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Abstract 

Historically, stock market crashes have caused trillions of dollars in losses and 

have dramatically destroyed investors’ confidence in the stock market. Independent 

empirical studies have converged to prove the synchronization phenomenon as the trigger 

of stock market crashes (Tse, Liu, & Lau, 2010). As well, the Phase Transition Model 

explains the building-up mechanism and the critical point existing in stock market crash 

(Yalamova & McKelvey, 2011). In this study, we propose to add more empirical evidence 

to the current studies and provide an indicator to possibly predict the stock market 

crashes. We apply the Potential-based Hierarchical Agglomerative (PHA) Method, the 

Backbone Extraction Method, and the Dot Matrix Plot to extract and display the changing 

clusters’ structure dynamics from the market equilibrium state to a bubble building-up 

state by applying the Standard & Poor 500 (S&P 500) index constituents’ daily price 

correlation matrix.  
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1. Introduction 

In September 2008, the exposure of consumer defaults on subprime mortgages 

triggered the 2008 Global Financial Crisis and started another worldwide stock market 

crash. This crash is considered by many researchers to have been the worst stock market 

crash since the Wall Street Crash of 1929. Both of these two major crashes in stock 

market history have been accompanied by financial crises, such as the Great Depression, 

which have drawn researchers’ attention from the area of finance, economics, psychology, 

complex networks, or even physics to study the mechanism or causes for the financial 

crises.  

Back to the early 1990s, White (1990) compared one of the major crashes, the 

Wall Street Crash of 1929, with the 1987 Black Monday Crash. White has shown the high 

similarity of stock market indices between the 1929 crash and the 1987 crash, which 

indicates that crashes in the 20th century might have already shown a similar building-up 

mechanism (White, 1990). At that time, researchers were still concentrating on the policy 

makers whom they thought should be accused of causing the Great Depression. Cecchetti 

(1997) summarized that the central bank, deflation, and the gold standard should be 

considered the key factors that caused the stock market crash and the Great Depression 

(Cecchetti, 1997). Afterwards, researchers have shifted to quantitative analysis on the 

stock price movements. Farmer, Gillemot, Lillo, Mike, and Sen (2004) studied the 
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reasons for the highly volatile time periods on the London Stock Exchange. They found 

that liquidity, variations of less frequently traded stocks could cause the large fluctuations 

in stock market (Farmer, Gillemot, Lillo, Mike, & Sen, 2004). Additionally, Baker and 

Wurgler (2007) also found that sentimental investors could cause some younger, lower 

capitalization, higher volatility, and growth companies to fluctuate much more heavily 

during the market volatile time periods, such as market crashes (Baker & Wurgler, 2007). 

Similarly, Zouaoui, Nouyrigat, and Beer (2011) also found that investor sentiment had a 

strong positive relationship with the occurrence of a stock market crash within a one-year 

time period. However, how could we identify the occurrence of large-scale investor 

sentiment so that we could have indicators to predict and prevent a market crash? In order 

to identify this prevailing sentiment information, we propose an indicator of trading 

synchronization based on the clustering changes in the stock market complex network. 

In complex network theory, Mantegna (1999) has been the first to reveal the 

hierarchical structure or complex network structure in financial markets by analyzing the 

correlation matrix of stock prices time series. Mantegna (1999) also confirmed the 

valuable information contained by time series of stock prices to predict the local structure 

movement for the stock market (Mantegna, 1999). Afterwards, more and more 

researchers in finance, economy, and physics areas have started to apply complex 

network theory into financial markets. Vandewalle, Brisbois, and Tordoir (2001) have 
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found the topological structure in stock markets by analyzing a cross correlation matrix 

of 6358 US stock prices time series. They also confirmed the existence of complex 

network within stock markets (Vandewalle, Brisbois, & Tordoir, 2001). Thereafter, 

Krause (2004) built a universal model of an evolving complex network and managed to 

predict the crashes by constructing a score function based on the eigenvalue of the 

correlation matrix. He has also concluded that his findings are consistent with the 

observations or homogeneous behaviors before financial market crashes (Krause, 2004). 

Later in 2008, shortly before the market crash, Leibon, Pauls, Rockmore, and Savell used 

the Partition Decoupling Method (PDM) to display the topological structure in the US 

stock market. They have also found that the network clusters coincide with industry 

classifications and represent the capital flows moving through different stages (Leibon, 

Pauls, Rockmore, & Savell, 2008). Then, Tse, Liu, and Lau (2010) developed a 

correlation matrix study on all the US stock prices and found a vital and strong 

relationship between the market variation and a small group of stocks (Tse et al., 2010).  

