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1. Introduction

The study of the near horizon geometry of certain black holes has led to a better

understanding of the origin of entropy and Hawking radiation from an underlying

conformal field theory [1]–[5]. The near horizon geometry corresponds to anti-de

Sitter space with or without certain identifications and is associated with a conformal

field theory which lives on the boundary of the anti-de Sitter space. The CFT

obtained thus carries non-trivial information about the black hole space-time. In this

paper we concentrate on studying emission rates of particles from a five dimensional

black hole and give a derivation of the rates using the conformal field theory which

is associated with its near horizon geometry. The black hole solution is obtained by

compactifying Type II B string theory on T 4×S1. On retaining the S1 as a compact
direction with a large radius, it gives a black string solution wrapped around the S1.

The near horizon geometry of this configuration is BTZ × S3 where the BTZ black
hole is 3-dimensional anti-de Sitter space with certain identifications [6]. We observe

that the emission rates of neutral particles obtained in the black string background

are the same as that from the 5-dimensional black hole [1, 7], and the near horizon

BTZ geometry has a crucial role in determining the greybody factors [8, 9, 10]. We

thus study the matter fields obtained as perturbations of the given 6-dimensional

supergravity background and obtain the equations of motion of particles in the near

horizon geometry, by considering a AdS3×S3 compactification of the six dimensional
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supergravity. Since BTZ space is locally AdS3, to study the equation of motion of

particles it suffices to study AdS3×S3 compactification. The particles in 6 dimension
are expanded in terms of the harmonic functions on S3, and higher partial wave

objects appear as massive excitations on the BTZ spacetime. We separately study

the behaviour of scalar, fermion and vector particles of the 6-dimensional N = 8

SUGRA spectrum. The fermions and vectors considered here are non-minimally

coupled in six dimensions . We look at arbitrary partial waves for the particles

and the greybody factors are calculated by studying the wave equations in the near

horizon geometry and matching it suitably with the wavefunctions in asymptotically

flat spacetime at a distance r ∼ l from the horizon, where l is the AdS3 radius.

The equation of motion of a minimally coupled scalar near the black hole horizon

reduces to the equation of motion of a massive scalar field in the BTZ background. By

solving this equation of motion, as well as the equation of motion in six dimensions,

far from the horizon, we match the wavefunctions at an intermediate region and

determine the greybody factor. The latter agrees with the greybody factor obtained

for arbitrary partial waves in [11]. The greybody factor calculation for non-minimally

coupled fermions for arbitrary partial waves agrees with the result found previously

in [12]. Here, the matching of the wavefunctions is non-trivial, as we have to solve

the wavefunctions in three separate regions, near intermediate and far to obtain the

greybody factor. The vector gauge fields have not been dealt with previously, and

the emission rate calculation is thus a prediction for the five dimensional black hole.

The near horizon SL(2,R)×SL(2,R) symmetry imposes some interesting restrictions
on the one forms, which we exploit to obtain the solutions of the vector equations of

motion.

Next we replace the entire near horizon geometry of black string solution by an

effective 1+1-dimensional CFT which lies at a finite distance from the horizon, i.e.

at r ∼ l ∼ √r1r5. Here l is a measure of the size of the near horizon geometry, and
r1, r5 are related to the charges of the black hole. A quantum mechanical calculation

of the emission rate is done where a plane wave excites the operators of the CFT. The

correlators of the CFT operators are determined by the AdS/CFT correspondence

according to the prescription given in [13]–[20]. Unlike the other calculations of the

emission rates, [10] where the AdS bulk solution couples to the operators, here it is

the partial wave components of the plane wave which couple to the CFT operators

and excite the CFT. The quantum mechanical calculation using the correlators with

their proper normalisation constants reproduces the emission rates exactly.

In section 2, to fix our notation we review aspects of the six dimensional com-

pactification to BTZ×S3. We determine the fermion and vector equations of motion
on the three dimensional black hole background, and obtain the expression for the

masses due to the orbital angular momentum of the particles. In section 3, the

equations of motion for scalars, fermions and vectors are solved and the greybody

factors are determined. In section 4 we determine the dimension of the operators
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which couple to the above particles and the corresponding correlators with the ex-

act normalisation. The emission rates are then calculated by exciting the operators

using plane waves which are incident on the CFT. Section 5 concludes with a dis-

cussion.

2. Five dimensional black holes and their near horizon geom-

etry

The black hole solutions of string theory that we will consider arise from the low

energy effective action of Type IIB string theory in 10-dimensions, by compactifying

on T 4 × S1. The full 10-dimensional metric is given by [2, 21]

ds2 = f1
−1/2f−1/25

[
−dt2 + (dx5)2 + r20

r2
(
cosh σdt+ sinh σdx5

)2
+ f1 dxidx

i

]
+

+ f
1/2
1 f

1/2
5

[(
1− r20

r2

)−1
dr2 + r2dΩ23

]
, (2.1)

where x5 is along S1 and xi, i = 6, . . . , 9 are the coordinates on the T 4. The functions

f1 and f5 are given by:

f1 = 1 +
r21
r2
, f5 = 1 +

r25
r2
.

The resultant black hole metric in 5-dimensions after Kaluza-Klein reduction

has six parameters, r1, r5, r0, σ, V (volume of the T
4) and R (length of the S1). In

the case of the black hole obtained by wrapping Q5 D-5 branes, Q1 D-1 branes with

momenta n along the 1-D brane the three charges of the black hole viz. Q1, Q5, n

can be re-expressed as:

r21 =
gQ1
V

, r25 = gQ5 ,
r20 sinh 2σ

2
=

g2n

R2V
.

The black hole horizon is at r0. The non-zero field strength in this background is

given by:

Hµνρ = εµνρ
rr21

(r2 + r21)
2 (f1f5)

1/4
, Habc = εabc

r25
r3
(f1f5)

−3/4 (2.2)

Where µ, ν, . . . run over t, x5, r coordinates and a, b, c denote the angular directions.

The metric (2.1) has the interesting property that in the near horizon limit r → r0
and in the so-called dilute gas approximation r1, r5 � r0, rn, it can be split up into

three parts,

ds2 = ds2BTZ + ds
2
S3 + ds

2
T 4 , (2.3)
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where

ds2BTZ = −
∆2

l2ρ2
dt2 +

l2ρ2

∆2
dρ2 + ρ2

(
dφ− ρ+ρ−

lρ2
dt

)2
∆2 = (ρ2 − ρ2+)(ρ2 − ρ2−) (2.4)

is the metric of a (2+1)-dimensional BTZ black hole, which is a solution of Einstein

equation in 3-dimensions with a negative cosmological constant Λ = −1/l2 [6]. We
have made a coordinate change r2 = ρ2−ρ2− to get the above metric. The coordinate
φ, the parameter l and the horizons of the BTZ black hole ρ± are related to the
5-dimensional black hole variables and parameters by the following relations:

φ =
x5

l
, ρ+ = r0 cosh σ , ρ− = r0 sinh σ , l2 = r1r5 . (2.5)

The part ds2T 4 is just the metric on the 4-torus and ds
2
S3 is the metric on the three

sphere with a constant radius l. The BTZ metric includes time, the periodic x5

direction and the radial direction of the 5-dimensional black hole.

The above decomposition forms the basis of the approach we are considering,

in which all thermodynamic properties of the black hole will be attributed to the

‘non-trivial’ BTZ part. Similar decompositions can be done in the case of black

holes in other spacetime dimensions [22, 23]. The relevant near horizon part of the

metric thus preserves SL(2,R)× SL(2,R) symmetry which is absent in the full five
dimensional geometry. In fact as shown in earlier cases, the equation of motion of

the particles in the five dimensional black hole background show this symmetry near

the horizon. The inclusion of the extra direction x5 does not affect this property,

since the extra dimension is a Killing direction and does not change the symmetries

of the equations of motion.

