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Abstract

Fourier transform spectroscopy (FTS) is one of the premier ways to collect source informa-

tion through emitted radiation. It is so named because the principal measurement technique

involves the analysis of spectra determined from the Fourier transform of a time-domain

interference pattern. Given options in the field, many space- and ground-based instruments

have selected Fourier transform spectrometers for their measurements.

The Herschel Space Observatory, launched on May 14, 2009, has three on-board

instruments. One, SPIRE, comprises a FTS paired with bolometer detector arrays.

SCUBA-2 (Submillimetre Common User Bolometer Array) and FTS-2 have re-

cently been commissioned and will be mounted within the collecting dish of the James

Clerk Maxwell Telescope by Fall, 2010.

The use of FTS in these two observatories will be examined. While work towards

each project is independently useful, the thesis is bound by the commonality between the

two, as each seeks similar answers from vastly different viewpoints.
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Chapter 1

Introduction

Sir William Herschel, perhaps the most prominent astronomer of the late 18th and

early 19th centuries, is credited with the discovery of infrared radiation. Herschel studied

the energy distribution of sunlight passed through a prism [1], and by placing thermometers

either side of the visible color spectrum, was able to detect additional heat above background

levels. Born in Germany in 1738, he emigrated to Britain at age 19 as an accomplished

musician skilled in both performance and composition. His musical aptitude for pattern

recognition he found easily transferable to astronomy and soon Herschel was sight-reading

the night skies with the same vigour as a cello score. During his most fruitful scientific

years, he was accompanied by his sister Caroline, herself a recognized concert singer, in

all sweeps and scans of the starry canvas. Together and individually, they made many

celebrated breakthroughs and celestial catalogues; Caroline towards the understanding of

comets and their motion, and William of nebulous formations. In addition to publishing

his paper on infrared light, Herschel is also known for finding the planet Uranus in 1781,
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along with two of its moons.

The space between stars is typically thought of as just that, “space”, an empty

vacuum to the unaided eye. At the same time, one can make the obvious assumption that the

Universe as it persists today is not as it was just after the Big Bang. For one, we know that

it is expanding due to the observed red-shift of distant galaxies. For another, momentous

events such as supernova explosions have been witnessed, the violent destruction of stars

resulting in the expulsion of gas and dust, which go on to congregate in stellar nurseries, and

ultimately power a nascent star. This recycling process between stars and the interstellar

medium (ISM) continues indefinitely, with the caveat that some of the dust will endure in

the ISM as a site of molecule formation.

The study of the physics and chemistry of the ISM continues to mature, partic-

ularly as infrared and submillimeter observatories start to become commonplace. These

breakthroughs began with the launch of the Infrared Astronomical Satellite (IRAS) [2] in

1983, followed closely thereafter by the Diffuse Infrared Background Experiment (DIRBE)

on-board the Cosmic Background Explorer (COBE) [3], launched in 1989. Whereas the

former performed a broad sampling of the entire sky, DIRBE was designed to focus on the

quantification of dust emission from the ISM. Both instruments acquired data sets that

represented a wide range of physical conditions, from the cold temperatures encountered at

the centre of dense molecular clouds to the highly excited photo-dissociated regions found

near a young, hot star. As missions multiplied over the last two decades, progress was made

on a host of scientific fronts, meaning that some division of responsibility needed to occur to

limit the number of science-based questions that each instrument sought to answer. These
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data, benefacting from improved technology, begin to accumulate, we can now hope to syn-

thesize them with the dated discoveries of IRAS, the Infrared Space Observatory (ISO) [4]

and COBE, towards the betterment of our theoretical understanding.

Today, the Herschel Space Observatory is in orbit, measuring infrared radiation in

the 55-672 µm region, hoping to answer many fundamental astronomical questions, largely

concerned with how and why the Universe evolves as it does. The three on-board instru-

ments: the Heterodyne Instrument for the Far Infrared (HIFI), the Photodetector Array

Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver

(SPIRE), will uniquely enable Herschel to do so. At its current orbital position roughly 1.5

million km from Earth, Herschel is beyond Earth’s obscuring atmosphere and exposed to

the entire sky opposite the Sun.

At the same time, many successful ground-based observatories are in operation,

among them the James Clerk Maxwell Telescope (JCMT) on the summit of Mauna Kea,

Hawaii. The JCMT used to house the Submillimetre Common User Bolometer Array

(SCUBA) instrument, but will soon be replaced by its successor, SCUBA-2, commissioned

in 2010. Both take advantage of narrow regions of the atmospheric electromagnetic spec-

trum that are relatively transparent to incident radiation, namely the 450 µm and 850 µm

bands. While Herschel enjoys a much broader spectral coverage, SCUBA-2 will benefit from

much greater angular resolution owing to the 15 m diameter collecting dish of the JCMT.
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1.1. THESIS OVERVIEW

1.1 Thesis Overview

This thesis will consider infrared observations from Herschel as well as anticipated

results from SCUBA-2. The two telescopes, one on the ground and one in space, provide

two complementary methods to achieve many of the same scientific goals and each will be

approached with an appreciation for its strengths and weaknesses. Data from each obser-

vatory will supplement current understanding of a series of concepts common to modern

observatories. This introductory chapter presented the history of infrared measurements as

a way of probing how future measurements will fit into the existing repertoire.

1.1.1 My Thesis

When I first began my study in the Masters program in May 2008, this thesis was

to take a vastly different direction. At this time, it was decided that I would be involved in

the FTS-2 project, which was to be tested in a laboratory and eventually deployed at the

JCMT. Included in this work would have been the responsibility to predict and plan for

observations with FTS-2, before ultimately collecting data on-site for a set of pre-defined

targets. However, due to circumstances beyond my control, which caused a significant

delay in the manufacture of SCUBA-2 detector wafers, such a course of action was no

longer possible.

Fortunately, my research group, the Astronomical Instrumentation Group (AIG)

at the University of Lethbridge (UL), led by Dr. David Naylor, is involved in several large-

scale projects. One of these, the Herschel Space Observatory, was successfully launched into

orbit on May 14, 2009. At this time I had already begun work into observation preparation
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with SCUBA-2, based upon a comprehensive catalogue of past SCUBA measurements, but

I had also been involved in the pre-flight analysis of spectroscopic data from the Spectral

and Photometric Imaging REceiver (SPIRE), to be launched on-board Herschel. Being

half-way through my Masters program, but given the opportunities that real data from

Herschel would reward both myself and the group, it was here that the scope of the thesis

took a different focus. Instead of a limited focus on SCUBA-2, work in the chapters that

follow examines topics in Fourier transform spectroscopy from two perspectives, that of a

space-based telescope in Herschel/SPIRE, and that of a ground-based telescope in SCUBA-

2/FTS-2.

While these two observational platforms may appear disparate and unrelated, they

actually strive towards many of the same science goals. Both use instrumentation in which

the AIG is well-versed, in Fourier transform spectrometers (FTS) of largely similar designs.

However, due to their different locales, the challenges faced by each FTS are unique. While

FTS-2 at the JCMT has to contend with the atmosphere of the Earth, the SPIRE FTS has

to function much more independently at its location roughly 1.5 million km from Earth,

over a time range limited by the boil-off rate of the cooling cryogens. What follows is a

survey of some of the common issues faced by each instrument, where all possible attempts

will be made to draw parallels between both their operation and subsequent data analysis.

1.1.2 Thesis Outline

Chapter 2 introduces Fourier transform spectroscopy along with associated Fourier

theory. Both SPIRE, mounted on Herschel, and SCUBA-2 make use of a FTS, and this

chapter will additionally provide some background on the FTS instrument and its practical
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applications.

Chapter 3 goes on to examine one of the main concerns for sensitive detecting

elements found on both Herschel and SCUBA-2, namely their nonlinear response to incident

radiation. Each instrument is served by a type of detector called a bolometer and the

theory and associated correction methods will benefit both. Data from Herschel, currently

in operation, will be the focus, but initial laboratory tests have already shown the FTS-2

detectors to be susceptible to the effect as well.

Chapter 4 will introduce the concept of spectral line fitting, in the context of

simulated FTS-2 data derived from HARP, a heterodyne receiver also at the JCMT. This

particular area of work, while initially well-contained towards predicting the look of spectra

to be received from FTS-2, has found use with SPIRE data also. Out of the line fitting

software developed in this chapter came a much more functional rendition of the code that

will eventually be distributed to the entire Herschel/SPIRE science team.

Chapter 5 more closely characterizes SCUBA-2 and FTS-2 and specifically, presents

means for accounting for the atmosphere in upcoming observations. As perhaps the most

necessary and important step in the observation planning process, the AIG must use the

results from this work towards determining which sources are the most viable observing

targets and whether or not they are viewable on any given night.

Chapter 6 was the last chapter to take shape, as it includes recent flight data from

the SPIRE spectrometer, available to the AIG because of Dr. Naylor’s position on many of

the Specialist Astronomy Groups (SAG) within SPIRE. Much of the data presented there

has only recently been gathered and processed, and provides an ideal test of many of the
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concepts developed to this point in the thesis.
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Chapter 2

Fourier Transform Spectroscopy

This chapter will examine the theory behind Fourier transform spectroscopy (FTS),

as these concepts are required to understand the remainder of the thesis.

Section 2.1 introduces Fourier theory, including Fourier transforms and how they

are defined in terms of Fourier integrals, leading to the important concept of Fourier decom-

position. These ideas are applied to a study of the Michelson interferometer, the earliest

type of Fourier transform spectrometer in Section 2.3. Section 2.4 concludes with some of

the practical considerations in the design of a Fourier spectrometer.

2.1 Fourier theory

The pioneer behind the mathematical analysis of periodic waveforms is Jean Bap-

tiste Joseph, Baron de Fourier [5] [6] (1768 - 1830). Fourier was born in Auxerre, France,

where, orphaned at an early age, he managed to enter a military school that ultimately

fostered his interest in mathematics. Discouraged there by the restraints imposed by a low
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2.1. FOURIER THEORY

social ranking, he transferred to a Benedictine school in hopes of becoming a priest. Soon

however, he was overcome by his interest in math and was subsequently appointed to a

teaching post at his former school. While in and out of instructional positions, Fourier

continued to hold strong nationalist sentiments that culminated with an association with

Napoleon’s Egyptian campaign. He remained in Napoleon’s favour, carrying out diplomatic

and administrative duties, up until France’s defeat at Waterloo and the emperor’s exile to

Saint Helena.

Fourier’s theory states that any periodic function f(x) can be expressed as an

infinite sum of sinusoidal components,

f(x) =

∞∑
m=0

[Am cos (mkx) +Bm sin (mkx)] (2.1)

where x is the position, k = 2π/λ = 2πσ is the angular wavenumber and Am and Bm are

amplitude coefficients, the determination of which is the central problem in Fourier analysis.

The amplitude coefficients can be computed via [7]

Am =
1

L

∫ L

−L
f(x) cosmkxdx m = 1, 2, 3, ...,

Bm =
1

L

∫ L

−L
f(x) sinmkxdx m = 1, 2, 3, ...

(2.2)

where the interval [-L,L] represents one period (L = λ
2 ).

Aperiodic functions, which can be thought of as having an infinite period, can

also be expressed as a Fourier series of infinitesimally small frequency segments summed

together with a Fourier integral. The discrete summation in Equation 2.1 can be expressed
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2.1. FOURIER THEORY

in continuous form as [8]

f(x) =

∫ ∞

−∞
A(σ) cos (2πσx) dσ +

∫ ∞

−∞
B(σ) sin (2πσx) dσ (2.3)

where the limits ±L have been extended to infinity to represent a function of infinite period.

Here, A(σ) contains only even terms and B(σ) only odd terms. Equation 2.3 defines the

inverse Fourier transform, where

fc(x) =

∫ ∞

−∞
A(σ) cos (2πσx) dσ (2.4)

is the inverse cosine Fourier transform and

fs(x) =

∫ ∞

−∞
B(σ) sin (2πσx) dσ (2.5)

the inverse sine Fourier transform.

Equation 2.3 is generally expressed as

f(x) =

∫ ∞

−∞
Φ(σ)e2πiσx dσ (2.6)

where i =
√
−1 and for an asymmetrical function f(x), Φ(σ) is complex-valued and there-

fore contains both sine and cosine terms. The Fourier pair, or forward Fourier transform,

is obtained as

Φ(σ) =

∫ ∞

−∞
f(x)e−2πiσx dx (2.7)
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2.2. THEOREMS OF FOURIER ANALYSIS

where x and σ are known as conjugate variables, while Φ(σ) and f(x) are called Fourier

pairs. These formulae are equally valid with time, t, and frequency, ν, and Φ(ν) and f(t)

as conjugate variables and Fourier pairs, respectively.

2.2 Theorems of Fourier Analysis

Fourier transforms have some basic properties that lead to more useful theorems

that guide efforts in the field, collectively known as Fourier analysis. Topics to be covered

in this section include symmetry, transform pairs and the superposition and convolution

theorems, each of which are used in the remainder of this thesis.

2.2.1 Symmetry

The Fourier transform of an even cosinusoid of unit amplitude and spatial fre-

quency σ0 (cm−1) given by

f(x) = A cos (2πσ0x) (2.8)

is expressed as

F (σ) =
1

2
δ(σ − σ0) +

1

2
δ(σ + σ0) (2.9)

where δ(σ′) is the Dirac delta function [9] [10]. The Dirac delta function is defined by

δ(σ′) =


∞ for σ′ = 0

0 for σ′ ̸= 0

(2.10)
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2.2. THEOREMS OF FOURIER ANALYSIS

and ∫ +∞

−∞
δ(σ′) dσ′ = 1, (2.11)

where σ′ = σ ± σ0. As seen in Figure 2.1, two spectral features of identical magnitude

positioned at ±σ0 have resulted from the Fourier transform of an even cosine, of spatial

frequency σ0 = 2 cm−1. Together, the amplitudes combine to yield that of the original

function - that is, each function has height 1
2 . Both the +σ0 feature and the −σ0 feature

are real-valued, with even symmetry about σ = 0.

