
WEB-BASED DRAWING SOFTWARE FOR GRAPHS IN 3D AND TWO LAYOUT
ALGORITHMS

FARSHAD BARAHIMI
Bachelor of Science, Shahid Bahonar University of Kerman, 2010

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Farshad Barahimi, 2015

WEB-BASED DRAWING SOFTWARE FOR GRAPHS IN 3D AND TWO LAYOUT
ALGORITHMS

FARSHAD BARAHIMI

Date of Defense: April 20, 2015

Dr. Stephen Wismath
Supervisor Professor Ph.D.

Dr. Robert Benkoczi
Thesis Examination
Committee Member

Assistant Professor Ph.D.

Dr. Joy Morris
Thesis Examination
Committee Member

Associate Professor Ph.D.

Dr. Howard Cheng
Chair,
Thesis Examination Committee

Associate Professor Ph.D.

Dedication

Dedicated to my family whose value for me can not be expressed in words.

iii

Abstract

A new web-based software system for visualization and manipulation of graphs in 3D,

named We3Graph is presented with a focus on accessibility, customizability for applica-

tions of graph drawing, usability and extendibility. The software system allows multiple

users to work on the same graph at the same time and is accessible through web browsers.

The software can be extended using plugins written in any programming language and

custom render engines written in the Javascript language. Also two new algorithms are

proposed to answer the following question, previously raised in [53]:

Given a graph G with n vertices, V = {v1,v2, . . . ,vn}, and given a set of n
distinct points P = {p1, p2, . . . , pn} each with integer coordinates in three di-
mensions, can G be drawn crossing-free on P with vi at pi and with a number
of bends polynomial in n and in a volume polynomial in n and the dimension
of P?

iv

Acknowledgments

I want to express my gratitude to Dr. Stephen Wismath for being a kind, experienced and

professional supervisor whose support helped me a lot and I learned a lot from him. Also

I want to express my special thanks to Dr. Howard Cheng, my coach in ACM ICPC pro-

gramming contests. Also I want to express my gratitude to my great committee members,

Dr. Robert Benkoczi and Dr. Joy Morris. I’m also grateful of my great friends for helping

me during my master’s studies and life.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Overview . 1
1.2 Structure of this thesis . 1
1.3 Applications of graph drawing . 2
1.4 Web-based visualization approach . 2

1.4.1 WebGL standard . 4
1.4.2 HTML 5 standard(s) . 4
1.4.3 Three.js Javascript 3D graphics API 4

1.5 Extendibility with web services . 5
1.6 User interaction . 5

1.6.1 Stereoscopic 3D and the Oculus Rift 5
1.6.2 Leap Motion . 6
1.6.3 Typical workflow . 6
1.6.4 Server installation and administration 7

1.7 Application-specific customizability . 8

2 Theoretical Graph Drawing 13
2.1 Overview . 13

2.1.1 Aesthetic criteria . 14
2.2 3D graph drawing algorithms . 15
2.3 Point set embedding . 18
2.4 The proposed algorithms . 21

2.4.1 Problem Definition . 22
2.4.2 The algorithm with a logarithmic number of bends per edge 22
2.4.3 General idea . 23
2.4.4 Phase one . 23
2.4.5 Phase two . 25
2.4.6 Phase three . 26
2.4.7 Summary . 26
2.4.8 The algorithm with two bends per edge 29

vi

CONTENTS

3 Previous 2D and 3D Graph Drawing Software 34
3.1 Open Graph Drawing Framework(OGDF) 35
3.2 Tulip . 36
3.3 Cytoscape . 38
3.4 Gluskap . 38
3.5 GLmol . 40

4 Software Architecture and Implementation of We3Graph 42
4.1 Architecture . 42

4.1.1 REST . 44
4.2 Users and security . 46
4.3 Component interaction example . 46
4.4 Latency challenge . 47

4.4.1 Database query latency . 49
4.4.2 Graphical rendering latency . 51
4.4.3 Network latency . 53
4.4.4 Authentication and authorization latency 53

4.5 Coding style . 53
4.6 Concurrency and race conditions . 53

5 Conclusion and Future Work 56

Bibliography 58

vii

List of Tables

4.1 The list of commands used to apply changes to the graph. 44
4.2 Latency types . 48
4.3 Coding style . 54

viii

List of Figures

1.1 Login interface of We3Graph . 7
1.2 Start panel interface of We3Graph. Create tab on the bottom. 8
1.3 Start panel interface of We3Graph. Options tab on the bottom. 9
1.4 Graph viewing and editing interface of We3Graph in a Chrome browser. . . 10
1.5 Graph viewing and editing interface of We3Graph in a Chrome browser.

Accordion menu on the right. 10
1.6 Administration interface of We3Graph. 11
1.7 The 3D structure of a methyl hydrogen sulfate molecule shown in We3Graph 12
1.8 A 3D class diagram shown in We3Graph 12

2.1 Serpentine rollup to convert 2D orthogonal grid drawings to 3D Fary draw-
ings (Fig. 1 in Robert Cohen, et al. [23]) 16

2.2 Drawing 4-colorable graphs in an O(n2) volume. The position of vertices
on the left and the projection on XY plane on the right (Fig. 5 in Tiziana
Calamoneri and Andrea Sterbini [21]) . 17

2.3 2D k-track drawing of an outerplanar graph (Figure 12 in Stefan Felsner, et
al. [40]) . 18

2.4 Track layout of the matching technique for K6 (Figure 4 in Henk Meijer
and Stephen Wismath [53]) . 21

2.5 3D drawing of K6 with the matching technique.(Figure 7 in Henk Meijer
and Stephen Wismath [53]) . 22

2.6 The conceptual picture of RA, RB, LA, LB and the bounding box of the points. 24
2.7 3D drawing of K5 on a given point set using the first proposed algorithm. Y

axis upward and camera looking toward the negative side of Z axis direction. 29
2.8 3D drawing of K5 on a given point set using the first proposed algorithm. Y

axis upward and camera looking toward the (-1,-1,0) direction. 29
2.9 The conceptual picture of Rh+1, Rh+i and the bounding box of the points. . 30
2.10 3D drawing of K5 on a given point set using the second proposed algo-

rithm. Y axis upward and camera looking toward the negative side of Z
axis direction. 33

2.11 3D drawing of K5 on a given point set using the second proposed algo-
rithm. Y axis upward and camera looking toward the negative side of X
axis direction. 33

3.1 The user interface of Tulip, displaying a 5 vertex planar graph in the Node
Link Diagram view. 37

3.2 The user interface of Cytoscape, displaying the E. coli interactome. 39
3.3 The user interface of Gluskap, displaying a 3D drawing of the Peterson graph. 40

ix

LIST OF FIGURES

3.4 The user interface of GLMol in a Chrome web browser, displaying the 3D
structure of the Porin protein. 41

4.1 Architecture . 43
4.2 Latency types . 48
4.3 Database schema . 50

x

Chapter 1

Introduction

1.1 Overview

Graph visualization has many applications in software engineering, chemistry, bioinfor-

matics, social sciences, information visualization, VLSI circuit design, etc. The academic

efforts on graph drawing are usually separated into two categories. The first category is to

determine algorithms to lay out graphs with respect to some criteria such as area, volume,

number of crossings, symmetry, etc. The second category is to develop software systems

that allow visualization and manipulation of graphs or implementation of layout algorithms.

Drawings of graphs are typically in two dimensions (2D) or three dimensions (3D).

While 2D graph drawing has been studied more, 3D graph drawing also looks promising

as 3D technology is advancing and some applications of graph drawing have a 3D nature

(such as protein structures).

A new web-based 3D graph visualization software package named We3Graph is devel-

oped as part of this dissertation with a focus on accessibility, customizability for applica-

tions of graph drawing, usability and extendibility. Also two new algorithms are proposed

to answer a previously raised question in the 3D graph drawing literature.

1.2 Structure of this thesis

The rest of this chapter presents a high level system description and motivations of

We3Graph as well as some background information. Chapter 2 reviews previous efforts

on theoretical aspects of 3D graph drawing and also presents the new proposed algorithms.

Chapter 3 reviews previous efforts on graph drawing software. Chapter 4 talks about the

software architecture and implementation of We3Graph. Chapter 5 concludes and discusses

1

1.4. WEB-BASED VISUALIZATION APPROACH

possible paths for future work.

1.3 Applications of graph drawing

First we give a brief overview of the applications of graph drawing. Graphs as a gen-

eral model are used in many disciplines. Graph drawing adds geometrical properties to the

graphs making it a more structured model. The 3D structure of chemistry molecules can be

modelled as graphs in 3D space, in particular the 3D structure of some important biological

molecules such as proteins can be modelled as graphs in 3D. Graph drawing is also used to

visualize some important biological networks such as protein-protein interaction networks.

Different types of diagrams can be modelled as graphs by adding shape properties to ver-

tices and adding bends to edges. The UML diagrams used in software engineering are a

good example. Using graphs to visualize computer networks is another application of graph

drawing. Social sciences use graphs to model social networks. Graph drawing is also used

in VLSI circuit design. Different types of maps such as routes between cities can be mod-

elled as graphs. The abstract model of graphs has also different types such as directed or

undirected graphs and graphs with multiple edges between two vertices. In some applica-

tions 2D drawings are used in practice but researchers are also studying 3D alternatives to

2D drawings [32, 51, 48, 63].

1.4 Web-based visualization approach

With the advent of WebGL in 2011, it is possible to build a web-based visualization tool

for graphs in 3D. To be more precise, the graphs can be visualized and manipulated in a

web browser and the World Wide Web can be used as a medium to communicate between

different users and different pieces of the software.

In this dissertation we refer to traditional software systems as software systems that do

not use web browsers for their interface and instead rely on a native user interface provided

by the operating system. Some of the traditional software systems have a more offline na-

2

1.4. WEB-BASED VISUALIZATION APPROACH

ture and depend solely on the computing and storage power of their host machine, while

others have a more online nature and use mediums such as the World Wide Web communi-

cation protocols to access information from other resources and use computing and storage

power of servers instead of the host machine.

Web-based software systems rely solely on the web browser for their user interface

which increases the accessibility of the software. These software systems do not have any

installation process and are also accessible through web browsers which are available on

almost all platforms and devices such as computers, tablets, cell phones, windows, linux,

mac, android, iOS, etc. We3Graph uses web browsers for its user interface to benefit from

the above advantages but it is not designed for cell phones due to the restriction of their

small display size. We3Graph also uses the World Wide Web communication protocols

to communicate with the server. Graphs can be stored on the server, accessed from any

location and shared among different users. Given the communication power of the World

Wide Web, We3Graph provides a collaborative environment where multiple users can work

on the same graph at the same time.

Although web-based software packages have the above benefits they suffer from lower

performance and a less powerful user interface compared to traditional software, but the

gap is closing as web technology is advancing with solutions like faster Javascript engines,

HTML 5 and rich user interface libraries such as jQuery UI. Although in the first generation

of web-based software systems, user interaction was very basic and static and it was not

comparable to traditional software systems, in the new generation of web-based software

systems, the user interaction is more mature and dynamic and is close but not equal to

traditional software systems.