By compactifying the 10 D metric on T 4, the black string solution in 6D is

probed. This is a solution of N = 8 supergravity in 6-dimensions. In D = 6,

N = 8 supergravity theory, the spectrum consists of 40 fermions apart from 5 anti-

self dual, anti-symmetric gauge fields, 16 vector fields, 25 scalar fields and 8 Rarita-

Schwinger fields. Out of these, as seen in (2.2), only one of the anti-symmetric

gauge field strength is non-vanishing apart from the metric background. There is

a SO(5, 5) global symmtery which gets broken due to the black hole background to

SO(4)× SO(5). We look at certain particles in the spectrum, namely the minimally
coupled scalars and non-minimally coupled fermions and gauge fields in 6D. The

scalars correspond to gravitons along the T 4 direction. The scalars satisfy ordinary

Klein Gordon equation in 6D, and on compactification on AdS3 × S3, are expanded
as φ =

∑
Φ(t, r, φ)Y (L0), where Y (L0) are spherical harmonics on S3. The equation

of motion for scalar fields for the partial wave L on S3 satisfies the massive Klein-

Gordon equation

[�−M2]Φ = 0 (2.6)
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in the AdS3 spacetime with the mass µ given in terms of L as [24, 25]

M2 =
1

l2
L(L+ 2)

In the notation of [26] the fermion equation of motion is

i

2
ΓMDMχ

aα − 1
16
P a
ȧ M(γ

ȧ)αβΓ
MΓNψβ−N −

1

24
F ȧ
MNPΓ

MNPγβαȧ χaβ+

+F αα̇
MN

[
(γa)α̇β̇Γ

MNΓPψβ̇+P −
1

4
ΓMNχȧβ− (γa)

α
β(γȧ)

α̇
β̇

]
= 0 , (2.7)

where M,N, . . . represent 6 dimensional world index, a and ȧ, SO(5)× SO(5) vector
index, α, β SO(5) × SO(5) spinor index. The + and − sign denote the chirality of
the fermions. In the above P are related to the kinetic term of the scalars, F a

MNP

is related to the three form field strength, F αα̇
MN are related to the field strengths

of the one form gauge fields. Now we study the compactification of this theory to

AdS3 × S3. From (2.2) it can be seen that that the non-zero background fields, the
three form field strength is given in the near horizon limit by; Ha

µνρ = (1/l)εµνρδ
a5 and

Ha
bcd = (1/l)εbcdδ

a5 where µ, ν, . . . etc indicate the three AdS directions and b, c, d . . .

are the S3 directions. This gives the required equation Rµνρλ = −1/l2(gµρgνλ−gνρgµλ)
for the AdS3 directions and Rbcde = 1/l

2(gbdgce−gcdgbe) for the S3. Next, we factorise
the fermion field χ in terms of an undetermined function of the BTZ coordinates,

times the harmonic functions on the three-sphere. We also work in the representation

where (γ5)χ = χ. In this linearised approximation, the resultant expression is:

ΓMDMχ− 1
12
HMNPΓ

MNPχ = 0 . (2.8)

The expansion in harmonics of S3 is of the form χ =
∑
χ(p,±1/2)Y (p,±1/2), and obey

∇/Y (p,±1/2) = ±ı(p+ 1)Y (p,±1/2), where p is a half integer, labeling the spin represen-
tation. Plugging in this expansion in the equation of motion (2.7), and using the

decomposition of 6-dimensional ΓM matrices into 3-dimensional ones as given in [25],

the two-component equation takes the form

γµDµχ
′ +
1

l
(∓(p + 1)− 1)χ′ = 0 , (2.9)

where χ(p,±1/2) = χ′, which can be written as:

γµ
(
∂µ + ωµ +

1

l

[
L+
1

2

])
χ′ = 0 . (2.10)

where p = L + 1/2, and we have chosen one of the eigenvalues of the spherical

harmonic (choosing the other sign gives L + 1/2 + 2 for the mass term). The spin

connections correspond to BTZ spacetime. Note that, here L stands for the orbital

5
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angular momentum, and in [9], the calculations were done for L = 0. From the

above it also follows that the lowest mass term in the BTZ space time is non zero

and equals 1/2. This is our basic set of equations for the determination fermionic

of the greybody factor. It is interesting that on plugging the three dimensional spin

connections and using the relations (2.5), it can be shown that this equation is the

same as that of the fermionic fluctuations in the background of the 5-dimensional

black hole in the near horizon limit [12]. We confine ourselves to particles without

any Kaluza-Klein momentum along the compact direction x5. In other words, the

particles belong to the s-wave sector with respect to the BTZ black hole. Inclusion

of the azimuthal quantum number along x5 will imply charged fermion emission in

five dimensions.

Similar decomposition can be made for the vector equations of D = 6, N = 8

supergravity into AdS3 × S3. The exercise has been done in [27]. Note that this

vector couples to the threeform, and hence its linearised equation of motion reduces

to:

∇MF a
MN −

1

6
εPQRSTN (γa)

α
βF

β
PQH

a
RST = 0 . (2.11)

The gauge fields when expanded in the spherical harmonics Aµ =
∑
A
(L,±1)
µ Y (L,±1)

reduces to:

∇ν∂[νAλ] − 1
l
ε νρλ ∂[νAρ] =

1

l2
L(L+ 2)Aλ , (2.12)

where we have dropped the indices (L,±1). These set of equations correspond to a
massive gauge field in the BTZ background, and we solve for this to get the required

greybody factor.

3. Greybody factors

In this section, we solve the scalar, fermion and vector equations of motion of the

previous sections to find the absorption cross-sections of the black hole for these

particles. Since we study particles of various spins, a Newman-Penrose formalism

would have been ideal for the study of particle propagation on the BTZ background.

However, this has not been developed in three dimensions, and we separately consider

the various equations of motion and find the solutions in the near horizon and in the

asymptotic regions.

3.1 Scalar greybody factor

The scalar greybody factor for arbitrary partial waves for the five dimensional black

hole was found in in [11]. Here, we exploit the near-horizon (BTZ) geometry of the

black holes to solve the scalar wave equations. As stated before, the massless scalar

wave equation for an arbitrary partial wave L in the 5D background can be reduced

to the massive Klein-Gordon equation in the BTZ background. This equation was

solved for the massless case in [8].

6
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From (2.6) and (2.4), we we get the massive s-wave scalar equation in BTZ

background:
1

ρ

d

dρ

(
∆2

l2ρ

dΦ

dρ

)
+
ω2l2ρ2

∆2
Φ−M2Φ = 0 . (3.1)

Defining

z =
ρ2 − ρ2+
ρ2 − ρ2−

and assuming Φ(xµ) ∼ eiωtΦ(ρ), the equation takes the form

z(1− z)d
2Φ

dz2
+ (1− z)dΦ

dz
+

[
A

z
−B − M2

4(1− z)
]
Φ = 0 , (3.2)

where

A =

(
ω

4πTH

)2
, B =

(
ρ2−
ρ2+

)
A

and

TH =
ρ2+ − ρ2−
2πl2ρ+

is the Hawking temperature of the BTZ black hole. Plugging in the ansatz

Φ(z) = zm(1− z)nF [z] (3.3)

we get

z(1− z)d
2F

dz2
+ [(2m+ 1)− (2m+ 2n+ 1)z] dF

dz
+

+

[
m2 + A

z
+
n(n− 1)−M2/4

1− z − (m+ n)2 −B
]
F = 0 (3.4)

Setting the coefficients of the 1/z and the 1/(1 − z) terms to zero, as required by
the continuity with the solution very close to the horizon [28], the above equation

reduced to the familiar hypergeometric equation

z(1− z)d
2F

dz2
+ [(2m+ 1)− (2m+ 2n+ 1)z]dF

dz
− [(m+ n)2 +B]F = 0 . (3.5)

Thus, the final solution is:

Φ(z) = zm(1− z)nF [α, β; γ; z] (3.6)

where

m = −i√A , n = −L
2

α = −i
(√

A−√B
)
+ n , β = −i

(√
A+
√
B
)
+ n

γ = 1− 2i√A (3.7)

7
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and we have substituted M2 = L(L+2)/l2. The flux of particles into the black hole

can be calculated from the formula

F0 = 2π
i

[
∆2

ρ
Φ∗
dΦ

dρ
− c.c.