Similar symmetry arguments apply to an odd function

f(x) = sin (2πσ0x) (2.12)

with a Fourier transform of

F (σ) =
−i

2
δ(σ − σ0) +

i

2
δ(σ + σ0). (2.13)

This time, F (σ) is imaginary-valued and of odd symmetry, with the positive and negative

frequency components of opposite sign, as illustrated in Figure 2.2 for a sine function of

spatial frequency σ0 = 2 cm−1. Again, however, the amplitude of f(x) is evenly split

between the two functions such that the negative frequency component has height +1
2 and

the positive frequency component −1
2 .

More generally, an arbitrary function will be asymmetric as a result of an additional
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Figure 2.1: The Fourier transform of a cosine function (top) of spatial frequency σ0 =
2 cm−1.
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Figure 2.2: Fourier transform of a sine function of spatial frequency σ0 = 2 cm−1.
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2.2. THEOREMS OF FOURIER ANALYSIS

Table 2.1: Symmetry properties of a Fourier pair.
f(x) F (σ)

Real Imaginary Real Imaginary

even 0 even 0
odd 0 0 odd
0 even 0 even
0 odd odd 0

asymmetric 0 even odd
0 asymmetric odd even

even odd asymmetric 0
odd even 0 asymmetric
even even even even
odd odd odd odd

asymmetric asymmetric asymmetric asymmetric

phase term. From Equation 2.8, if instead we now have

f(x) = cos (2πσ0x+ ϕ) (2.14)

where ϕ is the phase of the wavefunction, then the Fourier series now contains even and odd

components, real and imaginary, respectively [9]. Correspondingly, upon Fourier transfor-

mation of Equation 2.14 there are now real and imaginary terms, where the real parts are

symmetric about σ = 0 and the imaginary parts anti-symmetric, as shown in Figure 2.3 for

ϕ = π
3 . These symmetry properties are summarized in Table 2.1.

In Figure 2.3, the magnitudes of the real functions are determined from the cosine

of the phase, while the components of the imaginary parts come from the sine of the

phase. This is equivalent to placing the total, unit magnitude as a complex vector on an

Argand diagram [11], where the x and y components are the real and imaginary components,

respectively. In that case, each function in the real domain has height 1
4 and

√
3
4 in the
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Figure 2.3: Fourier transform of a cosine function of spatial frequency σ0 = 2 cm−1 phase-
shifted by π

3 radians.
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2.2. THEOREMS OF FOURIER ANALYSIS

imaginary domain, and we have

1 =

√
Re2σ + Im2

σ . (2.15)

where Reσ is the real component of the spectrum, and Imσ is the imaginary component. The

Argand diagram is also imbued with information about the phase, which, via trigonometry,

is given by

ϕ = arctan

(
Imσ

Reσ

)
. (2.16)

Out of this comes a process termed phase correction [10], used to correct asymmetric inter-

ferograms (see §2.3).

2.2.2 Fourier Pairs

There are a set of functions and their Fourier transforms that are fundamental

to Fourier transform spectroscopy [10]. In particular, one of these will be essential to the

furthering of this thesis. The so-called box car (also top hat or rect), function, defined by

Π(x) =


1 for |x| < L

0 for |x| > L

(2.17)

has a Fourier pair [8]

Φ(p) =

∫ ∞

−∞
Π(x)e−i2πσx dx =

∫ L

−L
e−i2πσx dx = 2L

sin (2πσL)

2πσL
(2.18)
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Figure 2.4: A sinc function

where sin (2πσL)
2πσL is usually written as sinc(2πσL), known as the cardinal sine, or sinc func-

tion. Therefore, the boxcar and the sinc form a Fourier pair. The sinc function appears

throughout mathematics and science, with sinc(x) = 1 at x = 0 and sinc(x) = 0 for x = nπ,

such that ∫ ∞

−∞
sinc x dx = 1. (2.19)

In the above example, the sinc function has zeros at σ = n
2L , where n = 0, 1, 2, .... It has a

full width at half maximum (FWHM) of 1.207
2L and a secondary minimum at 1.43

2L (see Figure

2.4). Other Fourier transform pairs that have found broad usage are listed in Table 2.2 [10].
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Table 2.2: Commonly encountered Fourier pairs.

f(x) F(σ)

Π(x) (Boxcar) 2Lsinc(2πσL)

Λ(x) (Triangle) =

{
1− |x|

2L for |x| < 2L

0 for |x| > 2L
4L2sinc2(2πσL)

e−πx2
(Gaussian) e−πσ2

(Gaussian)

e−2|x| 1

1 + π2σ2
(Lorentzian)

cos (2πσ0x)
1

2
[δ(σ − σ0) + δ(σ + σ0)]

III(ax) (Dirac comb) III(σ/a) (Dirac comb)

2.2.3 Superposition Theorem

If two functions f(x) and g(x) have Fourier transforms F (σ) and G(σ) respectively,

then their sum has a Fourier transform

f(x) + g(x) ⇐⇒ F (σ) +G(σ) (2.20)

where ⇐⇒ is used to indicate a Fourier transformation. This is known as the superposition,

or addition theorem [10] [9] and holds true for both forward and reverse Fourier operations.

2.2.4 Convolution Theorem

Also known by its German name Faltung, or “folding”, the convolution theorem

is arguably the most important theorem in scientific data-processing. In fact, in Fourier

transform spectroscopy, it is indeed unavoidable as any measurement made by a detector

represents a convolution of the desired quantity with a weighting function, known as the

Instrumental Line Shape (ILS). The ILS of a FTS is the sinc function.
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2.2. THEOREMS OF FOURIER ANALYSIS

A convolution of two functions, f(x) and g(x) is a mathematical operation given

by [9]

f(x) ∗ g(x) =
∫ ∞

−∞
f(u)g(x− u) du (2.21)

where the “∗” represents the convolution operation. An ideal spectrometer exposed to a

monochromatic source should produce as a spectrum a function, δ, of infinitesimal width

at the wavelength of the source, or kSδ(λ − λ0), where S is the intensity of the radiation

and k depends on the instrumental throughput, geometry and detector sensitivity [8]. In

actuality what is observed is a spectrum of some structure, namely kSI(λ−λ0), where I is

the ILS and ∫ ∞

−∞
I(λ) dλ = 1. (2.22)

Should the source intensity be continuous, or polychromatic, the spectrum becomes wave-

length dependent, S(λ), and the output at the detector, O(λ), is

O(λ) = k

∫ ∞

−∞
S(λ′)I(λ− λ′) dλ′ (2.23)

where O(λ) is a convolution of the spectrum, S(λ) and the line shape function, I(λ) [8]. If

both the source spectrum and the ILS of a particular spectrometer are known, then it is in

principle possible using the convolution theorem to model what is seen by any spectrometer.

These ideas are expanded upon in Chapter 4.

The convolution theorem states that

∫
f(u)g(x− u) du ≡ f(x) ∗ g(x) ⇔ F (σ) ·G(σ) (2.24)

20



2.3. MICHELSON INTERFEROMETER

Figure 2.5: The Michelson Interferometer

where ⇔ has been used to indicate both a forward and reverse Fourier transform. In other

words, the Fourier transform of a convolution is the product of the individual transforms of

the two functions [10].

2.3 Michelson interferometer

The Michelson interferometer, shown in Figure 2.5, is the simplest type of Fourier

spectrometer.

Electromagnetic radiation emitted by the source passes through the collimating

mirror towards an ideal beamsplitter, which evenly divides the energy along two separate

paths. One such path terminates at a fixed mirror, while the other ends at a moving

mirror. Light from each is then reflected back towards the beamsplitter, where the two rays
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2.3. MICHELSON INTERFEROMETER

recombine.

At this point, half the radiation is lost as it returns toward the source, while the

other half continues on to the detector. In this way a Michelson interferometer can be

thought of as having two output ports, a scenario which will be compared with the Mach-

Zehnder design in Chapter 5. Interferometers work on the principle of interference between

the two electromagnetic waves, out of phase by an amount dependent on the optical path

difference (OPD) between the two recombined beams. At one particular position of the

moving mirror, the path lengths will be equal, a position known as zero path difference

(ZPD). Here, either maximal constructive or destructive interference will occur, resulting in

either a signal of greatest amplitude and greatest modulation or a dark spot, respectively.

The goal is to achieve the highest possible signal at the detector.

Consider a monochromatic input beam of wavenumber σ0, and amplitude B(σ0)

supplied to an interferometer like that in Figure 2.5. At the detector, a modulated signal

known as an interferogram is produced, with intensity

I0(x) = B(σ0)[1 + cos (2πσ0x)] [W ] (2.25)

where x is the optical path difference. At the position of ZPD, x = 0, and the function is

maximized. Customarily, the constant offset term is neglected, such that the interferogram

is given only by the modulated part,

I0(x) = B(σ0) cos (2πσ0x) [W ]. (2.26)
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The extension to polychromatic light follows as expected. Now, at the wavenumber σ,

B(σ)dσ is the energy in the interval dσ, creating an interferogram component dI(x):

dI(x) = B(σ) cos (2πσx)dσ [W ]. (2.27)

Integrating over all wavenumbers,

I(x) =

∫ ∞

−∞
B(σ) cos (2πσx) dσ [W ] (2.28)

which is related to the spectrum, B(σ) by a Fourier transform

B(σ) =

∫ ∞

−∞
I(x) cos (2πσx) dx [W ]. (2.29)

As already discussed, in performing the transform in Equation 2.29, because cos (2πσx) =

cos (−2πσx), a spectral mirror image to B(σ) will be created at negative frequencies, B(−σ).

Physically meaningless, this component is often ignored, but is in fact very important when

attempting to retrieve the initial interferogram. The interferogram can be expressed in

terms of the input spectrum Be(σ) as follows

I(x) =

∫ ∞

−∞
Be(σ) cos (2πσx) dσ [W ]. (2.30)
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2.4 Practical Considerations in FTS

The material presented in §2.3 makes a number of mathematical assumptions. For

example, an optical path difference of ±∞ is clearly unattainable. In reality, spectrometers

are limited by the length of travel of the moving mirror, where −L ≤ x ≤ +L, for L as

the maximum path difference. The effect of a finite x is to multiply the interferogram by a

rectangular function

Iobs(x) = I(x) ·Π
( x

2L

)
. (2.31)

In the spectral domain, this corresponds to a convolution with a sinc function,

Bobs(σ) = B(σ) ∗ 2Lsinc(2Lσ) (2.32)

where the sinc function is the ILS of a Fourier transform spectrometer

I(σ) = 2Lsinc(2Lπσ). (2.33)

Instead of the infinitesimally small line width, which would result if the interferogram

extended out to infinity, the ILS has FWHM given by

FWHM = 1.207δσ = 1.207

(
1

2L

)
(2.34)

where δσ is called the resolution width, or the distance between independent sampled points

in the spectrum [10]. The resolution width is maintained throughout the spectrum in spite

of the variations in noise with wavelength that might be observed. This is one of the main
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advantages of using a FTS.

Correspondingly, the resolving power is then

R ≡ σ

δσ
= 2Lσ. (2.35)

In spite of the mathematical complexity, a FTS can be simple in its design and still finds

frequent use due to some unique advantages.

2.4.1 Jacquinot’s Advantage

All types of spectrometers may be judged on their throughput (also étendue or

light-grasp), or the amount of light allowed to pass through the entrance aperture. Jacquinot

was the first to recognize the throughput advantage from the circular symmetry of the input

beam of a FTS when compared to the narrow area of the entrance slit of a diffraction grating

spectrometer [12]. Quantitatively, the optical throughput may be defined as

Optical Throughput = AΩη0 (2.36)

where A (m2) is the area of the entrance aperture presented to the source, Ω (sr) is the

solid angle subtended by the collimating mirror or lens, and η0 is the optical efficiency of

the spectrometer [10]. In a FTS, light enters the instrument at an angle perpendicular to

the initial optics, which permits a larger circular entrance aperture (typically on the order

of centimeters) as compared to dispersive devices such as grating spectrometers. Natural

apodization, which is a result of divergence within the interferometer, places a limit on the
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maximum attainable resolution and is therefore to be approached with caution for many

applications [13].

2.4.2 Finite Entrance Aperture/Field-of-View

Due to the finite size of the entrance aperture of the interferometer, the incoming

beam will be divergent. The path differences will therefore cover a range of values dependent

upon the angle that radiation enters the instrument with respect to on-axis light. For the

centre pixel, the effect of a finite aperture, known as natural apodization, is to multiply

the interferogram by a sinc function [10]. This will both change the ILS and the frequency

scale of the spectrum. Whereas for an on-axis signal, a spectral line would appear at σ0, for

oblique rays entering at a relatively large angle, the line will be shifted to σ0[1 − Ω/(4π)],

where Ω is the solid angle of a circular aperture at the focus of the collimating mirror [10].

In addition, each of the spectral features will be broadened by Ωσ0/(2π) [13]. However, in

the case of the SPIRE FTS, the internal divergence is such that it does not, to first order,

require correction and the sinc function is expected to be an accurate representation of the

ILS.

2.4.3 Fellgett’s Advantage

A second key advantage that a FTS has on other spectrometers is the so-called

multiplex, or Fellgett [14] advantage. Fourier transform spectrometers are able to record

data at all frequencies simultaneously, again, as opposed to grating spectrometers, which

must measure each frequency separately in a time-consuming manner.

