the latter quantity with subscripts d and nd as appropriate,

equivalence of the two models requires

[TPro2]nd =
[TPro2]d
1 + k5τ5

, (25a)

K6,nd =
K6,d

1 + k5τ5
. (25b)

Equations (11) and (25a) are simple rescalings of promoter concentrations.

One might be tempted to dismiss such rescalings as straightforward connections

between total and free promoter concentrations. However, the binding constant

K6 is an experimentally measurable quantity. An ad hoc adjustment of this

constant (or, equivalently, of one of the rate constants k6 or k−6), which would be

required in a model without clearance delays, lacks any reasonable justification.

In general, ad hoc adjustments of kinetic constants are considered poor practice

in reaction network modeling [42]. Note that for the parameters chosen here,

1 + k1τ1 = 1.1 and 1 + k5τ5 = 1.9, using promoter clearance times at the low

end of the experimentally observed range and initiation rate constants within

the range observed in E. coli. Arguably, a 10% correction in [Pro1] is within

the range where this effect might be ignored given the well-known uncertainties

in gene expression modeling. It is more difficult to argue that nearly two-fold

corrections not only in an effective promoter concentration but also in a physico-

chemical parameter are negligible.

Specializing Eq. (22) to the model without delays and using Eq. (25b) to

express K6,nd in terms of the true binding constant K6 ≡ K6,d, we get

[Pro2i]nd =
K6[Pro2][P]

n

1 + k5τ5
. (26)

If we have performed the parameter transformations discussed above, then the

steady-state values of [Pro2] and [P] are the same in the two models, hence

the lack of subscripts on these quantities. Comparing the latter equation to

Eq. (22) specialized to the delay case establishes a relationship between the
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Pro2i concentrations in the two models:

[Pro2i]nd =
[Pro2i]d
1 + k5τ5

. (27)

The cost of adjusting the value of K6,nd in order for the model without de-

lays to match protein and RNA levels predicted by the model with clearance

delays is therefore that the concentration of [Pro2i] is rescaled in the model

without delays. To put it another way, if the model without delays were used

to analyze experimental data, fitting an experimental bifurcation curve would

result in a mismatch between true repressed promoter concentrations and model

predictions for [Pro2i]. Figure 6 illustrates this discrepancy.

The analysis of this section has emphasized bringing the two models into

correspondence, but there are some subtle differences, including an important

difference with respect to mRNA levels. As noted earlier, the steady-state equa-

tions (7) do not depend on the ribosome-binding-site clearance delay τ3. Cor-

respondingly, the free mRNA levels in the two models can be made identical as

shown above. However, the model with delays has an implicit “protected” pool

of mRNAs on which translation has been initiated, but whose ribosome binding

sites have not yet been exposed. These mRNAs are protected from degradation

through reaction (1c), which only acts on mRNAs with a cleared ribosome bind-

ing site. This is not a model artifact but a well known biochemical phenomenon

[16, 19, 43] due to the preponderance of 5′ → 3′ exonucleases in cellular mRNA

decay processes.

The total amount of mRNA in the model with delays can be computed as

follows: Imagine that at time t = t0, all RNA polymerases are halted so that no

further transcription processes can either be initiated or completed. At the same

time, we inhibit all mRNA degradation processes as well as translation initiation.

However, we allow initiated translation processes to “run off”. (There is a rough

experimental counterpart to this gedanken experiment [16].) Equation (2b)

therefore becomes

d[mRNA]d
dt

= κ2(t− τ3)[mRNA]d,τ3 , (28)
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Figure 6: Bifurcation curves for the models with and without delays using the parameters of

Table 1 and the adjustments of Eqs. (21), (25a) and (25b). In both panels the solutions from

the model with delays are in red, and the solutions from the model without delays are in blue.

In panel (a), the concentrations of P are identical at every value of k4. The same is true of

all of the other concentrations in the model, except for [Pro2i], illustrated in panel (b).
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with

κ2(θ) =

k2 if θ ≤ t0,

0 if θ > t0.

(29)

The solution of this equation is

[mRNA]d(t) = [mRNA]d(t0)

+ k2

∫ min(t,t0+τ3)

t0

[mRNA]d(θ − τ3) dθ (30)

for any t > t0. The asymptotic value is the total amount of mRNA at time t0.

In a steady state, the latter reduces to

[mRNA]total = [mRNA]d(1 + k2τ3). (31)

Thus, the total pool of mRNA is greater in the model with delays by a factor

of 1 + k2τ3 than in the model without delays.

5. Discussion and conclusions

We analyzed a model with both expression (transcription and translation)

delays and binding-site clearance delays, and compared the bifurcation diagram

of this model to that of an equivalent model without delays. We found that

the binding-site clearance delays can have a significant effect on the bifurcation

diagram. Larger, but still physiologically realistic values of the delays can com-

pletely abolish bistability in this model. Thus, binding-site clearance delays,

which are typically neglected, can qualitatively change the dynamics of a gene

expression model. The same issue would arise in comparing a model such as (1)

to one with only expression delays given that the steady states depend on the

clearance delays, but not on the expression delays. We are currently also study-

ing the effects of clearance delays in a model with an Andronov-Hopf bifurcation

[44].

In many cases, gene expression models are qualitative descriptions of imper-

fectly understood systems. In these cases, a certain latitude in the inclusion of
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detailed promoter kinetics is certainly defensible. And of course, highly sim-

plified models such as (1) involve a number of approximations of their own.

