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ABSTRACT 

Trichothecenes comprise a large family of sesquiterpenoidal mycotoxins that largely effect 

the production of cereal crops. Recent advances in structural determination through solution- and 

solid-state NMR provide new avenues to the understanding of the structural dynamics of these 

toxins. 

Refinement of the proton and carbon assignments in deuterated chloroform (CDCl3) are 

presented for the type A trichothecene T-2 toxin, and the type B trichothecenes deoxynivalenol 

(DON), nivalenol (NIV), 3-O-acetyldeoxynivalenol (3-ADON), and 15-O-acetyldeoxynivalenol (15-

ADON). The effect of different solvent systems on the type B trichothecenes is investigated, and 

evidence for structural isomerism of the trichothecenes is presented. The mechanism for the 

rearrangement between the two isomers is presented. 

Solid-state NMR investigations demonstrate multiple configurations for T-2 toxin, and 

structural isomerism is shown to exist in the sold-state for DON.  

Solution- and solid-state NMR data was used to determine the interaction of water with 

selected trichothecenes, and the water-binding interactions are described. 
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extremity 
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1. INTRODUCTION 

1 Reproduced in part from the manuscript: Shank, R. A., Foroud, N. A., Hazendonk, P., Eudes, F., 
Blackwell, B.A. (2011) Current and Future Experimental Strategies for Structural Analysis of 
Trichothecene Mycotoxins – A Prospectus. Toxins. 3(10), 1518-1553. 
 

1.1.  Overview 

Trichothecene mycotoxins are biologically active, naturally occurring compounds that have 

detrimental effects on cereal crops throughout the world. On the other hand, these compounds may 

also serve as powerful antileukemics in the battle against cancer. Without sufficient understanding in 

regards to the mechanism of action of these compounds, prevention of  the infection of crops, or 

development of cancer treatments, is quite simply a process of trial and error. The rapid evolution of 

the fungi which produce these toxins has proven to be a stalling point in regards to the prevention of 

crop loss. Here it is proposed that a careful examination of the structure and dynamics of these 

compounds may provide some insight into their mechanism of action. 

Many different techniques are available to study the structure of various compounds. 

Nuclear Magnetic Resonance (NMR) is particularly well suited to the structural study of compounds, 

such as the trichothecenes, which are not suitable for study by single crystal x-ray diffraction 

(SCXRD). The theory behind the NMR experiment, its instrumentation, and specific pulse sequences 

are described in detail in section 1.3. 

1.2.  Trichothecenes1 

The search for biologically active natural products in bacteria, fungi, and higher plants has 

been a source of major breakthroughs, particularly in medicine. Many small molecules found in 

nature have provided inspiration to the pharmaceutical industry for the development of new and 

more effective drugs based on their structures, while others have led to the discovery of toxic 

compounds that may contribute to life-threatening diseases. The discovery of such toxic molecules 

becomes important when considering disease prevention.  Among the compounds that have been 

isolated in the past thirty years are a group of fungal toxins (mycotoxins) known as trichothecenes. 

Trichothecenes are produced by a range of fungi from the order Hypocreales, including those of the 
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genera Fusarium, Myrothecium, Verticimonosporium, Stachybotrys, Trichoderma, Trichothecium, 

Cephalosporium, and Cylindrocarpon [29,65,73,141]. Although the majority of trichothecenes 

contribute to crop disease and mycotoxicoses, they have also been considered as important for use as 

antibiotics and antileukemics [53,73,75,76]. Therefore, in order to better understand their function, 

prevent trichothecene-related diseases, or alternatively explore the roles they may play as powerful 

pharmaceutical agents, it is important to gain insight into the biochemical processes and structure of 

this important class of compounds. 

Trichothecene-producing fungi were originally discovered as contributors to mold in grain 

products as early as the 1930s and 40s [106]. The Fusarium and Stachybotrys genera are frequently 

associated with the infection of crops in temperate climates, such as Europe, Asia and the Americas. 

Stachybotrys is a saprophytic fungus, which is commonly found to infect high-cellulosic crops such as 

straw and hay, and is the leading cause of stachybotryotoxicosis in livestock [71]. Furthermore, 

Stachybotrys is a toxic black mold commonly found in association with sick building syndrome (SBS), 

a multitude of illnesses associated with poor air quality in office buildings [9]. The Fusarium species 

are responsible for a wide variety of plant diseases, including Fusarium head blight (FHB), crown rot, 

red mold and root rot in cereal crops (i.e. barley, wheat, rye, corn, rice, etc.) [44]. These diseases can 

result in severe yield loss in susceptible crops. In the case of FHB, trichothecenes accumulate in the 

developing grain of cereal crops. Ingestion of trichothecene-contaminated grain has been linked to 

emesis, hemorrhaging, abortion and death in animals [121]. In humans, ingestion of trichothecenes is 

the leading cause of alimentary toxic aleukia (ATA), a condition characterized by vomiting, diarrhea, 

anemia, dermatitis, gastrointestinal necrosis, which can be lethal, particularly in immuno-suppressed 

persons [33]. 

The first trichothecene to be isolated was trichothecin from Trichotheceum roseum, in 1948 

by Freeman and Morrison [48]. Diacetoxyscirpenol (DAS) from Fusarium equiseti was preliminarily 

characterized in 1961 by Brian et al.[18], and was later followed by T-2 toxin and nivalenol from 

Fusarium sporotrichiodes [106,150]. While these early toxins are acutely toxic, they are not produced 

in any meaningful concentrations under standard environmental conditions in cereal crops [138]. It 
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was the discovery of deoxynivalenol (DON) infected wheat in Eastern North America in 1980 

[152,160], that truly sparked the research into the Fusarium species and led to the discovery of 

trichothecenes from other genera. 

Trichothecenes are a large group of sesquiterpenoid fungal metabolites, that share a 

common core comprised of a rigid tetracyclic ring system (figure 1.1), and key substitution sites, 

denoted R1 through R5. The A-ring is typically a cyclohexene with a double bond occurring between 

C-9 and C-10; the B-ring is tetrahydropyranyl; a cyclopentyl group makes up the C-ring, and an 

epoxide is also present from C-12/13. The rigidity of this system results in a distinct stereochemistry 

for the A- and B-rings. The A-ring adopts a half-chair conformation, and the B-ring is most often 

found in the chair conformation (figure 1.2a) [134,135], although there have been a few odd cases 

where the B-ring has been shown to adopt a boat conformation (figure 1.2b) [72]. 

11

6

10

7

9

8

2

12

O
1

5

3

4

13 O
CH3
16

15R5

R1

R2

R3

R4 CH3
14

A B C

 

 

Figure 1. 1: The chemical structure of the trichothecene core depicting the connectivities of the A, B, C 
and epoxide rings. The substituent groups, listed R1 through R5 are depicted in their stereochemical 
configuration off the core. 
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Figure 1. 2: Three-dimensional stereochemistry of the trichothecene core when (A) the A-ring is in a 
half-chair, and the B-ring in a chair conformation; and (B) the A-ring is a half-chair, and the B-ring in 
a boat conformation 

 

At present, over 200 trichothecene compounds have been isolated, and they fall into two 

main classes, simple and macrocyclic. The simple trichothecenes are further divided into three types, 

A, B and C. Type A trichothecenes are the simplest group, being largely non-substituted, hydroxylated 

or esterified (figure 1.3a) [44,56,137]. Type B trichothecenes are characterized by a ketone present 

at R5 (figure 1.3b) [44,56]. Type A and B trichothecenes, such as T-2 toxin and DON, respectively, are 

often associated with Fusarium-infected grain. Type C trichothecenes are less common than the 

others, and are distinguished by the presence of a second epoxide ring at C-7/8 (figure 1.3c) [149]. A 

fourth class (Type D), are typically observed to be non-substituted at positions R1, R4 and R5, and 

are characterized by the presence of a cyclic diester or triester linkage running from C-4 to C-15 (or 

R2 to R3), comprising a larger macrocycle (figure 1.3d) [68]. It is for this reason that this group is 

referred to as the macrocyclic trichothecenes. Members of this type include the satratoxins, 

verrucarins and roridins, such as those produced by the Stachybotrys species. It is important to note 

here that there are many other secondary metabolites produced by the fungus which are commonly 

found in conjunction with trichothecene toxins. These trichodienoid compounds, including 

apotrichothecenes, sambucinol and sambucoin derivatives [4,57,172], share the same precursor 

compound, trichodiene, as the trichothecenes. However, they are composed of different cyclization 

patterns than those observed for their toxic counterparts. The trichodienoids are believed to 
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contribute to the toxicity of the trichothecenes through some synergistic mechanism [37,58,96]; 

however, since they do not possess the C-13 epoxide ring system they will not be covered in detail. 

 

Figure 1. 3: The general core structures for type A, B, C, and D Trichothecenes. The core carbons are numbered 
for the type A trichothecene structure, as well as the substituent carbons for the macrocyclic type D 
trichothecene structure. 

 

Trichothecenes have widespread toxicological effects throughout the cell, and have been 

implicated in membrane destabilization, cytoskeletal collapse, inhibition of ribonucleic acid (RNA) 

and deoxyribonucleic acid (DNA) synthesis, inhibition of mitochondrial function, and induction of 

apoptosis [71,127]. However, the most studied effect of the trichothecene toxins has been their 

involvement in the inhibition of protein synthesis through an interaction with the eukaryotic 

ribosome. This targeting of the ribosome is similar to the interaction of mainstream antibiotics with 

prokaryotic ribosomes, and it is for this reason that members of this class of toxins are often referred 

to as eukaryote specific antibiotics [53,99]. The disruption of eukaryotic ribosomal activity is 

believed to occur through a binding event of the trichothecene within the peptidyl transferase center 
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(PTC) of the ribosome [24,30,100,136,142]. Since the epoxide ring is necessary for the disruption of 

protein synthesis, it is logical to assume that the epoxide ring plays a significant role in the inhibitory 

mechanism. Typically, epoxide rings are not very stable; thus, the stability of the epoxide ring in the 

trichothecene structure is rather astounding considering the substantial amount of ring strain 

imposed on the three-membered cycle [6,38,118]. 

There has been much interest in the phytotoxic and cytotoxic differences observed among 

this class of compounds, and particularly the differences observed not only between plants and 

animals, but also among different species, such as corn and rice [101], or alternatively monkeys and 

mice [167]. A better understanding of the structural differences leading to the variable toxicity 

observed among various species could help scientists to develop antifungal and anti-parasitic 

compounds with little to no toxic effects on the host organism. At this stage, it is important to 

mention that very few bacterial systems appear to be affected by trichothecene infection; moreover, 

the few systems that do exhibit trichothecene susceptibility appear to be unrelated. Furthermore, 

some probiotic strains of Bacillus and Lactobacillus have been studied for their detoxification 

potential towards DON [28], a particularly prevalent phytotoxin. These Bacillus species have shown 

enzymatic activity towards the trichothecenes through theopening of the epoxide ring, which results 

in the detoxification of DON [28]. Regardless, relatively few toxicological effects have been observed 

for trichothecenes when tested on bacterial systems in comparison to eukaryotic systems, suggesting 

a certain degree of specificity for eukaryotes. Investigations regarding the cause of this 

discrimination between prokaryotic and eukaryotic systems are sparse, and it remains to be seen 

whether the toxicological resistance observed for prokaryotic systems is due to differences in cellular 

machinery, rapid metabolism, or inefficient membrane translocation.  

Investigations focused on the macrocylic trichothecenes suggest a potential for the targeting 

of cancer cells, and interest in the use of Type D trichothecenes as antileukemics exists [73,75,76,84]. 

However, the mechanism of action of the trichothecene compounds, with regard to their toxicological 

effects, is not well understoodThe absolute stereochemistry and structural configuration of these 

compounds must be analyzed in order to understand the possible interactions.  Structural studies 
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may also help to elucidate the underlying mechanisms for differences in toxicity among these 

compounds, as well as the determination of the biosynthetic pathway for trichothecene production 

[36,41,50,51,78,162,165,169]. 

This work provides information regarding  the structure and dynamic nature of these select 

trichothecenes in order to gain a better understanding of their mechanisms of toxicity for this family 

of mycotoxins. This chapter will concentrate on a few key papers focused on the structural 

determination of trichothecenes from the 1980s and early 1990s, as well as the recent resurgence of 

interest in trichothecenes and the direction in which the new generation of trichothecene research is 

heading.  Furthermore, the methods for determining trichothecene structure and an analysis of how 

trichothecene structure is related to function and activity will be discussed. 

1.2.1. Structure-Function Relationship1 

I. Trichothecene Toxicity1 

The toxicological effects of trichothecenes are still a matter of much interest to researchers 

in the fields of plant biotechnology, cell biology, food chemistry and biochemistry [44]. The 

widespread effects of trichothecenes on eukaryotic cells are a somewhat perplexing matter. It is 

widely accepted that the major mode of action of trichothecene toxicity is the inhibition of protein 

synthesis due to an interaction with eukaryotic ribosomes [100]. While the exact mechanism of the 

inhibition of protein synthesis remains unclear, it has been demonstrated that trichothecenes 

interact with ribosomal protein L3 (RPL3) of the 60S subunit of the ribosome. This protein was first 

identified as a target in trichothecene-mediated inhibition in a Saccharomyces cerevisiae strain 

possessing resistance to trichodermin [49,54,136]. The observed trichodermin resistance, as well as 

resistance to other trichothecenes [25], is believed to be linked to a substitution at a key tryptophan 

residue at position 255 in RPL3. When mutated to cysteine (W255C), the RPL3 protein remains 

functional, and has little effect on ribosomal activity, and no inhibition due to the presence of 

trichothecene compounds is observed [109]. A similar substitution (W258C) in a modified rice rpl3 

gene, was demonstrated by Harris and Gleddie to enable DON-tolerance in transgenic tobacco [62].  
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However, results presented by Mitterbauer et al.[109], who expressed a W258C mutated tomato rpl3 

gene in tobacco, seem to suggest that the copy number of the substituted rpl3 gene may determine 

the level of resistance observed. The described tryptophan to cysteine substitutions occur in a 

universally conserved region of the protein known as the tryptophan-finger (W-finger), which has 

been shown to play a critical role in coordinating the steps involved in protein translation [62,104]. 

Of particular interest is its role in the movement of aminoacyl-transfer RNA (aa-tRNA) from the A-

site to the P-site during the elongation step of protein synthesis. It is for this reason that this moiety 

is often referred to as the “rocker switch”. All of these studies suggest that trichothecenes may 

interact with the ribosome in a stereospecific manner, and that hydrogen-bonding may be of critical 

importance.  

Trichothecenes have also been shown to activate the ribotoxic stress response in eukaryotic 

cells, which ultimately leads to apoptosis [33,105,166]. Other cytotoxic effects of trichothecenes have 

been observed, including inhibition of nucleic acid synthesis [100], and cell division [173], 

destabilization of cellular membranes [120], and inhibition of mitochondrial function [21,117,119].  

In all cases the exact mechanism of the described toxicity remains a mystery, due to a lack of 

understanding regarding the properties of these toxins and how they interact with the cell [127]. 

Without this knowledge it is difficult to determine the genes which must be targeted in order to 

confer resistance [101]. Furthermore, is not known whether these are secondary effects of ribosomal 

toxicity and/or apoptosis, or if there is a direct interaction between trichothecenes and other 

components of the cell. The stress response produced within the cell as a result of the inhibition of 

the 60S ribosomal subunit, could result in downstream inhibition of the remaining cellular 

machinery.  In fact, as mentioned in the previous paragraph, when the tryptophan residue of the W-

finger is mutated to another functional residue, a reduction or complete suppression of trichothecene 

toxicity is observed [25,54,109]. Such effects suggest that the widespread cytotoxic effects of 

trichothecenes are most likely downstream processes resulting from the inhibition of protein 

synthesis. 
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Different trichothecenes have been shown to have different levels of toxicity within a 

species, and these differences can vary among different organisms.  For example, while T-2 toxin was 

shown to be less phytotoxic than DON [106,143], it has been reported to be roughly ten times more 

toxic in mammals than the latter [106,153]. Similarly, while DON is generally more phytotoxic than 

nivalenol (NIV) [42,43,106,143,155], the latter has been shown to be more toxic in mammalian 

systems [108,153,158]. Variations in trichothecene phytoxicity may explain, in part, the variations in 

aggressiveness that can be observed among different trichothecene chemotypes of the Fusarium 

species involved in plant disease [107].  For example, reduced virulence of NIV-producing Fusarium 

species has been observed in FHB, compared with DON producers [43].  It has been observed that C-

3 acetylation can reduce phytotoxicity of specific trichothecenes in Arabidopsis, Chlamydomonas, 

tobacco and rice [1,110,114]; whereas, in wheat seedling germination and coleoptile growth 

inhibition studies, DON and 3-O-acetyldeoxynivalenol (3-ADON) were generally shown to be equally 

phytotoxic [35,106].  Thus, it is difficult to predict how a particular toxin will be tolerated from one 

species to another. Some studies, particularly those performed by Steinmetz in 2009, indicate that 

the three-dimensional (3D) structure of a given trichothecene does play a part in the overall toxicity 

of the toxin [148], and may eventually prove to be a helpful predictor of virulence among individual 

species. 

The differences regarding the involvement of trichothecenes in the transmittance of plant 

infection may be due, in part, to the differential ability of some plants to metabolize these 

toxins [16,20,34]. Furthermore, differences in phytotoxicity may also be related to structural 

differences in the PTC.  For example, Mitterbauer et al. observed several mutations in yeast RPL3 

[109], in addition to W255C, that confer trichothecene resistance. He proposed that the differences 

observed in toxin resistance among species may be linked to different isoforms of RPL3 among these 

species.  

Furthermore, different trichothecenes have been shown to inhibit different stages of protein 

translation, including inhibition of initiation (Type I inhibitors), elongation (Type E) or termination 

(Type T) [24,124,142]. The type of inhibition observed is related to the substitution pattern of the 
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side chains; for example trichothecenes displaying an oxygen functionality at R3 will typically confer 

Type I inhibition [44].  

The differences in toxicity observed between plant and animal systems may be linked to the 

cellular uptake of these toxins. To date, no cellular receptors for trichothecene uptake have been 

identified, and the mode of entry into the cell is unknown. However, it is important to note that 

trichothecenes are amphipathic molecules [34,157], and it may be possible for these molecules to 

enter the cell through some mode of direct translocation; therefore, the variable lipophilicity of the 

toxins would also have an effect on access to the cell. Anderson et al. have shown that a decrease in 

toxicity could be observed for compounds containing more than two free hydroxyl groups [2], 

suggesting that the more hydrophilic compounds have difficulty crossing the hydrophobic portion of 

the lipid bilayer of the cellular membrane. If trichothecenes are capable of translocation across the 

cellular membrane, the architectural and biochemical differences between plant and animal systems, 

such as lipid composition and the presence or absence of a cell wall would have an impact on their 

cellular uptake. The action of T-2 toxin on cell membrane function in animal cells has been 

monitored [21], with the presence of phosphatidylcholine as a membrane constituent influencing the 

action of T-2 [80].  The general structure of many simple trichothecenes resembles that of 

cholesterol, and it is possible that toxins, such as T-2, are taken up by the cellular membrane as 

analogues of cholesterol or plant sterols, leading to disruption of cell membranes in animal and plant 

cell lines respectively [127]. 

It has been suggested that it may be possible for several trichothecene toxins to act together, 

in a synergistic fashion, in order to convey virulence [37]. However, in order to understand and 

predict how multiple toxins might act synergistically with each other, a comprehensive 

understanding of the mode of action of a single toxin is of vital importance [37]. Several studies have 

been conducted in vitro that suggest that there is indeed an interactive relationship between 

trichothecenes [37]; however, studies conducted in this field generally produce varied results [33]. 

Furthermore, there are various trichothecene-related compounds that, although not toxic in their 

own right, may act as virulence factors in plant and animal pathogenesis [101,129,161]. 
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The first major structure-activity study of a trichothecene was performed in 1969 by Grove 

and Mortimer following the initial isolation and characterization of DAS [61]. This study was the first 

to clearly demonstrate that both the epoxide moiety and the structural arrangement of the ring 

system were essential features in trichothecene toxicity.  Since then most structure-function studies 

of trichothecenes have focused on defining the substitution pattern that bestows the greatest toxicity 

towards plant and animal systems, as well as which substituent groups convey higher toxicity to 

cancer cell lines as compared with host cells in an attempt to develop an effective antileukemic 

compound  [75,76]. 

Differences in trichothecene structure have been studied in order to determine the effects 

that substituent groups on the backbone may have on animal and plant toxicity. Studies based on 

natural trichothecenes have attempted to identify the modifications that convey higher or lower 

toxicity in plant and animal systems [117,158,166]. However, comparative studies of trichothecene 

toxicity are limited, primarily due to difficulties in obtaining highly purified samples in quantities 

sufficient for toxicological assays. The fragmentary studies carried out to date have been performed 

in different laboratories, using unique assay methods and distinct host organisms; therefore, 

quantitative comparisons regarding trichothecene toxicity remain circumstantial at best [33].  

In a study performed by Anderson et al. [2], the structure-activity relationships of natural 

and synthetic trichothecenes were monitored. Forty-eight compounds, derived from modifications of 

T-2 toxin and neosolaniol,(NEO) were tested against mouse lymphoma cells for antileukemic 

properties. It was observed that the toxicity is influenced by modifications at C-3, C-4, C-9 and C-10 

[2]. By contrast, changes at C-8 result in minimal changes in toxicity, indicating a region of steric 

tolerance [2].  

In order to gain a better understanding of the toxicological properties of trichothecenes and 

other toxins, it is important to understand the structural dynamics of these compounds and how they 

might interact with the cellular environment. To this end, more advanced methods must be used for 

an adequate study of these compounds. Extensive solution and solid-state NMR studies, as well as 
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NMR crystallography, to determine trichothecene structure and molecular interactions, in 

conjunction with biochemical assays to determine specific toxicity towards individual components of 

the cell, are essential methods for determining the mode of action of trichothecenes. 

1.2.2. Methods to Study Structure1 

When trichothecin was first isolated by Freeman and Morrison in 1948 [48], the 

sophisticated techniques used today to study small molecules were not available.  The structure of 

this compound was not described until 1959 when the Freeman group used a form of chemical 

modification, to determine the toxin core and substituent groups [47]. Although a valid technique, 

chemical modification is time-consuming and does not provide information regarding the absolute 

stereochemistry of a compound. Furthermore, any information regarding the flexibility, electronics, 

or 3D configuration of the molecule is lost. As fungal fermentation procedures became accessible for 

the isolation of individual variants, and new techniques in structure determination were developed, 

it became clear that the family of trichothecenes was quite extensive [106]. Although, mass 

spectrometry (MS) and Fourier-transform infrared (FT-IR) spectroscopy can offer some insight into 

the chemical structure of organic molecules [64,70,82], they do not provide a complete picture on 

their own and merely serves as a piece to the puzzle. Since they are not fundamental to the study 

performed here, they will not be considered further. Of particular interest to the complete structural 

identification of trichothecenes is the information made available from X-ray crystallography and 

NMR, which will be dealt with in detail here. Although X-ray crystallography is an important tool to 

study structure, it is not the main focus of this study. However, a brief description of X-ray 

crystallography will be presented in section I in order to describe the limitations of the technique 

with regards to the sample, which restrict the applicability of X-ray based structural analysis, 

particularly with respect to the A- and B-type trichothecenes.  NMR spectroscopy is the method of 

choice for this study, and will be described in detail in section II. 
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I. Crystallography1 

X-ray crystallography is a technique that is unrivalled in the structural detail and accuracy it 

can provide; thus, it remains a highly valued method in virtually all branches of chemistry and 

biology. However, as with any technical method, limitations on its application exist, and as such it has 

not been able to truly become a routine characterization method that is readily accessible to all 

chemists. Recent advances in instrumentation have assuaged some of these restrictions and as a 

result it is seeing much wider application to inorganic, organic, biological, and some aspects of 

materials sciences [103,126]. 

The X-ray diffraction experiment employs high intensity X-ray beams, which are focused on 

the crystal. The X-ray irradiation is then scattered by the crystal in a number of specific directions. 

The resultant diffraction pattern is defined by the electron density of the molecule, and corresponds 

to the regularly spaced arrays of atoms within the crystal [63]. For each orientation of the crystal, 

with respect to the incident beam, there is a corresponding diffraction pattern. A series of two-

dimensional (2D) diffraction patterns are collected over as many orientations as is practicable, and 

these are combined into a single 3D working structural model representing the electron density 

within the unit cell of the crystal. This model is compared with chemical information previously 

collected from other experiments, which is used to refine and optimize the data in order to obtain the 

structure of best fit. The structural model is composed of a lattice structure, which is determined by 

the arrangement of smaller building blocks, known as the unit cell. The unit cell may be composed of 

several molecules, arranged in various configurations [103].   

The quality of the diffraction pattern obtained depends greatly upon the quality of the 

crystal used, as well as the degree to which the electron density is able to scatter the radiation from 

the X-ray beams [103].  The latter is mainly a question of the number of electrons present around the 

atomic species in the lattice; hence, in general, the presence of higher atomic weight species produces 

better data. The former is the more challenging obstacle. Crystals for X-ray diffraction should be as 

large as possible to give high quality diffraction data; however, they must also be free from defects. 

Thus, the crystal should have long range order, with no deviation from the regular pattern due to the 
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molecular structure and unit cell. Consequently, the best quality diffraction data are those which can 

be obtained from single crystal X-ray diffraction (SCXRD) analysis.  

When considering SCXRD we must first understand that many sources of disorder exist, 

which are inherent to the crystallization process. These include the coexistence of various crystalline 

forms, or polymorphism [103]; the inclusion of additional species within the crystal, such as solvent; 

and motion, such as the libration of some portion of the molecule, or in some cases the reorientation 

of the entire molecule [63]. Often single crystals of sufficient size cannot be obtained, in which case 

diffraction measurements must be pursued on powders.  

Although unit cell dimensions can be obtained from powders, little structural information is 

obtained since, in the case of powder diffraction, the three-dimensional data must be projected onto 

a one-dimensional plane in order to properly map the diffraction pattern [63].  Historically speaking, 

SCXRD has seen extensive use by inorganic chemists, but as the instruments and crystallization 

methods improved, organic and biological systems were increasingly investigated. The latter two of 

course suffer from being composed almost entirely of relatively low atomic weight species, which 

poses more challenges in obtaining crystals of sufficient quality and size. Furthermore, in organic and 

biological systems the position of hydrogen atoms is often extremely important to relating structure 

and function, in particular when we consider the possibility of hydrogen bonding. The lack of 

electron density surrounding hydrogen atoms limits our ability to accurately predict hydrogen 

positions, and thus can limit in the utility of the technique. With the emergence of high intensity X-

ray sources, and very sensitive array detection, SCXRD of biological macromolecules has become 

largely a matter of making crystals. However, the question still remains as to how the crystal 

structure relates to the actual biologically active configuration. These are relatively recent advances; 

as a result SCXRD did not make a large contribution to the early literature in structural studies of 

natural products such as the trichothecenes. Today’s experimental capabilities do offer a tremendous 

opportunity to expand the structural understanding of these systems, especially regarding the 

interaction of trichothecenes with biological systems, such as proteins, DNA and RNA [103].    
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The main contribution of SCXRD to the trichothecene literature has been the determination 

of the absolute stereochemistry of the side chains in the macrocyclic, type-D systems. However, the 

discussion of these systems is beyond the scope of the study presented here, which focuses on the 

type-A and type-B trichothecenes. A brief review of these systems is presented by Shank et al. [140] 

and the reader is directed there for more information.  

Type A and B trichothecenes have seen comparatively little attention in terms of X-ray 

crystallographic analysis, presumably since more stereochemical variation would be expected in the 

trichothecene backbone as compared with the sidechain of the macrocyclic systems. The structural 

determination of DON was attempted on several occasions [59,60] however, crystals of sufficient 

quality could not be obtained. In contrast, suitable crystals for 3-ADON were acquired in 1984 by 

Greenhalgh et al. [59], and a high resolution crystal structure was obtained. It was determined that 

the absolute configurations of the backbone carbons were essentially identical to those found in 

verrucarin A by McPhail et al. [102], which was determined to adopt the same absolute configuration 

of the trichothecene core as that described by Savard and Blackwell [135], where the rings of 

verrucarin A were shown to exist in a half-chair for the A-ring, a chair conformation for the B-ring, 

and the C-ring exists in an envelope configuration. The unit cell for 3-ADON was shown to be 

composed of layers of four molecules arranged in tetrameric rings along a 4-fold rotation axis. The 

centers of the tetramers form channels large enough to include solvent, which accounted for the 

different crystal forms observed when 3-ADON is recrystallized from different solvents. A significant 

number of disordered water molecules were shown to be included in the crystals in the 

aforementioned channels. In a second failed attempt to obtain DON crystals suitable for SCXRD, 

Greenhalgh and coworkers were able to discern that at least two forms of DON existed, which 

differed in the degree of water inclusion [60]. 

In 1990, Gilardi et al. performed an SCXRD study on T-2 Toxin [52], and again the 

stereochemistry of the rings were found to be identical to that of verrucarin A [102]. The unit cell for 

T-2 toxin contains two distinct molecules differing in the configuration of the isovalerate sidechain. 

The relatively large thermal-ellipsoid obtained for the atoms in the sidechains as opposed to those in 
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the core, testify to a significant degree of disorder [52].  Also, hydrogen bonding was observed 

involving  O-1 and O-2, which were shown to donate into the hydroxyl hydrogen at C-7 [52].  

X-ray crystallographic analysis can also be applied to trichothecenes complexed with 

interacting proteins.  Garvey et al. studied the structure and function of the enzymes trichothecene 3-

O-acetyltransferase (TRI101) from F. graminearum, and trichothecene 15-O-acetyltransferase (TRI3) 

from F. sporotrichiodes [50,51]. These enzymes are directly responsible for the conversion of DON to 

3-ADON and 15-ADON, respectively. TRI101 was complexed with acetyl-Coenzyme A (CoA) and DON 

together, as well as with T-2 toxin and CoA [51], and TRI3 in complex with decalonectrin and DON 

[50], were studied. Although these studies were focused primarily on the X-ray crystal structure of 

the protein, information regarding the trichothecene binding site for both TRI101 and TRI3 were 

unambiguously identified. The determination of the structural dynamics of the trichothecene class of 

toxins becomes important when considering how such binding interactions occur. 

II. Nuclear Magnetic Resonance Spectroscopy 

Although X-ray crystallographic analysis is, by and large, the most desirable method for 

determining structure, not all compounds are amenable to such an analysis. Many members of the 

class of trichothecene mycotoxins cannot be analyzed by SCXRD, because they do not produce pure 

crystals, due to factors such as polymorphism, solvent inclusion and molecular libration [63]. As a 

result, NMR spectroscopy is the principal technique used in the determination of the structure and 

stereochemistry of trichothecenes, with over 90% of trichothecenes being characterized in this 

manner. Extensive reviews regarding the characterization of trichothecenes and trichothecene-

related compounds were published by the Miller group in the late 1980s [13,55,57,60,86], and by 

Jarvis et al. for the macrocyclic trichothecenes in 1987 [73]. The reader is directed to these works for 

more information regarding the structural parameters of these compounds. 
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1.3. Nuclear Magnetic Resonance 

NMR spectroscopy is a method for determining the physical properties of a compound, 

based on the exploitation of the magnetic properties of certain atomic nuclei in a given sample. 

Discovered simultaneously in 1946 by the independent laboratories of Felix Bloch and Edward Mills 

Purcell, NMR has become a powerful tool for the determination of chemical structure and dynamics 

[14,125]. The determination of structure of the majority of organic, biological, as well as numerous 

inorganic compounds, often begins with a series of NMR experiments. Since its discovery, NMR has 

undergone a series of advances, including the application of Fourier transformation (FT), the 

development of multi-dimensional techniques, high-field magnets and polarization transfer 

techniques, resulting in high-resolution structures rivaling those produced by X-ray crystallography. 

An introduction to the physical science and basic principles necessary for the understanding 

of NMR is available in textbooks such as Levitt or Silverstein [91,144]. The wave function and 

Hamiltonian are used to describe some of the key differences between solution and solid-state NMR 

theories, and a more in depth picture is provided in the principles described in the Hamiltonians of 

NMR series [145]. 

1.3.1. Solution-State NMR 

Solution-state NMR has been widely utilized as an identification tool for the trichothecenes 

and other natural compounds. It is used here as a tool to probe into the overall three-dimensional 

structure and dynamics of the trichothecenes. Specifically, addition of information to the literature 

database for the trichothecenes, including information for the carbon-13 and multi-dimensional NMR 

experiments, is made. As well as information arising from deuterium exchange experiments. 

I. 13C NMR 

The inherent receptivity of the 13C nucleus is rather low for two reasons: the low natural 

abundance of the nucleus in non-isotopically enriched samples; and the moderate gyromagnetic 
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ratio, γ. It is important to note here that the sensitivity is not precisely related to γ, but rather on the 

cube, γ3, since the signal produced at the coil depends upon several factors, including 

i) The magnetic moment, μo, which is proportional to γ 

ii) The rate of change of flux in the coil, which is dependent of the Larmor frequency of the 

nucleus, which is proportional to γ 

iii) And finally, the population difference between the spin states, also proportional to γ. 

There is also a minor contribution from the noise, which increases with frequency, and is 

thus also proportional to γ. 

Since, 13C nuclei have more electron density than 1H, the typical spectral width is 

approximately 220.0 ppm, so the signals are generally better resolved than those of 1H, and there is 

relatively little interference from homonuclear coupling in signals collected at natural abundance. 

Furthermore, as discussed in the previous section, heteronuclear scalar couplings can be removed 

from the spectrum through broadband decoupling methods. Although, some information is lost in the 

13C spectrum due to decoupling, it reduces the complexity of the spectrum significantly, and provides 

much better signal-to-noise, allowing for the spectrum to be collected in a much shorter time frame. 

The 1H-decoupled 13C spectrum is a simple modification to the single pulse NMR experiment; 

however, as mentioned there are many modifications to one-dimensional NMR that exist. Among the 

most common are the INEPT and DEPT experiments, which are described in detail below. 

The Insensitive Nuclei Enhancement by Polarization Transfer (INEPT) experiment is a 

method for transferring strong nuclear magnetization from high receptivity spins to spins with lower 

receptivity (i.e. 1H to 13C), for which the pulse sequence is shown in figure 1.4A [91].  Polarization 

transfer gets past the lower sensitivity issues resulting from a lower gyromagnetic ratio. After 

polarization transfer has occurred, the magnetization of the lower receptivity spin, 13C, now depends 

of the γ of 1H. Furthermore, the relaxation delay, T1 for the experiment is now dependent on the 

relaxation of the 1H spins, and can be set accordingly. Thus, not only is signal enhancement possible, 
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but the acquisition time for the experiment decreases significantly. However, both in-phase and anti-

phase peaks are present in the spectrum. The anti-phase peaks may be brought back into phase by 

adding a refocusing pulse to the spectrum; thereby, preventing the loss of signal in crowded 13C 

spectra, see figure 1.4B. 

 

Figure 1. 4: Pulse schemes for the A) INEPT and B) Refocused INEPT experiments. These experiments rely on 
the transfer of polarization from a higher sensitivity nucleus, such as 1H, to a lower sensitivity nucleus, such as 
13C. The I channel represents the former, while S the latter. The I nucleus is flipped into the transverse plane 
through the application of a π/2-pulse, and then the polarization is transferred through the simultaneous 
application of a π-pulse on both nuclei. The I nucleus is decoupled, and detection occurs on the S channel. 

 

The Distortionless Enhancement by Polarization Transfer (DEPT) experiment is a sequence 

which is closely related to the refocused-INEPT experiment [88]. However, the DEPT experiment 

works on the generation and manipulation of multiple quantum coherences, rather than single 
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quantum coherences. The pulse sequence is given in figure 1.5. Since we are working with the 

concept of polarization transfer over single-bonded systems, quaternary carbons will be absent from 

the spectrum, as is also the case in the INEPT experiment. As such, these techniques are meant to be 

utilized in addition to routine 13C spectra, and not in place of it. 

 

Figure 1. 5: Pulse Scheme for the DEPT experiment. The DEPT experiment also relies on Polarization 
transfer from a higher sensitivity nucleus, I, to a lower sensitivity nucleus, S. The I nucleus is flipped 
into the transfer plane by a π/2-pulse, and then polarization is transferred through a π-pulse on the I 
nucleus and simultaneous π/2-pulse on the S nucleus. The third pulse in the sequence on the I 
nucleus is determined by the setting of the angle θ, which is typically set to either π/4, π/2, or 3π/4, 
which produces different effect on the phase of the S signals in the spectrum depending on how many 
I nuclei are directly attached. The phase modulation behavior is depicted in figure 1.25. Decoupling is 
applied on the I channel while the signal from the S channel is detected. 

 The intensity of the signals from methine, methylene and methyl carbons, have differential 

dependence on the width of the θ pulse, which can be seen in figure 1.6, and it is for this reason that 

DEPT is usually performed as a sequence of experiments where θ equals π/4, π/2 or 3π/4. 
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Figure 1. 6: Phase modulation of methine, methylene, and methyl signals under the influence of the DEPT pulse 
sequence 

From figure 1.6, certain interesting properties of the sequence are revealed, and include that 

i) Methyl and methylene groups have a maximum intensity when θ = π/4, but are null 

when θ = π/2 

ii) Methine intensity is maximal at θ = π/2 

iii) Methylene groups are anti-phase when θ = 3π/4, but methyls and methines will be 

in-phase. 

II. Deuterium Exchange 

The chemical and dynamic exchange processes which may occur in a given sample can 

broaden the spectral lines, particularly in 1H NMR spectra,. Thus, it may be difficult to extract 

information from the system without moving to a different NMR solvent, or alternatively by freezing 

out the process and collecting spectra at a variety of temperatures. However, an advantage of 

chemical exchange, with regards to 1H species, is the ability, in most cases, to exchange with water. 

An easy solution to the problem is the addition of a small amount of D2O to a sample, resulting in an 

exchange of the 1H to a 2H nucleus. Since the magnetic properties of the 2H nucleus are vastly 

different from those of 1H (i.e. gyromagnetic ratio, quadrupolar), the 2H nucleus is not observed when 

1H is detected, and the chemically exchangeable signal disappears. 
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This method is widely used in protein NMR, since it allows the detection of surface exposed 

amino acid residues, and will provide residue-specific information, particularly in multi-dimensional 

NMR spectra. For small molecules, such as trichothecenes, deuterium exchange NMR can be used to 

determine whether a water molecule is bound somewhere on the molecule, or whether it is freely 

exchanging not only with the molecule in question, but other water molecules which may be free in 

solution. Furthermore, since the exchange between 1H and 2H occurs very rapidly, on the picosecond 

timescale, it may be possible to determine the rate of exchange between a bound water molecule and 

the solvent, providing a rough estimate for binding efficiency of the molecule with water. 

Deuterium Exchange is a method that can be used in combination with a large number of 

NMR experiments, and is thus a powerful technique which can assist in structure determination. 

III. Multi-Dimensional Solution-State NMR experiments 

As multiple-pulse based experiments have preparation, evolution and detection stages, 

where the final detected spectrum depends primarily on the nature of the preparatory pulse and the 

length of the evolution time. Those factors that influence the magnetization during the evolution 

period are quite different from those that influence it during acquisition. In this fashion two very 

different sets of spectroscopic data can be obtained, and thus, the NMR experiment can be extended 

to multiple dimensions. 

Two-dimensional (2D) NMR techniques use a second FT to convert the time-dependence of 

the evolution into a second frequency, pulling the familiar one-dimensional spectrum into a second 

dimension, where it is displayed as a contour plot of intensities. Multi-dimensional NMR experiments 

require a minimum of two pulses, and as the experiment is repeated, the pulse sequence is varied, 

either through variation in the pulses themselves, a variation in a particular time period, or both. For 

a two-dimensional experiment at least one time-period will be varied, for three dimensions, two time 

periods must be varied, and so on. 
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Many 2D techniques are similar to their one-dimensional (1D) analogues, and so the same 

methodology will be used to describe the interactions, where possible. 

i. Heteronuclear Correlation Experiments 

Heteronuclear Correlation methods provide information about the coupling between 

individual nuclei of different types (i.e. 1H to 13C correlations). As described previously, the resultant 

spectrum is a contour map, and here the contours simultaneously describe the chemical shifts of a 

proton and the carbon to which it is coupled. Such spectra are commonly used to assign the 13C, or 

other heteronuclear signals, to a corresponding 1H. 

Heteronuclear Single Quantum Correlation (HSQC) spectroscopy is the 2D equivalent to the 

INEPT sequence described previously [88]. HSQC uses the single quantum coherence transfer 

between 1H and 13C to provide information regarding single bond couplings; thus, only 13C nuclei that 

are directly bound to a 1H resonance will display a contour in the spectrum. As in INEPT, the 

experiment works by developing a magnetization on the stronger nucleus, denoted I (typically 1H), 

and the transferring the magnetization to the S nucleus (typically a heteroatom such as 13C or 15N). 