Both the multiplex and throughput advantages seek to maximize the signal-to-
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noise ratio (SNR) of the FTS. The signal to noise in a FTS may be defined as

S/N =
B(σ)δσΘηt1/2

NEP
(2.37)

where B(σ) is the brightness, δσ is the resolution, Θ is the optical throughput, η is the

optical efficiency, t is the measurement time, and NEP is the noise-equivalent power, or

the amount of power needed to yield a signal-to-noise ratio of unity [15]. In the case of the

Fellgett advantage, the multiplex gain is typically proportional to the square root of the

number of spectral elements. Thus, greater coverage of the range of frequencies included in

the source spectrum can lead to a higher SNR, but only when the detector is the primary

source of noise. If the FTS is photon-noise limited, then it may be more beneficial to

reduce the number of sampled frequencies. This is known as a multiplex disadvantage. The

connection to Jacquinot’s advantage is more obvious, as a higher throughput means a larger

signal which ultimately implies a sizeable SNR. Typically, these two combine to produce a

SNR much greater than that for a dispersive, grating spectrometer.

2.5 Conclusions

This chapter has explored some theoretical and practical implications of using a

Fourier transform spectrometer, which will be important in the remaining chapters. Reasons

for selecting a FTS for spectrometry were touched upon in Sections 2.4.1 and 2.4.3. The

Michelson interferometer was selected in Section 2.3 as an introduction to interferometers,

however it is the Mach-Zehnder design employed by SPIRE and FTS-2, which will be

examined more closely in Chapters 5 and 6. The application of most of the Fourier theory
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to the remainder of the thesis will be more indirect, although Chapter 4 makes direct use

of the convolution operation as a tool in simulating FTS-2 data.
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Chapter 3

Detector Nonlinearity

This chapter will examine the behaviour of ultra-sensitive bolometers when ex-

posed to a high photon background, a set of conditions that lead to a nonlinear relationship

between the optical loading and the detector response. Section 3.1 will introduce this

concept, explaining the manner in which nonlinearity impacts the derived spectrum. A

summary of existing nonlinear correction techniques in the literature as they apply to pho-

toconductive and photovoltaic mercury-cadmium-telluride detectors is presented. Section

3.2 goes on to illustrate a textbook example of nonlinearity, as seen in data from a cutting-

edge type of detector intentionally driven nonlinear. Finally, Section 3.3 details advantages

and disadvantages of the nonlinear correction method employed by the Herschel/SPIRE

spectrometer.
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3.1 Overview

The nonlinear response of astronomical detectors can significantly impact the re-

trieval of accurate spectral fluxes. This is especially true given the advent of detector tech-

nologies capable of providing optical noise equivalent powers (NEPs) approaching 10−19

W/
√
Hz [16]. At this remarkable sensitivity, observations of galactic sources with a Fourier

Transform spectrometer (FTS) will produce such large modulations around the position

of zero path difference (ZPD) in the measured interferogram that nonlinear effects in the

derived spectrum will occur if left uncorrected. The effect will be manifested as a series of

non-physical harmonic spectral features that effectively steal energy from the fundamental

band(s).

The measured signal produced by a FTS is known as an interferogram. For a

polychromatic source, the interferogram can be represented as

I(x) =

∫ σmax

σmin

B(σ) exp (2πiσx) dσ [W] (3.1)

where I is the power on the detector as a function of the optical path difference, x, for a

source emitting over a wavenumber range from σmin to σmax and of intensity B(σ).

For a nonlinear detector response, the resulting detector voltage Vd is related to

the interferogram signal I(x) by

Vd(x) = α+ βI(x) + γI2(x) + δI3(x) + ... (3.2)

where the coefficients α, β, γ and δ are dependent on the specific detector being used and
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its operating characteristics. This in turn leads to a spectrum of the form

S(σ) = α′ + β′B(σ) + γ′[B(σ) ∗B(σ)] + δ′[B(σ) ∗B(σ) ∗B(σ)] + ... (3.3)

The β′ term represents the spectral radiance, B(σ), centred at σ0 and of width σw. The

quadratic term, γ′, results in two spectral features of width 2σw, centred at 0 cm−1 and

2σ0. The cubic term, δ′ also contributes two spectral features to the spectrum, and these

occur at σ0 and 3σ0, respectively, both of width 3σw.

The subject of detector nonlinearity and its correction has been extensively stud-

ied in the literature for mercury-cadmium-telluride (MCT) detectors [17] [18] [19]. These

detectors are commonly used in mid-infrared (2 - 20µm) spectroscopic measurements and

belong to two different subtypes: photoconductors and photovoltaics. In the photocon-

ductive case, the detector shows a sharp change in electrical resistance with changes in

incident infrared radiation, while in the photovoltaic case all current is provided by the

electrons liberated by the photoelectric effect. Fourier transform spectrometers, because of

the étendue advantage, first noted by Fellgett [14] and Jacquinot [12] (see Chapter 2), are

the most efficient of spectrometers, but confers a disadvantage that the increased power on

the detector can drive the device nonlinear. The easiest solution to this problem is to either

reduce the source intensity or limit the spectral range, both of which negate the two main

advantages of Fourier transform spectroscopy. Although nonlinearities can be induced by

the detector readout electronics, by careful design such effects can be minimized. Here we

focus on nonlinearity due to the detector itself.

In practice, both hardware and software solutions to the correction of nonlinearity
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in MCT detectors have been proposed. For example, Guelachvili [20] used a two-output

Connes-type interferometer to devise a mathematical relationship between the total gain at

the two output ports, the zeroth through second order nonlinear coefficients, and the inten-

sities at each of the two outputs, to provide a first-order correction to the nonlinear terms.

Software methods have been created by Keens and Simon [21], who used the uncorrected

spectrum to find two correction constants. This method relies on a fit to the low-frequency

spectrum to determine the signal at zero frequency and an integral of the square of the

high-frequency portion. Each of the two correction coefficients are functionally dependent

on both these quantities. Carter et al. [22] found that by biasing the detector with a constant

voltage, as opposed to a constant current as is typical, nonlinear effects could be lessened.

Similarly, Carangelo [23] customized a preamplifier that could be adjusted to minimize the

low frequency nonlinear behaviour. Finally, Abrams et al. [17] proposed a solution based on

the physical principles of the MCT detector. They identified correction coefficients using a

functional relationship between the detector and the input photon flux.

While the effects of nonlinearity in MCT detectors have been extensively studied,

the same cannot be said about bolometer detectors, despite the fact that these effects

are expected to be as, if not more, significant. Since the Fourier transform is a linear

transform, it is essential that the measured bolometer signal be linear in its response to

incident radiation while retaining sufficient sensitivity and stability. If it is not linear, the

application of the Fourier relations discussed in Chapter 2 will lead to erroneous results

because they rely on the principle of linearity. In the rest of this chapter I will discuss the

theory behind the nonlinear response of bolometer detectors.
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Figure 3.1: Examples of two FTS spectra exhibiting first- through third-order nonlinearity:
a TES detector intentionally driven nonlinear and a theoretical bolometer model

3.2 Modeling of Nonlinear Behaviour

The SCUBA-2 camera project [24], currently being commissioned at the James

Clerk Maxwell Telescope, contains superconducting Transition Edge Sensor (TES) bolome-

ter arrays. A TES is an intrinsically linear device when operated at the center of the

transition, but is susceptible to nonlinearities when used closer to the normal state of the

metal film [25]. These effects manifest themselves in the spectrum as shown in Figure 3.1,

where the green data represent nonlinearity as seen in the SCUBA-2 TES array intention-

ally forced nonlinear, and the red is a theoretical model of the effect. As a consequence of

the over-exposure of the detector, first through third-order spectral features are observed,

which alternate in sign. Two spectral features are contributed by each of the quadratic and

cubic terms, with the quadratic term impacting the 0 and 23.2 cm−1 regions, and the cubic

term the centre of the fundamental band and the area around 34.8 cm−1. The widths of

the harmonics are as stated in §3.1 and are described mathematically by Equation 3.3. The

model and measured spectra are seen to be in good agreement.
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Figure 3.2: Diagram of a SPIRE bolometer (left) with associated electrical circuit (right).
The bolometer voltage changes as a function of temperature, which in turn changes with
the incident optical loadings, Q. Inset Photos: SPIRE Consortium

A bolometer is essentially a very sensitive thermometer, which consists of an ab-

sorbing substrate with a temperature-sensitive detecting element (shown schematically in

Figure 3.2). The SPIRE (Figure 3.2) instrument on the Herschel space observatory is made

from a silicon-nitride spider web substrate, onto which is glued a neutron-transmutation

doped (NTD) detector. Submillimetre radiation is absorbed by the substrate which pro-

duces a change in the temperature of the bolometer and thus in its electrical resistance.

This change in resistance produces a change in voltage (Figure 3.2), which, if the detector

is operating in the linear regime, is proportional to the amount of incident radiation.

The theory that follows derives from papers by Griffin and Holland [26] and Sudi-
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wala et al. [27]. In practice, a bolometer of temperature T is thermally coupled to a heat

sink, or bath, at temperature T0, through a thermal link of length L and static thermal

conductance Gs. A bias voltage Vb is applied across the circuit, which contains the bolome-

ter in series with a load resistor RL (as shown in Figure 3.2). The total power dissipated

in the bolometer is

W = P +Q [W] (3.4)

where P = IV is the electrical power dissipated in the device, and Q is the absorbed radiant

power.

The temperature-dependent detector resistance may be expressed as

R = R∗ exp (Tg/T )
n [Ω], (3.5)

where R∗ is a constant specific to the bolometer, Tg, is the band-gap temperature and n is

a material-dependent constant.

The temperature coefficient of resistance, α, can be determined by differentiating

Equation 3.5

α =
1

R
· dR
dT

= −
nTn

g

Tn+1
[K−1]. (3.6)

Two other important parameters: the static thermal conductance, Gs, and the

bolometer heat capacity, C, both carry a temperature dependence [27], with

Gs(T, T0) =
Gs0

(β + 1)T β
0

(T β+1 − T β+1
0 )

(T − T0)
[W/K] (3.7)
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and

C(T ) = C0

(
T

T0

)ρ

[J/K] (3.8)

where Gs0 and C0 are the static conductance and heat capacity, respectively, for a tem-

perature T0, and β and ρ (the heat capacity index) are both material-dependent constants.

With these relations, the energy balance becomes

W = P +Q = Gs(T, T0)(T − T0) [W]. (3.9)

Additionally, the dynamic thermal conductance, Gd, is given by

Gd =
dW

dT
=

(
A

L

)
k0

(
T

T0

)β

[W/K] (3.10)

where Gd0 = Gd(T0) = (A/L)k0, A is the cross-sectional area of the thermal link, and k0

is the thermal conductivity of the link at T = T0. It should be noted that Gs0 = Gd0

at the bath temperature T0. Meanwhile, the effective thermal conductance, Ge, includes

electrothermal feedback effects [27]

Ge = Gd − αP

[
RL −R

RL +R

]
[W/K]. (3.11)

From this, one can derive the dynamic impedance, Z, which is a useful term in analyzing

bolometer load curves

Z =
dV

dI
= R

[
Gd + αP

Gd − αP

]
[Ω]. (3.12)

The voltage-current characteristic, also known as the load curve, is the method by which

36



3.2. MODELING OF NONLINEAR BEHAVIOUR

Figure 3.3: An example of the model fits (solid line), based upon the Equations presented
in §3.2 to experimental data (dots) obtained for a single bolometer detector operating at
five different temperatures [28].

several operating parameters of the device are deduced [28]. Load curves are synthesized

experimentally by measuring the voltage across the bolometer for a range of bias currents

and stage temperatures. Immediately from this, the resistance may be evaluated as a

function of the temperature according to Equation 3.5, leading to determination of the

material-dependent parameters R∗, Tg, and n from appropriate fits. At this point, models

are fit to the load curve in order to calculate the remainder of the suite of detector parameters

[27], as shown in Figure 3.2 for a bolometer exposed to zero external power loading.

The equations developed in this section form the basis for investigating nonlinear

behaviour in bolometer detectors under the modulated signal produced by a FTS.
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3.3 Correction of Nonlinearities

The goal of any detector used with a FTS is to determine the amount of optical

power incident as a function of the optical path difference. In the case of a bolometer, the

temperature of the device is the key variable as it constrains all other quantities of interest.

In order to determine the operating temperature of a bolometer, thermal equilibrium is

assumed - that is, the power entering the detector in the form of optical loading and electrical

heating must match the power exiting the detector through the thermal link, towards the

heat sink. The electrical power P is given by Ohm’s law

P = IVD =
Vb

(RL +RD)

RDVb

(RL +RD)
[W] (3.13)

where

I = Vb/R [A] (3.14)

is the bias current through the circuit provided by a bias voltage Vb and R = (RL + RD),

where RL and RD are the load and detector resistances respectively.

The total power measured at the bolometer, Pin, is

Pin = P +Q [W]. (3.15)

The power leaving the detector depends solely on the thermal conductivity of the link to

the bath and is given by

Pout = Gs(T − T0) (3.16)
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where Gs is defined as in Equation 3.7.

During the pre-flight test campaign, each of the two ports of the SPIRE Mach-

Zehnder interferometer were exposed to calibration sources of different temperatures: two

blackbodies, one held constant at 4.6 K and another whose temperature varied between 6.7

and 9 K. The effects of nonlinearity can clearly be seen in Figure 3.4, with larger amplitude

distortions corresponding to larger luminosities from the second port. The central plot in

this figure shows the effects of nonlinearity obtained with the SPIRE instrument over 0 to

60 cm−1. The left part of the figure shows the effects of nonlinearity from 0 to 14 cm−1

while the right part of the figure shows the second harmonic of twice the width and half the

amplitude. These two features lie at the expected positions of 0 cm−1 and 2σ0, twice the

wavenumber of the centre of the fundamental band. Since the nonlinear response prevents

the signal from reaching its true value, the spectral manifestations must be negative. In

addition, as the signal of the spectrum in-band increases, the nonlinear signal in the spectral

harmonic features also increases. In this particular example, the incident powers were not

large enough to produce a third-order harmonic feature. Table 3.1 lists the associated

detector parameters for the central pixel in the long wavelength band, SLWC3 (N. Lu

(personal communication, March 17, 2009)).