In the rest of this section, we briefly describe a few tools which can help the devel-

opment of web-based visualization software, and touch on how We3Graph makes use of

them.

3

1.5. EXTENDIBILITY WITH WEB SERVICES

1.4.1 WebGL standard

WebGL is a hardware accelerated 3D graphics standard for web browsers based on

OpenGL ES. WebGL uses an HTML5 canvas element for rendering, and Javascript as

the programming interface. Though the first ideas of WebGL came in 2006 by Vladimir

Vukićević, Khronos Group released the first official version of WebGL in 2011. WebGL is

currently supported in the latest desktop and mobile versions of Google Chrome, Mozilla

Firefox, Microsoft Internet Explorer and Apple Safari. We3Graph uses WebGL indirectly

through Three.js library described bellow.

1.4.2 HTML 5 standard(s)

HTML 5 is the newest version of HTML (Hypertext Markup Language) and sometimes

is used as an umbrella term referring to the set of standards for web browsers that are

suitable for the next generation of powerful web applications, even though those standards

have separate official specifications. HTML 5 supports multimedia with the new audio and

video elements, 2D graphics with the new canvas element and elements for scalable vector

graphics (SVG) and 3D graphics with WebGL. It also provides new semantic tags such

as header, article, section, footer and new types for form inputs such as email and URL.

Other notable standards are Web Storage, Indexed Database API, File API, Web Workers,

WebSockets and GeoLocation. HTML 5 combined with Javascript and server side code

can be an alternative solution to traditional software. We3Graph use the WebGL standard

as well as canvas element for textures used in custom render engines of WeGraph.

1.4.3 Three.js Javascript 3D graphics API

While WebGL provides a low level API for 3D web graphics, Three.js is a Javascript

library that provides a higher level API around the WebGL API to make writing code for

3D web graphics easier. We3Graph uses Three.js instead of programming WebGL directly.

4

1.6. USER INTERACTION

1.5 Extendibility with web services

Web Services allow exchange of data between a server application and a client appli-

cation with a behaviour similar to the client application calling a function on the server

application. We3Graph uses a web service API as core communication between different

components of the system. Using web services allows plugins to be written in any program-

ming language and run on any computer. Chapter 4 discusses the software architecture and

implementation issues of We3Graph in more detail.

1.6 User interaction

This section provides an overview of the We3Graph user interaction and typical work-

flow of the program. In addition to typical mouse, keyboard and 2D display interaction

methods, We3Graph provides other interaction methods such as stereoscopic 3D using a

side by side method, Leap Motion hand tracking device and the Oculus Rift virtual reality

headset. Also the We3Graph user interface is tuned for touch screens.

1.6.1 Stereoscopic 3D and the Oculus Rift

In stereoscopic 3D, two different images are sent to each eye which will help the brain in

depth perception. There are different ways to produce 3D stereoscopic effect. Among them

we can mention anaglyph method, alternate frame sequencing method, polarization method

and side by side 3D method. In the side by side 3D method, the rendered frame is divided

into two sections, one for the left eye, and one for the right eye. The displaying device

such as a 3D projector or a 3D TV combined with the proper 3D glasses send appropriate

images to each eye. Previous research [64, 65] has shown that stereoscopic and motion cues

improve the performance of the user for tracing paths in graphs. The Oclulus Rift virtual

reality headset provides both stereoscopic and motion cues. The head mounted display

of the Oculus Rift, combines stereoscopic 3D with head tracking, providing an immersive

user experience. While low resolution is a drawback of the Oculus Rift headset, the newer

5

1.6. USER INTERACTION

version (DK2) has a higher resolution than the older version (DK1). We3Graph provides

support for the OculusRift to allow the user benefit from the advantages stereoscopic display

coupled with motion cues of head tracking and also provides a different user experience

with immersive virtual reality.

1.6.2 Leap Motion

Leap Motion is a small usb device that tracks the hands and fingers. It can provide

information such as finger tip position and direction, or palm normal vector. The reported

model of hands is not always correct and the reliability of the reported model varies in

different hand gestures. We3Graph uses Leap Motion in combination with a keyboard to

provide a more reliable user interface. We3Graph allows the user to use the palm normal

vector to manipulate the camera and the index finger to point to the monitor by emulating

mouse movement. While the natural behaviour of pointing with the index finger improves

the user experience compared to the mouse, the lack of accuracy downgrades the user effec-

tiveness compared to the mouse. Also the fatigue caused by holding the hand high, makes

the Leap Motion more appropriate for short interactions than long interactions. The spatial

mapping between the camera orientation and palm normal improves the user interaction for

navigating the graph.

1.6.3 Typical workflow

To use the web based interface, the user logs in with a username and password as de-

picted in figure 1.1. After logging in, the start panel of the software is shown which pro-

vides an interface for different features of the system as depicted in figures 1.2 and 1.3. The

graphs are organized in folders. To create a graph the user should specify a folder, a graph

name and a render engine to be used for that graph. Different render engines are suitable

for different applications of graph drawing and different graph types. To start viewing or

manipulating a graph, the user can select a folder and then select a graph in that folder and

click the start button. After clicking the start button the application tries to load the graph

6

1.7. APPLICATION-SPECIFIC CUSTOMIZABILITY

and shows the main interface to view and edit the graph as depicted in figures 1.4 and 1.5.

The user can manipulate the graph and camera using the buttons on the special rectangu-

lar toolbar of the software, mouse, keyboard or touch (in touch screens). With the help of

plugins the user is also able to use the Leap Motion and/or Oculus Rift to interact with the

software. Clicking the button with the pin icon on the top right of the toolbar will bring

the accordion menu as depicted in the right side of figure 1.5. The accordion menu helps

manipulate the current selection and also helps change custom properties used in different

applications of graph drawing.

Figure 1.1: Login interface of We3Graph

1.6.4 Server installation and administration

The software should be installed once on the server by running a prepared sql script,

copying some files and adjusting two configuration files.

Administration such as managing folders, groups, permissions and memberships is done

using the administration panel of the software that is accessible to the admin user as shown

in figure 1.6.

7

1.7. APPLICATION-SPECIFIC CUSTOMIZABILITY

Figure 1.2: Start panel interface of We3Graph. Create tab on the bottom.

1.7 Application-specific customizability

We3Graph also pays particular attention to applications of graph drawing, trying to

make it easier to customize We3Graph for a specific application. Different render engines,

for different applications of graph drawing or different types of graphs, can be built upon the

default render engine of We3Graph. Custom render engines combined with custom prop-

erties that can be attached to the vertices or edges, help customize We3Graph for different

applications of graph drawing. We3Graph has sample render engines such as the ones for

chemistry molecules or 3D class diagrams, while other engines can be added as Javascript

extensions. Figure 1.7 shows the 3D structure of a methyl hydrogen sulfate molecule in

We3Graph. Figure 1.8 shows a 3D class diagram in We3Graph.

8

1.7. APPLICATION-SPECIFIC CUSTOMIZABILITY

Figure 1.3: Start panel interface of We3Graph. Options tab on the bottom.

9

1.7. APPLICATION-SPECIFIC CUSTOMIZABILITY

Figure 1.4: Graph viewing and editing interface of We3Graph in a Chrome browser.

Figure 1.5: Graph viewing and editing interface of We3Graph in a Chrome browser.
Accordion menu on the right.

10

1.7. APPLICATION-SPECIFIC CUSTOMIZABILITY

Figure 1.6: Administration interface of We3Graph.

11

1.7. APPLICATION-SPECIFIC CUSTOMIZABILITY

Figure 1.7: The 3D structure of a methyl hydrogen sulfate molecule shown in We3Graph

Figure 1.8: A 3D class diagram shown in We3Graph

12

Chapter 2

Theoretical Graph Drawing

2.1 Overview

A drawing of a graph, is a mapping of each vertex to a point in 2D or 3D Euclidean

space and each edge to a simple curve between the mapped points of its endpoints. Most

graph drawing algorithms try to find a drawing for graphs so that some aesthetic criteria

are improved or some constraints are satisfied. Different constraints that can be put on the

drawing, result in different types of drawings. Also different classes of graphs may require

special treatment in the drawing algorithms.

In a planar drawing the graph is drawn on the plane such that there is no edge crossing.

The lack of edge crossings in planar drawings increases the readability of the drawing. A

graph that has a planar drawing is called a planar graph. All planar graphs are 4-colorable

and the number of edges can be considered linear in terms of the number of vertices as

opposed to general graphs where the number of edges can be quadratic in terms of the

number of vertices. The planar embedding of a planar graph can be specified by defining

the circular ordering of the edges incident on a vertex, that is two drawings with the same

circular ordering of edges around a vertex are considered the same embedding. There are

many linear time algorithms for planarity testing and computing a planar embedding of a

planar graph such as [47, 52, 17]. A planar drawing of a graph partitions the plane into

faces. Among the faces of a planar drawing, there is exactly one an unbounded face and it

is called the external face.

Two important subclasses of planar graphs are trees and outerplanar graphs. Trees are

connected acyclic graphs and not only can they model many concepts but also they have

special combinatorial properties that can be exploited in designing and analysing algo-

13

2.1. OVERVIEW

rithms. An outerplanar graph is a graph which has a planar embedding such that all vertices

are on the external face. Such an embedding is called an outerplanar embedding.

An r-colorable graph or an r-partite graph, is a graph where vertices can be colored

with r colors such that any two adjacent vertices have different colors. If in an r-partite

graph, any two vertices with the same color are adjacent it is called a complete r-partite

graph. If the number of vertices of each color in a complete r-partite graph, are the same

or differ by one, it is called a balanced complete r-partite graph.

Bends are special points on the curve of an edge, that can be used to define multi seg-

ment edge curves. The points between two consecutive bends or vertices form the individ-

ual segments of the edge. In a grid drawing each vertex or bend is placed at an integer grid

point. A drawing where each edge is parallel to an axis of the Cartesian coordinate system,

is considered an orthogonal drawing. Edges can be drawn as straight line segments without

any bends and such a drawing is called a straight line drawing. A straight line drawing with

no edge crossings is also called a Fary drawing. In a polyline drawing, edges are split into

segments by some bend points so that each segment is a straight line. Directed graphs can

have a special type of drawing that is called an upward drawing where all of the edges flow

in the same direction. When vertices are put on layers and edges are drawn between layers

flowing in the same direction, the resulting drawing is called a hierarchical drawing. In a

radial drawing concentric circles are used as layers.

2.1.1 Aesthetic criteria

Some of the most important aesthetic criteria that are used to evaluate the outcome of

layout algorithms are:

• Minimizing the area or volume of the drawing.

• Minimizing the number of edge crossings.

• Maximizing the symmetry.

14

2.2. 3D GRAPH DRAWING ALGORITHMS

• Minimizing the number of bends per edge.

• Distributing vertices evenly.

• Maximizing the minimum angle between two edges incident on the same vertex.

• Minimizing the edge length variance.

• Maximizing the number of edges that flow in the same direction for directed graphs.

2.2 3D graph drawing algorithms

In this section we review some of the main results and ideas in 3D graph drawing.