The magnetization is then allowed to evolve before it is transferred back to the I nucleus for 

detection. Detection occurs on the I nucleus in order to increase the sensitivity of the experiment, and 

allows for the more receptive nucleus to be finely digitized during FT, which is particularly important 

when dealing with a crowded 1H spectrum. This is known as reverse detection. The pulse sequence is 

described in figure 1.7.  
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Figure 1. 7: Pulse scheme for the HSQC experiment. The I channel represents the nucleus with the 
higher sensitivity, and is the one on which the signal is detected in order to provide a high resolution 
spectrum. The S channel is typically a species with lower sensitivity, and must be directly bound to 
the nuclei represented by the I channel. Decoupling occurs on the S channel in order to reduce the 
complexity of the spectrum and provide a slight enhancement in the signal due to the effect of the 
NOE. 

 

A modification on this experiment is the Heteronuclear Multiple Quantum Correlation 

(HMQC) experiment [88], which contains half the amount of pulses as HSQC, and delivers a virtually 

identical spectrum; however, it does have a slight reduction in the resolution for the S nucleus, and 

thus tends to find less application. Heteronuclear Multiple-Bond Correlation (HMBC) spectroscopy is 

similar to the HMQC experiments, but allows for the coupling to be extended over two to four bonds. 

The defocusing of the longer range coupling in the HSQC and HMQC spectra is governed by the delay 

time; therefore, by omitting one of the delays in the HMQC experiment, the long range coupling is 

reintroduced. The pulse sequences for HMQC and HMBC are shown in figure 1.8. Thus, by combining 

the HSQC and HMBC experiments it is possible to distinguish between 13C nuclei coupled to protons 

through HSQC, and subsequently assign the quaternary carbons, using HMBC. 
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A)  

B)  

Figure 1. 8: Pulse Scheme for the A) HMQC and B) HMBC experiments. The HMQC experiment 
provides direct coupling correlations between the I and S nuclei; whereas, the HMBC experiment 
provides information regarding the coupling of the I and S nuclei over several bonds. 

 

ii. Homonuclear Correlation Experiments 

The first 2D NMR experiment was proposed in 1971 by Jean Jeener, and later implemented 

in 1976 by Richard Ernst, who was awarded the Nobel Prize in Chemistry for his description of the 

through-bond J-coupling modulated Correlation Spectroscopy (COSY) experiment [88]. COSY is the 

homonuclear equivalent of the heteronuclear correlation methods mentioned above, having a similar 

pulse sequence and mechanism of magnetization transfer. 
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In the standard COSY experiment, the preparation and mixing period are governed by π/2-

pulses separated by an evolution period, and followed by signal acquisition, the sequence in shown in 

figure 1.9. Since COSY is a homonuclear technique, the resultant contour plot is symmetrical about a 

diagonal axis, where the peaks along the diagonal are autocorrelation peaks (the nucleus exchanges 

with itself), and the off-diagonal peaks are correlations between coupled nuclei. Since the peaks in 

the spectrum represent nuclei that are coupled through bond, the COSY spectrum allows for a simple 

method for assigning the peaks corresponding to individual nuclei in a sample, and aids in 

determination the J-coupling constants for a given spin system. 

 

Figure 1. 9: Pulse scheme for the phase sensitive COSY experiment. The relatively simple COSY 
experiment is a homonuclear coupling method; thus, only a single channel is required to be pulsed on 
and detected. Only two π/2-pulses are used, but have different phases which are cycled through to 
ensure proper phasing in the final spectrum. The primary, high resolution dimension of the spectrum 
is collected during the acquisition of the FID. The evolution of the magnetization during the τ time 
delay is also collected and makes up the second dimension, but has significantly reduced resolution 
as compared to the primary dimension. 

 

iii. Nuclear Overhauser Enhancement (NOE) Spectroscopies 

Through-space correlation methods offer an ability to observe the dipolar couplings 

between nuclei that are physically close, but may not necessarily be coupled to each other through 

bonds. Due to the Brownian motion of the solvent, small molecules in the solution state, in general, 

do not exhibit dipolar couplings. However, nuclei that are significantly proximal to each other (within 

5 Å) will cross-relax with each other, and as a result, can transfer polarization to each other. Any 
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process that induces a change in the polarization of one spin will lead to an NOE in a nearby spin, and 

as seen previously, this effect is exploited in the 1H decoupled 13C NMR experiment. However, steady-

state NOEs are produced in through-bond coupled systems through the irradiation of one spin and 

subsequent polarization transfer; whereas, NOEs in through-space systems are transient, and build 

up over time as a result of cross-relaxation between the spins, reaching a maximum after one T1 

period, and subsequently declining. 

In essence, the Nuclear Overhauser Effect Spectroscopy (NOESY) experiment is simply an 

extension of the COSY experiment [88], the exception being that in the NOESY experiment, transient 

NOEs are allowed to build up and evolve over time τ, and a final π/2 pulse is applied to refocus the 

magnetization prior to detection. The pulse sequence for the NOESY experiment is depicted in figure 

1.10. 

 

 

 

Figure 1. 10: Pulse scheme for the NOESY experiment. Like the COSY experiment, the NOESY 
experiment is a homonuclear correlation method; thus, only one channel is required for pulsing and 
detection. The primary dimension is evolved during the FID, and produces a high resolution 
spectrum. The secondary dimension is collected during the time period τ, and is of lower resolution 
than the first. Varying the time period τ, allows for different transient NOEs, or through-space 
couplings, to take precedence in the spectrum. 
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As with COSY, NOESY is a homonuclear spectroscopy, and both axes in the spectrum are 

identical; therefore, the spectrum is symmetrical about the diagonal, with peaks appearing on the 

diagonal being autocorrelation peaks. When the NOESY spectrum is properly phased, the diagonal 

peaks appear negative due to autocorrelation. NOEs that appear off of the diagonal can appear either 

positive or negative. For small molecules, positive NOEs denote a first-order correlation, and thus, 

indicate a coupling interaction between the spins. However, recall that T1 relaxation is correlated to 

the correlation time, and consequently, the size of the molecule. As molecular size, or the viscosity of 

the solvent, increases the T1 relaxation crosses a zero-point; thus, for larger molecules, NOEs may 

appear negative despite the nucleus possessing a positive γ. It is also important to note that since the 

NOESY experiment is merely an extension of COSY, COSY crosspeaks will also appear in the spectrum 

due to J-coupling; however, these can be effectively removed by introducing small random variations 

in the τ period. 

Exchange Spectroscopy (EXSY) is a specialized form of the NOESY experiment [88] that 

requires no modifications to the original pulse sequence with the exception of the variation to the 

time period τ. Crosspeaks in the NOESY spectrum which result from chemical or conformational 

exchange appear negative, regardless of the sign of the gyromagnetic ratio. Therefore, in order to 

distinguish between EXSY and NOESY peaks, the experiment must be phase-sensitive. The EXSY 

experiment is generally much more quantitative, and can be used to determine the rate of exchange 

of two or more nuclei, through the subsequent collection of numerous NOESY spectra at varying 

mixing (τ) times. 

However, it is important to note that not all negatively phased peaks are true exchange 

peaks. Often saturation transfer peaks can be mistaken for EXSY peaks, as these may also appear as 

negative peaks in the spectrum. Saturation transfer occurs when the rate of exchange, kex, is greater 

than the longitudinal relaxation rate, T1, such that    
⁄      . However, if the rate of exchange is 

slow compared to the relaxation, such that    
⁄      , then saturation transfer is not possible, and 

all off-diagonal negatively phased peaks are a result of chemical exchange. 
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1.3.2. Solid-State NMR 

The study of nuclear interactions through NMR spectroscopy provides a wealth of 

information about the chemical system; however, when several inequivalent sites exist in a solid-

state sample, powder patterns may overlap, and the consequent loss of resolution in the spectrum 

obscures any information that the spectrum may contain. Hence, it is necessary to apply techniques 

to achieve high-resolution in spectra. 

I. Magic-Angle Spinning (MAS) 

Magic-Angle Spinning (MAS) is a mechanical technique which is routinely used in solid-state 

NMR experiments where it is desirable to remove the effects of CSA and heteronuclear dipolar 

coupling. MAS can also be used to narrow the lines from quadrupolar nuclei, and is increasingly used 

to remove the effects from homonuclear dipolar coupling. However, for the latter application, the use 

of extremely high spinning rates is required; therefore, it is not currently routine in the majority of 

laboratories. 

In solution-state NMR, the effects of CSA and dipolar coupling are rarely observed, since the 

rapid tumbling of molecules in solution results in an averaging of the orientation, θ, for the CSA and 

dipolar tensors, over all possible values. Thus, the (3cos2θ -1) dependence of the transition 

frequencies becomes zero. MAS achieves the same effect for solids. 

Let us consider a sample spinning about an axis inclined at an angle, θR, to the applied field, 

with θ describing the orientation of the interaction tensor for the molecules within the sample, which 

varies with time as the sample rotates. Thus the average for (3cos2θ -1) is given by, 

 (        )  
 

 
(         )(    

    )    (1.1) 

The angle β is between the principle z-axis of the interaction tensor and the spinning axis, 

which is fixed for a given nucleus in a rigid solid; however, θ will take on all possible values in a 

powder sample and represents the anistropy. The angle θR is set by the experiment. If the angle θR is 

set to 54.74, then (3cos2θ -1) = 0, and the anisotropy is averaged to zero. 
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II. Cross-Polarization (CP) 

Cross-Polarization (CP) is a commonly employed technique in NMR, which is used to 

enhance the signal of low natural abundance nuclei. The direct observation of low natural abundance 

nuclei has two main problems: i) the dilute nature of the spins results in a rather low signal-to-noise 

ratio, which can make the detection of individual signals rather difficult; ii) the relaxation times for 

dilute spins tends to be rather long, because the strong homonuclear dipolar coupling which 

generally contributes to relaxation are absent. When many scans are required to obtain adequate 

signal-to-noise, long relaxation times result in long experimental times, which is not practical. These 

problems can be solved by transferring the magnetization from an abundant, high gamma spin (i.e. 

1H) to the low abundance nuclei in a sample. 

III. Multi-Dimensional NMR in the Solid-State 

Many of the same 2D techniques available for solution-state NMR spectroscopy have solid-

state counterparts which are modified in order to provide high resolution spectra. Furthermore, 

since solid-state NMR spectra contain information regarding CSA, heteronuclear and homonuclear 

dipolar coupling, and J-anisotropy. In order to understand the information being provided by these 

interactions, specialized 2D techniques are available. In some cases, multiple conformations can exist 

simultaneously in the solid-state spectrum, and 2D homonuclear NMR techniques are required to 

unambiguously assign the signals. 

Multi-dimensional NMR experiments in the solid state are often more complex than their 

solution counterparts. These experiments often involve CP, MAS, and in some cases synchronization 

of the rf-pulses with the rotation of the sample by MAS. 

i. Incredible Natural Abundance Double Quantum Transfer Experiment 

(INADEQUATE) 

The incredible natural abundance double quantum transfer (INADEQUATE) experiment is a 

well-known solution-state experiment based on the same principles as the INEPT experiment[89], 
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but extended to a second dimension. The INADEQUATE experiment can thus be used to obtain direct 

scalar connectivities in the carbon backbone, and has been adapted here for the solid state. The 

traditional experiment yields signals that are anti-phase, and are not of much use in crowded 13C 

spectra, or spectra where significant linewidths can result in interference and cancellation of lines 

within the spectrum [89]. As a result, it is desirable to refocus these anti-phase lineshapes, in order to 

obtain high-resolution in-phase signals, which can then be interpreted appropriately. The refocused 

INADEQUATE experiment is simple and robust, with the efficiency of this experiment depending 

primarily on the refocused line width, which corresponds to the dephasing time [89]. 

The pulse sequence for the CP-Refocused INADEQUATE experiment is shown in figure 1.11, 

[89,90]. The 13C magnetization evolves under the isotropic homonuclear scalar coupling Hamiltonian 

for a period of 2τ, where    
 

  
. The homonuclear dipolar couplings for 13C-13C are removed with 

fast MAS, and a 180 pulse allows for efficient refocusing of the 13C chemical shift. A 90 pulse then 

converts the magnetization into a double quantum coherence, which is allowed to evolve over a 

period of t1. The anti-phase component is detected during t2 and is converted back to an in-phase 

coherence during a second τ-π-τ delay, prior to detection. 

 

Figure 1. 11: Pulse sequences for the CP-refocused INADEQUATE experiments. t1 produces the indirect 
dimension for the two-dimensional spectrum, and t2 produces the direct dimension.  
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ii. R-symmetry based CSA Recoupling 

Much of modern solid-state NMR is based around the concept of physical manipulation, 

either through  

i) the rotation of a sample in space. Typically samples are spun at a fixed frequency about some 

fixed angle; however, some experiments do involve the use of more complex trajectories. 

ii) The rotation of the nuclear spin. Rotation of the nuclear spin polarization is achieved 

through the application of rf-pulses. 

As these two techniques developed, the spatial and spin manipulations were often treated separately, 

with rotation of the sample by MAS treated as a minor perturbation as compared to the effects 

resulting from the application of rf-fields. 

The term “recoupling” is meant to signify the reintroduction of specific interactions, such as 

dipolar coupling, or CSA, by counteracting the averaging effects introduced by sample rotation about 

the magic angle. In order to accomplish such recoupling effects, it is necessary to select an rf 

amplitude so that the frequency of magic angle rotation is a small integer multiple of the nutation 

frequency of the nuclei under the rf field; this is a condition known as rotational resonance [92]. 

Considering the reintroduction of the CSA, the rotational resonance condition is met when the 

nutation frequency for spin I, ωnut
I is equal to nωr, where n is an integer value, and ωr is the rotation 

frequency of the sample, or MAS spin rate. Under this condition, the terms in the Chemical Shift 

Hamiltonian are reintroduced. 

The symmetry-based pulse sequences designed by Malcolm Levitt exploit these rotational 

properties of the nuclear spins through the rotor synchronization of specialized pulse schemes [92].  

The R-symmetry sequences are simple and robust techniques based on 180 rotational elements. The 

theory behind this technique is based primarily on the spherical tensor theory, and is rather 

involved; thus, only a simple explanation is provided here. 
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The R-sequence is a general format, and describes a class of symmetry-based sequences, 

which are collectively defined by the symbol    
 .  The integers N, n, and ν, are called the symmetry 

numbers. A set of selection rules exist for the entire class of R-sequences, which can be used to 

manipulate the average Hamiltonian, generating decoupling and recoupling properties for the 

individual nuclear spin interactions [92]. 

The general scheme for constructing an R-sequence based on the Euler angle symmetries is 

as follows: 

1) Select a sequence of rf-pulses that result in the rotation of the nuclear spins through 180 

about the x-axis, this is element R.  

2) Alter the signs of all rf phases within the element R. Call this phase-inverted element R’. 

3) Select an rf amplitude such that N elements of R occupy n rotor periods. For R-sequences, N 

must be even, in order to maintain the symmetry. 

4) The sequence must consist of N/2 elements of (RφR-φ), where φ is the overall phase shift, 

and is equal to πν/N radians. 

A simple diagram depicting the principles behind this process is shown in figure 1.12. 

 

Figure 1. 12:  A general pulse scheme for an R-based symmetry sequence. Two-pulse phase-modulated (TPPM) 
decoupling is suggested for use with this method. 
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Each of the rotational components of the average Hamiltonian are modulated by the spatial 

rotations of the sample, as well as the rotations of the spin polarizations induced by the application of 

rf-pulses. Thus, by synchronizing the modulations, symmetry properties result, leading to some 

selection rules on the terms in the average Hamiltonian. A Spin Space Selection (SSS) diagram can be 

constructed for any set of symmetry properties based on the quantum numbers applicable for each 

of the interactions of the Hamiltonian. Consider the SSS diagram in figure 1.13, which has been 

constructed for the     
  symmetry sequence. 
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Figure 1. 13: Spin-Space Selection (SSS) diagrams for R-symmetry sequence     
 . A) The SSS pathway for the dipole-dipole interaction. B) The SSS pathway for the 

CSA interaction. C) The SSS pathway for the isotropic chemical shift interaction. Only the CSA interaction is allowed under the conditions of the     
  symmetry-

sequence. 

 

Thus, it can be said that the     
  symmetry sequence is used to recouple the CSA interactions, and is compensated to first order for the 

homonuclear dipolar couplings and isotropic chemical shifts. 
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1.3.3. NMR Spectral Parameter Simulations 

Once the NMR experiment has been performed the data must be carefully analyzed in order 

to pull out the information contained in the spectrum. Simulation of the NMR parameters is a useful 

technique, where the analyst attempts to reproduce the experimental spectrum by manipulating the 

values expected for each of the interactions in the Hamiltonian. A variety of computer programs can 

be used to manipulate the spectra, and greatly simplify the guess work required by allowing simple 

parameters, such as chemical shift and scalar coupling constants to be entered. 

 Computer-based NMR prediction and experimental simulation programs are very useful in 

helping to accurately solve spectra. This study utilizes the programs SpinWorks to gain information 

about the chemical shift, J-coupling for different individual experiments based on the spin system 

.[97]. 

 SpinWorks is software program developed by Kirk Marat at the University of Manitoba, and 

is used primarily as an easy to use, basic, offline processing program for one-dimensional and two-

dimensional NMR spectra. However, it also serves as a powerful iterative tool for the simulation and 

analysis of highly complex second-order spectra, which can also be used for dynamic NMR analysis. 

SpinWorks can also be used to solve some solid-state NMR spectra; however, its strength lies in the 

simulation of solution-state NMR spectra. SpinWorks works on the basis of assigning each individual 

transition expected for each nucleus in the spectrum and then works to optimize the spectrum based 

on the user directed parameters which have been entered. 

 The input into the program includes the spin system, chemical shifts for each individual 

resonances, and scalar couplings between the resonances. The user may also choose which 

parameters are allowed to be varied during the optimization process. Once the user has inputted all 

of the variables into the program a simulated spectrum is generated.  The user then assigns each 

individual transition in the simulated spectrum to the corresponding signal in the experimental 

spectrum. The system uses an algorithm to create a representation matrix of the spin system where 

the eigenvalues of the matrix are the signal frequencies, and the eigenvectors represent the intensity 
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of the signals. The program has a predetermined cut-off value for the standard deviation of the 

transitions, and any transitions that lie outside of the cut-off are discounted, while those that meet 

the parameters of the program are optimized on. The algorithm goes through successive iterations of 

optimization on the representation matrix, in a manner similar to linear regression, to produce a 

diagonalized matrix. The result is an optimized simulation of the NMR spectrum. The program also 

produces an output file that contains the optimized chemical shift and scalar coupling data, with a 

standard deviation for each individual resonance and coupling interaction, as well as the root-mean-

squared deviation (RMSD) for the total spectrum. 
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2. Hydrogen-Bonding Interaction in T-2 Toxin2 

2 Reproduced in part from the manuscript: Chaudhary, P., Shank, R. A., Montina, T., Goettel, J. T., 
Foroud, N. A., Hazendonk, P., Eudes, F. (2011) Hydrogen-bonding interactions in T-2 toxin studied 
using solution and solid-state NMR. Toxins. 3(10), 1310-1331. All analysis contained in this chapter 
was performed by the author of this work and rewritten in order to ensure proper authorship. 

2.1 Overview 

Recall that there are four structural types in the class of trichothecene mycotoxins. Type A 

and B trichothecenes, produced by members of the Fusarium sp. (Fusarium species) of fungi, 

contribute to a large number of crop diseases, and can be passed on to animals and humans if 

diseased crops are not detected prior to harvesting. Type A trichothecenes tend to be far more toxic 

to animals and humans than they are towards the plants themselves; whereas, type B trichothecenes 

are far more phytotoxic. 

This chapter deals with the structural analysis of the type A trichothecene T-2 toxin in 

solution and describes the nature of the hydrogen-bonding interaction of T-2 toxin with water. This 

portion of the work has been previously published in the journal Toxins, and modifications to the 

original paper have been made in order to ensure appropriate coverage of the work as required for 

this presentation of the data.  

2.2. Introduction 

T-2 toxin, shown along with some other significant trichothecenes in figure 2.1, is a type A 

trichothecene mycotoxin primarily produced by the Fusarium sp.. which are associated with the 

diseases of important food crops. Although instances of T-2 toxin contamination are rare, the 

seriousness of the infection is animal feed and foodstuffs produced for human consumption cannot 

be ignored. T-2 toxin has been considered for use as an agent in biological warfare following the 

observation that bread baked using T-2 toxin contaminated flour in World War II Russia resulted in 

significant infection and death [106]. 
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Figure 2. 1: Structures of type A and B trichothecenes. Type A trichothecenes include T-2 toxin, and 
HT-2 toxin. Type B trichothecenes include nivalenol (NIV), 4-deoxynivalenol (DON), 3,15-O-acetyl 
DON (3,15-ADON). OAc = acetyl function; OIsoval = isovalerate function. 

 

Screening for DON contamination in foodstuffs has become standard practice in the many 

developed countries.  However, no regulations are currently in place for the far more toxic T-2 toxin 

[156].  While detection of T-2 toxin in grain products is not as commonly observed as DON, an 

increase in the reports of contamination by T-2 and HT-2 toxin in grain has been observed recently in 

many European countries [11,39,85,139].    It is thus important to develop a detailed understanding 

of the toxicity of trichothecenes at the molecular level, which will serve to provide a basis for toxin 

screening, and may ultimately lead to the development of trichothecene resistant crops.  

Detailed insights into the hydrogen bonding and dynamic behavior of this class of molecule 

will provide a better understanding regarding the mechanisms of inhibition and cytotoxicity of these 

compounds. Solution NMR structures available in the literature have focused primarily on the 

spectral identification rather than determining the three-dimensional configuration, structural 

dynamics, and interactions of these compounds. Thus, an accurate assignment of the T-2 toxin 1H and 

13C spectra in solution may provide specific clues regarding the inter- and intra-molecular 

interactions of this important toxin. 
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2.3. Materials and Methods 

2.3.1. Solution-State NMR Experiments 

All the spectra presented here were acquired at ambient temperatures (21-26oC), and were 

collected on a Bruker Avance 300 spectrometer, outfitted with a 5 mm HX PABBO BB probe. The 

magnetic field strength of the spectrometer is 7.05 Tesla, which gives rise to a Larmor frequency of 

300.131 megaHertz (MHz) for 1H and 75.468 MHz for 13C nuclei. T-2 toxin (Sigma, CAS 21259-20-1) 

was dissolved in deuterated chloroform (CDCl3) with tetramethylsilane (TMS) as an internal 

reference for both 13C and 1H nuclei, at a concentration of 1 mg/mL. Trichothecene conformation is 

highly dependent on the solvent system [31,32,72]; thus, the CDCl3 was dried over sodium sulfate to 

prevent contamination of water in the sample.  The 1D 1H spectrum was recorded with 128 

transients, using a 90° pulse width of 12.4 μs, and a recycle delay of 1.0 s. The 1D 13C spectrum was 

recorded with 8464 transients, using a 90° pulse width of 7.6 μs, and a recycle delay of 2.0 s. 

The 2D homonuclear magnitude gradient 1H COSY spectrum was acquired in 256 

increments, using a recycle delay of 1.5 s, and covered a spectral width of 1800 Hz (6.0 ppm) in both 

dimensions.  Four transients, having 1024 points, were collected for each increment. 

The gradient 1H NOESY spectrum was acquired in 256 increments, using a recycle delay of 

1.0 s and a mixing time of 1.0 s, and covered a spectral width of 1802.45 Hz (6.0 ppm) in both 

dimensions. Thirty-two transients, having 1024 points, were collected for each increment. 

The 2D (1H -13C) HSQC heteronuclear correlation spectrum was acquired in 128 increments, 

using a recycle delay of 2.0 s, and a spectral width covering 4006.41 Hz (13.34 ppm) in the direct 

dimension and 12500 Hz (165.62 ppm) in the indirect dimension.  One-hundred-and-fifty-two 

transients, having 1024 points, were collected for each increment. 

The 2D (1H -13C) HMBC spectrum was acquired in 256 increments using a recycle delay of  

2.0 s, and a spectral width covering 1951.60 Hz (6.50 ppm) in the direct dimension and 14268 Hz 

(190.24 ppm) in the indirect dimension.  One-hundred transients, having 1024 points, were collected 

for each increment. 
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Deuterium exchange experiments were also performed, where deuterated water (D2O: 

Cambridge Isotope Laboratories; CAS 7789-20-0), was added in dropwise fashion between 

consecutive measurements, over the course of 3 hours. 1D 1H and 2D 1H-1H NOESY experiments were 

performed for each drop of D2O which was added.  

2.3.2. Simulations 

The SpinWorks software developed at the University of Manitoba was used to simulate the 

300 MHz 1H spectra [97]. The free inducton decay (FID) for each spectrum was zero-filled four-fold 

and subjected to Gauss-Lorentz apodization, having a line broadening of -1.00 Hz, and a Gaussian 

broadening of 0.1.  The spectra were simulated in 3 smaller parts, since the software would not allow 

the spin system as a whole simulated all at once.   The isovalerate group, containing the hydrogens 1', 

2'A, 2'B, 3', 4' and 5', was simulated as a nine-spin ABCD3E3 system. Similarly the six-membered A-

ring, containing hydrogens, 7α, 7α, 8, 16, 10 and 11, was simulated including the sidechain hydrogens 

15AB as a ten-spin ABCD3EFGH system. The remainder of the core containing hydrogens, 2, 3, 3OH, 4, 

14,13A and 13B, was simulated as a nine-spin ABCDE3FG spin system. Long range couplings were 

considered up to 5 bonds, and an inherent line width of 0.3 Hz with Lorentzian line shapes, was used 

to fit the data. Seventy transitions were assigned in the simulation of the isovalerate group, which 

had a total root mean squared deviation (RMSD) of less than 0.23 Hz and a largest absolute frequency 

difference of less than 0.56 Hertz (Hz). Standard deviations (SD) in all the spectral parameters 

ranged from 0.05-0.10 Hz. In the simulation of the A-ring, 2336 transitions were assigned with RMSD 

below 0.034 Hz, and a largest absolute difference of 0.08 Hz. SD in all the spectral parameters ranged 

from 0.03-0.06 Hz. In the simulation of the remaining signals, 1328 transitions were assigned with an 

RMSD below 0.031 Hz, and a largest absolute difference of 0.09 Hz. SD in all the spectral parameters 

ranged from 0.003-0.006 Hz. 
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2.4.  Results 

2.4.1. Structural Rigidity and Water Bridging 

The central core of trichothecene toxins is composed of several fused rings, which impact a 

considerable amount of rigidity to the structure; however, the tetrahydropyran (B-ring), and 

cyclopentyl (C-ring) rings may still experience a certain amount of flexibility, particularly in solution. 

Through-bond coupling constants provide a good indication as to the overall rigidity of a structure. 

The solution-state 1H spectrum (Figure 2.2a) was assigned and simulated to accurately 

determine chemical shifts and coupling constants. The labeling convention described by Savard and 

Blackwell was used to maintain standards previously set out in the literature [135].  Coupling 

constants up to five bonds were considered in regions where significant π-electron density was 

expected. The corresponding chemical shifts and coupling constants are presented in Tables 2.1-2.4. 

The close agreement observed between the simulated and experimental spectra strongly supports 

the accuracy of the assignment. The methine and methylene protons of the isovalerate group are 

strongly coupled, which is demonstrated by the presence of highly second order features in the 

spectrum, which are highlighted in the inset of Figure 2.2a.  Despite this complication, extraction of 

coupling constants and chemical shifts that have not previously been reported was possible. 
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: (A 
Figure 2. 2 A) T-2 toxin  1H NMR solution-state spectrum at 300 MHz in CDCl3. (B) Deuterium 
exchange experiment. Regions exhibiting significant changes throughout the incremental addition of 
D2O have been expanded to show peak structure. Of particular interest, is the H-3OH and H2O/HDO 
regions, which not only demonstrate significant changes in chemical shift, but also exhibit the 
retention of their sharp peak structure, indicating a slow chemical exchange process. H-3 is less 
affected in that the only observable changes in the loss of coupling to H-3OH as the latter peak is 
converted to H-3OD. 

 

 

   

  

 

 

 



54 
 

Table 2. 1:: 1H chemical shifts for the resonances of the trichothecene core of T-2 toxin in CDCl3 at 300 MHz 

Label Chemical Shift (ppm) COSY NOESY 

2 3.6811 () 3β,3OH,14 3β,13B 

3β 4.160 2,3OH,4α 2,3OH,4α,H2O 

3OH 3.100 2,3β 3β,4α,11,H2O 

4α 5.348 3β,9′,13B,14 3β,3OH,11,14, 

15AB,9′,H2O 

7α 1.886 7β,8,11 7β,8,14 

7β 2.408 7α,8,15B 7α,8,13A 

8 5.298 7αβ,10,16 7αβ,16,2′ 

10 5.818 8,11,16 11,16 

11 4.355 7α,10,16 3OH,4α,10,H2O 

13A 2.809 13B,14 7β,13B,14 

13B 3.046 4α,13A,14 2,13A 

14 0.817 2,4α,13AB,15A  4α,7α,13A,15A 

15A 4.293 14,15B,7′ 4α,15B 

15B 4.066 7β,7′,15A 4α,15A 

16 1.748 8,10,11 8,10 

1All signals were simulated with an error of ±0.001 
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Table 2. 2: 1H coupling constants of the resonances of the trichothecene core of T-2 toxin in CDCl3 at 
300 MHz 

Label Coupling (Hz) Comment/Assignment  

3J2,3β 4.946 (0.005) 2 is gauche to 3β 

4J2,3OH
 - 0.294 (0.005)  

4J2,14
 - 0.304 (0.004)  

3J3β,3OH 2.909 (0.005) 3β is gauche to 3-OH 

3J3β,4α 2.885 (0.005) 3β is gauche to 4α 

5J3β,13A 0.211 (0.005)   

5J4α,13B 0.160 (0.005)  

4J3OH,4α
 - 0.293 (0.005)  

4J4α,14 - 0.277 (0.003)   

2J7α,7β -15.015 (0.006) Geminal coupling typical of sp3 carbon 

3J7α,8 1.248 (0.006) 7α nearly perpendicular to 8 

4J7α,11 -1.598(0.006) W configuration  

3J7β,8 5.718 (0.006) 7β is gauche to 8 

4J7β,15B
 -0.446(0.006) W configuration in one rotational isomer 

4J8,10 -0.979 (0.006)  Typical of H on sp2 carbon 

4J8,16 -0.700 (0.003)  Indicative of rigidity of ring 

3J10,11 5.892 (0.006) 10 is gauche to 11 

4J10,16 -1.451 (0.003)  Typical of H and CH3 on sp2 carbon 

4J11,15B -0.588 (0.006)  W configuration in one rotational isomer 

5J11,16 0.739(0.003)  Typical of CH3 on sp2 carbon 

2J13A,13B 3.971 (0.005) Geminal coupling indicating ring strain 

2J15A,15B -12.835 (0.006) Geminal coupling typical of sp3 carbon 

 
Table 2. 3: 1H chemical shifts of side-chain groups on T-2 toxin in CDCl3 at 300 MHz 

Label Chemical Shift (ppm)  
2′A 2.154(0.0002)  

2′B 2.159(0.0002)  

3′ 2.107(0.0003)  

4′ 0.970(0.0002)  

5′ 0.961(0.0002)  

7′ 2.041(0.0001)  

9′ 2.151(0.0001)  



56 
 

 

Table 2. 4: 1H coupling constants of side-chain groups on T-2 toxin in CDCl3 at 300 MHz 

Label Coupling (Hz) Comment/Assignment  

2J2′A,2′B -14.03 (0.10) Typical geminal coupling of sp3 carbon 

3J2′A,3′ 7.33 (0.10) Rotationally averaged 

3J2′B,3′ 7.56 (0.10) Rotationally averaged 

3J3′,4′ 6.77 (0.10) Rotationally averaged 

3J3′,5′ 6.61 (0.10) Rotationally averaged 

 
 
 

 
 
 

 

Figure 2. 3: 1H-1H COSY spectrum observed for T-2 toxin at 300 MHz in CDCl3. Auto-correlation peaks 
are shown in black along the diagonal. Correlation peaks appearing off the diagonal are depicted in 
red. The strong 2- and 3-bond couplings are in black typescript; whereas, the weaker 4- and 5-bond 
couplings are in red type. 
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The COSY spectrum (Figure 2.3) supports the assignment of the 1D 1H spectrum in every 

aspect, and also indicates some long range connectivities of note.  The prominent cross peaks in the 

COSY spectrum, black typescript, represent primarily two- and three-bond connectivities; whereas, 

the weaker 4- and 5-bond connectivities are shown in red typescript. These are all listed in tables 2.1 

and 2.3. The coupling between H-7α and H-11 strongly supports that the H-7α is in an equatorial 

position. This four-bond coupling has a large value of -1.59 Hz, which indicates a very rigid W-type 

configuration between these two nuclei. A similar coupling is seen between H-7β and H-15B, which 

suggests that H-7β must occupy a position which is axial to the core and H-15B points towards C-14 

and occupies a space underneath the ring. Therefore, the oxygen of the hydroxyl group on C-15 is 

gauche to both C-7 and C-5. This 4-bond coupling is smaller at -0.45 Hz, suggesting that more than 

one rotational isomer is likely present in solution, such as one with the oxygen on C-15 being gauche 

to C-7 and trans to C-5. Likewise, one may appreciate the 4-bond coupling, which occurs between H-

15B and H-11 at  -0.59 Hz.  

The NOESY spectrum (Figure 2.4) provided data which was instrumental in confirming the 

overall configuration of all the proton resonances, including the methyl resonances of the acetyl side 

chains, and the specific assignments of the methylene protons (H-7αβ, H-13AB and H-15AB). Notable 

cross peaks include those occurring between hydrogens H-7β and H-13A, H-7α and H-14, H-2 and H-

13B, H-13A and H-14, H-15A and H-14, H-15AB and H-4α. These fully support the assignments made by 

Greenhalgh et al. [12,55,134,135]. Prominent EXSY crosspeaks were also observed between water 

and H-3OH (Figure 2.4), which indicates the presence of chemical exchange in the sample, which was 

further confirmed with the deuterium exchange experiment (Figure 2.2b). Furthermore, positive 

NOESY crosspeaks are observed between the H2O peak and H-3β, H-4α, and H-11, indicating close 

proximity. 

A deuterium exchange experiment was performed to determine whether the water present 

in the sample was bound to T-2 toxin or whether it is free. Two sharp and rather distinct peaks are 

observed for H2O and HDO (Figure 2.2b). The linewidth of the H2O peak was compared to that of the 

uncoupled methyl hydrogen on C-14, and is remarkably similar, suggesting that there is no line 
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broadening in the H2O peak due to chemical exchange, and that the same correlation time applies to 

both resonances. Furthermore, despite the decrease in intensity of the H-3OH resonance upon the 

addition of D2O, it remains sharp and consistently exhibits coupling behavior to H-3β, indicating that 

it is in a slow exchange process with D2O. Complete exchange of the H-3OH with D2O occurs over the 

course of 3 hours.  

The 1D 1H NMR data is consistent with and complements previous NMR findings on T-2 

toxin [12,55,134,135]. The chemical shift and coupling constants observed for the hydrogens 

attached directly to the trichothecene core confirm the previously defined stereochemistry. 

Additionally, 2D NOESY data made it possible to distinguish between H-13A and H-13B, whose 

geminal coupling indicates severe ring strain, which is to be expected for the three-membered 

epoxide ring. The vicinal couplings of H-7α and H-7β with H-8 confirm that H-7β is gauche, and that H-

7α is perpendicular to H-8, respectively, confirming the assignments made by Savard and Blackwell 

[12,55,134,135]. Long range four- and five-bond coupling constants also imply significant 

conformational rigidity in solution; this is especially true for the coupling observed between H-7α and 

H-11.  Any long-range couplings to H-10 are primarily the result of efficient π-electron spin 

propagation due to the nearby conjugated double bond. Also note that the vicinal couplings present 

for the isovalerate ring, which range from 6.5-7.5 Hz, are consistent with a low barrier to rotation 

about the C-C bonds, expected within the isovalerate functionality. This is further supported by the 

near chemical shift equivalence of H-2'A and H-2'B. The complete assignment for T-2 toxin is depicted 

in figure 2.5. 

 

 

 

 

 

 

 

 



59 
 

 
Figure 2. 4:  1H NOESY for T-2 toxin at 300 MHz in CDCl3. Cross-relaxation peaks bearing a positive 
phase are shown in red. Negatively phased peaks, including the diagonal autocorrelation peaks and 
exchange (EXSY) peak observed between H2O(3OH) are shown in black, with blue typescript. 

 

Figure 2. 5: Proposed chemical structure of T-2 toxin indicating all 1H resonances labelled to show 
appropriate stereochemistry. 
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2.4.2. Carbon Spectral Analysis 

The 1D 13C spectrum of T-2 toxin in solution is presented in Figure 2.6.  The 13C-spectrum 

was assigned on the basis of chemical shifts and couplings observed in the 2D heteronuclear 

experiments.  

 

 

 

Figure 2. 6: The solution-state 13C NMR spectrum for T-2 toxin in CDCl3 at 75 MHz with 1H decoupling 

 
 
 

The carbon assignment, along with cross-peaks of note in the HSQC and HMBC spectra are 

summarized in table 2.5. The heteronuclear correlation methods allow for the unambiguous 

assignments of all the carbonyl resonances, including those of the carbonyl and methyl carbons of the 

acetyl side chains, which confirms the assignments previously identified by Savard and Blackwell 

[134]. 
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Table 2. 5: Carbon-13 chemical shifts  and 1H-13C couplings for T-2 toxin in CDCl3 at 75 MHz 

Label Solution (ppm) HSQC HMBC 

2 78.72 2 3OH,13B 

3 78.40 3β 4α 

4 84.60 4α 2,14 

5 48.39  2,4α,14,15AB  

6 42.94  7β,8,14,15AB  

7 27.75 7αβ 15B  

8 68.02 8 16 

9 136.32  8,11,16 

10 123.70 10 11,16 

11 67.34 11 2,15A 

12 64.59  2,4α,13AB,14 

13 47.21 13AB  

14 6.88 14  

15 64.31 15AB  

16 20.35 16 7αβ 

1′ 172.73  8 

2′ 43.58 2′ 4′,5′ 

3′ 25.78 3′ 2′,4′,5′ 

4' 22.37 4′ 3′,5′ 

5′ 22.45 5′ 3′ 

6′ 170.13  7′ 

7′ 21.07 7′  

8′ 172.70  15, 9′ 

9′ 21.04 9′  
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2.5.  Discussion 

2.5.1. Hydrogen-Bonding in Solution 

Combining the results of the deuterium exchange experiment and the NOESY experiment, 

some interesting observations arise in regards to the hydrogen-bonding behavior of T-2 toxin. When 

D2O is added to a sample, it will rapidly interchange with any free water in the sample, forming HDO. 

In the case of fast exchange between H2O and HDO, one would expect to observe a single broad line 

due to the coupling of the HDO proton to the deuterium nucleus, which confers a fine triplet structure 

to the peak. The deuterium nucleus shields the proton on the HDO molecule, and shifts the resonance 

slightly to a lower frequency. However, our observations indicate that the conversion from H2O to 

HDO is on a much slower timescale, given by the rather distinct and sharp lines observed for both the 

H2O and HDO signals (Figure 2.2b). The coexistence of these peaks in the spectrum suggests that at 

least a portion of the water in the sample is prevented from freely exchanging with D2O, indicating 

that it is likely protected due to a binding interaction with the trichothecene. Furthermore, the 

linewidth for the H-3OH resonance remains consistent over the course of the exchange experiment. 

Where H-3OH is undergoing a fast exchange process with water a broad featureless line would be 

expected. The sharpness of the H-3OH peak, as well as the coupling observed between this proton and 

H-3β, indicate that H-3OH is most likely involved in a hydrogen bonding interaction of some kind. The 

data suggest that at least some of the H2O in the sample is bound to T-2 toxin, thereby, preventing the 

water and H-3OH from exchanging rapidly with D2O. 

The orientation of the bound water, with respect to the molecule, can be determined through 

analysis of the NOESY spectrum. It is important to note that in spectra where chemical exchange is a 

factor, second-order artifacts known as saturation transfer peaks cannot be ruled out. Thus, it is 

necessary to analyze any crosspeaks to water with care in order to determine whether they are true 

first-order cross-relaxation signals or artifacts due to saturation transfer. Peaks arising from 

saturation transfer in the analysis of small molecules, such as T-2 toxin, possess the same phase as 

the diagonal autocorrelation peaks; whereas, molecules with  longer correlation times, such as large 

macromolecules like proteins and nucleic acids, would have saturation transfer peaks that possess 

the same phase as conventional NOE peaks [112]. Therefore, it is expected that any saturation 
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transfer peaks in T-2 toxin would appear negative due to the short correlation time of the molecule. 