]
(3.8)

which yields

F0 = 4πωl2ρ+ . (3.9)

Now to find the incoming flux at infinity, we have to solve the wave equation at

very large distances from the black hole, where space time is almost flat. The corre-

sponding wave equation is solved in the six dimensional black string background, with

the metric given in eq. (2.1), with r →∞. The solution is expanded as∑Φ(r)Y (L0),
where the Y (L0) are the spherical harmonics on S3. Using ∇2Y (L0) = −L(L+2)Y (L0),
where ∇2 is the Laplacian on the S3, the radial equation of motion follows:

1

r3
d

dr

(
r3
dΦ

dr

)
+

[
ω2 − L(L+ 2)

r2

]
Φ = 0 (3.10)

having the ingoing Bessel solution:

Φ =
1

r
(AJL+1(ωr) +BNL+1(ωr)) . (3.11)

The asymptotic expansions of the Bessel functions yields the following flux at

infinity:

F∞ = 2
[|A|2 + |B|2 + i(A∗B − B∗A)] . (3.12)

Since the far solution should smoothly go over to the near horizon (BTZ) solution,

we investigate the nature of the solutions near the region r ∼ l, till which region we

assume that the AdS3 geometry is a good approximation to the black hole spacetime.

From eq. (2.5) and the dilute gas approximation, near r ≈ l � r0 sinh σ, we get ρ ∼ r

and hence the angular parts of the wavefunctions are the same. Thus, we simply

compare the radial wavefunctions. The intermediate region is obtained by setting

z → 1 and rω � 1 in the hypergeometric and the Bessel solutions respectively to
obtain the matching condition [29, 30]:

A = N−L/2(L+ 1)(L!)2
(
2

ω

)L+1
Γ(γ)

Γ(γ − α)Γ(γ − β) . (3.13)

where N = ρ2+−ρ2− = r20. The other constant B is much smaller by factor of (Nω2)L,
and hence is neglected in the subsequent calculations.

A interesting point to note is that if we solve for the scalar wavefunction in the

asymptotic AdS space, the solutions are obtained as Φ = JL+1(ωl
2/ρ)+NL+1(ωl

2/ρ),

and thus at ρ = r = l, this has the exact polynomial behaviour as the flat space wave

functions as the arguments of the Bessel functions both reduce to ωl. Although we

8
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do not use the scalar wave functions in asymptotically AdS3 space to determine the

greybody factor, it would be interesting to check whether the above observation has

a deeper significance, since the location r = l has no apparent physical significance.

The greybody factor is then evaluated using standard methods of calculation of

absorption crossections by taking the ratio of the fluxes. Thus from (3.9), (3.12)

and (3.13), the greybody factor is:

σabs =
4π

ω3
(L+ 1)2

F0
F∞ (3.14)

=
2π

(L!)4

(ω
2

)2L NL+1

ω
sinh

ω

2TH

∣∣∣∣Γ
(
1 +

L

2
+

iω

4πT−

)
Γ

(
1 +

L

2
+

iω

4πT+

)∣∣∣∣
2

,

where
1

T−,+
≡ 1

TH

(
1− ρ−

ρ+

)

and we have included the plane wave normalisation factor 4π
ω3
(L+ 1)2. We have also

used the identity |Γ(1− ix)|2 = πx/ sinh πx. The above expression for the greybody
factor reduces to the area of the black hole for L = 0, T− � T+, and ω → 0 [31].

3.2 Fermion greybody factor

We shall solve the equation of motion of the fermions equation (2.10) on the BTZ

background, in a suitable set of coordinates. We define ρ2 = ρ2+ cosh
2 µ − ρ2− sinh2 µ

and x± = ±ρ±t/l ∓ ρ∓φ and assume the following form of the wavefunctions:

χ′1,2 =
e−i(k

+x++k−x−)
√
cosh µ sinhµ

ψ1,2 ,

where (1, 2) refer to the two components of the spinor. The spin connections for the

BTZ-metric are:

ωx+ = − 1
2l
cosh µσ01 , ωx− =

1

2l
sinh µσ21

The equation of motion for ψ takes the following form:

γ1∂µψ + γ
0 ilk

+

sinh µ
ψ + γ2

ilk−

coshµ
ψ +

(
L+
1

2

)
ψ = 0 . (3.15)

Here we work in the representation, γ1 = σ1, γ0 = ıσ2, γ2 = σ3. Then we define a

new set of wavefunctions ψ′1,2 as

ψ1 + ψ2 =
(
1− tanh2 µ)−1/4√1 + tanhµ (ψ′1 + ψ′2) (3.16)

ψ1 − ψ2 =
(
1− tanh2 µ)−1/4√1− tanhµ (ψ′1 − ψ′2) , (3.17)

9
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whence the Dirac equation assumes the form:

(1− y2)dyψ′2 − i
(
k+

y
+ k−y

)
ψ′2 = −[L+ 1− i(k+ + k−)]ψ′1 (3.18)

(1− y2)dyψ′1 + i
(
k+

y
+ k−y

)
ψ′1 = −[L+ 1 + i(k+ + k−)]ψ′2 , (3.19)

where we have defined y = tanhµ. Next, we choose the following ansatz

ψ′1,2 = B1,2z
m1,2(1− z)n1,2F1,2(z) , (3.20)

where B1,2 are arbitrary constants z = y
2 and F (z) are yet undetermined solutions.

Substituting in the Dirac equations, separating the equations for ψ′1 and ψ
′
2 and

demanding continuity of this solution with the solution obtained very close to the

horizon, we finally obtain the following hypergeometric differential equations for

F1(z) and F2(z):

z(1− z)d
2Fi

dz2
+ [(2mi + 1/2)− (2mi + 2ni + 3/2)z]

dFi

dz
+

−[mi(mi + 1/2) + ni(ni + 1/2) + 2mini − ilk− − l2k2−
4

]Fi = 0 . (3.21)

The constants mi, ni, the hypergeometric parameters αi, βi, γi and the integration

constants Bi are tabulated below

m1 =
1 + ilk+

2
= m2 + 1/2

n1 = −1
2
(L+ 1) = n2

α1 = m1 + n1 +
1

2
+
ilk−
2
= α2 + 1

β1 = m1 + n1 − ilk−

2
= β2

γ1 = 2m1 +
1

2
= γ2 + 1

B2 = −
[

γ − 1
α− (2n+ 1)

]
B1 . (3.22)

In our subsequent calculations, we shall normalise B1 = 1. This solution is an exact

solution for the BTZ space time and it approximates the fermionic wave function

near the horizon.

The flux into the black hole can be calculated using the ρ→ ρ+, z → 0 limit of
this solution. The flux of particles entering the horizon is

F0 =
√−gJρ|ρ+ =

√−gψ̄eρ1γ1ψ . (3.23)
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Substituting the above solutions it is clear that ψ′2 dominates the flux, and the latter
turns out to be

F0 = N
∣∣∣∣ γ − 1
α− (2n+ 1)

∣∣∣∣
2

. (3.24)

Now, to find the incoming flux at infinity, we solve the radial Dirac equation in

the 6-dimensional metric (2.1) away from the horizon, i.e. taking r2n/r
2, r20/r

2 → 0.
Then the metric assumes the following form:

ds2 = − 1√
f1f5

dt2 +
1√
f1f5

dx25 +
√
f1f5
(
dr2 + r2dΩ2

)
. (3.25)

The spin connections for this metric are:

w01t = −w51x5 =
1

4
√
f1f5

[
r21
r3f1

+
r25
r3f5

]
, wi1b =

1

2
− r

4

[
r21
r3f1

+
r25
r3f5

]
,

where b stands for the S3 world indices and i the S3 tangent space index. Now, in

six dimensions the wavefunction is a four component chiral spinor. We start with

the appropriate equation of motion in 6D as given in (2.8). Including all the terms,

the equation of motion is:[
(f1f5)

1/2 Γ0∂0 + Γ
1

(
∂r +

3

2r
+
1

8
dr(ln(f1f5))

)
+

+ (f1f5)
1/2 Γ5∂x5 + Γ

bDb

]
χ + g(r)χ = 0 (3.26)

Where Db = db + wb, where b denotes the S
3 directions, and wijb σij is the spin

connection with the i, j indices running over tangent space S3 indices only. The

function

g(r) =
1

12
ΓMNPHMNP = −1

4
[d ln(f1f5)]

√
f1

f5
.

