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ABSTRACT 

Sleep has been conjectured to play an essential role in memory consolidation. The 

interaction between the cortex and the hippocampus is believed to be crucial in 

consolidation of episodic memory during slow-wave sleep. Here, I analyzed the neural 

activity of medial prefrontal cortex of rats that ran the sequence-memory task. Applying a 

three-state hidden Markov model revealed that UP-DOWN oscillation can be divided into 

DOWN states and two UP subtypes. DOWN states were separated from UP states by low 

firing rates and the two UP subtypes were distinguished by the differences in the 

decaying rate of population vector and the duration. Interestingly, the faster decorrelating 

sub-state contains memory reactivation predominantly. Next, by analyzing the 

hippocampal local field potentials in relation to the UP sub-states, we found that the 

power of sharp-wave ripples was stronger during the reactivating UP sub-state. Our 

results provide further support to the theory of memory consolidation.  
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1. Introduction 

1.1. Sleep role on learning and memory 

Humans and animal studies suggest that the quantity and quality of sleep have an 

essential impact on learning and memory (Jenkins & Dallenbach, 1924; Barrett & 

Ekstrand, 1972; Plihal & Born, 1997; Stickgold et al., 2000; Korman et al., 2007). Sleep 

is a natural and recurring state during which the responsiveness to sensory stimuli 

reduces, and it distinguishes by a loss of consciousness. Sleep in mammals split into two 

major sleep stages, non-rapid eye movement sleep (NREM) and rapid eye movement 

sleep (REM) (Rasch & Born, 2013).  

The researches on sleep started a century ago, and it has demonstrated that sleep 

has a variety of functions; however, sleep’s exact functions are still debatable. From an 

evolutionary perspective, loss of consciousness and reduction of sensory awareness to 

potential dangers threaten survival; but sleep is a phenomenon that exists in almost all 

animals. Sleep has been suggested to have a role in saving and restoration of energy 

resources, brain detoxication from free radicals, most importantly, memory and synaptic 

plasticity (Rasch & Born, 2013). It has been suggested that sleep is an integral part of 

consolidation for the newly acquired memories (Karni et al., 1944; Fishebin, 1971; 

Pearlman & Becker, 1974; Smith & Butler, 1982; Smith & Kelly, 1988; Marr et al., 1991; 

Stickgold et al., 2000; Laureys et al., 2002; Fenn et al., 2003). The finding of neuronal 

reactivation during the post-experience task (Pavlides & Winson, 1989), has supported 

the idea that after encoding happened successfully, the novel memory traces, should be 

replayed in the related neuronal networks as far as trace consolidation getting 
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accomplished by synaptic plasticity (Hebb, 1949; Gutwein et al., 1980; Winson, 1985; 

Ribeiro et al., 1999; Ribeiro et al., 2004). It has been found that post-acquisition 

reactivation during sleep maintains the temporal relationship of alert, exploratory in the 

hippocampus (Wilson & McNaughton, 1994; Skaggs & McNaughton, 1996; Nadasdy et 

al., 1999; Poe et al., 2000; Louie & Wilson, 2001; Lee & Wilson, 2002; Ribeiro et al., 

2004) and in the cerebral cortex (Hoffman and McNaughton 2002; Ribeiro et al., 2004; 

Euston et al., 2007; Ji & Wilson, 2007; Lansink et al., 2008; Johnson et al., 2010), 

making a correlated replay of activity pattern across two neurons (Wilson & 

McNaughton, 1994) or multi neuron ensemble (Louie & Wilson, 2001).   

Thus far, experience related reactivation during sleep have observed in rodents 

(Pavlides & Winson, 1989; Wilson & McNaughton, 1994; Skaggs & McNaughton, 1996; 

Qin et al., 1997; Kudrimoti et al., 1999; Nadasdy et al., 1999; Louie & Wilson, 2001; Lee 

& Wilson, 2002; Foster & Wilson., 2006; Euston et al., 2007; Giri et al., 2019), 

nonhuman primates (Hoffman & McNaughton, 2002), songbirds (Dave & Margoliash, 

2000), and human (Maquet et al., 2000). These findings strongly indicate that reactivation 

during sleep is a general biological phenomenon.   

A growing body of studies has been done on memory reactivation in the 

hippocampus in the last couple of decades. Initially, during the subsequent sleep, a 

selective increase in the firing rate of rat place cells, which had been allowed to be active 

in their place field, was observed (Pavlides & Wilson, 1989). This observation suggested 

that the upraised activity of a single neuron can preserve during subsequent sleep.  

Hebb’s postulate states that any two neurons or network of neurons which are 

persistently active at the same time would tend to become associated in the way that 
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activity of one of them facilitate the activity in the other. We can summarize the theory as 

follows “Cells that fire together wire together” (Hebb, 1949). According to his theory, it 

is essential to investigate whether the correlation between neuron-pair which formed 

during waking, preserve during subsequent sleep. Wilson and McNaughton exhibited the 

correlations had increased during the task were preserved during subsequent sleep. 

(Wilson & McNaughton, 1994). Further studies indicate that these enhanced correlations 

are more noticeable during the subsequent sharp-wave ripples (Kudrimoti et al., 1999; 

Nadasdy et al., 1999; Louie & Wilson, 2001).  

 Most recent memory and learning theories suggest that the interaction 

between a hippocampal, as a fast learning network where episodic memory establishes, 

and neocortical, a slow learning network where statistical regularities of the world 

extracts, underlie memory encoding process (Marr, 1971; Buzsaki, 1989; McClelland et 

al., 1995; Skelin et al., 2019). 

Studies have shown that the hippocampus has been involved in rapid memory 

encoding and also the retrieval of recent memories. On the other hand, the neocortex 

seems to be involved in a gradual and long term part in memory consolidating process.  

1.2. Memory consolidation theories  

Memory consolidation defines as a category of a process during which memory 

traces stabilize after its initial acquisition (Dudai, 2004). Consolidation distinguishes into 

two specific processes, synaptic consolidation and system consolidation. Synaptic 

consolidation defines as the late-phase long-term potentiation (Bramham & Messaoudi, 

2005) and happens during the first few hours after learning. On the other hand, systems 
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consolidation refers to the process during which hippocampus-dependent memories 

gradually, in a period of weeks to years, become independent of the hippocampus. 

Hippocampus hub-like anatomical configuration allows it to organize an 

enormous range of cortical networks and thus can initiate the reactivation of neocortical 

patterns and then lead to the retrieval of the memory in a way that all the different aspects 

of the memory coherently recalled (Battaglia et al., 2011; Teyler & DiScenna, 1986; 

Skelin et al., 2019). 

Finding the evidence of hippocampal-cortical interaction during sleep and rest 

periods, when the brain is significantly secluded from external sensory inputs, can be a 

key support to the shift in the hippocampal-dependence of memory (Buzsaki, 1989; Marr, 

1971; McNaughton 2010; Skelin et al., 2019).  

The memory consolidation phase is assumed to be distinguished by these three 

key patterns in LFP: hippocampal sharp-wave ripples, cortical slow oscillations, and 

neocortical sleep spindles (Amzica & Steriade, 1997; Siapas & Wilson, 1998; Sirota et 

al., 2003; Isomura et al., 2006; Staresina et al.,2015; Skelin et al., 2019). The 

consolidation phase also can be characterized by the compressed, within the range of 4-

10, reactivation of the neural activity patterns that were presented previously during 

behaviour (Wilson & McNaughton, 1994; Skaggs & McNaughton, 1996; Nadasdy et al., 

1999; Euston et al., 2007; Skelin et al., 2019).    

Here some memory consolidation theories have been discussed; the standard 

memory consolidation theory, the multi-trace memory consolidation theory, newer 

multiple storage site theory, and memory indexing theory.     
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According to the standard memory consolidation theory, the hippocampus is 

essential for the retrieval of recent memory. On the other hand, for remote memories, the 

neocortex is sufficient for recall. The transfer of memory during non-rapid eye movement 

(NREM), which is the stage of sleep distinguished by the slow and high-amplitude 

activity in the cortical EEG and noticeable reduction of muscle tone, from hippocampal 

to neocortical is widely believed to involve replay of the neural patterns which represent 

the memory (Squire & Alvarez, 1995; Frankland & Bontempi, 2005). Consistent with the 

standard memory consolidation theory, it has been shown that patterns of brain activity 

during a task tend to be repeated during subsequent sleep in the rat’s medial prefrontal 

cortex (Euston et al., 2007).  

Based on the multi-trace memory consolidation theory, which structures on the 

difference between semantic memory and episodic memory, it is assumed that the 

hippocampus is always involved in the process of retrieval and storage of episodic 

memories. On the other hand, semantic memories, which include the basic information 

encoded during the storage of episodic memories, is then built in the other brain areas 

such as neo-cortex apart from the hippocampus, in the process of consolidation (Nadel & 

Moscovitch, 1997).  

Enough unambiguous shreds of evidence suggesting long-term memory finally 

and over a long time period, become independent of the hippocampus (Frankland & 

Bontempi, 2005; Squire, 1992), have not been found yet. As a result, an alternative 

memory consolidation has been proposed; a more straightforward multiple storage site 

theory (Sutherland & Lehmann, 2011). Based on this hypothesize, with event 



 

6 
 

recapitulations, different memory representations are formed independently in multiple 

networks (Sutherland & Lehmann, 2011).   

According to memory indexing theory, it is postulated that an index to the pattern 

of neocortical activity, which represents a special memory episode, can be store on the 

hippocampus. As a result, when a particular hippocampal activity pattern reactivates, it 

sequentially will reactivate the indexed neocortical sequence and, it conducts the memory 

retrieval (Teyler & DiScenna, 1986; Skelin et al., 2019). 

In summary, despite the decades of studies regarding memory consolidation, there 

is still an ongoing debate on memory consolidation theory, and the factors initiating and 

regulating the process are still indefinite; this needs further investigation yet. 

1.3. REM sleep 

REM sleep can be characterized by the physiological resemblance of the brain to 

waking states, also it includes fast and low-amplitude desynchronized oscillatory activity 

in cortical EEG. As a result, it is also known as paradoxical sleep and occasionally 

desynchronized sleep. In the hippocampus, theta activity, which is characterized by a 

high amplitude synchronous train of sinusoidal waves and the approximate frequency 

range of  4 to 12 Hz (Stewart & Fox, 1990), is the hallmark of REM sleep in rodents 

(Robinson et al., 1977). Besides, REM sleep can also be characterized by rapid eye 

movement and is accompanied by the loss of muscle tone and the propensity of the 

sleeper to dream vividly; it is the part of sleep accompanied with vivid dreaming and 

sleepers would often remember a narrative description of what was experienced during 

the sleep (Hobson et al., 2000). During REM sleep, the cortex exercises a ‘’ 
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desynchronized” state characterized by suppressed low-frequency fluctuations (Steriade 

& McCarley, 2005; Harris & Thiele, 2011). 

1.4. NREM sleep 

NREM sleep can be characterized by the occurrence of slow and high-amplitude 

activity in the EEG signal of cortical areas, and fast and large amplitude depolarizing 

event (40-100 msec) in the hippocampus, and also the noticeable reduction of muscle 

tone. Considering these features, it can be distinguished from waking and REM sleep. It 

is the dominant state of sleep at the beginning of human nocturnal sleep, which the 

density and duration of it reduce across the sleep. Additionally, NREM sleep has distinct 

physiological markers, which are a decrease in heart rate, respiration rate, blood pressure, 

and metabolic levels in comparison to wakefulness (Shore et al., 1985; Zemaityte et al., 

1984; Siegel, 2009). NREM sleep is usually associated with three distinct electrical 

oscillations, which are slow-wave oscillation, sharp-wave ripples, and spindles.  

1.5. Slow-wave sleep 

NREM sleep is divided into three main stages (Brinkman & Sharma, 2019). The 

first and the second stages are the shallower stages of NREM, during which the sleeper 

can easily be awakened. Slow-wave sleep composes of the deepest state of NREM (stage 

three); as a result, it is usually referred to the deep sleep. Slow-wave sleep is generally 

characterized by slow and high-amplitude cortical EEG signals since the EEG activity is 

synchronized and producing slow-wave sleep with a frequency range of 0.5-2 H. The 

main distinct characteristics of slow-wave sleep are moderate muscle tone, the absence or 
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slowness of eye movement, and lack of genital activity (Carlson, 2012). In the neocortex 

slow-wave sleep consists of two distinguished phases of DOWN and UP states. During 

slow-wave sleep and in the neocortex, there is the inhibition or hyperpolarizing phase, 

which is called the DOWN state. During the DOWN state, the neocortical neurons are in 

the rest. Also, there is another stage, which is an exciting or depolarizing phase and is 

called the UP state, where the neurons fire at a high rate (Steriade et al., 1993; Steriade et 

al., 2001).    

1.6. UP and DOWN 

The UP and DOWN fluctuation is observable from the synaptic markers, neural 

ensemble firing rates and LFP. UP and DOWN states refer to the spontaneous transitions 

of membrane potential between two levels of generalized spiking and neuronal 

depolarizing called UP state and network quiescence called DOWN state (Steriade et al., 

1993; Cowan & Wilson, 1994; Cossart et al., 2003; Shu et al., 2003). The principal UP 

and DOWN fluctuation in the sleep, which characterize Non REM sleep and also underlie 

the slow oscillation, is the alternation of UP and DOWN states, defined as the periods of 

intense neural activity and silence or very low neural activity, respectively (Steriade et 

al., 1993; Cowan & Wilson, 1994; Cossart et al., 2003; Shu et al., 2003; Irene Navaro-

Lobato, 2018).  

In general, it has claimed that the UP and DOWN combination leads to a “push-

pull” action, in which “push” reflects potentiating essential memory trace, and “pull” 

reflects weakening irrelevant traces.  

 



 

9 
 

1.7. UP and DOWN in the cortex 

In the cortex, many cortical pyramidal cells switch between UP and DOWN 

states; this spontaneous fluctuation is most apparent when the cortex is showing the 

synchronized slow-wave sleep (Cowan & Wilson, 1994; Timofeev et al., 1996).  

1.7.1. DOWN State in the cortex 

It has been shown that hyperpolarization, which is generated by decreasing 

synaptic excitation, is the responsible mechanism for spontaneous DOWN states during 

slow-wave in the cortex and also in DOWN state triggered by cortical stimulation (Shu et 

al., 2003; Sanchez-Vives & McCormick, 2000; Waters & Helmchen, 2006; Timofeev et 

al., 2000; Contreras et al., 1996). The majority of excitatory input to cortical pyramidals 

neurons comes from thalamocortical neurons or other pyramidal neurons; as a result, the 

effect which suppresses these inputs can be accountable for the DOWN state occurrence 

(Wilson, 2008, Scholarpedia).  

1.7.2. UP state in the cortex 

Although the somatodendritic membrane nonlinearity can be responsible for the 

UP state in cortical pyramidal neurons (Waters & Helmchen, 2006), the main efforts to 

explain the UP state has focused on the neural ensemble than cellular properties 

(Bazhenov et al., 2002; Compte et al., 2003; Yuste et al., 2005; Holcman & Tsodyks, 

2006). 
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1.7.3. Dynamic balance of excitation and inhibition 

Inhibition is ubiquitous in the cortex and is mediated by GABAergic interneurons. 

Any activation of pyramidal neurons always induces an inhibitory response (Destexhe et 

al. 2003; Haidner et al., 2006; Rigas and Castro-Alamancos, 2007; Rudolph et al., 2007). 

This balance characteristic suggests a simple mechanism in which the network of neurons 

could generate UP and DOWN states in the cortex, which does not necessarily need any 

specific cellular mechanism. Altogether, DOWN states are the mutually-enforced silent 

part of the network.    

Each input to each ensemble of neurons brings about both mutual excitation and 

associated inhibition. By having enough excitation, the ensemble will be re-excited by 

itself repeatedly, leading the neurons toward the UP state. In addition to excitation, 

pyramidal neurons produce the inhibition, making the net conductance force to a more 

negative reversal potential. Consequently, if the net excitation balance stays high enough 

and preserves the self-sustained activity of the network, the effect on each neuron will be 

a synaptic conductance with a reversal potential set. Otherwise, the network will not 

preserve self-sustained activity, and UP state will cease. As some of the neurons are 

generally susceptible to be triggered by random fluctuations in membrane potential 

during the UP state, the UP state might support itself as a stable or a transiently stable 

state. However, due to some accumulating fatigue, UP state slowly lose stability and get 

back to the DOWN state. By being in the DOWN state for a while, the network would be 

recovered and prepared to transit to another UP state. (Destexhe & Sejnowski, 2003; 

Wilson, 2008, Scholarpedia). 
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1.8. UP and DOWN detection 

For detecting the UP and DOWN states the most common method was borrowed 

from the study of single-channel currents and is called the all-points histogram (Cowan & 

Wilson, 1994; Wilson & Kawaguchi, 1996; Pare et al., 1998). According to this 

approach, cells usually switch between two preferred membrane potentials, which can be 

seen by plotting the frequency of occurrence of various values of membrane potentials. 