Additionally, saturation transfer will not occur if the rate of chemical exchange is on the same order 

or longer than the rate of longitudinal (T1) relaxation [26], as the sampling of the experiment would 

occur prior to exchange, and transfer due to saturation of the signal by chemical exchange would not 

be possible. If we consider that the rate of chemical exchange observed in the deuterium experiment 

described above is relatively long, then the observation of saturation transfer peaks for this system is 

highly unlikely. The observed crosspeaks to water for H-3β, H-4α, and H-11 are all positive (Figure 

2.4), therefore, they are not due to chemical exchange, and since saturation transfer is not possible in 

this case, they must arise as a result of cross-relaxation. This suggests that H-3β, H-4α, and H-11 are 

all in close proximity to water. Thus, at least one molecule of water is bound to T-2 toxin, and must lie 

within the tetrahydropyranyl pocket, which is located on the opposite side of the molecule with 

respect to the epoxide (Figure 2.7). 

 

Figure 2. 7: Proposed placement of water in the tetrahydropyranyl pocket of T-2 toxin. estimated 
placement of the water is based on logical hydrogen-bonding interactions, and EXSY crosspeaks. 
Cross-relaxation was observed between water and H-3β, H-4α and H-11, indicating close proximity; 
chemical exchange between water and H-3OH was also observed. 
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Evidence of bound water is a very interesting result, as the trichothecenes themselves are 

known to be insoluble in water; however, it is also accepted that the presence of some water is 

required in order for the molecules to go into solution. Binding of water within the 

tetrahydropyranyl pocket may serve as a bridge between the oxygen of the tetrahydropyran ring, 

and the hydroxyl at C-3, serving to stabilize the molecule, and preventing a significant amount of 

structural flexibility in this particular ring of the core. It is interesting that this bridging water is 

found on the opposite side of the trichothecene core from the epoxide ring. The high degree of ring 

strain in the epoxide ring should ultimately confer a great deal of electrophilic character to C-12; 

however, throughout all of the literature on the trichothecenes, the consensus remains that this 

particular epoxide functionality is highly stable, and is subject only to enzymatic degradation [133]. 

One possible theory is that the bridging water is required in the trichothecene core in order to 

maintain the unusual stability of the epoxide. 

2.6. Conclusions 

A complete proton and carbon NMR analysis was performed to verify the stereochemistry of 

T-2 toxin in solution. This served to confirm and refine the assignment of all the methylene protons, 

acetyl, methyl and carbonyl resonances previously described in literature.  Full simulation of the 

proton spectrum provided all the spectral parameters to within 0.02-0.06 Hz accuracy, and led to 

useful structural and dynamic insights for the molecule, which include the rigidity of the ring 

structure, the conformational flexibility of the side chain, and the ring strain in the epoxide group. 

Most notably, exchange dynamics were observed between water and H-3OH via EXSY cross peaks, 

lending support to the existence of a hydrogen bonding interaction between T-2 toxin and water. 

Additional, cross-relaxation peaks in the NOESY spectrum, observed between water and H-3β, H-4α 

and H-11, indicate that the water is bound within the tetrahydropyranyl pocket present on the side 

of the ring opposite the epoxide functionality. Deuterium exchange experiments were performed to 

address whether water was free in solution, or whether it was indeed bound to the toxin. Sharp 

coupled peaks and slow chemical exchange between H2O and D2O, provide strong support that there 

is at least one water molecule bound to T-2 toxin through a hydrogen bond with the hydroxyl 
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hydrogen on C-3, which is also observed to be in the slow chemical exchange regime. This hydrogen 

bond is likely involved in a water-bridging interaction with the molecule and functions to stabilize 

and rigidify the trichothecene core. 

These new insights into the three-dimensional structure of T-2 toxin, as well as the relatively 

slow exchange with water, provide a basis with which it is possible to begin piecing together the 

mechanism for toxicity of T-2 toxin, as well for other toxins in the trichothecene subclass.  
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3. Structural Analysis of the DON family of toxins 

3.1 Overview 

This chapter deals with the NMR structural analysis of the DON family of mycotoxins in 

solution, namely DON, nivalenol (NIV) and the acetylated derivatives of DON, 15-O-

acetyldeoxynivalenol (15-ADON), and 3-O-acetyldeoxynivalenol (3-ADON), and aims to describe the 

nature of the hydrogen-bonding interaction for these toxins with water, as previously reviewed for 

T-2 toxin. All compounds are studied in deuterated chloroform (CDCl3) at 300 MHz for 1H and 75 

MHz for 13C. The 2D correlation experiments employed here, help to refine the current literature 

assignments for the type B trichothecenes studied herein. Furthermore, deuterium exchange 

spectroscopy has been conducted on DON, indicating the presence of bound water, supporting the 

findings from the previous study of T-2 toxin. 

3.2 Introduction 

This study was initiated with a view of developing an understanding of the hydrogen-

bonding interactions of the type B trichothecenes (i.e. DON, NIV, 15-ADON and 3-ADON), both in 

internal interactions, and with water, as well as the effects that water has on the 3D conformation of 

the trichothecenes. This information is essential in gaining insight towards the biochemical 

interactions that these toxins may undergo with various components in the eukaryotic cell. However, 

before the biochemical interactions can be understood, it is important to have an advanced 

understanding of the structure and dynamics of this class of toxins.  

The presence of the ketone group at C-8 is the identifying feature for the type B 

trichothecenes. The type B toxins are structurally simple in terms of the substitution patterns, as they 

are mostly unsubstituted, hydroxylated, or esterified; therefore, they are expected to exhibit far more  

dynamics than their type A, C and D type counterparts. Considering DON as the parent compound, 

the remaining toxins in this class differ from DON at only one of the substitution sites each: NIV is 

hydroxylated at C-4, 3-ADON in acetylated at C-3, and 15-ADON is acetylated at C-15. The last 

remaining naturally occurring type B toxin  is Fusarenon-X (Fus-X), which resembles NIV with an O-
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acetylated group at C-4 [98,115,123]. Fus-X was not included in this study as it is rare in North 

America, affecting primarily countries in Eastern Europe and Asia [23]. Despite the lack of 

agricultural concern for Canadian industries, the toxicity of Fus-X towards animal systems is 

comparable to that of DON [164], and merits future attention on matters regarding its dynamic 

properties. 

Esterification has been shown to dramatically  lower the  phytotoxicity of DON  

[1,20,50,51,114,168,170,171]; however, this is not strictly true with respect to animal systems. 

[37,98,108,113,122,123,148,164]. This difference in toxicity versus phytotoxicity with respect to 

esterification is somewhat surprising considering the relatively high toxicity of T-2 toxin, which is 

esterified at three sites; however, it does maintain the overall trend in trichothecene toxicity as 

related to substitution pattern. The mechanism for the enzymatic esterification of DON has been 

studied by Garvey et al. in an attempt to provide a means of control for the toxin [50,51,114]. 

Esterification of DON occurs at C-3 or C-15 via the enzymes TRI101, or TRI3, respectively [50,51]. 

Investigation of the dynamics of the O-acetylated derivatives, 3-ADON and 15-ADON, may provide 

some insight into how esterification may serve to control the phytotoxicity of DON.  

The majority of studies on the type B trichothecenes have focused on structure 

determination, and as a result there are few dynamic studies available with which comparisons can 

be made. Density functional theory (DFT) computations were conducted by Nagy et al. in 2005  

[111], on the internal dynamics of DON, which suggested that the lowest energy configuration 

contains an internal hydrogen-bonding network. The proposed hydrogen bonding occurs between 

the C-8 carbonyl oxygen and the C-7 hydroxyl hydrogen, which is linked further to the hydroxyl 

hydrogen at C-15. This internal network imposes significant rigidity in this compound, as seen in 

figure 3.1. The energy of this interaction is significantly reduced from all other locally optimal 

configurations; however, hydrogen-bonding and bridging with water was not taken into account in 

this study. The literature clearly indicates the need for a small amount of water to render 

trichothecenes [130-132] soluble in solution in the case of ethanol, methanol and chloroform. This, 

together with the new evidence presented in chapter 2 for the water binding in T-2 toxin [27], 
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demonstrates that the hydrogen-bonding, both intra- and inter-molecular, of all the trichothecenes 

should be carefully considered. 

 
 

Figure 3. 1: Internal hydrogen-bonding network in DON proposed by density functional theory (DFT) analysis 
[111], showing the bonds from 15OH to 7OH, and from 7OH to the oxygen of the ketone functionality on C-8. The 
relative geometry reflects the introduction of the planar bonds due to presence of double bonds in the A-ring. 

 

3.3 Materials and Methods 

3.3.1 Solution-State NMR Experiments 

All spectra were acquired using a Bruker Avance 300 spectrometer, outfitted with a 5 mm 

HX PABBO BB probe.  The magnetic field strength of the spectrometer is 7.05 Tesla, which gives rise 

to a Larmor frequency of 300.131 MHz for 1H and 75.468 MHz for 13C nuclei.  All spectra presented 

here were acquired at ambient temperature (21-26°C). Deoxynivalenol (Sigma, CAS 51481-10-8), 

Nivalenol (Sigma, CAS 23282-20-4), 15-O-acetyldeoxynivalenol (Sigma, CAS 88337-96-6), and 3-O-

acetyldeoxynivalenol (Sigma, CAS 50722-38-8), as well as a second sample of deoxynivalenol 

acquired from the agriculture and agri-food Canada (AAFC) group in Ottawa were all dissolved in 

CDCl3 to a concentration of 1 mg/mL using TMS as an internal reference for both 13C and 1H nuclei. As 

previously demonstrated [66,72], trichothecene configuration is highly dependent on solvent, 

therefore the importance of careful solvent drying of both the toxin and the solvent must be 

emphasized. The sample of DON acquired from Sigma-Aldrich was placed in a small round-bottom 

flask and dried by vacuum pumping on the sample for 6 hours under nitrogen gas to remove any 
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adsorbed water from the sample. CDCl3 was dried over molecular sieves in order to prevent water 

contamination in the samples. The 1D 1H spectrum was recorded as 128 transients, using a 90° pulse 

width of 12.4 μs, and a recycle delay of 1.5 s. The 1D 13C spectrum was recorded as 4000 transients, 

using a 90° pulse width of 7.6 μs, and a recycle delay of 4.0 s. 

The homonuclear magnitude gradient 1H COSY spectrum was acquired in 256 increments 

over a spectral width of 1800 Hz (12.0 ppm) in both dimensions, using a recycle delay of 1.5 s.  64 

transients were collected for each increment, having 4096 points. The direct and indirect dimensions 

have a digital resolution of 0.88 and 7.03 Hz, respectively. 

The gradient 1H NOESY spectrum was acquired in 256 increments covering a spectral width 

of 1802.45 Hz (12.0 ppm) in both dimensions, using a recycle delay of 1.5 s and an array of mixing 

times of 0.5 s, 1.0 s, and 1.5s.  32transients were collected for each increment, having 4096 points. 

The direct and indirect dimensions have a digital resolution of 0.88 and 7.03 Hz, respectively. 

The 1H -13C HSQC  spectrum was acquired in 128 increments, using a recycle delay of 2.0 s, 

and a spectral width of 4006.41 Hz (13.34 ppm) in the direct dimension and 12500 Hz (165.62 ppm) 

in the indirect dimension.  152 transients were collected for each increment, having 1024 points.  The 

direct and indirect dimensions have a digital resolution of 3.91 and 97.66 Hz, respectively, no zero-

filling was employed here. 

The 1H -13C HMBC spectrum was acquired in 256 increments using a recycle delay of 2.0 s, 

and a spectral width covering 1951.60 Hz (6.50 ppm) in the direct dimension and 14268 Hz (190.24 

ppm) in the indirect dimension.  One-hundred transients were collected for each increment, having 

1024 points and the FID was zero-filled up to a value of 4096 points.  The direct and indirect 

dimensions have a digital resolution of 0.52 and 56.04 Hz, respectively. 

Deuterium exchange experiments were performed at ambient temperature where 

deuterated water, D2O (Cambridge Isotope Laboratories; CAS 7789-20-0), was added drop wise to 

the NMR tube between consecutive NMR measurements, over the course of 3 hours. 1D 1H and 2D 

1H-1H NOESY experiments were performed upon each instance of D2O addition. 
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3.3.2 Simulations 

The SpinWorks software developed by Marat and colleagues at the University of Manitoba 

was used to simulate the data obtained for the 300 MHz 1H spectra [97]. The FIDs were zero-filled to 

256k points and were subjected to Gauss-Lorentz apodization with a line broadening between -1.00 

to -0.50 Hz, and a Gaussian broadening of 0.33, depending on the signal-to-noise ratio in the data.  

The spectra were simulated in 2 parts as the whole spin system could not be simulated at once.   The 

subspectrum of the six-membered ring, with hydrogens, H-7OH, H-7β, H-10, H-11, H-15A, H-15B, H-

15OH, H-16, and where appropriate, with the those of the 1’ methyl, from either the 3-O-acetyl, or 15-

O-acetyl, was simulated as either a ten-spin ABCD3EFGH or 11-spin ABCD3EFGHI3 system 

respectively. Similarly, the subspectrum associated with the remaining hydrogens from the core 

structure, H-2, H-3, H-3OH, H-4α, H-14, H-13A and H-13A, and H-4β or, in the case of NIV, H-4OH was 

simulated as a ten-spin ABCDE3FGH spin system. Long range connectivities were considered up to 5 

bonds, and an inherent line width of 0.3 Hz along with Lorentzian line shapes was used to fit the data. 

The A ring simulation  calculated 2001 transitions which were assigned to within RMS deviation 

below 0.034 Hz, and a largest absolute difference of 0.08 Hz. Standard deviations (SD) in all the 

spectral parameters ranged from 0.01-0.04 Hz. In the C ring simulation also the 2216 transitions 

were assigned with an RMSD below 0.031 Hz, and largest absolute difference of 0.09 Hz. SD in all the 

spectral parameters range from 0.001-0.009 Hz. 

3.4 Results 

3.4.1 Full Spectral Assignment of Deoxynivalenol in Chloroform 

The substituents of DON’s trichothecene core are predominantly small flexible groups (i.e. –

OH, and –H); with the exception of the ketal functionality at C-8 which is expected to impose 

significant rigidity on the system. The core is composed of four fused rings which result in a very 

rigid structure. The A-ring is expected to be particularly rigid when the ketone functionality is 

present at C-8, which is conjugated with the double bond between C-9 and C-10. Conjugation locks 

that side of the molecule in a planar configuration, rather than the half-chair configuration typical for 

the other trichothecene classes. The ketone at C-8 also offers a strong electron donor at the oxygen, 
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which is highly favored to undergo hydrogen bonding. It is important to point out that a certain 

degree of torsional flexibility is expected in the tetrahydropyran (B-) and cyclopentyl (C-) rings, 

particularly where small substituent groups are present, as is the case with DON. The long range 

scalar coupling constants between protons on the core structure, seen in the 1H and 1H-1H COSY 

spectra are used to gauge the rigidity in this structure. 

Although full spectral analysis was performed on all of the samples studied in this section, 

not all of the spectra and analyses are included in the body of this work. Thus, DON in CDCl3 is used 

to exemplify the extent to which data was obtained for each sample presented. 

The solution-state 1H spectrum shown in figure 3.2 was assigned and simulated to determine 

the chemical shifts and coupling constants of the spin system with a high degree of accuracy. The 

assignment employs the same labeling convention as determined by Savard and Blackwell [135]. 

Where significant π-electron density is expected, coupling constants up to five-bonds were 

considered. The corresponding chemical shift and coupling constants are presented in table 3.1 and 

3.2, respectively. The close agreement (on the order of 0.001 Hz in the 1H chemical shift, and 0.001-

0.007 Hz for the coupling) observed between the simulated and experimental data strongly supports 

the accuracy of the assignment, based on the optimization provided for the SpinWorks program. The 

inset of figure 3.2 depicts the agreement between the simulated and experimental spectra. The 

assignment corresponds closely to previously published attempts, serving as a testament to the 

accuracy of the assignment [111,135]; however, some small discrepancies in the assignment are 

noted and serve as refinements to the data presented in the literature. 



72 
 

 
Figure 3. 2: 1H NMR solution-state spectrum for DON at 300 MHz in CDCl3. The experimental spectrum is shown in blue and is labeled according to the convention 
described by Savard and Blackwell [135], the simulated spectrum is shown in red. An inset depicting the methylene protons of C-4 is provided to show the close 
agreement between the simulation and the experimental spectra. 
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Table 3. 1: Comparison of the experimental and literature data for DON studied in CDCl3  [135] 

1H label Exp. Chemical Shift – 

δ (ppm) 

Lit. Chemical Shift –δ 

(ppm) 

COSY NOESY 

2 3.6721,2  3.62 3β,14 3β 

3β 4.5772 4.53 2,4α,4β 2,4α,4β 

3OH 2.0672 N/O3   15OH, H2O 

4α
* 2.247 2.21 3β,4β 3β,4β,14 

4β
* 2.129  2.07 3β,4α 3β,4α,14 

7β
* 4.878  4.83 7OH 7OH 

7OH
* 3.862  N/O3  7β 7β,14,H2O 

10 6.656  6.61 11,16 11,16 

11 4.845  4.86 10,16 4α,10,16 

13A
* 3.120  3.07 13B 13B 

13B
* 3.195  3.14 13A 13A,14 

14 1.174  1.13 2 4α,4β,7OH,13B,15AB 

15A 3.7812 3.73 15B,15OH 14,15B,15OH 

15B 3.9332 3.89 15A,15OH 14,15A,15OH 

15OH 2.0662 N/O3  15AB 3OH,15AB,H2O 

16 1.931  1.86 10,11 10 

1 Chemical shifts were simulated within ±0.001 Hz in all cases 

2Indicates signals which experience line broadening. 
3Hydroxyl resonance not recorded in the literature. 
*Denotes that the labeling scheme presented in the literature by Savard and Blackwell is employed in 
this table and is reviewed in the following two chapters for consistency in the data. 
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Table 3. 2: 1H-1H scalar coupling constants extracted from the 1D and 2D data collected for DON 

 J (Hz) – Exp. J (Hz) – Lit. Interpretation 

3J2,3 4.643 (± 0.005)1 4.5 2 is gauche to 3β 

3J3,4α
* 4.150 (± 0.005) 4.5 3β is gauche to 4α 

3J3,4β
* 11.013 (± 0.005) 10.7 3β is trans to 4β 

3J3β,3OH 1.131 (± 0.005) N/O2  3β is gauche to 3OH 

2J4α,4β -14.748 (± 0.004) 14.8 Germinal coupling typical of an sp3 carbon 

3J7β,7OH 1.218 (± 0.003) 2.1 7β is gauche to 7OH 

3J10,11 5.283 (± 0.007) 5.9 10 is gauche to 11 

5J10,15A
 -1.412 (± 0.007) N/O3  Typical coupling for a W-configuration 

5J10,15B
 -0.948 (± 0.007) N/O3  Typical of a rigid conformation 

4J10,16
 1.519 (± 0.007) 1.5 Typical coupling for an H and CH3 on an sp2 

Carbon 

2J13A,13B
 4.268 (± 0.004) 4.3 Geminal coupling indicating significant ring 

strain. Typical of an epoxide 

2J15A,15B
 -11.817 (± 0.001) 12 Germinal coupling typical of an sp3 carbon 

3J15A,15OH
 0.965(± 0.007) N/O2  15A is gauche to 15OH 

3J15B,15OH
 3.065 (± 0.007) N/O2  15B is gauche to 15OH 

1Simulations performed with the SpinWorks Operating Program with an RMSD below 0.031 Hz and a 
standard deviation between 0.01-0.09 Hz. 
2Coupling to hydroxyl resonances not recorded in the literature 
3Long range coupling not observed in the literature 
*The labeling convention presented in the literature by Savard and Blackwell is employed here and 
will be reviewed in chapter 4. 
 
 
 
 
 

It is important to note here that, in the previous literature assignment for DON, the hydroxyl 

protons and their couplings were not observed. Additional water in the sample may result in 

broadening of the hydroxyl signals due to fast exchange and the stoichiometry of water molecules 

per toxin, which can make it difficult to observe these signals. Furthermore, protons that are 

undergoing fast exchange are less likely to experience coupling with the other protons in the spin 

system since they are in constant motion. By removing the absorbed water, it is possible to 

effectively remove much of the exchange that occurs with the solvent, which helps to resolve the 

signals from the exchangeable protons. 
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The line widths in the 1H spectrum of DON are relatively large upon comparison with typical 

solution-state 1H NMR spectra of small natural products.  As a result, the spectrum was simulated 

using a line width of 1.5 Hz; however, this was not suitable for all the signals, as some required line-

broadening up to 3.00 Hz. Line-widths, such as these, may be present for a number of reasons; the 

first of which is an extremely short apparent transverse relaxation time. Line broadening of this sort 

is homogeneous, and is expected to affect all of the signals equally. Dynamics occurring between 

strongly coupled spins also result in line broadening of the participating spins. Long-range couplings 

can also result in increased apparent line-width and required serious consideration in these rigid 

systems. The nuclei of the C-ring are isolated from the rest of the molecule as they are connected to 

quaternary carbons. Only 4-bond and 5-bond coupling from methyl-14 to H-4 and H-3, respectively, 

would be expected based on the stereochemistry; however, the methyl-14 resonance remains quite 

sharp, with a width of 0.9 Hz; thus, the apparent line broadening due to long-range coupling can be 

ruled out.  

The line broadening observed in the spectrum appears to be isolated primarily to the spins 

appearing on the C-ring, which is expected to exhibit a certain degree of flexibility. This may indicate 

that although the fused ring core is locked primarily in a single conformation, some movement in the 

C-ring, involving the C-3 and C-4 carbons is still possible. Therefore, signals resulting from the 

different conformations may be superimposed on each other, contributing to the apparent 

broadening of these lines. The presence of different conformations in DON will be investigated 

further in chapter 4. 
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Figure 3. 3: The 1H COSY spectrum for DON at 300 MHz in CDCl3. Strong three-bond couplings are shown 
in blue; whereas the longer range four- and five-bond couplings are shown in red. Autocorrelation peaks 
appear in grey. 

 

The 1H COSY spectrum confirms the assignment of the 1D 1H spectrum. (figure 3.3) and 

indicates the presence of some longer range scalar coupling. The prominent cross peaks in the COSY 

spectrum represent the strong two- and three-bond couplings (blue), listed in table 3.1; and the small 

four- and five-bond couplings (red), indicate rigidity in parts of the molecule. Autocorrelation peaks 

appear on the diagonal and are shown in black. The relatively large five-bond coupling values of -1.41 

and -0.95 Hz from H-10 to H-15A and H-15B, respectively, provide evidence for the rigidity of the A-

ring as five-bond couplings are typically not observed due to rotation about the bonding system. 

Five-bond couplings generally indicate that the bonds are not free to rotate and hence not averaged. 

Large couplings occurring over 4 or more bonds, such as those between H-10 to H-15AB, indicate that 

the bonds are locked in place in a manner that forces the C-15 methylene hydrogens to adopt a 

specific rotational isomer configuration. This rigidity becomes even more apparent when considering 
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that freely rotating methylene hydrogens should not be participating in long range coupling. Their 

observation leads to some convincing conclusions. If H-15OH were to be involved in a hydrogen bond,  

as  proposed by Nagy et al., depicted in figure 3.1 [111], then the rotation about the C-6/C-15 axis 

would be slowed or completely stalled. In this case large long range couplings are suggestive of 

strong H-bonding imparting significant rigidity in this portion of the molecule. Similar scalar 

couplings between H-15A or H-15B with H-10 are not seen in the COSY spectrum, which may be the 

result of insufficiently long evolution times. It is important to note that couplings from H-10 to H-15A 

and H-15B are generally not observed for trichothecenes in the literature unless significant rigidity is 

apparent [79,135]. The COSY spectrum does indicate that a small five-bond coupling occurs between 

H-2 and methyl-14; however, this in not clearly seen in the 1D 1H spectrum. Thus, any coupling that 

does take place is either very small, or if multiple configurations are present only a small population 

exist in the trans- W-configuration between H-2 and methyl-14, this may also serve to explain some 

of the unusual line broadening behavior observed for H-2.  

The NOESY spectrum (figure 3.4) was crucial in determining the overall 3D conformation of 

DON. Of particular interest are the couplings observed to the methyl protons on C-14. These 

couplings help determine whether the epoxide proton H-13B faces methyl-14. Comparing this to the 

labeling scheme introduced by Blackwell and Savard [135], a discrepancy is noted, as the scheme  in 

the literature has the proton labeled H-13A facing methyl-14, which is consistent with a similar 

observation  made for T-2 toxin in chapter 2. Thus, the assignment of the H-13 protons of the epoxide 

appears to have swapped. In order to minimize confusion, the labeling convention in this spectrum 

will be maintained, which has H-13A having the lower chemical shift; however, the 3D structure, the 

labeling must be amended to include these  new insights. 

Other notable data from the NOESY spectrum include the prevalence of exchange peaks 

(blue). Exchange with water is observed at the hydroxyl protons, H-3OH, H-7OH, and H-15OH, and 

between H-3OH and H-15OH. Exchange also appears to be occurring at sites throughout the spectrum 

where exchange should not occur. This is seen between H-15OH with H-15A and H-15B, H-3β with H-4α 

and H-4β, as well H-10 with H-11. A slice taken through the NOESY spectrum at the location of 
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exchange between H-15A and H-15B, is shown in the inset of figure 3.4. Although these protons are 

expected to undergo through-space coupling, exchange is not expected, as these are not 

exchangeable sites. Multiple spectra of different samples of DON were taken in CDCl3, each with 

different mixing times. In all cases, EXSY peaks appeared where they were not expected to occur. 

Thus, it is highly likely that these discrepancies are due to saturation transfer from nearby 

exchanging protons, signifying that the rate of exchange is much faster than the transverse relaxation 

time, T2, of the compound. 

 

Figure 3. 4: The 1H NOESY spectrum for DON at 300 MHz in CDCl3. The positive phase through-space couplings 
are shown in red, and the negative phase exchange (EXSY) peaks are shown in blue. A horizontal slice through 
the correlation between 15A and 15B is shown in the inset, which clearly depicts that the peak has both positive 
and negative character. 

The 1D and 2D 13C spectra help to confirm the assignment, and are depicted in figures 3.5, 

and 3.6A-B respectively. Of particular importance here is the confirmation of the identity of specific 

signals (i.e. the identity of H-7β over that of H-7OH). It is clear from the HSQC that the resonance 

appearing at 4.878 ppm is unequivocally identified as H-7β; this is confirmed by the HMBC, which 

clearly demonstrates the weaker coupling to H-7OH, appearing at 3.862 ppm.
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Figure 3. 5: Carbon-13 solution spectrum for DON in CDCl3 at 75 MHz, all peaks are labeled and correspond to the numbered structure in the inset of the figure
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Table 3. 3: Carbon chemical shifts and heteronucler 1H-13C couplings for DON in CDCl3 

13C label Chemical Shift – δ (ppm) HSQC HMBC 

2 80.80 2 11 

3 69.17 3β 2,3OH,4αβ 

4 43.21 4α, 4β 2,4β,3OH 

5 46.46  14 

6 51.96  3OH,4αβ,7β,14 

7 70.39 7β 7OH,14 

8 199.87   

9 135.96  11,16 

10 138.46 10 11,16 

11 74.53 11 14 

12 65.61  2,4αβ,13AB,14 

13 47.41 13A, 13B  

14 14.34 14  

15 62.56 15A, 15B  

16 15.37 16 11,16 

 

The HSQC and HMBC spectra support the proton spectral assignment through the 

correlation of the protons to the carbon atoms, and can be used to walk across the carbon skeleton. 

Correlations for C-8 and C-15 appear to be missing. Carbon-8 is within 3 bonds of the protons on 

methyl-16, and the hydroxyl proton H-7OH, and 2 bonds of H-7β; however, C-8 is attached to a highly 

electronegative oxygen atom which may withdraw much of the electron density surrounding C-8 

preventing the transfer of spin polarization between the bonded p-orbitals, consequently preventing 

the observation of any coupling to nearby protons. Carbon-15 only has one proton within 4 bonds 

that may be detected by HMBC, the hydroxyl proton 15OH. This resonance appears broadened in the 

1D 1H spectrum, suggesting that it may be undergoing some exchange process with the solvent, 

eliminating the coupling to C-15 in the HMBC spectrum. Without these correlations, the assignment is 

incomplete; however, the peaks that are present in the HMBC do support the spectral assignment for 

DON. 
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Figure 3. 6: Two-dimensional 1H-13C correlation spectra for DON at 300 MHz and 75 MHz, respectively, in CDCl3. 
A) depicts the HSQC spectrum; B) depicts the HMBC spectrum 
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Interest in regards to the intra- and intermolecular hydrogen bonding interactions for the 

trichothecenes remains a point of interest for the group and through the careful analysis of these 

compounds in a water-depleted solvent system, it is possible to begin to analyze these interactions. 

DFT analysis of DON, performed by Nagy et al. suggested that the lowest energy conformation of DON 

would exhibit an intramolecular hydrogen bonding network [111], shown in figure 3.1. Although no 

direct evidence for this was obtained, the strong EXSY peaks between H-15A and H-15B, depicted in 

the inset of figure 3.4, suggest that these protons are exchanging with each other. Although this is 

something which is to be expected for methylene protons next to a chiral carbon, evidence for the 

exchange between enantiomers is rarely seen, as they are mirror images of each other, and thus, are 

chemically and magnetically equivalent. However, evidence of exchange between diastereotopic 

protons is common, as these may experience slightly different environments. In the case of H-15A and 

H-15B, they would become diastereotopic if C-15 were locked in place due to the hydrogen-bonding 

of H-15OH, or another potential hydrogen bonding interaction. The signal for the proton resonance H-

7OH in the 1H spectrum appears as a rather sharp peak, indicating that exchange with the solvent is 

not taking place. Were this resonance to undergo only a single hydrogen bond with H-15OH, the signal 

would likely still appear fairly broad, as is seen for H-15OH itself, which is approximately 2.5 Hz in 

width; however, H-7OH remains sharp, with a measurable line-width of only 0.4 Hz; therefore, it is 

possible that a second hydrogen-bond with the carbonyl oxygen at C-8 helps to stabilize any 

movement of the bond, resulting in the sharp appearance of the H-7OH resonance. This is further 

supported by the coupling observed between H-7OH and H-7β. Together, the coupling interactions of 

H-15A with H-15B, and H-7OH with H-7β, along with the sharp nature of H-7OH, lend support for the 

lowest energy conformation, described by Nagy and coworkers, for DON [111].  

Intermolecular hydrogen-bonding is also an important factor to consider. This appears to 

indicate that water may be bound to the molecule. Despite having removed much of the water from 

both the sample, by vacuum-pumping under nitrogen, and the solvent, by drying the chloroform with 

molecular sieves, there is still a water peak that appears in the proton spectra, as seen in figure 3.2. 

This water peak is even more apparent in the NOESY spectrum, depicted in figure 3.4, as the water 
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signals appears to have some through-space coupling interactions, and is observed to exchange with 

the hydroxyl protons in the compound. This seems to suggest that the interaction with water is not a 

transient one, but rather results from a more permanent binding event. This binding interaction with 

water is similar to the interaction previously reported for T-2 toxin, and was described in chapter 2. 

Exchange was shown to occur at all the hydroxyl sites appearing on the bottom side of the 

trichothecene core, and at least one water molecule was deemed to bind in the tetrahydropyranyl 

pocket of T-2 toxin.  For DON the tetrahydropyranyl pocket is locked in place by the internal 

hydrogen bonding network, and water binding in this region may help to further stabilize the 

interaction, and rigidify the A-ring in DON. Figure 3.7 depicts the overall 3D structure of DON, 

including the intramolecular hydrogen bonding network, as well as the water bound within the 

tetrahydropyranyl pocket. 

 

Figure 3. 7: Structure for DON depicting the possible formation of an internal hydrogen-bonded network, due to 
the proximity of the hydroxyl proton H-15OH to the oxygen of H-7OH and the proximity of the hydroxyl proton H-
7OH to the carbonyl oxygen of C-8. A water molecule is also predicted to bind within this region, in the 
tetrahydropyranyl pocket, and it is depicted here as well. 
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3.4.2 Characterization of Type B trichothecenes 

The remaining trichothecenes comprising the subclass type B, were analyzed in a similar 

fashion to that described for DON in the previous section. The solution-state 1H spectra were 

assigned and simulated to accurately determine the chemical shifts and coupling constants. To 

understand the rigidity of these compounds in solution, the through-bond scalar coupling was 

thoroughly examined. Where significant π-electron density was expected, coupling constants up to 

five-bonds were considered. These assignments follow the labeling conventions previously described 

by Savard and Blackwell [135]. The corresponding chemical shifts are described in table 3.4, with the 

coupling constants appearing in table 3.5. 

Figure 3.8 provides a stacked plot for the individual toxins dissolved in CDCl3 (or, in the case 

of NIV, in a 1:1 mixture of CDCl3:CD3OD). This figure clearly demonstrates the close agreement of the 

acetylated derivatives of DON (3-ADON and 15-ADON) with DON itself. The only exceptions are those 

signals that correspond to, or are coupled with, the acetylated substituents, which are highlighted in 

the figure. All other resonances in the spectra for 3-ADON and 15-ADON are in close agreement to 

those described in the spectrum for DON. 

The addition of deuterated methanol (CD3OD) to the NIV sample, in a 1:1 ratio with CDCl3, 

helps the toxin go into solution. NIV is not soluble in either of the neat solvents. Differences in the 

solvent are likely a major factor contributing to the variations in the chemical shift of the signals for 

NIV. The general coupling of each of the signals follows the same trend as the other compounds in 

chloroform; however, the introduction of the second solvent serves to shift some of the signals. The 

protic nature of the methanol also introduces the potential for chemical exchange with the solvent.  

Methanol may also interact directly with the molecule, binding to it much like water, inducing some 

shifts in frequency in the spectrum. Chemical exchange with the solvent will have the largest effect on 

the hydroxyl protons in the molecule, and this is likely the reason for the simplicity in the coupling of 

these signals, as well as the large difference in chemical shift, as compared to the other toxins 

investigated here. The hydroxyl protons for NIV are highlighted in figure 3.9, along with the signal for 

H-4α (H-4OH), which is no longer strongly coupled to H-4β, due to the hydroxylation at this site, and is 
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shifted significantly due to the deshielding effect of the oxygen, which pulls the electron density away 

from the proton due to its highly electronegative nature. The hydroxylation at C-4 somewhat 

simplifies the spectrum, removing the second order effects observed in the signal of the H-4 

resonances (see inset of figure 3.9). Thus, from the spectral analysis, all of the type B toxins observed 

in CDCl3 follow the trend previously described by Savard and Blackwell [135] which is depicted in 

Figure 3.8. The literature data along with the experimental data is presented in tables 3.4 and 3.5. 

 

Figure 3. 8: Relative chemical shift trends of the trichothecene resonances in the 1H NMR solution-state 
spectrum in CDCl3. The chemical shifts depicted here are those described by Savard and Blackwell [135] and 
were taken at 250 MHz. 

Relative Position of Proton 
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Figure 3. 9: Stacked Plot of the 1H NMR solution-state spectra for the type B trichothecenes in CDCl3 at 300 MHz. All spectra are compared to that for DON. The insets 
depict the structure for each toxin, and deviations in the substituent groups from DON are highlighted in red. Spectral peaks of interest are highlighted in the spectra in 
yellow; peaks indicating potential degradation, or alternative configurations are highlighted in green. Solvent peaks are marked with a black asterisk, and the water 
peaks with a red asterisk. An inset showing the second-order effects on H-4αβ. 
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Table 3. 4: Experimental and literature 1H chemical shift data for the type B trichothecenes in CDCl3 at 300 MHz 
1H label Chemical Shift – δ (ppm) in CDCl3 

 DON DON (lit) 3-ADON 3-ADON (lit) 15-ADON 15-ADON (lit) *NIV *NIV (lit) 

2 3.6721  3.62 3.9391  3.87 3.6791  3.60 3.3661  3.61 (±0.24) 

3β 4.577  4.52 5.258  5.18 4.573  4.50 3.872  4.13 (±0.26) 

3OH 2.067  N/O N/A N/A 2.143  N/O 0.977  N/O 

4α
* 2.247  2.20 2.395  2.85 2.262  2.20 4.543  4.41 (±1.3) 

4β
*

 or 4OH 2.129  2.07 2.199  2.12 2.145  2.07 3.939  N/O 

7β
* 4.878  4.83 4.865  4.79 4.873  4.81 4.324  4.80 (±0.36) 

7OH 3.862  N/O 3.831  N/O 3.791  N/O 3.157  N/O 

10 6.656  6.61 6.635  6.54 6.644  6.58 6.311  6.57 (±0.26) 

11 4.845  4.80 4.714  4.66 4.928  4.87 4.329  4.59 (±0.26) 

13B
* 3.195 3.15 3.206 3.14 3.178 3.11 2.756  3.01 (±0.25) 

13A* 3.120 3.073 3.144 3.08 3.120  3.06 2.707  2.96 (±0.24) 

14 1.174  1.13 1.189  1.12 1.117  1.04 0.807  1.07 (±0.20) 

15B 3.933   3.89 3.912  3.81 
4.281  4.21 

3.513  3.72 (±0.21) 

15A 3.783 3.733 3.859  3.75 3.459  2.78 (±0.68) 

15OH 2.066  N/O 0.985  N/O N/A N/A 1.496  N/O 

16 1.931  1.86 1.929  1.85 1.927  1.86 1.583  1.83 (±0.25) 

1’ N/A N/A 2.166  N/O 1.917  N/O N/A N/A 

*NIV was dissolved in a 1:1 ratio of chloroform (CDCl3): methanol (CD3OD). 
1All Chemical shifts were simulated to 0.001 Hz accuracy 
*Labeling scheme presented in the literature by Savard and Blackwell is employed here and will be evaluated in chapter 4. Previously unreported 
chemical shifts are highlighted in purple. Large discrepancies between the experimental and literature data are highlighted in peach. 
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Table 3. 5: Experimental and literature scalar coupling constants observed for the type B trichothecenes in CDCl3 at 300 MHz 

1H label Scalar Coupling Constants – J (Hz) in CDCl3 

 DON DON (lit) 3-ADON  3-ADON (lit) 15-ADON 15-ADON (lit) NIV NIV (lit) 

3J2,3 4.643 (± 0.005) 4.5 4.418 (± 0.001) 4.5 4.417 (± 0.001) 4.4 3.572 (± 0.002) 4.7 

3J3,4α 4.150 (± 0.005) 4.5 4.285 (± 0.001) 4.5 4.096 (± 0.001) 4.5 4.891 (± 0.002) 3.4 

3J3,4β
 11.013 (± 0.005) 10.9 11.352 (± 0.001) 11.2 11.064 (± 0.001) 10.6 N/A N/A 

3J3,3OH 1.131 (± 0.005) N/O N/A N/O N/O N/O N/O N/O 

2J4α,4β -14.748 (± 0.004) 14.8 -15.069 (± 0.001) 15.1 -14.807 (± 0.001) 14.8 N/A N/A 

3J7β, 7OH 1.218 (± 0.003) 2 1.592 (± 0.001) 2.1 1.438 (± 0.001) 1.9 N/O N/O 

3J10,11 5.283 (± 0.007) 5.9 5.911 (± 0.001) 5.9 5.769 (± 0.001) 5.8 5.646 (± 0.005) 5.9 

5J10,15α
 1.412 (± 0.007) N/O N/O N/O N/O N/O N/O N/O 

5J10,15β
 0.948 (± 0.007) N/O N/O N/O N/O N/O N/O N/O 

4J10,16 1.519 (± 0.007) 1.5 1.304 (± 0.001) 1.5 1.314 (± 0.001) 1.6 0.483(± 0.002) 1.5 

2J13α,13β 4.268 (± 0.004) 4.3 4.247 (± 0.001) 4.3 4.271 (± 0.001) 4.2 4.362 (± 0.002) 4.4 

2J15α,15β -11.817 (± 0.001) 11.7 -11.826 (± 0.001) 11.7 N/O N/O -12.022 (± 0.004) 12.1 

3J15α,15OH 0.965 (± 0.007) N/O N/O N/O N/A N/O 3.513 (± 0.001) N/O 

3J15β,15OH 3.059 (± 0.007) N/O N/O N/O N/A N/O 3.459 (± 0.001) N/O 

3J11,16 N/O N/O 0.739 (± 0.001) N/O 0.141 (± 0.001) N/O 0.799 (± 0.001) N/O 

Previously unreported coupling constants are highlighted in purple. Large discrepancies between the experimental and literature data are highlighted 
in peach. 
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Close analysis of each of the type B trichothecenes demonstrates that the assignment in the 

literature for these in CDCl3 was never completed, either due to a lack of sufficient resolution or the 

overwhelming presence of water in the solvent system exchanging out the signals from the hydroxyl 

protons. In order to prevent the interference of water in our samples, the CDCl3 was dried over 

molecular sieves prior to sample preparation. Furthermore, the presence of adsorbed water in the 

sample was of concern, and the powdered DON sample was dried by vacuum-pumping under 

nitrogen prior to sample preparation. Through the use of water-depleted solvent, chemical shifts and 

coupling constants not previously reported were observed. Furthermore, the correction of specific 

assignments in the spectrum was also completed.  