Therefore, it is not difficult for us to relate these above studies to some of the key 

features of complex networks, that is, synchronization and scaling. Synchronization and 

scaling are the self-organizing characteristics rooted within most complex networks. 

Scaling is used to describe the self-organizing mechanism due to the individual 

participants’ decisions in a scale-free network (Barabási & Albert, 1999). And 



 

 

4 

synchronization describes the phenomenon that adding some small new information to a 

network can significantly cause the network to oscillate into a similar movement (Watts 

& Strogatz, 1998). Actually, scaling and synchronization are the necessary steps to build 

up a market crash. Based on these two features, we wonder whether there is a way to 

identify the scaling and synchronization phenomenon before the market crash. As 

mentioned above, Leibon, Pauls, Rockmore, and Savell (2008) have developed a 

mathematical computation method to find the structure or clusters in the normal stock 

market (Leibon et al., 2008). We believe that changes in the clusters’ structure will allow 

us to identify a precursor of the stock market crash. In addition, Grossman and Stiglitz 

(1980) showed that the stock market could not remain in an equilibrium state when the 

information becomes costly (Grossman & Stiglitz, 1980). Once the uninformed traders 

start to make investment decisions based on the informed traders’ behaviors, both 

informed and uninformed traders would affect each other to move up the stock price 

regardless of rationality (LeBaron, 2001). Sornette, Johansen, and Bouchaud studied the 

time series of the S&P 500 index before and after the 1987 stock market crash and found 

the existence of a log-periodic oscillation price pattern and suggested a phase transition 

theory to explain the log-periodic pattern (Sornette, Johansen, & Bouchaud, 1996).  

Based on Sornette et al.’s (1996) phase transition theory and characteristics of a 

stock market complex network, Yalamova and McKelvey (2011) built an innovative 
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Phase Transition Model analogical from physics to explain the homogeneous behaviors, 

such as herding behavior in the stock market (Yalamova & McKelvey, 2011). According 

to their model, the imitating behavior or herding behavior occurs at the tipping point, 

which eventually triggers a crash (Yalamova & McKelvey, 2011). This explanation also 

corresponds to the synchronization and scaling phenomenon found in complex networks. 

In addition, Yalamova and McKelvey have also illuminated the existence of a critical 

point at which the highest level of homogeneous trading behavior happens: that is, the 

market crash point (Yalamova & McKelvey, 2011). Besides this, they have pointed out 

that the building-up mechanism of homogeneous trading behavior is driven by the scaling 

and synchronization characteristics of a complex network with individual stocks as nodes 

and cash flows forming links (Yalamova & McKelvey, 2011). If most shareholders of one 

stock put in selling orders for this stock, there is no doubt that the stock price will drop 

dramatically. Similarly, if there is a large number of buyers on the opposite side, the stock 

price will go up significantly. Yalamova and McKelvey’s (2011) model attempts to build 

a theoretical framework that accommodates the EMH in the market equilibrium state and 

bubble building-up stage in the market disequilibrium state. 

With this study we would like to contribute to the empirical evidence of the 

clusters’ structure before market crashes provided by a number of econophysics studies in 

support of Yalamova and McKelvey’s (2011) theoretical framework of the bubble 
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building-up regime as a result of herding, imitating, and rule-based trading. In our study, 

changes in the stock market network clusters’ structure is proposed as an indicator of the 

bubble building-up state. By analyzing a broadly-used US stock market index, the S&P 

500 index, we can build a daily return correlation matrix by collecting the daily returns of 

all the S&P 500 constituent companies. We use the Potential-based Hierarchical 

Agglomerative (PHA) clustering method to capture the clusters’ structure by building the 

dendrogram linkage trees (Lu & Wan, 2013). We also apply the LANS method to extract 

the significant edge backbone from the correlation matrix (Foti, Hughes, & Rockmore, 

2011). And then we plot the significant edge backbone to a dot matrix to display the 

clusters’ structures of both the market equilibrium state and the market disequilibrium 

state, such as the bubble building-up state (Newman & Girvan, 2004).  

The rest of the study is organized as follows. Section 2 reviews the related 

theoretical and empirical literature. Section 3 develops the hypotheses for the clusters’ 

changes in different market states. Section 4 presents the data and methodology utilized 

in our study. Section 5 summarizes the results and discussions of the clusters’ 

computation for different market states. Lastly, section 6 shows the contributions, 

limitations of our study, and possible further research areas.  
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2. Literature Review 

2.1 Stock Market Crash 

The Stock market crash describes the sudden and dramatic prices drop across the 

stock market. We focus on the endogenous stock market crashes where there is no 

external bad news. In the global stock market history, there are two major endogenous 

crashes: the 1929 Wall Street Crash and the 2008-2009 Crash. 