Using the decomposition of Γ matrices into SO(2, 1) and SO(3) parts we can separate

out the equation of the components of the 6D chiral wavefunction into two sets of two

component wave functions [25]. Again we expand in terms of the spherical harmonics

on S3 as: χ =
∑
χ′(xµ)Y , where χ′ are two component wave functions. Further,

χ′ = ei(ωt−mφ) (f1f5)
−1/8

r−3/2ψ′′(r) is defined. Then from (3.26), we get:[
(f1f5)

1/2γ0∂t + γ
1∂r + (f1f5)

1/2γ2∂x5

]
ψ′′ =

[
(L+ 3/2)

r
− g(r)

]
ψ′′ (3.27)

Separating the components gives us the equations:

(
dr − (f1f5)1/2ıω

)
ψ′′1 =

(
−L+ 3/2

r
+ g(r)− (f1f5)1/2ım

)
ψ′′2 ,

(
dr + (f1f5)

1/2ıω
)
ψ′′2 =

(
−L+ 3/2

r
+ g(r) + (f1f5)

1/2ım

)
ψ′′1 . (3.28)
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Defining, ψ′′1+ψ
′′
2 = (f1f5)

−1/4ψ+ and ψ′′1−ψ′′2 = (f1f5)1/4ψ− and with the additional
approximation g(r) = −1/4dr ln(f1f5), the equations reduce to:(

dr +
L+ 3/2

r

)
ψ+ = i(f1f5)ωψ

−

(
dr − L+ 3/2

r

)
ψ− = iωψ+ , (3.29)

where we have put m = 0. The second order differential equation has the following

form for ψ− [
d2r −

(L+ 3/2)(L+ 1/2)

r2
+ ω2(f1f5)

]
ψ− = 0 . (3.30)

We solve this equation in two regions: r ∼ l and r ≥ l.

Intermediate region In the first region r ∼ l, which we call the intermediate

region, we take ω2f1f5 ≈ ω2(r21 + r
2
5)/r

2 + ω2l4/r4 for low energy emissions. The

differential equation in terms of x = 1/r has the form:[
d2x +

2

x
dx − (L+ 3/2)(L+ 1/2)− (r

2
1 + r

2
5)ω

2

x2
+ ω2l4

]
ψ− = 0 . (3.31)

The solution for the above differential equation is the Bessel function x−1/2Zν(ωl2x)
where, ν =

√
(L+ 1)2 − (r21 + r25)ω2 ≈ L+1 for low energy emissions ωl� 1. Hence

explicitly the solutions are:

ψ− =
√
r

[
a1JL+1

(
ωl2

r

)
+ a2NL+1

(
ωl2

r

)]
. (3.32)

And the coupled differential equation for ψ+ yields:

ψ+ =
il2

r3/2

[
a1JL

(
ωl2

r

)
+ a2NL

(
ωl2

r

)]
.

For r < l, the function f ≈ l4/r4 and in the limit we are considering, i.e. ωl� 1, r ∼
l, we can do a small argument expansion of the bessel function. Hence

ψ′′1 + ψ
′′
2 ≈

il√
r

[
a1
1

L!

(
ωl2

2r

)L
+ a2(L− 1)!

(
2r

ωl2

)L]
,

ψ′′1 − ψ′′2 ≈
l√
r

[
a1

1

(L+ 1)
!

(
ωl2

2r

)L+1
+ a2L!

(
2r

ωl2

)L+1]
. (3.33)

Which gives the leading order behavior of

χ′1(2) ∼ a2L!

(
ωl2

2

)
rL−1/2 . (3.34)
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For r > l, f1f5 ≈ 1 and hence the above wavefunctions go to:

ψ′′1 + ψ
′′
2 ≈

1

r3/2

[
a1
1

L!

(
ωl2

2r

)L
+ a2(L− 1)!

(
2r

ωl2

)L]
,

ψ′′1 − ψ′′2 ≈
√
r

[
a1

1

(L+ 1)!

(
ωl2

2r

)L+1
+ a2L!

(
2r

ωl2

)L+1]
. (3.35)

Which gives the wavefunction in the leading powers of r as:

χ′1(2) = a2L!
(
ωl2

2

)L+1
rL . (3.36)

Far region. For r > r1, r5, we approximate f1f5 ≈ 1, and the second order differ-
ential equation for ψ+ is:

d2rψ
′+ +
[
ω2 +

(L+ 2)2 − 1/4
r2

]
ψ′+ = 0 . (3.37)

This has the solution:

ψ′+ =
√
ωr (a′1JL+2(ωr) + a

′
2NL+2(ωr)) . (3.38)

Now, we can use this solution in the coupled equation (3.29) and get

ψ− = ı
√
ωr [a′1JL+1 + a

′
2NL+1] .

We now see, how the wave functions behave and obtain matching conditions for their

smooth joining. Using the expansion for Bessel functions we obtain the leading order

behavior of the wavefunctions as: r ∼ l:

χ′1(2) = a
′
1

√
ω

(L+ 1)!

(ω
2

)L+1
rL (3.39)

and For r →∞ the asymptotic expansion of the bessel functions become important
and the wavefunctions go as;

χ′1(2) = a
′
1

1√
2πr3

e−ıωr . (3.40)

The flux at infinity entering the black hole spacetime is calculated from the asymp-

totic expansions of the Bessel functions, which is given by

F∞ = |a
′
1|2
2π

. (3.41)
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Matching. To compare with the near horizon wave function solved in the x+, r, x−

coordinates, we have to use the properties of the spinor under such transformations

from t, r, φ coordinates. This gives a rotation on the two component wavefunction

by a matrix :[
cosh

(
ξ

2

)
+ i sinh

(
ξ

2

)
σ2

]
χ , cosh

ξ

2
=

√
ρ+ + ρ−
N1/4

+

√
ρ+ − ρ−
N1/4

.

The near horizon solution, when extrapolated to z → 1 (keeping the leading term in
the expansion) is

χ′1(2) →
√
ρ+ − ρ−L! 21/2N−L/2GρL−1/2 , (3.42)

where

G =
Γ(3/2 + iω/2πTH)

Γ([L+ 3]/2 + iω/4πT+)Γ([L+ 2]/2− iω/4πT−) ,

Thus comparing with the intermediate solutions and then with the far solution using

equations (3.34), (3.36) and (3.39) we get:

a′1 = 2
L+3/2(L+ 1)L!2ω−L−3/2N−(L/2)G . (3.43)

Substituting in F∞ we finally get

σabs =
π(L+ 1)(L+ 2)

ω3
F0

F∞

=
π(L+ 2)NL+1

2(L+ 1)(L!)4 (ρ+ − ρ−)
(ω
2

)2L ×
× cosh

(
ω

2TH

)∣∣∣∣Γ
(
L

2
+
1

2
+

iω

4πT+

)
Γ

(
L

2
+ 1 +

iω

4πT−

)∣∣∣∣
2

, (3.44)

where, we have used the fact that |Γ(1/2+ ix)|2 = π/ cosh πx and we have multiplied
by the appropriate plane wave normalisation [12]. The wavefunction corresponding

to the S3 spinor Y p,−1/2 gives rise to a greybody factor with T+ → T− and vice-versa.
Hence the total greybody factor is a sum of two terms, one due to each set of two

component fermions.

3.3 Vector greybody factor

The vector equation of motion is given in (2.12). The higher partial wave in five

dimensions gives a mass term for the gauge field in three dimensions. In addition,

there is another set of equations as given in [27]:

ε νρλ ∂νAρ = −L
l
Aλ . (3.45)

This is derived from the representation theory of one forms on SL(2,R) manifolds.