For example, the literature data for DON states that H-7β appears at 4.83 ppm; however, the 

HSQC (figure 3.6A) connects C-7 to the signal appearing at 3.862 ppm; whereas, the HMBC (figure 

3.6B) connects C-7 to the signal at 4.878 ppm in the experimental spectrum. Two-dimensional 

heteronuclear correlation spectra were not presented in the previously literature and the sharp 

nature of the H-7OH is rather misleading without having all the information to discern the true 

identity of this peak.  From this study, it is clear that the assignment for H-7β is incorrect in the 

current literature, and refinement is required such that H-7β appears at 3.862 ppm and H-7OH at 

4.878 ppm. 

For NIV, the majority of the chemical shifts in the experimental data appear to be shifted to a 

lower frequency as compared to the literature data by roughly 0.2 ppm, this may be due to the 

removal of water from the CDCl3 solvent prior to mixing with CD3OD, or a more precise setting of the 

reference frequency. However, two shifts in particular appear to deviate dramatically compared to 

the literature data, H-4α and H-15A. The proton H-15A was confirmed by the coupling observed with 

H-15B, and H-4α by the coupling with H-3. 

The NOESY spectrum for DON also provides information for correction to the 3D structure. A 

through-space coupling between the signals for protons H-13B and methyl-14 is observed and is 

highlighted in figure 3.4. Protons H-13A and H-13B are the methylene hydrogens of the epoxide ring. 
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The 3D geometry of the epoxide places it at the top of the molecule and it aligns with the length of the 

core, such that it can be used to cut a plane through the molecule. Carbon C-12 is a chiral center, 

which adopts an S-stereochemical configuration, and since the two sides of the plane are not 

equivalent, see figure 3.10, it is clear that H-13A and H-13B are diastereotopic protons. Where one of 

the methylene protons from the epoxide occupies space on the same side of the molecule as H-2, and 

the other occupies space on the same side as methyl-14. Previous literature suggests that H-13A, the 

lower chemical shift proton, exists on the same side of the molecule as methyl-14 [135]; however, 

based on the peak from the NOESY spectrum for DON, this is not the case. The coupling in the NOESY 

correlates the higher chemical shift proton H-13B to the protons on methyl-14, which suggests that 

these protons are in close proximity to one another; thus, H-13B and methyl-14 must be on the same 

side of the ring, which is demonstrated by the highlighted H-13A and H-13B protons in figure 3.10. 

 

 

Figure 3. 10: View down the length of the trichothecene core for DON demonstrating the conformation of the 
methylene protons from carbon-13 of the epoxide, which appear on either side of the core structure. H-13B is in 
close proximity to the methyl protons on C-14; whereas, H-13A is on the opposite side of the ring. 

 

The same labeling error is present for all of the trichothecenes of this sub-class. Thus, the 

convention for the labeling of the structure at the epoxide methylene protons is reversed, in the case 

of the type B trichothecenes. This was not the case for T-2 toxin, as seen in chapter 2. It is possible 
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that this differentiation from the other trichothecene resides with the key structural feature for this 

sub-class, the ketone functionality at C-8. The presence of the ketone at C-8 offers some interesting 

features structurally. First of all, the addition of this C=O double bond results in conjugation to the 

nearby C=C double bond occurring between carbons C-9 and C-10. This is evidenced by the 

deshielding on H-10, which is shifted to a much higher frequency than what was observed for T-2 

toxin in chapter 2, and likewise in the database of literature provided by Savard and Blackwell [135]. 

The conjugation of the double bonds in the A-ring changes the geometry in this portion of the core 

structure, and forces a planar bond structure about carbons C-7, C-8, C-9, and C-10. Recall that in 

chapter 1, the geometry about the A-ring was described as being in a half-chair conformation; 

however, the planarity about the conjugated portion of the A-ring provides counterevidence for this 

statement in the case of the type B trichothecenes. The geometry about the A-ring is now primarily 

planar, with only a slight twist in the bonds from C-7 to C-6 and C-6 to C-11. Due to the fused nature 

of the rings in the trichothecene core, the increase in ring strain from the A-ring is distributed 

throughout the entire core structure. Thus, minor structural differences that help in mediating this 

distribution have likely resulted in the higher frequency H-13 proton appearing on same side of the 

core as methyl-14, rather than next to the H-2, which is counter to the structure described in the 

literature for the epoxide protons in the spectrum [135]. Traditional conventions dictate that labeling 

of the resonances be done according to chemical shift (i.e. the lower chemical shift frequency is given 

the lower value in the alphabet, such thatHA would have the lower chemical shift). This convention 

has been maintained, and as a result the labeling of the protons on the structure has been changed 

accordingly. 

In the earlier section on the complete spectral analysis of DON, the existence of an 

intramolecular hydrogen bonding network was investigated, whereby hydrogen-bonding between H-

15OH and H-7OH, as well as H-7OH with the oxygen of the C-8 ketone, was confirmed through the 

careful analysis of the linewidth of H-7OH, and the couplings between H-15A with H-15B, and H-7OH 

with H-7β. The same observations are made for all of the toxins. This includes the compound 15-

ADON which, due to the presence of an acetyl group at C-15, was expected to disrupt this hydrogen-
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bonding network to some extent; however, the signal for H-7OH in 15-ADON remains relatively sharp. 

Interestingly, the resonance representing the methylene protons H-15A and H-15B, appears as a sharp 

singlet, suggesting that they are chemically and magnetically equivalent, despite the fact that they 

neighbor a chiral carbon. This may be a result of second-order effects in the spectrum, where the 

chemical shift difference between the two protons approaches zero, this is described in greater detail 

in chapter 4.  

Lastly, it is important to note that some small peaks appear in all of the samples for the type 

B trichothecenes which were purchased from Sigma-Aldrich and dissolved in the dried CDCl3 solvent. 

The small peaks (highlighted in green in figure 3.7) suggest the coexistence of a secondary 

configuration, degradation products., or possible impurities. Note that some of these peaks are the 

same for all of the toxins, where only slight differences in intensity are observed. For example, the 

multiplet near 0.9 ppm is seen in all of the spectra, but is most intense in 3-ADON, and at baseline 

level in DON. Another baseline peak appearing in all of the trichothecene spectra near 7.0 ppm, 

represents a highly deshielded proton and falls within the region of conjugated double bonds, and 

may represent a second conformation for the proton H-10. As described earlier in this chapter, some 

of the peaks in the DON spectrum appear to be experiencing some line broadening, which may be due 

to the presence of multiple conformations. Thus, it is possible that these small baseline peaks are 

representative of a second conformation for the compounds. 

 

3.4.3 Deuterium exchange and water-binding in the type B trichothecenes 

All samples were prepared with CDCl3 which has been dried over molecular sieves to ensure 

that any water present was that which was originally bound to the toxin, and not carried by the 

solvent. DON was obtained from two different sources, and the solid material in each case had a 

different appearance. The DON from Sigma-Aldrich had a flaky appearance. The material was then 

packaged and sealed under dry conditions, with estimated purity of the sample being greater than 

95%. The sample was originally shipped in a cold box along with dessicant packages. The sample was 
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further dried under nitrogen by vacuum-pumping on the sample to remove residual water. The 

second sample was provided by Barbara Blackwell at the Agriculture and Agri-Food Canada (AAFC) 

Research Center in Ottawa. Sample material was prepared by fermentation of F. graminarum 

inoculated rice cultures, and the toxin was isolated using affinity chromatography. This sample had 

an estimated purity of greater than 90%. The material obtained from AAFC Ottawa had the 

appearance of a white powder, and had not been dried under vacuum to remove residual adsorbed 

water, nor was it tightly sealed. It was shipped in regular packaging, without desiccant, and was 

analyzed without further drying. Both samples were analyzed in the pre-dried CDCl3 and the 1H 

spectra are compared in figure 3.11.  
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Figure 3. 11: Comparison of the 1H spectra collected for DON received from different sources at 300 MHz and ambient temperature. The spectrum in blue was recorded 
for the DON sample obtained from Sigma-Aldrich; the red spectrum was recorded for the sample obtained from AAFC Ottawa. In both cases, the samples were prepared 
in CDCl3 which had been dried over molecular sieves to remove absorbed water from the solvent; thus, the water peaks which are highlighted in green are due to water 
present within the sample itself. Peaks from 15OH and 3OH are sharp and demonstrate a well-defined coupling structure for the AAFC sample, which is demonstrated for 
15OH in the inset of the figure.
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 Despite the fact that more residual water is present in the AAFC Ottawa sample, all of the 

peaks, and the hydroxyl resonances in particular, appear to be much sharper and without the line 

broadening observed in the sample prepared from the commercially available Sigma-Aldrich 

material. Of particular note is the sharp nature and coupling behaviour observed for the H-3OH and H-

15OH hydroxyl peaks. The presence of excess water is expected to have the opposite effect, further 

broadening the signals, due to chemical exchange; however, the linewidths for the hydroxyls are 

approximately 1.5 Hz, which is now comparable to the linewidths of the other peaks in the spectrum 

which have a line broadening of 1.0 Hz. 

One of the theories for the line broadening in the Sigma-Aldrich sample was the presence of 

multiple conformations that are coalescing, resulting in broadened signals for H-3β, H-3OH, H-4αβ, and 

H-15AB, in particular. It was mentioned by one of our colleagues at AAFC Ottawa that DON has been 

shown to exist with different water to toxin ratios; however, little direct literature data exists on this 

matter [59]. If more than one binding site were to exist for water on the DON structure, then we can 

make the assumption that the binding site described for the tetrahydropyranyl pocket (chapter 2), is 

an extremely tight water-binding site, allowing for its observation in the dry DON sample from 

Sigma-Aldrich. The integration ratio for the water in the Sigma-Aldrich sample is approximately 1 

molecule of water per 1 molecule of toxin. However, during the synthesis of the toxin, water may be 

directed to specific sites where it binds less tightly, but also helps to further stabilize the 

conformation of the toxin. The integration of the water peak in the AAFC spectrum gives a ratio of 

approximately 7 molecules of water per molecule of DON. 

In order to determine whether the water in the Sigma-Aldrich sample is indeed tightly 

bound, deuterated water (D2O) was added dropwise to the Sigma-Aldrich sample of DON in CDCl3, 

and compared to the original Sigma-Aldrich spectrum collected for DON.  1H and NOESY spectra were 

collected for each drop of water added to the sample. Figure 3.12 depicts the results obtained for 

DON in the presence of a 1 ppm D2O, as well as in the presence of 2 ppm,  5 ppm and 7 ppm  D2O. 
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Figure 3. 12: Deuterium exchange experiment for DON in CDCl3 at 300 MHz. Plots are stacked showing the original dry CDCl3 experiment, as well as the spectra for the 
addition of one through four drops of D2O. Although all peaks in the spectra observe successive changes, some major peaks of interest are highlighted in the spectrum. 
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Only a few differences can be seen in the DON spectrum when a 1 ppm D2O is added to the 

sample. The linewidth and coupling pattern of all peaks in the sample is preserved. The coupling of 

the hydroxyl protons to the other resonances within the spectrum is maintained, and is highlighted 

in figure 3.12.  In particular, H-7OH maintains its sharp appearance, and the coupling between H-7OH 

and H-7β is preserved. One would expect that if these resonances were exchanging rapidly with the 

solvent that the hydroxyl signals would have all but disappeared due to exchange with deuterium, 

and coupling would be interrupted. Minor differences include a slight increase in frequency of the 

chemical shifts for the epoxide protons (H-13AB) and the two methyl resonances (H-14 and H-16), 

suggesting further deshielding due to close proximity to an electronegative atom, or alternatively 

increased ring strain. A slight decrease in frequency is observed for the hydroxyl resonance at C-3, 

which could indicate that exchange with water is occurring within the sample. The appearance of a 

low chemical shift triplet at approximately 0.9 ppm in the spectrum is believed to be a second 

methyl-14 resonance. The splitting of the H-14 signal into two contributions suggests the potential 

for a second, minutely different configuration, which could arise if two or more trichothecene 

molecules were to associate with one another as dimers. 

When  the concentration of D2O is raised to  2 ppm, the spectrum becomes unrecognizable. 

One suggestion is that a concentrated impurity is present in the sample, which may have been 

introduced when the deuterated water was added, and is now obscuring the spectrum due to 

intensity of the peaks. However, magnification of the vertical scale for the spectrum does not produce 

any baseline signals for the original toxin; thus, the presence of an impurity is highly unlikely. It is 

suggested that a degradative process may have occurred in the sample, upon addition of excess D2O.  

Certain features of the spectrum shown in figure 3.12 provide evidence for this type of 

process. First of all, the epoxide protons H-13A and H-13B appear to have been lost when 2 ppm D2O 

is present, and do not reappear with the addition of more deuterated water. When a 1 ppm D2O was 

added to the sample, the signals for the epoxide protons are shifted slightly to a higher frequency, 

indicating that they have been further deshielded from the “dry” spectrum. This deshielding may be 

either a result of some close proximity interaction with the oxygen atom of the water, or an increase 
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in the ring strain for the 3-membered epoxide ring. In either case, the potential for nucleophilic 

attack by the water on either the C-12 or C-13 carbons is present. Such an attack would lead to the 

opening of the epoxide ring, and the methylene protons at C-13 would become enantiomeric, rather 

than maintain their diastereotopic nature. These methylenes would now be free to rotate and may 

exhibit chemical and magnetic equivalence in the spectrum, reducing the two signals to a single 

sharp peak. It is possible to identify the pattern of the major peaks in the spectrum which are listed in 

table 3.6. Baseline peaks are also observed and are highlighted in blue in the table, suggesting that 

the degradation process is not yet complete, and that some additional species may exist in the 

solution. 

Another vital element in the spectrum is the loss of the signal for H-10. H-10 is the key 

feature of the type B trichothecenes, as it has a high chemical shift due to the conjugated double 

bonds of the C-8 carbonyl and the C-9/C-10 double bond. Loss of this feature indicates loss of 

conjugation, either through the breaking of the carbonyl bond, or the C-C double bond. Furthermore, 

the chemical shift for the proton H-3β is maintained, but the coupling pattern has changed. This 

particular peak is rather well-resolved, and appears as a doublet of either triplets or quintets. Recall 

that in the deuterium exchange experiment performed for T-2 toxin (figure 2.2B), the signal for H-3β 

changed dramatically, shifting to a much higher frequency, and the loss of coupling between H-3β and 

the hydroxyl proton H-3OH simplified the signal to a doublet of triplets as well. Thus, here we see that 

the water has finally exchanged with the hydroxyl proton for H-3OH. The other signals in the 

spectrum for the 2 ppm D2O experiment are indicated in the spectrum in figure 3.12, and described 

in table 3.6. This leads to the conclusion that an intermediate in the degradation process may have a 

structure similar to that shown in figure 3.13. 
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Table 3. 6: Chemical shift and scalar coupling of potential degradation products in the presence of 2 ppm D2O 
for the DON spectrum in CDCl3 taken at 300 MHz and ambient temperature. 

Chemical Shift δ (ppm) J-coupling (Hz) Integration Identity 

4.63 8.62 0.25 H-3 (Conformation 1) 

4.46 8.62 0.25 H-3 (Conformation 2) 

4.34 N/A 2 -O-CH2-O 

3.80 8.62 (Second-order 
with 3.56 ppm peak) 

0.5 H-15A ? 

3.73 6.98 2 -O-CH2-CH3 

3.56 8.62 (Second-order 
with 3.80 ppm peak) 

0.5 H-15B ? 

3.36 N/A 0.25  

3.29 N/A 2 -O-CH2-C 

2.56 N/A 0.25 Broad (-OH) 

2.193 N/A 1 -OH 

2.02 N/A 1 -OH 

1.66 N/A 0.25 Broad (-OH) 

1.35 N/A 3 -C-CH3 

1.26 6.98 3 -CH2-CH3 

 

The degradation appears to continue as the 5 ppm and 7 ppm D2O spectra are recorded.  

When 5 ppm D2O is present, the spectrum simplifies further, and only a few signals appear to be 

present, that of a lone methylene sandwiched between two oxygen atoms (4.34 ppm), and an ethyl 

group attached to an oxygen (quartet at 3.73 ppm coupled to triplet at 1.25 ppm), as well as a 

hydroxyl appearing at 1.48 ppm. The peaks observed in the DON spectrum in the presence of 5 ppm 

D2O are provided in table 3.7. The baseline peaks which were present in the 2 ppm D2O spectrum are 

no longer present, indicating that the degradation process has continued, and nothing remains of the 

original trichothecene product. The predicted structure for this intermediate is also depicted in 

figure 3.13, and may be a precursor to diethoxymethane. 



100 
 

Table 3. 7: Chemical shift and scalar coupling of potential degradation product in the presence of 5 ppm D2O for 
the DON spectrum in CDCl3 taken at 300 MHz and ambient temperature. 

Chemical Shift δ (ppm) J-coupling (Hz) Integration Identity 

4.34 N/A 2 -O-CH2-O 

3.73 7.08 2 -O-CH2-CH3 

1.48 N/A 1 -OH 

1.26 N/A 1 HDO 

1.25 7.07 3 -CH2-CH3 

 

Finally, in the presence of 7 ppm D2O the spectrum has simplified to only a single peak, 

appearing at approximately 5.70 ppm. This chemical shift is highly indicative of a simple vinylic 

proton, and may result from the polymerization and dehydration of the intermediate predicted for 

the 5 ppm D2O spectrum. Oxygen species are highly present in the sample, and from the degradation 

pattern observed for the 2 ppm and 5 ppm D2O spectra, we can be sufficiently confident that oxygen 

is incorporated into the final compound. The final compound is predicted from the NMR to be 

tetrahydrodioxane, which has the appearance in NMR of a singlet at approximately 5.9 ppm. An 

example of the degradation mechanism, predicted from the chemical shift pattern in the spectra 

shown in figure 3.12, is depicted in figure 3.13. 

Reproduction of this experiment with the collection of two-dimensional homonuclear and 

heteronuclear spectra, along with the collection of 13C spectra and infrared (IR) and mass 

spectroscopy data will help to confirm the identity of the intermediates in the degradation process 

and add further weight to these claims. 
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Figure 3. 13: Predicted degradation mechanism of DON upon the addition of D2O to the sample in CDCl3 at ambient temperature.
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Throughout the literature, the trichothecene core, and particularly the epoxide ring are 

described as being incredibly stable towards degradative processes involving heat, chemical attack, 

and time [10,17,28,38,118,133]. Yet the effect of solvent has not been investigated in great detail. It is 

well understood that water is difficult to remove from samples of the trichothecenes [59,60], and the 

presence of bound water in the sample of T-2 toxin was described in chapter 2. Water appears to be 

necessary for structural stability of the toxins, through a bridging interaction in the 

tetrahydropyranyl pocket, and is evidenced by the sharp lines in the AAFC DON spectrum in CDCl3. 

However, in the case of DON, different water to toxin ratios have been shown to occur, which may 

indicate that multiple water-binding sites may be present [59]. The different water ratios were 

discovered during attempts at crystallization of DON from methanol, another polar solvent. 

When considering the analysis of the NOESY spectrum (figure 3.14) obtained for the sample 

where only a 1 ppm D2O has been added, it becomes apparent that water has been excluded from the 

DON structure as exchange at the hydroxyl protons is no longer present. 

 

Figure 3. 14: 1H NOESY spectrum for DON in CDCl3 upon the addition of 1 ppm D2O to the sample. The peak for 
H2O is highlighted along the vertical. 
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The NOESY spectrum obtained for the sample where 1 ppm D2O was added lacks any 

evidence for exchange with water at any of the hydroxyl sites. The water peak is highlighted in figure 

3.14 along the vertical so as to not interfere with any of the other signals. The T1 noise which is 

present in the spectrum provides a clear view of the intensity of the water peak. The lack of exchange 

in this spectrum stands in stark contrast to the spectrum where CDCl3 had been dried over molecular 

sieves (figure 3.4), which had indicated that exchange with water was occurring at all the hydroxyl 

sites. One would expect that the more water is added to the sample, the greater the exchange with 

water; however, in this case, it appears as though water is being excluded from the 

tetrahydropyranyl water-binding pocket described previously for T-2 toxin. This may result from an 

intermolecular hydrogen-bonding interaction between two or more DON molecules, where the 

hydroxyls in the tetrahydropyranyl pocket are associating with those of another trichothecene 

molecule, serving to maintain the overall 3D structure of the molecule without requiring the 

stabilizing effect of the bridging water. Water may then associate with the epoxide oxygen, causing 

the slight difference in chemical shift noted in the 1D spectrum for the epoxide hydrogens, H-13AB, or 

alternatively slight bond movement may be required when the two molecules bind together, 

resulting in an increase in the ring strain about the epoxide.  As more water is added to the system, 

the water molecules may cause significant ring strain on the epoxide, eventually resulting in the 

opening of the epoxide ring, and a triggering of the degradation process for DON depicted in figure 

3.13. 

One theory is that as the miscibility limit for chloroform and water is approached, the 

hydroxyl substituents of DON, which are all present on the tetrahydropyranyl pocket, or bottom, side 

of the molecule associate with those of another DON molecule, forming a dimer, excluding water 

from the pocket, and preserving the overall structure of the toxin. Recall, that a low-frequency triplet 

(at 0.9 ppm) was also introduced into the spectrum when only 1 ppm D2O is present (figure 3.13), 

which was suggested to be a second methyl-14 contributor. The splitting of the methyl-14 into two 

distinct contributions supports the potential dimerization of the trichothecenes shown in figure 3.13. 
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Then as more water is added, the water may attack the highly strained epoxide ring at either C-12 or 

C-13 resulting in a ring opening event, which sparks the degradation of the molecules. 

3.5. Conclusions 

Understanding the mechanism of toxicity of the type B trichothecenes requires the 

recognition of some of the basic structural properties of the toxins. Development of an accurate 

three-dimensional model of the compound, including insight into dynamic processes such as 

hydrogen-bonding, provides fundamental knowledge of how they are able to interact with other 

molecules within the cell. This study has provided new data regarding the chemical shifts and 

coupling constants for the hydroxyl residues of the type B trichothecenes, which serve to complete 

the assignment of all of the compounds studied.  New information regarding the overall three-

dimensional structure of the type B trichothecenes, including refinement of the structure at the 

epoxide, corrected assignment for H-7β and the planar geometry imposed on a portion of the 

trichothecene core due to the conjugated π-system of the A-ring, and correction to some of the 

previously reported chemical shifts is provided. Furthermore, an NMR-based investigation into the 

internal hydrogen-bonding network of DON, previously described through a DFT study conducted by 

Nagy et al. [111], was conducted. This investigation confirms the lowest energy conformation 

described by Nagy, which is shown to rigidify and ultimately stabilize the molecule.  

The presence of bound water in the sample was also investigated, and it was determined 

that in the presence of a water-depleted system, the type B trichothecenes bind at least one water 

molecule in the tetrahydropyranyl pocket, which may serve as a water bridge, further stabilizing the 

trichothecene core, and in water-rich sample the water may add in multiple sites across the molecule 

providing further stability of the compound, as well as possible protection of the toxin against 

degradation. However, when excess water is added to the water-depleted sample, exchange with 

water is lost, and the water appears to be excluded from the structure, potentially through the 

association of two or more trichothecene molecules. Addition of more water to the sample 

completely disrupts the spectrum, which provides likely evidence for a degradative process. Thus, 
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the deuterium exchange studies seem to indicate that as the availability of water increases, the 

tendency for the molecules to associate increases, and is followed by degradation. 

The potential for degradation of trichothecene toxins is a major finding when considering 

the impact this could have on the agricultural industry. The trichothecenes have been shown to be 

extremely stable to degradative processes such as time, temperature and chemical degradation 

[10,17,33,106,133,140], which makes it very difficult to remove the toxins from affected food stores. 
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4 Structural Dynamics of Type B Trichothecenes Due to Solvent Effects 

4.1 Overview 

Trichothecenes from all classes have been primarily studied in chloroform. Although a 

common NMR solvent, deuterated chloroform (CDCl3) does not exhibit the same features that one 

would expect to find in the natural biological environment experienced by the trichothecenes. One of 

the major reasons that CDCl3 may have been chosen as a solvent for this class of toxins is that it 

manages to avoid the majority of issues the toxins exhibit in solution, such as aggregation, which 

seem to arise when studying trichothecenes in pure form. By only studying these toxins in a single 

solvent, information regarding the dynamic nature of these compounds is often missed. Very few 

papers in trichothecene literature have taken the dynamics of these compounds into account 

[45,72,147]. When studied in a variety of solvents, the spectra vary considerably, providing a rational 

for the practice of CDCl3 as the sole solvent of choice. The literature on the conformational effects of 

solvent on similar organic compounds, such as the ribosome-binding antibiotic virginiamycin M1 

[31,32], demonstrate that the solvent can have a large influence on the types of conformations 

adopted by small amphipathic organic molecules. 

Multiple conformations were observed for all of the type B trichothecenes, particularly when 

observed in aprotic polar solvents. A detailed investigation into the structure of nivalenol (NIV) in 

deuterated dimethyl sulfoxide (DMSO-d6) offers evidence of two distinct conformations. 

Interestingly, one of these conformations provides evidence for the structural rearrangement to a 

boat configuration in the B-ring for the type B trichothecenes, which was proposed to exist under the 

influence of certain solvent systems [72]. The rearrangement observed for NIV in DMSO-d6, led to 

each of the type B trichothecenes being compared between CDCl3 and DMSO-d6 to determine 

whether the same structural rearrangements occur in all systems. As deoxynivalenol (DON) is 

soluble in a wider variety of solvents than the remaining type B trichothecenes, it was investigated in 

acetone, methanol and tetrahydrofuran, in addition to CDCl3 and DMSO-d6. Evidence for 

rearrangement of the structure in polar solvents was investigated in detail. 
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4.2 Introduction 

In addition to the toxicological effects of trichothecenes, this class of mycotoxins also 

constitutes an important group of antibiotics owing to their efficiency in disrupting cellular function. 

Interest in them continues due to the wide range in toxicity observed between different species, 

which offers the capability of tailoring them to target specific organisms. This has led to their 

investigation as potential antifungal agents. Interest remains high regarding their chemical reactivity, 

especially concerning the mechanism of interaction within various structures in the cellular 

environment. The chemical reactivity of trichothecenes appears to be diverse due to the large variety 

of functional groups, available conformations and potential hydrogen bonding interactions they are 

able to undergo. 

Conformational changes of the trichothecenes are largely the result of the stereochemistry 

observed in the ring systems. The conformational preference is for the B-ring to adopt a chair 

conformation; however, evidence for rearrangements of this ring to a boat conformation exists 

[67,72,74,77,79]. Boat configurations have been observed for the macrocyclic trichothecenes; 

however, suggestions have been made regarding the ability of DON and NIV to undergo such a 

rearrangement [72].  The structural changes that occur from the chair to the boat configurations are 

depicted in figure 4.1. The rearrangement to the boat conformation is strongly influenced by the 

nature of the functional groups on the side chains off the trichothecene core, as well as the hydrogen 

bonding interactions induced by the solvent.  An example of the latter is given by Jarvis et al., for DON 

[72], where the addition of DMSO-d6 and acetone-d6 results in a rearrangement that induces the 

change from a chair to a boat configuration in the B-ring. 
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Figure 4. 1: Three-dimensional stereochemistry of the trichothecene core when (A) the A-ring is in a 
half-chair, and the B-ring in a chair conformation; and (B) the A-ring is a half-chair, and the B-ring in 
a boat conformation 

  

The majority of NMR studies on trichothecenes have limited the analysis to deutero-

chloroform (CDCl3), as the primary goal was chemical identification, not physical structure and 

dynamics. Only in the study by Jarvis et al. [72] were attempts made to investigate the solution-state 

configuration of the type B trichothecenes in other solvents, Jarvis investigated NIV and DON in 

deuterated-acetone (acetone-d6), methanol (CD3OD) and dimethyl sulfoxide (DMSO-d6), and 

compared the 13C spectra to that observed in CDCl3. Jarvis saw preliminary evidence for a second 

minor configuration in a single crystal X-ray diffraction (SCXRD) study performed for NIV 

recrystallized from a mixture of methanol and water, and attempted to confirm this structure 

through the NMR analysis of both DON and NIV in various solvents. He suggested that the second 

configuration is an isomer resulting from a rearrangement of the ketone at C-8 and hydroxyl at C-15 

to a hemiketal linkage between C-8 to C-15 for both DON and NIV. They also proposed another 

possible linkage, occurring between the C-4 and C-15 hydroxyls in NIV (refer to figure 4.2). Their 

structural hypothesis is based primarily on the 13C NMR data. 
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Figure 4. 2: Hemiketal and ether linkages proposed to occur in type B trichothecenes DON and NIV 

 

To the best of our knowledge, these conformational rearrangements in type B trichothecenes 

have not been investigated further; although, plenty of evidence for similar rearrangements exist for 

the related macrocycles [67,72,74,77,79]. The key structural feature of the macrocyclic type D 

trichothecenes is a diester linkage occurring between C-15 and C-4. When the chain from C-4 to C-15 

is short the B ring in the trichothecene may experience a significant amount of ring strain, which 

forces the B-ring to adopt a boat configuration, rather than maintain the typical chair configuration. 

Jarvis considered the existence of the C-15 to C-4 linkage in the type B trichothecenes based on this 

prior experience with the macrocycles. The two configurations are not exclusive, and appear to occur 

simultaneously in dynamic equilibrium [67,69,79]. 

Chloroform is a relatively non-polar aprotic solvent, which is a significant departure from 

the environment in cellular systems where they are most commonly encountered. Cellular systems 

comprise primarily an aqueous environment, yet have regions, such as the cellular membrane and 

certain protein environments, which are hydrophobic in nature. Thus, trichothecene structure and 

dynamics should be observed in both of these types of environment to garner a better understanding 

of how these toxins behave in nature. The trichothecenes are particularly amphipathic, which 
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suggests that they can exist in both hydrophobic and hydrophilic environments, as is the case with 

other compounds exhibiting similar properties, such as the antibiotic virginiamycin M1. 

Virginiamycin M1 was shown to exist in different configurations based on the type of environment to 

which it was subjected [31,32]. Similar observations may be possible for the trichothecenes; 

however, appropriate solvent conditions must be identified. This study was designed to determine 

whether different solvent properties induce structural changes in the type B trichothecenes. 

4.3 Solvent Properties and Chemical Structure 

The physical and chemical properties for the solvents used in this study are listed in table 

4.1. Of particular importance are the structure, polarity and protic nature of the solvents, as these 

will have the greatest influence on the conformations that the compound adopts. For example, the 

structure of the compound determines whether the solvent interacts with the molecule via hydrogen 

bonding, or dispersion forces. Protic solvents, such as methanol and water, will exchange protons 

with any hydrogen-bonding sites on the molecule. Since the NMR solvents are deuterated, exchange 

with the solvent will significantly reduce the signals for the exchangeable protons on the molecules. 

Aprotic solvents do not exchange with the molecule and thus are often preferred for compounds 

containing exchangeable protons. 
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Table 4. 1: Chemical Properties of Common NMR Solvents 

 Chloroform DMSO Acetone Methanol THF 

Chemical 

Formula 

CDCl3 (CD3)2SO (CD3)2CO CD3OD C4D8O 

Structure D

Cl Cl
Cl

 
S

O

D3C CD3 

O

D3C CD3 

OD

D D
D

 

O D

DD

D
D

DD

D

 

Polarity 4.1 7.2 5.1 5.1 4.0 

Miscible with 

water 

No Yes Yes Yes Yes 

Protic No No No Yes No 

Density 1.483 g/cm3 1.1004 g/cm3 0.791 g/cm3 0.7918 g/cm3 0.8892 g/cm3 

Viscosity 0.786 cP 1.996 cP 0.3075 cP 0.59 cP 0.48 cP 

Dielectric 

Constant 

4.81 46.7 21.0 33.0 7.60 

Dipole 

Moment 

1.04 C·m 3.96 C·m 2.88 C·m 1.70 C·m 1.75 C·m 

 

Jarvis did study the 13C spectra for DON in all of the above solvents, with the exception of 

THF-d8 [72]. The choice of adding THF-d8 to this group of solvents arose from the realization that all 

of the solvents tested in the Jarvis experiments were all small non-cyclic molecules, and serves to 

determine whether solvent structure has an impact on trichothecene conformation. Although 

structurally similar, DMSO-d6 and acetone-d6 display slightly different properties as the sulfur group 

of DMSO-d6 results in a higher dielectric constant and has a dramatic effect on the polarity of the 

solvent. Methanol, being the only protic solvent among the group was expected to exhibit rather 

unique properties in comparison to the others, as it is intrinsically capable of chemical exchange with 

the hydroxyl resonances resulting in the replacement of the hydroxyl proton with a deuterium atom, 

reducing the intensity of the hydroxyl signals. Deutero-chloroform, being neither protic, nor 

particularly polar, was also expected to have unique properties among the group, as it does not 

contribute anything towards the molecule except the ability to go into solution. THF-d8 exhibits a 

very different structure than the rest of the solvent molecules, as it is cyclic, aprotic and relatively 

non-polar. 
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Jarvis estimated, from the 13C spectrum, that the rearrangement of the type B compounds to 

the hemiketal isomer occurs up to 11% of the time in the solvents that were used [72]. In chapter 3 it 

was suggested that when dissolved in CDCl3, each of the trichothecenes adopt only a single 

observable conformation, which greatly simplifies the analysis, permitting rapid identification, which 

was the primary concern of early studies on the trichothecenes. However, with the observation of 

multiple configurations and dynamics between them, how can one be certain that the accepted 

structure is correct in natural environments? 

One of the most prevalent theories regarding the spectrum of chemical reactivity observed 

for the entire class of trichothecene toxins is the potential of these molecules to undergo 

intramolecular rearrangements [67,69,79], as well as both intra- and intermolecular hydrogen 

bonding [27,140]. In order to gain further insight into the rearrangement and hydrogen-bonding 

possibilities, the type B trichothecenes were observed in a variety of solvents to determine the 

influence of solvent interactions on the toxins. 

4.4 Materials and Methods 

4.4.1 Solution-State NMR Experiments 

All spectra were acquired at ambient temperatures ranging from 21-26°C on a Bruker 

Avance 300 spectrometer, outfitted with a 5 mm HX PABBO BB probe. The spectrometer operates at 

a Larmor frequency of 300.131 MHz for 1H and 75.468 MHz for 13C. Deoxynivalenol (Sigma, CAS 

51481-10-8), Nivalenol (Sigma, CAS 23282-20-4), 15-O-acetyldeoxynivalenol (SIGMA, CAS 88337-96-

6), and 3-O-acetyldeoxynivalenol (Sigma, CAS 50722-38-8) were vacuum-pumped under nitrogen 

(N2) gas to remove residual water and/or ethanol from the sample. The toxins were then dissolved in 

deuterated dimethyl sulfoxide (DMSO-d6) (Cambridge Isotope Labs, 2206-27-1) to a concentration of 

1 mg/mL, and compared to the deuterated chloroform (CDCl3) spectra previously described in 

Chapter 3. Samples of DON were also dissolved in 1 mg/mL deuterated acetone ((CD3)2CO acetone-

d6) (Cambridge Isotope Lab, CAS 666-52-4), 1 mg/mL deuterated methanol (CD3OD) (Sigma, CAS 

811-98-3), and 1 mg/mL deuterated Tetrahydrofuran (THF-d8) (Sigma, CAS 1693-74-9). The CDCl3, 
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and acetone-d6 were dried over molecular sieves in order to prevent water contamination; whereas, 

the DMSO-d6, CD3OD, and THF-d8 were obtained from individually sealed ampoules and were used 

without further drying.  The 1D 1H spectra were recorded with a 90° pulse width of 12.4 μs, a recycle 

delay of 1.5 s, and 128 transients. The 1D INEPT 13C spectra were recorded with a 90° pulse width of 

7.6 μs, a recycle delay of 4.0 s, and 8464 transients. 

The 2D homonuclear 1H COSY spectra were acquired in 256 increments covering a spectral 

width of 1800 Hz (12.0 ppm) in both dimensions, using a recycle delay of 1.5 s, which is estimated to 

be approximately five times the T1 relaxation rate for 1H in solution.  Four transients were collected 

for each increment, having 4096 points. The direct and indirect dimensions have a digital resolution 

of 0.88 and 7.03 Hz, respectively, the direct dimension was zero filled to 128,000 complex points and 

no line broadening was used. 

The 1H NOESY spectra were acquired in 256 increments covering a spectral width of 

1802.45 Hz (12.0 ppm) in both dimensions, using a recycle delay of 1.5 s. An array of mixing times, 

including 0.5 s, 1.0 s, and 1.5s, was used to ensure that all through-space signals were allowed 

sufficient time to build up prior to signal decay.  Thirty-two transients were collected for each 

increment, having 4096 points. The direct and indirect dimensions have a digital resolution of 0.88 

and 7.03 Hz, respectively. The spectra were processed using the phase sensitive States method [87], 

and were zero-filled to 128,000 complex points. 

The 2D (1H -13C) HSQC heteronuclear correlation spectra were acquired in 128 increments, 

using a recycle delay of 2.0 s, and a spectral width covering 4006.41 Hz (13.34 ppm) in the direct 

dimension and 12500 Hz (165.62 ppm) in the indirect dimension.  One-hundred-and-fifty-two 

transients were collected for each increment, having 1024 points to ensure that sufficient signal-to-

noise was achieved in each of the spectra.  The direct and indirect dimensions have a digital 

resolution of 3.91 and 97.66 Hz, respectively. 

The 2D (1H -13C) HMBC spectra were acquired in 256 increments using a recycle delay of 2.0 

s, and a spectral width covering 1951.60 Hz (6.50 ppm) in the direct dimension and 14268 Hz 

(190.24 ppm) in the indirect dimension.  One-hundred transients were collected for each increment, 
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having 1024 points and were zero-filled up to a value of 4096 points.  The direct and indirect 

dimensions have a digital resolution of 0.52 and 56.04 Hz, respectively. 

 

4.4.2 Simulations 

The SpinWorks software developed by Kirk Marat at the University of Manitoba was used to 

simulate the 300 MHz 1H spectra [97]. The 1H FIDs were zero-filled four-fold and subjected to Gauss-

Lorentz apodization with a line broadening between -0.3 to -0.90 Hz, and a Gaussian multiplication of 

0.10 to 0.33, depending on the signal-to-noise level.  All 1H spectra were simulated as two separate 

spin systems as the whole spin system could not be simulated at once due to memory allocation 

limits in the program. The six-membered ring, containing hydrogens H-7OH, H-7β, H-10, H-11, H-15A, 

H-15B, H-15OH, methyl-16, and, where applicable, the 1’ methyl from either the 3-O-acetyl, or 15-O-

acetyl group, was a ten-spin ABCD3EFGH or 11-spin ABCD3EFGHI3 system. Similarly, the five-

membered ring containing the hydrogens, H-2, H-3β, H-3OH, H-4α, H-14, H-13A and H-13B, including 

the H-4β, or in the case of NIV H-4OH, hydrogen, was simulated as a ten-spin ABCDE3FGH spin system. 

Long range couplings were considered up to 5 bonds, and an inherent line width of 0.3 Hz was used 

along with the assumption of Lorentzian line shapes. In the simulation of the A ring for NIV a total of 

2001 transitions (of a total possible maximum of 3200 transitions) were assigned with an average 

RMS deviation below 0.034 Hz and  a largest absolute difference of 0.08 Hz. Standard deviations in all 

the spectral parameters ranged from 0.03-0.06 Hz. In the C ring simulation for NIV the 2334 

transitions were assigned (of a total possible maximum of 3200 transitions) with an RMS deviation 

below 0.031 Hz, and largest absolute difference of 0.09 Hz. Standard deviations for all of the spectra 

range from 0.001-0.006 Hz. 

4.5 Complete Spectral Analysis of Nivalenol in Dimethyl Sulfoxide 

4.5.1 Results 

The complete analysis of NIV in DMSO-d6 was performed at 300 MHz for 1H and 75 MHz for 

13C. Two distinct conformations are present in different populations. The presence of the second 
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conformation is obvious in the 1D 1H spectrum, shown in figure 4.3 composing 20% of the total 

signal. The 4:1 ratio provides a basis on which signals from each conformation can be distinguished, 

and are henceforth referred to as the major and minor contributors to the spectrum. 