Currently, the Herschel nonlinearity correction algorithm, based upon the bolome-

ter model developed in Section 3.2, accounts for the nonlinear response between the input

Tg Gs0 β R* RL

41.95 [K] 180.92 [pW/K] 1.65 126.93 [MΩ] 24.3 [MΩ]

Table 3.1: Detector values used towards the correction of nonlinearities in central detector
SLWC3
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Figure 3.4: Nonlinear behaviour as exhibited by the SPIRE FTS during PFM4 ground
testing. Data were taken from the central pixel of the detector array in the long wavelength
band, as one input port viewed a blackbody source at 4.6 K and the other whose temperature
varied between 6.7 and 9 K. Figures (a) and (c) are extreme close-ups of the boxed harmonics
in Figure (b), at 0 cm−1 and 2σ0, respectively.

optical load, Q, and the voltage across the detector, VD, with three parameters provided

in calibration files for two different source brightness ranges. The conversion from the

measured nonlinear signal, Vnonlin, to the corrected signal, Vlin, is expressed as

dVlin

dVnonlin
= K1 +

K2

Vnonlin −K3
(3.17)

where the nonlinear coefficients are represented as K1, K2 and K3 and upon integration

Vlin = K1(V − V0) +K2 ln

[
V −K3

V0 −K3

]
. (3.18)

Here, the integration constant V0 represents the voltage at the detector when subject to
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Figure 3.5: Inverse, normalized responsivity curve as generated from the bolometer model
(black), with both the fit to the data (red) and the JPL curve (green) also shown. The
K1−3 terms are derived from the fitted data. The residual differences with the model are
shown for both the fit (red) and the JPL data (green), magnified by a factor of 10.

no radiant loading. The coefficients K1, K2, and K3 are determined by fitting Equation

3.17 to the model-derived inverse responsivity over a range of optical loadings chosen to be

much larger than expected during flight measurements. An example of such a fit is shown

in Figure 3.5, where the inverse responsivity dQ/dV is plotted for a range of detector

voltages resulting from optical loads between 0 and 20 pW. The green curve, which shows

the inverse responsivity produced from the Ki values found in the calibration tables of the

Jet Propulsion Laboratory (JPL), agrees well with both the modeled data in black, and the

fit to the modeled data, in red.
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The Ki parameters obtained from the fit in Figure 3.5 were used in Equation 3.18

to implement a nonlinear correction of the data shown in Figure 3.4. The results of this

process are shown in Figure 3.6. It can be clearly seen that the non-physical harmonic

spectral features have been significantly reduced and missing energy has been restored to

the spectrum. Although the out-of-band harmonics represent only a small fraction of the

total in-band power, upon correction, because this effect is nonlinear, a disproportionate

change occurs in the integrated in-band power. Figure 3.7 shows this effect, which shows

the recovered spectral power as a function of the known input power, determined by inte-

grating the powers received by the SPIRE detectors as a function of the temperature of the

blackbody shown in the middle panel of Figure 3.4. Not only is there a significant energy

enhancement post-correction, but also a return to linearity, as shown by the best fit line

of near unity slope. Each blue square corresponds to a spectrum of different temperature

Figure 3.6: Spectra for each of the cases from Figure 3.4 after having now been corrected
for nonlinearity using Equation 3.18
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Figure 3.7: Recovered spectral powers before (red diamonds) and after (blue squares) non-
linear correction for each temperature spectrum shown in Figures 3.4 and 3.6. A line of
best fit is also shown.

(Figure 3.6). The red diamonds represent the equivalent pre-correction values. Although

this method of correction using SPIRE calibration tables of derived Ki coefficients remains

in use in the Herschel software pipeline, a more precise method is presented in §3.3.1, which

relies on determining the operating temperature of the detector at each optical path dif-

ference position. In order to correct for variations in the bath temperature, the current

pipeline applies a second correction after the nonlinear correction described above, which

accounts for changes in bath temperature. In order to do this, a spline is fit to smooth the
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bath thermistor timeline, whereafter correction coefficients aT , bT and v0T are applied as

CT (t) = aT · SplineInterp(t)− v0T + 0.5 · bT · SplineInterp(t)− v0T
2 (3.19)

for each time-sampled voltage point. The final corrected timeline is computed from the

input detector timeline D(t) as

S(t) = D(t)− CT (t). (3.20)

However, since the value T0 is found throughout the bolometer model leading to the Ki

coefficients, this step would do better if incorporated into the nonlinear correction algorithm.

3.3.1 Temperature-Based Nonlinear Correction Approach

As previously mentioned, the primary goal of a bolometer is to measure the amount

of optical power striking its sensitive detecting element from the observed astronomical

source. The directly measurable quantity however is the voltage across said detector. By

inverse application of many of the same formulae outlined in §3.2, it is possible to compute

directly the optical power loading as a function of optical path difference from the detector

voltage. With knowledge of the load resistance RL and the bias voltage Vb, the detector

resistance is given by

R(x) =
V (x)RL

Vb − V (x)
[Ω], (3.21)
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which can be converted to temperature using Equation 3.5 as follows

T (x) =
Tg[

ln

(
R(x)

R∗

)]1/n [K], (3.22)

where all constants are defined as before.

In addition to the optical power one must also take account of the dissipated

electrical power, expressed as

P (x) = V (x)I(x) [W] (3.23)

where the current, I(x), is related to the resistance R(x) via

I(x) =
V (x)

R(x)
[A]. (3.24)

Finally, from Equation 3.9, one arrives at the incident optical power Q(x) as the difference

of the total power W (x) and the electrical power P (x)

Q(x) = W (x)− P (x) [W] (3.25)

where the total power W (x) was stated in Equation 3.9 as

W (x) = Gs(T (x), T0)(T (x)− T0) [W]. (3.26)

In this way, the nonlinear correction is achieved directly and without use of any error-

45



3.4. CONCLUSION

introducing, curve fitting steps. Results are arrived at quickly, and more importantly,

can be summoned for each and every point of the interferogram. Temperature is the key

variable which permits the determination of many desired detector parameters, and with

previous knowledge of the bath temperature T0 for all sampled points, nonlinear correction

can be performed to a much higher degree of accuracy. The determination of the operating

temperature of the detector is the principal method by which nonlinear correction will soon

be implemented in Herschel/SPIRE data.

3.4 Conclusion

This chapter discussed the phenomenon of nonlinearity in bolometric detectors,

considering its mathematical description as a means of modeling its spectral manifestations,

through to methods for its correction in pre- and post-launch SPIRE data. The importance

of such corrections was shown, as they affect the in-band spectral energy. The fact that

the nonlinear correction routine is executed first in the Herschel/SPIRE software processing

pipeline gives yet another indication of its central role, as modifications made here propagate

through the remainder of the pipeline.
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Chapter 4

Spectral Line Fitting

This chapter will consider the retrieval of physical parameters from astronomical

spectra recorded by a Fourier transform spectrometer (FTS). The analysis involves fitting

two components to the measured spectrum: a continuum component resulting from the

emission of interstellar grains and a line component representing either emission or absorp-

tion from molecules, atoms or ions. Section 4.1 will present the methods and theory behind

the separation of these two components, along with an introduction to the information pro-

vided by such analysis. Section 4.3 introduces the sinc line shape and its impact on a FTS

spectrum and discusses how, with a knowledge of the line profile, it can be deconvolved

from galactic spectra to yield a set of spectral parameters. All of this is considered in the

context of data from the molecular cloud core G34.3 in §4.3.2.

47



4.1. INTERSTELLAR MEDIUM

4.1 Interstellar Medium

The region between stars located in the spiral arms of our Milky Way Galaxy is

collectively known as the interstellar medium (ISM). There are two principal components:

interstellar dust (grains) and gas, each of which may be probed by spectroscopy. The

emission signature of dust is broad - continuous across a large range of frequencies, while

gaseous regions either emit or absorb in discrete, narrow frequency segments manifested as

spectral lines and determined from the quantized nature of the allowed atomic, ionic and

molecular energy levels. The electromagnetic spectrum will convey information about both

and it is one of the goals of this chapter to separate the two.

The continuum component provides information on the nature of the solid partic-

ulates including their physical properties, while line emission gives an insight to the ionic,

atomic and molecular column abundances and other physical conditions. Lines observed in

emission are most common, resulting from collisional excitation between atoms, molecules

or ions, which is followed by a radiative decay to a lower energy state. Particularly dense

gaseous regions contain a complex collection of molecules, each with their own set of emis-

sion lines, making the task of distinguishing individual spectral lines challenging. Similarly,

when cold gas appears in the foreground of a hotter continuum source, then absorption

lines, characteristic of the gas, are observed. The Astronomical Instrumentation Group

(AIG) at the University of Lethbridge (UL) is interested in the conditions necessary for star

formation in the ISM, known to take place at colder temperatures. In particular, molecular

clouds in the ISM, conglomerations of molecular gas and dust, are known to be birth sites

of new stars. From such clouds, emission due to cold dust and molecular transitions domi-
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nate the observed spectra, and both are needed to derive a thorough understanding of the

physical conditions of the region. The following sections investigate facets of each in turn,

beginning with a series of experimental claims that prove the existence of interstellar dust.

4.1.1 Interstellar Grains

Interstellar dust has a spectral energy distribution, Sν , given by

Sν = (NgMg)κ0

(
ν

ν0

)β

Bν(Td)Ω [Jansky] (4.1)

where 1 Jansky = 10−26 Wm−2Hz−1, κ0 (m2/kg) is the dust emissivity at a reference

frequency ν0 (Hz), β is the dust emissivity index, Ω the solid angle, Ng the dust column

density (m−2), Mg the mass of the dust grains (kg) and Bν(Td) (Wm−2str−1Hz−1) the

Planck blackbody function for a dust temperature Td (K) and a frequency ν (Hz) [29].

Most often, β ranges between 1 and 2, with a value of 2 significant for long wavelengths

and metallic materials, whilst a value of 1 describes graphitic grains [30]. These two values

constrain a range of estimates in the literature that depend upon grain type.

The most fundamental indication that grains comprise a large portion of the ISM

is the signal degradation that occurs due to foreground absorbers as

I = I0 exp

(∫ l

0
αdl

)
(4.2)

where α is the extinction coefficient, I0 the stellar intensity and l the path length of travel.

It has been determined [31] that the coefficient α, rather than being constant, in fact varies

49



4.1. INTERSTELLAR MEDIUM

with the density of the gas. Extinction can also be measured by direct comparison of two

different stars of similar size and composition; one with little intervening material and one

behind a cloud. To this end, intensity discrepancies are accounted for with the concept

of brightness magnitudes [31] such that a factor of 100 change in intensity equates to a

five-fold change in magnitude.

There are further indications that dust must comprise a substantial portion of the

interstellar medium (ISM). Astronomers frequently use the solar elemental abundance as a

reference for conditions elsewhere in space. For example, solar elemental abundances, while

consistent with some other areas of the ISM, are not reflective of conditions in a molecular

cloud. Certain of these elements are capable of, with increased distance from a stellar

source, cooling enough to form refractory solids (grains), which are thus crystallized out of

the gas phase. They may do this on their own, as in the case of iron, or in combination with

other elements (i.e. silicates). What results is a noticeable reduction in certain elemental

abundances to values that are incomparable to anything seen within our Sun [31].

Astronomers have also been pointed to the existence of interstellar grains by the

optical polarization of starlight, found to be correlated with the amount of optical extinction.

Should grains be taken as elongated, rather than spherical, there is a greater chance of an

electric field vector passing unhindered perpendicular to the grains’ long axes. This is

especially true if there is some commonality in orientation, as provided by, for example, an

external magnetic field [31].
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4.2. CONTINUUM FITTING

4.2 Continuum Fitting

There are various ways of fitting a continuum spectral baseline, most of which seek

to optimize a fit for two parameters: the dust temperature Td, and the dust emissivity, ϵ.

For example, the Planck function, as expressed in terms of frequency, ν,

Bν(Td) = ϵ
2hν3

c2
1

ehν/kTd − 1
[W m−2sr−1Hz−1] (4.3)

is very often used as a fitting function, where h, c and k are Planck’s constant, the speed

of light in a vacuum and Boltzmann’s constant, respectively, and ϵ and Td are floating

parameters.

In a theoretical model of dust emission, as described by a modified blackbody

spectrum such as that in Equation 4.1, many of the variables are specific to the grain type

being observed, and therefore largely unknown. As a result, authors have made simplifying

assumptions leading to models that often bear resemblance to both Equation 4.1 and the

Planck function. Priddey et al. [32], assuming grains in thermal equilibrium with the

background radiation, and an optically thin molecular cloud, performed a χ2-minimization

procedure with a function

SνPriddey α
ν3+β

e
hν
kTd − 1

[W m−2sr−1Hz−1] (4.4)

for free parameters β, the dust emissivity index (see Equation 4.1) and Td. This method

finds the best isothermal description of the dust, although it is more likely in practice that a

range of temperatures prevails. Others, such as Colbert et al. [33] have directly incorporated
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the Planck blackbody equation, Bν(T ). They arrived at

SνColbert α Bν(Td)(1− e−τDust) [W m−2sr−1Hz−1] (4.5)

having assumed τDust α ν. Again, such an optimization will only result in one temperature,

although there remains a large amount of flexibility in the parameter τDust, which can also

be approximated as τDust α ν1.5 or τDust αν2. It is more common to multiply each of

Equations 4.3, 4.4 and 4.5 by Ω, the solid angle of the source, and so express the result in

the astronomical unit of flux, the Janskies (10−26 W m−2 Hz−1) [34].