In 1929, the United States stock market experienced the most terrible market 

crash known as the Great Crash. During the two-day Black Tuesday crash, the U.S. stock 

market had generated a loss of over $30 billion. Within the 1929 Great Crash, the Dow 

Jones Industrial Average had hit the bottom closing at 41.22, which was the lowest level 

during the 20th century from the very peak level at 381.2 from September 3th 1929 to 

July 8th 1932 ("Historical Prices, Dow Jones", n.d.). 

After the Wall Street Crash of 1929, there was another smaller crash of 1987 that 

did not lead to a global bearish market. However, White (1990) compared the hypotheses 

to explain the 1929 stock market crash with the ones for the 1987 market crash. White 

(1990) pointed out that the emergence of many newly published companies and the 

subsequent difficulties to evaluate those companies were the beginning stage of the stock 

market bubble, which finally caused the large-scale panic selling in 1929. For both of 

these two crashes, it was the similar massive panic selling behaviors that triggered the 
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dramatic price decrease. Researchers at that time mainly focused on the monetary policy 

and economy policies. Cecchetti (1997) summarized three factors causing this financial 

crisis, that is, the influence of the central bank, deflation, and the gold standard (Cecchetti, 

1997). Doyne Farmer et al. (2004) applied quantitative analysis to study the reasons for 

the large fluctuations on the London Stock market and found out that liquidity and 

variations could be the key factors (Farmer et al., 2004). 

During the 2008 – 2009 Crash, investors in the stock market were negatively 

influenced by the exposure of consumer defaults on subprime mortgages and the resulting 

large-scale failures of financial institutions, such as the bankruptcy of Lehman Brothers. 

The S&P 500 index had experienced a huge 53.9% drop from the peak point of 1565.15 

to the bottom of 676.53 during the October 9th 2007 - March 9th 2009 time period 

("Historical Prices, S&P 500", n.d.). Even though the failure of financial institutions and 

the exposure of consumer defaults on subprime mortgages triggered the 2008-2009 

market crash, investors’ homogeneous trading decisions, here mainly selling orders, 

caused the market to drop suddenly and dramatically. Therefore, this encourages us to 

consider the impact of trading behaviors and the limit order book data inherent in the 

stock prices.  

Based on the investor behavior standpoint, Baker and Wurgler (2007) found that 

the sentimental investors could drive the younger, lower capitalization, higher volatility, 
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and growth companies to fluctuate much more severely during the market volatile time 

periods, such as market crashes (Baker & Wurgler, 2007). Similarly, Zouaoui, Nouyrigat, 

and Beer (2011) also found that investor sentiment had a strongly positive relationship 

with the occurrence of the stock market crash within a one-year time period (Zouaoui, 

Nouyrigat, & Beer, 2011). Obviously, there is a common market crash point, the so-called 

“Minsky Moment”, for both of the two major market crashes. Right before the two major 

crashes, we can recall that the market was experiencing unsustainable growth and 

reached the peak level at that time. So investors were eager to put more money into the 

market during this unsustainable growth period. However, once the traders’ buying 

behaviors lead to the Minsky Moment, the market crashed down and into the global 

depression as the two major crashes had shown (Yalamova & McKelvey, 2011). What is 

more, the sequence of investors’ behavior is the simulator of the market phrase changes 

(Yalamova & McKelvey, 2011). Baker (2009) and Foster and Magdoff (2009) also 

mentioned that Wall Street, the Federal Reserve and other financial experts should have 

noticed the indisputable facts and cumulative risk of the derivatives, high leverage, and 

other subprime mortgages that were trading in the market.  

2.2 Complex Network 

Complexity science was founded in the 1980s. It uses non-linear mathematics to 

deal with problems in physics, chemistry, economics, society, biology and so on 
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(Prigogine, 1980). Complexity studies the interactions among the sub-systems and their 

properties, patterns, and mechanisms. And complexity theory can explain the evolution, 

emergence, and adaptability in complex networks. Complexity studies the whole complex 

network’s properties that come from the interactions among the sub-systems. With the 

development of complexity theory, researchers have found that complex networks are an 

essential part of complexity theory. Complex networks promote the development of 

complexity science. All complex networks come from reality and exist around us all the 

time.  