Since the BTZ space is locally anti-de Sitter, whose covering group is SL(2,R) ×
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SL(2,R), the equation of motion gets supplemented by the above. On substituting

the above equation in (2.12), the vector equation of motion reduces to (for conve-

nience, we set the AdS radius l = 1 in the rest of this section):

∇ν∂[νAλ] = L
2Aλ . (3.46)

It is to be observed that (3.46), can now be derived from (3.45) by operating with

∇ on both sides. There is also the consistency condition:
Aν;ν = 0 . (3.47)

We would like to solve the above equations of motion in the background of the BTZ

black hole. In the coordinate system (µ, x+, x−) that we had adopted previously, the
+ and − components of (2.12) can be written as:
∂2A++ (tanhµ−cothµ)∂µA++ 2 cothµ∂+Aµ− 2 tanhµ∂[−Aµ] = L(L+2)A+, (3.48)

∂2A−− (tanhµ−cothµ)∂µA−+ 2 tanhµ∂−Aµ− 2 cothµ∂[+Aµ] = L(L+2)A−, (3.49)

where ∂2 ≡ gαβ∂α∂β = ∂
µ∂µ + ∂

+∂+ + ∂
−∂−, we have taken ε+µ− = 1 and have used

the gauge condition (3.47). Defining

A1,2 = A+ ± A− (3.50)

it is clear that the equation for A2 gets decoupled by adding (3.49) and (3.48). To

decouple the equation for A1, we use the equations (3.45) to substitute for the Aµ
terms in (3.48) and (3.49). As a result, we get the following equations for the A1
and A2 (These set of equations can also be derived directly from (3.46):

∂2Ai + (tanhµ+ cothµ)∂µAi = (L
2 − 2εiL)A1 , (3.51)

where i = 1, 2, ε1 = −1, ε2 = 1. Next, we substitute the solution
Ai = e

ik+x
++k−x−Ai(µ) ,

which is consistent with the isometries of the metric. Substituting in (3.51), and

defining z ≡ tanh2 µ we get:

z(1− z)d
2Ai

dz2
+ (1− z)dAi

dz
+

[
k2+
4z
− k2−
4
− L2 − 2εiL
4(1− z)

]
Ai = 0 . (3.52)

Next, we substitute the ansatz

Ai = eiz
mi(1− z)niFi(z)

in the above equation to obtain (ei s are constants)

z(1− z)d
2Fi

dz2
+
[
(1 + 2m)− z(1 + 2m+ 2n)

]dFi
dz
+

+

[
m2 + k2+/4

z
+
n(n− 1)− (L2 − 2εiL)/4

1− z
]
F −
[
(m+ n)2 +

k2−
4

]
F = 0 . (3.53)
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Continuity with the corresponding wave equations very close to the horizon (z → 0)
gives harmonic solutions in log z of the form Ai = e

in
i e

ık1logz+eouti e−ık2 log z. To obtain
a ingoing solution, we put eouti = 0. To ensure that (3.53) smoothly joins with this,

we determine m and n and find that the coefficients of 1/z and 1/(1−z) terms vanish.
The residual part of (3.53) is simply the hypergeometric differential equation. Thus

the functions Fi(z) are the hypergeometric functions F [ai, bi; ci; z] and the complete

solution for the gauge potentials can be written as

Ai = eiz
mi(1− z)niF [ai, bi; ci; z] . (3.54)

We can express the various parameters in terms of k± and L:

mi = −ik+
2

n1 =
L

2
+ 1 , n2 =

L

2
,

a1 = − i
2
(k+ − k−) + L

2
+ 1 , b1 = − i

2
(k+ + k−) +

L

2
+ 1 ,

a2 = a = − i
2
(k+ − k−) + L

2
, b2 = b = − i

2
(k+ + k−) +

L

2
,

ci = c = 1 + 2mi . (3.55)

A± can now be determined from the definitions (3.50) and the solution for Aµ can
be constructed from the µ-component of (3.45):

Aµ =
1

L coshµ sinhµ
∂[+A−] . (3.56)

The important point to note is that the two components Ai satisfy equations which

are scalar equations in the BTZ background. The spin dependence of the solutions is

not obvious. The constants e1 and e2 are not independent by virtue of the auxiliary

equations (3.45) and the consistency conditions. To determine the ratio, we use the

equation with µ = + in (3.45).

− tanhµ (∂µA− − ∂−Aµ) = LA+ . (3.57)

On substituting Aµ from (3.45), and going the z coordinates, the equation reduces

to in terms of A1 and A2 as,[
2zdz − 2k−k2

L
+

L

1− z
]
A1 =

[
2zdz − 2k−k2

L
− L

1− z
]
A2 . (3.58)

On substituting the solutions for Ai, the above simplifies to:

e1

[
2abz

c
F (a+ 1, b+ 1; c+ 1; z) +

(
a + b− 2k−k2

L

)
F (a, b; c; z)

]
=

= e2(1− z)
[
2z(a + 1)(b+ 1)

c
F (a+ 2, b+ 2; c+ 1; z)+ (3.59)

+

(
a+ b+ 2− 2k−k1

L
− 2(L+ 1)
(1− z)

)
F (a+ 1, b+ 1; c, z)

]
.
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Using a series of recursion relations, we get some simplified expressions [29]. The

final expression is written below:

e1

[
2bF (a, b+ 1; c; z) +

(
a− b− 2k−k2

L

)
F (a, b; c; z)

]
=

=
e2

a
[2(b− L)a+ (a− b)L+ 2k−k1]F (a, b+ 1; c; z)

+
e2

a

(
a− b+ 2k−k1

L

)
(a− L)F (a, b, c; z) . (3.60)

From the above, the ratio of constants are now easily determined to be:

e2
e1
= −b

∗

a
, (3.61)

where k1,2 ≡ [k+ ± k−]/2. Plugging in this ratio of constants into the solutions and
using appropriate recursion relations, the wavefunctions can be written as

A+ =
e2

2b∗
(1− z)L/2zilk+/2 [−LF (a, b+ 1; c; z) + (L− ik+)F (a, b; c; z)]

A− = − e2

2b∗
(1− z)L/2zilk+/2 [LF (a, b+ 1; c; z) + ik−F (a, b; c; z)] (3.62)

In the above, the solution is actually the real part of the wave function determined

above. The flux of the vector field at the horizon of the black hole is calculated using

the energy momentum tensor for the massive vector field. Since our wave function is

Re Ai, the energy momentum tensor which involves products of the fields will have

the square terms proportional to e2iωt and e−2ıωt. Under time averaging, these terms
go to zero, and hence the steady rate of particle influx is given by cross terms :

Tνλ = −1
4
(|F |2 + 2m2|A|2)gνλ + FνσF ∗ σλ +m2AνA

∗
λ , (3.63)

where m stands for the mass. For our purposes m2 = L(L + 2). To determine the

flux, we incorporate the red-shift factor and integrate over the horizon area to get:

F0 = l2N2L

2ρ+
k2+

∣∣∣e2
b

∣∣∣2Ω , (3.64)

where N ≡ ρ2+−ρ2−, k+ = ω/(2πlTH), and we have restored the radius of anti-desitter
space. Also Ω = 8π2 denotes the factors which come from the angular integrals. Note

that the flux vanishes for L = 0, since the latter is a not a dynamical mode [27].

Before determining the waveform at infinity, we solve (3.46) in the asymptotic

AdS3 metric in the coordinates (t, ρ, φ)as an interesting exercise, as it sheds light on

the boundary behavior of the wavefunction in the BTZ geometry. The wavefunctions,

Ai = e
ıωtBi are solved, with the help of (3.45) as:

Bi(x) =
√
ρ

[
ciJνi

(
ωl2

ρ

)
+ diNνi

(
ωl2

ρ

)]
, (3.65)
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where Jν and Nν are Bessel functions of the first and second kind respectively, ν1 =

L − 1 , ν2 = L + 1 and ci, di are arbitrary constants. Further, consistency with the

equations (3.45) requires that c1 = −c2 ≡ c and d1 = −d2 ≡ d.