The agreement between the simulated spectrum for each of the individual subspectra and 

the experimental spectrum is remarkably close, lending confidence to the accuracy of the 

assignments. 

The minor peaks are sufficiently strong, such that the scalar and through-space coupling can 

be readily discerned from the cross-peaks in the COSY and NOESY spectra respectively, which are 

shown in figures 4.4 and 4.5. The cross-peaks in the COSY and NOESY spectra are colored blue for the 

major peaks and red for the minor peaks, corresponding to the colors used in the simulations 

described in figure 4.3. Exchange peaks in the NOESY spectrum are indicated in orange and green for 

the major and minor peaks, respectively. The COSY spectrum for NIV in DMSO-d6 does support the 

assignment of both the major and minor configurations appearing in the one-dimensional 1H 

spectrum.



 
116 

 

 

Figure 4. 3: Experimental and simulated 1H spectra for NIV in DMSO-d6 at 300 MHz depicting the existence of two distinct configurations. The experimental spectrum is 
shown in black, and the major and minor spectral simulations are depicted in blue and red respectively. The inset shows the combination of the major and minor 
simulations and the accuracy of the fit that their superposition has to the experimental spectrum for the protons 13A and 13B. 
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Figure 4. 4: The 1H COSY spectrum for NIV at 300 MHz in DMSO-d6 depicting 1H-1H correlations for 
the major (blue) and minor (red) contributors to the spectrum. 
 
 

 
Figure 4. 5: The 1H NOESY spectrum for NIV at 300 MHz in DMSO-d6 depicting the through-space 1H-1H 
correlations for the major (blue) contributor with exchange peaks (EXSY) in orange, and the minor (red) 
contributor with EXSY peaks in green. Minor crosspeaks that suggest significant changes to the three-
dimensional geometry of the trichothecene core are highlighted with green boxes. 
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Evidence supporting the assignments of the major and minor components is also provided in 

the NOESY spectrum, where crosspeaks indicate through-space coupling. Exchange peaks are present 

for the major spectrum, and indicate that water exchange occurs with all hydroxyl substituents in the 

major configuration of NIV. The core structural configuration determined for the major contributor 

to the NIV spectrum supports the 1H assignment described by Savard and Blackwell [135].  Only one 

exchange peak with water is observed for the minor set of peaks, that of the H-7OH hydroxyl proton, 

indicating that exchange is present only at this site in the minor structure. 

 Other important peaks observed for the minor contributor appearing in the NOESY spectra 

are those which occur between H-2 and H-11, as well as H-11 and the methyl hydrogens present on 

C-14, which are highlighted by the green boxes in figure 4.5. The chemical shift and 2D 1H 

correlations are given in table 4.2, while the scalar coupling values are presented in table 4.3 for both 

the major and minor configurations. 

Not all of the crosspeaks expected were observed in the COSY and NOESY spectra, in 

particular many of the NOESY crosspeaks for the minor spectrum appear to be missing, see footnotes 

for Table 4.2. A significant amount of overlap in the crosspeak signals is seen, especially in the 3-5 

ppm range where many of these signals are obscured by the stronger peaks from the major 

conformation. For example, the NOESY crosspeak between the minor 13A and 13B appears to be 

missing; however, the crosspeak belonging to the major 13A(13B) would overlap with the minor 

crosspeak and effectively drown it out. Despite this complication, the COSY and NOESY assignments 

presented in Table 4.2 correspond well with the one-dimensional NMR spectra for NIV. 
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Table 4. 2: Chemical shift values and two-dimensional 1H correlations for the major and minor contributors to the NIV spectra observed in DMSO-d6 

1All Chemical Shifts were simulated within 0.001 Hz, 2N/O due to overlap, 3N/O due to long range, 4N/O due to changes in the structural configuration.  

Label Chemical Shift - 

major 

COSY NOESY Chemical Shift – 

Minor 

COSY NOESY 

2 5.3121  3β,3OH 3,13A 4.8272  3β,4α 11 

3β 3.889  2,3OH,4α 2 4.103  2,3OH,4α 4,4OH 

3OH 3.398 2,3β 15B,HDO 3.308  3β,4OH 3OH 

4α 4.556  3β,4OH 13B 5.336  2,3 3β,3OH,4OH 

4OH 3.168  4α HDO 1.699  3OH 3β,4α 

7β 4.800  7OH,15B 15OH 3.572  N/O1 
 

7OH 4.642  7β,15OH 14,15OH,HDO 3.777  N/O2 HDO 

10 6.509  11,16 11,16 5.259  11,16 N/O4 

11 4.757  10,16 10,13A, 15A 3.866  10,16 2,14 

13B 2.903  13A 4α,13A 2.891  13A N/O2 

13A 2.754  13B 2,11,13B 2.773  13B 14 

14 0.893  N/O3 7OH, 0.942  N/O3 11 

15B 3.619  7β,15A,15OH 3OH,7OH,15A, 15OH 3.936  15A 7β 

15A 3.499  15B,15OH 11,15B,15OH 3.187  15B N/O2 

15OH(8) 4.299  7OH,15AB 7β,7OH,15A,HDO 5.830  N/O4 N/O4 

16 1.719  10,16 10 1.654  10,11 N/O4 
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Table 4. 3: Coupling constants and interpretation of the major and minor contributors to the NIV spectrum in 
DMSO-d6 at 300 MHz. 

 J (Hz) Major Interpretation J (Hz) Minor Interpretation 

3J2,3 4.147 (±0.001) 2 is gauche to 3 5.362 (±0.001) 2 is gauche to 3 

3J3,4 4.147 (±0.001) 3 is gauche to 4 5.654 (±0.001) 3 is gauche to 4 

3J3,3OH 4.401 (±0.001) 3 is gauche to 3OH 5.413 (±0.001) 3 is gauche to 3OH 

3J4,4OH 5.360 (±0.001) 4 is gauche to 4OH 2.987 (±0.001) 4 is gauche to 4OH 

5J3OH,4OH 0.623 (±0.001) Long Range coupling 
mediated by the 
electrons on the oxygen 
atoms 

N/O No coupling 

3J7,7OH 4.359 (±0.001) 7 is gauche to 7OH 5.569 (±0.001) 7 is gauche to 7OH 

3J10,11 5.815 (±0.001) 10 is gauche to 11 4.783 (±0.001) 10 is gauche to 11 

4J10,16 0.281 (±0.001) Typical of H and CH3 cis- 
across a double bond 

0.503 (±0.001) Typical of H and CH3 cis 
across a double bond 

2J13AB
 4.501 (±0.001) Typical for germinal on 

sp3 under ring strain 
4.853 (±0.001) Typical for germinal on sp3 

under ring strain 
2J15AB

 -11.641 (±0.001) Typical germinal on sp3 
carbon 

-9.052 (±0.001) Typical germinal on sp3 

carbon 
3J15B,15OH

 3.976 (±0.001) 15B is gauche to 15OH N/O No coupling 

3J15A,15OH
 5.545 (±0.001) 15A is gauche to 15OH N/O No coupling 

 

 

Carbon Spectral identification for NIV in DMSO-d6 

Further evidence for a second configuration is provided by the solution-state 13C NMR, 

appearing in figure 4.6. Recall, that the signals from the minor spectrum represent approximately 

20% of the total product in solution. Since 13C NMR is plagued by low natural abundance and a 

moderate gyromagnetic (γ) ratio, the signal intensity for the major signals is expected to be low; 

therefore, observation of the minor peaks in the spectrum is opportune. The intensity of these signals 

is quite low, even when significant line broadening is used to increase the signal to noise. Some of the 

signals from the minor component are visible just above the noise level. These are indicated with red 

and blue asterisks in figure 4.6. Of particular importance are the minor peaks appearing at 104.67 
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ppm and 123.82 ppm, indicated with the red asterisks. Jarvis, identified two signals in the 13C 

spectrum of DON in DMSO-d6 appearing at 104 ppm and 121 ppm, these were assigned to the 

hemiketal counterparts of C-8 and C-10 respectively, and indicate the formation of the hemiketal 

linkage between C-8 and C-15. Even though no literature examples for the 13C spectrum of NIV are 

available, a comparison between DON and NIV can be drawn, as these two compounds differ only by 

the substitution at C-4, which does not significantly affect the chemical shifts for the C-8 or C-15 

signals. 

Several other minor peaks are present in the spectrum and are highlighted by the blue 

asterisks. These have been assigned to the signals of the A-ring as seen in Table 4.4. 
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Figure 4. 6: Carbon-13 spectrum for NIV in DMSO-d6 at 75 MHz, observed at ambient temperature. Major signals are labeled with their appropriate assignment 
corresponding to the structure in the inset. Minor peaks are labeled with asterisks. 
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Figure 4. 7: Two-dimensional 1H-13C HSQC spectrum for NIV in DMSO-d6 measured at 300 MHz. Only the peaks 
for the major spectrum are clearly discerned. The peaks for the minor contributor appear to be lost in the noise. 
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Table 4. 4: Carbon chemical shifts and couplings observed for NIV in DMSO-d6 at 75 MHz 

13C label Chemical Shift – δ (ppm) 

major 

HSQC 

Major 

Chemical Shift – δ (ppm) 

Minor 

2 79.11  H-2  

3 69.02   H-3β  

4 79.69    H-4α  

5 48.66     

6 56.05  76.19 

7 73.66    H-7β  

8 199.89  103.71 

9 134.73     

10 141.76 H-10 113.87 

11 78.98      H-11  

12 64.93  61.89 

13 52.88 H-13A,H-13B 46.60 

14 7.94 H-14 11.97 

15 59.78 H-15A,H-15B 88.61 

16 15.03 H-16  

 

4.5.2 Discussion 

The solubility of trichothecenes in many solvent systems is of concern, with respect to 

spectral resolution and the propensity to form aggregates in solution. NIV is no exception, and in fact, 

is even less soluble than the majority of the toxins. NIV is only sparingly soluble in CDCl3, and 

aggregates in solution; however, a 1:1 mixture of CDCl3 and deutero-methanol (CDCl3) does make a 

suitable solvent. Previous reports describe the 13C NMR structure of NIV in acetone-d6 and DMSO-d6 

[72]; however, the chemical shift assignments are far from complete.  Attempts were also made to 

obtain the structure of NIV in pure methanol; however, as with CDCl3, its poor solubility resulted in 

significantly distorted spectra due to the aggregation of the compound in solution. 

Prior work by Jarvis et al. describes a second configuration of NIV and DON in solvents other 

than CDCl3 [72]. The evidence provided for this alternative structure was limited to the 13C spectra 



 
125 

 

for DON and a structure generated by single crystal X-ray diffraction (SCXRD) study of a modified 

version of the macrocyclic trichothecene verrucarin. Verrucarin was prepared in such a way as to 

mimic the hemiketal isomer hypothesized for the type B trichothecenes. The hypothesis regarding 

the hemiketal structure is based primarily on the presence of two previously unobserved signals 

appearing in the 13C spectrum for DON and NIV when dissolved in deuterated DMSO and acetone. 

Jarvis suggested that these signals represent up to 11% of the spectrum, with approximately one 

tenth of the sample adopting this second configuration in DMSO-d6. To the best of our knowledge, no 

further investigations into the veracity of this claim have been made. Thus, gaining knowledge 

regarding whether structural rearrangements occur in the type B trichothecenes is important for the 

elucidation of their interactions. 

The original paper presented by Jarvis indicated that the structural rearrangements occur 

more readily in NIV than in DON [72]; however,  no experimental parameters were given that could 

be matched to replicate the 13C experiment performed by Jarvis, and it was rather surprising in this 

study to find that two distinct and well-resolved sets of peaks were observed in the 1H spectrum for 

NIV when collected in DMSO-d6 with no significant overlap occurring between signals of the two 

configurations. The intensities of the minor set of peaks appear in a ratio of roughly one quarter of 

the intensity of the other set, which greatly simplifies the assignment of the peaks. 

The presence of signals from two conformations in the spectrum of NIV (figure 4.3), 

indicates that the rate of exchange is slow compared to the timescale determined by the chemical 

shift differences between the major and minor signals. As no significant line broadening is observed 

in the signals of the minor components in DMSO-d6, the rate of exchange must be much slower than 

the T1 relaxation time for the experiment. Furthermore, no evidence for exchange is seen in the 

NOESY spectrum, owing to the lack of exchange crosspeaks.  

The minor contributor to the NIV spectrum dissolved in DMSO-d6 exhibits some major 

differences in both the chemical shift and coupling constants for individual signals. For example, H10 

appears at a chemical shift of 6.5 ppm with a coupling to H11 of 5.8 Hz in the major contribution, but 
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has a chemical shift of 5.3 ppm with a 4.8 Hz coupling to H11 for the minor. In the case of the 

methylene protons on C-15, H15B experiences an increase in frequency; whereas, H15A experiences a 

decrease in frequency, and the coupling between them changes from -11.6 Hz to -9.1 Hz, this is likely 

due to an increase in the ring strain of the system, which is consistent with theory of a hemiketal 

isomer. Both H15A and H15B experience coupling to the hydroxyl proton H15OH for the major 

configuration; however, this coupling is not observed for the minor configuration.  It is important to 

note that every signal in the spectrum is affected by the structural change, as a corresponding signal 

exists for each of the protons in the minor configuration appearing at a distinct chemical shift from 

its major counterpart, although some of the signals appear to be less affected than others. For 

example, the methylene protons on the epoxide carbon C-13 do not experience a significant deviation 

in chemical shift, and in fact are overlapping slightly with the signals from their major counterpart, 

and the coupling between them is remarkably similar for the two configurations, indicating that this 

part of the molecule is not affected significantly by the structural change.  

A thorough analysis of each of the configurations of NIV was performed in order to 

determine the nature of the bonding arrangement, and the three-dimensional structure of each 

conformation. A particularly important difference between the two contributors to the spectrum for 

NIV is the large deviation in chemical shift observed for H10. The high chemical shift of 6.5 ppm for 

the H10 resonance in the major configuration is a result of conjugation for the double bond between 

C-9 and C-10, and the carbonyl at C-8, and serves as a characteristic peak for the type B 

trichothecenes. The chemical shift trend described by Savard and Blackwell for the type A 

trichothecenes, suggests that H-10 is typically located between 5.4-5.8 ppm [135]. The chemical shift 

for H10 in NIV is 5.3 ppm for the minor contribution, suggesting that H10 is attached to an sp2 carbon, 

and the ethene bond remains intact; however, the conjugation to the C-8 carbonyl has been lost.  

Jarvis proposed  two different mechanisms for the rearrangements observed in the type B 

trichothecenes, the first requires the formation of a bond between C-8 and C-15, which would require 

that the double bond of the carbonyl be broken, and a loss of the hydroxyl at C-15 to occur. The 

second mechanism, described by Jarvis [72], is the result of  a dehydration reaction between the 
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hydroxyls present at C-4 and C-15. The loss of conjugation observed by the change in chemical shift 

for the H10 resonance lends support to the first mechanism, which is further supported by the H4OH 

signal appearing at 4.6 ppm with a 3.0 Hz coupling to H4α in the minor spectrum of NIV in DMSO-d6, 

with corresponding signals for this coupling appearing in the COSY and NOESY spectra. 

The conversion from a ketone to a hemiketal would also result in a loss of the hydroxyl 

resonance at C-15, and the loss of the double bond to C-8 would require a hydrogen transfer to this 

carbon resulting in sp3-hybridization, and a new hydroxyl resonance at C-8. This mechanism is 

depicted in figure 4.8 

 

Figure 4. 8: Chemical mechanism for the formation of the hemiketal isomer of NIV from the original NIV 
structure 

 

 For the minor configuration, a loss in the coupling of H-15A and H-15B to H-15OH is observed 

in the 1H, COSY and NOESY spectra, and is indicated in Table 4.3.  Exchange with water is not 

observed for the minor component at H-15OH in the NOESY spectrum. Thus, it is possible that the 

peak in Table 4.2 attributed to H-15OH in the minor component, appearing at 5.8 ppm, is actually the 

signal for the H-8OH resonance for the hemiketal isomer.  
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Some of the more compelling evidence for the minor configuration of NIV is seen in the 

NOESY spectrum. No evidence for exchange between the two conformations of NIV is seen in the 

NOESY spectrum. The peaks representing the minor configuration and those for the major 

configuration are relatively well resolved from each other. Furthermore, the contours in the NOESY 

spectrum (see figure 4.5) are negative for the majority of the crosspeaks, with the exception of some 

of the hydroxyl residues, indicating chemical exchange with water. If exchange were to occur 

between the two configurations, positive contours would be observed throughout the spectrum. For 

example, a crosspeak representing the interaction of H-10 for the major configuration and H-10 for 

the minor configuration would be present, and would be opposite in phase to a crosspeak 

representing an interaction between H-10 and H-11 occurring solely on the major configuration.  

In the case of the major configuration for NIV positive NOESY crosspeaks, indicating 

exchange with water, occur at all hydroxyl  sites, supporting the three-dimensional configuration 

originally proposed by Savard and Blackwell [135]. A major discrepancy with the previously 

accepted spectral assignment is encountered, which involves the assignments for the methylene 

protons of C-13 on the epoxide ring. In this work the DMSO-d6 NOESY spectrum, indicates that H-13A 

is in close proximity to the protons on methyl-14; whereas, H-13B is close to the proton on C-2 as 

indicated by the associated crosspeaks. This is opposite to that in the proposed assignment by Savard 

and Blackwell; thus, these two protons were initially assigned incorrectly. This is consistent with the 

observations regarding the labeling scheme for the epoxide protons described in Chapter 3. 

Recall that the vicinal coupling constants are mediated through the p-orbital overlap; thus, 

the dihedral (or torsion) angles, defined by the bond geometry, can be obtained from the vicinal 

coupling constants via the Karplus equation. Based on the torsion angles obtained from vicinal 

couplings in the 1H spectrum for the major and minor contributions for NIV in DMSO-d6 (Table 4.3), 

in addition to the spatial proximity information from the NOESY spectra, the structures appearing in 

figures 4.9 and 4.10, for the major and minor structures of NIV respectively, are proposed. 
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Figure 4. 9: Three-dimensional structure of the major component of the NIV spectrum observed in DMSO-d6.  

The configuration for the major contributor to the spectrum is in close agreement with the core structure 
described in chapter 2 for T-2 toxin, as well as that observed for DON in chloroform. (A) Chemical structure 
formula included for reference, (B) Stick structure showing 3D geometry and torsion angles. 

 

 

The peaks corresponding to the minor contributor in the NOESY spectrum tell a different 

story. Only one exchange peak with water is observed for the minor component at H-7OH, and 

numerous peaks are present in the spectrum which would not be expected if the minor structure of 

NIV were to adopt the same configuration as that observed for the core trichothecene structure 

described by Savard and Blackwell [135]. For example, if the B-ring were to exist in the chair 

configuration, which is characteristic of the trichothecene core, then H-2 and H-11 would be on 

opposite planes of the central ring, with H-2 occupying space on the bottom side of the ring, and H-11 

occupying space on the top side of the ring closest to the epoxide functionality. Thus, it would not be 

possible for the two spins to couple through-space; however, this interaction is clearly observed in 

(A) 

(B) 
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the NOESY spectrum for the minor configuration, and is highlighted in figure 4.5 by the green boxes.  

The correlation observed between H-11 and the methyl protons on C-14 is also highlighted in figure 

4.5 for the same reason. These two groups are located on opposite planes in the major configuration; 

however, the through-space coupling between them indicates that they must be in close proximity 

for the minor configuration. Therefore, H-2, H-11 and methyl-14 are all in axial positions on the B-

ring, which would only be possible if the B-ring were to adopt a boat configuration. Thus, the NOESY 

spectrum was crucial in determining the overall three-dimensional structure of the minor 

contributor to the NIV spectrum. The minor conformation is depicted in figure 4.10. 

According to the study performed by Jarvis et al. the minor hemiketal configuration adopted 

by the trichothecenes should result in a structural change in the B-ring to a stable boat conformation 

induced by the added ring strain placed on the B-ring when the additional ring is formed between C-

8 and C-15 [72]. The observation of crosspeaks due to dipolar interactions mediated through cross-

relaxation between protons H-11 and H-2, and H-11 and methyl-14 in the NOESY spectrum, and the 

3D structure proposed in figure 4.10, lend support to the structure hypothesized by Jarvis. 

Dynamic chemical exchange with water is also observed in the NOESY spectrum. Both of the 

configurations appear to be exchanging with residual water in the sample. For the major contributor, 

exchange with water occurs at all four of the hydroxyl groups; whereas, in the case of the minor 

contributor, the only hydroxyl group which appears to be undergoing exchange with water is that 

present at C-7. This indicates that there must be something tying up the other hydroxyl moieties, 

thereby preventing exchange with water. From figure 4.10, it is clear that H-7OH is on the bottom side 

of the trichothecene, and sits in the newly formed hemiketal pocket. Hydroxyls H-3OH and H-4OH are 

present on the C-ring of the NIV molecule and removed from the H-7OH proton, and lie in close 

proximity to the tetrahydropyranyl pocket. If the only water in the sample is directly bound to NIV, 

then only the hydroxyls that are directly interacting with the water will exhibit exchange in the 

spectrum. Thus, it is possible that a bound water molecule has been released from the 

tetrahydropyranyl pocket in the minor structure, and now occupies the space in the hemiketal 

pocket, with no other water molecules are interacting with the NIV molecule in its minor 
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configuration. Further investigations into the water dynamics of the system should be focused 

primarily on this mechanism; however, care must be taken to add the water in sub-stoichiometric 

amounts, so as not to saturate the NIV molecules with water; thus, leading to the loss of signal from 

the minor components in DMSO-d6. A more concentrated sample of NIV in DMSO-d6 is recommended 

for future deuterium exchange studies. 

 

 

 

Figure 4. 10: Three-dimensional structure for the minor component of the NIV spectrum observed in DMSO-d6 
depicting the adoption of a boat configuration in the B-ring. (A) Chemical Structure formula included for 
reference, (B) Stick structure showing 3D geometry and torsion angles. 

 

(A) 

(B) 
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Analysis of the Carbon-13 spectrum for NIV in DMSO-d6 

The presence of a minor contribution to the spectrum is observed in all of the spectra 

collected for NIV in DMSO-d6, including the 13C spectrum. In addition to the new evidence presented 

here for the minor contribution as described by the 1D and 2D 1H spectra, the 13C spectrum confirms 

the presence of the peaks observed by Jarvis et al. (red asterisks, figure 4.6) [72],for the hemiketal 

isomer, and also indicates the presence of additional peaks (blue asterisks figure 4.6) which may also 

be attributed to the hemiketal structure shown in figure 4.10. 

The peaks appearing at 103.71 ppm and 113.87 ppm in the CP 13C spectrum for NIV in 

DMSO-d6 correspond well with the minor C-8 and C-10 peaks described by Jarvis et al. for the 13C 

DEPT spectrum acquired for DON in DMSO-d6 [72]. In the major component C-8 appears at 199.89 

ppm due to the double bond with the oxygen of the C-8 carbonyl. However, in the hemiketal 

structure, the double bond character is lost, and C-8 is now sp3-hybridized. The oxygen at C-8 now 

forms part of the hemiketal with C-15; thus, the chemical shift remains significantly deshielded due 

to the direct attachment of the oxygen. 

In the major configuration C-10 is involved in an ethene bond with C-9 that is conjugated 

with the carbonyl at C-8. However, in the minor configuration, the carbonyl is no longer present, and 

the conjugation is lost. The change in conjugation results in a slightly lower chemical shift frequency 

for C-10. 

Five other peaks are observed in the CP 13C spectrum for NIV in DMSO-d6, and are attributed 

to carbon resonances in the A-ring for NIV. Carbon C-6, which is at the hinge point for the A-ring, B-

ring, as well as the newly formed hemiketal ring, is predicted to observe a rather large increase in 

chemical shift, from 56.05 ppm in the major configuration to 76.19 ppm in the minor configuration 

due to the large increase in the ring strain applied to this carbon. Carbon C-15 is also predicted to 

experience a large change in chemical shift, increasing from 59.78 ppm in the major configuration to 

88.61 ppm in the minor configuration. For C-15, the change from the hydroxyl substituent, H-15OH, to 
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the hemiketal substitution, is not expected to have a significant effect on the chemical shift simply 

due to the chemical structure; however, the change in the three-dimensional geometry, and added 

ring strain observed for C-15 may produce the large increase in chemical shift. Carbon C-15 is now 

locked into place, and is in close proximity to the oxygen atom of the hydroxyl substituent at C-7, 

which will produce significant electron withdrawing effects, serving to further deshield C-15. 

Furthermore, an increase in the chemical shift of C-15 serves to support the hypothesis that water-

binding in the hemiketal configuration occurs within the newly formed hemiketal pocket, which was 

suggested due to the exchange peak with water observed for H-7OH in the NOESY spectrum (figure 

4.5). 

Carbons C-12, C-13 and C-14 also experience slight changes in chemical shift, 3 to 8 ppm, due 

to the change in the three-dimensional geometry of the trichothecene core. The largest difference 

among these is the decrease in chemical shift of C-13, which shifts from 52.88 ppm in the major 

configuration to 46.60 ppm in the minor. No significant changes were observed for protons H-13A 

and H-13B for the minor configuration of NIV; therefore, the geometry of the epoxide is not 

significantly affected; however, the proximity of C-13 to an electron withdrawing group, such as that 

present at O-1 in the trichothecene core, could result in the decrease in chemical shift. Thus, the 

change in chemical shift of C-13 supports the change in geometry of the B-ring from a chair to a boat 

configuration. 

Overall, the information gathered for the minor contribution of NIV as acquired in DMSO-d6, 

indicates that NIV undergoes a rearrangement from the accepted C-8 ketone type B trichothecene 

structure, to the less well documented hemiketal structure. Furthermore, it also provides direct 

evidence for a boat conformation adopted by the B-ring. Evidence also exists for a change in the 

water-binding between the major and minor configurations, where the major configuration 

showedthe presence of at least one water molecule binding within the tetrahydropyranyl pocket, and 

the minor configuration appears to support the binding of water within the newly formed hemiketal 

pocket, but not within the tetrahydropyranyl pocket.  
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4.6 Solvent Effects Observed for DON 

4.6.1 Results 

Previous work by Jarvis et al. suggests that like NIV, DON also exists in a second minor 

conformation [72]. Jarvis collected the 13C DEPT spectra of DON in several solvent systems to probe 

the effects of solvent on the trichothecene structure. The physical and chemical properties of the 

solvents of interest in this study are listed in table 4.1.  

The spectra of DON prepared for the chosen solvents are shown in figure 4.11, with chemical 

shift and coupling constants tabulated in Tables 4.5 and 4.6, respectively. 

Many of the 1H chemical shifts for DON in CDCl3, CD3OD and THF-d8 are in remarkably close 

agreement, deviating only where significant interactions with the solvent are to be expected; such as 

areas that are more susceptible to the different properties of the solvent due to hydrogen-bonding, 

chemical exchange, or solvent polarity (i.e. the hydroxyl protons). The physical effects of the solvent 

are also reflected by the water signal. The chemical shift of the water is incredibly sensitive to the 

surrounding environment. It is affected by solvent polarity, hydrogen bonding, temperature, pH and 

ionic strength; the same is true of the chemical shift of the hydroxyl protons. In the case of CD3OD, 

none of the hydroxyl hydrogens are seen due to exchange with this aprotic solvent, and the water 

peak is in fact attributed to HDO, due to exchange with the solvent. The hydroxyl residues are 

observed in THF, but are shifted with respect to those in CDCl3, most likely due to the effects of the 

different polarities of the solvents. 

The chemical shifts of the protons on C-4, 4α and 4β, in the chloroform spectrum experience a 

difference in frequency of 0.1 ppm; however, in the case of all other solvents, the difference in 

frequency is much larger, approximately 0.5 ppm 
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Figure 4. 11: 1H NMR spectra observed for DON in CDCl3, methanol (CD3OD), acetone-d6, DMSO-d6, anf THF-d8 at 300 MHz. Peaks of interest in the spectrum are 
highlighted. Solvent peaks are denoted with a black asterisk; whereas, the water peaks are denoted by a red asterisk.  
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Table 4. 5: Chemical shift data for DON in various solvent systems at 300 MHz  

 

1Chemical shifts were simulated to an accuracy of 0.001 Hz  
2Chemical shifts were simulated to an accuracy of 0.02 Hz  
3Chemical shifts for the hydroxyl resonances are not observed in CD3OD due to exchange with the solvent. 
 

1H label Chemical Shift – δ (ppm) 

 CDCl3 CD3OD  (CD3)2CO DMSO-d6 THF-d8 

2 3.6721  3.5451  3.4841  3.401  3.392  

3β 4.577  4.378  4.386  4.180  4.28  

3OH 2.067  N/O3 4.256  5.114 3.02  

4α 2.247  2.464  2.515  2.463  2.45 

4β 2.129  1.970  1.928  1.771  1.89  

7β 4.878  4.811  4.257  4.859  4.76  

7OH 3.862  N/O3 3.803  4.654 4.15  

10 6.656  6.615  6.597  6.555  6.51  

11 4.845  4.959  5.055  4.923  4.99  

13A 3.120  3.111  4.818  3.041  2.99  

13B 3.195  3.072  4.026  2.916  2.92  

14 1.174  1.124  1.097  0.991  1.06  

15A 3.781  3.697  3.825  3.641 3.79  

15B 3.933  3.779  3.709  3.412 3.69  

15OH 2.066  N/O3  3.753  4.632  4.29  

16 1.931  1.846  1.809  1.734  1.78  
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Table 4. 6: Scalar coupling values obtained for DON in various solvent systems at 300 MHz  

J Scalar Coupling Constants – J (Hz) 

 CDCl3 CD3OD (CD3)2CO DMSO-d6 THF-d8 

3J2,3 4.643 (± 0.005)1 4.479 (± 0.015)1 4.367 (± 0.02)1 4.182 (± 0.013)1 4.1612 

3J3,4α 4.150 (± 0.005) 4.355 (± 0.014) 4.360 (± 0.02) 4.024 (± 0.014) 4.161 

3J3,4β 11.013 (± 0.005) 11.101 (± 0.014) 11.151 (± 0.02) 11.312 (± 0.014) 9.708 

3J3,3OH 1.131 (± 0.004) N/O3 4.222 (± 0.02) 3.853 (± 0.013) N/O5 

2J4α,4β -14.748 (± 0.004) -14.498 (± 0.015) -14.457 (± 0.02) -14.391 (± 0.014) -14.423 

3J7β, 7OH 1.213 (± 0.003) N/O3 2.630 (± 0.2) 4.226 (± 0.012) 2.774 

3J10,11 5.283 (± 0.007) 5.583 (± 0.007) 6.100 (± 0.1) 5.918 (± 0.004) N/O 

5J10,15α 1.412 (± 0.007) N/O4 N/O4 N/O4 N/O4 

5J10,15β 0.948 (± 0.007) N/O4 N/O4 N/O4 N/O4 

4J10,16 1.519 (± 0.007) N/O4 0.490 (± 0.3) 0.936 (± 0.005) N/O4 

2J13a,13b 4.268 (± 0.004) 4.181 (± 0.015) 3.031 (± 0.2) 4.395 (± 0.004) 4.577 

2J15a,15b -11.817 (± 0.007) -12.075 (± 0.007) -9.581 (± 0.2) -11.673 (± 0.005) -11.993 

3J15a 15OH 0.965 (± 0.007) N/O3 4.356 (± 0.2) 4.783 (± 0.005) N/O5 

3J15b,15OH 3.095 (± 0.007) N/O3 6.342 (± 0.2) 5.087 (± 0.005) N/O5 

1Simulations performed with SpinWorks 3.0 computer software. 2Spectrum could not be simulated due to lack of sufficient resolution. 3Hydroxyl 
resonances  could not be observed in CD3OD  due to chemical exchange. 4Long Range coupling not observed. 5Coupling not measured due to lack of 
sufficient resolution. 
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The coupling constants observed for DON in CDCl3 and DMSO-d6 are in remarkably close 

agreement, only exhibiting significant differences for coupling that involve the hydroxyl resonances. 

CD3OD and THF-d8 also follow the same trends, but lack information regarding coupling in the 

hydroxyls and in such long range couplings as H-10 to H-15AB and H-16. In the protic solvent CD3OD, 

couplings to the hydroxyls are lost, due to deuterium exchange; thus, the couplings between the 

hydroxyl resonances to neighbouring protons cannot be obtained. The long range 4- and 5-bond 

couplings in the A-ring of the DON molecule are also lost. Of note are the long range couplings 

observed between H-10 to H-15A and H-15B, as well as the coupling of H-10 to the methyl-16 

resonances, which are absent from the CD3OD spectrum. The long range couplings on the A-ring are 

also missing in the spectrum in THF-d8. The signal-to-noise in the THF-d8 spectrum is low, due to 

poor solubility, and was insufficient to allow for optimization of the simulations, which may have 

resulted in errors in the spectral assignment. For example, H-10 appears as a rather broad peak, 

indicating small line splitting; however, individual couplings could not be discerned. As a result, 

couplings involving H-10 to H-11, H-10 to H-15A and H-15B, as well as H-10 to H-16 were not 

obtained with the usual high degree of accuracy. Notable differences are observed among the 1H 

chemical shifts in the presence of acetone-d6. In particular, the epoxide resonances appear at higher 

frequency (4.0 and 4.8 ppm) in acetone-d6 when compared to CDCl3 (3.1 and 3.2 ppm) and the other 

solvents. 

Scalar couplings to the hydroxyl protons of DON in acetone-d6 and DMSO-d6 appear to be 

much larger than those observed in CDCl3. For example, the couplings between H-15OH and H-15A and 

H-15B are 0.97 and 3.10 Hz, respectively in CDCl3, but appear to be 4.36 and 6.34 Hz in acetone-d6, 

and 4.78 and 5.09 Hz in DMSO-d6. The internal hydrogen bonding network in DON is not disrupted, 

as the signals indicating this interaction (the narrow line-width, and well-defined couplings of H-7OH) 

remain sharp; however, the differences in couplings observed involving the protons on C-15, suggest 

that a different geometry is adopted in these solvents.  

The same changes in coupling occurs for H-3β and the hydroxyl H-3OH proton. In CDCl3 the 

couplings are rather small, on the order of 1.1 Hz; however, in acetone-d6 and DMSO-d6 the coupling 
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is much larger, approximately 4.2 and 3.9 Hz, respectively. The hydroxyl couplings are not observed 

in CD3OD due to chemical exchange with the solvent, and in THF-d8 due a lack in sufficient resolution.  

Solvent Effects on the Carbon Spectra for DON 

Although 13C NMR was performed for DON in all of the solvents listed in table 4.1, only those 

in CDCl3, acetone-d6, and DMSO-d6 were acquired with sufficient signal-to-noise to allow for spectral 

analysis, and are depicted in figure 4.11. The 13C spectra for DON in CD3OD and THF-d8 were also 

acquired with the same experimental time and number of scans as the other solvents; however, the 

signal for the solvent is overwhelming in these spectra, such that even when linear prediction and 

line broadening methods are applied [144], the sample signals are lost in the noise. The chemical 

shift information for the spectra shown in figure 4.12 is tabulated in table 4.7, and are compared with 

the shifts previously reported by Jarvis et al. [72]. 

 

Figure 4. 12: CP 13C spectra for DON in CDCl3, acetone-d6 and DMSO-d6 at 75 MHz, acquired with 4000 scans and 
a relaxation delay of 2 seconds. Peaks detected for the minor contribution to the spectrum are highlighted in the 
spectrum for DMSO-d6 with black asterisks. 
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Table 4. 7: Experimental and literature 13C chemical shift data for DON collected in CDCl3, acetone-d6 and DMSO-d6 
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1All literature data obtained from Jarvis et al. [72].Comparison of NIV 1H Spectra in DMSO-d6 and CDCl3 

 CDCl3 Acetone-d6 DMSO-d6 

Carbon Literature1 Experimental Literature1 Experimental Literature1 Experimental 

2 80.6 80.80 81.6 80.84 80.2 80.62 

3 68.6 69.17 69.3 68.60 67.8 68.17 

4 43.0 43.21 44.4 43.64 43.7 44.12 

5 47.2 46.46 46.5 45.79 45.4 45.75 

6 52.1 51.96 53.0 52.20 51.8 52.18 (64.77) 

7 70.2 70.39 70.6 69.71 69.3 69.61 

8 202.3 199.87 200.7 (104.7) 199.83 200.0 (104) 200.58 (100.64) 

9 135.7 135.96 135.6 134.68 134.8 135.18 

10 138.5 138.4 139.7 (122.0) 138.99 138.2 (121) 138.71 (119.10) 

11 74.4 74.53 75.4 74.57 74.5 74.84 

12 65.6 65.61 66.5 65.66 66.0 66.31 

13 46.0 47.41 47.5 46.66 46.7 47.11 

14 13.9 14.34 14.5 13.71 14.5 14.84 

15 61.4 62.56 61.5 60.80 60.1 60.47 

16 14.9 15.37 15.2 14.41 15.1 15.46 (16.20) 
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4.6.2 Discussion 

The structure of DON appears frequently in the literature; however, in the majority of cases 

the NMR structure has been studied strictly in CDCl3. In the paper describing the structural 

rearrangement to a hemiketal observed by Jarvis [72], the 13C NMR was also obtained in deuterated 

acetone, methanol and DMSO. However, with only a 13C spectrum to work from, the evidence for the 

hemiketal remains limited. In this study, the 1D and 2D 1H NMR, as well as the 13C spectra, were 

collected in deuterated chloroform, acetone, methanol, DMSO and THF, and were compared to 

determine whether the structure proposed by Jarvis et al. could be observed. 

From the stacked plot of the spectra in figure 4.8, it is clear that only when DON is dissolved 

in CDCl3 does the compound adopt a single structural conformation. In all other cases at least a small 

percentage of the compound is rearranged in the hemiketal form. In the past, high resolution spectra 

such as those reported in this study were not always possible, and with only a single contribution 

appearing in the CDCl3 spectrum, this may have resulted in CDCl3 being the solvent of choice. 

However, with the second conformation appearing across the various solvents, it begs the question 

as to whether the structure observed for the trichothecenes when dissolved in CDCl3, is the only true 

structure, or whether the rearrangement to the hemiketal form should be given more consideration. 

As was observed for NIV, the possibility for rearrangement is largely influenced by the 

conformation of the ring system. A large undertaking to determine the key structural features of 

trichothecene toxins, as described by 1H NMR, was performed in the late 1980s by Marc Savard and 

Barbara Blackwell [135].  They proposed that the B-ring preferentially adopts a chair conformation, 

with the epoxide ring in an axial position, and the methyl at carbon-14 sitting equatorial to the ring. 

However, not long after the Savard and Blackwell description of trichothecene structure was 

released, Jarvis and colleagues described a structural rearrangement of some type B trichothecenes, 

where the B-ring was shown to adopt a boat configuration, in which the methyl adopts an axial 

position on the ring, with the epoxide adopting an equatorial position [72]. The arrangement of the 

B-ring, which is central in the trichothecene core, influences the overall structural conformation of 
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the toxin. The preference for the B-ring to adopt either a chair or boat configuration is strongly 

influenced by the covalent bonding and hydrogen bonding interactions induced by its immediate 

environment (i.e. solvent system). 

With the difficulties in obtaining crystals of sufficient quality to perform SCXRD [59], and the 

well documented capability of DON to form intramolecular hydrogen bonds [111], it seems only 

natural that DON may exist in more than one stable conformation. Thus, in an attempt to tease out 

the information regarding other possible conformations of DON, the compound was dissolved in 

several solvents (DMSO-d6, acetone-d6, methanol-d4, and tetrahydrofuran (THF-d4)), see table 4.1 for 

a description of the physical and chemical properties, and compared to the original structure in 

CDCl3, which is described in detail in chapter 3. 

The most notable differences observed for DON dissolved in different solvents occur in the 

chemical shifts observed in the presence of (CD3)2CO (acetone-d6); see table 4.5. In acetone-d6, the 

epoxide resonances appear at a much higher frequency (4.0 and 4.8 ppm) as compared to those in 

CDCl3 (3.1 and 3.2 ppm). The carbon atom of the carbonyl functionality in acetone-d6 acts as a strong 

electrophilic center, and the oxygen a strong nucleophile. Interaction with the highly strained carbon 

atoms (C-12 and C-13) of the epoxide is possible, where the oxygen atom would interact primarily 

with C-13, as C-12 is sterically obscured. The proximity of the oxygen to the epoxide hydrogens 

would serve to further deshield these centers and a higher chemical shift frequency would be 

observed. The positioning of the solvent with respect to the epoxide ring is depicted in figure 4.19. 