Watts and Strogatz (1998) published an article in Nature journal. They discussed 

the structure and dynamics of small world networks. They also found out that adding 

some small new information to a network can significantly cause the network to oscillate 

into a similar movement (Watts & Strogatz, 1998). This phenomenon is described as 

synchronization afterwards. In 1999, Science journal published Barabasi and Albert’s 

(1999) article that showed us the scale-free complex network model. They have pointed 

out that scaling is to describe the self-organizing mechanism due to the individual 

participants’ decisions in a scale-free network (Barabási & Albert, 1999). Over the next 

decades, scientists have devoted themselves to complex networks and have gained 

numerous meaningful results. With the rapid development of computer science, research 

on complex network has also developed quickly. The analysis of complex networks 
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changed from hundreds of nodes to millions of nodes. By analyzing different kinds of 

networks, researchers made significant research achievement. Firstly, scholars adopted 

new definitions and measurements to describe the topology of networks. Secondly, by 

simulating complex networks with the use of dynamic models, researchers were able to 

display the topology of real complex networks. The nodes in the network are abstracted 

out of the real interacted individuals. The lines between nodes represent the interactions. 

All the nodes and their connections form a network. 

In networks, all the calculations are dependent on the adjacency matrix. The 

matrix has 𝑁2  orders. We can use the average connection length to represent the 

relevance of nodes. 

𝐿 =
1

1
2
𝑁(𝑁+1)

∑𝑑𝑖𝑗
𝑖≥𝑗

 

(2.1) 

In equation 2.2, N represents the number of nodes in a network. 𝑑𝑖𝑗  is the 

distance between node i and node j, representing the shortest distance. The maximum 

distance between two random nodes is the diameter of this network, represented by D: 

𝐷 = max𝑑𝑖𝑗                              (2.2) 

As the emergence of scaling in network, Barabási and Albert (1999) also found 

that the common feature of natural complex networks is the nodes’ correlations following 

a scale-free power law distribution (Barabási & Albert, 1999). The scale-free power law 
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distribution is as follows: 

𝑃(𝑘) ~ 𝑘−𝛾                              (2.3) 

Here, 𝑃(𝑘) denotes the probability of one node having 𝑘 number of edges with 

other nodes. While 𝛾 denotes the power of those edges, 𝛾 has a range of 2 to 3 in most 

networks (Barabási & Albert, 1999). The scale-free power law distribution has a long tail 

for larger𝑘.  

2.2.1 Stock Market Complex Network. In the stock market, stock prices are 

characterized by investors’ opinions of the company and influenced by all the information 

exchanged with other investors or market participants (Onnela, Saramäki, Kaski, & 

Kertész, 2006). So, stock prices contain vital information regarding stock market volatility 

and movement. Mantegna (1999) was the first to build a network for the stock market and 

found the hierarchical structure within the stocks in the analyzed portfolio. 

Furthermore, Vandewalle, Brisbois, and Tordoir (2001) analyzed the cross 

correlations of stock daily returns in the US market by building the Minimum Spinning 

Tree and confirmed the slow and local structure evolving in the stock market. Onnela et 

al. (2006) constructed a NYSE traded stock network in which the stocks represent nodes 

and interactions between stocks’ exhibit edges. They also found that there were clusters 

or so-called orders within the stock market network. Leibon, Pauls, Rockmore, and Savell 

(2008) introduced a new method to study the topological structure and to display the 
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scale-dependent distribution within many complex networks. They analyzed the daily 

return correlation matrix built from the New York Stock Exchange (NYSE) and National 

Association of Securities Dealers Automated Quotation (NASDAQ) traded stocks. And 

they found the existence of scales corresponding with the movement inside the stock 

market and that the stock market is a classic complex network (Leibon et al., 2008). Tse, 

Liu and Lau (2010) analyzed the cross correlations of all the US stocks traded over a 

specific time period and reported the scale-free degree distribution in stock price returns 

and trading volumes based stock market networks. Tse et al. (2010) also concluded that 

the variation of the majority stock prices was strongly correlated with a relatively small 

number of highly connected stocks, which corresponded to the scale or cluster 

conclusions from previous researchers. 

2.2.2 Scaling and Synchronization in the Stock Market Complex Network. As 

mentioned above, synchronization and scaling are the two key characteristics in the natural 

complex network (Watts & Strogatz, 1998; Barabási & Albert, 1999). What’s more, 

researchers have worked on the demonstration on the scaling of stock market complex 

network as well. 