These two preferred potentials are a very hyperpolarized membrane potential and a more 

depolarized, which is associated with DOWN and UP states, respectively (Wilson, 2008; 

Scholarpedia). Membrane potential fluctuations usually have a higher amplitude around 

the UP state, while comparatively, the DOWN state is free of noise. Additionally, as 

cortical networks run into the oscillations of tonic firing (UP states) and quiescence 

(DOWN states) (Steriade et al., 1993a; Timofeev et al., 2001; Luczak et al., 2007), these 

two distinct states can be differentiated by their population activities.  

1.9. Sharp Wave-Ripple 

Using the extracellular local field potential (LFP), the brief deflections in the 

hippocampal were observed during periods of NREM sleep (Vanderwolf, 1969; O’Keefe 

& Nadel, 1978); this conspicuous LFP pattern is called Large-irregular activity (LIA). 

Sharp wave-ripples (SRWs) is the specific pattern that can be recorded during LIA in the 

hippocampus (Buzsaki et al., 1983). 

  The sharp wave component of SWR can be characterized as an event associated 

with fast and synchronous depolarization of large fractions of the neurons in CA1, the 

sub-region of the hippocampus (O’Keefe & Nadel, 1978; Buzsaki et al., 1983; Buzsaki, 



 

12 
 

1986; Sullivan et al., 2011, Suzuki & Smith, 1988). CA1 sharp wave activity can be 

driven by upstream CA3, sub-region of the hippocampus, which is independent of 

external input (Buzsaki et al., 1983; Ylinen, A. et al., 1995). In fact, the robust recurrent 

connectivity in CA3 is considered to let the increased activity of roughly few pyramidal 

neurons to propagate quickly through the region and bring about synchronized population 

bursts during the event of sharp wave (Traub & Wong, 1982; Shen & McNaughton, 

1996; Buzsaki, 2015; Hannah & Loren, 2018). On the other hand, ripple is a faster short-

lasting, high amplitude 150–250 Hz oscillatory event, which is usually co-incident sharp 

waves to form sharp-wave ripple. In addition to CA1 pyramidal neurons, the strong 

recurrent activity from CA3 excites interneurons, developing the event of oscillatory 

excitation and inhibition of ensembles of pyramidal and interneuron cells that 

demonstrate ripple (O’Keefe & Nadel, 1978; Suzuki & Smith, 1987; Suzuki & Smith, 

1988; Buzsaki et al., 1992; English et al., 2014; Stark et al., 2014; Buzsaki, 2015).      

It is worth mentioning that ripple has been considered to have a significant role in 

supporting synaptic plasticity and memory consolidation (Girardeau & Zugaro, 2011; 

Carr et al., 2011). Also, animal studies have shown that the formation of new memories 

in rats would be impaired by the depletion of ripple activity by using electrical 

stimulation (Ego-Stengel & Wilson, 2010; Girardeau et al., 2009).   

By the recent study of simultaneous electrophysiological and imaging recording 

of monkeys, it has been shown that SWRs can be differentiated into several sub-states, 

which contributes to the different dynamical events in the brain (Ramirez-Villegas et al., 

2015). 
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Below, some of the methods that are useful in the data analysis part of this 

project, especially regarding measuring the reactivation strength, are discussed. 

1.10. Bayesian deconstruction 

The Bayesian approach is a conditional probability which is used to refine the 

model parameters. This approach by bringing updated information and combine it with 

the existing information, and update it constantly, can thus change the probability 

distribution of data (Schetz, 2015; Manchala et al., 2017).  

Considering two events of 𝐴 and 𝐵, the conditional probability of 𝐴 given that 𝐵 

is true can be computed via Bayes rule:  

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (1.1) 

where 𝑃(𝐵) ≠ 0. In the above equation, 𝑃(𝐴|𝐵) is the posterior probability, the 

probability of the proposition 𝐴 when the evidence 𝐵 is taken into account. Also, 𝑃(𝐴) is 

the prior probability of 𝐴, which indicates the prediction about 𝐴 before taking the 

evidence into account. This prior probability could also measure the prior information. In 

order to specify the likelihood of observing 𝐵 given 𝐴, a probability distribution called 

the likelihood was defined; it tells us if 𝐴 is known, what are the likely values of 𝐵. The 

likelihood measures the range where the evidence 𝐵 supports the 𝐴.  

Bayesian reconstruction has been used in different fields of neuroscience such as 

visual orientation tuning, motor directional tuning, place cells, and replay detection 

(Foldiak, 1993; Sanger, 1996; Gerrard et al., 1995; Brown et al., 1996; Zhang et al., 1998; 

Davidson et al., 2009; Wu & Foster, 2014; Ambrose et al., 2018). As an example, by 
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having the position dependence firing rates of an ensemble of place cells, the Bayes 

formula can answer the inverse situation: given the firing rates of the ensemble of these 

cells, what is the most probable situation? As a result, after having the population firing 

rates maps for an ensemble of neurons and also the animal position distribution during a 

period of time, the goal is to compute the probability distribution of the animal’s position 

at the later time 𝑡, given the firing rates of the ensemble of neurons within the time 

interval (𝑡 − 𝜏 2⁄ , 𝑡 + 𝜏 2⁄  ), where 𝜏 is the time window (Zhang et al., 1998). Here, 

rather than a single position, the distribution of animal’s positions would be computed. 

Let us suppose the position of the animal and number of spikes fired by the 𝑁 neurons, 

are defined by the vectors 𝔵 = (𝑥, 𝑦), and 𝔫 = (𝑛1, 𝑛2, … , 𝑛𝑁). So, based on the Bayes 

formal, the reconstruction can be written as follows: 

𝑃(𝔵|𝔫) =  
𝑃(𝔫|𝔵)𝑃(𝔵)

𝑃(𝔫)
(1.2) 

where 𝑃(𝔵|𝔫) is the probability of being at the position 𝔵 given the number of spikes 𝔫. 

𝑃(𝔵) is the probability of being at position 𝔵, which can be measured with the experiment. 

𝑃(𝔫|𝔵) is the probability of the number the spike 𝔫 to happen given that it is known that 

the animal is at location 𝔵. 𝑃(𝔫) is the probability of the number of spikes 𝔫 to happen, 

and can be measured by normalizing 𝑃(𝔵|𝔫) over 𝔵.  

By assuming that the spikes of place cells have Poisson distributions and different 

cells are statistically independent of each other, for the 𝑃(𝔫|𝔵), it can be written as 

follows: 

𝑃(𝔫|𝔵) =  ∏𝑃(𝔫𝑖|𝔵)

𝑁

𝑖=1

= ∏
(𝜏𝑓𝑖(𝔵))

𝑛𝑖

𝑛𝑖

𝑁

𝑖=1

exp(−𝜏𝑓𝑖(𝔵)) (1.3) 
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where 𝑓𝑖(𝑥) is the average firing rate of neuron 𝑖 at the position 𝔵, and 𝜏 is the length of 

the time window. So, for 𝑃(𝔵|𝔫) we have  

𝑃(𝔵|𝔫) =  𝑐(𝜏, 𝑛)𝑃(𝔵) (∏𝑓𝑖(𝔵)
𝑛𝑖

𝑁

𝑖=1

)exp (−𝜏∑𝑓𝑖(𝔵)

𝑁

𝑖=1

) (1.4) 

in which 𝑐(𝜏, 𝑛) is a normalization factor and can be determined by the normalization 

condition ∑ 𝑃(𝔵|𝔫)𝔵 = 1 (Sanger 1996).  

1.10.1. Replay detection 

In order to find a candidate replay event, by detecting the constant-velocity 

trajectory to describe the series of position estimates in the best possible way, each 

trajectory can be defined by the velocity (𝑉) and starting location (𝜌) of it (Davidson et 

al., 2009). For a candidate that consists of n position estimates calculated at an interval of 

∆𝑡, the average likelihood 𝑅 that the rat is within distance 𝑑 of a particular trajectory can 

be expressed as follows (Davidson et al., 2009):   

𝑅(𝑉, 𝜌) =  
1

𝑛
∑𝑃(|𝑝𝑜𝑠 − (𝜌 + 𝑉. 𝑘. ∆𝑡)| ≤ 𝑑)

𝑛−1

𝑘=0

 (1.5) 

where the value of 𝑑 is empirically set to some low values to allow for the detection of 

replays with small local variation in velocity. 

In order to find the most likely replay trajectory, the parameters maximizing 𝑅 

should be found. 𝑅𝑚𝑎𝑥 value can be a measure of the goodness of fit of the detected 

trajectory and can be reported as the replay score for the event candidate.  

Finally, in order to check whether for a particular event the replay score is higher than the 
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amount expecting by chance, the shuffled versions of the position estimates are used to 

obtain the replay detection procedure with them (Davidson et al., 2009).    

1.11. Explained variance measure of reactivation strength 

Explained variance simply is a way to measure the variation of a given data set by 

a mathematical model. Using the explained variance, the proportion of the variability of a 

given data set can be measured. More specifically, by assessing the firing rate correlation 

matrix for all pair of recorded neurons (Kudrimoti et al., 1999), the proportion of 

variability in the neuron-pair firing rate correlation during the task can be considered by 

the correlation during the succeeding sleep, and regarding the correlation that occurred 

for the preceding-task sleep session (Euston et al., 2007). The higher percentage of 

explained variance indicates a stronger similarity between task and post-task sleep 

patterns. Based on previous reactivation studies, the average EV values of ~15% and 

~11% have found in rat hippocampus and medial prefrontal cortex, respectively 

(Kudrimoti et al., 1999; Euston et al., 2007).  

  It has shown that in order to obtain the explained variance, for each period (pre-

task rest, task, and post-task rest), the spike trains of recorded neurons in each data set 

can be binned into non-overlapping intervals to assess the sequence of spike counts. For 

each pair of spike rate sequence, a Pearson’s correlation coefficient was defined to be 

computed using the following formula:  

𝐶𝑖𝑗 = 
1 𝑇⁄ ∑ 𝑓𝑖(𝑡). 𝑓𝑗(𝑡) − 𝜇𝑖 . 𝜇𝑗

𝑇
𝑖=1

𝜎𝑖 . 𝜎𝑗
 (1.6) 



 

17 
 

where 𝜇 is the mean and 𝜎 is the standard deviation of 𝑓(𝑡), respectively (Perkel et al., 

1967; Gerstein & Perkel, 1969). By calculation 𝐶𝑖𝑗  for all neuron pairs, the 𝑁 × 𝑁  matrix 

of pairwise activity correlation obtains. Consequently, three sets of firing-rate 

correlations, relating to pre-task rest, task, and post-task sleep would be generated.  

For measuring the strength of reactivation in post-task rest, the activity patterns 

which occurred during the task and reappeared during the post-task sleep should be 

considered. Subsequently, activity patterns that existed during the sleep before the task 

should discount, as they were not induced by the task period. Considering all of these 

points, the explained variance of the correlation pattern in the post-task sleep, which was 

induced by a task experience, can be defined by the square of partial correlation of task 

and post-task sleep neuron-pair correlation, while partialling out all the pre-existing 

correlations during pre-task rest. As a result, the explained variance (EV) is as follows: 

𝐸𝑉 = 𝑟𝑇𝑎𝑠𝑘,𝑃𝑜𝑠𝑡|𝑃𝑟𝑒
2 = 

(

 
𝑟𝑇𝑎𝑠𝑘,𝑃𝑜𝑠𝑡 − 𝑟𝑇𝑎𝑠𝑘,𝑃𝑟𝑒 . 𝑟𝑃𝑜𝑠𝑡,𝑝𝑟𝑒

√(1 − 𝑟𝑇𝑎𝑠𝑘,𝑃𝑟𝑒
2 )(1 − 𝑟𝑃𝑜𝑠𝑡,𝑃𝑟𝑒

2 )
)

 

2

, (1.7) 

where 𝑃𝑜𝑠𝑡 and 𝑃𝑟𝑒 refer pre-task rest and post-task rest, respectively. In this equation, 

𝐸𝑉, or 𝑟𝑇𝑎𝑠𝑘,𝑃𝑜𝑠𝑡|𝑃𝑟𝑒,
2  represents the effect of the task on the neurons activity correlation in 

the post-task rest by eliminating all of the pre-existing correlated activities that had 

observed in the pre-task rest. 

1.12. Template matching 

Generally speaking, template matching is a technique to find a similar pattern to 

be a match for the pattern previously presented in the data and distinguished as the 
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template, later in the data. It has been shown that during a behavioural task (Louie & 

Wilson, 2001), the combination of spatial receptive fields and structured spatial 

behaviour produce characteristic ensemble spiking pattern in the rat CA1 cells, which the 

temporal structure of this pattern is determined by the sequence during which the animal 

performs the task. As the task was a repetitive experience, the patterns of activity were 

continually repeated during a specific session, giving the ensemble pattern a unique 

signature regarding the task. Considering that these patterns were activated repeatedly 

during the task would suggest these patterns might be a good sample to be regenerated 

during the subsequent sleep session after the task (Louie & Wilson, 2001).  

In the sequence task study (Euston et al., 2007), by averaging binned firing rates 

of a group of neurons across many repetitions of the sequences, depending on data sets, 

between six to eight templates were created for each of six to eight sequence segments. 

For measuring the similarity between a template and the succeeding sleep session, the 

correlation coefficient can be calculated between their multi-unit activity patterns. For 

this measurement, a subset of recorded neurons is selected, which were active during all 

phases of the experiment and showed firing rate changes during the task.  

To demonstrate that the observed correlation between the templates and sleep 

patterns could not have emerged only by chance, the significance of the template 

correlation coefficient was measured relative to a sample distribution from the shuffled 

template (Louie & Wilson, 2001).  
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1.13. Computation of template matches 

The spike activity for all of the neurons from a recording session is stored in 

an 𝑁 × 𝑇 spike matrix, where 𝑁 is the number of recorded cells and 𝑇 represents discrete 

bins (Tatsuno et al., 2006). Each bin content contains the number of spikes of each cell 

during the bin. The single template matrix, 𝑋, is an 𝑁 ×𝑀 matrix, in which 𝑀 is the 

number of bins in the temple. The target matrix 𝑌, which has the same bin number, is also 

chosen. As a result, the matrixes are defined as follows (Tatsuno et al., 2006): 

 𝑋 =  [

𝑥11 𝑥12 ⋯ 𝑥1𝑀
𝑥21 𝑥22 … 𝑥2𝑀
⋮ ⋮ … ⋮
𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑀

]  ,                                    𝑌 =  [

𝑦11 𝑦12 ⋯ 𝑦1𝑀
𝑦21 𝑦22 … 𝑦2𝑀
⋮ ⋮ … ⋮
𝑦𝑁1 𝑦𝑁2 ⋯ 𝑦𝑁𝑀

] . (1.8) 

The template matching method investigates the similarity of these two matrices. 

One way to measure the similarity is the standardize Pearson correlation coefficient for 

data matrices (Tatsuno et al., 2006). In the suggested technique, each row of these two 

matrices, 𝑋 & 𝑌, by subtracting its row mean, 𝑥𝑐̅ and 𝑦𝑐̅, and then divided by the standard 

deviation, 𝜎𝑥,𝑐  and 𝜎𝑦,𝑐 , respectively, is standardized to zero-mean and unit-variance. 