The interaction of the solvent with the trichothecene molecule results in the delocalization of the 

electrons within the π-bonded system of acetone-d6, which results in a local magnetic field about the 

carbonyl, as shown in figure 4.20. Areas along the axis of the π-bond would experience a stronger 

deshielding effect, resulting in a higher frequency in their chemical shift; whereasthose electrons 

located in areas adjacent to the π-bond would experience a shielding effect, resulting in a much lower 

chemical shift frequency.  Note that H-7β also experiences a significant deviation in chemical shift 

from 4.8 ppm in CDCl3 to 4.3 ppm in acetone-d6. This serves to confirm the orientation of the solvent 

molecule shown in figure 4.13, as H-7β is located in the region where shielding would occur, and a 
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decrease in frequency is expected. H-11 is pointing into the page in this instance, and thus would 

likely be out of range of the shielding effects of the solvent. 

 

Figure 4. 13: The alignment of acetone-d6 with respect to the epoxide functionality of DON. The double bond 
character of the carbonyl functionality of acetone results in areas that cause an increase in the deshielding, and 
subsequently the frequency, of the atoms located in those regions, these are denoted by the positive signs. As 
well as areas where increased shielding and a subsequent decrease in frequency are observed, denoted by the 
negative signs. 

 

Upon introduction of the protic CD3OD solvent, coupling to the hydroxyls is lost, as they are 

not observed in the spectrum due to chemical exchange. Thus, the couplings between the hydroxyl 

resonances to their nearby neighbours cannot be measured. A loss of the long-range 4- and 5-bond 

couplings on the A-ring of the DON molecule is also noted. The couplings between H-10 to H-15A and 

H-15B, as well as the coupling of H-10 to the methyl-16 resonances are not observed in the CD3OD 

spectrum. The loss of coupling between H-10 to the protons on C-15 suggest that a disruption in the 

internal hydrogen bonding network, described for DON in chapter 3, has occurred; possibly due to 

the exchange of the 1H atom of the C-15 hydroxyl to the heavier 2H atom, or alternatively through the 

introduction of a new hydrogen bond with the solvent. It is important to note that the CD3OD 

spectrum is not as well resolved as the CDCl3 spectrum, which may reduce the ability to observe the 

longer range couplings. The rigidity of the A-ring has been disrupted to some extent, allowing the 

molecule to relax and the longer-range couplings to effectively disappear. The loss of rigidity of the A-

ring would also result in the loss of observable coupling between H-10 and the methyl-16 

resonances. 
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Solvent effects on the C-ring 

Across the solvents, one area where a rather notable difference is seen are the chemical 

shifts in the C-ring. The difference between the shifts in CDCl3 is approximately 0.1 ppm; whereas, in 

all the other solvents, the difference is approximately 0.5 ppm.  

The C-ring is a rigid ring system, and the C-3/C-4 bond is locked without significant 

movement. As such, H-4α is cis to H-3OH and trans to H-3β; H-4β is cis to H-3β and trans to H-3OH. Based 

on the cis-substituent effect of rigid ring systems described by Williamson for a similar system [163], 

the proton which is trans to the hydroxyl, H-4β in this case, would experience the higher chemical 

shift to that which is cis to the hydroxyl, H-4α, due to the electron withdrawing effects of the oxygen. 

H-4α is further shielded by the electron of the hydroxyl oxygen due to the neighboring group effect. 

The orientation is shown in figure 4.14, and is simplified by the use of a plane drawn along the C-ring. 

 
Figure 4. 14: Trichothecene core depicting the bonds at C-3 and C-4. The plane of the C-ring is shown in grey. H-
4α and H-3OH are present in the same plane across the ring and are cis to each other. H-4β, shown in red is 
present on opposite side of the plane from H-3OH; thus, they are trans to each other.  

 

This effect does not support the assignment which was adopted from the labeling in the 

literature by Savard and Blackwell [135]. Upon closer inspection, the coupling constants from H-3β 

and H-4β which is approximately 11.0 to 11.3 Hz, and from H-3β to H-4α, approximately 4.0 to 4.3 Hz, 

do not support the Savard and Blackwell assignment either. Typical trans coupling constants have 

values of approximately 10-14 Hz; whereas, cis coupling tends to be on the order of 3-5 Hz. 

Therefore, the coupling of 11 Hz suggests a trans coupling, and a coupling of 4 Hz supports a cis 
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coupling. Thus, the assignment should be revised and the labeling scheme for H-4α and H-4β needs to 

be swapped. 

 

 

Figure 4. 15: Depiction of the coupling for the protons on C-4 to the proton H-3β, along with the Newmann 
projection for this interaction which looks down the bond from C-3 to C-4. The coupling observed for H-3β to H-
4β should be typical of a cis coupling which is on the order of 3-5 Hz; whereasthe coupling from H-3β to H-4α 

should be typical of a trans coupling, 10-14 Hz. 

 

Vicinal coupling observed for the hydroxyl resonances in DON 

It was observed that in the non-polar solvent chloroform, CDCl3, the coupling constants 

involving hydroxyl protons were all very small, on the order of 0.9 to 1.2 Hz. However, as the solvent 

was changed to a more polar system such as acetone-d6 or DMSO-d6, the vicinal coupling constants 

involving hydroxyl protons became much larger. Investigation into this phenomenon produced 

information regarding the Karplus relationship for JHCOH couplings, which were described in detail in 

a paper by Fraser et al. [46]. The paper describes the Karplus equation for JHCOH couplings, and also 

indicates that the polarity of the solvent used seems to have an effect on the sampling of the 

rotational isomers in solution. The Karplus equation for JHCCH, equation 4.1, differs slightly from that 

which Fraser calculated for JHCOH, equation 4.2. 
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   (    )     (    )        (4.1) 

               
   (    )                 (4.2) 

Using the equation for 3JHCOH it is possible to estimate what the couplings for the trans (180°), 

gauche (60°), and gauche’ (300°) rotations about these hydroxyl bonds will evaluate to. 

Jg = 10.4 (0.5)2 – 1.5(0.5) + 0.2 = 2.05 Hz 

Jg’ = 10.4 (0.5)2 – 1.5(0.5) + 0.2 = 2.05 Hz      (4.3) 

Jt = 10.4 (-1)2 – 1.5(-1) + 0.2 = 12.1 Hz 

Javg = (Jg + Jg’ = Jt)/3  =(2.05 + 2.05 + 12.1)/3 = 5.4 Hz 

 This information provides a means with which to describe the orientation of the hydroxyl 

bonds in solution.  

For example, the change in coupling observed for 3J3,3OH from non-polar CDCl3  to  the polar 

acetone-d6 and DMSO-d6 solvents appears to indicate that a change in configuration about the bond 

has occured. In CDCl3 the vicinal coupling 3J3,3OH is approximately 1.1 Hz; whereas, in acetone-d6 and 

DMSO-d6 the coupling changes to 4.2 and 3.9 Hz respectively.  

 

Figure 4. 16:  Newmann projections along the H-C-O-H  bond for the hydroxyl resonance at C-3 showing the 
gauche, gauche’ and trans coupling orientation for H-3β to H-3OH. 
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 The coupling constant observed for 3J3,3OH in CDCl3 suggests that the bond orientation 

preferentially rotates between the gauche and gauche’ configurations, barely spending any time at all 

in the trans orientation. However, in the polar solvent systems, acetone-d6 and DMSO-d6 the 4.2 and 

3.8 Hz coupling suggest that the rotational isomers are sampled more evenly, as the coupling is much 

closer to the average value of 5.4 Hz; however, a slight preference for the gauche and gauche’ 

configurations does exist.  

 Similarly, the couplings observed for the hydroxyl at C-7 appears to follow the same trend as 

that described for the hydroxyl at C-3. In CDCl3, 3J7,7OH has a value of 1.2 Hz, but when measured in 

acetone-d6 and THF-d8 the coupling increases to 2.6 and 2.8 Hz, respectively, suggesting that the 

orientation is preferentially gauche and gauche’, with only a slight increase in trans sampling for the 

more polar solvents. Even in DMSO-d6, the value for 3J7,7OH only increases to 4.2 Hz, indicating that the 

gauche orientations are still preferentially sampled in solution. 

 The final region of the molecule where the H-C-O-H bond angles are present are along the C-

15 bond to C-15OH. If the bond angles are different in non-polar versus polar solvents, then some 

explanation regarding the absence of hemiketal isomers in non-polar solvent systems may be 

available. The hemiketal isomer appears to be present in all of the solvent systems in which DON was 

dissolved, with the exception of CDCl3. Based on the data recorded here the hemiketal isomer 

appears to only occupy up to 20% of the population in the sample. 

 

Figure 4. 17: Newmann projections for the rotations observed along the C-15 to O-15 bond in DON. The labeling 
scheme refers to the coupling of 15A(15OH), 15B(15OH), such that the term trans, gauche refers to 15A being trans 
to 15OH, and 15B being gauche to 15OH 
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Table 4. 8: Scalar coupling values for DON in CDCl3, acetone-d6, and DMSO-d6 

Solvent CDCl3 Acetone-d6 DMSO-d6 

3J15A,15OH 0.965 4.356 4.783 

3J15B,15OH 3.095 6.342 5.087 

Interpretation Coupling pattern 
suggests that the 
protons preferentially 
sample a gauche, 
gauche configuration 

Coupling pattern 
suggests that the 
protons sample all 
rotations, but have a 
slight bias towards a 
gauche, trans 
configuration. 

Coupling pattern 
suggests that the 
protons sample all 
rotations, but have a 
slight bias towards a 
gauche, gauche 
configuration. 

 

 In terms of the three-dimensional configuration for DON, it is clear a gauche, gauche 

configuration along the C-15 to O-15 bond will not promote the proper geometry for bond formation 

between the carbonyl at C-8 and the hydroxyl at C-15, which must take place in order for the 

hemiketal configuration to form. However, sampling of the trans configuration along this bond in 

DON, places the C-15 hydroxyl in the proper geometry to promote interaction with the C-8 carbonyl. 

Without the proper orientation and the appropriate energy within the system, the reaction which 

produces the hemiketal bond cannot take place.  

 Therefore, in polar solvent systems the conditions for hemiketal formation are present to a 

greater extent than in non-polar solvent systems. Surprisingly, evidence for the hemiketal isomer 

exists in THF-d8, which according to table 4.1, is relatively non-polar with a polarity index of only 4.0; 

whereas, CDCl3 has a polarity index of 4.1. However, the dielectric constant for THF-d8 is greater than 

CDCl3, at 7.60 versus 4.81, and the actual dipole moment of THF-d8 (1.75) is also much larger than 

that of CDCl3 (1.04) both of which also has an effect on the relative polarity of the solvent. Thus, THF 

is considered to be a borderline polar aprotic solvent, for all intents and purposes and may serve to 

influence the orientation about the hydroxyl bonds, while CDCl3 is a non-polar aprotic solvent, and 

does not serve to align the molecule in the proper orientation for hemiketal formation. 

The hemiketal isomer is present in different proportions in different solvent systems, which suggests 

that the two conformations exist in equilibrium with each other. The polarity of the solvent appears 

to have a large effect of the equilibrium between the two isomers. However, the equilibrium does not 
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appear to be directly proportional to the polarity of the solvent, which suggests that other factors 

may play a significant role in the equilibrium between the isomers of the type B trichothecenes. 

4.7 Investigation into the effects of non-polar CDCl3 versus polar DMSO-d6 solvents 

across the Type B trichothecenes 

4.7.1 Results 

The differences in the spectra and overall conformation observed among the non-polar and 

polar solvents for the type B trichothecene DON, led to the investigation of the other type B 

trichothecenes NIV, 3-ADON and 15-ADON in both the non-polar solvent CDCl3 and the polar solvent 

DMSO-d6. 

DMSO-d6 was chosen among the polar solvents since DON spectra it was shown to adopt a 

larger percentage of the secondary hemiketal isomer in this solvent. Furthermore, the type B 

trichothecenes displayed sufficient solubility in DMSO-d6, in particular, NIV was insoluble  in all other 

solvents presented including CDCl3. The relatively high solubility of the trichothecenes in DMSO-d6 

also produces spectra with greater signal-to-noise ratio and spectral resolution. 

As mentioned, NIV was unfortunately not soluble in the non-polar CDCl3 alone, and had to be 

analyzed in a mixture of CDCl3 and CD3OD, which results in a much more polar solvent overall. In fact, 

evidence exists for the secondary minor hemiketal conformation for NIV in the CDCl3:CD3OD 

spectrum, which is highlighted in figure 4.18 by the presence of the characteristic H-8OH peak at 

approximately 5.3 ppm. 

Figure 4.18 contains the 1H spectra of NIV in CDCl3:CD3OD and DMSO-d6. Both spectra were 

analyzed separately and presented earlier. The chemical shift and coupling constant data is 

retabulated in tables 4.9 and 4.10, respectively, for ease of comparison. 
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Figure 4. 18: 1H NMR solution-state spectra for NIV compared in CDCl3:CD3OD and DMSO-d6 at 300 MHz. The major contributors to the spectra are labeled with black 
typescript; whereas, the minor contributor to the DMSO-d6 spectrum for NIV is labeled with red type. The major spectrum conforms to the numbered structure depicted 
in the inset of the figure. The characteristic peak for the hemiketal configuration is highlighted in the spectra by  yellow boxes. 
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Table 4. 9: Chemical shift data for the 1H spectra of NIV in CDCl3:CD3OD and DMSO-d6 at 300 MHz 

 

1H label Chemical Shift – δ (ppm) 

 CDCl3:CD3OD DMSO-d6 (Major) DMSO-d6 (minor) 

2 3.3661  5.3121  4.8271  

3β 3.872  3.889  4.103  

3OH 0.977  3.398 3.308  

4α 4.543 4.556  5.336  

4OH 3.939  3.168  1.699  

7β 4.324  4.800  3.572  

7OH 3.157 4.642  3.777  

10 6.311  6.509  5.259  

11 4.329  4.757  3.866  

13B 2.756  2.903  2.891  

13A 2.707  2.754  2.773  

14 0.807  0.893  0.942  

15B 3.513  3.619  3.936  

15A 3.459  3.499  3.187  

15OH(8OH) 1.496  4.299  5.830 

16 1.583  1.719  1.654  

1All spectra in Figure 4.15 were simulated to an accuracy of 0.001 Hz 
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Table 4. 10: Scalar  1H{1H) coupling data for NIV compared in CDCl3:CD3OD and DMSO-d6 at 300 MHz 

 
1H label Scalar Coupling Constants – J (Hz) 

 CDCl3:CD3OD DMSO-d6 (Major) DMSO-d6 (minor) 

3J2,3 3.572 (± 0.002)1 4.147 (± 0.001)1 5.362 (± 0.001)1 

3J3,4 4.891 (± 0.002) 4.147 (± 0.001) 5.654 (± 0.001) 

3J3,3OH N/O2 4.401 (± 0.001) 5.413 (± 0.001) 

2J4α,4OH N/O2 5.360 (± 0.001) 2.987 (± 0.001) 

5J3OH,4OH N/O4 0.623 (± 0.001) N/O4 

3J7β, 7OH N/O2 4.359 (± 0.001) 5.569 (± 0.001) 

3J10,11 5.646 (± 0.005) 5.815 (± 0.001) 4.783 (± 0.001) 

4J10,16 0.483 (± 0.002) 0.281 (± 0.001) 0.503 (± 0.001) 

2J13α,13β 4.362 (± 0.002) 4.507 (± 0.001) 4.852 (± 0.001) 

5J11,16 0.799 (± 0.001) N/O4 N/O4 

2J15α,15β -12.022 (± 0.004) -11.641 (± 0.001) 9.052 (± 0.001) 

3J15α 15OH 3.513 (± 0.001) 3.976 (± 0.001) N/O3 

3J15β,15OH 3.459 (± 0.001) 5.545 (± 0.001) N/O3 

1All spectra were simulated with the SpinWorks program with an average RMSD below 0.034 Hz and 
a standard deviation between 0.03 and 0.06 Hz 
2These hydroxyl couplings were not observed in the CDCl3:CD3OD spectrum due to chemical 
exchange 
3Couplings not observed due to structural changes, and loss of the 15OH signal. 
4Long range couplings not observed. 
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In terms of the 1H spectrum for the major component of NIV observed in DMSO-d6 and the 

CDCl3:CD3OD mixture, the chemical shifts differ slightly from each other, which can readily be 

attributed to differences in the dielectric constants and polarity of the solvents, suggesting that their 

configurations are essentially the same. The most significant changes in the 1H chemical shifts 

between the two solvent systems occur in the hydroxyl resonances of H-3OH, H-4OH, H-7OH and H-15OH, 

which can be attributed to the differences in the solvent polarity [15,95,116,151]. For example, H-3OH 

has a chemical shift of 0.977 ppm in CDCl3:CD3OD and a chemical shift of 4.551 ppm in DMSO-d6. The 

hydroxyl resonances of NIV undergo rapid exchange with methanol; thus, any couplings to them are 

lost in the CDCl3:CD3OD mixture. Interestingly, the couplings between H-15A and H-15B to H-15OH are 

preserved in the mixed solvent, indicating that H-15OH may be involved in hydrogen bonding, 

preventing exchange. These couplings change in different proportions, such that the coupling 

3J15A,15OH is approximately 3.5 Hz in CDCl3:CD3OD and 4.0 Hz in DMSO-d6; whereas, 3J15B,15OH is 3.5 Hz 

in CDCl3:CD3OD and 5.5 Hz in DMSO-d6. These couplings suggest that in CDCl3:CD3OD the bonds 

preferentially adopt a gauche, gauche configuration, but in DMSO-d6 all configurations are sampled 

nearly equally. The chemical shift and coupling constants of the minor component of NIV  observed in 

DMSO-d6 bear little resemblance to those of the major component and the spectrum observed in the 

CD3OD:CDCl3 mixture. These differences will be revisited in the following discussion. 

The chemical shift for H-4α also deviates greatly between the DMSO-d6 and CD3OD:CDCl2 

spectra. This may also be attributed to the variation in hydrogen bonding behavior amongst the 

solvents. H-4α lies in close proximity to both H-3OH and H-4OH. Orientation of the hydroxyls may affect 

the chemical shift of H-4α as we saw with DON.  

The carbon chemical shifts for NIV in CD3OD:CDCl3 could not be obtained by direct 

observation of the carbon-13 spectrum, and upon close analysis of the HSQC 1H-13C spectrum, it was 

determined that the signals present do not correspond to any available internal reference. Thus, only 

the carbon chemical shifts for NIV in DMSO-d6 are available, and the comparison between the carbon 

data for NIV cannot be made. 
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Comparison of  3-ADON and 15-ADON Spectra in DMSO-d6 and CDCl3 

The 1H spectra shown in figures 4.19 and 4.20 allow comparisons to be drawn between the 

structures of 3-ADON and 15-ADON in CDCl3 and DMSO-d6, respectively. The data for these are 

combined in Tables 4.11 and 4.12, which contain the chemical shifts and coupling constants, 

respectively. 

Table 4. 11: 1H chemical shift comparison for 3-ADON and 15-ADON in CDCl3 and DMSO-d6 at 300 MHz 1All 

chemical shifts were simulated to with 0.001 Hz accuracy  

 
1H label 3-ADON Chemical Shift – δ (ppm) 15-ADON Chemical Shift – δ (ppm) 

 CDCl3 DMSO-d6  CDCl3 DMSO-d6 

2 3.9391  3.7771  3.6791  3.4441  

3β 5.258  4.949  4.573  4.224  

3OH N/A N/A 2.143  5.289  

4α 2.395  2.806  2.262  2.140  

4β 2.199  1.908  2.145  1.888  

7β 4.865  5.041  4.873 4.723  

7OH 3.831  4.639  3.791  5.254  

10 6.635  6.617  6.644  6.597  

11 4.714  4.788  4.928  4.847  

13B 3.206 3.148 3.178 3.090 

13A 3.144 2.983 3.120 2.935 

14 1.189  1.043  1.117  0.973  

15B 3.912  3.786  
4.281  

4.259 

15A 3.859  3.499  4.078 

15OH 1.789 0.971  N/A N/A 

16 1.929  1.739  1.927  1.765  

1’ 2.166  2.098  1.917  1.843  



 
155 

 

 

Figure 4. 19: 1H NMR spectral comparison for 3-ADON in CDCl3 and DMSO-d6 at 300 MHz. The labels for the signals in the spectra correspond to the numbered structure 
depicted in the inset of the figure. 
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Figure 4. 20: 1H NMR spectral comparison for 15-ADON in CDCl3 and DMSO-d6 at 300 MHz. The labels for the signals in the spectra correspond to the numbered 
structure depicted in the inset of the figure.
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Table 4. 12: 1H{1H} scalar coupling data for 3-ADON and 15-ADON collected in CDCl3 and DMSO-d6 at 300 
MHz 

1H label 3-ADON Scalar Coupling – J (Hz) 15-ADON Scalar Coupling – J (Hz) 

 CDCl3 DMSO-d6  CDCl3 DMSO-d6 

3J2,3 4.418 (± 0.001) 4.401 (± 0.001) 4.417 (± 0.001) 4.394 (± 0.001) 

3J3,4α 4.285 (± 0.001) 4.257 (± 0.001) 4.096 (± 0.001) 4.411 (± 0.001) 

3J3,4β
 11.352 (± 0.001) 11.394 (± 0.001) 11.064 (± 0.001) 11.239 (± 0.001) 

3J3,3OH N/A N/A N/O 4.185 (± 0.001) 

2J4α,4β -15.069 (± 0.001) -15.070 (± 0.001) -14.807 (± 0.001) -14.533 (± 0.001) 

3J7β, 7OH 1.592 (± 0.001) 4.515 (± 0.001) 1.438 (± 0.001) 4.285 (± 0.001) 

3J10,11 5.911 (± 0.001) 5.197 (± 0.001) 5.769 (± 0.001) 3.729 (± 0.001) 

4J10,16 1.304 (± 0.001) 1.191 (± 0.001) 1.314 (± 0.001) 1.073 (± 0.001) 

2J13A,13B 4.247 (± 0.001) 4.384 (± 0.001) 4.271 (± 0.001) 4.342 (± 0.001) 

2J15A,15B -11.826 (± 0.001) -11.702 (± 0.001) N/O -11.957 (± 0.001) 

3J15A 15OH N/O 5.041 (± 0.001) N/A N/A 

3J15B,15OH N/O 4.893 (± 0.001) N/A N/A 

3J11,16 0.739 (± 0.001) 0.451 (± 0.001) 0.141 (± 0.001) 0.799 (± 0.001) 

 

No significant deviations are observed in the 1H chemical shifts for 3-ADON between the 

CDCl3 and DMSO-d6. Once again the only true deviations appear amongst the hydroxyl protons, which 

can be attributed to the differences in polarity between the two solvents. In the case of 15-ADON, a 

couple of interesting observations can be made. First of all, the chemical shift of H-7β varies from 3.8 

ppm in CDCl3 to 4.7 ppm in DMSO-d6. This rather large deviation may be associated with a change in 

configuration at C-15. Note that the methylene protons H-15A and H-15B appear to be equivalent 

giving rise to a broad singlet in the CDCl3 spectrum; whereas they are not equivalent in DMSO-d6 and 

exhibit a strongly coupled AB quartet. These methylene signals are not chemically equivalent owing 

to the chirality of C-6; therefore, in CDCl3 these signals have coalesced into a single broad peak, on the 

order of 1.73 Hz, and any associated coupling information is lost due to rapid interchange. In DMSO-
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d6, these signals are well resolved. They are no longer magnetically equivalent and their geminal 

coupling can be readily obtained. The high polarity of DMSO-d6 likely plays an important role in 

altering the geometry of the 15-O-acetyl group and will be elaborated on in the discussion. Other 

notable changes are seen in the coupling of H-10 to H-11, which is 5.77 Hz in CDCl3 and 3.73 Hz in 

DMSO-d6, suggesting a conformational change in the A-ring.  

The carbon-13 spectra were not sufficiently resolved to provide direct information 

regarding the carbon chemical shifts. The two-dimensional heteronuclear HSQC spectra on the other 

hand, were very well resolved, and many of the carbon chemical shifts are available. 



 
159 

 

 

v  

Figure 4. 21: 1H-13C HSQC spectra of 3-ADON in A) CDCl3 and B) DMSO-d6 at 300 and 75 MHz for 1H and 13C 
respectively. 

A 

B 
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Figure 4. 22: 1H-13C HSQC spectra of 15-ADON in A) CDCl3 and B) DMSO-d6 at 300 and 75 MHz for 1H and 13C 
respectively. 

 

A 

B 
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Table 4. 13: Carbon-13 chemical shift data of 3-ADON and 15-ADON in CDCl3 and DMSO-d6 from 1H-13C HSQC. 

13C label 3-ADON Chemical Shift – δ (ppm) 15-ADON Chemical Shift – δ (ppm) 

 CDCl3 DMSO-d6  CDCl3 DMSO-d6 

2 79.47  79.09  81.94  80.61  

3 75.54  70.86 68.60  67.78  

4 20.64  21.56  43.08  43.77  

5 N/O N/O  N/O  N/O  

6 N/O  N/O  N/O N/O  

7 70.10  69.79  73.66  73.29  

8 N/O N/O  N/O  N/O  

9 N/O  N/O  N/O N/O  

10 137.81 139.24 138.37 138.50 

11 79.19 74.89 69.85 69.87 

12 N/O  N/O  N/O N/O  

13 47.18 52.09  46.89  46.36 

14 13.77 14.66  13.26 14.26 

15 62.37 59.49 61.80 61.78 

16 14.91  28.76  15.57  15.52  

1’ 30.09  29.62  21.37  21.10  
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Comparisons between the type B trichothecenes in DMSO-d6  

As all the type B trichothecenes were studied in DMSO-d6, a stacked plot of the 1H spectra of 

these compounds is provided in figure 4.23 for ease of comparison. The data corresponding to the 

major components of the spectra of the type B trichothecenes in DMSO-d6 are provided in Tables 

4.14 and 4.15. It is clear from these spectra that each contains signals from minor components. The 

1H chemical shift and scalar coupling data obtained for the minor components for each of DON, 3-

ADON, and NIV have been tabulated in Tables 4.16 and 4.17. 

When making comparisons between the major contributors for the type B trichothecenes 

dissolved in DMSO-d6, depicted in figure 4.23, it appears that the same general trend in the chemical 

shifts and coupling constants described by Savard and Blackwell for the compounds in CDCl3 is 

observed [135].   These trends were addressed in chapter 3, and are depicted in figure 3.8 on page 

85. The data for this family of compounds in CDCl3 is offered in Tables 3.4 and 3.5 for the chemical 

shift and coupling constants, respectively on pages 87 and 88. The comparison of each of the 

compounds dissolved in both CDCl3 and DMSO-d6 were given individually earlier in this chapter. 

Some minor deviations in the 1H chemical shifts are observed in the 1H spectra across the 

family of DON toxins in DMSO-d6; however, they are limited to specific parts of the molecule. For 

instance, H-3β is typically found between 3.8 and 4.2 ppm; however, for 3-ADON, it is 4.95 ppm, 

where the 3–OH group is substituted by an –O-acetyl group which exhibits a stronger electron 

withdrawing effect of H-3β a the hydroxyl substituent. However, the shifts and coupling between all 

the protons in the core of the trichothecene compounds are in close agreement, indicating that the 

overall 3D structure for the major components is preserved across the series. 
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Figure 4. 23: Comparison of the 1H NMR spectra for type B trichothecenes collected in DMSO-d6 at 300 MHz. Major peaks are labeled in black and correspond to the 
numbered figure in the inset. Minor peaks are labeled in red, and correspond to the hemiketal rearranged conformation for each of the components with the exception of 
15-ADON for which the rearrangement is not possible. 
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Table 4. 14: Comparison of the 1H chemical shifts for the major component of the type B trichothecenes observed in DMSO-d6 at 300 MHz 

1H label Chemical Shift – δ (ppm) in DMSO-d6 

 DON 3-ADON 15-ADON NIV 

2 3.4011  3.7771  3.4441  5.3121  

3β 4.180  4.949  4.224  3.889  

3OH 5.114 N/A 5.289  3.398 

4α 2.463  2.806  2.140  4.556  

4β 1.771  1.908  1.888  N/A  

4OH N/A  N/A N/A 3.168  

7β 4.859  5.041 4.723  4.800  

7OH 4.654 4.639  5.254  4.642  

10 6.555  6.617  6.597  6.509  

11 4.923  4.788  4.847  4.757  

13B 3.041   3.148 3.090 2.903  

13A 2.916  2.983  2.935 2.754  

14 0.991  1.043  0.973  0.893  

15B 3.641 3.786 4.259 3.619  

15A 3.412 3.499  4.078 3.499  

15OH 4.632  0.971  N/A 4.299  

16 1.734  1.739  1.765  1.719 

1’ N/A  2.098  1.843  N/A  

1All spectra were simulated to an accuracy of 0.001 Hz and were referenced with respect to DMSO-d6 
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Table 4. 15: Comparison of the 1H scalar coupling constants for the major components of the type B trichothecenes obtained in DMSO-d6 at 300 MHz 

1H label Scalar Coupling Constant – J (Hz) in DMSO-d6 

 DON 3-ADON 15-ADON NIV 

3J2,3 4.182 (± 0.013) 4.401 (± 0.001) 4.394 (± 0.001) 4.147 (± 0.001) 

3J3,4α 4.024 (± 0.014) 4.257 (± 0.001) 4.411 (± 0.001) 4.147(± 0.001) 

3J3,4β
 11.312 (± 0.014) 11.394 (± 0.001) 11.239 (± 0.001) N/A 

3J3,3OH 3.853 (± 0.013) N/A 4.185 (± 0.001) 4.401 (± 0.001) 

2J4α,4β -14.391 (± 0.014) -15.070 (± 0.001) -14.533 (± 0.001) N/A 

2J4α,4OH
 N/A N/A N/A 5.360 (± 0.001) 

5J3OH,4OH N/A N/A N/A 0.623 (± 0.001) 

3J7β, 7OH 4.226 (± 0.012) 4.515 (± 0.001) 4.285 (± 0.001) 4.359 (± 0.03) 

3J10,11 5.918 (± 0.004) 5.197 (± 0.001) 3.729 (± 0.001) 5.815 (± 0.02) 

4J10,16 0.936 (± 0.005) 1.191 (± 0.001) 1.073 (± 0.001) 0.281 (± 0.03) 

2J13α,13β 4.395 (± 0.004) 4.384 (± 0.001) 4.342 (± 0.001) 4.507(± 0.001) 

2J15α,15β -11.673 (± 0.005) -11.702 (± 0.001) -11.957 (± 0.001) -11.641 (± 0.03) 

3J15α 15OH 4.783 (± 0.005) 5.041 (± 0.001) N/A 3.976 (± 0.03) 

3J15β,15OH 5.087 (± 0.005) 4.893 (± 0.001) N/A 5.545 (± 0.03) 

3J11,16 N/O 0.451 (± 0.001) 0.799 (± 0.001) N/O 
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Table 4. 16: Comparison between the chemical shifts for the minor component of the type B trichothecenes 
observed in DMSO-d6 at 300 MHz 

1H label Chemical Shift – δ (ppm) in DMSO-d6 

 DON 3-ADON NIV 

2 5.341 5.421 4.8272  

3β 5.05 4.78 4.103  

3OH 1.57 N/A 3.308  

4α 2.83 3.71  5.334 

4β 2.12 1.57 N/A 

4OH N/A N/A 1.699  

7β 3.24 3.29 3.572  

7OH 1.59 1.87 3.777  

8OH 5.85 5.90 5.830  

10 5.28 5.31 5.259  

11 3.74 3.75 3.866  

13B 3.35 3.10 2.891  

13A 3.07 3.02 2.773  

14 1.19 1.07 0.942  

15B 3.94 3.95 3.936  

15A 3.19 3.28 3.187 

16 1.67 1.67 1.654  

1’ N/A 2.07 N/A 

1The spectra were simulated to an accuracy of 0.01 Hz 
2The spectra were simulated to an accuracy of 0.001 Hz 
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Table 4. 17: Comparison between the 1H{1H} scalar coupling constants observed for the minor components of 
the type B trichothecenes obtained in DMSO-d6 at 300 MHz 

1H label Scalar Coupling Constant – J (Hz) in DMSO-d6 

 DON 3-ADON NIV 

3J2,3 5.77 4.73 5.362 (± 0.001) 

3J3,4α 4.57 4.37 5.654(± 0.001) 

3J3,4β
 4.54 4.57 N/A 

3J3,3OH N/O N/A 5.413 (± 0.001) 

2J4α,4β -11.84 -9.60 N/A 

2J4α,4OH
 N/A N/A 2.987 (± 0.001) 

3J7β, 7OH 4.55 4.56 5.569 (± 0.03) 

3J10,11 3.84 4.18 4.783 (± 0.02) 

4J10,16 1.10 1.20 0.503 (± 0.03) 

2J13a,13b 4.80 4.72 4.852(± 0.001) 

2J15a,15b -8.397 -8.79 -9.052 (± 0.03) 

3J15a 8OH N/O N/O N/O 

3J15b,8OH N/O N/O N/O 

3J11,16 0.7 0.6 N/O 
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Minor contributors to the 1H spectra are present for all of the type B trichothecenes in 

DMSO-d6. The 1H chemical shifts and coupling constants of the minor contribution of DON, 3-ADON 

and NIV are all in close agreement with only small deviations for the nuclei in the trichothecene core, 

rarely exceeding 0.3 ppm (table 4.16). Only the protons of the C-ring appear to have significant 

changes in chemical shift and couplings across the series of compounds, which reflect variations in 

the substituents on C-3 and C-4. Thus, based on such close agreement of the data for the minor 

contributions of DON, NIV, and 3-ADON, it is clear that these compounds adopt a similar structure in 

their minor form, and that this structure is stable in solution, as no chemical exchange is observed. 

Of particular interest are the large differences between the minor and major contributions of 

each compound. The chemical shifts are tabulated in table 4.14 and 4.16, and labeled in figure 4.23 in 

black and red, for the major and minor spectra, respectively. It is apparent that the majority of the 

signals from the minor components deviate significantly from those of the associated major 

components; however, there is no clear trend with respect to magnitude and direction comparing 

DON to 3-ADON to NIV. More specifically, the trend in H-15B is to move to higher frequency from 3.6 

ppm to 3.9 ppm; whereas H-15A moves to a lower frequency, from 3.4 ppm to 3.2 ppm; H-7β covers a 

range in frequency of 4.7 to 5.0 ppm in the major spectra to 3.2-3.5 ppm in the minor spectra. The 

vinylic proton, H-10, also exhibits a large shift from approximately 6.5 ppm to 5.3 ppm. This 

deviation in chemical shift is of particular importance, as the signal for H-10 is a key feature of the 

type B trichothecenes. The chemical shift of H-10 is diagnostic of the presence of a conjugated double 

bond between the carbonyl at C-8 and the double bond at C-9/10. The reduction in shift to 5.3 ppm in 

the minor spectrum indicates a loss of conjugation to the carbonyl at C-8. 

 The chemical shift of the epoxide protons of the type B trichothecenes, H-13A and H-13B, 

remain in the same range in the spectra of the minor component as in the major component. The 

scalar couplings also remain consistent across the type B trichothecenes between the major and 

minor components. 
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Lastly, a characteristic peak unique to the 1H spectra of the minor components of the B-type 

trichothecene spectra is identified near 5.8 ppm, as highlighted in figure 4.23. This peak was 

originally attributed to H-15OH; however, this relatively sharp singlet does not appear to have vicinal 

couplings to either of the H-15A and H-15B resonances. Thus, a rearrangement must have occurred, 

resulting in a hemiketal linkage between the carbonyl at C-8 and the hydroxyl at C-15, with the 

concomitant loss of the hydroxyl at C-15. The new resonance appears as a new hydroxyl proton, 

attached to C-8, which would be diagnostic of such a rearrangement. 

With regards to 15-ADON, signals from the minor components are present in the spectrum, 

but are far too numerous to result from a single contributor. Furthermore, the characteristic peak at 

H-8 is not present. An explanation of the minor peaks for 15-ADON will be offered in the succeeding 

discussion. 

The carbon-13 spectra obtained for all of the type B trichothecenes in DMSO-d6 

 A complete carbon-13 chemical shift analysis for DON and NIV was possible in DMSO-d6; 

however, for 3-ADON and 15-ADON the carbon chemical shifts were obtained indirectly via 1H-13C 

correlations using HSQC. The carbon chemical shifts for the type B trichothecenes studied are 

tabulated together in Table 4.18 for direct comparison. 
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Table 4. 18: Carbon chemical shift comparison for the type B trichothecenes in DMSO-d6 at 75 MHz 

13C label DON 3-ADON  15-ADON NIV 

2 80.62 79.09  80.61  79.11  

3 68.17  70.86 67.78  69.02  

4 44.12  21.56  43.77  79.60  

5 45.75 N/O  N/O  48.66 

6 52.18 N/O  N/O  56.05 

7 67.61  69.79  73.29  73.66  

8 200.58 N/O  N/O  199.89 

9 135.18 N/O  N/O  134.73 

10 138.71 139.24 138.50 141.76 

11 74.84 74.89 69.87 78.98 

12 66.31 N/O  N/O  64.93 

13 47.11 52.09  46.36 52.88 

14 14.84 14.66  14.26 7.94 

15 60.47 59.49 61.78 59.78 

16 15.46  28.76  15.52  15.03 

1’ N/A  29.62  21.10  N/A  
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4.7. Discussion 

The differences observed in the chemical shifts of NIV, DON, 3-ADON or 15-ADON between 

the CDCl3 spectrum and the major contributor of the DMSO-d6 spectrum are easily attributed to the 

differences in polarity and hydrogen-bonding potential between the two solvents. Any major changes 

in chemical shift are observed primarily among the hydroxyl hydrogens, which are far more 

susceptible to such differences in the properties of the solvent. Similar observations can be made for 

the coupling constants, as the only significant deviations between the two spectra are the couplings 

of the hydroxyl hydrogens to nearby neighbours. In general, the chemical shift and coupling constant 

data for the minor components of the type B trichothecenes bear little resemblance to those 

observed for the major components. The overall 3D structure for the major components of the type B 

trichothecenes are all in close agreement with each other, as are those of the minor components for 

NIV, DON and 3-ADON.  

In the case of 15-ADON (figure 4.14), a couple of interesting observations can be made. First 

of all, a rather large deviation in the chemical shift of H-7β (from 3.8 ppm in CDCl3 to 4.7 ppm in 

DMSO-d6), is observed, which may be linked to a change in structure at C-15. Note that the methylene 

protons H-15A and H-15B appear as a broad singlet in the CDCl3 spectrum (see figure 4.14), which is 

attributable to a near chemical shift equivalence. This gives rise to second-order effects in the 

spectrum, resulting in the loss of any scalar coupling information between the resonances. However, 

methylene protons on a carbon which is next to a chiral center rarely experience chemical shift 

equivalence.  

In order to explain this phenomenon, it is necessary to look at the interactions of the 

surrounding chemical and electronic environment. When looking at the bonds using a Newmann 

projection, the differences which give rise to the chirality in C-6 are not immediately obvious, nor are 

the reasons for chemical equivalence. For this it is necessary to move outward to the next level of 

bonding, which is displayed in figure 4.24. 
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Figure 4. 24: Newmann projections along the C-6/C-15 bond in 15-ADON. The second level of bonding off C-6 
was required to provide insight into the chemical equivalence observed between H-15A and H-15B in CDCl3. Only 
when the O-acetyl group is positioned gauche to C7, and gauche’ to C-11 will the chemical shift of H-15A 
approximate that of H-15B. 

 

The carbon C-6 is a quaternary carbon which is directly bound to C-15, C-5, C-7, and C-11. 

Looking along the C-6/C-15 bond we must move to the second level of bonding to determine the 

nature of the chemical equivalence observed for H-15A and H-15B in CDCl3. The carbon C-5 is also a 

quaternary carbon which is bound to methyl-14 which serves as a discriminating factor. Carbons C-7 

and C-11 are both tertiary carbons. C-7 is directly bound to a hydroxyl group; whereas, C-11 forms 

part of the tetrahydropyran ring, and is directly bound to oxygen O-1. Thus, C-7 and C-11 can be 

described as having near chemical and magnetic equivalence; whereas, C-5 poses as the significantly 

different substituent. In order for H-15A and H-15B to experience near chemical shift equivalence, 

they must both be in an orientation which is gauche to C-5. Only this specific rotational isomer allows 

for the near chemical and magnetic equivalence in H-15A and H-15B; thus, this bond must be locked in 

place, since free rotation about the bond would result in the sampling of the other two rotational 

isomers and  the observation of coupling between the two protons. The carbonyl of the O-acetyl 

group of C-15 acts as a strong acceptor, and in this configuration is in close proximity to H-7OH which 

may act as a donor for hydrogen bonding, in order to lock the O-acetyl group in place. 

Were the oxygen of the O-acetyl carbonyl at C-15 to form a hydrogen bond with H-7OH this 

would bring the carbonyl resonance in close proximity to H-7β, which would serve to shield this 
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resonance due to the neighboring group effect, and decrease the chemical shift frequency. This 

arrangement further supports the locking of the C-6/C-15 bond in place. The proposed structure in 

the CDCl3 solvent is depicted in figure 4.25. 