Robert Cohen, et al. [23] showed that it is possible to have a 3D Fary grid drawing of any

graph with n vertices such that the volume does not exceed n× 2n× 2n. They compute a

set of points in 3D without considering any particular graph, such that if vertices of any

graph are placed on these points, the straight-line edges of the graph will not produce any

crossing. This universal set of points has a property that any four distinct points are not

coplanar. Any edge crossing requires four coplanar vertices and thus no crossing can exist.

They use the moment curve idea of [28] to compute the universal set of points but they

reduce the volume using modular arithmetic as described in Algorithm 2.1. Although they

proved that their O(n3) result is asymptomatically optimal for complete graphs, there are

other papers that show other classes of graphs can be drawn in a lower volume and some of

them are reviewed in this section.

Algorithm 2.1 3D Fary grid drawing of general graphs (Algorithm1 in Robert Cohen, et al.
[23])
Input: A graph G with n vertices
Output: A 3-D drawing of G

1: Choose a prime p with n < p <= 2n
2: for i= 1 to n do place vi at point pi = (i, i2 mod p, i3 mod p)

Robert Cohen, et al. [23] also showed how to convert any 2D orthogonal grid drawing

to a 3D Fary grid drawing by rolling the 2D paper using a serpentine rollup as depicted in

15

2.2. 3D GRAPH DRAWING ALGORITHMS

figure 2.1 and proving that it doesn’t create any edge crossing by considering three cases

for horizontal and vertical line segment pairs.

Figure 2.1: Serpentine rollup to convert 2D orthogonal grid drawings to 3D Fary drawings
(Fig. 1 in Robert Cohen, et al. [23])

Tiziana Calamoneri and Andrea Sterbini [21] showed that it is possible to draw every

4-colorable graph on integer coordinates and with no crossing in an O(n2) volume by using

four carefully skew lines as depicted in figure 2.2, and forbidding some positions to avoid

crossings when two edges have endpoints on three different skew lines. They also showed

that Ω(n
3
2) is a lower bound for the volume of 3D Fary grid drawings of complete bipartite

graphs.

János Pach, et al. [57] showed that for any constant r, every r-colorable graph can be

drawn crossing-free on interger coordinates in O(n2) volume. Their result is based on a

lemma that every balanced complete r-partite graph where n is divisible by r can be drawn

with a volume not exceeding r× 4n× 4rn using a universal set of points. To apply this

lemma to r-colorable graphs, they proved that every r-colorable graph is a subgraph of a

balanced complete (2r−1)-partite graph with less than 2n+2r vertices. They also showed

that their result is asymptotically tight by showing that a balanced complete 2-partite graph

with n vertices requires Ω(n2) volume.

16

2.2. 3D GRAPH DRAWING ALGORITHMS

Figure 2.2: Drawing 4-colorable graphs in an O(n2) volume. The position of vertices on
the left and the projection on XY plane on the right (Fig. 5 in Tiziana Calamoneri and

Andrea Sterbini [21])

Prosenjit Bose, et al. [16] showed that the maximum number of non-crossing edges

that can be contained in an X ×Y ×Z volume is exactly (2X −1)(2Y −1)(2Z−1)−XY Z

and as a result, m+n
8 is a lower bound for the volume of a 3D Fary grid drawing of a graph

with n vertices and m edges. The main idea behind their work is that no two edges share

a midpoint and the midpoint of every edge is in a point set P defined by all points (x,y,z)

such that 2x,2y and 2z are integers.

Stefan Felsner, et al. [40] showed that it is possible to have a 3D Fary grid drawing

of any outerplanar graph with n vertices on a 3D prism in an O(n) volume. They used a

BFS traversal of the outerplanar graph guided by the circular ordering of edges around each

vertex to generate a 2D k-track drawing of G (k ≤ n) that maintains the given outerplanar

embedding as depicted in figure 2.3. A 2D k-track drawing is a 2D grid drawing where

the endpoints of each edge are either in the same track or adjacent tracks and a track is a

horizontal line of a 2D grid. In the next step they wrap the 2D k-track drawing around a 3D

prism to obtain a 3D drawing. In the generation of the 2D k-track drawing they increase the

x coordinate as they progress in the BFS so that the wrapping process does not create any

overlap.

Vida Dujmović and David Wood [31] showed that it is possible to have a 3D crossing-

free grid drawing of every graph with n vertices and m edges in a O(n+m logq) volume

17

2.3. POINT SET EMBEDDING

and with O(logq) bends per edge, where q is the queue number of the graph. The queue

number of a graph is the minimum k such that there exists a linear ordering of vertices and

a partition of the edges into k partitions and edges within each partition are not nested. The

problem of computing the queue number of a graph is NP-Complete [46]. Di Battista, et

al. [30] showed that the queue number of every planar graph is O(log2 n) and based on the

result, Vida Dujmović and David Wood [31] implied that every planar graph can be drawn

crossing-free on integer coordinates in an O(n log logn) volume and with O(log logn) bends

per edge. Di Battista, et al. [30] also showed that it is possible to have a 3D Fary grid

drawing of any planar graph in an O(n log8 n) volume.

Figure 2.3: 2D k-track drawing of an outerplanar graph (Figure 12 in Stefan Felsner, et al.
[40])

2.3 Point set embedding

The class of point set embedding problems studies the layout of graphs when a set of

fixed points are given for the location of vertices. If the mapping between the vertices and

points is specified then it is called with mapping otherwise it is called without mapping.

In the with mapping variant of the problem the layout is determined only by identifying

the position of the bends, where as in the without mapping variant of problem identifying

the mapping between the vertices and the given point set, is also required to determine the

18

2.3. POINT SET EMBEDDING

layout.

Here is a formulation of the two dimensional point set embedding problem (2DPSE) by

Henk Meijer and Stephen Wismath [53]:

Given a planar graph G with n vertices, V = {v1,v2, . . . ,vn}, and given a set
of n distinct points P = {p1, p2, . . . , pn} each with integer coordinates in the
plane, can G be drawn crossing-free on P with vi at pi and with a number of
bends polynomial in n and in an area polynomial in n and the dimension of P?

Sergio Cabello [20] considered a version of the problem where bends are not allowed

and proved that it is NP-Hard to determine whether a planar graph has a straight-line

crossing-free drawing on a predefined set of points when the mapping between the ver-

tices and the points is not specified. János Pach and Rephael Wenger [58] proved that is

possible to draw any planar graph crossing-free on a predefined set of points with O(n2)

bends per edge where the mapping between vertices and points is fixed. Michael Kaufmann

and Roland Wiese [50] proved that it is possible to have a crossing-free drawing of every

planar graph, with at most two bends per edge where each vertex can be positioned at any

point of a set of predefined positions but the area of the drawing has an at least exponential

growth.

In 3D similar issues can be considered. Henk Meijer and Stephen Wismath [53] formu-

lated the three dimensional point set embedding problem (3DPSE) as follows:

Given a graph G with n vertices, V = {v1,v2, . . . ,vn}, and given a set of n
distinct points P = {p1, p2, . . . , pn} each with integer coordinates in three di-
mensions, can G be drawn crossing-free on P with vi at pi and with a number
of bends polynomial in n and in a volume polynomial in n and the dimension
of P?

Notice that G does not have to be planar, in contrast to the 2DPSE. In [53], this general

problem is considered as an open problem and instead solutions to modified versions of the

problem are given. Two new algorithms described in section 2.4 of this dissertation answer

the general problem by constructing such a drawing.

19

2.3. POINT SET EMBEDDING

The first modification to 3DPSE that is considered in [53] is to remove the polynomial

volume constraint from the problem definition. They prove that Kn can be drawn crossing-

free on any predefined set of integer points in 3D with at most 3 bends per edge but the

volume is unbounded. The proof is done by incrementally adding edges to the graph. For

each endpoint of each edge, a visible bend point outside the bounding box of the current

drawing is found and the endpoint is connected to that bend. The bends found for each

edge can be connected by finding a third visible bend point and connecting both to it. The

idea of finding visible bend points is used in the proposed algorithms in section 2.4 but the

visible bend points are found in a bounded volume.

The second modification to 3DPSE that is considered in [53] is to restrict P to the XY

plane and the problem is called 3DPSEp. They proved that a graph with n vertices and m

edges can be drawn crossing-free in 3D with vertices on a predefined set of integer points

in a W ×H rectangular area of the XY plane using O(logm) bends per edge and within a

bounding box of max(W,m)× (H + 3)× (2+ logm). To create such a drawing, they first

introduce a method to draw a perfect matching of two sets of m points in 2D on O(logm)

tracks with O(logm) bends per edge and no X-Crossings. An X-Crossing happens when

there are two edges (u,v) and (w,z) such that u and w are on the same track and, v and z are

on the same track and u appears before w in their track but v appears after z in their track.

This track layout can be converted to 3D without any edge crossings in a box of volume of

m×3× (1+ logm) and with O(logm) bends per edge. — this technique is also used in the

first proposed algorithm of this dissertation described in section 2.4.2. To draw an arbitrary

graph in 3D, two lines are considered and for each edge two bend points are added, one one

the first line and one on the second line. In the first line the order of the bends representing

edges is lexicographic meaning that edges of the vertex vi appear before the edges of the

vertex vi+1. For the second line the order of the bends representing edges is opposite of the

first line meaning that edges of the vertex vi appear after the edges of the vertex vi+1. The

two corresponding bends of each edge on these two lines are connected on O(logn) tracks

20

2.4. THE PROPOSED ALGORITHMS

with O(logn) bends using the perfect matching technique. Next another line is added for

vertices of the graph and vertices are connected to the corresponding bend of their incident

edges without creating any crossings.The track layout and 3D drawing of K6 are depicted

in figures 2.4 and 2.5. For the 3DPSEp problem, without loss of generality it is assumed

that the vertices are ordered by X coordinate and then by Y coordinate in case of a tie. The

vertices are put in the Z = 0 plane. The first line for the matching is placed at the Z = −1

plane and the second line of the matching is put on the Z = 1+ logm plane.

Figure 2.4: Track layout of the matching technique for K6 (Figure 4 in Henk Meijer and
Stephen Wismath [53])

2.4 The proposed algorithms

In this section two new algorithms are proposed to answer the 3D point set embedding

problem (3DPSE). In section 2.4.2 a polynomial volume algorithm is given using O(logn)

bends per edge. In section 2.4.3 a polynomial volume algorithm is given using 2 bends per

edge but with a higher volume. First, here is a precise restatement of the 3DPSE problem.

21

2.4. THE PROPOSED ALGORITHMS

Figure 2.5: 3D drawing of K6 with the matching technique.(Figure 7 in Henk Meijer and
Stephen Wismath [53])

2.4.1 Problem Definition

Given a graph G with n vertices, V = {v1,v2, . . . ,vn}, m edges, E = {e1,e2, . . . ,em} and

a given set of n distinct points P = {p1, p2, . . . , pn} each with integer coordinates in three

dimensions, can G be drawn crossing-free on P with vi at pi and with a number of bends

polynomial in n and in a volume polynomial in n and the dimension of P such that each

bend has three dimensional integer coordinates?

Without loss of generality, suppose the bounding box of P is from (1,1,1) to (w, l,h).