4.2.1 Line Fitting

Fitting to spectral lines requires knowledge of the instrumental line shape (ILS),

to be discussed in §4.3, and is designed to return a spectral line intensity, line position

(centre) and full width at half maximum (FWHM). From this information, such parameters

as the atomic and molecular column abundances, and their rotation temperatures can be

gathered. By isolation of the line position (in units of frequency (Hz), wavelength (µm), or

wavenumber (cm−1)), one can identify the atomic or molecular species through comparison

with their equivalent values at rest. With sufficient spectral resolution, and a knowledge of

the rest-frame wavelength, it is possible to determine the source’s relative velocity, through

the Doppler effect. The strength (intensity) of the source will be determined from the

column abundance, the Einstein A coefficient, the temperature and the energy level of

the transition, while the FWHM is related to the source environment, in particular its

temperature and pressure. How the column abundance and temperature can be determined
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4.3. FTS-2 SIMULATION

is explained in Chapter 6 where the rotation diagram method is applied to data obtained

from Herschel/SPIRE. The following section utilizes line fitting techniques on a simulated

FTS-2 source spectrum created from high-resolution heterodyne data from the JCMT.

4.3 FTS-2 Simulation

The Astronomical Instrumentation Group at the University of Lethbridge has been

involved in the development of an imaging FTS (IFTS, FTS-2 [35]) for use in combination

with the next-generation bolometer detector array (SCUBA-2), situated at the James Clerk

Maxwell Telescope [36]. In order to predict the spectra that will be recorded by FTS-2, high-

resolution heterodyne data from the recently commissioned HARP imaging spectrometer

[37], which also operates at the JCMT, have been used.

Heterodyne spectrometers are known for their extremely high resolving power. As

an example, HARP [37] achieves a resolution of 1 MHz at a frequency of 325-375 GHz, for a

resolving power of 325 000 - 375 000. While heterodyne spectrometers have extremely high

resolving power they only operate over narrow bandwidths and therefore have difficulty

establishing a reliable continuum. Thus, unlike a FTS, HARP is not well suited to the

measurement of dust emission. Since HARP is operating in the same wavelength region, at

the same telescope, through the same atmosphere that FTS-2 will be, it actually provides

the most realistic spectral line measurement on which to model the performance of FTS-2.

In the following simulation, a complete spectral scan of the galactic source G34.3

by HARP forms the data for producing the realistic simulation of FTS-2. The data were

made available by the JCMT’s Spectral Legacy Survey (SLS) [38] team. The source is a
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Figure 4.1: IRAS 60 µm intensity map of G34. Colorbar units are in MJy beam−1

well-studied, ultracompact HII region with a hot molecular cloud core [39] (Figure 4.1).

It can be divided into three separate sub-regions, two of which are ultracompact and one

compact. Additionally, G34.3 has a cometary morphology and is found at a distance of 3.7

kpc.

4.3.1 The ILS of a FTS

In the ideal case, the Fourier transform spectrometer (FTS) has a well-defined

line-shape (see Chapter 2) [10] given by the cardinal sine (sinc) function

F (σ) = 2L
sin (2πσL)

2πσL
(4.6)
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where σ is the wavenumber (cm−1) and L is the maximum optical path difference (OPD)

between the two interfering beams in the interferometer. The sinc function has a FWHM

of

∆σFTS−FWHM ≃ 1.207

2L
[cm−1]. (4.7)

First light has recently been captured with FTS-2 in the laboratory at the Univer-

sity of Lethbridge, prior to its shipment to the JCMT in Hawaii. The measured line shape

of the instrument matches an ideal sinc function well, as shown in Figure 4.2. The absence

of any sizeable ghosts in the power spectra shown, recorded in the time domain, suggest a

remarkable stability in the moving mirror velocity.

In this simulation, a ∆σ of 0.01 cm−1 was chosen so as to match the expected

performance of FTS-2, and was achieved by convolving a sinc function of the appropriate

width with the raw HARP data. Figure 4.3 illustrates measured HARP data (top) of source

G34.3, with the eleven strongest emission lines identified by the blue vertical lines. The

middle trace shows the result of convolving the upper data with a sinc function sampled

at the same spectral resolution of 1 MHz. The sinc line shape features are clearly evident

at each of the eleven lines of interest, and could easily be interpreted as adding noise to

the data. These features are, however, a result of the sidelobes of the convolution kernel

summing constructively and destructively at the different frequencies depending on the

line content of the original spectrum. Finally, the bottom trace in Figure 4.3 sub-samples

the centre plot to the resolution of 0.01 cm−1, and therefore represents the most realistic

simulation of FTS-2 measurements of G34.3.
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Figure 4.2: The measured ILS of FTS-2 (black), without phase correction, plotted overtop
a sinc function (orange) of the theoretical resolution of the FTS. The interferogram was
sampled at regular time intervals.

4.3.2 Line Fitting

In order to fit to experimental data, some form of minimization routine is necessary.

Several are available, of which the most common are the IDL routines Amoebar, based

upon the downhill simplex method developed by Nelder and Mead [40], Powellr, which

makes use of the powell routine described in Numerical Recipes in C: The Art of Scientific

Computing [41] and mpfitfunr, which employs a Levenberg-Marquardt [42] nonlinear least-

squares algorithm. The latter option was chosen for the fitting presented here, as it allows

the greatest control over the optimized parameters: line centre, width and amplitude. While

56



4.3. FTS-2 SIMULATION

11.0 11.2 11.4 11.6 11.8
Wavenumber (cm-1)

-20

-10

0

10

20

H
et

er
od

yn
e 

B
rig

ht
ne

ss
 T

em
pe

ra
tu

re
 (

K
)

325 330 335 340 345 350 355
Frequency (GHz)

-0.5

0.0

0.5

1.0

1.5

F
T

S
 B

rig
ht

ne
ss

 T
em

pe
ra

tu
re

 (
K

)

Figure 4.3: Raw HARP G34.3 spectrum (top) with each of the eleven strongest emission
lines denoted by the blue lines. The middle trace shows the raw data convolved with the sinc
ILS of the FTS to a fine spectral resolution of 1 MHz. The bottom plot further sub-samples
the spectrum to a new resolution of 0.01 cm−1, expected for FTS-2.
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each of the other choices may settle in to a local minimum, mpfitfunr can constrain each

of the three floating values so as to only find the absolute minimum.

The first step was to make an estimate of the noise threshold in the spectrum,

arbitrarily set at three times the standard deviation. Should any sampled points lie above

this threshold, then they are identified as emission lines and stored for fitting. After the

initial fit, a residual difference between initial spectrum and fitted spectrum is calculated,

which is then treated as a new spectrum and the process repeats. This continues until the

reduced chi-squared differs by less than a user-supplied threshold on successive iterations

(10−10 in this case). All lines detected above the noise threshold are simultaneously fitted

to yield values for the position and intensity of each line. A FWHM is required in the

fitting process but in general is fixed based upon the resolution of the FTS. Since the

heterodyne data have been baseline corrected, there is no requirement to fit an underlying

continuum, although this is relatively straightforward to include. A summary of the fit is

shown in Figure 4.4, separated by line, where the overlapping sidelobes of neighbouring

lines contribute to the perceived noisiness of the final, convolved spectrum. The eleven

components are synthesized into a single spectrum in the middle trace of Figure 4.5, with the

filled circles showing the sampled points at the lower, 0.01 cm−1 resolution. The integrated

flux (mK cm−1), was determined directly from the returned fit parameters according to the

theoretical sinc integral ∫ ∞

−∞
A
sin (2π(σ − σ0)L)

2π(σ − σ0)L
dσ =

A

2L
, (4.8)

where A is the amplitude of the line, σ0 is the line centre, and L and σ are defined as in

Equation 4.6. The flux, combined with the line centre and amplitude, yield a set of three
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Figure 4.4: The convolved spectrum shown at centre in Figure 4.3 with each of the eleven
sinc fits, offset for clarity. The blue lines show, as before, the positions of the initial guesses
supplied to the line-fitting routine.
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Figure 4.5: Cumulative fit to raw heterodyne data. The top curve shows the sub-sampled
spectrum, at a resolution of 0.01 cm−1 (300 MHz). The middle curve shows the recovered
FTS-2 spectrum plotted at high resolution (1 MHz), with the filled circles marking sampled
points at the 0.01 cm−1 resolution. At bottom is the residual difference. All spectra are
offset for clarity.
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spectral parameters that can be compared directly with similar data from the heterodyne

spectrum.

Prior to convolution, the spectral line areas were determined from a numerical

integration of the heterodyne data over a small wavenumber range. The final results of

this analysis are summarized in Table 4.1. Both the line centres and areas show strong

L
in
e

Line Centre (cm−1) Integrated Line Area (mK cm−1)

H
et
.

F
T
S

D
iff
er
en
ce

D
iff
er
en

ce
(%

o
f
∆
σ
)

H
et
.

F
T
S

D
iff
er
en
ce

E
rr
or

(%
)

1 11.02489 11.02390 0.00099 9.9 3.10 3.20 0.10 3.23
2 11.19061 11.18947 0.00114 11.4 1.15 1.26 0.11 9.57
3 11.24069 11.23861 0.00208 20.8 1.07 1.22 0.15 14.02
4 11.28716 11.28781 0.00065 6.5 1.60 1.46 0.14 8.75
5 11.34269 11.34243 0.00026 2.6 1.73 1.52 0.21 12.14
6 11.38587 11.38831 0.00244 24.4 0.68 0.70 0.02 2.94
7 11.43485 11.43656 0.00171 17.1 1.27 1.39 0.12 9.45
8 11.53191 11.53203 0.00012 1.2 5.04 5.08 0.04 0.79
9 11.65190 11.65057 0.00133 13.3 1.06 1.03 0.03 2.83
10 11.73115 11.72896 0.00219 21.9 0.69 0.87 0.18 26.09
11 11.82237 11.82168 0.00069 6.9 1.92 1.94 0.02 1.04

Table 4.1: Comparison of line centres and integrated areas from the raw heterodyne spec-
trum and the simulated FTS spectrum. Associated differences are also shown.

agreement. The positions, measured to an accuracy of 1 MHz (3.36×10−5 cm−1), typically

differ by less than ten percent of a resolution element of the FTS for lines of significant

signal-to-noise. All of the secondary maxima/minima of the sinc functions surrounding any

given line act to constrain the fit at the centre, leading to the tremendous accuracies noted

in Table 4.1. Additionally, the percentage errors in integrated areas (where the heterodyne

data were taken as the reference) are inversely proportional to the strength of the line.
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This is to be expected as the lines of higher amplitude are easier to fit. For instance, the

line at σ0 = 11.532 cm−1, a J = 3 → 2 CO transition and by far the most intense of the

eleven, produces the smallest error, while the weakest line, a methanol emission signature

at σ0 = 11.731 cm−1, produces the largest error.

As a test of the line fitting procedure, the same analysis was performed upon the

introduction of random noise into the spectrum.

4.3.3 Addition of Noise

Normally-distributed white noise with a mean of zero was generated in IDL with

the Box-Muller method [43] and added to the 0.01 cm−1 resolution spectrum, shown at the

top of Figure 4.5. A noise amplitude of ten percent of the largest peak (the CO 3 → 2

line at 11.53 cm−1) was chosen. Random deviates were merged into the spectrum one

hundred times and then averaged, so as to eliminate any spurious data values. Line centre

and amplitude were returned by the fitting routine as before, for each of the same eleven

lines, allowing comparison with the FTS spectral simulation. Analysis sought to verify the

concept already mentioned in §4.3.2, that the fitting improves with the strength of the line.

Figure 4.6 examines the line centre error with respect to the heterodyne reference for each

of the chosen eleven lines. There is a clear inverse relationship born out by the over-plotted

curve, a theoretical reciprocal function derived from a spectral signal to noise argument [10].

The errors were calculated as the absolute value of the difference between the retrieved line

parameters for the FTS-modeled data with and without noise added. The same trend was

observed for the errors in line areas, as shown in Figure 4.7. Having verified the decrease in

precision of the line fitting method with decreased line area, all that remains is to attempt
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Figure 4.6: Errors in line centres for each of the eleven fitted lines, as a percentage of a
resolution element. The errors clearly follow an inverse relationship with integrated spectral
line area.

to lessen the error across all integrated areas. The data presented here identified the eleven

strongest lines and fitted them each based on a fixed FWHM. While the HARP spectrum

was provided without any underlying continuum, as will be seen in Chapter 6, its removal

is often a key determinant in the quality of the achieved line fits.

4.4 Conclusion

A detailed knowledge of the instrumental line shape function is key to maximizing

the information that can be extracted from a spectrum, for example the column abundances,

ionization state and physical conditions of the region under study. A particular advantage
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Figure 4.7: Errors in integrated line areas for the eleven fitted lines, expressed as a percent-
age. The same inverse relationship with integrated heterodyne line area is noted.

of observing at submillimetre wavelengths, is that, except under extreme conditions, sources

are optically thin, allowing one to peer into the cores of star-forming regions. Fortunately

the line shape for both SPIRE and FTS-2 is well-known. Spectra can provide two types

of information: that related to the icy dust often obscuring light sources beyond, and that

on the emitting region in particular. A Levenberg-Marquardt least squares optimization

technique was introduced, which will find use in Chapter 6 when the method is applied to

flight data from the SPIRE spectrometer, complete with a non-zero baseline. The utility of

the IDL-fitting script was proven through a comparison of the actual spectral parameters

(line centre, amplitude and FWHM) from HARP’s G34.3 spectrum to the numbers recovered
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from the FTS simulation, both with and without noise. It therefore exists now as a robust,

stand-alone routine.
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Chapter 5

Preparing for Observations with

FTS-2

This chapter will summarize the observation planning relevant to FTS-2, a second

generation Fourier transform spectrometer being built at the University of Lethbridge for

use with the Submillimetre Common User Bolometer Array (SCUBA-2) at the James Clerk

Maxwell Telescope (JCMT) atop Mauna Kea, Hawaii, USA. FTS-2 is the first of two Fourier

transform spectrometers that will be discussed in the thesis, the other associated with

SPIRE on the Herschel Space Observatory (see Chapter 6).