Scaling is an essential feature in complex networks. It describes the 

self-organizing mechanism due to the individual participants’ decisions in a scale-free 

network (Barabási & Albert, 1999). In addition, scaling is the mechanism for the 
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accelerating growth in a network once some connections are enhanced. It is also the 

growth engine within most of the common networks, such as genetic networks, the World 

Wide Web system, business networks, and social networks that describe individuals or 

organizations (Barabási & Albert, 1999). Barabási and Albert (1999) found evidence of a 

self-organization characteristic and the power law or scale-free distribution, 𝑃(𝑘) ~ 𝑘−𝛾, 

in complex networks. 𝑃(𝑘) is the probability that one individual interacts with 𝑘 other 

individuals (Barabási & Albert, 1999). Barabási and Albert (1999) have also proved that 

growth and preferential attachment within natural networks are the key mechanisms for 

network evolution, including business networks, which explains the ‘richer-get-richer’ 

phenomenon (Barabási & Albert, 1999). In 2000, Albert and Barabási extended their 

research on the power law distribution in complex networks and developed a phase 

diagram theory to predict the scaling exponents. And they concluded in favor of the 

existence of scale-free phase and exponential phase (Albert & Barabási, 2000).  

Later in 2002, H. Kim, Kim, Lee and Kahng analyzed the network composed of 

S&P 500 constituents and found the power law distribution in the sum of all the 

connected edge weight to each node (H. Kim, Kim, Lee, & Kahng, 2002). H. Kim et al. 

(2002) results have further proved the scale-free distribution existing within the 

connection strength of a stock market network (Kim et al., 2002). They also expected that 

pullback of one single stock among the most influential companies could lead to a crash 
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in the stock market due to the power-law distribution (Kim et al., 2002). They also found 

the exponent of the power-law distribution for the S&P 500 constituents network to be 

around 1.8 (γ ≈ 1.8) (Kim et al., 2002). Afterwards in 2003, Guimerà, Danon, 

Díaz-Guilera, Giralt, and Arenas studied a social email network and found the scaling and 

self-organized feature within the network of human interactions (Guimerà, Danon, 

Díaz-Guilera, Giralt, & Arenas, 2003). In the same year of 2003, Ravasz and Barabási 

proved that the scaling and self-organization features of complex networks were due to 

the hierarchical structure of complex networks (Ravasz & Barabási, 2003). Then, Amaral 

and Ottino (2004) summarized the literature on the important areas for the study of 

complex networks. They supported the conclusion that scaling was vital to study the 

critical phenomenon that led to the structure changes in an evolving network (Amaral & 

Ottino, 2004). What is more, scaling and scale-free distribution can also explain the 

correlated volatility which often occurred in the stock market. For example, different 

companies’ stock prices can drop together even though there’s no information released 

for this, which differs with the Efficient Market Hypothesis. In summary, scaling and 

scale-free distribution have been proven by various researchers to be vital adaptive 

features and to be the growth engine for the exponential growth or decay and volatility 

evolution within a stock market network. 

Synchronization is another vital characteristic existing in natural complex 
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networks. Synchronization describes the phenomenon that adding some small new 

information to a network can significantly cause the network to oscillate into a similar 

movement (Watts & Strogatz, 1998). We suggest market crashes in the stock market 

occur as a result of the expression of synchronization within the evolving and 

self-organized stock market complex network. Barahona and Pecora (2002) identified 

synchronization could lie within the phase diagram boundary, which might lead to the 

phase change of a complex network (Barahona & Pecora, 2002). Nishikawa, Motter, Lai, 

and Hoppensteadt (2003) further proved the synchronizability of networks especially 

those with a higher degree of homogeneity, such as neural networks (Nishikawa, Motter, 

Lai, & Hoppensteadt, 2003). Krause (2004) conducted an empirical study on the crashes 

of evolving complex networks that contain extinct individuals. Krause (2004) found a 

high degree of homogeneity in the investment choices before the stock market crashes. 

He also presented the figure that showed the variance of behaviors decreased 

significantly before a crash (Krause, 2004). In the stock market, synchronization 

describes the highly homogeneous traders’ behaviors, such as herding, imitation in the 

bubble building-up stage in the stock market. 

In order to reveal the relationship between synchronization and scaling, Arenas, 

Díaz-Guilera, and Pérez-Vicente (2006) studied the dynamic movement towards the 

synchronization of a complex system. They concluded that modular structure and nodes 
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emerged and evolved during the synchronization process. This shows us that it is 

important to pay attention to the structure change before and after crashes. As noted in 

Arenas, Díaz-Guilera, Kurths, Moreno, and Zhou’s research (2008), they summarized the 

results of using the correlation return matrix to study the synchronization pattern in stock 

markets (Arenas, Díaz-Guilera, Kurths, Moreno, & Zhou, 2008). Arenas et al. (2008) 

concluded that stocks could synchronize and be strongly connected by some interactions 

in the market, such as money flows or sector correlations (Arenas et al., 2008).  In 2011, 