These parameters are defined as follows: 

𝑥𝑐̅ =  
1

𝑀
 ∑ 𝑥𝑐𝑚

𝑀

𝑚=1

 , 𝑦𝑐̅ = 
1

𝑀
 ∑ 𝑦𝑐𝑚

𝑀

𝑚=1

 , (1.9) 

 

𝜎𝑥,𝑐 = √
1

𝑀
∑(𝑥𝑐𝑚 − 𝑥𝑐̅)

𝑀

𝑚=1

 , 𝜎𝑦,𝑐 = √
1

𝑀
∑(𝑦𝑐𝑚 − 𝑦𝑐̅)

𝑀

𝑚=1

 . (1.10) 
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The z-score variables 𝑤𝑐𝑚  and 𝑧𝑐𝑚 , which were transformed by applying the 

normalization on 𝑥𝑐𝑚 and 𝑦𝑐𝑚, are defined as follows: 

𝑤𝑐𝑚 =  
𝑥𝑐𝑚 − 𝑥𝑐̅
𝜎𝑥,𝑐

 , 𝑧𝑐𝑚 =  
𝑦𝑐𝑚 − 𝑦𝑐̅
𝜎𝑦,𝑐

 . (1.11) 

This normalization method entirely suppressed the mean firing rate differences 

between different rows. This technique is then sensitive to the firing order relationships 

among different neurons. Then, by using the two-dimensional Pearson correlation 

coefficient, 𝐶𝑂𝑅, also the new normalized variables 𝑤 and 𝑧, the standardized Pearson 

measure can be defined as follows:   

𝐶𝑂𝑅 = 
∑ ∑ (𝑤𝑐𝑚 − 𝑤̅)(𝑧𝑐𝑚 − 𝑧̅)

𝑀
𝑚=1

𝑁
𝑐=1

√∑ ∑ (𝑤𝑐𝑚 − 𝑤̅)2
𝑀
𝑚=1

𝑁
𝑐=1  √∑ ∑ (𝑧𝑐𝑚 − 𝑧̅)2

𝑀
𝑚=1

𝑁
𝑐=1  

. (1.12) 

1.14. Hidden Markov model  

Hidden Markov Model (HMM) is a statistical model with which it is possible to 

model a system that is assumed to be a Markov process with unknown (hidden) states. It 

is a ubiquitous tool to model the time series data. Recently, it has widely used in many 

different fields from speech recognition, computational molecular biology, data 

compression, artificial intelligence pattern recognition, and also computer vision 

(Ghahramani, 2001).  

The hidden Markov model has two key defining features, and the name of it 

comes from them. Firstly, it supposes that the observation at time t is generated by a 

process during which the state 𝑆𝑡  of the model is “hidden” from the observer. Secondly, 

each state of this hidden process has to satisfy the Markov feature, which is, the current 
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state of 𝑆𝑡 at time 𝑡, given the value of all the states, only depends on the 𝑆𝑡−1 at time 𝑡 −

1, and it is independent of other states happening at 𝑡 − 2 or before (Ghahramani, 2001); 

this is a Markov property. Similarly, the outputs satisfy a Markov property regarding 

states, and so given  𝑆𝑡, the observed variable 𝑂𝑡 only depends on the value of  𝑆𝑡, both at 

time 𝑡, and is independent of the states and observations at all other times. 

Considering all of Markov model properties, for the joint distribution of a sequence of 

states and observations, it can be factored as follows: 

𝑃(𝑆1:𝑇 , 𝑂1:𝑇  ) = 𝑃(𝑆1)𝑃(𝑂1|𝑆1)∏𝑃(𝑆𝑡|𝑆𝑡−1)𝑃(𝑂𝑡|𝑆𝑡).

𝑇

𝑡=2

(1.13) 

In order to briefly introduce the Markov chain process where the observation is a 

probabilistic function of the state and the system being modelled has an underlying 

stochastic process which is hidden and only can be observed by another set of stochastic 

processes that generate the observation sequence (Rabiner, 1989), let’s consider the Urn 

and Ball Model. By assuming that there are N urns, and in each of which there is a large 

number of coloured balls, where there are M distinct colours of the balls, there is a good 

scenario of how an HMM can explain a model. Here are the steps: Based on some 

random process, a person selects an initial urn. Then, from this urn, a ball randomly is 

chosen, and its colour considers as the observation. Afterward, the ball replaces in the 

same urn from which it was selected before. Subsequently, a new urn is chosen randomly 

and then the same random selection for the ball. In this way, a finite sequence of 

observations of colours produces, which can be modelled by HMM. Based on these 

observations, the HMM determines which urn the ball(s) were selected from. 
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  In this study, HMM has been used to detect different states in the prefrontal 

cortex of a rat during sleep by using the activity of recorded neurons.  

It is worth mentioning that in the run and ball scenario, each state corresponds to a 

specific urn similar to each detected state in our study. Besides, the number of distinct 

observations which in the urn and ball scenario are the colours of the balls selected from 

urns, but in this study are the distinct neurons firing rates.   

HMM is fully explained in the method section of this thesis. 

1.15. State-space model 

The state-space model (SSM) offers a general framework to analyze the 

deterministic and stochastic dynamical systems that can be observed or measured with a 

stochastic process. The state-space model has been successfully used to tackle a broad 

range of dynamical system problems in different fields such as engineering, statistics, 

computer science, and neuroscience. In computational neuroscience, the important goal is 

to develop statistical techniques to distinguish the features of the dynamic in neural and 

behavioural responses of experimental subjects recorded during experiments (Chen & 

Brown, 2013, Scholarpedia).  

In this model, by considering a sequence of observations which are real-valued and N-

dimensional vectors {𝑂1, 𝑂2, … , 𝑂𝑇}, and by assuming that at each time step 𝑂𝑇 was 

produced from M-dimensional hidden state variable 𝑋𝑡, in which the sequence of 𝑋’s is 

defined as a first-order Markov process (Ghahramani, 2001): 

𝑃(𝑋1:𝑇 , 𝑂1:𝑇  ) = 𝑃(𝑋1)𝑃(𝑂1|𝑋1)∏𝑃(𝑋𝑡|𝑋𝑡−1)𝑃(𝑂𝑡|𝑋𝑡).

𝑇

𝑡=2

(1.14) 
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This shows that the mathematical description for the state-space model is similar 

to the HMM. But, here, instead of the hidden 𝑆 variables, the continuous hidden 

𝑋 variables, replaced.  

By assuming that the state transition probability, 𝑃(𝑋𝑡|𝑋𝑡−1), has two stochastic and 

deterministic components, we can rewrite it as follows: 

𝑋𝑡 = 𝑓𝑡(𝑋𝑡−1) + 𝜀𝑡 (1.15) 

 

in which 𝑓𝑡 is the deterministic transition function establishing the mean of 𝑋𝑡 given  

𝑋𝑡−1, and 𝜀𝑡 is a random noise vector with a mean of zero. Also, for the observation 

probability 𝑃(𝑌𝑡|𝑋𝑡) in a similar way, we have: 

𝑌𝑡 = 𝑔𝑡(𝑋𝑡) + 𝛿𝑡. (1.16) 

By assuming that both transition and output functions are linear and time-

invariant, and also supposing the distribution for the state and observation noise variables 

are Gaussian, we will have a linear-Gaussian state-space model: 

𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝜀𝑡 

𝑌𝑡 = 𝐵𝑋𝑡 + 𝛿𝑡 (1.17) 

where 𝐴 and 𝐵 are the state transition matrix and the observation matrix, respectively.  

Similar to the HMM model, which will be fully explained in the method section, 

this method also is useful to be used in neuroscience. 

In this present study, we have mostly focused on cortical memory reactivation, 

which is not well-studied in comparison to hippocampal memory reactivation. We also 
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were interested to see whether the UP state can be clustered to different sub-states or not. 

In spite of efforts to distinguish the UP state (McFarland et al., 2011; Ghorbani et al., 

2012) and in contrast to the finding in the hippocampal SWRs, for UP state there is no 

clear study showing whether UP state can be clustered to several sub-types or not. Now 

the main question is if UP state is composed of multiple sub-states, what are the different 

features of these sub-states in terms of some features such as firing rate, duration, and 

most importantly, how these sub-states of UP state are contributed to the memory 

reactivation. In order to tackle these questions, previously recorded data sets of three rats, 

which were trained to do a sequential task, were used in our analysis project. For all of 

these three rats, multi-unit activities in the medial prefrontal cortex were recorded; also, 

for one of the rats, the multi-unit activity of the hippocampus was recorded. 

 Using several data analysis methods, including template matching (Euston et al., 2007; 

Tatsuno et al., 2006) and hidden Markov model (Rabiner, 1989), we have tried to 

investigate are UP states separable to different sub-states with different dynamics, and if 

they are, find the feature(s) they can be distinguishable with it. Subsequently, start 

studying their relations in regard to cortical memory reactivation.  

   Afterward, the contributions of these sub-states to the memory reactivation were 

studied in detail. We surveyed how reactivation distributed during the UP state and UP 

sub-states and also their phase preferences during the UP state and UP sub-states. 

Additionally, we explored what the features of the sub-state(s) containing the reactivation 

are. We also tried to study how the presence of reactivation can change the dynamic of 

UP states. Measuring the cluster distance between different UP sub-states also was one of 

the goals of this research; by doing this, one can show whether the UP-1 and UP-2 sub-
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states are distinguishably clustered.  

Moreover, by using the hippocampus multi-unit activity and LFP, we explored the 

relationship between the hippocampus and the cortex during these two UP sub-states. 

Besides, by finding the timestamps during which the ripples occurred, we have tried to 

find the correlation of ripple to the different transitions in the cortex, the transition from 

DOWN to UP and also from different UP sub-types to each other.  

Also, we were interested in studying the impact of task experience on the sleep, and 

specifically on the UP sub-types characteristics. It is also a matter of interest how the 

proportion of UP sub-types would be changed by the effect of task and how the UP-1 and 

UP-2 of UP state of pre-task sleep might be clustered differently in comparison to post-

task sleep.  

Finally, by using the application of higher than three-state of HMM (four-state, five-

state, six-state, and ten-state), we tried to explore is still a UP sub-state containing the 

majority of reactivation regardless of the number of UP sub-types generating by the 

different state of HMM. By measuring the cluster distances of different HMM states, we 

can also find what number of HMM state is the optimum number to generate the highest 

distance and the most separated clusters.   
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2.  Methods 

2.1. Recording procedures 

Three male Brown Norway/Fisher 344 Hybrid rats were used for the recording, 

which consisted of two 50-60 min sequential task sessions and three 30-60 min rest 

sessions. The recording started with the first rest session (rest 1), followed by the first 

task session (task 1), the second rest session (rest 2), the second task session (task 2) and 

the third rest session (rest 3). Two rats were implanted with a hyperdrive containing 12 

independently movable tetrodes (Gothard et al., 1996) in the medial prefrontal cortex 

(mPFC) and twisted-pair local field potential electrodes in the hippocampus. The third rat 

was implanted with a dual-bundle Hyperdrive in the mPFC and CA1 of the hippocampus. 

The Number of recorded neurons is between 70 to 125 neurons in mPFC for the first and 

second rats. For the third rat, recorded using a dual-bundle Hyperdrive, around 55 to 62 

neurons in mPFC and around 45 to 60 neurons in the hippocampus were recorded. The 

number of recorded neurons in each data set is mentioned in Table 1. Detailed procedures 

are fully explained in the experimental protocol of (Euston et al., 2007) In this thesis, we 

used the data from rest one as the pre-task rest session, task two as the task session and 

rest three as the post-task rest session because memory reactivation signal was most 

clearly detected in this combination (Euston et al., 2007).  
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Table 1. The number of neurons recorded in each data set. 

Data set 

# of recorded 

neurons in 

mPFC 

# of 

recorded 

neurons in 

HPC 

7165_11 72 - 

7165_16 119 - 

7165_31 122 - 

7165_36 120 - 

8202_07 74 - 

8202_08 78 - 

8202_09 69 - 

8482_14 55 61 

8482_15 62 49 

8482_16 57 44 

 

2.2. Detection of UP-DOWN oscillation epochs 

  In order to assess the epochs which potentially contain clear UP and DOWN 

states within slow-wave sleep, the firing rates of multi-unit activity using a 20 ms bin size 

was calculated. Subsequently, by finding all of the bins where the multi-unit firing rate is 

equal to zero, indicating clear DOWN states, a binary vector was made, which marks the 

position of these bins. Then, this binary vector was convolved with multiple Gaussian 

kernels, each with a width of 30 seconds and with different standard deviations of 1.5, 2, 
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and 3 seconds. Reasonable bimodal distributions were found for all of the 10 data sets 

and threshold based on the valley in each of these bimodal distributions was used. 

Finally, for each data set, by averaging over the three points regarding the valleys of the 

three different distribution, we have a threshold based on which we can detect parts of 

sleep, which potentially have higher UP and DOWN fluctuations. Using video recording, 

the selected epochs were verified that whether they occurred when the animal was 

motionless or not and we only selected the parts occurring during motionless. 

2.3. Hidden Markov model  

A Hidden Markov Model (HMM) is a statistical Markov model in which the 

system which is modelled is presumed to be a Markov process with unobserved (hidden) 

states (Rabiner, 1989). So, In a Hidden Markov Model (HMM), the state is not directly 

visible, but the output, dependent on the state, is visible. Each detectable state by HMM 

has a probability distribution over the possible output tokens. For an N recorded neuron 

system, the system is considered to be in one of the predetermined hidden firing rate 

states. In the HMM, each state is defined by a vector consisting of the average firing rates 

of the N recorded neurons. For each state, neurons are assumed to be independent of the 

events before and can be fully described by the immediate firing probability, similar to a 

stationary Poisson process. The HMM can be fully described by two matrices, 𝐸 and 𝐴. 

𝐸𝑖𝑗  is an emission matrix that determines the      probability of neuron 𝑗 firing in the state 

𝑆𝑖. 𝐴𝑖𝑗  is a transition matrix that gives the probability of transitioning from state 𝑆𝑖 to 

state 𝑆𝑗. The probability of a transition between two hidden states only depends on the 

identities of the states. As a result, 𝐴𝑖𝑗 is independent of time. The HMM model predicts 
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a distinct hidden state at time t to represent all of the information preceding it. These 

matrices, 𝐸 and 𝐴, are determined as a part of the training algorithm for HMMs. The 

HMM used in this study was a three-state model trained by binning the multi-unit activity 

with 1 ms bins. 

Each bin was then set to the ID of the neuron that fired in that bin, and if no 

neuron fired, a value of 0 was given. In cases where multiple neurons fired within the 

same bin, which was on average 1.68% of the bins of our recording for all of the data 

sets, a randomly selected neuron ID, amongst the IDs of firing neurons, was used. Neuron 

IDs were provided in the recording procedure by the Neuralynx cheetah recording 

system, and these IDs do not necessarily carry specific information.  

In order to understand how HMM works, the key point is to calculate, 

𝑃(𝑂| λ), which is the probability of the observation sequence 𝑂, given the model λ, 

where 𝑂 =  𝑂1. 𝑂2… 𝑂𝑇  and  λ = {E, A} (Rabiner, 1989). The first and easiest way of 

solving it is considering all of the possible state sequences of length 𝛵, which 𝛵 is the 

number of all observations. Let us suppose we have this sequence of states:  

𝑄 = 𝑞1. 𝑞2… 𝑞𝑇  (2.1) 

in which 𝑞1 is the initial state and 𝑞𝑇  is the final state. The probability of the observation 

sequence 𝑂 for the state sequence Q is  

P(O|Q, λ) =  ∏𝑃(𝑂ₜ|𝑞ₜ , 𝜆)

𝛵

𝑡=1

 (2.2) 

in which by assuming the observations are statistically independent, we get the following 

expression: 
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P(O|Q, λ) =  𝑒𝑞1(𝑂1) . 𝑒𝑞2(𝑂2)… 𝑒𝑞𝑇(𝑂𝑇)  (2.3) 

 in which we define 𝐸𝑖𝑗 = {𝑒𝑖(𝑗)} as the probability distribution for the firing of neuron 𝑗 

in the state 𝑆𝑖. 

For the state sequence Q: 

P(Q| λ) =  𝜋𝑞₁𝑎𝑞₁𝑞₂𝑎𝑞₂𝑞₃ …𝑎𝑞𝑇−1𝑞𝑇     (2.4) 

Where 𝐴 = {𝑎𝑖𝑗 } is the state transition probability distribution and defines as 

𝑎𝑖𝑗 = 𝑃[𝑞𝑡+1 =  𝑆𝑗|𝑞𝑡 = 𝑆𝑖],       1 ≤ 𝑖, 𝑗 ≤ 𝑁. (2.5)  

Subsequently, the joint probability of 𝑂 and Q can be defined as 

P(O, Q| λ) =  P(O|Q, λ)𝑃(𝑄, λ). (2.6) 

Then, by calculating the sum of this joint probability across all possible state 

sequences 𝑞, the probability of 𝑂, given the model, can be calculated as follows: 

 𝑃(𝑂| λ) =  ∑ 𝑃(𝑂|𝑄, λ) 𝑃(𝑄|λ)

𝑎𝑙𝑙 𝑄

                           (2.7) 

                                                   =  ∑ 𝜋𝑞1𝑒𝑞1(𝑂1)𝑎𝑞1𝑞2  𝑒𝑞2(𝑂2)… 𝑎𝑞𝑇−1𝑞𝑇𝑒𝑞𝑇(𝑂𝑇)

𝑞1,𝑞2,..,𝑞𝑇

. (2.8) 

Based on the equation (8), in the beginning, time 𝑡 (𝑡 = 1), the state is 𝑞₁with 

possibility of 𝜋𝑞₁, which gives the observation of 𝑂1with probability 𝑒𝑞₁(𝑂1). 