5.1 SCUBA-2

SCUBA-2 is a staggering upgrade of the highly successful SCUBA camera, which

was operational at the JCMT from July 1996 until 2005 [36]. An international team with

partners from Canada, the United States and Europe undertook the development of the
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new generation camera, which is currently approaching scientific readiness. The consor-

tium agreed to develop two instruments to increase the capabilities of the camera: one, a

polarimeter to allow polarization mapping, has been realized as POL-2 [44]; the other, a

FTS, has been built by the AIG to provide imaging spectroscopic functionality.

The JCMT is a 15-m diameter telescope situated atop Mauna Kea in Hawaii,

a site known for its extremely dry conditions, ideal for astronomy. Where SCUBA had

128 detectors subdivided between two wavelength arrays accessible with a dual input filter

wheel, SCUBA-2 has ∼10,000 detectors, resulting in mapping speeds potentially a thousand

times faster to reach the same signal-to-noise [45]. By coupling the SCUBA-2 camera with

a Fourier transform spectrometer (FTS), the following investigations can be conducted

• the interstellar medium - FTS-2 will uniquely image the dust continuum and line

emission simultaneously.

• infrared galaxies - the spectral energy distribution (SED) of dust.

• planetary atmospheres - provide insight into their dynamical evolution, driven by the

interaction of molecular species.

• supernovae remnants - including how they interact with the interstellar medium.

within each of two relatively narrow wavebands, centred at 450 and 850 µm. Spectroscopy

will occur in these windows concurrently, which will address a number of scientific goals at

the forefront of submillimetre astronomy.
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5.1.1 FTS-2 versus Herschel/SPIRE

The parallel observing goals of Herschel and the JCMT are to observe the cold

submillimetre universe where stars are formed. Spectroscopic imaging conditions are drasti-

cally different on the ground versus in space. Table 5.1 compares a series of aspects involved

in observing with each telescope. While affected by emission from the surrounding optics,

Herschel, free from the Earth’s atmosphere, is most sensitive to radiation from the sources

towards which it points. Nevertheless, Herschel must employ older, space-proven technol-

ogy, which includes a primary mirror of diameter 3.5 m, of which only the central ∼3.29 m

is used to avoid diffraction effects. At this size, the telescope is limited by the maximum

resolution that can be attained. On the other hand, the complementary aims of the JCMT

are benefited by a telescope of diameter 15 m (∼20 times greater collecting area), with

a spectrometer, in FTS-2, of ten times the spectral resolving power. At the same time,

the spectrometer on-board Herschel, SPIRE, has 56 pixels split between two wavelength

arrays, with unfettered access to the wavelength range shown in Table 5.1. On the other

hand, FTS-2 enjoys ∼10,000 exquisitely sensitive TES (see §5.1.2) detectors which can only

observe in the two atmospheric windows shown in Table 5.1.

The AIG at the University of Lethbridge is privileged to be involved in both

projects, and thus both are described in this thesis.

5.1.2 Transition Edge Sensors

The theory behind bolometric detectors was presented in Chapter 3. The transition-

edge sensor (TES) is a type of bolometer that measures input radiant flux according to the
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FTS-2 SPIRE FTS

dominant noise source atmosphere telescope

collecting area (diameter) 15 m 3.29 m

angular resolution 7” & 14” 19-35”

spectral resolution 0.006 cm−1 0.04 cm−1

spectral range 11-12.5 & 21-24 cm−1 14.9-51.5 cm−1

number of pixels 10,000 56

Table 5.1: Comparison of Herschel/SPIRE and JCMT/FTS-2

change in resistance of a superconducting film [25]. As mentioned, SCUBA-2 has ∼10,000

TES detectors equally split between two wavelength arrays. The sensitive detectors are

designed for conditions of high background loading, which are slightly worse than might be

expected on a typical observing day at Mauna Kea. A TES is voltage-biased to operate at

select temperatures between the normal and superconducting states, a narrow region where

the electrical resistance lies between zero and its normal value. The TES sensors must

be designed in anticipation of the worst conditions they could observe. The remarkable

sensitivity of a TES is due to the width of this transition, such that a temperature change

of ∼0.02 mK can alter the resistance by ∼20 mΩ [25] (see Figure 5.1). The temperature

coefficient of resistance, α, that determines the slope of this transition is given by

α =
1

R

dR

dT
[K−1] (5.1)

where R is the resistance. This sensitivity can be up to two orders of magnitude better

than a semiconductor thermometer [25]. One of the recent advances that has given the

TES more widespread appeal is the development of superconducting quantum interference

device (SQUID) current amplifiers, which can multiplex the readout of a large array of
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Figure 5.1: An example of a superconducting transition [25].
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detectors [46]. This greatly reduces the number of wires needed for this purpose.

5.1.3 FTS-2

The choice of spectrometer to use in conjunction with the SCUBA-2 camera was

narrowed to three types: a grating spectrometer, a Fabry-Perot interferometer, and a FTS.

The decision to employ a FTS over these other types was based upon extensive research and

a careful critique of how each would fit into the pre-existing SCUBA-2 design limitations [45].

Both grating spectrometers and Fabry-Perot interferometers (FP) suffer from a

low throughput and poor instrumental line shape function. Additionally, they are not well

suited to the bolometric detectors, which are optimally operated at large radiant exposures

at both 450 and 850 µm. Although other types of spectrometers were considered to provide

an imaging spectroscopic capability with SCUBA-2, it was quickly realized that a FTS was

the optimal solution. As noted in Chapter 2, Fourier transform spectrometers are known

for their high throughput, extending over a wide spectral range that allows simultaneous

observing in both SCUBA-2 bands. Moreover, the FTS is well matched to the radiant

loading design of the SCUBA-2 detectors, as it introduces no extra radiant loading. Finally,

as shown in Chapter 4, the FTS has the best instrumental line shape of any spectrometer,

and in the case of a well designed system has been shown to be the classical sinc. Therefore

the FTS was chosen to provide SCUBA-2 with imaging spectroscopic capabilities.

Built by the AIG at the University of Lethbridge, FTS-2 is of the Mach-Zehnder

design [47], and identical to the SPIRE FTS. As shown in Figure 5.2, the MZ-FTS differs

from the Michelson interferometer introduced in Chapter 2 in a number of ways. Firstly,

the design separates the two input ports (A and B) and two output ports (1 and 2), each of
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Figure 5.2: Schematic illustration of Mach-Zehnder Fourier transform spectrometer.
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which are accessible to the user. Different from the Michelson design, all radiation (excluding

that absorbed by imperfections in any of the mirrors or the two beamsplitters) that passes

through the spectrometer is measured. One input is reserved for the astronomical target of

interest plus the background sky, while the other is exposed solely to the background sky,

which is then removed from the observation in real-time.

5.2 Atmospheric Cancellation

The two input ports of FTS-2 are at a fixed angular separation, such that one port

views the astronomical object of interest and the other a nearby region of the background sky

[48]. As observing proceeds, the second (background) port rotates around the central pixel of

the companion port, as a result of the alt-az telescope mount. Such port rotation simulations

have been performed for a number of possible astronomical targets and atmospheres. Figure

5.3 shows possible pixel positions during the time that the Orion molecular cloud (OMC) is

visible. As port 2 circles the brightest regions of the source, the source changes elevations

according to the sketch on the left of Figure 5.3, such that the start and the end altitudes

are identical, and the point of maximum elevation corresponds to the greatest atmospheric

transmission and least emission.

As the pixels from each of the two ports make their way around the center, they

experience slightly different amounts of flux through the Earth’s atmosphere. The dual-

port nature of FTS-2 is able to isolate the source signal in real-time using measurements

of the dark sky from port 2. Proper calculation requires knowledge of the exact rotation

characteristics of the ports, as well as a comprehensive model of atmospheric fluxes across
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Figure 5.3: Image of the Orion molecular cloud from the SCUBA Legacy Catalogue with
possible port positions superimposed. Port 1 remains centred on the target, while Port 2
arcs around, experiencing differing flux amounts. The recorded interferogram is a difference
of the signals from the two ports. At left, the two red lines indicate the start and end
positions of the rotation.
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a range of elevations.

To this end we used BTRAM, the Blue Sky Spectroscopy transmission and radi-

ance atmospheric model [49], at both the 450 and 850 µm bands, across elevations from

zenith to 70◦, in steps of 10◦. These simulations are shown in Figure 5.4. Conversion to

Janskys (Jy) was achieved using beam sizes of ∼7 arcsec for the 450 µm band, and ∼14

arcsec for the 850 µm band, according to

Flux = Radiance · 1

310
· π
4
·
(
beamsize

3600
· π

180

)2

· 1026 [Jy] (5.2)

where Radiance is the BTRAM spectral radiance averaged across the bands as defined by

the filters [50]. Due to the symmetric design of FTS-2, the resulting difference between

the two input ports (Figure 5.5) is always a horizontal gradient across the arrays (Figure

5.6). They are symmetrically located about their center, meaning that there is an imbalance

which is always most pronounced at one edge of the field-of-view (FOV) [48]. The amplitude

of the residual varies with elevation. It is therefore necessary to model the gradient for a

range of elevations and precipitable water vapour amounts in order to remove the residual

atmospheric contribution from the spectrum. Nevertheless, the magnitude of the difference

is extremely small in comparison to the scales plotted in Figure 5.4. While the emission

from the atmosphere is on the order of 103 Jy, the corresponding flux difference is seen to

near 10−2 Jy, which speaks to the quality of atmospheric cancellation being performed.
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Figure 5.4: Atmospheric emission for a simulated atmosphere above Mauna Kea at each
of the two wavelength bands observed with SCUBA. At left, the BTRAM [49] results for
the 450 µm band for precipitable water vapour (pwv) amounts of 0.5 mm (top) and 1
mm (bottom). Traces represent 10 degree steps in elevation from zenith, with decreasing
transmission. The same plots are repeated from the 850 µm band on the right.
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Figure 5.5: Atmospheric emission viewed from each of the two input ports at 850 µm and
40◦ elevation. Port 1, at left, is stationary on the target while port 2, right, rotates around
the optical axis of the telescope, indicated by the small ’o’. The fields of view (FOV) of the
respective detector arrays are given as the larger, outlining rectangles.

5.3 SCUBA Legacy Catalogue

To assist in the preparation of the observations of SCUBA-2, use has been made

of the SCUBA Legacy Catalogue (SLC) [51] as a tool for observation planning. The SLC is

a complete collection of 35455 data files, including continuum maps comprising data from

450 and 850 µm of all astronomical sources observed with SCUBA. In all, it describes the

time of measurement, the location observed in the sky and the measured difference between

the “on-target” voltage and a specific background position. After removal of Solar System
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objects, whose positions are time-varying and therefore cannot be traced over the short

timescales of SCUBA, as well as a small amount of unrecognized source names, 28534 data

files remained [51]. Of these, regions of the sky such as the Galactic Plane and nearby

molecular clouds such as Orion and Ophiuchus were particularly well sampled.

All maps and objects located therein found in the SLC are downloadable from

the website of the Canadian astronomy data centre (CADC) [52]. In addition to the raw

spectral data, there are preview images for individual targets, which permits quick data-

quality checks or source identification opportunities. The data are archived as flexible image

transport system (fits) files [53], a standard format for astronomical images and data. They

Figure 5.6: Difference in atmospheric emission between the two input ports shown in Figure
5.5 above. The horizontal gradient as shown varies in amplitude with changes in elevation.
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are named such that they may be identified by the galactic coordinates of their center

pixel. For example, the file “scuba E 178d6 -19d8 850um.emi.fits” is a SCUBA-processed

850 µm emission map (emi) from the Extended Dataset (E), with coordinate center (178.6,

-19.8) [51]. The following section provides the details as to the difference between the two

types of data: extended and fundamental.

5.3.1 Extended and Fundamental Datasets

The catalogue has been further subdivided into two categories of maps. The “Fun-

damental Map Dataset” contains only data with superior atmospheric opacity calibration,

while the “Extended Map Dataset” comprises all data, irrespective of the quality of the

opacity calibration [51]. The Fundamental Map Dataset contains the most accurate fluxes

while the Extended Map Dataset is useful when seeking an expanded areal coverage. To this

end, the 450 µm wavelength band is excluded by the Extended Map Dataset, because of the

low quality of the 450 µm data under poorer observing conditions. In total, 1423 850 µm

Fundamental maps contain ∼ 7.06×106 pixels spanning 19.6 square degrees. The Extended

maps at 850 µm comprise 10.6× 106 pixels across 29.3 square degrees, 1.5 times more than

the corresponding Fundamental Map Dataset. All data are summarized in the Fundamen-

tal Map Object Catalogue (FMOC) and the Extended Map Object Catalogue (EMOC).

Along with the SLC are provided two text files, “scuba fmoc.txt” and “scuba emoc.txt”,

each containing an expansive table that functions primarily as a look-up chart relating right

ascension (RA) and declination (DEC) coordinates of a particular astronomical object to

the galactic coordinates of the center pixel when observed by SCUBA. In this manner, one

may separate their fits file of interest from the entire SLC.
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Figure 5.7: Emission map of Orion KL with superimposed port positions. Port 1 remains
fixed on the target while port 2 rotates around.

For each of the two wavelengths, three maps were created: an emission map with

intensity values in Jy beam−1, an error map including standard deviations for each pixel,

and a coverage map indicating the number of times a position was observed by SCUBA for

each pixel.

5.3.2 Handling FITS Files

Once downloaded using the CADC’s JAVA interface, the user then requires a

separate application to ingest the fits file. Of the most commonly encountered are NASA’s
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fits viewer [54] and the Smithsonian Astrophysical Observatory’s (SAO) SAOImage ds9 [55].

Work in this chapter typically employed fv, for purposes of previewing the source and its

brightness, before the data itself were incorporated into IDLr using the “mrdfits” function.