Gómez-Gardeñes, Moreno, and Arenas further proved the synchronization patterns differ 

between homogeneous and heterogeneous complex networks. And they concluded that 

nodes and scaling clusters are the key drivers during the synchronization transition 

(Gómez-Gardeñes, Moreno, & Arenas, 2011). In 2013, Singh, Sreenivasan, Szymanski, 

and Korniss applied a threshold model to reveal the fact that individual opinion could 

become a threshold point once all the neighbors adopted the same opinion. They also 

concluded that the local clustering promoted the synchronization phenomenon in a 

high-school friendship network (Singh, Sreenivasan, Szymanski, & Korniss, 2013). In 

2014, Brú, Alós, Nuño, and de Dios built a graph to show the growing scaling interface in 

dynamic networks. They concluded that graphs could also reveal the scaling property in 

complex networks and critical exponent existed in the network as well (Brú, Alós, Nuño, 

& de Dios, 2014).  
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All in all, scaling can be used to explain the market volatility and evolution and 

the bubble building-up mechanism in a stock market network. And synchronization 

describes the highly homogeneous behavior or stock price coincident movement in a 

stock market network. 

2.3 Phase Transition Theory 

According to the Efficient Market Hypothesis, the market equilibrium state should 

reflect all the available information in the market (Fama, 1970). And the equilibrium 

expected return is the expressed form of the market equilibrium state (Fama, 1970). Once 

the market information is not available to everyone, the market will step into a 

disequilibrium state. There will be uninformed and informed investors regarding some 

specific information in the market. Therefore, in order to explain the abnormal market 

movement or disequilibrium state in stock market, Grossman and Stiglitz (1980) studied 

the market disequilibrium state reflected by the stock prices and the degree of uninformed 

investors influenced by the informed investors. They also proved the impact of the price 

system on information spreading from informed traders to uninformed investors by 

building a mimic stock market model, which would be considered to be a reason for the 

‘herding behavior effect’ in the stock market (Grossman & Stiglitz, 1980). In other words, 

the limit order book, such as bid orders or ask orders, is believed to contain information 

from informed investors. If the number of ask orders exceeds the bid orders, this would 
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show a good perspective for this stock. This means that the information here is not fully 

public and efficient to everyone. Information becomes costly here, which would influence 

the uninformed investors to imitate the informed ones (Grossman & Stiglitz, 1980).  

In 1996, Sornette, Johansen, and Bouchaud studied the time series of S&P 500 

index before and after the 1987 stock market crash and found the existence of a 

log-periodic oscillation price pattern with a dynamical critical point during the crash 

(Sornette et al., 1996). Sornette et al. (1996) also suggested a phase transition theory to 

explain the log-periodic pattern. Afterwards, Sornette (2006) has further proved the 

existence of critical events in stock market complex networks and other natural networks 

(Sornette, 2006). In addition, Sornette also fully explained the stock market crash by 

applying the critical point theory (Sornette, 2009). In a market disequilibrium state, once 

the uninformed traders start to make investment decisions based on other traders’ 

behaviors, both informed and uninformed traders would affect each other to move the 

stock price regardless of rationality (LeBaron, 2001). LeBaron (2001) applied the agent 

based model to explain the similar herding effect above. LeBaron (2001) found that 

rational agents and non-rational agents would interact with each other and lead to higher 

volatility or large price jumps (LeBaron, 2001). The influence from rational agents on 

non-rational agents would cause the imitating behavior or herding behavior, similar to the 

effect of asymmetric information in a market disequilibrium state. This ultimately will 
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lead up to market crash if there is no market regulation or interfering. In this study, we 

can take the market crash building-up stage as an apparent market disequilibrium state. 

Based on the empirical study and complex network theory above, Yalamova and 

McKelvey (2011) built an innovative Phase Transition Model analogical from physics 

theory to explain the homogeneous behaviors, such as herding behavior in stock market 

(Yalamova & McKelvey, 2011). According to their model, the imitating behavior or 

herding behavior occurs at the ‘tipping point’, which eventually triggers a crash 

(Yalamova & McKelvey, 2011). This explanation also corresponds to the synchronization 

and scaling phenomenon existing in complex networks. In addition, Yalamova and 

McKelvey (2011) have also illuminated the existence of a critical point at which the 

highest level of homogeneous trading behavior happens, that is, the market crash point. 

Besides this, they have pointed out that the building-up mechanism of homogeneous 

trading behavior is driven by the scaling and synchronization characteristics of complex 

network in the stock market (Yalamova & McKelvey, 2011).  