However, it is increasingly possible to write down models for which many of

the parameters are either known directly from experiments, or can be estimated

with reasonable precision. In these cases, it is worthwhile to consider carefully

the effects of any approximations, such as leaving out binding-site clearance

delays.

Even in the context of this simple model, we encountered three classes of

clearance delays:

1. Harmless clearance delays that do not affect the steady states of the

model [45]. Clearance from non-conserved species such as the ribosome

binding site falls into this category.

2. Delays that can be removed by a simple rescaling of a conserved quantity.

In gene expression models, transcription from a constitutive promoter such

as Pro1 in this model would generally be removable in this sense.

3. Delays whose removal requires alteration of kinetic parameters. This will

be an issue for transcription from a promoter whose activity is controlled

by the binding of a regulatory factor.

Of course, fixed delays are an approximation to distributed delays, but given

the issues highlighted here, fixed delays are probably preferable to not including

binding-site clearance effects at all. Equally, we could avoid clearance delays

altogether by including a very detailed model of events from the beginning of

initiation until the completion of binding-site clearance. In many cases though,

it may be difficult to parameterize such a model, and this would certainly greatly

increase model complexity without necessarily adding much to our understand-

ing.

Model parameters are often fit from experimental data. Given that the pro-

jections of the steady-state solutions into the ([Pro1], [mRNA], [P], [Pro2], [ncRNA])

positive orthant are identical, experimental data from a system with the kinet-

ics (1) could equally well be fit to either model provided we do not measure
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[Pro2i]. Suppose that appropriate steady-state experimental data were used to

estimate the parameters of the model without delays. The result would be an

underestimate of [TPro1] by a factor of 1 + k1τ1, and underestimates of [TPro2]

and K6, both by a factor of 1+k5τ5. It would then become difficult to reconcile

parameter estimates from fitting the model without delays to direct measure-

ments of these quantities. This may be seen as an unfair criticism of the model

without delays since steady-state experiments alone would not allow the iden-

tification of the delays. However, it would be possible to use typical values or,

better yet, a range of typical values, to determine how the clearance delays affect

the estimates of the other model parameters.

The model (1) is sufficiently simple that we were able to carry out a full

analysis to discover the relationship between the parameters of the two mod-

els leading to a steady-state isomorphism in the ([Pro1], [mRNA], [P], [Pro2],

[ncRNA]) positive orthant. However, a similar depth of analysis may be diffi-

cult or impossible in more complex models. The extent to which the results of

simulations from estimated parameters would be affected by the neglect of the

binding-site clearance delays would therefore typically be unknown. Even know-

ing which parameters need to be adjusted to account for neglect of the clearance

delays may be difficult. It was certainly not obvious a priori that matching the

two models would require an adjustment in K6. Consequently, our recommen-

dation would be to include these delays in any modeling work where either good

parameter estimates are available for most of the model parameters, or where

sufficient experimental data of reasonable quality are available to fit the identifi-

able parameters of a detailed model such as (1). Even if it becomes necessary to

experiment with different values of the binding-site clearance delays, at least the

sensitivity of the results to the values of these delays will then become known.

There is one additional dimension to consider, which is that differential equa-

tion models, while valuable for exploring the phenomenology of a gene expres-

sion system, are best thought of as ensemble models since stochastic dynamics

dominates gene expression in a single cell. Delays can be incorporated into

stochastic models [7, 46–48], and in fact it is easier to treat distributed de-
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lays in delay-stochastic models (at least from a simulation point of view) than

in differential-equation models [7]. Since bistable systems display stochastic

switching between the two steady states [29, 49], given the effects on the bifur-

cation diagrams observed here, models with and without binding-site clearance

delays would presumably display different switching kinetics. It is not clear at

this time whether the adjustments described here would correct the stochastic

switching kinetics since they necessarily require adjustments to some of the ki-

netic constants for regulated genes (e.g. k6 or k−6 in this model). This is clearly

an important area for future investigation.

It would also be interesting to study a stochastic model incorporating cell

growth and DNA replication. The variables and parameters in the model studied

here have been scaled (as in Zhdanov’s work [29]) to give molecular counts

per cell. In order to study a model with cell division, we would need to use

conventional volumic concentrations and associated rate constants. The scaling

parameter c used to generate Fig. 5 could then be reinterpreted as the number of

genome copies per unit volume. An increase in volume without DNA synthesis

would slide the system to the left in Fig. 5. Conversely, DNA synthesis at

a rate exceeding the rate of volume increase would move the system to the

right in the bifurcation diagram. The rate of stochastic switching from the

upper to the lower branch would increase when c is small, i.e. when the cell has

reached its maximum volume prior to undertaking DNA synthesis, due to the

decreased distance between the upper stable and middle unstable branches of

steady states. On the other hand, the rate of switching from the lower branch

to the upper branch would be relatively constant throughout the cell cycle since

neither the lower stable nor the middle unstable steady state depends much

on c, provided of course c doesn’t slip below the value where the saddle-node

bifurcation occurs. This is a highly simplified account of the likely stochastic

dynamics given that the stochastic dynamics is generally not fully captured by

the deterministic bifurcation diagram [49–52]. It would be interesting to see

what dynamics would emerge from such a model.
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