Subsequently, by a transition to state 𝑞₂, in time 𝑡 + 1, with probability 𝑎𝑞₁𝑞₂, and giving 

observation 𝑂2 with probability 𝑒𝑞2(𝑂2). The transition continues to the final state 𝑞𝑇 

with probability 𝑎𝑞𝑇−1𝑞𝑇 . 
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One can quickly realize that to solving the last equation, since, during each time 

step, there are N possible states to be transited to, also for each state sequence about 2𝑇 

calculation are required, then, in total, it needs 2𝑇. 𝑁𝑇  order of calculations. That makes 

the calculation computationally unattainable; as for example, for N=3 states and T= 1000, 

the order of needed computations would be 2.1000. 31000, which clearly explains why a 

more efficient way of calculation is needed to tackle the problem; this approach is the 

Forward-Backward procedure. 

The best approach to make the calculations computationally feasible is the 

Forward-Backward procedure (Rabiner, 1989). 

The forward probability, 𝛼𝑡(𝑖), is defined as   

𝛼𝑡(𝑖) = 𝑃(𝑂1𝑂2…𝑂𝑡 , 𝑞𝑡 = 𝑆𝑖|λ) (2.9) 

which is the probability of the partial observation sequence up to time 𝑡, 𝑂1𝑂2…𝑂𝑡, with 

state 𝑆𝑖 at time 𝑡, given the model λ. 

The equation can be solved as follows: 

1) Initialization: 

𝛼1(𝑖) =  𝜋𝑖𝑒𝑖(𝑂1),        1 ≤ 𝑖 ≤ 𝑁.  (2.10) 

By introducing the joint probability of state 𝑆𝑖  and initial observation 𝑂1, the forward 

probabilities are initialized. 

2) Induction: 
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            𝛼𝑡+1(𝑗) = [∑𝛼𝑡(𝑖)𝑎𝑖𝑗] 𝑒𝑗(𝑂𝑡+1),

𝑁

𝑖=1

      1 ≤ 𝑡 ≤ 𝑇 − 1,        1 ≤ 𝑗

≤ 𝑁.                    (2.11) 

By completing the computation for all states j, and subsequently, iterating all 𝑡, 

the probability of the complete history of the observation from which the likelihood 

𝑃(𝑂| λ) can be obtained is defined by the forward probability as follows: 

𝑃(𝑂| λ) =  ∑𝛼𝑇(𝑖)

𝑁

𝑖=1

. (2.12) 

As a result, to find 𝑃(𝑂| λ) we only need to find the sum of 𝛼𝑇(𝑖)’s.  

By a little thought, it can be convincing that the amount of involved computation 

in the calculation of the above equation is 𝑁2𝑇, instead of 2𝑇.𝑁𝑇, so for a similar 

situation of N=3 for the states and T= 1000, around 9000 computations would be needed. 

In the same manner, the backward probability 𝛽𝑡 can be defined as 

  𝛽𝑡(𝑖) = 𝑃(𝑂𝑡+1 𝑂𝑡+2… 𝑂𝑇|𝑞𝑡 = 𝑆𝑖 , λ).  (2.13) 

Which is the probability of partial observation sequence from time 𝑡 + 1 to the end, given 

that the state at time 𝑡 is 𝑆𝑖 and the model is λ. 

Again, for the backward probability, we can solve it as follows: 

1) Initialization 

𝛽𝑇(𝑖) = 1,       1 ≤ 𝑖 ≤ 𝑁. (2.14) 

Here for the initialization step we arbitrary define 𝛽𝑇(𝑖) to be 1 for all 𝑖. 

2) Induction: 
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𝛽𝑡(𝑖) =  ∑𝑎𝑖𝑗𝑒𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

𝑁

𝑖=1

,           𝑡 =  𝑇 − 1, 𝑇 − 2,… , 1,    1 ≤ 𝑖 ≤ 𝑁. (2.15) 

Again, the computation of calculation required for 𝛽𝑡(𝑖) has the order of 𝑁2𝑇. 

In order to explain how the HMM parameters re-estimate 𝜉𝑡(𝑖, 𝑗), the probability 

of being in state 𝑆𝑖  at time 𝑡 and state 𝑆𝑗 at time 𝑡 + 1 given the model and the 

observation, can be defined as follows: 

𝜉𝑡(𝑖, 𝑗) = 𝑃(𝑞𝑡 = 𝑆𝑖 , 𝑞𝑡+1 = 𝑆𝑗|𝑂, 𝜆). (2.16) 

Using the definition of the forward and backward probabilities 𝜉𝑡(𝑖, 𝑗) can be 

easily described in the following form: 

𝜉𝑡(𝑖, 𝑗) =  
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑒𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

𝑃(𝑂|𝜆)
 (2.17) 

             =   
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑒𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)

∑ ∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑒𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑗)
𝑁
𝑗=1

𝑁
𝑖=1

 (2.18) 

where we used 𝑃(𝑞𝑡 = 𝑆𝑖 , 𝑞𝑡+1 = 𝑆𝑗|𝑂, 𝜆) for the numerator and used 𝑃(𝑂|𝜆) for the 

denominator to reach to the desired measure of probability. 

Also, the variable 𝛾𝑡(𝑖), can be defined as follows: 

𝛾𝑡(𝑖) = 𝑃(𝑞𝑡 = 𝑆𝑖|𝑂, 𝜆) . (2.19) 

Where 𝛾𝑡(𝑖) is the probability of being in state 𝑆𝑖 at time 𝑡, given the observation 

sequence 𝑂 and the model 𝜆. This equation can be explained by using the forward and 

backward probabilities as follows: 



 

34 
 

𝛾𝑡(𝑖) =  
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
=  

𝛼𝑡(𝑖)𝛽𝑡(𝑖)

∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑁
𝑖=1

. (2.20) 

  Then the relation between 𝛾𝑡(𝑖) and 𝜉𝑡(𝑖, 𝑗) after summing over 𝑗 is 

𝛾𝑡(𝑖) =  ∑  𝜉𝑡(𝑖, 𝑗)

𝑁

𝑗=1

= 
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑁
𝑖=1

. (2.21) 

 

Now by summing 𝛾𝑡(𝑖) over the time index, the obtained quantity can be 

interpreted as the expected number of times that state 𝑆𝑖 is visited, or equally, the 

expected number of transitions from 𝑆𝑖. Similarly, by summing  𝜉𝑡(𝑖, 𝑗) over time index, 

the expected number of transitions from 𝑆𝑖 to 𝑆𝑗 would be obtained. By using the above 

formulas, the method for re-estimation of HMM parameters λ = {E, A} can be achieved. 

Then, the re-estimation of the model parameters in the maximization step is defined as 

follows: 

 𝑎𝑖𝑗
𝑛𝑒𝑤 =  

∑  𝜉𝑡(𝑖, 𝑗)
𝑇−1
𝑡=1

∑ 𝛾𝑡(𝑖)
𝑇−1
𝑡=1

(2.22) 

 

𝑒𝑖
𝑛𝑒𝑤(𝑗) =   

∑  𝜉𝑡(𝑖, 𝑗)
𝑇−1
𝑡=1,
𝑂𝑡=𝑗 

∑ 𝛾𝑡(𝑖)
𝑇−1
𝑡=1

. (2.23) 

In equation (22), ∑  𝜉𝑡(𝑖, 𝑗)
𝑇−1
𝑡=1  is the expected number of transitions from 

𝑆𝑖  to 𝑆𝑗 and ∑ 𝛾𝑡(𝑖)
𝑇−1
𝑡=1  is the expected number of transitions from 𝑆𝑖  to any state. Thus, 

the variable 𝑎𝑖𝑗
𝑛𝑒𝑤  can be interpreted as the probability of transition from 𝑆𝑖  to 𝑆𝑗 which is 



 

35 
 

exactly what it was supposed to be. For equation (23), ∑  𝜉𝑡(𝑖, 𝑗)
𝑇−1
𝑡=1,
𝑂𝑡=𝑗 

 is the expected 

number of times in which the system is in the state 𝑆𝑖  and with observation 𝑂𝑡 = 𝑗, which 

in this study indicates the probability distribution for the firing of neuron 𝑗. The 

denominator again is the expected number of times the system is in state 𝑆𝑖. 

Consequently, variable 𝑒𝑖
𝑛𝑒𝑤(𝑗) is the probability of observing neuron j firing while the 

system is in the state 𝑆𝑖. 

It has been proven by (Dempster et al., 1977) that the re-estimated model is more 

likely than the initial model: 𝑃(𝑂|𝜆𝑛𝑒𝑤) > 𝑃(𝑂|𝜆). As a result, we can find a new model 

by which the observation of sequence is more likely to be generated, as the model is led 

to a maximum-likelihood estimate. 

Each detected UP-DOWN oscillation epoch was treated as a separate trial that 

was used to train the HMM for each data set. The most probable sequence of hidden 

states was generated using this HMM for each epoch. In this study, similar to (Ponce-

Alvarez et al., 2012), the re-estimation stops at the point the increase in the log of the 

likelihood is less than a tolerance factor (10-6), or it was not reached by the maximum 

number of iterations (500). We reran the re-estimation algorithm ten times, each time by 

using new initial parameters, to verify that the likelihood has reached the global 

maximum likelihood and not only a local maximum. For the emission matrix, the initial 

components were chosen randomly, while for the transition matrix components were 

initialized as diagonal elements 𝐷, in the range (0.99 𝑡𝑜 0.999), and for non-diagonal 

elements equal to(1 − 𝐷) (𝑁 − 1)⁄ . 
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By using three-state HMM, the three states were identified as the DOWN state, 

the UP-1 state, and the UP-2 state. The DOWN state was distinguished as a state with a 

very low mean firing rate. The UP-1 state was defined by having a slower population 

vector decorrelation time constant than UP-2. 

In order to check how much the result given by HMM is consistent, and as it is 

technically impossible to use cross-validation for our method, we used two methods to 

measure the stability of the HMM result instead. 

In the first method, after finding all DOWN states which were provided by the 

original HMM, the number of all DOWN states was divided into two halves. First, an 

HMM was trained using only the data from the first half of the DOWN states and the 

corresponding UP state that followed each DOWN state. All the methods are the same 

except here we only used approximately half of the data to feed to the HMM. Similarly, 

another HMM was created using the second half of the DOWN states and associated 

following UP states. 

For the second method, the DOWN states from the original HMM were split into even 

and odd subsets. Once again, two new models were trained using these two subsets and 

their subsequent UP states. 

Finally, these four (first half, second half, odd, and even) models generated using 

these subsets of the original data were compared against the initial HMM to check the 

consistency of the results. (These results can be found in the appendix, Supplementary 

Figure 3.) 
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To investigate how much the neuron dynamics affected the results of the states 

detected by the HMM, we performed two types of shuffling of the input data: the data 

within each sub-type found by the original HMM was shuffled, and the data within the 

entire UP state was shuffled. Subsequently, this was compared to the results of the 

original HMM model. Each shuffling method was performed 10 times. Additionally, 

neuron IDs were randomly shuffled. The ten shuffles were compared against the original 

HMM to determine how much the neuron IDs influenced the results. Finding the 

consistency would imply the fact that the neuron ID itself is not the feature HMM uses to 

distinguish the final states. (These results can be found in the appendix, Supplementary 

Figure 4.) 

2.4. Template matching analysis 

 As we typically had eight segments as parts of the sequence task, eight templates 

were generated for each session. Each template starts when the animal departs from one 

reward point and ends when the animal arrives at the next one. For the template, each row 

consists of spike counts from each neuron binned along the duration of the segment with 

a bin size of 100 ms, averaged over all traversals of that segment (Euston et al., 2007). In 

template matching analysis, we used stable neurons that were active during all parts of 

the experiment and showed the task-related change in their firing rates. In order to 

measure the similarity of a target matrix which is selected with the same size and 

dimensions as a template, we used correlation coefficient measure as defined in (Louie & 

Wilson, 2001). After template matching was performed, the template was shuffled and 

the template matching procedure was performed again. This shuffling was repeated 500 
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times. The mean and standard deviation of the correlation values found for each time bin 

from these shuffled template matching results was used to z-score the original template 

matching result. For the purpose of investigating whether the reactivation happens faster 

than the speed of the patterns during behaviour, we performed template matching 

analysis with different ranges of compression factors between 1 to 10x (Euston et al., 

2007). To assess which compression factor is the best for the specific data set, we 

counted the number of significant peaks of the template matching results (e.g., the peaks 

> z-score = 5) and selected the compression factor with the maximum number of the 

peaks. 

2.5. Population vector decorrelation 

 Sequences of spike times for each neuron were binned using a bin size of 1 ms to 

obtain the number of spikes fired within each bin. A population vector, defined as a 

vector containing the number of spikes fired for each neuron within a bin, was created 

and compared against all other population vectors succeeding it within the specific 

subtype event by computing the Pearson correlation coefficient. These correlation 

coefficients were then averaged at each lag across the different UP-1 and UP-2 states. An 

exponential function,  𝑦 = 𝑎 ∗ exp (−
𝑥

𝜏
) + 𝑏, was fit using the data up to the point where 

the correlation slope, which was smoothed using a 25 ms moving average, changes from 

negative to positive after an initial delay. The de constant, τ, was found from the fit 

exponential. 
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2.6. Principal Component Analysis (PCA) 

  To estimate how UP-1 and UP-2 can be distinguishably clustered, each subtype 

event was represented by a vector of the mean firing rate for each neuron within the 

subtype event and normalized using Z-score. These vectors were then concatenated 

together to create a matrix in which the PCA was performed on. The data was then 

projected on to each principal component, and the resulting scores for the first and second 

principal components were plotted against each other to produce two clusters for each 

subtype. The quality of these clusters was measured using cluster distance (Fellous, et al., 

2004). For each cluster, the centroid was found by computing 

𝑐𝑘 =
∑ 𝑥⃗𝑘𝑖
𝑁𝑘
𝑖=1

𝑁𝑘
(2.24) 

 where 𝑥⃗𝑘𝑖 is the two-dimensional projection for the 𝑖-th subtype event in cluster 𝑘 with a 

size of 𝑁𝑘. Cluster distance 

𝐷 =
∑ 𝐷𝑘𝑘

𝐾
(2.25) 

was then calculated for each data set where 

𝐷𝑘 =
∑ ‖𝑝 − 𝑐𝑘‖𝑝⃗∉𝑄𝑘

∑ ‖𝑝 − 𝑐𝑘‖𝑝⃗∈𝑄𝑘

×
𝑁𝑘

𝑁 −𝑁𝑘
(2.26) 

and 𝑄𝑘  is the set of all 𝑥⃗𝑘𝑖. This compares the distances from all points within cluster 𝑘 to 

its centroid to the distance of all other points to centroid 𝑘. Based on this cluster strength 

measuring study (Fellous, et al., 2004), suggesting a threshold of two for 𝐷, the clusters 

which have a value higher than two can be considered as valid clusters. In this thesis, we 

call this clustering method the Jean-Marc method. 



 

40 
 

2.7. Cross-correlation between SWRs and UP transitions 

To investigate the relationship between UP transitions and SWRs, we constructed 

a cross-correlation histogram with UP transitions being the reference signal. A bin size of 

20 ms was used for all calculations, and the histogram was normalized by the number of 

UP transition events. 

2.8. Cross-correlation between MUAs of mPFC and HPC 

 In order to investigate the relationship between cortex and hippocampus, and more 

specifically for the time we have different UP sub-types in the cortex, the multi-unit 

activities of mPFC and HPC were used to construct the firing rates for both mPFC and 

HPC by a 20 ms bin size. Then, by using cross-correlation between these multi-unit firing 

rates, the relationship for the time we have UP-1 and UP-2 in the cortex were studied 

respectively to find is the relationship is changing for different UP subtypes or not. 
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3. Results 

3.1.  Epochs detection 

In order to investigate how the UP and DOWN states occur during the post-task 

sleep, by using a 20 ms bin size, the population firing rate was obtained. The fluctuation 

in the multi-unit activity for one example is shown (Figure 1, A). The gray patches in this 

figure depict periods of motionless. To find the parts of sleep which have the clear UP 

and DOWN transitions, we firstly measured the density of DOWN state, and then only 

detected the parts with high densities of DOWN state transitions as it is fully described in 

the method section. Subsequently, a binary vector was made from bins where the 

population firing rate is equal zero, indicating the possible DOWN states, and thus the 

binary vector marks the bins where the possible DOWN states occur. Then this binary 

vector was convolved with three different Gaussian kernels with three standard 

deviations of 1.5, 2, and 3 seconds. It was then normalized and subsequently averaged 

together to get the density of DOWN state. Then, we made the average histogram of 

kernel density for the DOWN state (Figure 1, B, left histogram). According to this 

histogram, we can assert that there is a bimodal distribution for the histogram; as a result, 

it is possible to find the value on the valley of the histogram and use it as a threshold. 