The Phase Transition Theory and other empirical evidence have converged to 

provide us a solid theory to explain the mechanism of stock market crashes. Meanwhile, 

the studies from both stock market complex networks and other complex networks have 

also contributed a firm background to extract the structure of complex networks. To the 

best of our knowledge, we find no empirical research to extract the cluster structures 
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from the market equilibrium state to a bubble building-up state and to support the Phase 

Transition Theory. Therefore, it is worthwhile to apply the complex network clusters 

extraction method to study the structure changes during stock market crashes. What’s 

more, this study will allow us to contribute both to the empirical analysis on the dynamics 

of the stock market network and on the growing literature of econophysics. 
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3. Hypotheses Development 

As summarized in the Literature Review part, there are at least two different 

market states, the market equilibrium state and the market disequilibrium state. Under a 

market equilibrium state or an Efficient Market, the stock expected return should have 

fully revealed the available information in the market (Fama, 1970). According to the 

study on scaling and synchronization feature in complex networks and the Phase 

Transition Theory, we apply these to the stock market network and reveal the cluster 

movement to prove the existence of a critical point before stock market crashes by 

analyzing the stock market price correlations matrix (Onnela, Chakraborti, Kaski, Kertész, 

& Kanto, 2003). In this study, we expect to observe the number of clusters changing from 

a market equilibrium state to the critical point before market crashes by computing the 

stock daily return correlation matrixes in some specific ways. Therefore, our hypotheses 

are as follows: 

In market equilibrium state, there are mainly sector clusters because of the high 

correlation among stock prices within the similar industries, such as financials or 

technologies (Leibon et al., 2008). Besides, based on Foti, Hughes, and Rockmore’s 

(2011) results, there exist 22 sector clusters for the US stock market. Therefore, in the 

market equilibrium state, we also expect to observe the 22 sector clusters and develop the 

first hypothesis. 
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H1: In the market equilibrium state, there should be at least 22 clusters. 

According to the Efficient Market Hypothesis, the market equilibrium state should 

reflect all the available information in the market (Fama, 1970). And the equilibrium 

expected return is the expression form of the market equilibrium state (Fama, 1970). 

Therefore, if the market is still in a market equilibrium state, there should always be 

sector clusters and there should exist a similar number of clusters during different time 

periods. In the market equilibrium state, we also expect to observe sector clusters and the 

number of clusters should be similar even during different time periods. Hence, we 

develop the second hypothesis here. 

H2: In the market equilibrium state, there should be a similar number of 

clusters during different time periods. 

However, if it is in a market disequilibrium state, the specific information is only 

available to the informed investors and will lead to the uninformed investors’ herding 

behaviors in the market (Grossman & Stiglitz, 1980). Once this herding behavior 

becomes increasingly severe, it will reach a common market crash point, the so-called 

“Minsky Moment” or Critical Point (Yalamova & McKelvey, 2011) in a stock dynamic 

network. According to the study on the scaling and synchronization feature in complex 

networks and the Phase Transition Theory, the critical point represents the extreme 

synchronization phenomenon in the scaling process of dynamic complex networks. At the 
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critical point, the stocks are highly correlated despite the different sectors. Therefore, the 

critical point captures the patterns of stock market crashes (Yalamova & McKelvey, 

2011). So, there will be fewer clusters because of the higher and wider correlation among 

stock prices within the whole market despite the variation in the sectors or industries. 

Therefore, we expect to observe fewer but larger clusters, sometimes even only one large 

cluster, during the critical point building-up time period in the market disequilibrium state. 

So, in the market disequilibrium state, we develop the third hypothesis. 

H3: In an extremely evident market disequilibrium state, such as the 

pre-crash critical point, there should be fewer clusters or even only one cluster. 
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4. Data and Methodology 

4.1 Data  

In order to construct the daily return matrix, our primary data source is from the 

Center for Research in Security Prices (CRSP). The S&P 500, or the Standard & Poor’s 

500, is founded to include the 500 selected stocks traded in New York Stock Exchange 

(NYSE) and National Association of Securities Dealers Automated Quotation 

(NASDAQ). The S&P 500 index (Ticker: SPX) is the second largest US market index 

following the Dow Jones Industrial Average (DJIA). Compared with DJIA, the S&P 500 

index contains a larger number of large capital public companies and better captures the 

movement of the US market. The S&P 500 index is considered to be the best market 

benchmark index and captures approximately 80% coverage of available market 

capitalization (S&P Dow Jones Indices, 2015). In order to best capture the US stock 

market movement and scaling transition, we decide to analyze the S&P 500 index 

constituents in our study. All the current constituent companies are listed in Appendix. 