To determine the wavefunction at asymptotic infinity which joins with the BTZ

wavefunction, we need to look at the vector equation of motion in six dimensions. As

given in eq. (2.11), the vector equation of motion involves all the other Aa components

which are scalar in the t, r, φ plane as well as the HMNP three form field strength

in six dimensions. Since we are interested in that part of GBF which is due to the

three dimensional vectors, we take N = µ in eqn 2.11 and take the limit r → ∞.
The equation of motion reduces to:

∇νFµν +∇aFaµ = 0 , (3.66)

where we have kept terms of O(1/r2). In six dimensions HMNP = εijkldlf5 where

εijkl is the flat space epsilon tensor along the four non-compact directions xi, which

gives the second term in equation (2.11) to be order (1/r3) form (2.2) and hence

can be ignored. In the gauge ∇MAM = 0, we assume that ∇νAν = ∇aAa = 0.

The main observation is that the Aa’s decouple in this gauge. For the wavefunctions

Aµ = e
iωteimφA′µ(r)/r

3/2, the equation of motion for the m = 0 case is of the form:

∂2rA
′
t,φ +

[
ω2 − (L+ 1)

2 − 1/4
r2

]
A′t,φ = 0 . (3.67)

The solutions are:

A′t =
1

r
[a1JL+1(ωr) + a2NL+1(ωr)]

A′φ =
1

r
[a′1JL+1(ωr) + a

′
2NL+1(ωr)]

A′r =
1

r3
(−ıω)

∫ ∞
r

r′3At(r′)dr′ . (3.68)

It is interesting to note that the wavefunctions determined here do not share the exact

polynomial nature of the wavefunction obtained in (3.65) at r = ρ = l, as in the case

of scalars. The reason behind this is that due to the loss of SL(2,R) × SL(2,R)
symmetry, the equations (3.45) are no longer valid for the asymptotic metric. Thus

the wavefunctions match with each other only in leading order in ωr. Let us find

the relation between the coefficients of the solutions (3.54) and (3.68) for which,

we compare the two solutions in the region z → 1, and rω � 1. Using standard
results for the behaviour of hypergeometric functions as z → 1, we find the leading
behaviour of the wave functions as [30]:

A+, A− → e2
2b∗
(N)−L/2LΓ(L)Γ(c)
Γ(a)Γ(b+ 1)

ρL . (3.69)
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We match the solutions with the far region wavefunctions using the relation: Atl =

ρ+A+ − ρ−A− which gives:

a1l = a
′
1 =

e2
2b∗ (ρ+ − ρ−)N

−L/2
(ω
2

)−(L+1)
Γ(L+ 2)Γ(L+ 1)E1 (3.70)

Where E1 = Γ(c)/(Γ(a)Γ(b + 1)). The other constants are negligible and hence

ignored. The solutions go as A′i ∼
√
1/2πωe−iωr at large distances. The flux,

determined from equation (3.63) is:

F∞ = − ω

2π
l2|a1|2Ω . (3.71)

Taking the ratio of the near horizon and asymptotic fluxes (3.64) and (3.71) and

using the above relations for the ratio of the constants, we finally get the probability

of absorption of the Lth partial wave as

PL = F0F∞ =
πLk+2NLω2L+1

l2ρ+22L(ρ+ − ρ−)2(Γ(L+ 2)Γ(L+ 1))2|E1|2 . (3.72)

This is the general result for the partial wave L. It is clear that the evaluation of the

gamma-functions will give rise to the familiar form of the greybody factor with ther-

mal distribution functions corresponding to two incoming particles and one outgoing

particle. The latter always is always associated with a Bose distribution function, as

can be seen from the relation |Γ(c1)|2 = |Γ(1+ω/2πTH)|2 = (ω/2TH)/ sinh(ω/2TH).
However, the nature of the ‘ingoing’ distribution functions depend on the value of L

that one considers. In particular, on substituting the values of a and b from (3.55)

in P, we find that the the gamma-functions in the numerator correspond to Fermi
distributions for odd-L and bose distributions for even-L. Thus, depending on the

partial wave, the vector particle can be thought of arising out of the interactions of

two bosons or two fermions.

The greybody factor or the absorption coefficient of the black hole is determined

by multiplying by the plane wave factor as:

σabs =
2LNL+2

(L!)422L
ω2L

l2ρ+TH(ρ+ − ρ−)2 ×

×sinhω/TH
ω

∣∣∣∣Γ
(
L

2
+

iω

4πT+

)
Γ

(
L

2
+ 1 +

iω

4πT−

)∣∣∣∣
2

. (3.73)

If we include rest of the components of the six dimensional vector, i.e. Aa, then

the total GBF will involve a sum of the individual greybody factors. The greybody

factors due to Aa are same as that of the scalars. Since those terms do not contain

the spin dependence, we ignore them.
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4. CFT description

The decay rates are obtained from the above greybody factors by multplying with

the appropriate Planck or Fermi-Dirac distributions. It has been known for long that

the these decay rates can be reproduced form a CFT calculation using appropriate

conformal operators. Earlier, the dimensions of the CFT operators were guessed from

the structure of the decay rates [32, 33]. However, using the AdS/CFT correspon-

dence, the dimension as well as the exact correlators with correct normalisations can

be determined using prescriptions given in [13, 14, 15, 16, 20]. Here we rely on the

correspondence to determine the correlators. We note that the near horizon approx-

imation of the black holes can be used at most till r ∼ l. Though the near horizon

metric will receive corrections as r approaches l, we ignore them in this region. The

correlators are determined in Poincare coordinates for convenience.

The Poincare coordinates are related to the BTZ coordinates by the following

relations:

w± =
(
ρ2 − ρ2+
ρ2 − ρ2−

)1/2
e2πT±(t±φl) , x0 =

(
N

ρ2 − ρ2−

)1/2
eπT+(t+φl)+πT−(t−φl) .

The metric in Poincare coordinates is:

ds2 =
l2

x20

(
dx20 + dw

+dw−) (4.1)

The Klein-Gordon equation on this background can be written in the following form:[
∂2x0 −

1

x0
∂x0 + 4∂+∂− −

L(L+ 2)

x20

]
φ = 0 (4.2)

Substituting:

φ =

∫
d2wφk(x0)e

i~k. ~w . (4.3)

The solutions which are ingoing or regular at the black hole horizon are:

φk(x0) = ax0KL+1(kx0) ,

where, k = 4k+k− and a is an arbitrary constant of integration. To determine the
correlator corresponding to the above scalar field and look at the bahavior of the

wavefunction at r = l, which implies x0 ∼ r0/l ≈ 0 in the dilute gas approximation.
The boundary of the AdS field is taken at x0 = ε where ε is infinitesimally small and

set set φk(ε) = 1. The action is:

I =
1

2

∫
d2wdx0

1

2x30

[
gµν∂µφ∂νφ+m

2φ2
]
. (4.4)
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On partially integrating, the boundary term from this action at x0 = ε is:

IB =

∫
d2w
1

2ε
lim
x0→ε

φdx0φ (4.5)

On using (4.3) in the above, and using the solutions for φk(x0), the action (Fourier

component) consists only of the boundary term at x0 = ε. The Fourier component

thus is:

lim
x0→ε

ε−1δ(k + k′)
KL+1(kx0)

KL+1(kε)
dx0

x0KL+1(kx0)

εKL+1(kε)
,

Using the expansion for

Kn(kx0) =
1

2

k=∞∑
k=0

(−1)k (n− k − 1)!
k!

(z
2

)2k−n
+

+ (−1)n+1
k=∞∑
k=0

1

k!(n+ k)!

(z
2

)n+2k [
ln
z

2
− 1
2
Ψ(k + 1)− 1

2
Ψ(k)

]
, (4.6)

the expression reduces to:

2(L+ 1)

(L+ 1)!L!