Using this threshold, the epochs of potential UP-DOWN oscillations were found (the blue 

bars (Figure 2, bottom). After checking whether these epochs happened during 

motionless periods of sleep, these epochs of UP-DOWN oscillation were used for further 

analysis.  
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Figure 1. Detection of epochs of UP and DOWN. Top (A): This figure shows an example 

of the population firing rate using a 20 ms bin size for post-task sleep. The grey patches 

in the figure indicate periods of motionless. Bottom (B): Kernel density figure shows the 

average of three Gaussian kernels with standard deviations of 1.5, 2, and 3 seconds were 

used and then was averaged. In the left histogram, the distribution of values from the 

average kernel is shown. The threshold was found based on the position of the valley in 

this distribution and has been used to detect the epochs with high UP and DOWN 

fluctuations. Epochs are shown at the top of the figure with blue bars. 

 

3.2. DOWN state and two UP sub-states can be separated by a three-state 

HMM 

Using a three-state HMM, the epochs of UP-DOWN transitions were divided into 

three states, DOWN states and two UP sub-types. One of these states which was 

distinguished by a three-state HMM, had a significantly lower firing rate in comparison 

to other detected states. As the DOWN state is defined as a pretty much silent state, this 

detected state is called DOWN state. This indicates that HMM can successfully detect the 

DOWN state. The two other detected states by HMM have high firing rates, suggesting 

that they are the sub-states of UP states. For this analysis, I used 10 data sets from three 
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rats, and for all analyzed pre-task and post-task rests from these data sets, 275 samples 

out of 336 selected epochs of UP and DOWN were successfully separated into DOWN 

and two UP sub-types states and for other HMM was not able to detect the DOWN and 

two UP sub-types. Considering only post-task sleep epochs, all of 154 epochs were 

successfully separated into DOWN and two UP sub-states. Figure 2 and Figure 3 

demonstrate how the detected states by HMM are.  

 

 

Figure 2. A sample of three detected states using a three-state HMM for one epoch. A 

raster plot depicting all the neurons firing during the selected epoch and the sequence of 

three different states, detected by HMM, is shown by the blue line. 
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Figure 3. Example of the raster plot of another epoch and the three states detected by 

HMM.  

3.3.Two subtypes of UP states 

As it was discussed, HMM detected DOWN state and two UP sub-states. Our 

study suggests these two detected UP sub-types have different features in terms of firing 

rate, duration, and, most importantly, state vector decorrelation. 

  In order to identify the two UP sub-states, we initially started by calculating the 

mean firing rate, which is defined as total spiking activities of all recording neurons 

during a specific sub-state event divided by the duration of sub-state. Our investigation 

demonstrates that it is entirely well-defined to use the mean firing rate to identify DOWN 

state as it is strongly skewed toward a very low firing rate (Figure 4, one example of one 

data set). This makes DOWN states finely distinguishable in terms of firing rate.  

Although the mean firing rate for one of the two UP sub-types is always slightly higher 
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than the other one, the two UP sub-types have a similar distribution of firing rates (Figure 

4, three examples of three data sets, from three rats). By performing the systematic 

analysis for all 10 data sets from all three animals, it has been confirmed that the firing 

rate distribution between DOWN state and two UP sub-states are significantly different 

while not significantly different between UP sub-states (multi-comparison test with 

Tukey-Kramer criterion: DOWN vs UP-1: 𝑝 = 6.34 × 10−9, DOWN vs UP-2: 𝑝 =

1.12 × 10−9, UP-1 vs UP-2: 𝑝 = 0.259). Mean Firing rates for DOWN states and two 

UP sub-states were calculated for all of 10 data sets (Figure 5). 
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Figure 4. The firing rate distribution for the three states detected by HMM. (Three 

examples from three rats.) Different colours on histogram show the firing rate 

distributions for DOWN state and two UP sub-states detected by HMM, respectively. 

Although it denotes that the DOWN state has a clear lower firing rate in comparison to 

the other two states, there is not that much clear difference to distinguish the UP sub-

states based on their firing rates. 
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Figure 5. Mean firing rates for DOWN state and two UP sub-states. The bar plot shows 

SEM over data sets. It indicates that the DOWN state has a significantly lower firing rate 

than two UP sub-states. However, there is no significant difference between UP-1 and 

UP-2. (***= p <0.001) 

 

Secondly, by calculating the duration for all three states, we have tried to 

characterize these states based on the duration. According to the histogram of duration for 

three states, one can see that the DOWN duration is much shorter than the other two UP 

sub-states (Figure 6, three examples of three data sets, from three rats). Additionally, it 

suggests that UP-1 is significantly shorter than UP-2 (Figure 6, one example of one data 

set). By performing a statistical test on all of the data sets, the comparison of the medians 

of durations across all 10 data sets revealed that the DOWN state duration was 

significantly shorter than two UP sub-states. Also, it indicated that UP-2 duration was 

significantly shorter than UP-1 (multi-comparison test with Tukey-Kramer criterion: 

DOWN vs UP-1: 𝑝 = 3.41 × 10−6, DOWN vs UP-2: 𝑝 = 0.0161, UP-1 vs UP-2: 𝑝 =

0.0881). Durations for DOWN states and two UP sub-states were calculated for all of the 

data sets (Figure 7). 

*** 
*** 
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Figure 6. Distribution of duration for the three states detected by HMM. (Three examples 

from three rats.) It shows the distributions of duration for the DOWN states and two UP 

sub-states. Even though it demonstrates that the DOWN state has a much shorter duration 

in comparison to two UP sub-states, there is not a clear difference between the 

distribution of these two UP sub-states based on which we can distinguish the sub-states.   

 

Figure 7. Durations for DOWN state and two UP sub-states. The bar plot shows SEM 

over data sets. It indicates that the DOWN state has a significantly lower firing rate than 

two UP sub-states. Additionally, UP-2 duration is significantly lower than UP-1. (***= p 

<0.001) 

*** 
*** *** 
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3.4. Using state vector decorrelation to characterize two UP sub-types 

As with the firing rate, it was not possible to clearly distinguish the sub-states of 

UP, we have attempted to find another essential feature based on which be able to 

characterize these states. As these sub-states could have different dynamics or different 

ways of changing the temporal activity, therefore, one important feature to distinguish 

them can be the state vector decorrelation. State vector decorrelation simply measures 

how fast the population vectors for these different sub-types decorrelate. In order to do 

that, first, for each event of UP-1, we made a population vector, where the firing rates of 

each individual neurons in each bin within the UP-1 event were calculated. Subsequently, 

we calculated the correlation coefficient between these population vectors to measure the 

temporal changes between them. More considerable changes in the adjacent population 

vector make vector decorrelation faster and vice versa. Then, to calculate state vector 

decorrelation for all of the UP-1 events, we averaged over all of the events of UP-1. 

Afterwards do the same process for UP-2.  

As it is explained in detail in the method section, in order to reach the highest 

number of reactivation happening during motionless periods of sleep in each data set, we 

have tried different compression rates for template matching analysis, 1x to 10x. As a 

result, to be more consistent with the chosen compression rate in the template matching 

analysis, depending on the rate of it, we chose the associated bin size for this part of the 

analysis to make the population vector with the selected bin size. Different ranges of bin 

sizes between 10 ms-20 ms, for the range of compression rates between 5x-10x, have 

been used in the analysis. (For each data set, compression rates between 1x and 10x were 

explored and the one that had the most z-scored correlation peak values above 5 was 
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selected as the best compression rate.) Finally, we used the non-linear (exponential) 

function with a bias to fit the two averaged state vector decorrelation curve with it. The 

function we used is 𝑦 =  𝑎 ∗ exp (−
𝑥

𝜏
) + 𝑐, in which 𝜏 represents the rate of 

decorrelation.  

Next after calculating the state-vector decorrelation for both of UP sub-states and for all 

of the data sets, we realized that there is always a considerable difference between their 

rates of decay. As an illustration, Figure 8 demonstrates that obviously one of the 

subtypes, UP-2, decorrelates much faster than the other, UP-1. Figure 9, which only 

includes the decorrelation rate for 1 second for both UP-1 and UP-2, shows the difference 

more clear. Here, one can see how much faster UP-2 is decorrelating than UP-2 for this 

data set. 

Finding that it is also the same tendency for all of the other data sets indicates that 

there is always a clear difference between two UP sub-states decorrelation rates. To 

investigate whether there is a significant difference between the exponential time 

constants of UP-1 and UP-2 or not, the exponential time constants were averaged across 

all 10 data sets. This result is shown in Figure 10, which shows the average of 𝜏 for UP-1 

is significantly higher than UP-2 ( for UP-1 mean and sem are 153.3 ± 14.8 ms; and for 

UP-2 mean and sem are 87.7 ± 8.1 ms). Subsequently, by finding the state vector 

decorrelation, as the best parameter to distinguish the sub-states clearly, we call the sub-

state with the slowly decay ‘UP-1’, and the one with fast decay ‘UP-2’. 

By defining UP-1 as the state with slower vector decorrelation state and higher 

mean duration, and UP-2 as the faster vector decorrelation state and lower mean duration, 

we can associate the other features to these UP sub-states. Accordingly, in summary, UP-
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2 has a relatively higher mean firing rate than UP-1 and has a lower variety in duration in 

comparison to the variability in UP-1 duration. 
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Figure 8. State vector decorrelation for UP-1 and UP-2, for three data sets (Three rats). 

The first data set on the top and the second in the middle and the third on the bottom. It 

demonstrates that these two state vectors have different rates and make it possible two 

characterize the UP sub-states based on them. The sub-state, which has a faster vector 

decorrelation, is called UP-2, and the one with slower decorrelation is called UP-1. 

Here, as the duration for different sub-states of UP are different, the scale of duration in 

the figures is different for them. 
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Figure 9. State vector decorrelation for UP-1 and UP-2. Here, we have the same example 

that was shown in the previous figure (top), using the same scale (1s). 

 

 

Figure 10. The average decay rates for UP-1 and UP-2, for all 10 data sets. This 

indicates that there is a significant difference in their decay rates, making the sub-states 

distinguishable by it. (p = 0.002) 

** 



 

55 
 

3.5. UP-1 and UP-2 proportions 

Our study suggests that one of the UP sub-states, UP-1, happens more frequently 

than the other sub-state, UP-2. So, in order to have a detailed view, initially the total time 

that UP state spent within each sub-state, UP-1 and UP-2, was measured, and finally the 

average for all data sets was found (Figure 11, left). The total duration of UP-1 was 

significantly longer than UP-2 (Mean and sem are 720.3 ± 88.9 sec (78.1% ± 1.24%) for 

UP-1 vs. 201.5 ± 28.2 sec (21.9% ± 1.24%) for UP-2, paired test t-test: 𝑝 = 4.1 × 10−5). 

Also, we counted the total number of UP-1 and UP-2 in each data set and found the 

average for all data sets (Figure 11, right). Results indicate that UP-1 occurred 

significantly more that UP-2 (Mean and sem are 71.0 ± 1.37% for UP-1 vs. 29.0 ± 1.37% 

for UP-2, UP-1 and UP-2, paired t-test: 𝑝 = 1.2 × 10−7). 

 

 

Figure 11. The proportion of happening for UP-1 and UP-2. Left: The proportion of 

happening for UP-1 and UP-2 in terms of their durations. Right: The proportion of the 

total event number for UP-1 and UP-2 happening in the UP states. (***= p <0.001) 

 

 

 

*** *** 
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3.6. Memory reactivation 

Using template matching, we were able to find the reactivation number for 

different templates, as 6 to 8 templates regarding each segment of the sequence, and 

different compression factors regarding different compression rates, between 1 and 10, 

were generated. Thus, for each data set, different numbers of reactivation depending on 

template and compression rate, were assessed. Between these different templates and 

compression rates, the one which has the highest number of reactivation was selected. 

Consequently, based on the selected template and compression rate, all the timestamps 

where reactivation occurred were found. For our analysis, after finding the length of the 

reactivation, which depends on the bin size of the selected compression rate, we used the 

center of the template matching result for our further analysis. Also, the strength of 

reactivation was measured by the z-score method, in which a reactivation point with a z-

score of 5 or higher can be considered as a strong reactivation, indicating a substantial 

similarity to the template. As a result, we used z-score of 5 and z-score of 6 for the 

following results, examples, and figures, etc. Figure 12 shows how reactivation points 

were detected. Firstly, the template for the specific data set during the task was made 

(fully described in the method section), and this template is shown in (Figure 12, top). 

The middle portion of this figure depicts one strong reactivation, in which the strength 

was measured by the z-score method. It is worth mentioning that this reactivation has a 

very high z-score and can be detected visually very well. However, as there are only a 

few z-score of 7 or higher, we used z-score 5 and 6 in our analysis to be able to contain 

more reactivation points in the analysis. There are not as strong as (Figure 12), but there 

are significant numbers of them, and they still can be detected visually. The bottom 
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portion in (Figure 12) shows the strong reactivation within the UP sub-state. The figure 

shows reactivation happens during the UP-2 sub-states, which is coloured by pink in the 

figure. The red line in the figure refers to z-score 7, indicating the detected reactivation is 

strong. 

3.7. Memory reactivation mostly occurs in the UP-2 

We discussed the features of UP sub-states and tried to characterize them based 

on these features. Furthermore, the other possible functional feature(s) of these two UP 

sub-states with which they can be distinguished from each other needs to be investigated. 

As a result, it is undoubtedly interesting to inquire whether the dynamics of these sub-

states correlated with the occurrence of memory replay or not. Most interestingly, we 

found that memory reactivation occurring mostly in the fast decorrelated sub-type, UP-2, 

even though the UP-1 is the dominant UP sub-state and has a higher portion of UP states. 

Figure 13, left, shows the number of reactivation with z-score 5 happening during UP-1 

and UP-2, respectively, for the data set 7165_11p. Figure 13, right, shows the same result 

but for z-score 6. It denotes that UP-2 is the sub-state containing the majority of 

reactivation for both z-score 5 and z-score 6, and interestingly the ratio of reactivation 

occurring in UP-2 is higher for z-score 6.   
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Figure 12. An example of the template matching method. The top figure shows the 

template, which was obtained by averaging across the activity from the task and for one 

segment of the sequence of one recording session. The middle figure shows one of the 

similar activities to the template, which happened during the post-task sleep. Here, by 

using a compression rate of seven, making the bin size seven times larger to be matched 

with the compression rate, a similar pattern to the template was found. The bottom figure 

is the corresponding z-score of the neural activity during sleep. The pink patch depicts 

UP-2, showing this pattern is occurring during the UP-2 and not UP-1. 

 

The systematic investigation showed that it is the same tendency for all of the data 

sets regardless of the number of reactivation happening in the data set or the parameters 
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we used for template matching analysis such as compression factor and template number 

(Figure 14). The systematic investigation also indicated that by increasing template 

matching threshold, z-score, from 5 to 6, the ratio of replay happening in the UP-2 

divided by the entire replay happening in the all UP states increases. More specifically, 

this ratio for the increase of z-score from 5 to 6 has increased from 91% to 94.5%. 

Considering the fact that the higher z-score replay is associated as a stronger reactivation 

of recent experience, we can conclude that UP-2 contains the more reliable replay more 

regularly. This makes this claim stronger that UP-2 has a particular dynamic, which 

basically correlated with the occurrence of replay and again suggests these sub-states are 

not spontaneously detected by HMM.  

 

Figure 13. The number of reactivation occurs during UP-1 and UP-2. The left figure 

shows the number of memory reactivation, happening during UP-1 and UP-2, 

respectively, for z-score 5. It implies that the majority of reactivation points occur during 

UP-2 than Up-1. The right figure shows the same result but for z-score 6. It can clearly be 

seen that for z-score 6, UP-2 contains a higher percentage of reactivation in comparison 

to z-score 5. 