 

Figure 4. 25: Structural orientation of the acetyl group at C-15 in 15-ADON predicted to occur in CDCl3. The 
double bond character of the carbonyl functionality of the acetyl group at C-15 results in areas that cause an 
increase in the shielding, and a subsequent decrease in the frequency of the chemical shift. These regions are 
denoted by the negative signs. Where deshielding due to electron withdrawing effects may be observed, an 
increase in the chemical shift frequency results, denoted by the positive signs. 

 

In the presence of DMSO-d6, the H-15AB signals are better resolved and the doublet structure 

has returned, indicating that they are no longer magnetically equivalent. The coupling between them 

has been reintroduced, which appears to indicate that this bond is now free to rotate in solution.  

The coupling between H-10 and H-11 has also changed significantly in the spectrum of 15-

ADON dissolved in DMSO-d6. The coupling of 5.77 Hz seen in CDCl3, is similar to the coupling 

observed for the other compounds throughout the study; however, in DMSO-d6 the coupling between 

H-10 and H-11 for 15-ADON is reduced to 3.73 Hz, suggesting that a slight change in the geometry of 

the A-ring may have occurred. This may be a reflection of the loss of the hydrogen bond formed 
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between the acetyl group on C-15 with the H-7OH hydroxyl in the non-polar solvent, shown in figure 

4.23, lending further support to this slight rearrangement. 

A certain percentage of the compounds are observed to be in a secondary conformation 

when dissolved in DMSO-d6 (figure 4.18), which for DON, NIV, and 3-ADON appear to correspond 

with the hemiketal isomer. The exception in DMSO-d6 is 15-ADON, which is not expected to be 

capable of existing in the hemiketal form due to the acetylation of C-15 in this variation of DON. The 

spectrum for 15-ADON in DMSO-d6 does contain minor contributors, which appear to each 

contribute approximately 5% to the total spectrum; however, there are far too many small signals in 

the baseline for only a single contribution. By simple observation of the pattern of peaks for the 

minor contributors, it is clear that the contributions made to the 15-ADON spectrum are significantly 

different than those for the other 3 toxins studied here. Recall that for NIV, the conformation involves 

the formation of a hemiketal from C-8 to C-15, and this arrangement is evidenced by the presence of 

a characteristic peak appearing around 5.8 ppm. The lack of the characteristic H-8OH peak in the 

spectrum for 15-ADON, as observed in DMSO-d6, does not support the rearrangement to the 

hemiketal isomer for this sample. This particular conformation cannot be adopted by 15-ADON as the 

O-acetyl substituent present at C-15 would prevent the formation of a hemiketal at this location. 

Furthermore, 15-ADON did not go into solution in DMSO-d6 as readily as the other compounds, and a 

round of evaporation and solvent addition was required before a suitable spectrum was obtained. 

Therefore, it is possible that these minor contributions are in fact peaks depicting degradation of the 

compound. 

Considering that minor spectra were also observed in the baseline for DON in the deuterated 

solvents acetone and THF, as seen figure 4.8, it would be interesting to observe whether the other 

type B trichothecenes also demonstrate these same structural conformations in these solvents, as 

well as whether the minor conformations for DON in these solvents are similar to those observed for 

DON in DMSO-d6.  
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Carbon-13 chemical shift data across the type B trichothecenes  

The carbon-13 spectra were obtained for all of the compounds in CDCl3 and DMSO-d6, as well 

as acetone-d6, CD3OD and THF-d8 in DON. However, not all of the carbon spectra were amenable to 

direct carbon chemical shift analysis. Indirect carbon chemical shifts were obtained for 3-ADON and 

15-ADON in CDCl3. The carbon chemical shifts appear to be in close agreement across the majority of 

the signals. For example, across all the spectra, the signal for H-2 does not deviate to any great extent, 

from 79.09 ppm for 3-ADON in DMSO to 81.94 in 15-ADON in CDCl3.  

Nivalenol appears to have some of the largest deviations across the group of trichothecenes. 

The carbon nucleus C-10 in DON and its derivatives tends to appear around 138 ppm; however for 

NIV it appears at 148 ppm in DMSO-d6. Carbons C-9, C-11 and C-14 also experience somewhat 

significant deviations in chemical shift from the other compounds. This is not easily explained based 

on the inductive and field based effects of the substituent at C-4, as the carbon nuclei which 

experience the deviations are on the other side of the molecule. This particular piece of information 

came at a much later phase of the project, and should be followed up with in future studies. 

Lastly, within the carbon chemical shift data a slight difference in the chemical shift between 

the spectrum obtained in the non-polar CDCl3 solvent, versus the polar DMSO-d6 solvent is observed 

for the C-15 signal. In the DON derivatives C-15 appears at approximately 62 ppm in CDCl3 versus 60 

ppm in DMSO-d6, as well as for DON in acetone-d6.  

Peaks for the minor component, observed in DMSO-d6 are present in the DON and NIV 

spectra. These peaks have been assigned to signals from the A-ring, which would likely experience 

the greatest chemical and magnetic changes due to the loss of the carbonyl double bond. The minor 

peaks are not observed in the two-dimensional HSQC spectra. 

4.8 Conclusions 

The hemiketal rearrangement proposed by Jarvis et al. [72], which was said to occur in DON 

and NIV, involving a linkage from C-8 to C-15 was confirmed, and the 3D structure of this stable 

isomer was determined from novel data presented in the 1D and 2D 1H NMR spectra, and 



 
176 

 

supplemented with new evidence described in the 13C NMR spectrum.  Jarvis also proposed a second 

potential rearrangement mechanism involving a linkage between C-4 and C-15; however, no 

evidence for this conformation was observed. The hemiketal isomer was also determined to exist not 

only in other toxins classified as type B trichothecenes (i.e. 3-ADON), but also in various solvent 

systems, with CDCl3 being the only solvent, from those measured where a minor conformation 

attributable to the hemiketal isomer was not observed. 

The bond angles for hydroxyl substituents in rigid ring systems are different in polar and 

non-polar solvents. In non-polar solvents, such as CDCl3, the H-C-O-H bonds preferentially adopt a 

configuration which appears to rotate between gauche and gauche’, but in polar solvents, the rotation 

samples more of the trans configuration. This change in the bond rotation at sites where hydroxyl 

groups exist serves as an important tool in the description of the mechanism for the formation of the 

hemiketal isomer. In polar environments the hydroxyl group at C-15 adopts a slight preference 

towards the trans configuration, which places the hydroxyl functionality in close proximity to the 

carbonyl bond at C-8, thus providing the optimal geometry for the formation of the hemiketal and a 

potential first step in the mechanism of formation.  

The protons H-4α and H-4β were misassigned in previous works [135], and must be revisited 

to correct for the cis and trans effects in rigid ring systems, such as that observed for the 

trichothecenes.  

This novel information regarding the structure of the type B trichothecenes raises new 

questions, such as whether similar isomers occur in the other trichothecene classes in polar solvents, 

and to what extent; what are the kinetics of the dynamics of this isomerism process; and, what 

factors other than the solvent may affect the dynamics of this process. Finally, it raises the question 

as to how important the hemiketal isomer may be with regards to the toxicity of the trichothecenes 

on biological systems. 
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5. Solid-State Structural Analysis of Trichothecene Mycotoxins 

 

5.1. Overview  

The low solubility for trichothecene toxins in the majority of solvents, both aqueous and 

organic, poses a rather unique challenge in the determination of their three-dimensional (3D) 

structure, as well as the structural dynamics that are possible. Studying these compounds through 

the technique of solid-state nuclear magnetic resonance (NMR) may provide some insight for the 

determination of the relative 3D structure of this interesting class of compounds. 

Solid-state NMR experiments were performed on T-2 toxin and deoxynivalenol (DON) in an 

attempt to gain some understanding regarding their overall three-dimensional structure, and 

potential interactions with water. Multiple conformations were found to exist for both of these 

compounds and information was gathered regarding their amenability towards further 

investigations in the area of NMR crystallography. 

In this section the attempts to setup the NMR crystallographic techniques of the Incredible 

Natural Abundance Double Quantum Transfer Experiment (INADEQUATE) and an R-symmetry based 

Chemical Shift Anisotropy (CSA) experiment are described. The pitfalls that were encountered with 

the INADEQUATE experiment are explained, and the initial success of the R-symmetry sequence on 

the T-2 toxin sample is addressed. 

5.2. Introduction 

The trichothecene class of toxins is highly insoluble in the majority of solvent systems 

available for analysis, the most important of which is water itself. The behavior of the toxin in 

aqueous systems is important for the determination of the toxicological mechanism of the 

trichothecene class of mycotoxins at the cellular level Yet, it is difficult to predict the behavior of the 

molecules in cellular systems, as the trichothecenes exhibit extremely low solubility in water. This 

proves to be a major roadblock towards the study of the trichothecenes in the solution state. 

Studying the structure of the trichothecenes in the solid state and comparing this to the 

results for solution NMR, and other structural methods such as SCXRD where available, may help to 
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confirm the overall three-dimensional structure of the toxins in nature, as well as the interactions of 

these toxins with water. 

In previous literature, it was determined that the unit cell for crystallized T-2 toxin consists 

of two molecules of T-2 toxin in slightly different orientations [52]. Solid-state carbon-13 

experiments were used to confirm the presence of two distinct conformers of T-2 toxin in the solid 

state and an attempt was made to unequivocally distinguish the signals appearing in the spectrum 

for each of these, using NMR crystallographic methods. 

Two specialized NMR experiments were used to investigate the solid-state structure of T-2 

toxin, and extract information from the carbon-13 spectra which is inaccessible using standard NMR 

techniques. The solid-state INADEQUATE experiment was conducted in an attempt to obtain 

information regarding the scalar connectivities of the carbon nuclei in T-2 toxin in order to 

distinguish between the signals in the solid-state spectrum [89,90]. 

An R-symmetry based CSA recoupling experiment was also utilized to pull out information 

regarding the chemical shielding tensors in the T-2 spectrum. The chemical shielding tensors provide 

information regarding the local electronic environment of the nucleus, and can be used along with 

any SCXRD data to distinguish between the two conformers of T-2 toxin in the solid state. 

Solid-state carbon-13 NMR investigations were also performed on DON, which was used as a 

model toxin for the type B trichothecenes. The carbon-13 spectrum was used to determine the 

structure in the solid state, as well as investigate the presence of the hemiketal conformation which 

was observed in polar solvent systems in chapter 4. The intramolecular interactions with water were 

also investigated. 
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5.3. Materials and Methods 
5.3.1.  Solid-State NMR Experiments 

 All spectra were acquired at ambient temperature (21.5o C) using a Varian Inova 500 

spectrometer, outfitted with either a 2.5 mm or 2.0 mm four channel HFXY Varian T3 probe. The 

spectrometer operates at 11.7 Tesla, with a Larmor frequency of 500.13 MHz for 1H and 125 MHz 

for 13C nuclei.  Samples for T-2 toxin were used as received from the Sigma-Aldrich Chemical 

Company (SIGMA, CAS 21259-20-1). This highly crystalline sample exhibited typical needle-like 

crystals.  The microcrystalline powder (11 mg) was loaded into a zirconium oxide rotor with a 

diameter of 2.5 mm for the solid-state CP and DP experiments. The material was later repacked into 

a 2.0 mm rotor with a sample volume of 10 μL for the CSA recoupling experiments.  The 1H 90° pulse 

was calibrated at 2.0 μs for the CP and DP experiments, and 1.8 μs for the R-symmetry experiment. 

 Samples of DON were used as received from Barbara Blackwell at Agriculture and Agri-Food 

Canada, Ottawa. The fine powder sample was loaded into a 2.0 mm zirconium oxide rotor with a 

sample volume of 10 μL. The 1H 90° pulse was calibrated at 1.8 μs. 

 Setup samples of D-glucose-13C6 (Sigma, CAS 110187-42-3) and glycine-1,2-13C2 (Cambridge 

Isotope Labs, CAS 67836-01-5) were used for the INADEQUATE and CSA recoupling sequence. The 

glucose sample was ground with a mortar and pestle prior to loading in the NMR rotor; whereas the 

glycine sample was a fine microcrystalline powder, and was used as received. The samples were 

loaded into a 2.5 mm zirconium oxide rotor with a sample volume of 11 μL for the INADEQUATE 

experiment. The glucose sample was also used for the CSA recoupling sequence and was loaded into 

a 2.0 mm zirconium oxide rotor with a sample volume of 10 μL.  The 1H 90° pulse was calibrated at 

2.0 μs for the INADEQUATE experiment and 1.8 μs for the CSA recoupling sequence. 

 A magic angle spinning (MAS) rate of 22.0 kHz was used for the T-2 samples, 18.0 kHz for the 

INADEQUATE experiments, and 28.0 kHz for the DON samples.  A total of 4096 points were acquired 

over 40.96 ms using a spectral width of 100 kHz. Two-pulse phase modulation (TPPM) 1H 

decoupling was calibrated with a phase angle of 13° and a 165° pulse length of 5.4 µs, resulting in a 

1H-decoupling field strength of 120 kHz for all 13C spectra [8,40].  The direct polarization (DP) 13C 

spectrum was acquired with a total of 4096 transients, using a recycle delay of 15 s for T-2 toxin, 
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and a total of 8196. The 5 second recycle delay for DON was determined by arraying the relaxation 

delay, d1. The cross polarization (CP) 13C spectra were acquired with a total of 14000 transients, and 

a recycle delay of 5 s for T-2 toxin, and 4780 transients with a recycle delay of 15 s for DON. The 

recycle delay for the CP experiment is based on T1H, as the polarization transfer occurs from 1H to 

13C. As with the DP experiment, the recycle delay for the CP experiment was determined using a 

saturation recovery experiment. Cross-polarization was achieved using the adiabatic passage 

method with a contact time of 1.5 ms, and a curved sweep width covering 10 kHz [83]. The DP and 

CP 13C spectra were processed using linear prediction up to 64 thousand points for T-2 toxin, and 

256 thousand points for DON. 

 The CP refocused INADEQUATE 13C spectrum was acquired as 32 increments with 2000 data 

points in 64 scans. An array of recycle delays was performed, from which a recycle delay of 20 s was 

chosen for glucose-13C6, and 4 s for the glycine-1,2-13C2. Ramped cross polarization from 1H to 13C was 

used to help enhance the signal, and Continuous Wave (CW) 1H decoupling was used to prevent 

interference in the signal from heteronuclear coupling of the 1H nuclei. The delay between pulses, τ, 

is equal to 1/4J, where J is the average one-bond homonuclear coupling value observed for 13C nuclei, 

which is typically ranges between 20 and 30 Hz. In order to provide the largest possible homonuclear 

recoupling, the delay for τ was set to 6.5 ms. The experiment was also attempted without refocusing 

of the antiphase signal for glycine, the tau delay for this experiment were modified to 7.6 ms. 

  A separated local field experiment with CSA recoupling was implemented employing the R-

symmetry based sequences. For the D-glucose-13C6 sample the     
  experiment was employed, and 

was collected with a total of 20 transients acquired for each of the 129 increments, covering 0 to 128 

cycles of the R sequence, using a recycle delay of 15 s. The recycle delay was determined by 

saturation recovery methods. The delay, τ, was set to 8.3 μs for all R-symmetry sequences employed. 

The      
  sequence was employed for the T-2 toxin sample, and was acquired with a total of 2800 

transients and 33 increments, covering 0 to 32 cycles of the R sequence, using a recycle delay of 5 s. 

An MAS rate of 27.777 kHz was used for the D-glucose-13C6 sample, and 22.222 kHz for the T-2 toxin 
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sample. MAS was used in an attempt to reduce dipolar coupling among the nuclei [3,93].  The CP 

method was achieved using the adiabatic pulse method with a contact time of 1.5 ms [83].  

 

 

5.4 Results 
5.4.1 Carbon Spectral Analysis of T-2 Toxin2 

2 This section is reproduced in part from the manuscript: Chaudhary, P., Shank, R. A., Montina, T., 
Goettel, J. T., Foroud, N. A., Hazendonk, P., Eudes, F. (2011) Hydrogen-bonding interactions in T-2 
toxin studied using solution and solid-state NMR. Toxins. 3(10), 1310-1331.  The section has been 
rewritten to reflect the contributions made by the author of the thesis. 

 

The solid-state magic angle spinning (MAS) spectra, obtained either through the direct 

polarization on 13C (figure 5.1B), or the cross polarization to the 13C nuclei from nearby 1H nuclei 

(figure 5.1C), were collected in approximately the same experiment time as in the solution state  

(figure 5.1A). While the signal-to-noise ratio (S/N) of the DP spectrum is comparable to that of the 

solution-state spectrum, the S/N is much higher in the CP spectrum compared to either the solution 

or the DP spectra.  It is remarkable that, although the resolution in the solution-state spectrum is 

expectedly better, the differences in line-width of the solid- and solution-state spectra are as small 

as 4 Hz (as can observed in figure 5.2). This exceptional resolution in the solid-state spectra was 

made possible by the fast spinning (22 kHz), the high power multiple pulse decoupling, as well as 

the microcrystallinity of the sample.  Under less favorable conditions, line-widths of hundreds of Hz 

are not unusual.  The most apparent observation in the solid-state is the twinning of all the carbon 

resonances, when compared with the solution data (figure 5.2).  This is consistent with the findings 

of the X-ray study of T-2 toxin by Gilardi et al. [52], which describes the presence of two molecules 

in the unit cell, which differ primarily in the conformation of the isovalerate side-chain, and 

placement of the water molecules.   
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Figure 5. 1: Carbon-13 spectra of T-2 toxin (A) Solution-state spectrum at 75 MHz in CDCl3, (B) Direct-
polarization (DP) in the solid-state at 125 MHz and MAS of 25 kHz, (C) Cross-polarization (CP) from 
1H-13C at 125 MHz and MAS of 25 kHz. 
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Figure 5. 2: Superimposition of the solid state (black) and solution state (blue) spectra for T-2 toxin, 
displaying the twinning observed in the solid-state signals, indicating that two distinct conformations 
for T-2 toxin are present in the unit cell. (A) methyl carbons, (B-C) methylene carbons, (D-G) 
methine, π-bonded, and quaternary carbons, (H) carbonyl carbons, respectively. 

No simple correspondence exists between the carbon chemical shifts in solution to those of 

the solids (i.e. no fixed difference in frequency), which suggests that they have significant differences 

in their conformations and in their immediate chemical environment.  These differences in the 

carbon chemical shifts were reconciled through the analysis of close contacts observed in the X-ray 

structure from Gilardi et al. which are described in the paper by Chaudhary et al. (2011)  [27,52], and 

were used to assign the chemical shifts appearing in Table 5.1. This allowed for the development of 

the three chemical structures depicted in figure 5.13 of the discussion, and discussed further in that 

section. At this stage, no distinction can be made to describe which of the signals belong to each of 

the two molecule, as no carbon-carbon correlation information is available. Experiments whichare 

able to correlate the carbon signals in the spectrum exist; however, this is rather difficult due to the 

low sensitivity of the natural abundance carbon signal, as well as the long T1 relaxation of carbon. 

Attempts were made to access this information through the implementation and use of the 13C 

INADEQUATE [89,90] experiment and the R-symmetry based CSA recoupling experiment [19,92], 

which are described later in this chapter. 
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Table 5. 1. Comparison of the 13C chemical shifts for T-2 toxin in solution and solid state 

Label Solution (ppm) HSQC HMBC Solid 1 (ppm) Solid 2 (ppm) 

2 78.72 2 3OH,13B 81.25 (2.83)1 83.59 (4.83) 

3 78.40 3 4 77.94 (-0.46) 80.57 (2.17) 

4 84.60 4 2,14 81.60 (-3.00) 84.70 (0.10) 

5 48.39  2,4,14,15AB  46.80 (-1.60) 46.80 (-1.60) 

6 42.94  7β,8,14,15AB  46.10 (3.16) 46.10 (3.16) 

7 27.75 7αβ 15B  28.32 (0.57) 29.49 (1.74) 

8 68.02 8 16 69.07 (1.05) 69.73 (1.71) 

9 136.32  8,11,16 137.15 (0.83) 139.20 (2.92) 

10 123.70 10 11,16 125.03 (1.33) 126.82 (3.12) 

11 67.34 11 2,15A 69.45 (2.11) 71.15 (3.89) 

12 64.59  2,4,13AB,14 66.36 (1.77) 71.86 (7.37) 

13 47.21 13AB  45.33 (-1.88) 46.56 (-0.77) 

14 6.88 14  9.51 (2.63) 8.73 (1.85) 

15 64.31 15AB  66.85 (2.54) 68.90 (4.59) 

16 20.35 16 7αβ 22.19 (1.84) 22.19 (1.84) 

1′ 172.73  8 173.71 (0.98) 173.9 (1.17) 

2′ 43.58 2′ 4′,5′ 49.00 (5.42) 51.30 (8.72) 

3′ 25.78 3′ 2′,4′,5′ 27.22 (1.44) 29.02 (3.24) 

4' 22.37 4′ 3′,5′ 23.87 (1.50) 25.18 (2.81) 

5′ 22.45 5′ 3′ 25.73 (3.28) 26.29 (5.56) 

6′ 170.13  7′ 171.74 (1.61) 172.00 (1.87) 

7′ 21.07 7′  22.53 (1.46) 22.76 (1.69) 

8′ 172.70  15, 9′ 172.00 (-0.70) 172.44 (-0.26) 

9′ 21.04 9′  22.76 (1.72) 23.47 (2.43) 

1Values in parentheses represent the chemical shift deviation from the solution-state chemical shift. 
Positive values are shifts to higher frequency; whereas, negative values are shifts to lower 
frequency. 
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5.4.2.  Conformational Dynamics of Deoxynivalenol in the Solid State 

In order to determine whether multiple conformations exist regardless of solvent effects for 

DON and its derivatives, a solid-state NMR analysis of purified DON was conducted with a sample of 

DON obtained from a colleague at the Agriculture and Agri-Food Canada Research center in Ottawa, 

Barbara Blackwell. Cross-polarization was employed. Although the spectrum of DON was not as well 

resolved as that obtained for T-2 toxin, shown in figure 5.1, the signal-to-noise ratio remains quite 

high, as is shown in figure 5.3. 

 

Figure 5. 3: Solid-state 1H to 13C CP-MAS NMR spectrum of DON at 125 MHz spectrometer frequency and 28 kHz 
spinning speed. Signals labeled in black correspond to the deoxynivalenol (DON) structure described by 
Blackwell and Savard [135]. Signals denoted with a red asterisk (*) are attributed to the “extra” signals for the 
second conformation in the solid-state, which is believed to correspond to the hemiketal conformation described 
in Chapter 4. The carbons labeled in red for the hemiketal conformation are those believed to be present with 
significant intensity in the solid-state spectrum. 
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The chemical shift values for the solid-state carbon spectrum of DON correspond well to 

those of the solution-state spectrum; however, there appear to be 7 “extra” peaks in the spectrum, 

which are not attributed to the literature structure of DON. These were assigned to resonances of the 

A- and B-rings, which would experience the majority of conformational rearrangement in the event 

of the hemiketal formation described by Jarvis et al [72]. Although it is not possible to accurately 

estimate the percentage of DON which would have experienced this shift to the hemiketal form from 

the CP-13C spectrum, it is interesting to note that some of the “extra” peaks are of similar height to 

those which have been assigned to the major spectrum. Significant shoulders are also present on 

some of the peaks; for example, the shoulder on C-8 and in between C-9 and C-10 are the most 

obvious in the 13C spectrum. 

 

Figure 5. 4: Superimposition of the solution-state 13C simulation spectra for DON in  CDCl3, shown in blue, with 
the solid-state 13C spectra for DON, shown in black. Peaks representing the hemiketal conformation for DON in 
the solid-state are denoted with the red asterisks.  
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Figure 5. 5: Superimposition of the solution-state 13C simulation spectra for DON in  DMSO-d6, shown in blue for 
the major conformation and red for the minor hemiketal conformation, with the solid-state 13C spectra for DON, 
shown in black. Peaks representing the hemiketal conformation for DON in the solid-state are denoted with the 
red asterisks.  

 

Beginning with the prior analysis provided by Jarvis et al. for the hemiketal 

functionality[72], the extra peaks were assigned as listed in table 5.2. The changes expected to occur 

in the overall π-electron density at each carbon location were taken into account, and are depicted in 

figure 5.6. The electron density is assumed from the atoms present in the structure. Oxygen 

functionalities are more electronegative, thus neighboring nuclei tend to have less density, and are 

deshielded by the electrons, resulting in an increase in chemical shift. Nuclei that are not in close 

proximity to an oxygen atom will be relatively shielded by the nearby electrons, and the chemical 

shift will decrease.  
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Table 5. 2: Carbon chemical shift data for DON in the solid state, compared with the experimental and literature 
carbon chemical shifts observed for DON in CDCl3 and DMSO-d6 

Carbon Chemical Shift – δ 
(ppm) 

Exp. in CDCl3 
(ppm) 

Lit for 
DMSO-d6 
(ppm) 

Exp in DMSO-d6 
(ppm) 

2 82.42 (93.04) 80.80 80.2 80.62 

3 67.78  69.17 67.8 68.17 

4 44.22 43.21 43.7 44.12 

5 46.69 46.46 45.4 45.75 

6 65.4 (73.08) 51.96 51.8 52.18 (64.77) 

7 69.33  70.39 69.3 69.61 

8 201.74 (104.61) 199.87 200.0 (104) 200.58 (100.64) 

9 135.65 (146.05) 135.96 134.8 135.18 

10 141.33 (121.12) 138.46 138.2 (121) 138.71 (119.10) 

11 74.41  74.53 74.5 74.84 

12 64.16 65.61 66 66.31 

13 49.58 47.41 46.7 47.11 

14 14.87 (19.62) 14.34 14.5 14.84 

15 60.91 (97.04) 62.56 60.1 60.47 

16 15.77  15.37 15.1 15.46 (16.20) 
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Figure 5. 6: Expected electron density in the (A) major conformation versus the (B) hemiketal conformation for 
DON, based on the assignment of the NIV structure observed in DMSO-d6. Areas shown in red are expected to 
experience higher electron density, due to the proximity to oxygen atoms; whereas, areas in light green are less 
electron rich. 

 

Certain observations can be made regarding the electron density depicted in the diagrams in 

figure 5.6. The most notable differences in the electron density of the two structures appear in the A-

ring of the molecule. In the major conformation, significant electron density is noted along the bonds 

for C-6, C-7, C-8, C-9 and C-10 due largely to the conjugated π-system and the orientation of the 

hydroxyl oxygens which are involved in the intramolecular hydrogen bonding network from H-15OH 

and H-7OH to the carbonyl oxygen at C-8, which was described by Nagy et al. and confirmed in chapter 

3 [111]. This electron dense region is not present in the hemiketal conformation, although some 

areas of high electron density still persist due to the presence of the oxygen atoms in the structure. 

This change in the electron density surrounding the A-ring further supports the assignment of the 
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extra peaks that are present in the carbon-13 spectrum for DON to carbons which are located on the 

A-ring. 

The linewidths observed for the signals in the DON spectrum are between 65 to 170 Hz, 

which are significantly broader than the 4 Hz linewidths obtained for T-2 toxin in the solid state. The 

average linewidth of 1H-decoupled solid-state 13C signals tends to be on the order of 30-60 Hz, and is 

strongly indicative of the bulk environment within the sample [7]. The rather large linewidths in the 

DON spectrum likely result from a combination of strong homonuclear dipolar coupling between the 

carbon nuclei that has not been spun out at the MAS speed utilized for this experiment, and 

inhomogeneous line broadening due to the presence of multiple conformations in the sample. It is 

clear from the extra signals in the spectrum obtained for the >95% chemically pure DON sample, that 

at least two distinct chemical environments are present for DON. Several of the DON signals, such as 

C-8, and C-9 and/or C-10, appear to have significant shoulders, which are not present on other peaks 

within the spectrum; thus, improper shimming of the magnetic field can be ruled out. These 

shoulders may be attributed to another, slightly different chemical environment than that of the 

major conformation. 

5.4.3.    Testing of the INADEQUATE experiment 

The CP refocused INADEQUATE experiment (Figure 1. 11) was attempted on the isotopically 

enriched glucose-13C6 sample. An array of recycle delays was performed to identify an appropriate 

delay time for the CP spectrum. The recycle delays were determined to be more than 20 s long based 

on the saturation recovery experiment. When the CP spectrum was obtained for the glucose-13C6, it 

appeared to be severely line broadened due to the presence of multiple conformations for the 

glucose-13C6 molecule in the sample, which are further broadened by the presence of homonuclear 

dipolar couplings on the order of 2-4 kHz. The CP refocused INADEQUATE experiment on glucose-

13C6 was attempted, and the total experimental time was 45 hours, or just under 2 days. 

Unfortunately, the resultant spectrum did not produce any correlation signals due to the loss of the 

FID resulting from an extremely short T2 relaxation for the sample. Experimentation on this sample 
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was aborted, and the simpler two-spin glycine-1,2-13C2 was used as an alternative for experimental 

setup. 

The glycine-1,2-13C2 sample was determined to have a recycle delay of 5 s, which was much 

more reasonable for such a time demanding experiment as the CP refocused INADEQUATE 

experiment. The total experimental time was 12 hours for the glycine-1,2-13C2 sample, and the 

Double Quantum-Single Quantum (DQ-SQ) crosspeaks between the two individual 13C resonances in 

the spectrum are clearly visible in figure 5.7. Thus, the setup for the experiment was determined to 

be successful. 

 

Figure 5. 7:  The CP refocused INADEQUATE spectrum obtained for 13C2-Glycine 

 

 Since the INADEQUATE experiment performed on the 13C2-glycine sample was shown to be 

effective in the determination of the 13C connectivities, it is likely that spin diffusion amongst the 

carbons in the fully labeled glucose sample was responsible for the loss of specific correlations 

between the carbons. Due to the short T2 relaxation time, the signal was lost during the t1 delay 

period required for the INADEQUATE experiment. Dilution of the fully labeled glucose sample with 

unlabeled glucose would likely yield better results. 
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Based on the experimental time required for the isotopically enriched 13C2-glycine sample, 

and the unusually long T1H for T-2 toxin due to the high crystallinity of the sample, the experimental 

time required to complete the CP refocused INADEQUATE experiment on T-2 toxin was determined 

to be approximately 286 hours (or approximately 12 days) based on an acquisition time of 0.02 s, a 

recycle delay of 5.0 s, 1024 increments and 200 scans. Although it would be possible to reduce the 

number of increments in the second dimension from 1024 to 128, which reduces the experimental 

time to 36 hours, the signal-to-noise ratio is still unlikely to be sufficient to pull out the carbon-

carbon connectivities at natural abundance. Recall that the natural abundance of the 13C isotope is 

approximately 1.1%, which translates to the possibility that two 13C atoms neighboring each other to 

be (0.011)x(0.011) or 0.01%. It is unreasonable to utilize twelve days of spectrometer time for a 

single experiment without sufficient evidence that good quality data would result. Thus, analysis of 

the carbon-carbon connectivities at natural abundance will not be practical in this case.  

 

5.4.4.    R-symmetry based CSA recoupling 

The R-symmetry sequence,     
   (Figure 1. 12) was tested on the glucose-13C6 sample to 

determine if the parameters of the sequence were appropriately set. The resulting spectrum is 

depicted in figure 5.8. The first increment does not cycle through the back-to-back 180° R-pulses, and 

is thus representative of the 13C CP spectrum for the isotopically-enriched glucose. Some phase 

modulation behavior is observed as the timescale of the experiment changes from 0.05 to 6.50 ms 

from which, in principle, the CSA parameters can be obtained for each carbon. However, as seen in 

the CP spectrum for the first increment, the carbon signals in the glucose spectrum are very broad 

and overlap significantly due to the presence of strong homonuclear coupling within the sample, that 

cannot be spun out with an MAS rate that can be used with the recoupling sequence. Deconvolution 

analysis of each signal would be required to map out the phase modulation behavior of the peaks in 

the second dimension. However, it is not necessary to put so much time into a setup sample when the 

purpose of the setup experiment is simply to determine whether phase modulations are observed in 
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the second dimension, and not just a simple decay of the signal over the timescale. In order to 

provide evidence that the experiment was successful, the intensity of one of the peaks in the glucose 

spectrum was plotted over the first 30 cycles of the R10 sequence for glucose, to show that phase 

modulation does occur in the second dimension the experiment (inset of figure 5.8). The intensity of 

the signals in the first dimension amount to points along the FID in the second dimension; thus, 

modulation in the intensity of the peaks indicates that information is contained in the FID in the 

second dimension pertaining to the chemical shielding tensors. 
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Figure 5. 8: Stacked plot of the spectra obtained for the     
  CSA recoupling sequence on the test sample for glucose-13C6. The scan at zero is the 

equivalent to a CP spectrum with polarization from 1H to 13C. The timescale of the experiments depict the modulation of the CSA interaction mediated through 
the number of cycles of the R10 pulses. The plot in the inset depicts the phase modulation of the peak measured at 70.65 pm in the glucose spectrum. The intensity of the 
peak was plotted over the first 30 scans, and depicts the generation of an FID in the second dimension.
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As the T1H for T-2 toxin is unusually long for carbon, the experimental parameters of the R-

symmetry sequence, specifically the symmetry set, N, ν, and η and the phase φ, had to be adjusted in 

order to compensate for the increase in the recycle delay. The     
  version of the sequence was 

chosen to provide sufficient sampling of the signals for T-2 toxin, while maintaining the ability to 

select for the CSA interaction, as depicted in figure 5.8.  

Thirty-three increments of sufficient signal-to-noise were acquired and are shown in the 

stacked plot in figure 5.9. The first increment is essentially the CP spectrum for T-2 toxin. Note that 

the sharpness of the peaks from the CP spectrum for T-2 toxin under the conditions used in the initial 

CP spectrum depicted in figure 5.1 is not present in this spectrum. The differences in decoupling 

methods and decoupling power result in significantly broader peaks in the     
   spectrum than in 

the original CP 13C solid-state spectrum. In the original CP spectrum, the decoupling method used 

was the high power TPPM method; however, due to the complicated nature of the experimental 

setup, the simple continuous wave (CW) decoupling method was used in the     
  experiment 

instead.  

 The stacked plot in figure 5.10 appears at first glance to show little modulation in the signals 

along the timescale from 0 to 5.19 ms; however, when the intensities of individual signals are plotted 

over time, an FID results. The FID is then transformed using a cosine function, which results in a 

spectrum that is symmetric about the origin. The information regarding the CSA of the individual 

lines in the spectrum can be obtained by considering the spectrum along the positive frequency 

region. Figure 5.11(A) depicts the phase modulation behaviour of carbon C-2 of the C-ring, and 

5.11(B) demonstrates the phase modulation in carbon C-8’ on the isovalerate side chain. These 

frequency spectra in the positive region of the indirect dimension are powder patterns that depend 

on the CSA and asymmetry terms of the carbon of interest. The R-sequence removes the dependence 

on the isotropic term, so that the powder patterns all center at zero. The transformed signals for C-2, 

C-8’ and C-9 are depicted in figure 5.11(C), (D) and (F), respectively. 
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Figure 5. 9: Spin-Space Selection (SSS) diagrams for R-symmetry sequence     
 . A) The SSS pathway for the dipole-dipole interaction. B) The SSS pathway for the 

CSA interaction. C) The SSS pathway for the isotropic chemical shift interaction. Only the CSA interaction is allowed under the conditions of the     
  symmetry-

sequence. 
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Figure 5. 10: Stacked plot of the resultant spectra obtained for the     
  CSA recoupling sequence for T-2 toxin. The scan at zero is the equivalent of a CP spectrum 

with polarization from 1H to 13C. The timescale of the experiments depicts the modulation of the CSA interaction mediated through the number of cycles of R18 pulses. 
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Figure 5. 11: Free Induction Decay (FID) signals arising from the phase 

modulation of individual spins in the     
  spectrum for T-2 toxin in the 

solid state. The powder pattern due to the chemical shielding interaction 
is obtained by cosine transformation of the FID signals. (A) FID of the 
signal for the C-2 resonance of the C-ring on the trichothecene core. (B) 
FID of the signal for the C-8’ resonance of the isovalerate sidechain. (C) 
Symmetrical powder pattern for the C-2 resonance of the C-ring. (D) 
Symmetrical powder pattern for the C-8’ resonance of the isovalerate side 
chain. The inflection points in the CSA powder pattern can be simulated 
by varying the CSA, asymmetry and isotropic shift parameters. (E) FID of 
the signal for the C-9 resonance on the A-ring. (F) Symmetrical powder 
pattern for the C-9 resonance on the A-ring.   
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Chemical shielding for carbon-13 nuclei generally spans from 20-200 ppm, but is motionally 

averaged to zero when MAS is much faster than the shielding parameters. The chemical shielding 

may be intentionally reintroduced into the spectrum through specialized techniques, such as a 

specific set of R-symmetry sequences. The phase modulations obtained in the direct dimension of the 

recoupled spectra depend on parameters from the shielding tensor and result in an FID in the 

indirect dimension which can be transformed to yield a powder pattern. The three principal values of 

the CSA interaction are directly obtained from the powder pattern in the recoupled spectra, as the 

shielding components are dependent on the scaling factors specific to the sequence [154]. The 

sequence of back-to-back π-pulses in the R-symmetry sequence establish a dependence on the center 

of gravity of the individual nuclei, and place them at the center of each of the powder patterns, which 

is not always true in the case of the static version of CSA experiment.  

 The inflection points for the powder patterns derived in the second dimension of the R-

symmetry sequence can be utilized to map out the CSA and asymmetry values of the chemical 

shielding tensor via the inflection points of the scaled powder patterns, which are denoted by σ11, σ22, 

and σ33.  The interpretation of the static powder pattern for the carbon signals C-2, C-8’ and C-9 are 

depicted in figure 5.12. 

 Recall that the CSA for a signal is equal to the largest deviation in chemical shift from the 

isotropic vales, such that σaniso = σ33 – σiso, where σiso represents the isotropic shielding parameter, 

which is equal the mean of the three principal values[91]. The asymmetry, η, is a representation of 

the difference between σ11 and σ22 divided by the anisotropy. From the inflection points only σ11 and 

σ22 can be measured; however, since σiso is equal to zero for the experiment, it is possible to extract 

the value for σ33 and σaniso, using the equation, 

 σiso = (σ11 + σ22 + σ33)/3 

 0 = σ11 + σ22 + σ33        (5.1)

 σ33  =  -(σ11 + σ22)  
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Figure 5. 12: Natural powder patterns for the individual signals pulled from the symmetrical powder patterns 
obtained for (A) The signal C-2 on the C-ring  at 78.72 ppm depicting a CSA of approximately 86 ppm and an 
asymmetry of 0.48; (B) The signal C-8’ on the isovalerate side chain at 172.70 ppm depicting a CSA of 
approximately 128 ppm, and an asymmetry of 0, and (C) The signal C-9 in the A-ring at 136.32 ppm, which is 
part of the conjugated double bond system, depicting a CSA of approximately 107 ppm and an asymmetry of 
0.60. 
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For simplicity the principal values for the powder patterns observed for C-2, C-8’ and C-9 were 

evaluated by eye. Carbon C-2 was determined to have a significant CSA of -90 ppm probably the 

result of the electron withdrawing effect of the neighboring oxygen, , and is very assymetric, as 

indicated by an asymmetry parameter of -0.487, which is consistent with the lack of bonding 

symmetry around C2 and its inability to undergo any form of bond rotation. The shielding tensor of C-

8’ is cylindrically symmetric, consistent with shape of the C=O bonding environment and rotation 

about the C-O and C-C bonds. Its significant size of the tensor is typical for carbonyl carbons which 

experience a large electron withdrawing effect from the bound oxygens and the planarity resulting 

from the delocalized  electrons. Furthermore C-9 has a very asymmetric shielding tensor, with an 

asymmetry parameter of -0.60, which is consistent with its planar binding environment, and its CSA 

is sizable at 100 ppm, which is in line with sp2 carbons lacking nearby electron-withdrawing 

substituents. 

 Specialized programs for simulating the chemical shielding powder patterns and extracting 

the 13C tensor parameters for each of the lines in the T-2 toxin spectrum must be used for accurate 

analysis of these powder patterns. A suitable program for this type of analysis would be the SIMPSON 

or SPINEVOLUTION programs, which would require that the experimental spectrum be simulated by 

varying the CSA, asymmetry and isotropic shift parameters. Based on the symmetry numbers used in 

the R-sequence, along with the experimental parameters, it is possible to predict what the scaling 

factors may be [5,159].  The phase modulation of the signals in the data obtained is not long lived; 

thus, it is not necessary for many scans to be collected; 32 cycles appears to be sufficient. In order to 

obtain a spectrum that is well suited to the simulation analysis, it is recommended that the 

experiment be repeated with a larger number of transients, a larger sample volume, and more stable 

spinning in order to reduce the error in the scaling factor for the experiment.  
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5.5. Discussion 
5.5.1.  Conformations of T-2 Toxin2 

2
This section is reproduced in part from the manuscript: Chaudhary, P., Shank, R. A., Montina, T., Goettel, 

J. T., Foroud, N. A., Hazendonk, P., Eudes, F. (2011) Hydrogen-bonding interactions in T-2 toxin studied 

using solution and solid-state NMR. Toxins. 3(10), 1310-1331.  The section has been re written to reflect 

the contributions made by the author of the thesis. 