2.4.2 The algorithm with a logarithmic number of bends per edge

In this section an algorithm is given which will produce a drawing of size

O(m+n+w)×O(m+n+ l)×O(logn+h), with at most O(logn) bends per edge.

22

2.4. THE PROPOSED ALGORITHMS

2.4.3 General idea

The algorithm has three phases and the general ideas are outlined below while details

follow later:

• Phase one: Consider two rectangles RA and RB perpendicular to the XY plane. RA is

one unit in front of the bounding box of the points in the direction of the Z axis and

RB is one unit from the back of the bounding box of the points in the direction of the

Z axis. For each edge find two visible integer bend points, one in RA and one in RB.

Connect the first vertex of the edge to the bend point in RA and connect the second

vertex of the edge to the bend point in RB.

• Phase two: Consider two lines LA and LB parallel to the Y axis. LA is at least one

unit in front of RA in the direction of the Z axis and two units to the left of RA in the

direction of the X axis. LB is one unit from the back of RB in the direction of the Z

axis and two units to the left of RA in the direction of the X axis. Connect each bend

point in RA to a corresponding integer bend point in LA and connect each bend point

in RB to a corresponding integer bend point in LA.

• Phase three: Each edge has two corresponding bend points in LA and LB. If the

corresponding bend points of each edge in LA and LBare connected then they form

a matching. This matching can be drawn crossing free using the perfect matching

technique of [53] in a bounding box of 3×m× (1+ logm).

Figure 2.6 shows a conceptual picture of RA, RB, LA, LB and the bounding box of the

points.

2.4.4 Phase one

Let k = max(n,m). Let PA denote the plane z = h+1 and RA denote the rectangle going

from (1,1,h+ 1) to (2k,2k,h+ 1) in the plane PA. Let PB denote the plane z = 0 and RB

denote the rectangle going from (1,1,0) to (2k,2k,0) in the plane PB. A point s is visible

23

2.4. THE PROPOSED ALGORITHMS

Figure 2.6: The conceptual picture of RA, RB, LA, LB and the bounding box of the points.

from point t if the line segment connecting s to t does not intersect any vertex of G or any

line segment that is previously drawn. The edges are considered one by one in m steps. At

the ith step (1≤ i≤ m), the ith edge ei, connecting vertices ui and wi is considered. Now a

visible integer bend point ai from ui is found in RA and a line segment αi is drawn between

ui and ai. Next a visible integer bend point bi from wi is found in RB and a line segment βi

is drawn between wi and bi. At the end of this phase each edge has one corresponding bend

point in RA and one corresponding bend point in RB.

To prove that there is always a visible integer bend point from ui in RA, or from wi in

RB, at the ith step of this phase of the algorithm, consider that there are only two ways that

an integer bend point in RA or RB becomes invisible from ui or wi:

1. A previously drawn line segment is between RA and ui, or RB and wi. The previously

drawn line segment can be any of α j or β j for 1≤ j < i, or αi for wi. There are at most

24

2.4. THE PROPOSED ALGORITHMS

2k−1 such line segments and each line segment can make at most 2k integer points

of RA or RB invisible. So this case will make at most (2k−1)2k integer points of RA

or RB invisible. To prove that each such line segment such as e connecting vertices

or bend points q and t, will make at most 2k integer points in RA or RB invisible,

consider the plane Puqt containing ui, q and t. If the plane Puqt intersects with the

plane PA or PB the intersection will be a line. This line can contain at most 2k integer

points of RA or RB. If ui, q, and t are collinear, at most one integer point of RA or RB

is made invisible.

2. A vertex is between RA and ui, or RB and wi: This can be any vertex other than ui or

wi. Each such vertex can make at most one integer point of RA or RB invisible. There

are at most k−1 such vertices. So this case can make at most k−1 integer points of

RA or RB invisible.

Subtracting the maximum number of invisible points of both cases from the number of

integer points of RA or RB, leaves at least k+1 visible points as shown in equation 2.1.

4k2− (2k−1)2k− (k−1) = k+1 (2.1)

2.4.5 Phase two

Let λ = max(h+ 2, logm). Let LA denote the line segment going from (−1,1,λ) to

(−1,m,λ) and let LB denote the line segment going from (−1,1,−1) to (−1,m,−1).

For each bend point ai in RA, find a corresponding integer bend point in LA called ai and

draw a line segment between ai and ai. To find such corresponding bend points, consider

the integer bend points of LA in the order of increasing Y coordinate and consider ai integer

bend points in the order of X coordinate and in case of a tie in the order of Y coordinate,

and match them one by one. This ordering will avoid any crossings.

Similarly, for each bend point bi in RB, find a corresponding integer bend point in LB

called bi and draw a line segment between bi and bi. To find such corresponding bend

25

2.4. THE PROPOSED ALGORITHMS

points, consider the integer bend points of LB in the order of increasing Y coordinate and

consider bi integer bend points in the order of X coordinate and in case of a tie in the order

of Y coordinate, and match them one by one. This ordering will avoid any crossings. At

the end of this phase each edge has four corresponding bend points, one in RA, one in LA,

one in LR and one in LB.

2.4.6 Phase three

Each edge ei has a corresponding bend point ai in LA and a corresponding bend point

bi in LB. If each ai is connected directly to each bi they form a perfect matching but it may

introduce crossings. To avoid crossings the perfect matching technique of [53] is used to

draw this perfect matching in 3D. Such a 3D perfect matching drawing can be drawn in a

bounding box of 3×m× (1+ logm) using the [-2,0] range of X coordinates and at most

O(logn) bends per edge. Also it is notable that this phase does not use any bend point on

the two lines X = 0,Z = λ and X = 0,Z = −1, otherwise it may introduce crossings with

the line segments of the previous phase. This phase will add at most O(logn) bends per

edge, at most O(logn) to the dimension of drawing in the Z direction, and at most three

units to the dimension of drawing in X direction.

2.4.7 Summary

Each phase of algorithm does not have any crossing inside it. The three phases use

different partitions of space which will avoid crossings between the three phases.

To find the visible points, for each vertex v, the algorithm maintains a set of integer

points in RA or RB that are visible from v. The set is implemented using a balanced binary

search tree. After adding each line segment at each step of the algorithm, for each vertex

v, the algorithm removes the integer points blocked by that line segment from the set of

visible points of v. The algorithm has O(m ·n ·k · logn) time complexity and O(nk2) memory

complexity. The algorithm is summarized in Theorem 2.1 and Algorithm 2.2. Also figures

2.7 and 2.8 show the drawing of K5 on a given point set using the proposed algorithm in

26

2.4. THE PROPOSED ALGORITHMS

We3Graph.

Theorem 2.1. Given a graph G with m edges, and n vertices, V = {v1,v2, . . . ,vn}, and a

given set of n distinct points P = {p1, p2, . . . , pn} each with integer coordinates in three

dimensions, G can be drawn crossing-free on P with vi at pi and with at most O(logn)

bends per edge and in a O(m+ n+w)×O(m+ n+ l)×O(logn+ h) volume such that

each bend has three dimensional integer coordinates. The drawing can be produced in

O(m ·n · k · logn) time and O(nk2) memory.

27

2.4. THE PROPOSED ALGORITHMS

Algorithm 2.2 The algorithm with logarithmic number of bends per edge

RA denotes the rectangle going from (1,1,h+1) to (2k,2k,h+1) in the plane z = h+1

RB denotes the rectangle going from (1,1,0) to (2k,2k,0) in the plane z = 0

1: λ = max(h+2, logm)

2: Let Sv be the set of all visible integer points from the vertex v, in RA.

3: Let Ŝv be the set of all visible integer points from the vertex v, in RB.

4: for all vertex v in V do

5: for all vertex v2 in V - v do

6: Remove the point in Sv or the point in Ŝv that is blocked by v2 from v (if it exists).

7: for all edge ei = (ui,wi) in E do

8: Let ai be a point in Su

9: Draw a line segment αi from ui to ai.

10: for all vertex v in V do

11: Remove every point in Sv and Ŝv that is blocked by αi from v.

12: Let bi be a point in Ŝw

13: Draw a line segment βi from wi to bi.

14: for all vertex v in V do

15: Remove every point in Sv and Ŝv that is blocked by βi from v.

16: counter=1

17: for all αi ordered by x coordinate and in case of a tie by y coordinate do

18: Draw a line segment between αi and the point ai = (−1,counter,λ).

19: counter++

20: counter=1

21: for all βi ordered by x coordinate and in case of a tie by y coordinate do

22: Draw a line segment between βi and the bend point bi = (−1,counter,−1).

23: counter++

24: Use the technique of [53] for drawing a perfect matching in 3D to connect each ai to

bi.

28

2.4. THE PROPOSED ALGORITHMS

Figure 2.7: 3D drawing of K5 on a given point set using the first proposed algorithm. Y
axis upward and camera looking toward the negative side of Z axis direction.

Figure 2.8: 3D drawing of K5 on a given point set using the first proposed algorithm. Y
axis upward and camera looking toward the (-1,-1,0) direction.

2.4.8 The algorithm with two bends per edge

In this section an algorithm is given which will produce a drawing of size

O(m+n+w)×O(m+n+ l)×O(m+n+h), with at most 2 bends per edge. The algorithm

29

2.4. THE PROPOSED ALGORITHMS

considers rectangles parallel to the XY plane in front of the bounding box of the points in

the direction of the Z axis and for each edge, finds two visible integer bend points in one of

the rectangles and connects them directly. Here is a detailed explanation of the algorithm.

Let k = max(n,m). For any particular integer φ, let Pφ denote the plane z = φ and Rφ

denote the rectangle going from (1,1,φ) to (3k,3k,φ) in the plane Pφ. A point s is visible

from point t if the line segment connecting s to t does not intersect any vertex of G or any

line segment that is previously drawn. At the ith step (1≤ i≤m), the ith edge ei, connecting

vertices ui and wi is considered. Now a visible integer bend point ai from ui is found in Rh+i

and a line segment αi is drawn between ui and ai. Next a visible integer bend point bi from

wi is found in Rh+i and a line segment βi is drawn between wi and bi. Then a line segment

γi is drawn between ai and bi.

Figure 2.9 shows a conceptual picture of Rh+1, Rh+i and the bounding box of the points.

Figure 2.9: The conceptual picture of Rh+1, Rh+i and the bounding box of the points.

30

2.4. THE PROPOSED ALGORITHMS

To prove that there is always a visible integer bend point from ui or wi in Rh+i at the ith

step of the algorithm, consider that there are only two ways that an integer bend point in

Rh+i becomes invisible from ui or wi:

1. A previously drawn line segment is between Rh+i and, ui or wi. The previously drawn

line segment can be any of α j, β j or γ j for 1≤ j < i, or αi for wi. There are at most

3k−2 such line segments and each line segment can make at most 3k integer points

of Rh+i invisible. So this case will make at most (3k− 2)3k integer points of Rh+i

invisible. To prove that each such line segment such as e connecting vertices or bend

points q and t, will make at most 3k integer points in Rh+i invisible, consider the

plane Puqt containing ui, q and t. If the plane Puqt intersects with the plane Ph+i the

intersection will be a line. This line can contain at most 3k integer points of Rh+i.If

ui, q, and t are collinear, at most one integer point of Rh+i is made invisible.