(
k

2

)2L+2
ε2L+1 ln

kε

2

The leading non-analytic term has a ln(kε) dependence. We keep the coefficient of

the term with ε dependence as ε2L+1 ln ε and Fourier transform to position space to

get the correlator

Gs(w,w′) = 2(L+ 1)2
1

|~w − ~w′|2L+2 (4.7)

For the fermionic correlators, we do a calculation similar to that done in [16, 18].

The boundary is taken at ε. The action is taken as:

I =

∫
d2wdx0

1

2x30
ψ̄(∇/+ L+ 1/2)ψ + C

∫
d2wψ̄ψ , (4.8)

where C is a constant, which gets fixed when we try to obtain exact matching. The

solution of the equation of motion in the representation of γ matrices where γ0 is

diagonal, the two components of ψ are:

ψ1 =

∫
d2wei

~k. ~wa1KL(kx0) , ψ2 =

∫
d2wei

~k. ~w iγ.
~k

k
KL+1(kx0) . (4.9)

On specifying one of the components at x0 = ε, the other component also gets related

to it. Using the above solutions, and substituting in the boundary term of the action,

one Fourier component is read as:

lim
x0→ε

δ(k + k′)
~k · γαβ
k

KL(kx0)

KL+1(kε)
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Taking the expansion for Kn as given in equation (4.6), and keeping the coefficient

of the ε2L+1 ln ε term, the greens function in the Fourier transformed space is read

off as:

Gf(w,w′)αβ = (L+ 1)
(~w − ~w′) · γαβ
|~w− ~w′|2(L+2) (4.10)

Where αβ stand for spinor indices. The correlator has also been determined in [18].

To find out the correlators for the CFT operators corresponding to the vectors,

it is useful to employ the methods of [16, 19]. We solve the vector equations in AdS3
space, in Poincare coordinates. The equation of motion for A0 =

∫
d2wei

~k. ~wA0 and

Ai =
∫
d2wei

~k·~wAi have the forms:

d2x0A0 −
1

x0
dx0A0 −

(
k2 +

L2 − 1
x20

)
A0 = 0 ,

d2x0A± +
1

x0
dx0A± −

(
k2 +

L2

x20

)
=
2

x0
ik±A0 . (4.11)

The equation for A0 is easily solved as A0 = a0x0ZL(kx0), where k
2 = 4k+k−. For

k2 > 0, Zm(kx0) = Km(kx0) (modified Bessel function of second kind) and for k
2 < 0,

this is Zm(kx0) = Jm(kx0). However, since we confine ourselves to Euclidean metric,

we choose the former solution. The other two components are easily separated using

equation (3.45). The solutions for the two components are:

A± = a±x0KL±1(kx0) . (4.12)

The use of (3.45) also leads to a relation between the constants a′is, which implies,
that only one can be fixed independently by boundary condition. The other arbitrary

constants are related to it, and hence are determined. Thus only one component of

Ai can be fixed at the boundary, and hence the classical source is actually chiral.

The ratio of constants are as follows:

a± = a0
k±
k
. (4.13)

This obviously implies that a+/a− = k+/k−. Also, the function A− falls slower than
A+, and hence we specify A− at the boundary. The other components then get
related to it. The expression for the action is:

I =

∫
d2wdx0

1

2x30

[
1

4
FµνF

µν +
1

2
L(L+ 2)AµA

µ

]
. (4.14)

The boundary term which comes due to one partial integration is:

IB =

∫
d2w

x0

2
[A+F0− + A−F0+] . (4.15)
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Using the solutions obtained above, one Fourier component of the action evaluated

at a distance ε is:

I = δ(k + k′)ε
KL+1(kε)

KL+1(kε)

k−KL−1(kε)
k+KL+1(kε)

. (4.16)

On using the expansion of (4.6) we find:

KL−1
KL+1

=
(L− 2)! (kε

2

)1−L
+ · · ·+ (−1)L

(L−1)!
(
kε
2

)L−1
ln(kε

2
)

L!
(
kε
2

)−1−L
+ · · ·+ (−1)L+2

(L+1)!

(
kε
2

)L+1
ln(kε

2
)

=
(−1)L ln(kε/2)

L!

[
1

(L− 1)!
(
kε

2

)2L
− (L− 2)!
L! (L+ 1)!

(
kε

2

)2L+2]
. (4.17)

Thus retaining only the leading power of ε in the above and using that in (4.16), we

get:

I = ε1+2L ln ε
k2−k

2L−2

22L−2L! (L− 1)!δ(k + k
′) . (4.18)

The Fourier transform of this yields in Poincare coordinates, the correlation function

as:

〈OvO′v〉 = 2(L+ 1) (w
+ − w′+)2

| ~w′ − ~w|2(L+1)+2 . (4.19)

We now calculate the emission rates from the conformal field theory theory. The

quantum mechanical calculation involves modelling the entire black hole spacetime by

a CFT at the boundary of the near horizon geometry r ∼ l. This is in accordance with

the AdS/CFT correspondence, as the information about the near horizon BTZ×S3
is supposed to be encoded in the boundary of the BTZ space. A plane wave is taken

to be incident on the black hole, which couples with the operators of the CFT in the

region r ∼ l. The emission rate due to this excitation is calculated using the results

for ordinary stimulated emission. The incident wave is regarded as classical, while

the CFT operators are treated as quantum. The plane wave has to be expanded in

spherical waves, to get out the partial wave components. The plane wave is expanded

in terms of spherical functions as:

eikx =
∑
L≥0

√
2π2(L+ 1)

e−ıωr

(rω)3/2
eıψZl,0(cosθ) . (4.20)

The spherical wave, near r = l goes as rnφ0(φ, t) (where n is an integer depending

on L). It couples to the CFT operator as
∫
d2xφ0O.

To determine the dimension of φ0 under conformal transformations, we look at

the behaviour of the wave function at r ∼ l. The part of the wave function which

goes as rn comes from contribution of Jν(ωr) which is analytic in the region we

are considering. For the scalars, the wavefunction near r ∼ l goes as rLφ0. As on

the boundary, the theory is invariant under conformal transformations, φ0 should
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have a definite behavior under transformations which can be scalings like ds2 =

f 2(r)(ds′2). Here the coordinates scale like f(r) and the wavefunction scales like
φ = fLrLφ′0. Since φ is a scalar, φ0 has to scale as f

−L. Which gives it a dimension
of −L. Accordingly, the coupling ∫ d2xφ0O implies the dimension ∆S = L + 2 for

the operator O. This is consistent with the correlator determined earlier.

For the fermions, the two components of the wave function do not fall off in an

identical manner, and the eigenstates of γ1 (which is the chirality matrix for two

dimensions), χ1+χ2 = χ+ falls slower than χ1−χ2 = χ− as given in equation (3.34).
So for our purposes, we take ψ+ ≈ 0. For

χ− =
(
1

r

)1/2−L
ψ0(t, φ)

and we get the fall off power of χ− as λ = L−1/2. Since the fermion is a scalar under
transformations r′ = f(r)r, ψ0 has the dimension of L− 1/2 under this transforma-
tion, which is like a conformal transformation in the boundary metric. Hence by con-

formal invariance of the term
∫
d2xφ0O, the dimension of O is ∆F = 2+λ = L+3/2.

The operator ψ0 is a spin 1/2 object under the group SO(2, 2), and hence, O is also

spin-1/2, but of opposite chirality. Hence, the left and right conformal weights are

determined as h− + h+ = L+ 3/2 and h− − h+ = 1/2, thus

h− =
L

2
+ 1, h+ =

L

2
+
1

2
.

This is the same as that appears from the correlator calculation given above.

As for the vector field, it is immediately observed, that the two separable com-

ponents at the boundary, A1,2 = At ± Aφ/l, correspond to left moving and right

moving sources in the boundary. The fall off in powers of r is different for the two

components and the case we are considering, and as seen from earlier section, A1
falls slower than A2, and hence A2 ≈ 0. The fall off in A1 is as follows:

A1 = r
LA0(t, φ) .