 

 It is worth mentioning that we also calculated the state vector decorrelation during 

tasks for all of the data sets in the very same way that we calculated it for the rest, except 
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this time we used the 100 ms bin size to calculate population vector decorrelation and 

obviously the compression rate of 1 was used. Then, we calculated the ratio between the 

exponential time constant for the task and for the UP-2 during the post-task sleep, 

𝜏𝑡𝑎𝑠𝑘/𝜏𝑈𝑃−2. By averaging over all of the 10 data sets, we found that this ratio was 

between 4.1 and 12.7, with a mean of 7.5. These ratios suggest that the decorrelation rate 

during UP-2 is 7.5 times faster during the post-task sleep in comparison to the task. The 

ratio between the task and UP-1, 𝜏𝑡𝑎𝑠𝑘/𝜏𝑈𝑃−1, was between 1.8 and 7.1, with a mean of 

4.5. These results confirmed that the compression rates we used for the template 

matching results are pretty similar to the ratio of exponential time constant between the 

task and UP-2, but not consistent with the task and UP-1. It again indicates that memory 

reactivation occurs predominantly in UP-2. 

 

 

Figure 14. The average number of reactivation happens during the UP-1 and UP-2, across 

all data sets. The left figure shows the average number of reactivation of z-score 5 for all 

data sets. The right figure shows the same result but for z-score 6. It demonstrates that 

UP-2 contains the majority of reactivation for all data sets, and the proportion would be 

enhanced by increasing the z-score number from 5 to 6. 

 

*** *** 
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Also, for this experimental recording, previously, it has been shown (Euston et al., 2007) 

that replay in the post-task sleep was compressed 5-7 times in the medial prefrontal 

cortex (mPFC) of rat which is consistent with the decorrelation speed of the population 

vectors during UP-2.  

3.8.  Memory reactivation distribution in UP state and UP sub-states 

In order to demonstrate how the reactivation points are distributed in UP state 

and, more importantly, in two sub-types of UP state, we used several approaches.  

For the first approach, firstly, we normalized all individual UP sub-state between 0 and 1 

regardless of their durations and then divided each one to 10 bins (obviously the selected 

UP sub-state should be longer than 10 ms in this case). Subsequently, we tried to find 

during which of these ten bins the replay happened. Then, in the same manner, we 

calculated the total number of reactivation happening during these bins for all sub-types. 

Figure 15 shows how the memory reactivation distributed over the ten bins within each 

UP sub-state, UP-1 and UP-2, and then averaged across all data sets. As clearly can be 

seen (Figure 15), the majority of reactivation occurred during the UP-2; however, it is not 

clear that during which bin(s) of UP-2 reactivation tends to happen more. The main 

reason for showing reactivation distribution in this visualization was to find the phase 

preference(s) of them. Checking the results for all of the data sets indicates that 

reactivation tends to happen more during the first half of UP-2, and also more 

reactivation happens during the middle phases comparatively. In summary, we showed 

that memory reactivation tends to occur substantially more in UP-2, but it seems they do 

not have any specific preference within the UP-2 to occur at it the most. 



 

62 
 

The second approach that we used was sorting the UP state and also UP sub-

states, UP-1 and UP-2, based on their duration. As it has shown in (Figure 16), we sorted 

all UP states based on their durations for one data set with stars showing the center of 

reactivation point with z-score 5. Also, the UP sub-types, UP-1 and UP-2, are shown in 

the figure with the blue and red colours, respectively. Based on this coloured figure, it is 

easy to understand that the UP-1, the blue colour in the figure, is the dominant UP sub-

state. Figure 17 shows the same result for z-score 6. Using this method, we tried to 

investigate the relation between the duration of the UP state and the possibility of 

occurrence of reactivation in the UP state.  

Also, with the same approach, we depicted the sorted UP-1, and UP-2 to investigate the 

sub-states correspondingly. Figure 18 and Figure 19 depict the sorted UP-1 and UP-2, 

respectively. Again, it indicates that UP-2 contains the majority of the replay. Also, it 

shows that UP-1 has more variety in terms of duration and a longer mean duration in 

comparison to UP-2. 

In the last approach, we depicted the UP state and also UP sub-states based on 

their time of happening and in a chronological way. In this approach, we can investigate 

where reactivation tends to happen the most, at the early stage of rest, at the middle, or 

the end. Figure 20 and Figure 21 depict the chronological sorted UP-1 and UP-2, 

respectively. It seems there is no clear tendency based on this sorting to show which part 

of sleep reactivation tends to occur more. 

In the following sections, we will use the term “reactivating” to reference any UP state 

event or sub-state event which contains the reactivation. 
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Figure 15. Distribution of reactivation for UP-1 and UP-2. Left figure: Here, firstly, each 

UP-1 event was divided into ten portions, and then for each bin, the number of 

reactivation happening within each bin across all UP-1 events was counted, and 

subsequently, it was divided by the total number of UP-1 event, and then averaged across 

all 10 data sets. Right figure: The same procedure was done for UP-2. Bar plots indicate 

the sem. These figures suggest that the majority of reactivation happens during UP-2. 

However, for this example, it seems reactivation tends to happen in the middle of UP-2 

the most, suggesting there are no clear phase preferences in UP-2 for reactivation to 

happen at it mostly.    
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Figure 16. UP state, UP-1, UP-2 and reactivation (Z=5). Here, all UP states of one data 

set were sorted based on their duration, and then this figure was conducted. Also, 

different sub-state of UP, UP-1 and UP-2, has been shown in the figure by blue and red, 

respectively. Clearly, UP-1 is the dominant sub-state of UP, but UP-2 is the sub-state that 

contains the majority of reactivation. Here all reactivation of z-score 5 has been shown 

with the black dots. 
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Figure 17. UP state, UP-1, UP-2 and reactivation (Z=6). Similar to (figure 14) but for 

reactivation with z-score 6. 
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Figure 18. The representation of how reactivation happening during UP-1, sorted by 

duration. Here, all UP-1 sorted based on their durations. Blue stars indicate reactivation. 

 

Figure 19. The representation of how reactivation happening during UP-2, sorted by 

duration. Here, all UP-2 sorted based on their durations. Blue stars indicate reactivation. 



 

67 
 

 

Figure 20. The representation of how reactivation happening during UP-1, sorted 

chronologically. Here, all UP-1 sorted by their time of happening. Blue stars indicate 

reactivation. In this way, one can study how reactivation distributed across the time of 

sleep.  

 

Figure 21. The representation of how reactivation happening during UP-2, sorted 

chronologically. Here, all UP-2 sorted by their time of happening. Blue stars indicate 

reactivation. In this way, one can study how reactivation distributed across the time of 

sleep.  
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3.9.Average firing rate of UP states within the UP state  

It is also interesting to investigate the correspondence of firing rate within the UP 

state and the occurrence of memory reactivation in the UP state. To investigate it, 

initially, we divided all individual UP state event to 10 bin sizes, and then found the 

pertinent firing rates within the individual UP state event for each of these bins. Next, we 

averaged the result across all UP state events. Finally, we averaged the result across all 

10 data sets. Figure 22, top, indicates that at the beginning and the end of UP states, the 

firing rate reaches the global and local maximum, respectively, and for the middle bins, 

the firing rate is lower in comparison. In Figure 22, the middle, we only calculated the 

firing rates for the reactivating UP states. Also, we calculated the firing rates within the 

only not-reactivating UP states (Figure 22, bottom). In general, these three figures show 

that firing rates within the UP states were influenced by the occurrence of reactivation. 

That influence is more apparent when it is compared with the occurrence of reactivation 

within the ten-binned UP states, which can be seen in (Figure 23). (Here, rather than 

considering the UP sub-states (Figure 15), we studied the UP state.) These two figures, 

Figure 22 & 23, suggest that the presence of reactivation within the ten-binned UP states 

can influence the firing rate of UP state in the same or adjacent bin(s), implying that the 

presence of reactivation can be mediated by an apparent increase in firing rates. 
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Figure 22. Average firing rates for the ten binned UP states. Top: All UP states were 

divided into ten bins, and the average firing rate for each portion (bin) was calculated 

then. Finally, it was averaged across all the data sets. This figure shows that there is a 

tendency in which the firing rate is higher at the start and end of each UP event. Middle: 

Here, only reactivating UP states were chosen, and the average firing rate for these 

selected UP states in each bin was calculated. Bottom: Here, only non-reactivating UP 

states were selected and the average firing rate was calculated across them. As a result, it 

suggests the presence of reactivation can affect the average firing rate within the UP 

state. 
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Figure 23. The comparison between the distribution of reactivation during the ten binned 

UP states. The figure shows the replay distribution for each bin within the UP state. By 

dividing each UP state to ten bins, and then finding the memory reactivation in each bin, 

subsequently averaging it across all UP states, and finally, by averaging across all 10 data 

sets, this figure is obtained. It can be observed that there is an increase in the firing rate in 

the middle bin sizes for reactivating UP states in comparison to all UP states, which is 

associated with the occurrence of reactivation distributed across different bins, especially 

middle bins, in the left figure.  

 

3.10. Which type of sub-states, UP states tend to start and end with 

As UP states are composed of UP-1 and UP-2, there are several cases that how 

UP states can be composed of these UP sub-states. For instance, it can be composed of 

only UP-1 or only UP-2 or start with one of them, then transit to another one and end 

with it. In order to investigate how the UP states are composed of sub-states, we used the 

approach of sorting UP state, then differentiated the UP-1 and UP-2 portion, which in 

(Figure 16) is coloured by blue and red lines within each UP state event, respectively. 
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Also, all of the reactivation has added to the figure and depicted by black dots. As the 

figure shows, by considering all UP states, the UP-1 is a dominant sub-state, and more 

importantly, the UP states tend to start and end with UP-1 than UP-2. Figure 24 shows 

the normalized result of starting and ending for UP sub-states for all data sets. More 

specifically, for each data set, we calculated the number of UP-1 and UP-2 with which 

the UP states start and end. Subsequently, as each data set has a very different number of 

UP state, we normalized the total number to 1 and then found the percentage of UP-1 and 

UP-2 the UP states start and end with. Finally, we averaged over all of the data sets.  

In summary, Figure 24 depicts the average result for all 10 data sets when 

considering all UP states. According to the figure, UP states tend to start and end with 

UP-1 dominantly, which is reasonable as UP-1 is the dominant UP sub-state. 

 

Figure 24. Which UP sub-state, UP states start and end with? Left: Considering all UP 

states, they tend to start with UP-1 than UP-2, which can be expected as the UP-1 is the 

dominant UP sub-state. Here all data sets were included, and the number of UP states in 

each data set was normalized to 1, and the proportion of UP-1 and UP-2, which UP 

states start with, were obtained. Right: Considering all UP states, they tend to end with 

UP-1 than UP-2. Here all data sets were included, and the number of UP states in each 

data set was normalized to 1, and the proportion of UP-1 and UP-2, which UP states end 

with, were obtained. 

*** 

*** 
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3.11. Which type of sub-states, reactivating UP states tend to start and end 

with 

After surveying all UP states, we restricted the study to only reactivating UP 

states. Interestingly, our results suggest that the presence of reactivation changes the 

sequence of sub-types. In Figure 25, only the reactivating UP states with z-score 5 are 

included, and then they were sorted base on their duration. In general, this figure shows 

that even though reactivating UP state still has a tendency to start with UP-1, reactivating 

UP states tend to end with UP-2 than UP-1, despite the previous tendency for all UP 

states. Further investigations suggest that for the reactivating UP state, relatively short UP 

states are dominantly consist of UP-2. For the longer reactivating UP state, the UP state 

tends to start with UP-1 and then transit to UP-2 and end with it. This tendency is 

considerably different from the general UP state tendency, suggesting the presence of 

reactivation can affect the sequence of UP sub-states and also the dominancy of the sub-

state.  

In Figure 26, only reactivating UP states with z-score 6 are used to investigate the 

sequence of sub-types for them. According to this figure, it can clearly be seen that the 

dominant sub-state is UP-2, which coloured as red. It is also clear that the majority of UP 

states start with UP-2, and all UP states end with UP-1. This figure suggests that for 

stronger reactivation, the influence of them on the sequence of UP sub-types is more 

considerable, and it makes the assumption that the sequence of sub-states is effected by 

reactivation more reliable.  
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Figure 25. The representation of reactivating UP states with z-score 5. All the 

reactivating UP states were selected and then sorted based on their duration. Although for 

all UP states, UP-1 is the dominant UP sub-state, by considering reactivating UP states, 

UP-2 is the dominant UP sub-type. It demonstrates that with which sub-states, 

reactivating UP states start and end. This tendency seems to be different in comparison to 

all UP states. 
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Figure 26. The representation of reactivating UP states with z-score 6. An example of 

reactivating UP states for z-score 6, which were sorted based on their duration. Clearly, 

now UP-2 is the dominant UP sub-state and UP states start and end with it dominantly.   

 

To quantify it more systematically, we divided the reactivating UP states for each 

data set into two groups, so-called short and long UP states. In order to divide UP state 

into two short and long groups, because the average duration of reactivating UP state is 

different among different data sets, we used a range of thresholds of 580-1250 ms to have 

roughly the same number in both samples of short and long UP states. Consequently, we 

found that for short reactivating UP state as it is shown in Figure 27, they mostly start and 

end with UP-2 (Start (Figure 27, left): for UP-1 mean and sem are 0.3321 ± 0.0369; for 

UP-2 mean and sem are 0.6679 ± 0.0369, End (Figure 27, right): for UP-1 mean and sem 

are 0.0520 ± 0.0186; for UP-2 mean and sem are 0.948 ± 0.0186). On the other hand, the 
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long reactivating UP states tend to start with UP-1 and predominantly end with UP-2, as 

can be seen in Figure 28 (Start (Figure 28, left): for UP-1 mean and sem are 0.682 ± 

0.0366; for UP-2 mean and sem are 0.318 ± 0.0366, End (Figure 28, right): for UP-1 

mean and sem are 0.143 ± 0.0381; for UP-2 mean and sem are 0.857 ± 0.0381). 

In summary, these results indicate that in general, UP state is composed of different 

sequences of UP sub-types, which can be affected by the duration of UP state itself and 

the presence of memory reactivation of recent experience. 

 

 

Figure 27. How short reactivating UP states start and end. Left: This figure shows the 

tendency for the short reactivated UP states, in which they tend to start with UP-2 than 

UP-1, which is in contrast with the general tendency for all UP states. Right: This figure 

indicates that short reactivated UP states strongly tend to end with UP-2 than UP-1, 

which again is not the case for all UP states. 

 ** 

*** 



 

76 
 

 

Figure 28. How long reactivating UP states start and end. Left: The figure shows that 

long reactivated UP states tend to start with UP-1 than UP-2, which is similar to the case 

for all UP states. Right: The figure indicates that long reactivating UP states still tend to 

end with UP-2 than UP-1, which is in contrast with the tendency for all UP states. 

 

We also quantified this tendency more by dividing the Non-reactivating UP states 

into two groups, short and long UP states. Using the same duration threshold of 580-1250 

ms, which were used previously for reactivating UP state, the non-reactivating UP states 

were categorized into short and long durations groups. Short non-reactivating UP states 

tend to start and end with UP-1, similar to the general tendency of UP states (Start 

(Figure 29, left): for UP-1 mean and sem are 0.798 ± 0.0134; for UP-2 mean and sem are 

0.202 ± 0.0134, End (Figure 29, right): for UP-1 mean and sem are 0.730 ± 0.0143; for 

UP-2 mean and sem are 0.271 ± 0.0143). Long non-reactivating UP states also tend to 

start and end with UP-1 than UP-2 (Start (Figure 30, left): for UP-1 mean and sem are 

0.904 ± 0.0096; for UP-2 mean and sem are 0.096 ± 0.0096, End (Figure 30, right): for 

UP-1 mean and sem are 0.741 ± 0.0244; for UP-2 mean and sem are 0.259 ± 0.0244). 

These results also indicate that the presence of reactivation can change the dynamic of 

UP states and how it consists of sub-states considerably.   

* 

*** 
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Figure 29. How short non-reactivating UP states start and end. Left: This figure shows the 

tendency for the short non-reactivated UP states, in which they tend to start with UP-1 

than UP-2, similar to the general tendency for all UP states. Right: This figure indicates 

that short reactivated UP states strongly tend to end with UP-1 than UP-2, which again is 

similar to all UP states. 

 

 

Figure 30. How long non-reactivating UP states start and end. Left: The figure shows that 

long non-reactivated UP states tend to start with UP-1 than UP-2, which is similar to the 

case for all UP states. Right: The figure indicates that long reactivating UP states still 

tend to end with UP-1 than UP-2, again similar to the all UP states. 