2. A vertex is between Rh+i and, ui or wi: This can be any vertex other than ui or wi.

Each such vertex can make at most one integer point of Rh+i invisible. There are at

most k−1 such vertices. So this case can make at most k−1 integer points of Rh+i

invisible.

Subtracting the maximum number of invisible points of both cases from the total num-

ber of integer points of Rh+i, leaves at least 5k + 1 visible points as shown in equation

2.2.

9k2− (3k−2)3k− (k−1) = 5k+1 (2.2)

To find the visible points, at the ith step, the algorithm considers every point in Rh+i,

every previously drawn line segment and every vertex other than ui or wi. The algorithm

has O(mk3) time complexity and O(k) memory complexity. The algorithm is summarized

in Theorem 2.2 and Algorithm 2.3. Also figures 2.10 and 2.11 show the drawing of K5 on

a given point set using the proposed algorithm in We3Graph.

31

2.4. THE PROPOSED ALGORITHMS

Theorem 2.2. Given a graph G with m edges, and n vertices, V = {v1,v2, . . . ,vn}, and a

given set of n distinct points P = {p1, p2, . . . , pn} each with integer coordinates in three

dimensions, G can be drawn crossing-free on P with vi at pi and with at most two bends

per edge and in a O(m+n+w)×O(m+n+ l)×O(m+n+h) volume such that each bend

has three dimensional integer coordinates. The drawing can be produced in O(m(m+n)3)

time and O(m+n) memory.

Algorithm 2.3 The algorithm with two bends per edge

Rφ denotes the rectangle going from (1,1,φ) to (3k,3k,φ) in the plane z = φ

1: for all edge ei = (ui,wi) in E do

2: Select a visible integer bend point ai from ui in Rh+i by considering every point in

Rh+i, every previously drawn line segment and every vertex other than ui.

3: Draw a line segment αi from ui to ai.

4: Select a visible integer bend point bi from wi in Rh+i by considering every point in

Rh+i, every previously drawn line segment and every vertex other than wi.

5: Draw a line segment βi from wi to bi.

6: Draw a line segment γi from ai to bi.

32

2.4. THE PROPOSED ALGORITHMS

Figure 2.10: 3D drawing of K5 on a given point set using the second proposed algorithm.
Y axis upward and camera looking toward the negative side of Z axis direction.

Figure 2.11: 3D drawing of K5 on a given point set using the second proposed algorithm.
Y axis upward and camera looking toward the negative side of X axis direction.

33

Chapter 3

Previous 2D and 3D Graph Drawing Software

This chapter reviews some of the previous efforts on graph drawing software with particular

emphasis on 3D applications. These software packages provide visualization, manipulation

or algorithms for graphs as an abstract model or as a model used in an application of graph

drawing.

There are some software packages that are solely implementations of algorithms and

do not provide any user interface. Among them we can mention AGD (Algorithms for

Graph Drawing) [45, 49],GDS (Graph Drawing Server) [18, 19], GDToolkit (Graph Draw-

ing Toolkit) [29] and OGDF(Open Graph Drawing Framework) [22, 1].

There are some software packages that are designed for 2D graph drawing such as

Graphvis [37, 38], Pajek [14], PIGALE [27] and Tulip [26, 12]. Tulip can also handle 3D

graph drawing but the user interface is more tuned for 2D graph drawing and most algorithm

plugins bundled with it are for 2D graph drawing.

There are some software systems such as GIOTTO3D [44], Gluskap [35], H3Viewer

[56, 55], WilmaScope [34, 33] that are primarily designed for 3D graph drawing. Joel

Bennett and Stephen Wismath [15] extended Gluskap to provide 3D printing for graphs.

Farshad Barahimi and Stephen Wismath [13] extended Gluskap to provide a virtual reality

environment for graphs using the Oculus Rift. H3Viewer uses the 3D hyperbolic space

for layout and visualization of graphs. GIOTTO3D is aimed at layout and visualization of

hierarchical structures in 3D.

There are some software packages that are especially designed for biology applica-

tions. Among them we can name BioJAKE [60],bioWeb3D[59],Cytoscape [61, 62] and

Web 3DNA [66]. Cytoscape was originally designed for Biology but later changed to a

34

3.1. OPEN GRAPH DRAWING FRAMEWORK(OGDF)

general platform for visualizing and analysis of networks. Some software packages such

as ChemDraw [24], Chemlab [2], PyMol [3] and GLMol [4] target chemistry applications.

Biology and chemistry sometimes overlap in the field of BioChemistry.

General diagramming software is another category of software packages related to

graph drawing which address the need to draw different diagrams to represent information

or processes. Among them we can mention the open source Dia [5] project, the web based

diagramming software of Gliffy [6], Microsoft Visio [7] from the Microsoft office family of

products and yED. Flowcharts, concept maps, mind maps, organizational charts are some

of the diagram types that software packages in this category can draw. Sometimes these

software packages can draw more specialized diagram types such as network diagrams,

UML (Unified Modelling Language) diagrams, entity-relationship diagrams, data flow dia-

grams and PERT (Program Evaluation and Review Technique) charts. While the yEd editor

gives the end user an ability to draw diagrams, the yFiles library from the same company

provides programmers with a diagramming component to be used in their programs as well

as some layout algorithms.

There is another group of software packages that are designed primarily for software en-

gineering applications such as Enterprise Architect [8], MagicDraw [9], Rational Rose [10]

and Visual Paradigm[11]. UML (Unified Modelling Language) diagrams play an important

role in these software packages. BPMN(Business Process Model and Notation) diagram

is another type of diagram that is used in these software packages. Generating source code

from the diagram and reverse engineering the source code to diagram is a notable feature

of software packages in this category.

3.1 Open Graph Drawing Framework(OGDF)

The Open Graph Drawing Framework [22, 1] is an open-source C++ software library for

graph data structures and algorithms. The framework provides different layout algorithms

such as:

35

3.2. TULIP

• Orthogonal layout algorithms.

• Straight-line and polyline planar layout algorithms.

• Planarization layout algorithms.

• Layered layout algorithms.

• Energy-based and force-directed layout algorithms.

• Tree layout algorithms.

• Circular layout algorithms.

The framework is used in some other software packages such as Tulip [26, 12] as well

as more than 20 publications.

3.2 Tulip

Tulip [26, 12] is a data visualization software package written in C++ which uses graphs

as the primary model of data. Also Tulip allows properties to be attached to vertices or

edges which helps different visualization views of Tulip to visualize the graph accordingly.

In addition to the Node Link Diagram View which provides a typical visualization of a

graph, Tulip has also other types of views such as:

• Spreadsheet view: Allows the user to view and manipulate properties of vertices and

edges of a graph in a spreadsheet.

• Adjacency matrix view: Displays the adjacency matrix of a graph.

• Geographic view: Allows different map modes to be used to visualize geographically

related graphs.

• Histogram view: Displays properties of vertices or edges of a graph using histograms.

36

3.2. TULIP

• Parallel coordinates view: Shows the relationship between two or more properties of

vertices or edges of a graph.

Figure 3.1 shows the user interface of Tulip, displaying a 5 vertex planar graph in the

Node Link Diagram view. The algorithms panel on the left side of the image, allows the

user to apply different algorithms on the graph.

Figure 3.1: The user interface of Tulip, displaying a 5 vertex planar graph in the Node
Link Diagram view.

Although Tulip can handle 3D graph drawing, the user interface is more tuned for 2D

graph drawing and most of the algorithm plugins bundled with it are for 2D graph drawing.

The plugins can be written in C++ or python. The software package is bundled with

several built in plugins for layout algorithms, topological testing algorithms, etc. Some of

the built in plugins are from the Open Graph Drawing Framework (OGDF).

Tulip can import graphs from different file formats such as Tulip TLP format, Tulip

JSON format, GML, graphVis format(.dot), pajek format(.net) and an adjacency matrix file

format. The graphs can be exported to Tulip TLP format, Tulip JSON format, SVG format

and GML format. The user can also start using some predefined graphs such as Complete

37

3.4. GLUSKAP

graphs, Complete Trees, Grids and Random graphs. Tulip has been used in more than 80

publications.

3.3 Cytoscape

Cytoscape is a network analysis and visualization platform originally designed for bio-

logical research. The open source platform can be used to visualize molecular interaction

networks and is capable of attaching other information such as annotations and gene expres-

sion profiles to the elements of these networks. Cytoscape is written in Java, and plugins

called apps can be written in Java. Cytoscape provides an app store where apps can be

downloaded or new apps can be submitted. Also an app named cyREST provides a REST

web service which can be used by other programming languages to interact with Cytoscape.

Some of the layout algorithms of Cytoscape are from yFiles while there are other layout

algorithms that do not exist in yFiles such as an edge-weighted force directed algorithm

for similarity analysis in biology called BioLayout [39] based on the general force directed

algorithm of Fruchterman and Reingold [43]. Cytoscape also provides a javascript library

called Cytoscape.js which helps web applications to visualize Cytoscape networks. Cy-

toscape supports file formats such as SIF, XGMML, BioPax, PSI-MI, GraphML, KGML,

SBML, OBO and Gene association. Cytoscape can connect to biological databases and

retrieve information from them. Cytoscape has been used in more than 60 publications.

Figure 3.2 shows the user interface of Cytoscape, displaying the E. coli interactome.

3.4 Gluskap

Gluskap is a general 3D graph drawing software package written in python that allows

the visualization and manipulation of graphs in 3D. The software has evolved for over 10

years and is explicitly designed for 3D. Joel Bennett and Stephen Wismath [15] extended

Gluskap to provide 3D printing of graphs. Farshad Barahimi and Stephen Wismath [13]

extended Gluskap to provide a virtual reality environment for viewing graphs using the

38

3.5. GLMOL

Figure 3.2: The user interface of Cytoscape, displaying the E. coli interactome.

Oculus Rift. Gluskap also supports stereoscopic visualization of graphs using a side by

side 3D method or interleaving method. Gluskap plugins can be written in python. The

layout plugins bundled with Gluskap are related to 3D representation of graphs rather than

2D representation of the graphs such as the layout algorithm of [23] for drawing graphs

in 3D based on the moment curve idea of [28], the layout algorithm of [54] for drawing

graphs in 3D using one bend, the layout algorithm of [36] for drawing graphs in 3D using

two bends and the layout of [53] for drawing graphs on a given point set with a logarithmic

number of bends. The internal Gluskap file format is mg2 but it also supports importing and

exporting from Tulip TLP format, Graphvis dot format, GraphML format, GML format,

Trivial Graph Format and CSV format. Gluskap is also capable of exporting the current

view of the 3D scene to POV-Ray which can be used to render the graph using the POV-

Ray software. Figure 3.3 shows the user interface of Gluskap, displaying a 3D drawing of

the Peterson graph.

39

3.5. GLMOL

Figure 3.3: The user interface of Gluskap, displaying a 3D drawing of the Peterson graph.