What follows are a series of examples of emission maps from the SLC, for four well-known

sources that will be studied by FTS-2. Figure 5.7 shows the Orion molecular cloud, the

closest high-mass star-forming molecular cloud to Earth, along with the superimposed port

positions. While the port alignment for this source, as shown, must navigate the varying

intensities of the dark filament, other targets have less strenuous constraints. For example,

Figure 5.8: Emission map of molecular cloud W3 (OH) with superimposed port positions.
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Figure 5.8 shows W3 (OH), another major star-forming cloud in the W 3 complex of Perseus

[56], characterized by an OH maser, where the positioning of port 2 is largely free to be

set. Meanwhile, Figures 5.9 and 5.10 are both sites of star formation in Sagittarius. M17

Figure 5.9: Emission map of nebulous region M17 with superimposed port positions.

(NGC 6618) (Figure 5.9), the Swan or Horseshoe nebula, is a star-forming emission region

nebula, while Sgr B2(M) (Figure 5.10) is the middle region of a dense molecular cloud near

the centre of the Milky Way. In each of these two regions, it is crucial to correctly register

the port 1 centres so as to capture the brightest parts of the source, while the second port is

again, mostly unconstrained. In the case of Sgr B2 however, one would be careful to avoid
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Figure 5.10: Emission map of molecular cloud Sgr B2 with superimposed port positions.

the darker spots in the lower left of the Figure. In each plot, the color scales are in units of

Jy beam−1.

5.4 Conclusions

Fourier transform spectrometers have become the spectrometers of choice for both

space-based and ground-based telescopes. Their broad spectral coverage, variable resolution

and high throughput are well-matched to the demands of submillimetre astronomy. The

Mach-Zehnder design of FTS-2 has been presented, whose advantages include access to all

83



5.4. CONCLUSIONS

four ports: two input and two output. The new species of detectors to be used at these

outputs are the Transition Edge Sensors, that if biased accurately at the midpoint of the

superconducting transition, provide sensitivities at least two order of magnitude greater

than achievable with SCUBA.

FTS-2 was shipped early in July 2010, to be commissioned later this year. As

such, it will become ever more instructive to look back at the methods used in the analysis

of SCUBA data. The techniques of atmospheric cancellation will be just as relevant as

FTS-2 sets out to reproduce the entire SCUBA Legacy Catalogue. The tools presented in

this Chapter will be key to planning observations with FTS-2 during the commissioning

and performance verification stages.
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Chapter 6

SPIRE Data Analysis

The goal of this chapter is to discuss Fourier transform spectroscopy from the

SPIRE instrument, on-board the Herschel Space Observatory (Herschel), which faces its

own unique challenges quite distinct from those encountered by ground-based instruments

such as SCUBA-2/FTS-2 (see Chapter 5). As Herschel/SPIRE has recently entered the

routine science operations phase of its lifetime, SPIRE has already produced pre-flight

and performance verification (PV) data which will be reviewed in the context of concepts

already introduced. These include an application of a comprehensive line-fitting program to

measured spectra. This will be followed by analysis of resulting rotation diagrams [57] [58],

highly useful tools toward the physical understanding of molecular clouds and other such

sources. Finally, the FTS line shape will be briefly revisited in order to validate the line-

fitting methods.
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6.1 Herschel Space Observatory

The Herschel space observatory is a flagship mission of the European Space Agency

(ESA) [59]. The 3.5 metre diameter mirror is the largest such space-borne telescope to

date and indeed the largest monolithic instrument capable of surviving launch conditions

[59]. Herschel is shown during its final ground-based testing phases in Figure 6.1. The

payload comprises three instruments: SPIRE [60], which will be the focus of this chapter,

the Photoconductor Array Camera and Spectrometer (PACS) [61], and the Heterodyne

Instrument for the Far-Infrared (HIFI) [62]. While each has its own unique objectives,

Herschel works best as a collective space facility devoted to the study of far infrared and

submillimetre astronomy, a window which can only be accessed from space or high-altitude

aircraft and balloons.

The science data produced by Herschel will complement that of other observato-

ries, such as IRAS [2], ISO [4], Spitzer [63] and AKARI [64]. However, the wavelength

spectral range, 55 - 672 µm (14.8 - 182 cm−1), is much wider than any of these and there-

fore enables an assortment of aims [59]. Among them, Herschel will be ideally positioned

to perform photometric and spectroscopic surveys of star-forming regions and stellar envi-

ronments. On a more distant scale, the evolution of entire galaxies will be probed, as will

the space between galaxies and stars, the interstellar medium, whose dust emission peaks

at wavelengths accessible to Herschel.

Herschel was launched on May 14, 2009, and reached its operational orbit at the

second Lagrangian point [65] (L2) of the Sun-Earth system approximately three months

later. Here, at a distance of about 1.5 million km from Earth, Herschel is always stationed
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Figure 6.1: ESA photo of the Herschel space observatory

on a line with the Earth and the Sun, allowing unfettered access to the entire FIR/submm

spectrum. Additionally, this orbit is known for thermal stability at low temperatures, which,

combined with the low emissivity of the telescope, provide the background necessary for

photometry and spectroscopy. Present and future missions are making use of L2 for these

reasons, including Planck, and the yet to be launched James Webb Space Telescope [66].

6.1.1 Spectral and Photometric Imaging Receiver

SPIRE is composed of a three-band camera centred at 250, 350 and 500 µm, and

an imaging Mach-Zehnder Fourier transform spectrometer spanning 194-672 µm [67]. The

field-of-view of the spectometer is circular, 2.6 arcmin across, whilst the spectral resolution
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Figure 6.2: The SPIRE instrument. Photo: SPIRE Consortium, RAL

is tunable to three spectral resolutions between 0.04 and 0.83 cm−1 [60]. Among its scientific

goals, SPIRE seeks to explain the statistics and physics of galactic formation and analyze

the early epochs of star formation. Similar to FTS-2, SPIRE uses two bolometer arrays,

one covering 194-313 µm (31.9-51.5 cm−1) (spectrometer short wavelength (SSW)) and the

other 303-671 µm (14.9-33.0 cm−1) (spectrometer long wavelength (SLW)). The SPIRE

instrument is shown in Figure 6.2, before integration with the rest of the Herschel payload.

Part of the requisite verification and calibration of the SPIRE instrument prior to launch

included pre-vibration and post-vibration tests. Together, these were termed the cryogenic

qualification model (CQM) and proto-flight model (PFM) test campaigns. The vibration
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testing was meant to simulate launch conditions; pre- and post-vibration tests were geared

towards ensuring all components would survive launch. Finally, the performance verification

(PV) phase allowed the Herschel team to test all systems in flight. Data in this chapter will

largely come from the PV phase.

6.2 SPIRE Line Shape

In Chapter 2, the instrumental line shape of a FTS was discussed in terms of the

cardinal sine, or sinc function. As part of the performance verification phase of Herschel,

studies were undertaken to assess the validity of this assumption in flight data. The nature

of this is critical to the spectral line-fitting algorithm, as already observed in Chapter 4.

To this end, all 12CO lines from the centre detectors for three observations of NGC

7027 and two of AFGL 2688 were collected. Having first removed the baseline from the

entire scan using a second order polynomial, a one wavenumber segment centred on each line

was then isolated and interpolated onto a common grid. All lines were normalized by their

respective maxima and then averaged with a weighting determined by their amplitudes.

The results are shown in Figure 6.3, where forward and reverse SPIRE spectrometer scans

have been processed independently.

Immediately obvious are small deviations to the first negative high frequency lobe.

Future renditions of the line fitting code will need to account for this discrepancy when

performing fits. This analysis shows that the SPIRE line shape is not a classical sinc

function as defined analytically but in fact some variation that will need to be studied

further. Forward and reverse scans continue to be analysed independently, with modest
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Figure 6.3: Normalized ILS from over 1000 individual 12CO lines. The lower trace shows
the difference of the forward and reverse averages, to the same scale, but shifted for clarity.
In black, a classical sinc function has been fitted to the average of the green and blue.

variations observed with frequency, especially for lines of greater signal-to-noise.

6.3 Line Fitting

In chapter 4, a program was developed to perform spectral line fits on a simulated

FTS-2 spectrum, derived from initial HARP data, as a means of retrieving the spectral

line parameters, both before and after the addition of noise. This program was modified

to ingest SPIRE flight data. The code was created with the intent that either spectral

*.fits files as provided by the Herschel Interactive Processing Environment (HIPE) for the

specialist astronomy group (SAG) teams, or IDLr save files could be accepted as input
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data formats. From this point, the program then proceeds in one of two ways: automatic

detection of a set of spectral lines based on their relative amplitudes or ingestion of a user-

defined line list. Both methods then deliver their initial line centre guesses to the iterative

fitting routine.

6.3.1 Threshold Detection

The first step in any line fitting algorithm is the subtraction of the baseline, which

may be approximated in a number of ways. The underlying continuum represents emission

from interstellar dust located in the spiral arms of galaxies (see Chapter 4). As a result, the

fitting function chosen often constrains the fit so as to deduce physical information about

the dust grains, such as temperature and emissivity. Examples of fitting functions were

detailed in Chapter 4 and include the Planck blackbody function, and the Priddey [32] and

Colbert [33] functions. If one is interested solely in information derived from the spectral

lines, a second- or higher-order polynomial can also serve as an adequate baseline. Such a

fit is illustrated in Figure 6.4 to spectral data from the central SLW pixel from scans of the

Orion Bar [68].

Once the continuum has been removed, all the remaining information to be gleaned

from the spectrum comes from the individual lines. The user is asked to specify a threshold,

or number of standard deviations, above which all data points are flagged in the case of

emission lines. Should fitting also be required for absorption lines, then all points below the

negative of the threshold are also noted. Using the same data as in Figure 6.4, each of the

detected lines are shown in Figure 6.5. In the figure, the chosen threshold was three standard

deviations for both absorption and emission lines (red horizontal lines). Upon inspection,
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Figure 6.4: Polynomial fit (top) to Orion Bar spectrum. In the lower plot the fit has been
subtracted in order to isolate the spectral lines

seven lines were found outside these limits and are marked in red. Subsequently, all of the

“red” lines were fitted with sinc functions of fixed width (as dictated by the resolution of

the SPIRE instrument),

1.207

2L
= 0.0481 [cm−1] (6.1)

a residual calculated, and a new standard deviation determined (blue horizontal lines). On

the second check of the threshold against this residual, five additional lines were found,

shown in blue. This repeats until there are no longer any data points above the threshold

in the residual or until the user-specified maximum number of passes has been reached. The

final pass was adjudicating the lines against the threshold shown in orange, however all new
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Figure 6.5: Orion baseline-subtracted SLW spectrum, with each of the lines that have been
selected for fitting. The orange lines indicate the threshold above or below which lines are
deemed legitimate in the final pass through line identification.

lines detected here were too close to previously identified features.

While line identification in this manner is automated and largely user-independent,

occasionally non-physical lines may be identified. For example, most of the features selected

in Figure 6.5 are legitimate, as shown in Figure 6.6, with the exception of the two large

sidelobes either side of the line at 30.74 cm−1. In this case, the strength of the emission line

leads to relatively high amplitude ringing surrounding the line, resulting in false positive

identifications. The same check that prevented any lines from entering the fitting stage

in the third iteration (those beyond the orange lines in Figure 6.5) did not catch these

particular outliers as they were found in the first pass and thus accepted by the program
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Figure 6.6: Fit of each of the selected lines to the entire SLW spectrum. Underneath, in
blue, is the residual difference between raw spectral data and fitted spectral data

by default. In a similar fashion some real lines may be neglected, if they fall below the

threshold. This happens in the case of the neutral carbon emission line at 26.99 cm−1, due

to its proximity to the neighbouring CO J=7-6 emission line.

Figure 6.6 shows the cumulative fit to the long wavelength (SLW) part of the

spectrum, with each of the identified lines indicated. The fitting is done by a nonlinear

least-squares iterative IDLr algorithm called mpfitfun that proceeds until the reduced chi-

squared value is less than 1 × 10−10 over successive iterations, or until 200 iterations have

been performed. The residual, shown in blue underneath, speaks to the quality of the fit.

The line centre, line amplitude and ILS FWHM are returned to the user in a set of
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Figure 6.7: Text file output from the final stage of the line fitting routine in which the line
width was held fixed.

two text files. The first is populated by the fitting parameters as determined during the line

identification stage of the fitting process, along with the pass number each line was found

in. The second text file contains, for each of the lines listed in the first file, parameters

deduced from the final fit of all lines to the whole data set (Figure 6.6). Associated errors

are included for the line centres, amplitudes and widths (provided they are allowed to vary),

alongside an integrated area (see Figure 6.7).

6.3.2 User-Supplied Line List

In section 6.3.1, inconsistencies were encountered in the line detection method,

resulting in two adverse scenarios: lines being flagged that are not physical, and lines

being omitted that are physical. Both situations may be avoided by side-stepping the

entire line identification procedure and simply inputting starting guesses for each line of

concern. In this way, if it is suspected that a particular molecular species will be seen in
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Figure 6.8: Final fit to all known physical lines in the Orion KL spectrum

a given spectrum, then all rotational emission lines in the SPIRE wavelength range can be

included.

The input line list must retain a form very similar to that shown in Figure 6.7.

Thereafter, the remainder of the fitting procedure occurs as before. The same Orion spec-

trum was fitted with a pre-selected list of lines, the results of which are shown in Figure

6.8. Again, all known lines have been labeled, with the exception of the boxed area, which

is magnified in Figure 6.9. To be noted is the improvement in the residual difference, of

significantly lower magnitude. Fitting of these extra features constrains the residual, as

more of the spectrum surrounding lines is fitted.