 

 

 

 

*** *** 

*** 

*** 
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3.12. UP sub-states were clustered distinctively by PCA and tSNE 

Another principal feature that can be investigated regarding UP sub-states 

characteristics is whether they are distinctively separated or not. In order to explore that, 

we projected our data points to some dimensional reduction methods amongst which we 

found PCA and tSNE as the best methods to perform the analysis. 

Firstly, we converted the individual sub-state events to the normalized firing rate vectors 

of neural activity. For the N-dimension vector in firing rates representation, the mean 

firing rate for each neuron during the sub-state event was found. Subsequently, neuron-

wise standardization was performed using the mean and standard deviation of each 

neuron firing rate. Then, we projected all sub-states event, both UP-1 and UP-2, to the 

PCA and tSNE representation. Figure 31 shows the PCA results for normalized firing 

rates of post-task rest for three data sets, 7165_11p, 7165_36, and 8482_15p. These 

figures suggest that in the first and second principal component analysis, UP-1 and UP-2 

were clustered distinctly.  

Figure 32 shows the firing rate projection but in the tSNE method. It denotes that 

UP-1 and UP-2 were distinctly clustered by tSNE as well. These results are consistent for 

the post-task sleep of all data sets. 
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Figure 31. PCA analysis for UP sub-states, UP-1 and UP-2, for post-task sleep. Here we 

used normalized firing rate vector representation, in which each neuron was represented 

by it’s normalized firing rate during the UP state event. For these three examples of three 

different data sets, it can be seen that UP-1 and UP-2 were clustered distinctly by PCA.  

 

 

Figure 32. tSNE firing rate analysis for UP sub-states, UP-1 and UP-2, for post-task 

sleep. Here we used firing rate vector representation, in which each neuron was 

represented by its firing rate during the UP state event. It demonstrates that UP-1 and UP-

2 were clustered distinctly by tSNE. It is the equivalent tSNE analysis for the first PCA 

result (Last page, top Figure) 
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3.13. Pre-task sleep analysis in comparison to post-task sleep 

A three-state HMM was also applied to the pre-task sleep. We used 10 data sets in 

this project and analyzed the post-task sleep for all of them in detail. But, we only found 

5 pre-task sleep data sets having good quality motionless sleep and were usable in the 

pre-task sleep analysis. By doing the same procedure for the pre-task sleep, we can 

distinguish the differences between UP sub-states before and after the task. 

Consequently, the effect of the task experience on the UP sub-states can be studied.  

The results suggest that the three-state HMM successfully separated the DOWN and two 

UP sub-states, as their firing rates and duration are shown in Figure 33 and Figure 34.  

 

Figure 33. Firing rates distribution of DOWN, UP-1, and UP-2, for pre-task sleep. Using 

the three-state HMM, three different states were separated, which their firing rates are 

shown in the figure.   
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Figure 34. Duration distribution of DOWN, UP-1, and UP-2, for pre-task sleep. Using the 

three-state HMM, three different states were separated, which their durations are shown 

in the figure.   

 

For the state vector decorrelation, as Figure 35 suggests there is still a difference 

between the decorrelation rates for UP-1 and UP-2.  

 Also, using PCA analysis, the separation between UP-1 and UP-2 is shown for 

three examples of three data sets (Figure 36, Figure 37, and Figure 38). This figure 

suggests that the cluster separation is not as distinguished as post-task sleep. Using the 

same clustering method (Jean-Marc method (Fellous, et al., 2004)), we can measure the 

cluster strength, which for this data set, the cluster strength is 1.34 and 2.89 for sleep1 

and sleep3, respectively. Also, by doing stats for the five data sets that both pre-task and 

post-task sleeps were used in the analysis, Figure 39 is obtained. (Sleep1_mean = 1.95, 

Sleep1_sem = 0.54; Sleep3_mean = 2.54, Sleep3_sem = 0.24).  
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Figure 35. State vector decorrelation of UP-1 and UP-2, for pre-task sleep. Similar to the 

post-task sleep, one of the UP sub-state has a faster vector decorrelation, which again is 

called UP-2.   

 

Table 2. The exponential time constant, 𝜏, for UP-1 and UP-2, for pre-task sleep. 

Data set 

UP-1 Decay 

Constant 

(ms) 

UP-2 Decay 

Constant 

(ms) 

1 (Rat1) 305.45 127.02 

2 (Rat2) 450.07 250.30 

3 (Rat2) 374.10 103.10 

4 (Rat3) 289.64 180.73 

5 (Rat3) 561.49 384.33 
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Figure 36. Comparison of PCA analysis for pre-task and post-task sleep. Top: PCA 

analysis for pre-task sleep showing that UP-1 and UP-2 are not clustered as well as post-

task sleep. Bottom: post-task PCA analysis for the same recording. 
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Figure 37. Another example of a comparison of PCA analysis for pre-task and post-task 

sleep. 
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Figure 38. Another example of a comparison of PCA analysis for pre-task and post-task 

sleep. 
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Figure 36. Cluster strength comparison for pre-task and post-task sleep. Two bars show 

the average cluster strength across all five data sets for pre-task sleep and post-task sleep, 

respectively. 

 

3.14. Obtaining more than two UP sub-states with higher states of HMM 

We showed that UP state can be separated into two subtypes. However, the UP 

state might be separable to more than two sub-states and the UP state could be classified 

by those sub-states better. Hence, we are interested to see the results of higher than two 

UP sub-states, such as three UP sub-states, four UP sub-states, five UP sub-states, and 

nine UP sub-states. By applying the applications of HMM with more than three states, we 

would have one DOWN state and more than two UP sub-types. It is expected that the 

sub-type containing the majority of reactivation, regardless of the number of sub-states 

would still remain.  
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Initially, we started with four-states HMM and then doing the exact same 

procedure for all of the further analysis, except here we have three UP sub-types. Figure 

40 and Figure 41 show the distribution of firing rates and duration for all four states, 

including the three UP sub-states and the DOWN state, for the data set 7165_11p. In 

these figures, all the states detected by HMM are sorted and then named based on their 

mean firing rates. The first one, UP-1, has the highest firing rate and the last one with the 

lowest firing rate is the DOWN state. Figure 42 shows the state vector decorrelation for 

all three UP sub-states, and similarly, one or some sub-type(s) have a faster rate of 

decorrelations. The DOWN state is not included in the figure, and clearly, the first and 

the second UP sub-types have faster vector decorrelation than UP-3. Most importantly, 

the memory reactivation distribution in Figure 43, for three sub-states shows that still, 

one of the sub-states, UP-1, contains the majority of reactivation, which is the sub-state 

with a relatively fast vector decorrelation, not necessarily the fastest vector decorrelation. 
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Figure 40. Distribution of firing rates for the four detected states by four-state HMM. 

Three UP sub-states and the DOWN state were detected by HMM. The three UP sub-

types have roughly similar firing rate distributions, but the DOWN state has a different 

distribution for the firing rate. 

 

 

Figure 41. Distribution of duration for the four detected states by four-state HMM. Three 

UP sub-states and the DOWN state were detected by HMM. The three UP sub-states and 

the DOWN state have different duration distributions. 
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Figure 42. State vector decorrelation for the three detected UP states. UP-1 and UP-2 

have much faster decay rates than UP-3. 
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Figure 373. The distribution of reactivation in three UP sub-types. Three figures depict 

distribution for the three UP sub-states, respectively. It can be seen that still, there is a 

sub-state, UP-1, containing the majority of reactivation and was distinguished by a fast 

vector decorrelation and highest firing rate.  

 

These results show that by using four-state HMM, still, there is a UP sub-state that 

contains the majority of reactivation.  

Also, for six-state HMM, the results of firing rates and durations (Figure 44 and 

Figure 45, respectively), vector decorrelation (Figure 46), and the memory reactivation 

(Figure 47) are shown. These results again suggest that for these five UP sub-states, still, 

one of the UP sub-states contains the majority of reactivation. 

In addition to four-state and six-state HMMs, which the results have been shown 

here, we also tried the same analysis for five-state and ten-state HMMs. These results 

indicate that for five-state HMM, there is one sub-state containing the majority of 
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reactivation. However, it seems this was not the case when the application of ten-state 

HMM was used (Figure 48, Figure 49).  

Although the reactivating sub-state does not necessarily have the fastest vector 

decorrelation or the highest firing rate and the lowest variability in the duration similar to 

the case of two UP sub-states, it seems still state vector decorrelation can be associated 

with the sub-state containing the majority of reactivation for the most of cases. By more 

investigation on other data sets, the obtained results for the higher state of HMM, such as 

four, five, and six, indicate that mostly one of the sub-states contains the majority of 

reactivation.  

Additionally, by using PCA to measure the distinctness of sub-states, it can be 

shown how the UP sub-states are clustered for different number of UP sub-states (Figure 

48).  

 For more clarification, PCA analysis for four, five, six, and ten-state HMM, for 

another data set is shown (Figure 49).  
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Figure 44. The firing rate distributions for all states detected by a six-state HMM. The 

figure shows that the firing rates for five UP sub-states and DOWN state, respectively. 

Here, the UP sub-state has been sorted based on their mean firing rate, where UP-1 has 

the highest mean firing rate, and UP-5 has the lowest firing rate. 

 

 

Figure 45. Distribution of duration for the six detected states by six-state HMM. Five UP 

sub-states and the DOWN state were detected by HMM. The five UP sub-states and the 

DOWN state have different duration distributions. 
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Figure 46. State vector decorrelations for all UP sub-states separated by a five-state 

HMM. It denotes that UP-1 has the fastest vector decorrelation. This UP sub-state also 

has the highest firing rate. 
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Figure 47. Reactivation distribution for five-state HMM. Five figures depict distribution 

for the five UP sub-states, respectively. Interestingly, still, one UP sub-state, UP-1, has 

the majority of reactivation.   
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Figure 48. PCA analysis for normalized firing rate for four, five, six-state, and ten-state 

HMMs (7165-11p). Last page, top: The PCA analysis for the normalized firing rate for 

four-state HMM. (Only UP sub-states are included in the PCA analysis.) Last page, 

Bottom: The PCA analysis for five-state HMM. Top: The PCA analysis for six-state 

HMM. Bottom: The PCA analysis for ten-state HMM.   
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Figure 49. PCA analysis for normalized firing rate for four, five, six-state, and ten-state 

HMMs (7165-31p). Last page, top: The PCA analysis for the normalized firing rate for 

four-state HMM. (Only UP sub-states are included in the PCA analysis.) Last page, 

Bottom: The PCA analysis for five-state HMM. Top: The PCA analysis for six-state 

HMM. Bottom: The PCA analysis for ten-state HMM.   
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In order to find which number for UP sub-states is the optimum number of states 

and also with which we have a better clustering for the UP sub-states, we measured the 

cluster strength for different states of HMM. Then, we found the cluster strength for each 

data set and for the different number of states for HMM with Jean-Marc method. 

Subsequently, we averaged the cluster strength for each number of HMM state across the 

10 data sets. The result is shown in Figure 50, suggesting that the HMM three-state has 

the highest strength in terms of being distinctively clustered. This indicates that the two 

UP sub-state can be the optimum number to divide the UP state into, and by increasing 

the number of state for HMM, the obtained sub-states get less and less distinct in 

comparison to the two UP sub-states.  
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Figure 50. Cluster strength comparison for different states of HMM. Here, the average 

cluster strength across all data sets and for different states of HMM is shown. It suggests 

that three-state HMM has the highest cluster strength, and the ten-state HMM has the 

lowest.  

3.15. Correlation of UP sub-states to themselves and to each other 

We showed that memory reactivation is predominantly happening in the UP-2 

state, which was characterized by faster vector decorrelation and lower mean duration. 

This observation suggests that there might be more similarities in the UP-2 events, 

corresponding to the recent memory reactivation. To investigate it, we hypothesized that 

this might be reflected in the more similarity within the UP-2 pairs than within the UP-1 

pairs. To test this hypothesis, first, we made a vector of [𝑁 ⨯ 1] regarding each UP-1 

event, where N is the number of neurons, and each N element was calculated by a mean 

firing rate of each neuron during each UP-1 events. Subsequently, for each UP-1 event, 

we have a vector to represent the event with and calculate the pair-wise correlation of that 
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event with other UP-1 events. Next, we calculated the pair-wise correlation for all UP-1 

pairs, and the histogram of them has obtained as it is in (Figure 51, top) for data set 

7165_31.  

Then, we repeated the same procedure for UP-2 events, and find the pair-wise correlation 

of all UP-2 events with each other, and made the same distribution for UP-2 events by 

considering all the UP-2 pairs (Figure 51, bottom). More specifically, by using the 

median and the intervals for 50% and 95% range, we tried to characterize the distribution 

and subsequently performed a statistical test over 10 data sets (Lilliefors test for 

normality: UP-1: 𝑝 = 0.333, UP-2: 𝑝 = 0.20, two-sample t-test: 𝑝 = 0.0204 ). The results 

indicate that the median of UP-2 pairs is significantly higher than the median of UP-1, 

which suggests that UP-2 pairs are more similar to each other than UP-1 to each other. 

Although, according to results, some UP-2 states are highly similar to each other, some 

are not. The latter would contribute to a long tail of the UP-2 distribution in Figure 51, 

bottom. 
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Figure 51. The pair-wise correlation coefficient between each UP sub-state. Top: The 

pair-wise correlation coefficient between all UP-1. Bottom: The pair-wise correlation 

coefficient between all UP-2. These figures suggest that UP-2 pairs are more correlated 

to each other than UP-1 pairs. 

3.16. SWRs correlation with DOWN-to-UP transition and UP-1 to UP-2 

transition 

In order to investigate the relationship between the SWRs and UP state 

transitions, the detected SWRs were converted to a discrete-time series based on the 
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location of SWR’s peak amplitude. Subsequently, SWRs and UP state transitions were 

cross-correlated, using the UP state transitions as a reference signal and SWR as a target 

signal. More specifically, the zero lag in the cross-correlation figure indicates the 

occurrence of the UP state transition. Consistent with the previous study, showing SWRs 

are correlated with the DOWN to UP transition (Battaglia et al., 2004), the result for three 

data sets (one rat) has been shown in (Figure 52), and for two of them, the DOWN to UP 

transitions precedes the SWRs by 100-200 ms. In this figure, the first and second data 

sets show that there is an increase in the cross-correlation plot after the DOWN to UP 

transition (Figure 52, top and middle).  

Figure 53 shows the correlation between SWRs and the transition from the UP-1 

to UP-2 states for three data sets. This relation is interesting as we showed that UP-2 

contains the majority of reactivation. As Figure 53 suggests for two out of three data sets, 

UP-1 to UP-2 state transitions precede the SWR by 100-200 ms. This indicates that the 

interaction between the hippocampus and the cortex during SWRs can happen stronger 

when the cortex exhibits the UP-2 state. Leading the hippocampal by the cortical 

transitions suggests that cortical reactivation in the UP-2 might trigger the hippocampal 

reactivation in the SWRs. 

In summary, we showed that the SWRs are correlated not only with DOWN to 

UP transitions but also with the UP-1 to UP-2 transitions. In order to interpret these 

results, it should be considered that the animal was highly familiarized with the task 

during the analyzed recording days. 
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Figure 52. The Cross-correlation of transition between DOWN to UP and Ripple. Here, 

after finding all the transition points during which DOWN states transit to UP state, we 

assessed the cross-correlation of these points and Ripple. There are three examples of the 

three data sets. Two of these examples, top and middle, show the DOWN to UP 

transitions precedes the SWRs by 100-200 ms.    
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Figure 53. The Cross-correlation of transition between UP-1 to UP-2 and Ripple. Here, 

after finding all transition points during which UP-1 sub-states transit to UP-2 sub-states, 

we assessed the cross-correlation of these points and Ripple. There are three examples of 

the three data sets. Two of these examples, middle and bottom, show the UP-1 to UP-2 

transitions precedes the SWRs by 100-200 ms. 
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3.17. Using two HMM two-states 

At the beginning of starting this project, in order to detect the DOWN states and 

UP sub-states, we used two-state HMM twice; the first time in order to detect the DOWN 

and UP states, and the second time to detect the UP-1 and UP-2 states. However, as for 

detecting the UP-1 and UP-2 with this method, we had to concatenate all detected UP 

states by the first HMM and then use the concatenated UP states as an input to the two-

state HMM in the second try. All of the further procedure was pretty similar to what has 

been explained here. Because of the possible artificial effect of concatenation, which 

attached one UP state to another UP state where previously was a DOWN state, we 

decided to continue the project with the three-state HMM instead.  