3.5 GLmol

GLMol is a web based visualizer for 3D molecules based on WebGL and written with

Javascript and THREE.js. GLMol provides the user with the ability to view molecules

in a web browser but does not provide editing capabilities for the molecule. GLMol can

read from PDB, SDF/Mol and XYZ file formats. It is also capable of reading PDB files

from RCSB PDB server and SDF files from the NCBI PubChem server. It can show the

molecules using different representations such as line, ball and stick, stick, sphere, star,

ribbon, strand, etc. NDKMol is a version of GLMol for android written using C++ and

android NDK. Figure 3.4 shows the user interface of GLMol in a Chrome web browser,

displaying the 3D structure of the Porin protein.

40

3.5. GLMOL

Figure 3.4: The user interface of GLMol in a Chrome web browser, displaying the 3D
structure of the Porin protein.

41

Chapter 4

Software Architecture and Implementation of We3Graph

4.1 Architecture

The architecture of We3Graph as illustrated in figure 4.1 builds upon ideas from Repre-

sentational State Transfer (REST) web services and Model View Controller (MVC) archi-

tecture.

The web service plays a central role in connecting all pieces together and making the

application accessible on various devices and operating systems and extendible using var-

ious programming languages. Web service benefits are expressed beautifully by Robert

Daigneau [25]:

Web services make it relatively easy to reuse and share common logic with
such diverse clients as mobile, desktop and web applications. The broad reach
of web services is possible because they rely only on open standards that are
ubiquitous, interoperable across different computing platforms, and indepen-
dent of the underling execution technologies.

In terms of MVC the model is the graph stored either in the database or as an object in

the user interface or plugin, the controllers can be user interface and plugins that modify

the model using the web service. The views are the web pages opened by different users on

different devices. For the communication between the server, user interfaces and plugins, a

predefined set of commands is used. Those commands hold information about changes to

the graph instead of the state of the graph. This way we can have a history of changes to

the graph in addition to the state of the graph. As well, communication resources will be

minimized. The list of commands and their description is provided in table 4.1:

42

4.1. ARCHITECTURE

Figure 4.1: Architecture

The plugins can be written in any language as they only need to interact with the web

service. To further facilitate this process, plugin adaptor components for C#,C++ and Java

can be used to hide the web service interaction from the plugin and provide an object

oriented model of the graph as we usually expect.

The plugins can be also written by embedding a web browser component in a native

application and sending Javascript commands to the web browser component. This type

of plugin is particularly useful in user interaction plugins as the changes can be applied to

the user interface before sending them to the server thus reducing the latency that might be

critical to user interaction plugins.

43

4.1. ARCHITECTURE

Table 4.1: The list of commands used to apply changes to the graph.

Name Description
InsertVertex Adds a vertex to the graph.
InsertEdge Adds an edge to the graph.
BreakEdgeLine Adds a new bend to break a line segment of an edge into two

line segments.
RemoveVertex Removes a vertex.
RemoveEdge Removes an edge.
RemoveBend Remove a bend.
MoveVertex Moves a vertex to a new position.
ChangeVertexScale Changes the scale of a vertex.
ChangeVertexRotation Changes the orientation of a vertex.
MoveBend Moves a bend to a new position.
ChangeCameraPosition Move the camera to a new position.
ChangeCameraRotation Changes the orientation of camera.
SetVertexProperty Adds, Updates or removes a vertex property.
SetEdgeProperty Adds, Updates or removes an edge property.
CustomCommand Used for any command that is needed but not listed above.

Customized render engines for applications of graph drawing can be written in Javascript

by inheriting a class from the default engine and only changing the required behaviour.

Though Javascript is not a classical object oriented language, object oriented concepts and

inheritance can be simulated using object prototypes.

We3Graph uses WebGL as open standard which is accessible on many devices decreas-

ing the need to have different user interfaces on different devices, though it is possible for

someone to develop a user interface for We3Graph that does not use WebGL and uses other

technologies such as OpenGL and DirectX.

4.1.1 REST

We3Graph borrows many characteristics and benefits of a REST design for web services

but it ignores or modifies some of the REST elements or constraints when needed so it can

be called a REST based web service instead of the common phrase of a RESTful web

service. While REST was first developed in 1994 [41], the term REST was introduced in

44

4.1. ARCHITECTURE

year 2000, in the Ph.D. dissertation of Roy Fielding [42]. Here is a description of REST

from the Ph.D. dissertation:

The Representational State Transfer (REST) style is an abstraction of the archi-
tectural elements within a distributed hypermedia system. REST ignores the
details of component implementation and protocol syntax in order to focus on
the roles of components, the constraints upon their interaction with other com-
ponents, and their interpretation of significant data elements. It encompasses
the fundamental constraints upon components, connectors, and data that de-
fine the basis of the Web architecture, and thus the essence of its behavior as a
network-based application. [42]

While the modern web is one instance of a REST style architecture [41], the architec-

tural style of REST can be also applied to web services. When a web service uses the

architectural style defined by REST, it is called a RESTful web service.

From architectural elements of REST, We3Graph uses resources identified by URLS,

Javascript Object Notation (JSON) as representation, proper MIME type (application/J-

SON) for representation metadata and no resource metadata or control data.

From architectural constraints of REST We3Graph implements the uniform interface

constraint and the client-server constraint completely, slightly degrades the stateless con-

straint, practically makes the ‘Cache’ constraint irrelevant by marking every request as

non-cachable, and does not do anything special for the ‘Layered system’ constraint other

than using web which is a layered architecture and ignores the optional ‘Code-On-Demand’

constraint completely.

For the uniform interface constraint We3Graph uses standard HTTP methods – GET,

POST, PUT, DELETE– as actions on resources identified by URLs and proper HTTP status

code is returned along with the JSON encoded response.

Being stateless is one of the constraints of REST:

Each request from client to server must contain all of the information necessary
to understand the request, and cannot take advantage of any stored context on
the server. Session state is therefore kept entirely on the client. This constraint
induces the properties of visibility, reliability, and scalability[42].

45

4.3. COMPONENT INTERACTION EXAMPLE

We3Graph tries to keep the request as stateless as possible with the exception of authen-

tication and authorization information. Having complete authentication and authorization

in each request will increase the latency which is critical to this application as described in

section 4.3.

We3Graph marks every request as non-cachable due to the nature of the application.

From REST connectors, We3Graph uses client and server and also SSL as a tunnel and

DNS as resolver and avoids cache.

4.2 Users and security

In We3Graph each user can be a member of many groups and each folder can be acces-

sible in different ways to different groups using permissions defined by the administrator.

Furthermore each graph belongs to a folder but there is no folder hierarchy for simplicity.

Also each user can have multiple clients, that is every plugin or browser page of a user is

considered a different client but the same user.

Passwords are hashed using the php password hash function and stored in database. The

php password hash function uses a random salt in combination with hashing which helps

protect against lookup table and rainbow table attacks. The php password hash function

has a cost option which can be used to slow down the hashing process to make brute force

attacks harder. The default cost(10) of the function is used though it can be adjusted based

on the server hardware. All non-local REST requests use the HTTPS (SSL/TLS) protocol

for secure end to end transfer of data to prevent wire tapping and man-in-the-middle attacks.

Also a minimum length of 10 characters per password is enforced.

4.3 Component interaction example

Here is an example of the interactions between different components of the system

after an action by the user such as when a user removes a vertex. The user A decides to

remove a vertex by pressing the delete key on the keyboard when the vertex is selected.

46

4.4. LATENCY CHALLENGE

The Javascript code running on the browser first changes its internal model of the graph

and then tries to send the remove vertex command to the server asynchronously to avoid

interruption in the user interface. The rendering loop of the user A which runs regularly

reflects the change of the model in the rendered image and the user A sees that the vertex

is removed. When the remove command reaches the server, the server first checks if the

user has the authentication and authorization to remove the vertex and then adds the remove

vertex command to its database. The Javascript code on the User B browser has a regular

loop which asks the server for new commands. Since the new command is in database,

next time the User B asks for new commands, after the server checks that the user has

authentication and authorization to receive the commands, the server will retrn the remove

vertex command to the User B browser. The Javascript code on the User B browser changes

its internal model of the graph. The rendering loop of the user B reflects the change of the

model in the rendered image and the user B sees that the vertex is removed.

4.4 Latency challenge

In We3Graph it is important to render each frame in a reasonable time frame after a

change is made otherwise the user experience is significantly affected. If latency goes

above some threshold the application may become useless. To be more precise, latency

is the time between a change by a user and the time that this change is displayed either

in the same user or other users user interface. The importance of latency depends on the

type of change. Latency plays a very important role in changes involving user interaction

especially when we are using devices such as the LeapMotion and the OculusRift because

those devices have their own latency which will be added to We3Graph’s latency. There are

4 types of latencies as described in table 4.2 and depicted in figure 4.2:

From a change to render there are several processes which may cause latency as listed

below and described individually in the next subsections:

• Database query

47

4.4. LATENCY CHALLENGE

Table 4.2: Latency types

Type Description
1 The latency between rendering and a change made by the same user using the

normal web based user interface.
2 The latency between rendering and a change made by another user using the

normal web based user interface or another user’s plugin.
3 The latency between rendering and a change made by the same user’s plugin not

using the embedded web browser approach.
4 The latency between rendering and a change made by the same user’s plugin

using embedded web browser approach.

Figure 4.2: Latency types

• Graphical rendering

• Network latency

• Authentication and authorization latency

48

4.4. LATENCY CHALLENGE

4.4.1 Database query latency

For type 2 and 3 latencies, each frame needs to query the database to see if there are new

commands. To address latency in this part, proper database design and indexes were consid-

ered. Also some tables are stored using the MyISAM storage engine while other tables use

InnoDB to increase query performance. Also special care was made in the authentication

and authorization process to allow faster authentication and authorization on each frame.

As the user changes the graph, the number of commands in the database will increase but

the effect of many commands such as move commands are overridden by new commands.

We3Graph marks these commands as ineffective and with a proper index speeds up the

query. Also the ineffective commands can be deleted later so the commands table becomes

more compact. The database schema is shown in figure 4.3.

4.4.1.1 MyISAM vs InnoDB storage engines

The MySQL relational database management system (RDMS), has different storage en-

gines. The two most popular ones are MyISAM and InnoDB. Different tables in a database

can use different storage engines. In We3Graph, some of the tables use the MyISAM stor-

age engine and some use the InnoDB storage engine.

MyISAM was the default storage engine for MySQL prior to version 5.5 when the

default engine switched to InnoDB. MyISAM can be useful in situations where there are

many read operations but few write operations. This property was especially useful for the

who-tokens, graph-access-tokens and clients table of the We3Graph database. Each client

on each frame has to read who-tokens, graph-access-tokens and clients table for the authen-

tication and authorization process. On the other hand each client needs a write operation to

those tables only once. This leads to a significant amount of read operations and a much

smaller number of write operations.

On the negative side, MyISAM does not support ACID transactions and lacks foreign

keys. This leads to weaker data integrity, so care should be taken when using the My-

49

4.4. LATENCY CHALLENGE

Figure 4.3: Database schema

50

4.4. LATENCY CHALLENGE

ISAM engine. InnoDB supports ACID transactions and foreign keys. Except who-tokens,

graph-access-tokens and clients tables which required special treatment due to the signifi-

cant amount of read operations, other tables in We3Graph use InnoDB to benefit from better

data integrity and also higher performance when there are many write operations.