 
 

The two contributors to the solid-state NMR spectrum were compared to the two molecules 

in the unit cell of the X-ray crystallography structure. Even though H-bonds cannot be observed 

directly by X-ray methods, close contacts between hydrogen bonding partners can be used to infer 

where they may occur, as is shown in the paper by Chaudhary et al. [27]. The methods used are 

beyond the scope of this work, and will not be further described herein. However, the information 

that was gathered is important, since it was vital to the interpretation of the solid-state 

conformations. The reader is referred to the paper by Chaudhary et al. for further proof of the solid-

state conformations observed for T-2 toxin [27]. In this discussion, conformation 1 refers to the 

solid-state structure appearing in figure 5.13 C/D; whereas, conformation 2 refers to the solid-state 

structure appearing in figure 5.13 E/F.  

It was determined that three structures exist in the data collected, one occurs in solution, 

and is depicted in figure 5.13 A/B and was described in detail in chapter 2; whereas the other two are 

present in the solid state.  
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Figure 5. 13: Comparison of solution and solid-state conformations of T-2 toxin.  Models for the 
solution-state structure for T-2 toxin showing the lowest energy conformation appear in two 
different representations: A) stick model and B) van der Waals representation. However, it is 
important to note here that the side chains are flexible in the solution structure and are continuously 
moving, but the core ring structure is rigid. C) Stick and D) van der Waals representation for the 
solid-state conformation 1, respectively. E) Stick and F) van der Waals representation for solid-state 
conformation 2. Note that the solid-state structures differ only in the torsion angles of the side 
chains; whereas the solution state core structure differs substantially from the solid-state structures, 
particularly in the cyclohexene ring placement. 
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Water Binding 

Extensive studies on the trichothecenes, such as the mutation studies described by Krska 

and Ueno, have revealed that the epoxide ring is required for toxicity and is believed to form the 

primary interaction in the PTC of the eukaryotic ribosome where it disrupts protein translation 

[81,156]. Opening of the epoxide ring leads to a complete loss of toxic activity [6,156]. However, the 

epoxide ring remains stable to nucleophilic attack in solution, due to the steric obstruction of carbons 

C-12 and C-13 on the side opposite from the epoxide oxygen [6,22,81,156]. The 3D solution-state 

structure, depicted in figure 5.14, demonstrates that the epoxide ring of T-2 toxin is obstructed on 

the side where the nucleophilic attack by an SN2 like mechanism would have to occur [146]. This is 

further emphasized by the van der Waals representation of the molecule (Figure 5.14 B), where it 

becomes clear that a nucleophilic ion, or a bound water molecule in the top position (as seen in the 

solid-state structure), would be sterically hindered from attack. The rigidity conferred by the water 

bridge that occurs in the tetrahydropyranyl pocket of the toxin on the bottom side of the 

trichothecene core (shown in figure 5.14 A) may sterically lock the trichothecene core in this 

epoxide-protected position. 

 

 

Figure 5. 14: SN2 scheme. The angles from which water would have to attack from are shown for both 
C-12 and C-13. 

 

 The solid state conformation of T-2 toxin allows for the presence of a water molecule in 

close proximity to the epoxide, at the top of the molecule. An interaction from a water molecule at the 

top of the trichothecene core only appears to be present in the solid state. Since the sample is only in 
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a hydrated state in the solid state, the weaker interactions, such as dipole-induced dipole forces, 

between the water and the trichothecene molecule may be emphasized, influencing the conformation 

of the three-dimensional structure. Alternatively, addition of a weakly polar solvent, such as 

chloroform, may introduce forces that act to displace the bound water by the solvent, changing the 

three-dimensional geometry.  

 

Close contacts described in the crystallographic data2 

2The data provided for the analysis of the close contacts in the two conformations of T-2 toxin were 
derived from the X-ray crystallographic study performed by Gilardi et al. [52], and was evaluated by 
Praveen Chaudhary for the manuscript Chaudhary et al. [27]. Interpretation of the data is presented 
below and was performed by the author of this work. 
 
 

The X-ray structure of T-2 toxin was used to infer the hydrogen bonding interactions 

occurring in the solid state, based on close contacts between potential hydrogen bonding pairs 

[27,52].  These interactions appear to have a profound impact on the chemical shifts of nearby 

carbons.  All of the solid-state carbon chemical shifts given here were initially presented in the paper 

by Chaudhary et al. [27], and are consistent with the X-ray structural trends proposed by Gilardi et al. 

[52]. For example, the rotation of the acetyl side chain attached at C-4 has a rather large effect on the 

chemical shift of C-2, C-3 and C-4. In solution, the acetyl side chain should be relatively free to rotate; 

however, in the solid state the side chain becomes locked in one of two preferred positions. Using the 

first X-ray crystallographic structure for T-2, we can predict that C-2 will be slightly deshielded by 

the through-space interaction with O-7’, and that C-4 will experience a slight shielding effect. This is 

reflected by the increase in chemical shift of C-2 and decrease in C-4, respectively. On the other hand, 

the second crystallographic structure suggests that O-8’ has moved closer to C-2 and C-3 and that 

both of these nuclei should experience a slight deshielding, and this is confirmed by the increase in 

chemical shift of both of these signals in the solid-state spectrum. The isovalerate side chain arguably 

exhibits the largest structural changes between the three conformations of T-2 toxin. The 

preferential adoption of these conformations in the largely flexible isovalerate appear to support the 

evidence for a bound water molecule within the tetrahydropyranyl pocket on the bottom side of the 

molecule., as n all three cases, the double-bonded ester oxygen, which may act as a proton acceptor 
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for hydrogen bonding, is facing towards the interior of the tetrahydropyranyl pocket, and may form 

close contacts with 3-OH which likely  participates in the interaction. 

 Another example of correspondence between the close contacts in the x-ray structure and 

the chemical shift deviations in the solid state is that of C-2’ on the isovalerate side chain. In solution 

the isovalerate side chain is relatively free to rotate, and the chemical shifts represent the isotropic 

configurations for the individual peaks. In the solid state, two distinct conformations for the 

isovalerate exist; one where the isovalerate chain is primarily ‘down’ or on the same side of the 

trichothecene core, and one where the isovalerate chain is ‘out’, or facing away from the rest of the 

trichothecene molecule. C-2’ is expected to experience the largest deviations in chemical shift, since 

the environment is vastly different in each case. In both cases large increases in chemical shift are 

noted. Solid-state conformation 1 displays a 5.42 ppm shift from that in the solution-state spectrum, 

while conformation 2 shifts by 8.72 ppm.  In solution, no evidence for the top water binding position 

near the epoxide ring is available; however, in the solid state the top water binding position would 

sterically hinder some of the possible movements of the isovalerate side chain. Given the rather 

hydrophobic nature of the isovalerate group, one would expect that the preferred conformation 

would place the hydrophobic part of the isovalerate side chain towards the hydrophobic portion of 

the trichothecene core, which is present on the top side of the molecule; however, in the solid state 

the hydrophobic portion faces completely away from the top side of the molecule, and the hydrogen-

bond acceptor, the double bonded oxygen (O-1’) of the ester group, faces the top. This could serve to 

help bridge the water across the top of the molecule between O-1 and O-1’, allowing it to be in close 

proximity to the epoxide ring, and on the opposite side of the epoxide oxygen, O-12.  

 

The comparison of the chemical shifts in solution and solid state, as well as the lack of NOESY 

evidence for the top hydrogen bonding interaction in solution, indicate that the hydrogen bonding 

behavior of T-2 toxin in solution differs substantially from that in the solid state.  The conformational 

differences observed in T-2 toxin in the solid state suggest that the epoxide ring is now available to 

hydrogen bond with another molecule, which would be consistent with the large increase in the 

chemical shift of C-12 as well as the simultaneous decrease in the chemical shift of the C-13 
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resonance. The carbon chemical shifts of C-12 in both conformations in the solid state, which is one 

of the proposed targets of nucleophilic attack (along with the C-13 carbon), are shifted significantly 

downfield, suggesting that these resonances are in close proximity to an electron-withdrawing group, 

lending support to the potential interaction with a water molecule. 

The chemical shifts for the carbons C-2, C-6 and C-11 all experience rather large increases in 

chemical shift for both conformations of T-2 toxin in the solid state. An increase in chemical shift at 

these sites indicates that an electron withdrawing group is in close proximity. These resonances are 

all present on the top side of the trichothecene core. These changes in chemical shift, along with the 

large shifts in C-12 support the top water binding position in T-2 toxin. 

 

 

5.5.2.  Conformational Dynamics of Deoxynivalenol 

Comparison of the Solid-State Spectra with the Solution-State Spectra for DON in CDCl3 and DMSO-d6 

The chemical shifts of the 13C solid-state NMR spectrum of DON contains peaks that match 

those of the solution-state 13C spectrum; however, seven additional peaks were detected well above 

the noise level. Two of these signals very likely correspond to those reported in acetone-d6 and 

DMSO-d6 by Jarvis et al. [72]. The chemical shifts for DON in the solid state and in solution in CDCl3 

and DMSO-d6 are listed in table 5.2, and the superimposition of the CDCl3 and DMSO-d6 spectra onto 

the solid state spectrum for DON is shown in figures 5.4 and 5.5, respectively. Jarvis observed 

additional peaks at 104 ppm and 121 ppm in solution, and attributed them to C-8 and C-10 

respectively, for the hemiketal rearranged structure of DON. 

 In the solid state a few peaks stand out due to notable differences in the carbon chemical 

shift. C-6, a quaternary carbon that sits on one of the hinge points of the A- and B-rings, appears at 

65.4 ppm for the major conformation of DON in the solid state, as opposed to the chemical shift of 

approximately 52 ppm for DON in solution. C-2, C-10 and C-13 also experience a slight 2 to 3 ppm 

increase in frequency. These carbons all appear on the top side of the trichothecene core. Recall that 

for T-2 toxin, a water molecule was determined to occupy the space on the top side of the core. These 
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same carbon resonances were affected; however, C-6 only increased by 3 ppm, while C-13 was 

shown to decrease by approximately 1 ppm. Furthermore, in T-2 toxin one of the conformations of 

the carbon C-12 experiences a chemical shift of 1.77 ppm and the other a shift of 7.37 ppm. In DON, 

the chemical shift in the solid state appears as a slight decrease in chemical shift of 1.45 ppm from 

that in CDCl3 and 2.15 ppm in DMSO-d6. This difference may be due to a different orientation of the 

bound water in DON than observed in T-2 toxin. It appears as though in DON, the oxygen of the water 

molecule is in close proximity to C-6; whereas, in T-2 toxin, the oxygen is closer to C-12. 

The shifts observed for DON support the existence of water binding in the top position in the 

type B trichothecenes in the solid state.  

Few differences in chemical shift are observed between the CDCl3 and DMSO-d6 spectra. 

However, the carbons directly bound to hydroxyl resonances, C-3, C-7 and C-15, experience slight 1 

to 3 ppm increases in chemical shift in the CDCl3 spectrum as compared to the spectrum measured in 

DMSO-d6. Recall from chapter 4 that the vicinal couplings for the hydroxyl hydrogens were observed 

to change dramatically with the polarity of the solvent system. The change in coupling reflected a 

change to the pre-exponential term, A, in the Arrhenius equation    
   

   , and a preference in the 

rotational isomer orientations. Carbon chemical shifts are particularly sensitive to changes in 

geometry and orientation; thus, these small differences in chemical shift for the hydroxyl substituted 

carbons are consistent with the change in the rotation about the C-O bond for the hydroxyls in the 

different solvent systems.  

The carbon chemical shifts for C-3, C-7 and C-15 in the solid state more closely resemble the 

carbon chemical shifts observed for DON in DMSO-d6 than in CDCl3. The close resemblance of these 

shifts appears to indicate that the orientation of the hydroxyl resonances in the solid state is similar 

to those in polar solvents. Since the polar solvents appear to support a rotation which is closer to an 

average than that observed for the CDCl3 spectrum, the carbon chemical shifts may indicate that all 

possible rotational isomers are sampled equally in the solid state. 

Comparison of the solid state structures for DON: Major structure versus the hemiketal structure 
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As with T-2 toxin, the 13C MAS solid-state NMR spectrum observed for DON (figure 5.3) also 

contains other additional features attributed to a second structure of DON. In the carbon-13 

experiment performed by Jarvis et al., additional peaks at 104 ppm and 121 ppm in solution were 

observed, and attributed them to C-8 and C-10 respectively, for the hemiketal rearranged structure 

of DON[72]. 

The assignments for these two resonances, described by Jarvis et al. [72], as well as the 

three-dimensional structure determined for the minor hemiketal conformation of NIV in DMSO-d6, 

(figure 4.9 of chapter 4) were used to help determine the identity of the other six signals present in 

the solid-state spectrum. The six remaining peaks may be attributed to carbons belonging to the A- 

and B-rings, which experience a great deal of ring strain resulting from the formation of the 

hemiketal, and the consequent rearrangement of the B-ring from the chair to boat conformations. 

The electron withdrawing effects of the ketone functionality at C-8, as well as the hydroxyl at C-15 

would have the potential for far-reaching influences on the diamagnetic shielding anisotropy; thus, 

the loss of these moieties during the formation of the hemiketal, may cause significant changes to the 

chemical shifts of nearby carbon nuclei [144]. Figure 5.6 describes the predicted 3D structure of the 

major conformation for DON in the solid state based on the 3D structure obtained for DON in chapter 

4, and compares it to the overall 3D structure proposed for the hemiketal rearranged minor structure 

with emphasis placed on the changes expected within the electronic environment surrounding each 

of the carbon atoms in the trichothecene skeleton. 

The change in electron density in the A-ring of the trichothecene core occurs as a result of 

the loss of conjugation between the carbonyl at C-8 and the C-9/10 ethene. Although the ethene bond 

remains, and does provide a significant amount of π-electron density, which serves to deshield the 

surrounding carbons, the loss of conjugation with the carbonyl results in a decrease in the chemical 

shift of C-10 from 141 ppm in the major trichothecene structure to 121 ppm in the hemiketal 

structure, as was predicted by Jarvis et al. [72]. C-9 on the other hand experiences an increase in ring 

strain due to the change in conformation about the A-ring, as well as the loss of conjugation from the 

adjacent carbonyl, and as a result experiences an increase in frequency from 136 ppm in the major 
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trichothecene structure to 146 ppm in the hemiketal structure. C-8 loses its double bond character 

and experiences a large decrease in frequency due to the change from a planar to a tetrahedral 

geometry; however, the overall chemical shift remains significantly deshielded due to the direct 

attachment of the oxygen. Thus, C-8 experiences a change in chemical shift from 202 ppm to 105 ppm 

for the hemiketal, as described by Jarvis et al. [72]. 

The other chemical shift deviations between the structures reflect the change in 

conformation about the B-ring, which experiences a rearrangement of the bonds from a chair 

conformation in the major conformation to a boat conformation in the minor conformation due to the 

increase in ring strain imposed on the carbon skeleton by the formation of the extra ring from C-8 to 

C-15. The B-ring of the trichothecene core is comprised of the oxygen of the tetrahydropyran ring, 

and carbons C-2, C-12, C-5, C-6 and C-11. In the major conformation, depicted in figure 5.6, the B-ring 

adopts a chair conformation, such that C-11 and C-6 point towards the bottom side of the core ring 

structure and C-12 points towards the top. In the minor conformation, C-11 and C-12 both point 

towards the top of the trichothecene molecule. C-11 and C-2 experience a change in geometry such 

that H-11 and H-2 move from equatorial positions on the ring to axial positions. C-14, which is 

attached to C-5, also moves from an equatorial position on the ring to an axial one, and a slight 

increase in chemical shift is observed due to the increased proximity to the epoxide oxygen. C-2 

experiences a significant increase in chemical shift as it moves from 82 ppm to 93 ppm for the 

hemiketal conformation. C-6 is expected to exhibit large changes in chemical shift from the increase 

in ring strain, as C-6 now becomes an anchor point for 3 rings: the A-ring, B-ring and the hemiketal 

ring. This forces the movement of C-6 from the bottom side of the molecule in the major 

conformation, and is now in line with the plane of the central core in the minor conformation, and is 

shifted from 65 ppm in the original structure to 73 ppm in the hemiketal structure. 

The change in C-15 from a hydroxyl substituent to an ether linkage is only expected to 

induce a small change in chemical shift for C-15, since the electron density is nearly equivalent for a 

hydroxyl carbon as that of an ether carbon; however, the added ring strain induced from the 

formation of the hemiketal ring from C-8 to C-6, may serve to deshield the C-15 resonance, resulting 
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in a much larger increase in the frequency for this signal, as it shifts from 61 ppm to 97 ppm in the 

hemiketal conformation. 

The presence of a second signal for C-11 has been debated, a small shoulder does appear at 

77.78 ppm; however, the validity of this peak has not been confirmed. Also, based on the differences 

in the bond geometry, C-5 would be expected to endure a significant amount of ring strain, which 

would likely result in a shift to a higher frequency; however, no additional observable signals are 

present in the spectrum. In order to confirm the identities of all extraneous peaks in the solid-state 

13C spectrum for DON, it is recommended that analysis of the carbon connectivities, through 

experiments such as INADEQUATE, be performed. 

 

5.5.3.  INADEQUATE 

The experimental setup for the CP refocused INADEQUATE pulse sequence was successful 

for the 13C2-glycine sample, as crosspeaks due to the double quantum (DQ) coherence transfer were 

observed. Despite difficulties in obtaining a suitable spectrum for glucose-13C6 due to loss of signal 

from the extremely short T2 relaxation for the sample, the experiment was determined to be of use 

for the determination of carbon-carbon correlations. The experimental setup for T-2 toxin was 

aborted as the experimental time required to perform the INADEQUATE experiment was determined 

to be unreasonable. The requirement to perform the experiment at natural abundance and the long 

relaxation delays in the T-2 toxin sample would have required nearly two weeks of spectrometer 

time to provide a single spectrum with sufficient signal-to-noise in order to be able to determine the 

carbon-carbon connectivities at natural abundance. Other experiments are being investigated to 

access the information contained in the solid-state 13C data for T-2 toxin. 

5.5.4.   Chemical shielding tensors for T-2 toxin 

 

The R-symmetry sequence produced a spectrum where the chemical shielding powder 

patterns of each of the carbon signals in the spectrum can be derived by extracting the intensity of 
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each of the scans and plotting over time, the resultant FID was then transformed in the t2 time 

domain to access the powder pattern for the chemical shielding of each individual resonance. The 

setup of the R-symmetry sequence is specialized to only recouple the CSA interaction into the 

spectrum, and not the dipole-dipole, J-coupling, or isotropic interactions. The back-to-back π-pulses 

that are necessary to the recoupling behavior of the R-sequence average out the isotropic 

interactions, resulting in a symmetric powder pattern. 

The CSA of a signal in essence represents the electronic environment surrounding that 

nucleus. An isotropic chemical shielding tensor will thus be represented by a spherical distribution of 

electrons about the nucleus, and a polarized nucleus will be represented by an ellipsoidal 

distribution. 

The carbon C-2 is a tertiary carbon, which exists at the hinge point between the B- and C-

rings and is directly bound to O-1; thus, it is expected to experience a strong polarization in the 

direction of the oxygen atom and exhibit a large CSA. C-2 was determined to experience a CSA of 86 

ppm, as well as a slight asymmetry of approximately 0.48. The asymmetry in the CSA of C-2 may be 

due in part to the ring strain at the hinge point, as well as the proximity to the oxygen off of carbon C-

3. The asymmetry in the pattern serves to reduce the CSA value, and suggests that the electron 

distribution surrounding C-2 is biaxial, as seen in figure 5.15 

The CSA of C-8’ was measured to be approximately 128 ppm with an asymmetry of zero. C-8’ 

is a carbonyl carbon in the O-acetyl substituent group bound to C-3. Three of the four bonds to 

carbon C-8’ are occupied by electron-withdrawing oxygen atoms, while the fourth is bound to a 

methyl carbon. The polarization in C-8’ will be in the opposite direction of the methyl group, and 

distributed nearly equally between the bonds to oxygen. The electron distribution for C-8’ will be 

slightly ellipsoidal and uniaxial, as seen in figure 5.15B. 

The carbon C-9 forms part of the ethene bond in the trichothecene core and is directly bound 

to the C-14 methyl, as well as C-8 which is in turn bound to the isovalerate side chain. C-9 has a CSA 

of approximately 107 ppm, and an asymmetry of 0.60. Like C-2, C-9 exhibits an electron distribution 
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that is biaxial and ellipsoidal. The electron distribution will largely be along the double bond that C-9 

shares with C-10, but a significant pull is also experienced in the direction of the C-8 oxygen. 

 

Figure 5. 15: Chemical shielding tensor representations for the carbons (A) C-2 representing a slight biaxiality 
in the tensor, the tensor is ellipsoid; (B) C-8’ represents a chemical shielding tensor which is more cylindrical, 
and uniaxial, and (C) C-9 is largely biaxial. 

 

Programs such as SIMPSON or SPINEVOLUTION, can be used to fit the parameters that 

determine the shape of the powder pattern, namely the CSA, asymmetry and isotropic shift. The 

symmetry numbers used in the R-sequence (N, ν, and η) can be used along with the experimental 

parameters to predict what the scaling factors for the experiment are. The scaling factor for 

experiments such as the R-symmetry sequence is a ratio that results in the reduction of intensity of 

the signals produced in the spectrum. As the number of cycles in the symmetry sequence increases, 

the scaling factor is multiplied; thus, the signals decay in the same way that an FID decays over time. 

The scaling factor is very sensitive, and is greatly affected by even small errors in the speed of sample 

rotation, setting of the magic angle, and inhomogeneities in the magnetic field. The inflection points 

of the powder patterns resulting after Fourier transformation of the FID obtained from the signal 

decay over the number of cycles gives rise to the three principal components of the chemical 

shielding tensors: the CSA, the asymmetry and the isotropic chemical shift values. Thus, it is possible 

to convert the true values using the scaling factors, where minimal error exists due to variables in the 

experiment [5,159].  
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For the chosen examples, the tensor properties support the assignment of the carbons. With 

better signal-to-noise and rotor stability, the CSA recoupled separated local field experiment can go a 

long way to validating the assignment and help differentiate between the carbons in conformations 1 

and 2 in the solid state. 

5.6. Conclusions 

A solid-state NMR analysis of the T-2 toxin structure was performed, which not only 

confirms the presence of two distinct structural contributions to T-2 toxin in the solid state, as 

originally observed in the X-ray crystallographic analysis performed by Gilardi et al. [52]; but also 

indicates that an interaction with a water molecule may also occur in the solid state. Both of the 

solid-state conformations of T-2 toxin differ from that of the solution-state structure, as interpreted 

from the differences in the chemical shift of the 13C resonances.  

The solid-state NMR spectrum for DON indicates that DON also exists in two distinct 

conformations in the solid state. The major conformation for DON is hypothesized to resemble that of 

the solution-state structure described in chloroform [135], and presented in chapter 3; however, the 

second conformation seems to suggest that the hemiketal rearranged structure observed in DMSO-d6, 

which was presented in chapter 4, may also exist in the solid state. These hypotheses are based on 

the close agreement of the solid-state carbon chemical shifts to those in solution for the solvents 

CDCl3 and DMSO-d6, as well as the electron density profiles presented for DON in figures 5.7 (A) and 

(B) which are based on the major and minor conformations  observed for DON in DMSO-d6 in chapter 

4. 

The R18 symmetry sequence was attempted on T-2 toxin, to help provide information 

regarding the chemical shielding on the individual signals in the spectrum. It was shown to provide 

individual FIDs for each signal, which could be Fourier transformed into chemical shielding powder 

patterns. The scaling factor for the R-symmetry based experiments is highly sensitive to errors in the 

spinning speed, and a unit that provides greater stability in the spinning speed of the sample would 

provide greater confidence in the results of the spectrum. The chemical shielding tensors may be 

pulled out from the individual powder patterns to provide information regarding the CSA and 
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asymmetry parameters of the signal. The powder patterns for C-2, C-8’ and C-9 were analyzed and 

shown to reveal chemical shielding tensors and electron distribution patterns which are consistent 

with the rest of the data presented for the trichothecenes. A higher resolution data set is required for 

simulation in order to retrieve accurate CSA and asymmetry parameters for all signals in the T-2 

toxin spectrum, with the potential to discern between the signals for each of the two individual 

structures depicted in the solid-state carbon-13 spectrum. 

With these new insights into the three-dimensional solid-state structures of T-2 toxin and 

DON, it is possible to begin piecing together the mechanism for toxicity of trichothecenes, starting 

with the ribosome. As such, a novel mechanism for the interaction of the trichothecene toxins with 

the eukaryotic ribosome was proposed, which may be applicable to other toxins of this family[27]. 

Undoubtedly, this new information is a stepping stone towards the guided development of 

trichothecene resistance genes which can be developed for the introduction into transgenic plants, 

such as those previously discovered by groups such as Mitterbauer et al. for the engineering of 

Triticale cultivars [94,109]. The development of trichothecene resistance genes is essential to the 

prevention of crop loss due to Fusarium Head Blight and root rot, and will help to circumvent the 

occurrence of alimentary toxic aleukia, and other related ailments.  
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6. Conclusions and Future Directions 

6.1  Conclusions 

The structural analysis of trichothecene mycotoxins prior to this work has been primarily 

performed through solution-state nuclear magnetic resonance (NMR), with some additional work in 

the area of single crystal x-ray diffraction (SCXRD). Although much information had been gained in 

regards to determining the key features of trichothecene structure, little had been done in the way of 

structural dynamics of this class of toxins. 

The first portion of this study focused primarily on the use of solution-state NMR analysis of 

selected type A and type B trichothecenes. Complete proton and carbon NMR analyses of the type A 

trichothecene T-2 toxin and the type B trichothecenes deoxynivalenol (DON), as well as a complete 

proton analysis for nivalenol (NIV), 3-O-acetyldeoxynivalenol (3-ADON), and 15-O-

acetyldeoxynivalenol (15-ADON), and the incomplete carbon analyses for the acetyled DON 

derivatives, were performed in deuterated chloroform (CDCl3) in order to verify the stereochemistry 

of the compounds in solution. These analyses served to confirm and refine the relative assignments 

of all protons within the spectra. In particular, for T-2 toxin, the refinement of the methylene protons, 

acetyl, methyl and carbonyl resonances was made. For the type B trichothecenes the methylene 

protons were also refined and in some cases corrected. For example, the assignment of the epoxide 

hydrogens, 13AB, was reversed in the three-dimensional spectrum, and the assignment of the 

methylene protons 4αβ for DON, 3-ADON and 15-ADON was reversed in the proton spectra. 

Furthermore, previously unreported proton chemical shifts and coupling constants were described 

for all of the type B trichothecenes, including those for the hydroxyl resonances and longer range 

couplings describing the rigidity of the fused ring system. The carbon chemical shifts for 3-ADON and 

15-ADON in CDCl3 were also missing from the literature, and are presented here. 

In the second part of this study, the ability of the type A and type B trichothecenes to 

undergo both intra- and inter-molecular hydrogen bonding was investigated. The lowest energy 

conformation of DON was described in a Density Functional Theory (DFT study) by Nagy et al. to 
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involve an internal hydrogen bonded network from H-15OH to H-7OH and finally to the carbonyl at C-8. 

This internal hydrogen bonded network is confirmed in the proton spectra for DON in CDCl3 based 

on the high resolution observed in the exchangeable protons H-7OH and H-15OH even upon the 

introduction of D2O to the sample, which is expected to induce chemical exchange within these 

protons. The lack of exchange observed at these sites within the structure indicates that tight intra-

molecular hydrogen bonding must be present.  

In terms of inter-molecular interactions for these toxins, water plays a large role, due to the 

knowledge that despite the lack of solubility of these toxins in aqueous systems, water is required for 

them to go into solution at all. In fact, a certain amount of water is present in the sample regardless of 

removal of adsorbed water from a powdered sample of DON under the influence of vacuum-pumping 

in a nitrogen atmosphere; and the removal of water from the solvent through the use of molecular 

sieves. This residual water, which is present in all of the spectra collected is attributed to at least one 

bound water molecule per molecule of toxin. The water is believed to bind within the 

tetrahydropyranyl pocket of T-2 toxin and the type B trichothecenes in the solvent deuterated 

chloroform to help stabilize the trichothecene core. The exchange between water and deuterated 

water was shown to be very slow, and occurs over several hours, indicating that the water molecule 

is tightly bound to the trichothecene core, and likely exists as a water-bridge within the 

trichothecene molecule. The addition of more water to the DON sample in CDCl3 is believed to trigger 

a degradation mechanism, which results in a series of ring opening events, likely triggered by an 

interaction of water with the epoxide ring. 

The structural dynamics within the type B trichothecenes were also investigated. Structural 

dynamics can offer a great deal of insight into the flexibility of a compound, as well as its ability to 

undergo structural rearrangements. The ability of the trichothecene class of compounds to undergo 

structural rearrangements has been well documented for the macrocyclic trichothecenes by the 

Jarvis group [67,69,79]; however, little evidence existed regarding the ability of the smaller type A 

and B trichothecenes to undergo rearrangement [72]. 
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. Various solvent systems were used to determine the effect that polarity and solvent 

structure have on the compounds. A secondary, minor conformation was investigated and evidence 

for a structural rearrangement in the type B trichothecenes was provided in polar solvents, such as 

deuterated dimethyl sulfoxide (DMSO-d6). The complete proton and carbon analyses for the major 

conformation of the type B trichothecenes DON and NIV and the complete proton and partial carbon 

analyses for the major conformation of the type B trichothecenes 3-ADON and 15-ADON are 

presented for the solvent DMSO-d6 at 300 MHz for proton and 75 MHz for carbon. The complete 

proton analyses for the minor conformation for the type B trichothecenes DON, NIV and 3-ADON are 

also presented here, along with a partial analysis of the carbon resonances belonging to the minor 

conformations for DON and NIV in DMSO-d6.  

The minor conformation was determined to be a structural rearrangement of the type B  

trichothecenes where a hydroxyl group is present at C-15. The rearrangement is mediated through 

the formation of a hemiketal from C-8 to C-15. This structure was previously proposed by Jarvis et al. 

[72], and is confirmed here for the type B trichothecenes DON, NIV and 3-ADON. The 15-ADON 

sample in DMSO-d6 is also shown to have at least one minor conformation in the spectrum; however, 

it is believed that these may be degradation products, or different rotational isomers of the 

compound, as the hemiketal from C-8 to C-15 is not likely to occur due to the acetylation of 15-ADON 

at carbon 15. 

The first step in the mechanism for hemiketal formation is also described, as it involves a 

change in the rotational isomers that are preferentially sampled in solution. In a non-polar solvent 

environment, such as that observed for CDCl3, the vicinal couplings belonging to the hydroxyl 

resonances for the type B trichothecenes are small, suggesting that they sample primarily gauche, 

gauche’ rotational isomers in solution; however, in polar solvent environments, the couplings 

increase which indicate that the rotational isomers are sampled more evenly. In the case of the 

hydroxyl resonance at C-15, the trans isomer is sampled to a much larger extent in polar 

environments, which places it in close proximity to the carbonyl at C-8. The change in the rotational 
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sampling of H-15OH provides the opportunity for the hemiketal to form, and reduces the pre-

exponential factor for the reaction in the process. 

The complete proton and carbon analysis was also performed for the type B trichothecene 

DON in acetone-d6 for the major conformation, as well as the complete proton analysis for the minor 

conformation of DON in acetone-d6. DON was also studied in methanol-d4 and THF-d8 and a partial 

proton analysis of the major and minor conformations is presented. The hemiketal conformation was 

determined to exist for DON in all of the solvents studied, with the exception of CDCl3. 

Water binding also appears to occur for the hemiketal rearranged form of DON; however, the 

water-binding site appears to have moved away from the tetrahydropyranyl pocket, and the water 

molecule is now present in the newly formed hemiketal pocket, and evidence for a top water binding 

position exists based on the data observed for the carbon-13 spectrum in DMSO-d6 and acetone-d6. 

Further investigation into this water-binding arrangement is required for confirmation. 

In the next part of the study, the solid-state 13C NMR spectra for T-2 toxin and DON were 

collected and analysed. The solid-state NMR analysis confirmed the presence of two molecules in the 

crystallographic unit cell for T-2 toxin. These each differ slightly in structure from each other, as well 

as from the solution-state NMR structure obtained in deuterated chloroform. Analysis of 

deoxynivalenol (DON) in the solid-state also provided evidence for a second structure, which is 

believed to be that of the hemiketal rearranged form observed for DON in the solution-state NMR 

spectrum obtained in polar solvent environments. 

Inter-molecular interactions with water were also observed in the solid state for T-2 toxin. 

Evidence for the tetrahydropyranyl pocket, as well as a top water binding site is available in both 

conformations of T-2 toxin. Both of these water binding sites are confirmed in the major 

conformation for DON observed in the solid state. 

NMR crystallographic analysis was attempted in order to distinguish between the individual 

signals obtained in the solid-state NMR spectra for T-2 toxin. The INADEQUATE experiment was set 

up; however, it was later determined that the relaxation delay required for the T-2 toxin sample 
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would require an excessive amount of experimental time in order to obtain a suitable spectrum for 

the compound at natural abundance.  Thus, another method to access the information in the solid-

state T-2 toxin spectrum was attempted by introducing the R-symmetry sequence     
 . The phase 

modulation in the R-symmetry sequence for T-2 toxin was plotted versus the number of scans and 

transformed with a cosine function to obtain the CSA powder patterns for individual signals in the 

spectrum. The inflection points in the powder patterns correspond to the principal values of the 

chemical shielding tensor and can be used to extract the data for the signal(s) of interest. The signals 

obtained for C-2, C-8’ and C-9 were analyzed by eye and the anisotropy and asymmetry terms for the 

signals were calculated and determined to support the assignment for those peaks in the T-2 toxin 

spectrum. Simulation of the data to extract the principal values would provide reliable data. The 

collection of a data set with a more reliable spinning speed is desired in order to reduce the 

uncertainty in the scaling factor, and will be the subject of a future study. 

6.2 Biological Implications 

These findings are important when considering the mechanistic descriptions of the 

biological interaction of trichothecenes. In particular, hydrogen bonding interactions become 

important when considering binding affinities and bond geometries of protein-ligand complexes. The 

interaction of trichothecenes with the ribosome creates a particularly interesting scenario, as the 

different substituent groups off the core have been shown to inhibit the different stages of protein 

translation. It is believed that all trichothecenes interact with the ribosomal protein L3 (RPL3) [53]; 

however, the different mechanisms of ribosomal inhibition are most likely linked to the different 

types of hydrogen bonding interactions that the substituent groups are able to form with the other 

surrounding atoms in the active site. 

The functionality of the ribosome, and the availability of water molecules throughout the 

different stages of protein synthesis are important factors which should also be considered when 

studying the trichothecenes in the solution and solid states. The ratcheting behavior of the ribosome 

during protein translation works to reorganize water within the PTC pocket, and protect peptide 

bond formation from bulk water [128]. Furthermore, the removal of water from the PTC raises the 



 
222 

 

entropy of the system, thus providing a dramatic decrease in the free energy required for the 

enthalpically disfavored peptide bond formation. It is also important to note that the change in 

hydration within the PTC pocket could also result in a change in the local pH of the environment 

within the pocket, resulting in a change to the ionization state of the exposed amino acids. With the 

added knowledge regarding the various conformations that T-2 toxin may adopt in both the solution 

and solid states, the state of hydration within the PTC at different stages of protein synthesis and its 

potential effect on the conformation of T-2 toxin should be considered when attempting to discern 

the mode of interaction of the trichothecenes with the ribosome.  

The same consideration regarding the conformation of the type B trichothecenes in various 

solvent systems also applies when considering their interaction with the ribosome. The differences in 

polarity may serve to change the structure of these trichothecenes, giving rise to conformations 

similar to those observed in the solid state. The signals in the solid-state spectrum for DON, figure 

5.3, suggest that the second conformation may be due to the hemiketal rearrangement of the 

molecule. This rearrangement changes the geometry of the core dramatically and may now sterically 

allow the epoxide to directly interact with water, promoting hydrogen bonding interactions. It is also 

quite interesting to note that the carbon chemical shifts observed for DON in the solid state more 

closely resemble those for DON measured in DMSO-d6 in both the major and minor conformations 

observed, than those observed for DON measured in CDCl3. It is safe to presume that the overall 3D 

structural conformation for the type B trichothecenes in the solid state resembles the overall 3D 

structural conformation of the trichothecenes in polar solvent environments. Investigation into 

whether this is true for the type A trichothecene T-2 toxin is an interesting prospect to contemplate. 

To the best of our knowledge, no kinetic studies have been performed to investigate the 

potential hydrogen-bonding interactions that may occur between the trichothecenes and RPL3. It is 

well understood that the epoxide ring serves as the primary toxicological feature of trichothecenes, 

and that it is both heat- and pH-stable in solution [2]. Based on the results depicted for the solid-state 

analysis of T-2 toxin, it is highly likely that the interaction between the trichothecenes occurs 

between the epoxide ring and the tryptophan residue of the W-finger domain present on RPL3 of the 
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ribosome, and that the interaction may be mediated through a water bridge, such as that observed to 

bind in the top water binding position in both T-2 toxin and DON in the solid-state. 

However, it is important to note that RPL3 is only one of the proteins in a very complex RNA 

and protein complex, and unfortunately is not stable in solution on its own. Thus, a study to 

determine whether the W-finger domain is stable in solution must first be conducted. It is possible 

that one of the solid-state trichothecene conformations is critical for the interaction with the 

ribosome to explain its toxic effects, which are likely mediated through the water sequestration. The 

proposed interaction of one of the solid-state conformations of T-2 toxin with the W-finger of RPL3 is 

depicted in figure 6.1.  

 

Figure 6. 1: Model representing the proposed transient interaction of the trichothecene T-2 toxin with 
W255 of the W-finger of ribosomal protein, RPL3. RPL3 is shown in magenta, with the tryptophan 
residue, W255, shown explicitly. Other nearby proteins of the PTC are depicted in grey. The van der 
Waals representation was used to demonstrate the close contacts of the epoxide with the nitrogen of 
the tryptophan. 
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 The lack of the N-terminal extension in prokaryotic bacteria may also serve as a clue towards 

the lack of evidence of substantial toxicological effects of trichothecenes on bacterial protein 

translation. However, at this stage, too many variables in the toxicological behaviour of the 

trichothecenes exist to make any solid speculations on the subject. 

 

6.3 Future Investigations 

Future investigations regarding the NMR structural analysis of the trichothecene toxins 

involve the broadening of the database of toxins for the type A toxins, as well as structural 

investigations of the type C and type D trichothecenes in a variety of solvent systems. This will help 

to answer the questions raised regarding whether the hemiketal rearranged form is unique to type B 

trichothecenes due to the presence of the carbonyl at C-8, or whether similar structures may be 

formed in other types of trichothecenes. For example, does the presence of an O-acetyl group at C-8 

and a hydroxyl at C-15 induce a similar rearrangement in trichothecene compounds? 

A kinetic investigation into the rate of dissociation of the bound water in the 

tetrahydropyranyl water-binding pocket and other potential regions of the molecule where water 

binding may exist, such as the top water binding position and the hemiketal water-binding pocket, 

may provide further insight into the inter-molecular interactions of the trichothecenes. 

Water-binding studies in the AAFC sample, as well as the other type B trichothecenes may 

prove to be a useful endeavor. Continuing the development of NMR crystallography at the University 

of Lethbridge solid-state NMR lab is also a priority for the group, and may require the development 

of new pulse sequences, as well as new equipment and probes for the current spectrometer. 

Furthermore, the development of an adequate processing and simulation platform for this type of 

work is required, and is currently in the process of being implemented in the lab. 

Investigations into the mechanism of toxicity of the trichothecene mycotoxins is an on-going 

project at the Lethbridge research center of Agriculture and Agri-Food Canada, and ribosomal assays 
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have been put in place for the determination of toxicity towards individual cellular systems. 

Determining the mechanism of transport across the cellular membrane may be performed through 

specialized NMR techniques involving the orientation of cellular membranes within the magnetic 

field of the spectrometer. 

Therefore, the information provided has advanced the knowledge of those involved in the 

study of the trichothecenes at both the University of Lethbridge, as well as the Lethbridge Research 

Center for Agriculture and Agri-Food Canada. Furthermore, it has provided information which has 

advanced the knowledge of the public, through publications in the online journal Toxins. 
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