Figure 54 shows the similarity of the detected DOWN, UP, UP-1, and UP-2 states, 

respectively, by a three-state HMM and two two-state HMM. For finding UP state by a 

three-state HMM we simply merged the UP-1 and UP-2 detected by three-state HMM. 

This consistency shows that the results of using two-state HMM twice are pretty much 

similar, suggesting that even by concatenating UP states, the result are similar. As a 

result, it might be concluded that the detected UP-1 and UP-2 have a specific dynamic 

that can be detected by two-state HMM regardless of the concatenating. 
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Figure 54. The similarity between states detected by two-state and three-state HMMs. 

The correlation between the states which were detected by a three-state HMM and two-

state HMM used twice was assessed. It shows the correlation for each type of state that 

was detected by these two methods is significantly high.  

 

3.18. The hippocampus LFP analysis 

Additionally, by using local field potential (LFP) from the hippocampus, the 

power of the signal was obtained by the pwlech function. For this part of the analysis, we 

had three data sets coming from one rat. Subsequently, we calculated the log of power for 

each UP sub-state, and then the mean of log power across the all UP sub-types, UP-1 and 

UP-2, respectively. Therefore, the comparison between the log power happening during 

UP-1 and UP-2 is shown for one data set, 8482_14p (Figure 55, top). This figure suggests 

a difference between UP-1 and UP-2 power. Figure 55, bottom, shows the difference 

between them in the Ripple band frequency. In order to show whether the differences are 

significant or not, we used the mean of each frequency band.  
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Figure 55. Log power comparison between UP-1 and UP-2 for hippocampus LFP. Top: 

The comparison between the mean log power of the hippocampus LFP happening during 

UP-1 and UP-2 events, respectively. It shows that during the UP-2, the power of the 

hippocampus LFP is stronger than UP-1. Bottom: The same analysis but for the only 

Ripple frequency band. Again, the power during UP-2 is stronger.     
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By using the mean power in the (Figure 55) and for the different frequency bands, 

the difference between the mean power across these frequency bands are shown (Figure 

56, top).  Also, the difference for the ripple band is shown in (Figure 56, bottom). 

These figures suggest that during the UP-2, where the majority of reactivation 

occurs, there is an increase in the power of the LPF signal from the hippocampus, 

especially for the Ripple band. However, as it can be seen in (Figure 56) the differences 

are not significant.  

3.19. The cortex LFP analysis  

In addition to the hippocampus LFP analysis, cortex LFP also was analyzed. For 

this part of the analysis, we had the cortex LFP for 10 data sets. Similar to LFP from the 

hippocampus, the power of the LFP signal from cortex was obtained by pwelch function. 

Subsequently, we calculated the log of power for each UP sub-state, and then the mean of 

log power across the all UP sub-types, UP-1 and UP-2, respectively. The comparison 

between the log power happening during the UP-1 and UP-2 shown here (Figure 57, top). 

The result shows there is not a considerable difference between these UP sub-states for 

the log power of the cortex LFP. Also, specifically for the Spindle band, there is no 

apparent difference between UP-1 and UP-2 in the power of the LFP signal (Figure 57, 

bottom). 

Again, by using the mean power in the (Figure 57) for different frequency bands, 

the difference between the mean power across these frequency bands has depicted 

(Figure 58, top). Next, the difference in only the spindle band is shown (Figure 58, 
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bottom), indicating there is no difference between the power of spindle during UP-1 and 

UP-2. 
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Figure 56. UP-1 and UP-2 power frequency bands comparison (Hippocampus LFP). Top: 

The comparison between UP-1 and UP-2, log mean power, for all frequency bands, using 

hippocampus LFP, is shown. For all frequency bands, UP-2 has higher powers than UP-

1. Bottom: The comparison between UP-1 and UP-2, for only the Ripple frequency band. 

UP-2 has a higher power in comparison to UP-1. 
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Figure 57. Log power comparison between UP-1 and UP-2 for cortex LFP. Top: The 

comparison between the mean log power of the cortex LFP happening during UP-1 and 

UP-2 events, respectively. It does not show a clear difference between UP-1 and UP-2. 

Bottom: The same analysis but for the only Spindle frequency band. Again, the power of 

UP-1 and UP-2 are similar.     
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Figure 58. UP-1 and UP-2 power frequency bands comparison (Cortex LFP). Top: The 

comparison between UP-1 and UP-2 for all frequency bands, using the cortex LFP, is 

shown. There are no clear differences in frequency bands between UP-1 and UP-2. 

Bottom: The comparison between UP-1 and UP-2, for only the Spindle frequency band. 
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4. Discussion 

In the present study, we have shown that UP state can be separated into two or more 

sub-states, one of which with a distinguished dynamic and always contains the majority 

of reactivation. It has been claimed that hippocampal-cortical interaction happens during 

SWRs in the hippocampus and around UP states in the cortex (Ego-Stengel & Wilson, 

2010; Girardeau et al., 2009; Ji & Wilson, 2007; Lansink et al., 2009; Peyrache et al., 

2009; Ji & Wilson, 2007). Based on the standard memory consolidation theory (Dudai, 

2004), it is hypothesized that the information from the distributed cortical modules can be 

integrated from the hippocampus and be merged quickly into a coherent memory trace. 

Knowing from the recent study that SWRs can be decomposed into subtypes (Ramirez-

Villegas et al., 2015), we were interested in investigating whether UP states are separable 

to several sub-types or not. It has been suggested that during sleep, reactivation of the 

hippocampal-cortical network can be beneficial to rearrange the cortico-cortical 

connections and gradually may let new memories to get independent of the hippocampus 

(Bontempi et al., 1999; Maviel et al., 2004; Frankland et al., 2004; Frankland & 

Bontempi, 2005). Consequently, as it is assumed that reactivation in cortex dominantly 

happens during UP state (Ji & Wilson, 2007; Euston et al., 2007; Peyrache et al., 2009), 

we were focusing on its characteristics to show they also can be decomposed to at least 

two sub-states. These sub-states are characterized by their population vector decorrelation 

rates and mean durations, and the sub-state with a faster decorrelation contains the 

majority of reactivation. Using PCA, we also showed that these sub-states are 

distinctively separated.  
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Our study suggests that instead of being a single state, UP state has different 

dynamics and is composed of several sub-states, each of which can be associated with 

different functions. The results suggest that the function of the sub-state with a faster 

decorrelation population is to consolidate the recent memory experience, while a slower 

decorrelation sub-state has other functions such as remote memory experiences.  

Additionally, we have shown that the UP state dynamic is affected by the presence of 

reactivation and also the duration of UP state. The general tendency for the UP state is 

they usually start and end with UP-1; however, for short reactivating UP states, they tend 

to start with UP-1 but end with UP-2. This might indicate that the key function of short 

reactivating UP state, which is almost only composed of UP-2, is only to consolidate 

recent experiences. The long reactivating UP states, on the other hand, may initially 

associate with reactivating other experience such as remote experiences, and then transit 

to the recent experience during the UP-2.  

Also, one of the goals of this research was to find the optimum number of sub-states 

for HMM, which can bring the highest strength for clustering distant. The results suggest 

the three-state HMM, generating DOWN state and two UP sub-states, has the optimum 

strength for cluster distance. As a result, however, there is usually a sub-state containing 

the majority of reactivation, regardless of the number of sub-states, clustering the UP 

state to two UP sub-states seems to be the best clustering approach. This postulates that 

there are two major distinct dynamics in the UP state. It is also consistent with the idea 

that one UP sub-state is mainly associated with the recent memory and the other related 

to the remote memories.  
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Studying the differences between UP state happening in the pre-task sleep and post-

task sleep, it can be claimed that the task-experience may change the dynamic of UP state 

to mediate the presence of reactivation. Even though there are two UP sub-states in the 

pre-task sleep, and one of them has a relatively faster vector decorrelation, they cannot be 

distinguished by the reactivation distribution, in contrast to the post-task sleep. This may 

indicate that the task effect can induce a similar neural activity pattern, which the animal 

had experienced during the task, in the post-task sleep. This could change one of the sub-

dynamics of UP state more, the one with a relatively faster vector decorrelation, which is 

more susceptible to be induced by new patterns, and this would lead to predominant 

reactivation distribution across this UP sub-state.  

The PCA analysis results for pre-task and post-task sleeps together proposed that for 

the post-task sleep UP sub-states have a higher cluster distance, may claim that the 

experience of task can increase the differences in the dynamics of UP sub-state in the 

post-task sleep in comparison to pre-task sleep.  

Even though there is no significant difference in the cortex LFP power, and especially 

spindle power, during UP-1 and UP-2, the results showed that during UP-2, SWRs in the 

hippocampus have a relatively stronger power, proposing the cortex is led by SWRs more 

during UP-2 (Mean and std of log mean power for UP-1 and UP-2, for three data sets we 

have, are -1.79 ± 0.72 dB and -1.47 ± 0.96 dB, respectively ). This is consistent with the 

previous finding of the memory consolidation theory (Frankland & Bontempi, 2005).  
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4.1. Future work 

This study shows that in addition to the SWRs (Ramirez-Villegas et al., 2015), 

also UP states are separable to sub-states. As it is shown that memory reactivation mainly 

occurs during SWRs in the hippocampus and this study found memory reactivation is 

dominant in one of the UP sub-states in the cortex, the relation between SWRs sub-types 

and UP sub-states is interesting. By designing the behavioural task during which the 

animal multi-unit activities can be recorded from both the hippocampus and the cortex, 

first, it can be investigated that is there any sub-state in SWRs to contain the reactivation 

happening in the hippocampus dominantly? If that is the case, the relationship between 

their sub-states, the hippocampus and the cortex, would be interesting. The expectation 

might be that there is a higher correlation between the sub-types of the hippocampus and 

the cortex during which the reactivation predominantly occurs in them.  

By having enough days of recording to be matched with the learning curves of the 

mentioned experimental task, another interesting question is how the occurrence of 

reactivation in both the hippocampal and the cortex would change during the different 

days of the learning curve. More specifically, we are interested to see how the UP state 

dynamics, and UP-1 and UP-2 features will change undergoing learning days. The 

prediction might be as the animal undergoes to days with the highest number of 

reactivation, UP state dynamic experiences the most changes. Also, we can study the 

relationship of sub-states, UP-1 and UP-2, with those reactivation happening during the 

SWRs in the hippocampus, for different days of recording. Additionally, investigating the 

changes in some features of UP sub-states such as state vector decorrelation and 

reactivation distribution in these sub-states in different recording days could be 
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interesting. Again, the prediction could be UP-1 and UP-2 would have the most different 

values for those features when the animal experience the highest number of template 

matching. 

In this study, we found that the UP state tends to start and end with different 

dynamics in the presence of the reactivation. As a result, the more detailed study of the 

changes in the UP state dynamic, for different days of recording, can be interesting.    

Further studies on pre-task sleep can show whether UP state dynamics are 

different from the post-task ones. 

4.2. Conclusion  

In this thesis, we were interested to see whether the UP states similar to SWRs 

can be separated into different subs-states or not. Applying a three-state HMM on the 

epochs of high UP and DOWN oscillations, the DOWN state was detected and then 

distinguished by a significantly lower firing rate and duration. Also, two UP sub-states 

were detected and then distinguished by their state vector decorrelations and durations. 

We called the UP sub-state with a faster decaying rate and the lower mean duration UP-2, 

and the slower decaying rate and the higher mean duration UP-1. Additionally, UP-2 has 

a comparatively higher mean firing rate than UP-1; also, UP-2 has much less variety in its 

duration distribution in comparison to UP-1, and the mean duration of UP-2 is 

significantly lower than UP-1. Most importantly, although the UP-1 is the dominant UP 

sub-state and the UP states were mainly composed of it, we have shown that the other UP 

sub-state, UP-2, contains the majority of reactivation. By using PCA to cluster the 
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normalized firing rate events of UP sub-states, the result asserted that the two UP sub-

states are distinctly clustered.  

Different ways of visualization have been used to show how precisely the 

reactivation of recent experience was distributed. By depicting the UP sub-stats based on 

their durations, we showed how the reactivation distributed across UP states with 

different durations. The results claimed that there are no preferences for reactivation to 

happen more in longer UP state or the shorter one. Then, by using chronologically 

sorting, we tried to find whether the reactivation happens mostly within a specific time of 

sleep. But, again, we could not find any particular time of sleep during which the 

reactivation happens the most. 

Our results asserted that the presence of the reactivation in the UP state could 

change the firing rate within the UP state. UP state firing rate is usually the highest at the 

start and the end of the UP state and decreases in the middle, but for the reactivating UP 

states the firing rate increases at the middle where there is relatively more reactivation. 

The presence of reactivation can change the composition of the UP state as well. 

UP state usually starts and ends with UP-1, but for long reactivating UP states, they 

mainly start with UP-1 but mostly end with UP-2. Also, for short reactivating UP states, 

they dominantly consist of UP-2, start and end with it mainly. Also, by comparing these 

results to the non-reactivating long and short UP states, we concluded that the 

composition of the UP states for them is similar to the general tendency for all UP states 

and in contrast with reactivating UP states. Both the short and long non-reactivating UP 

states start and end with UP-1 mostly. 
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For the pre-task sleep also the same analysis was performed. Similar to post-task 

sleep, one sub-state had a faster vector decorrelation, and then the UP sub-states were 

distinguished based on that. On the other hand, by using PCA analysis, the cluster 

distance was compared to the post-task sleep, indicating for pre-task sleep, the sub-states 

are not as clearly clustered as the post-task sleep. 

Our results suggest that regardless of the number of state for HMM, there is one 

UP sub-state contains the majority of reactivation (That is always true for six-state HMM 

or less). This UP sub-state usually accompanied by a very fast vector decorrelation, not 

necessarily the fastest and a high mean firing rate, not necessarily the highest. We also 

showed that the strength of cluster distance decreases by the increase in the state of 

HMM application. As a result, three-state HMM generates the most distinct clusters for 

sub-states of UP state. 
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Appendix 

 

 

Supplementary Figure 1. Firing rate distribution for UP-1 and UP-2, in two different 

panels, for a representative case. 

 

Supplementary Figure 2. Duration distribution for UP-1 and UP-2, in two different 

panels, for a representative case. 
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Supplementary Figure 3. Consistency of HMM Using Partial Data. 

 

 

 

Supplementary Figure 4. Percent Agreement for Shuffled HMM. 
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Supplementary Figure 5. The result of template matching correlation distribution. 
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Supplementary Figure 6. State Vector Decorrelation. (Rat1) 
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Supplementary Figure 7. State Vector Decorrelation. (Rat2) 
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Supplementary Figure 8. State Vector Decorrelation. (Rat3) 
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Supplementary Figure 9. Reactivating UP states with z-score 5. (Rat2) 
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Supplementary Figure 10. Reactivating UP states with z-score 5. (Rat3) 
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Supplementary Figure 11. UP-1 and UP-2 power frequency bands comparison 

(Hippocampus LFP). (8482_15p)
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Supplementary Figure 12. UP-1 and UP-2 power frequency bands comparison 

(Hippocampus LFP). (8482_16p) 
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Supplementary table 1. Firing rate and duration for UP-1 and UP-2 (mean ± SEM). 

Dataset UP-1 
Firing Rate 

(Hz) 

UP-2 
Firing Rate 

(Hz) 

UP-1 
Duration (s) 

UP-2 
Duration (s) 

1 2.21 ± 0.023 2.85 ± 0.047 0.63 ± 0.020 0.40 ± 0.014 

2 1.99 ± 0.021 2.41 ± 0.033 0.78 ± 0.029 0.41 ± 0.018 

3 1.91 ± 0.017 2.43 ± 0.027 0.68 ± 0.024 0.43 ± 0.017 

4 1.29 ± 0.011 1.54 ± 0.021 0.99 ± 0.040 0.55 ± 0.022 

5 2.16 ± 0.023 2.59 ± 0.024 0.82 ± 0.024 0.55 ± 0.020 

6 2.64 ± 0.015 2.64 ± 0.026 0.70 ± 0.017 0.56 ± 0.016 

7 2.23 ± 0.013 2.55 ± 0.023 0.93 ± 0.025 0.53 ± 0.018 

8 3.28 ± 0.020 3.66 ± 0.029 0.56 ± 0.011 0.47 ± 0.011 

9 2.97 ± 0.019 3.11 ± 0.025 0.56 ± 0.011 0.51 ± 0.013 

10 3.00 ± 0.023 3.41 ± 0.027 0.59 ± 0.014 0.55 ± 0.015 

 