Figure 6.9 plots separate fits for three different carbon-containing species; the
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Figure 6.9: Zoomed-in subplot of a segment of the Herschel/SPIRE Orion SLW spectrum,
illustrating emission lines from three different carbon-bearing species. The blue line, offset
for clarity, is the residual difference between the data and the sum of the three fits, each
also offset for clarity.

molecular rotation transition CO 7-6, the neutral carbon emission line ([CI]), and an ionic

emission signature from CH+ [68]. Vertical lines give the known positions of each of the

lines, which align well with both the data and the fits, after correction for obliquity effects.

The slight shifts observed in the sinc fits for each of the [CI] and CH+ lines are explained

by interference from neighbouring side-lobes, as the best fit to the entire region is sought.

The resulting text output file lists all lines that were fitted, and is given in Figure 6.10.
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Figure 6.10: Text file output from the final stage of the line fitting routine, given an initial,
user-supplied line list.

6.3.3 Detection of the Methylidyne cation

One of the exciting first detections of the FTS was the measurement of the methyli-

dyne cation, observable in Figure 6.9, at ∼ 27.85 ± 2.92 × 10−3 cm−1, represents the first

detection of the fundamental rotational transition of CH+ [68]. The simultaneous detection

of the CH doublet transition, as shown in Figure 6.11, solidifies this claim. One of the

proposed routes to CH+ formation occurs with added energy liberated from the ISM via

the endothermic reaction

C+ +H2 → CH+ +H (6.2)

Possible energy sources supplying the ∼0.4 eV needed to activate this reaction include

interstellar molecular shocks [69]. However, both CH+ and CH (Figure 6.11) are found
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at the same velocities, which argues against the production of the methylidynium ion

through shock chemistry. Additionally, the strong UV fields within photo-dissociation

regions (PDRs) may satisfy the energy requirements, especially if H2 is already in a vi-

brationally excited state

C+ +H2(v = 1) → CH+ +H (6.3)

a reaction studied by Agundez et al. [70].

While the above routes to formation assume that H2 is a necessary reactant, H2

can also destroy the cation in collisions [71]. Indeed, Black et al. [72] concluded that the

destruction rate exceeds the probability of formation, making the possibility of detection

even more exciting.

Provided a source is optically thin,

∫
Iν dν =

NfAhν

4π
[W m−2], (6.4)

where
∫
Iν dν is the integrated line intensity, N is the total number of molecules along a

line of sight of cross-sectional unit area, f is the fraction of molecules in the upper state of

their rotational transition, A is an Einstein-A coefficient, h is Planck’s constant, and ν is

the frequency of the transition. Using the results from Naylor et al. [68], where

A = 5.96× 10−3 s−1

ν = 835.079043 GHz∫
Iν dν = 2.5× 10−16 W m−2
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Figure 6.11: CH doublet as seen in the spectra for each of three SPIRE detectors along the
Orion Bar, offset for clarity. In each, the continuum fit has been subtracted.

and the wavelength-dependent solid angle of the beam:

beam =
π

4

(
36′′

60′′ · 60′′
· π

180

)2

[str] (6.5)

the CH+ column abundance is found to be ∼ 3.982×1012 cm−2. The above analysis required

knowledge of the temperature of the source, assumed to be 85 K. However, if one is able to

measure a series of rotational transitions of the same species, rotation diagrams can yield

both a temperature and column abundance of the emitting region together.
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Figure 6.12: Model of a two level atom, with absorption and emission between energy states
l and u, lower and upper, respectively. El and Eu are the energies of the levels, while gl
and gu are the degeneracies.

6.4 Rotation Diagrams

Rotation diagrams, or Boltzmann diagrams, [57] [58] are a powerful tool for de-

termining two significant properties of a molecular cloud: the rotation temperature and

the line-of-sight-column abundance. The next section outlines the theory behind rotational

diagrams.

6.4.1 Emission Lines

Consider an optically thin molecular cloud (i.e. all radiation escapes local absorp-

tion), defined by a single excitation temperature, where the rotation temperature exceeds

that of the background and all transitions are within the Rayleigh-Jeans limit [58]. For a

two-level atom as in Figure 6.12, with upper energy state, u, and lower state, l, absorp-

tion and emission of radiation can occur by three different processes: induced absorption,

spontaneous emission and induced, or stimulated emission. Each of these are represented in

Figure 6.12 with their associated transition rate equations, or Einstein coefficients: Blu, Aul

and Bul, respectively. Rotational transitions occur due to changes in the angular momenta,
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quantum number J , such that a transition from Ju to Jl gives lines of amplitude

Iul = NuAul
hcσul
4π

, [W cm−2str−1] (6.6)

where Aul is the Einstein A coefficient (s−1), Nu the upper energy state density (cm−2),

σul the emitted photon’s wavenumber (cm−1), and h and c are Planck’s constant and the

speed of light, respectively.

In local thermodynamic equilibrium (LTE) the upper state population is given by

the Maxwell-Boltzmann distribution as

Nu =
Ngu
Qrot

e−Eu/kTrot , [cm−2] (6.7)

where gu is the upper state degeneracy, Qrot is the rotational partition function, Trot is the

excitation temperature (K), N is the total column density (cm−2) and k is the Boltzmann

constant. In the case of a linear molecule rotating, the upper state energy is determined

from

Eu = Ju(Ju + 1)Bhc, [J] (6.8)

where B is a rotational constant for the molecule. With this definition, the transitions are

found at frequencies given by

σul =
Eu − El

hc
= 2BJu [cm−1]. (6.9)
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In the case of a linear molecule the rotational partition function can be expressed as [57]

Qrot(T ) =
kTrot

hcB
. (6.10)

In the following section this theory will be applied to a SPIRE spectrum of DR21. With

the line fitting tools developed to this point, it is possible to use the rotation diagram to

determine or place constraints on physical conditions within the emitting region.

6.4.2 Rotation Diagram Method

The rotation diagram method requires three initial conditions: that the molecular

transitions are optically thin, that they are all defined by a single rotation temperature, and

that this temperature is significantly greater than the temperature of the background [57].

From Equation 6.7,

Nu

gu
=

N

Qrot
e−Eu/kTrot , [molecules cm−2] (6.11)

which, taking the logarithm of both sides of Equation 6.11, leads to

lnL = ln

(
N

Qrot

)
−

(
ln e

Trot

Eu

k

)
[cm−2] (6.12)

where L = Nu/gu, and all other quantities are defined as before. Equivalently, from Equa-

tion 6.6, L can also be defined as

L =
4π

hcσAulgu

∫
Iu dσ [ cm−2] (6.13)
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The linear relationship in Equation 6.12 has a slope, m, and intercept, b, which give a

temperature of

Trot =
ln e

m
[K] (6.14)

and a column abundance of

N = Qrote
b [cm−2]. (6.15)

The following section uses SPIRE data of DR21 as an application of rotation diagram

concepts.

6.4.3 DR21

Molecular cloud DR21 is an HII region within the Cygnus X complex of molecular

clouds, located 1.7 kpc distant [73]. The DR21 complex itself is comprised of a molecular

ridge with a number of separate CO clouds [74]. Altogether, the entire complex stretches

over ∼ 5 pc, and contains one of the most massive and most powerful molecular outflows

in the galaxy [75]. Due to strong emission in the submillimetre, DR21 was chosen as one of

the first observing targets for SPIRE.

SPIRE has provided uninterrupted broadband spectral coverage in the submillime-

tre, allowing the distinction between dust continuum and line emission. The high resolution

mode of 0.04 cm−1 will allow SPIRE to probe the physical characteristics of DR21. The po-

sitions of the ten CO lines present in the SPIRE band are marked in the SPIRE spectrum in

Figure 6.13. Each of the ten lines with centers σ1−10, and integrated line areas
∫
Iu dσ1−10

were input to the line intensity ratio from Equation 6.13. The Einstein A coefficient Aul
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Figure 6.13: SPIRE spectrum of molecular cloud DR21, with the two wavelength bands
superposed. The long wavelength band (SLW) extends from 14.9 − 33 cm−1, while the
short wavelength band covers 32− 51.5 cm−1.

can be expressed as

Aul =

(
64π4σ3

ul

3h

)
Sµ2

ul

gu
[ s−1] (6.16)

where S is the line strength and µul is the dipole moment. The product Sµ2
ul can be derived

from a JPL document [76],

Iul(T0) =

(
8π3

3h

)
σul

Sµ2
ul

Qrot

[
e−El/kTrot − e−Eu/kTrot

]
[ nm2MHz] (6.17)

where all quantities have been previously defined. Finally, one can obtain a linear rela-

tionship as depicted in Figure 6.14, where the two wavelength arrays have been treated
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Figure 6.14: Rotation diagram for molecular cloud DR21, as calculated from five CO lines
from each of the SLW and SSW arrays.

independently due to their different beam sizes. The black lines show the linear fit achieved

by minimizing the chi-squared error. The resulting temperature and column abundance are

180.2± 3.60 K and 1.63× 1017 ± 9.01× 1015 molecules cm−2 respectively.

6.5 Conclusions

This chapter revisited some of the earlier topics in the thesis in the context of

recently released Herschel/SPIRE data. High-resolution spectral data provided by SPIRE

will make use of the line fitting tools that have been developed towards deriving physical

information from both the underlying continuum and the lines themselves. Methods towards
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this goal have been reviewed, including two parallel means which depend on the amount of

information the user has about a spectrum pre-fit. Results from this process are essential

to creating rotation diagrams: a key technique when interested in the rotation temperature

and column abundance of a given source. Finally, all of the above is rigidly influenced by

proper characterization of the instrumental line shape of the SPIRE FTS, work that was

only introduced in the chapter.
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Chapter 7

Conclusion

Two recent, ground-breaking observational projects are poised to provide astronomers

with a new view of the submillimetre universe. The Herschel Space Observatory, currently

in synchronous orbit with the Earth at the second Lagrangian point, is probing the sub-

millimetre universe with three instruments, allowing unfettered access to this portion of

the electromagnetic spectrum. Meanwhile, SCUBA-2, and its auxiliary instrumentation

POL-2 and FTS-2, are awaiting arrival of its science-grade detector arrays with full com-

missioning expected toward the end of 2010. This thesis has addressed aspects both unique

and common to each of Herschel and SCUBA-2, as they pertain to imaging spectroscopic

observations of the submillimetre universe.

As with any large, internationally distributed high-tech collaboration, delays were

to be expected. When I first began my Masters program, it was my intention to work exclu-

sively on the spectrometer under development on SCUBA-2. However, the unanticipated

delays in the delivery of the SCUBA-2 camera, which is still to receive its science-grade
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arrays, meant that halfway through my program it was realized that I would no longer be

able to get data from FTS-2. As a result, my thesis has evolved into a survey of Fourier

transform spectrometers on both Herschel and the JCMT.

Chapter 2 introduced topics relevant to Fourier transform spectroscopy in general,

from measurement of a raw voltage signal to the calculation of a spectrum, along with many

of the intervening advantages and disadvantages. Focus was limited to those aspects of the

discipline that were to be addressed in later chapters. Chapter 3 examined the important

aspects of detector nonlinearity, an issue that is important for both the SPIRE composite

bolometer detectors and the ultra-sensitive FTS-2 TES detector technology. In particular,

SPIRE has already devoted a large amount of effort to the correction of nonlinearity in

both pre-flight and early flight data. Chapter 4 began the discussion of spectral line fitting,

in the context of simulated FTS-2 data derived from the HARP heterodyne receiver. Here

the importance of the instrumental line shape of a spectrometer, was introduced for the

first time. Chapter 5 furthered the ideas of FTS-2 observation planning via the concepts of

atmospheric/port cancellation and presented the assumed pixel positions on the sky for a

group of well-studied sources. Finally, Chapter 6 showed some early SPIRE flight spectra

towards the understanding of a number of topics previously developed. The line fitting

algorithm was adapted and applied to SPIRE data.

The work that I have devoted to the topics in this thesis has resulted in authorship

on a number of papers, owing partly to the privileged position of the AIG within these two

world-class projects. Nevertheless, the impact of this effort cannot be understated. My time

spent studying the phenomenon of nonlinearity has greatly increased its profile within the
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SPIRE working groups. Development is underway on a new temperature-based approach

to correction that combines nonlinear correction with bath temperature drift correction.

The two steps have been deemed inseparable, owing to the necessity of a proper T0 value

in many of the formulae of the bolometer model discussed in Chapter 3.

The line fitting program that I have helped to develop for SPIRE has already

been partially distributed to the SPIRE working groups, with a full distribution in the

near future. Much of the analysis towards recent SPIRE publications has utilized this tool.

Results derived from the routine have been vetted against independent line fitting measures,

such as those found in White et al. [73].

Additionally, with FTS-2 currently in boxes en route to Hawaii, my work modeling

the spectra to be observed by FTS-2 is about to be put to the test. The work done in Chapter

4 represents the most realistic simulation of anticipated FTS-2 data currently available.

Combined with my port rotation simulations, I have made a significant contribution to

the transition of FTS-2 to an observatory-class instrument. In a similar fashion, I have

made a significant contribution to the data analysis for SPIRE. I feel privileged to have

been involved in both projects and now look forward to the discoveries that each will make,

perhaps some of which will be as revolutionary as those by William Herschel over two

centuries ago.

110



Bibliography

[1] W. Herschel. Experiments on the refrangibility of the invisible rays of the sun. Philo-

sophical Transactions of the Royal Society of London, 90:284–292, 1800.

[2] G. Neugebauer et al. The Infrared Astronomical Satellite (IRAS) mission. The Astro-

physical Journal, 278:L1–L6, 1984.

[3] N.W. Boggess et al. The COBE Mission: Its Design and Performance Two Years After

Launch. The Astrophysical Journal, 397:420–429, 1992.

[4] M.F. Kessler, J.A. Steinz, M.E. Anderegg, J. Clavel, G. Drechsel, P. Estaria, J. Faelker,

J.R. Riedinger, A. Robson, B.G. Taylor, and S. Ximénez de Ferrán. The Infrared Space
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