4.4.1.2 Indexes

Proper index design is critical to query performance which will lead to lower database

latency. To check for new commands, three queries are done on the database. The first

query is on the who-tokens table to see if the client is who it claims to be. An index on

the Token field of the who-tokens table is defined to facilitate this query. The next query is

on graph-access-tokens to see what permission does the client have on this graph. Similar

to the who-tokens table, an index on the Token field of the graph-access-tokens table is

defined to facilitate this query. The third query is on the commands table to see if they are

new commands after the previous command received. To make this query faster, a primary

key index is defined on the CommandID field and an index is defined on the IsEffective

field for the commands that are overridden by newer commands. To store a new command

in addition to the first two queries above, three new queries are needed. The first query is

to check if the client number is valid; a primary index on Client ID helps this query. The

second query is to store the command in the database. The GraphID field in the commands

table would be normally defined as foreign but it is not declared as foreign key to avoid

another index in this important table to allow faster write operations. The third query is to

mark previous commands as ineffective depending on the command name. An index on

the Param1 parameter helps this query as for move commands param1 helps identify which

commands to mark as ineffective.

4.4.2 Graphical rendering latency

As the size of the graph increases, graphical rendering on the GPU can be slowed down

until becoming useless. This can affect all types of latencies mentioned above. Another

51

4.4. LATENCY CHALLENGE

approach that was considered to address this latency was cloud rendering but was ignored

after evaluation of positive and negative points. In cloud rendering the 3D scene is rendered

in the cloud server and the output of rendering is transferred to the client as a video stream.

The client just needs to be able to show the video stream.

On the positive side cloud rendering offers rendering large graphs on devices with low

graphical power.

On the negative side, any user interaction that needs a change in the visualization of the

model such as a mouse move which may require changing the color of the hovered vertex

or bend should be sent to the server before getting visualized. Without cloud rendering

it is possible to avoid network latency and, authentication and authorization latency before

applying the changes. These latencies become more important for input/output devices such

as the LeapMotion and the OculusRift, as these devices themselves have latencies, which

will be added to these latencies, and providing a quick visual feedback is very important to

the user experience with these devices.

Another limitation of cloud rendering is network speed and resources on both client and

server. The client needs to have a high speed network and also the server needs to handle

significantly more network traffic. Also the graphical processing power of the server should

expand as the number of users expands but expanding server power without cloud rendering

is much cheaper and is a much more mature technology. One might propose having both

cloud and non-cloud rendering, but the downfall is that the extendibility for customized

rendering engines will be significantly degraded as it takes 2 times more time to add a cus-

tomized rendering engine for a specific application of graph drawing. Also the redundancy

of having two different sets of codes for the same custom render engine can cause main-

tenance issues and may cause different users having different experiences with the software.

In the case that the user does not intend to change the graph, the merged mode can be

used which merges geometries of all vertices, bends and edges in order to gain performance.

52

4.6. CONCURRENCY AND RACE CONDITIONS

This feature does not exist for some render engines such as the class diagram engine, which

use multiple textures for different faces of the same mesh.

4.4.3 Network latency

Network communication can cause type 2 latency. Also, communication with the local

server can cause type 3 latency which might be lower than type 2. To reduce network

latency We3Graph only transfers changes to a graph instead of the complete graph state.

Only changes made since the last sent or received command will be sent or received over

the network.

4.4.4 Authentication and authorization latency

Authentication and authorization can cause type 2 and 3 latencies. Good authentication

needs to be slow in order to prevent brute force attacks so if we want to authenticate each

user from scratch, this will increase our latency. To reduce this latency we authenticate

each client just once and produce a secure who-token which will be used in each frame or

request to authenticate the user. Also for authorization a secure graph-access-token will be

produced just the first time that the user decides to interact with a special graph and will be

used on every frame or request to authorize the user. The tokens are stored in the database

and will become invalid after 30 days. The tokens are generated using SHA-256 on a 256

bit CSPRNG generated string (openssl random pseudo bytes or mcrypt create iv function

of php).

4.5 Coding style

Table 4.3, shows the coding style that is used to code We3Graph in different languages.

4.6 Concurrency and race conditions

When multiple processes access the same resource there is always the chance of a race

condition. As in We3Graph multiple users access the same graph model, there is the chance

53

4.6. CONCURRENCY AND RACE CONDITIONS

Table 4.3: Coding style

Element Style Example
Class names pascal case FirstNext
Public methods pascal case FirstNext
Private or protected methods camel case firstNext
Internal methods camel case preceded by double un-

derlines
firstNext

Local variables camel case firstNext
Class member variables camel case followed by underline firstNext
Constants all letters uppercase and words sep-

arated by underline
FIRST NEXT

Global variables all letters uppercase and words sep-
arated by underline

FIRST NEXT

Function parameters camel case firstNext
Namespaces pascal case FirstNext
Packages pascal case FirstNext
MySQL table names all letters lowercase and words sep-

arated by dash
first-next

MySQL table fields pascal case FirstNext
REST resource names all letters lowercase and words sep-

arated by dash
first-next

File and folder names
(Javascript and PHP)

all letters lowercase and words sep-
arated by dash

first-next

File and folder names
(C#, C++ and Java)

pascal case FirstNext

Block brackets brackets start at the next line
Documentation JSDoc, PHPDoc, Javadoc, Mi-

crosoft XML Documentation for
C# and C++

Abbreviation in names all letters follow the first letter getURL for
private func-
tion or url for
local variable

String literals Use single literals when possible
Line length at most 80 but this rule is not strict

and can be avoided if it makes code
more readable

of a race condition, such as when two users move the same vertex to two different locations.

In We3Graph race conditions on move, scale and rotation commands are considered normal

54

4.6. CONCURRENCY AND RACE CONDITIONS

behaviour and no special action is taken to prevent them. If a race condition is on an action

on a vertex,edge or bend that is removed by another user the action will be ignored. For

vertex or edge insertion commands each user attaches its client ID to the ID it generates

for vertices or edges to avoid having duplicate IDs for vertices or edges. There are still

conditions that may lead to unintended or inconsistent behaviour such as when two users

try to add the same edge at the same time or when two users try to add a bend to the same

edge at the same time.

55

Chapter 5

Conclusion and Future Work

A new web-based software system for drawing graphs in 3D was presented in this dis-

sertation which has the following features that to the best of the author’s knowledge does

not exist in previous 3D graph drawing software although some exist in 2D graph drawing

software:

• Collaboration: Multiple users can work on the same graph at the same time.

• Sharing with access control: Graphs can be shared among different users and can

have different access controls.

• Leap Motion controller and a user interface tuned for touch screens.

• Customizable render engines for different applications of graph drawing: We3Graph

introduces the idea that customized render engines can help adapt a general graph

drawing software for a specific application of graph drawing. We3Graph also pro-

vides examples of this idea such as the custom render engines for class diagrams and

chemistry

• REST based API for plugin programming: plugins can be written in any program-

ming language. Also We3Graph introduces the idea of plugin adaptors for hiding

REST web service interaction from the developer and provides examples in C#,C++

and Java.

• Detailed 3D class diagram manipulation: Although class diagrams have been visual-

ized in 3D before, We3Graph allows the user to interactively manipulate classes, edge

bend points, member of classes, edge labels, edge types and edge arrow symbols.

56

5. CONCLUSION AND FUTURE WORK

• Web-based manipulation: Although there has been some effort to use WebGL to

visualize graphs in 3D such as GLMol, We3Graph offers manipulation of graphs in

3D.

Here is a list of items that can be considered for future work:

• Extend the render engines for different applications of graph drawing.

• Extend the layout algorithms or incorporate previously written layout algorithms.

• Extend file format plugins (We3Graph has only basic support for MG2 file format).

Also it would be nice if the file format plugins can be called from within the web

interface.

• Although We3Graph offers a good 3D view, two dimensional views of the same graph

such as front,back,left,right,top or bottom views can help the user in perceiving and

manipulating the graph.

• Although We3Graph uses the Leap Motion controller, it does not use the structure

of the graph or camera to improve the user experience. We3Graph might be able to

combine the structure of the graph and camera with Leap Motion data, to guess what

the user intends to do.

Also two new algorithms were presented to answer a previously raised question in the

3D graph drawing literature. Although the algorithms run in polynomial time, they can

be considered in the slow range of polynomial algorithms, limiting their practical usage

especially for dense graphs. Improving performance of these algorithms is an area which

can be investigated.

We3Graph is publicly available at http://www.we3graph.com. Also a simple user’s

manual is provided.

57

Bibliography

[1] http://www.ogdf.net/doku.php.

[2] http://chemlab.github.io/chemlab/.

[3] http://www.pymol.org/.

[4] http://webglmol.sourceforge.jp/index-en.html.

[5] http://sourceforge.net/projects/dia-installer/.

[6] http://www.gliffy.com/.

[7] http://products.office.com/en-us/visio/.

[8] http://www.sparxsystems.com/products/ea/.

[9] http://www.nomagic.com/products/magicdraw.html.

[10] http://www-03.ibm.com/software/products/en/ratirosefami/.

[11] http://www.visual-paradigm.com/.

[12] David Auber. Tulip — a huge graph visualization framework. In Michael Jünger
and Petra Mutzel, editors, Graph Drawing Software, Mathematics and Visualization,
pages 105–126. Springer Berlin Heidelberg, 2004.

[13] Farshad Barahimi and Stephen Wismath. 3d graph visualization with the oculus rift
(poster). In Graph Drawing 2014, Würzburg, volume 8871 of Lecture Notes in Com-
puter Science, pages 519–520. Springer-Verlag, 2014.

[14] Vladimir Batagelj and Andrej Mrvar. Pajek— analysis and visualization of large net-
works. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Draw-
ing, volume 2265 of Lecture Notes in Computer Science, pages 477–478. Springer
Berlin Heidelberg, 2002.

[15] Joel Bennett and Stephen Wismath. 3d graph printing in gluskap (poster). In Graph
Drawing 2013, Bordeaux, volume 8242 of Lecture Notes in Computer Science, pages
514–515. Springer-Verlag, 2013.

[16] Prosenjit Bose, Jurek Czyzowicz, Pat Morin, and David R. Wood. The maximum
number of edges in a three-dimensional grid-drawing. Journal of Graph Algorithms
and Applications, 8(1):21–26, 2004.

58

http://www.ogdf.net/doku.php
http://chemlab.github.io/chemlab/
http://www.pymol.org/
http://webglmol.sourceforge.jp/index-en.html
http://sourceforge.net/projects/dia-installer/
http://www.gliffy.com/
http://products.office.com/en-us/visio/
http://www.sparxsystems.com/products/ea/
http://www.nomagic.com/products/magicdraw.html
http://www-03.ibm.com/software/products/en/ratirosefami/
http://www.visual-paradigm.com/

BIBLIOGRAPHY

[17] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified o(n) planarity
by edge addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.

[18] Stina Bridgeman and Roberto Tamassia. The graph drawing server. In Petra Mutzel,
Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, volume 2265 of Lec-
ture Notes in Computer Science, pages 448–450. Springer Berlin Heidelberg, 2002.