Since under the transformation r → f(r)r, A1 transforms as a covariant vector, the

dimension of A0, λ = L − 1. Thus A0 is a source for the CFT operator Ov with

weight ∆v = 2+L−1 = L+1. The left and right weights can now be determined as

h− =
L

2
+ 1 , h+ =

L

2
.

All the weights determined above are same as those predicted using group theoretic

methods in [27].

We are now ready to compute the emission rate due to the plane wave-CFT

coupling
∫
φ0O. If due to this interaction term, the state in the CFT undergoes a

transition, |i〉 → |f〉, then, the transition probability for this process is:
wfi = |φ0|2| 〈f |O |i〉 |2δ(εf − εi − ω) ,
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where εf , εi are the energies at of the initial and final states of the CFT. The above

can be written as an integral over the two coordinates of the boundary, and in case

the final state is not a unique state, we sum over the final states which gives:

T =
∑
f

∫
d2xeiωt

〈
i|eiεitO†e−iεf t|f〉 〈f |O|i〉 |φ0|2 .

If the initial state is the Poincare vacuum, then the transition probability is:

T =

∫
d2xeiωt

〈
0|O†(t)O(0)|0〉 |φ0|2 . (4.21)

Essentially we need G(w,w′)|φ0|2 to complete the calculations. For φ0 we use the
form of the plane wave solutions at r ∼ l as determined in section 3. However, as

these have been determined in BTZ coordinates, we use the conformal dimension of

these when we use Poincare coordinates. In effect,

φP0 = (2πT+w
+)h+−1(2πT−w−)h−−1(Nl2)h++h−φBTZ0 .

An additional power of (Nl2)h++h− = (4π2T−T+l4)h++h− enters, since in BTZ coor-
dinates, we assume that the wave function scales like rh++h− at the boundary and

in the Poincare coordinates x
−(h++h−)
0 . (x0 =

√
N/r at the boundary, and we use

l to make the scalings in both the coordinates dimensionless) Using the fact that

t = (1/4πT+) lnw
+ + (1/4πT−) lnw−, we get the integral in the transmission coeffi-

cient to be:

I =

∫
dw+dw−

(w+)iω/4πT++h+−1(w−)iω/4πT−+h−−1

(w+ − 1)2h+(w− − 1)2h− ,

where we take the initial

w′± = e2πT±(t±φ)

at the origin of the BTZ coordinates. The range of w± is from 0 to ∞. Changing
from w± → −w±, and using B(x, y) = ∫∞

0
dt tx−1/(1 + t)x+y, the integral can be

done:

I =
1

Γ(2h+)Γ(2h−)
e−ω/2TH

∣∣∣∣Γ
(
h+ +

iω

4πT+

)∣∣∣∣
2 ∣∣∣∣Γ
(
h− +

iω

4πT−

)∣∣∣∣
2

.

The emission rate is evaluated as:

(2πl2T+)
2h+−1(2πl2T−)2h−−1|φ0|2CI ,

where C is a normalisation constant, which includes the plane wave normalisation.

Plugging in the correct normalisation for each of the correlators, and using the ap-

propriate φ0, the emission rates are exactly same as the semiclassical calculations.

For the scalars, φ0 = 1/(L+ 1)! (ω/2)
L+1. Using this, as well as h− = h+ = L/2 + 1,
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the relation that 4l4π2T+T− = N ,and multiplying by the appropriate factor to get

the plane wave normalisation, we get the emission rate as:

ΓScft = 2πN
(Nω2)L

22L(L!)4
exp(−ω/2TH)

ω

∣∣∣∣Γ
(
L

2
+ 1 +

iω

4πT+

)
Γ

(
L

2
+ 1 +

iω

4πT−

)∣∣∣∣
2

.

(4.22)

A comparison with equation (3.14), shows that the semiclassical calculation has been

reproduced exactly. There is an alternative derivation for the s-wave emission in [34].

For the fermions, the wave is chosen to be of a given chirality, and hence in the

expression for the emission rate, ψ0 = ω
L+3/22−(L+1)/(L+1)! with h− = L/2+1, h+ =

L/2 + 1/2, the emission rate is determined as:

ΓFcft =
π(L+ 1)2(L+ 2)(2πl2T−)L+1(2πl2T+)L

4(L+ 1)!2Γ(L+ 1)Γ(L+ 2)

(ω
2

)2L
×

× e−ω/2TH
∣∣∣∣Γ
(
L

2
+ 1 +

iω

4πT−

)(
L

2
+
1

2
+

iω

4πT+

)∣∣∣∣
2

. (4.23)

Using the expressions for the temperatures, it can be seen that the above expression

exactly matches that obtained in equation (3.44) after multiplying by the Fermi-

Dirac distribution, 1/(exp(ω/TH)+ 1). The special case of s-waves for T− � T+ was

obtained in [35]. The GBF for the other set of two component wave functions in six

dimension can be obtained by the same procedure above, but now with h+ and h−
interchanged.

For the vector coupling, we retain the component of the wave function which falls

slower as a function of r at r ∼ l. This couples to the operators on the boundary.

Hence for the vector φ0 = At + Aφ = 1/(L + 1)! (ω/2)
L+1. This along with h− =

L/2 + 1, h+ = L/2, yields the emission rate as:

ΓVcft = 2π
(ω
2

)2L (L+ 1)3
Γ2(L+ 2)

(2πl2T+)
L+1(2πl2T−)L−1

Γ(L)Γ(L+ 2)
×

× e
−ω/TH

ω

∣∣∣∣Γ
(
L

2
+

iω

4πT+

)
Γ

(
L

2
+ 1 +

iω

4πT−

)∣∣∣∣
2

= 2π

(
Nω2

4

)L
NL

(L!)4(ρ+ − ρ−)2 ×

× e
−ω/2TH

ω

∣∣∣∣Γ
(
L

2
+

iω

4πT+

)
Γ

(
L

2
+ 1 +

iω

4πT−

)∣∣∣∣
2

. (4.24)

This is same as eqn (3.73) multiplied by the Planck distribution with temperature

TH . Thus we see for each of the cases stated above the matching is exactly obtained.

It is interesting to note how the various factors conspire among themselves to yield

this exact matching, using the AdS/CFT correspondence.
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5. Discussions

In this paper, we have studied the emission rate for particles for arbitrary partial

waves by probing the near horizon geometry of a 5-dimensional near extremal black

hole. We determined the greybody factors of scalars, spinors and vector particles

by solving their respective equation of motion in the BTZ back ground and match-

ing them with wavefunctions obtained at large distances from the black hole. For

fermions, the matching was non-trivial, and we solved the equation of motion in

an intermediate region; r ∼ l. The answers obtained for the scalars and spinors

reproduced the results obtained previously for the five dimensional black hole. Our

calculation for non-minimally coupled vector particles is the first calculation for emis-

sion rates for the given configuration.

Next, we used the conformal field theory at the boundary to obtain the quan-

tum mechanical spontaneous emission rates. This is in the spirit of the AdS/CFT

correspondence, in which all information regarding the bulk degrees of freedom are

entirely encoded in the degrees of freedom at the boundary. Indeed, we used the

various 2-point functions which have been calculated from the AdS/CFT correspon-

dence to find the decay rates, and the latter perfectly matches with the semi classical

Hawking radiation rates, for all partial waves. The asymptotic plane waves that ex-

cite the CFT near r ∼ l carry non-trivial kinematical information and influence the

spontaneous emission rate. Thus our calculation shows how the AdS/CFT corre-

spondence can be successfully used to predict the emission rates from black holes.

The exact matching suggests that the thermodynamical properties of these black

holes are ‘holographically’ encoded in the boundary CFT.

It is to be noted that the CFT is at a finite distance from the horizon, and the

role of the horizon degrees of freedom are not very clear, unlike the CFT determined

in [36]. Also the thermodynamics of non-extremal black holes like the Schwarzschild

black hole remains unaddressed, as the near horizon BTZ × S3 geometry emerges
only for near extremal black holes.
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