[19] Stina Bridgeman and Roberto Tamassia. Gds — a graph drawing server on the inter-
net. In Michael Jünger and Petra Mutzel, editors, Graph Drawing Software, Mathe-
matics and Visualization, pages 193–213. Springer Berlin Heidelberg, 2004.

[20] Sergio Cabello. Planar embeddability of the vertices of a graph using a fixed point set
is np-hard. Journal of Graph Algorithms and Applications, 10(2):353–363, 2006.

[21] Tiziana Calamoneri and Andrea Sterbini. 3d straight-line grid drawing of 4-colorable
graphs. Information Processing Letters, 63(2):97 – 102, 1997.

[22] Marcus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten
Klein, and Petra Mutzel. The Open Graph Drawing Framework (OGDF). In
Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization. Chap-
man&Hall/CRC, 2013.

[23] R.F. Cohen, P. Eades, Tao Lin, and F. Ruskey. Three-dimensional graph drawing.
Algorithmica, 17(2):199–208, 1997.

[24] Kimberley R. Cousins. Computer review of chemdraw ultra 12.0. Journal of the
American Chemical Society, 133(21):8388–8388, 2011. PMID: 21561109.

[25] Robert Daigneau. Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services. Addison-Wesley, 2012.

[26] Auber David. Tulip. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors,
Graph Drawing, volume 2265 of Lecture Notes in Computer Science, pages 435–437.
Springer Berlin Heidelberg, 2002.

[27] Hubert de Fraysseix and Patrice Ossona de Mendez. PIGALE. In Roberto Tamassia,
editor, Handbook of Graph Drawing and Visualization. Chapman&Hall/CRC, 2013.

[28] G. Di Battista. private communication.

[29] G. Di Battista and W. Didimo. GDToolkit. In Roberto Tamassia, editor, Handbook of
Graph Drawing and Visualization. Chapman&Hall/CRC, 2013.

[30] G. Di Battista, F. Frati, and J. Pach. On the queue number of planar graphs. SIAM
Journal on Computing, 42(6):2243–2285, 2013.

[31] Vida Dujmović and David Wood. Stacks, queues and tracks: Layouts of graph subdi-
visions. Discrete Mathematics & Theoretical Computer Science, 7(1), 2006.

59

BIBLIOGRAPHY

[32] Tim Dwyer. Three dimensional uml using force directed layout. In Proceedings of
the 2001 Asia-Pacific Symposium on Information Visualisation - Volume 9, APVis ’01,
pages 77–85, Darlinghurst, Australia, Australia, 2001. Australian Computer Society,
Inc.

[33] Tim Dwyer. Extending the wilmascope 3d graph visualisation system: Software
demonstration. In Proceedings of the 2005 Asia-Pacific Symposium on Information Vi-
sualisation - Volume 45, APVis ’05, pages 39–45, Darlinghurst, Australia, Australia,
2005. Australian Computer Society, Inc.

[34] Tim Dwyer and Peter Eckersley. Wilmascope — a 3d graph visualization system. In
Michael Jünger and Petra Mutzel, editors, Graph Drawing Software, Mathematics and
Visualization, pages 55–75. Springer Berlin Heidelberg, 2004.

[35] Breanne Dyck, Jill Joevenazzo, Elspeth Nickle, Jon Wilsdon, and Stephen Wismath.
Gluskap: Visualization and manipulation of graph drawings in 3-dimensions. In
Giuseppe Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes in Computer
Science, pages 496–497. Springer Berlin Heidelberg, 2004.

[36] Breanne Dyck, Jill Joevenazzo, Elspeth Nickle, Jon Wilsdon, and Stephen K Wismath.
Drawing kn in three dimensions with two bends per edge. Technical report, Tech.
Rep. TR-CS-01-04, Department of Mathematics and Computer Science, University
of Lethbridge, 2004.

[37] John Ellson, Emden Gansner, Lefteris Koutsofios, StephenC. North, and Gordon
Woodhull. Graphviz— open source graph drawing tools. In Petra Mutzel, Michael
Jünger, and Sebastian Leipert, editors, Graph Drawing, volume 2265 of Lecture Notes
in Computer Science, pages 483–484. Springer Berlin Heidelberg, 2002.

[38] John Ellson, EmdenR. Gansner, Eleftherios Koutsofios, StephenC. North, and Gordon
Woodhull. Graphviz and dynagraph — static and dynamic graph drawing tools. In
Michael Jünger and Petra Mutzel, editors, Graph Drawing Software, Mathematics and
Visualization, pages 127–148. Springer Berlin Heidelberg, 2004.

[39] Anton J. Enright and Christos A. Ouzounis. Biolayout—an automatic graph layout
algorithm for similarity visualization. Bioinformatics, 17(9):853–854, 2001.

[40] Stefan Felsner, Giuseppe Liotta, and Stephen Wismath. Straight-line drawings on
restricted integer grids in two and three dimensions. Journal of Graph Algorithms
and Applications, 7(4):363–398, 2003.

[41] Roy T Fielding and Richard N Taylor. Principled design of the modern web architec-
ture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[42] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

[43] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21(11):1129–1164, 1991.

60

BIBLIOGRAPHY

[44] Ashim Garg and Roberto Tamassia. Giotto3d: A system for visualizing hierarchical
structures in 3d. In Stephen North, editor, Graph Drawing, volume 1190 of Lecture
Notes in Computer Science, pages 193–200. Springer Berlin Heidelberg, 1997.

[45] Carsten Gutwenger, Michael Jünger, GunnarW. Klau, Sebastian Leipert, Petra Mutzel,
and René Weiskircher. Agd: A library of algorithms for graph drawing. In Petra
Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, volume 2265
of Lecture Notes in Computer Science, pages 473–474. Springer Berlin Heidelberg,
2002.

[46] L. Heath and A. Rosenberg. Laying out graphs using queues. SIAM Journal on
Computing, 21(5):927–958, 1992.

[47] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
October 1974.

[48] Pourang Irani and Colin Ware. Diagramming information structures using 3d percep-
tual primitives. ACM Trans. Comput.-Hum. Interact., 10(1):1–19, March 2003.

[49] Michael Jünger, GunnarW. Klau, Petra Mutzel, and René Weiskircher. Agd — a
library of algorithms for graph drawing. In Michael Jünger and Petra Mutzel, editors,
Graph Drawing Software, Mathematics and Visualization, pages 149–172. Springer
Berlin Heidelberg, 2004.

[50] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends
suffice for planar graphs. Journal of Graph Algorithms and Applications, 6(1):115–
129, 2002.

[51] Paul McIntosh, Margaret Hamilton, and Ron van Schyndel. X3d-uml: Enabling ad-
vanced uml visualisation through x3d. In Proceedings of the Tenth International Con-
ference on 3D Web Technology, Web3D ’05, pages 135–142, New York, NY, USA,
2005. ACM.

[52] K. Mehlhorn and P. Mutzel. On the embedding phase of the hopcroft and tarjan
planarity testing algorithm. Algorithmica, 16(2):233–242, 1996.

[53] Henk Meijer and Stephen Wismath. Point-set embedding in three dimensions. In 24th
Canadian Conference on Computational Geometry, pages 223–228, 2012.

[54] Pat Morin and David R. Wood. Three-dimensional 1-bend graph drawings. Journal
of Graph Algorithms and Applications, 8(3):357–366, 2004.

[55] T. Munzner. Exploring large graphs in 3d hyperbolic space. Computer Graphics and
Applications, IEEE, 18(4):18–23, Jul 1998.

[56] Tamara Munzner. Drawing large graphs with h3viewer and site manager. In SueH.
Whitesides, editor, Graph Drawing, volume 1547 of Lecture Notes in Computer Sci-
ence, pages 384–393. Springer Berlin Heidelberg, 1998.

61

5. CONCLUSION AND FUTURE WORK

[57] János Pach, Torsten Thiele, and Géza Tóth. Three-dimensional grid drawings of
graphs. In Giuseppe Di Battista, editor, Graph Drawing, volume 1353 of Lecture
Notes in Computer Science, pages 47–51. Springer Berlin Heidelberg, 1997.

[58] János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations.
Graphs and Combinatorics, 17(4):717–728, 2001.

[59] Jean-Baptiste Pettit and John Marioni. bioweb3d: an online webgl 3d data visualisa-
tion tool. BMC Bioinformatics, 14(1):185, 2013.

[60] Wayne Salamonsen, Kevin Yee, Chuen Mok, and S. Subbiah. Biojake: a tool for the
creation, visualization and manipulation of metabolic pathways. In Proc. the Pacific
Symposium on Biocomputing ’99, 392–400, pages 392–400, 1999.

[61] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang,
Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a
software environment for integrated models of biomolecular interaction networks.
Genome research, 13(11):2498–2504, 2003.

[62] Michael E Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang Wang, and Trey
Ideker. Cytoscape 2.8: new features for data integration and network visualization.
Bioinformatics, 27(3):431–432, 2011.

[63] Uwe Thaden and Friedrich Steimann. Animated uml as a 3d-illustration for teach-
ing oop. In Proceedings of the 7th Workshop on Pedagogies and Tools for Learn-
ing Object-Oriented Concepts in 17th European Conference on Object-Oriented Pro-
gramming (Darmstadt, Germany). Citeseer, 2003.

[64] Colin Ware and Glenn Franck. Evaluating stereo and motion cues for visualizing in-
formation nets in three dimensions. ACM Trans. Graph., 15(2):121–140, April 1996.

[65] Colin Ware and Peter Mitchell. Visualizing graphs in three dimensions. ACM Trans.
Appl. Percept., 5(1):2:1–2:15, January 2008.

[66] Guohui Zheng, Xiang-Jun Lu, and Wilma K. Olson. Web 3dna—a web server for
the analysis, reconstruction, and visualization of three-dimensional nucleic-acid struc-
tures. Nucleic Acids Research, 37(suppl 2):W240–W246, 2009.

62

	Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	 Structure of this thesis
	Applications of graph drawing
	Web-based visualization approach
	WebGL standard
	HTML 5 standard(s)
	Three.js Javascript 3D graphics API

	Extendibility with web services
	User interaction
	Stereoscopic 3D and the Oculus Rift
	Leap Motion
	Typical workflow
	Server installation and administration

	Application-specific customizability

	Theoretical Graph Drawing
	Overview
	Aesthetic criteria

	3D graph drawing algorithms
	Point set embedding
	The proposed algorithms
	Problem Definition
	The algorithm with a logarithmic number of bends per edge
	General idea
	Phase one
	Phase two
	Phase three
	Summary
	 The algorithm with two bends per edge

	Previous 2D and 3D Graph Drawing Software
	Open Graph Drawing Framework(OGDF)
	Tulip
	Cytoscape
	Gluskap
	GLmol

	Software Architecture and Implementation of We3Graph
	Architecture
	REST

	Users and security
	Component interaction example
	Latency challenge
	Database query latency
	Graphical rendering latency
	Network latency
	Authentication and authorization latency

	Coding style
	Concurrency and race conditions

	Conclusion and Future Work
	Bibliography