In order to observe the desired structure movement, we chose the 2008-2009 

stock market crash as our crash event in this study. Therefore, we first decided to study 

the market daily returns during the time period from Jan 2nd 2002 to Dec 31th 2010. In 

order to capture all the useful price movement information for the 2008-2009 market 

crash, we included whatever constituent companies that have been in the S&P 500 into 
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our list during our chosen time period. We downloaded the valid constituents’ historical 

daily returns from the CRSP data center for our chosen time period from Jan 2nd 2002 to 

Dec 31st 2010. Daily total return is the combination of intraday return and overnight 

return. The formula for daily return is as follows; 

𝑅𝑖 = 
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
                             (5.1) 

Here 𝑃𝑡 is the current day close price for stock 𝑖, 𝑃𝑡−1 is the previous day close price 

for the same stock 𝑖, and 𝑅𝑖 represents the current daily return for stock 𝑖. Then, we 

removed all the stocks that missed over 30% daily returns, after which we had 581 stocks 

left (Leibon et al., 2008). Lastly, we constructed the spreadsheet containing all these 581 

stock daily returns from Jan 2nd 2002 to Dec 31th 2010. 

4.2 Methodology 

In the history of study on the complex network structure, it is not difficult to find 

out a large number of studies applying correlation matrices. In 1999, Mantegna as the 

first researcher who found the complex network characteristics in financial markets 

applied the matrix of correlation coefficients for daily prices (Mantegna, 1999). Similarly, 

Nishikawa, Motter, Lai, and Hoppensteadt (2003) also applied a correlation matrix to 

compute the eigenvalue spectrum in order to get the connection topology of networks 

(Nishikawa et al., 2003). Moreover, Hong, Kim, Choi, and Park (2004) built a coupling 

matrix to construct a Watts-Strogatz small-world network in order to study the factors 
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that predict precise synchronizability. They also calculated the eigenvalues of the 

coupling matrix with different factors and concluded that betweenness centrality could be 

a better signal for the prediction of synchronization (Hong, Kim, Choi, & Park, 2004). 

Their results also illuminate that the correlation strength between every two nodes will 

influence the emergence of a critical point in complex networks. 

Afterwards, Kim and Jeong (2005) introduced a maximum likelihood clustering 

method that also applied the correlation matrix to study the clusters in stock markets. 

They found the eigenvectors concentrated together belonged to one common industry 

(Kim & Jeong, 2005). What’s more, Tumminello, Di Matteo, Aste, and Mantegna (2007) 

also concluded that clusters generated corresponding to the economic sectors from the 

analysis of correlation matrix and the application of a method called Planar Maximally 

Filtered Graph. Next, Leibon, Pauls, Rockmore, and Savell (2008) applied an innovative 

method to present the topological structure in the stock market network. They detected 

the clusters’ structure by applying a four-year daily return correlation matrix to the 

hierarchical spectral clustering and decoupling methods package (Leibon et al., 2008).  

In summary, in order to extract the information from a large correlation matrix, 

hierarchical clustering method has been often and widely used in most of the scientific 

areas, such as biology, physics, and economics (Omran, Engelbrecht, & Salman, 2007). 

The traditional hierarchical clustering method starts with one node in the network, and 
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then merges the next two most similar clusters by applying the eigenvalue and similarity 

linkage calculation and comparison (Omran et al., 2007). In addition, the hierarchical 

clustering method generates a cluster linkage tree which can be displayed by a 

dendrogram form (Omran et al., 2007).  

4.2.1 PHA Clustering. In this study, we applied a Potential-based Hierarchical 

Agglomerative (PHA) clustering method (Lu & Wan, 2013). By applying this 

Potential-based Hierarchical Agglomerative (PHA) method, we built the dendrogram 

linkage trees to find the number of clusters under the different states of the stock market. 

The PHA method is a novel hierarchical clustering method based on the construction of a 

hypothetical potential field and the pattern recognition progress of hierarchical clustering 

metric (Lu & Wan, 2013).  

Shi, Yang, and Wang (2002) applied the potential model to the hierarchical 

clustering process and pointed out the advantage of the potential based hierarchical 

clustering process over the traditional clusting processes. Afterwards, Yamachi, 

Kambayashi, and Tsujimura (2009) have presented a clustering method based on the 

potential field to optimize the correlated effects and to capture the most stable clustering. 

Based on the previous study on potential-based clustering, Lu and Wan (2013) have 

proposed this novel Potential-based Hierarchical Agglomerative (PHA) clustering method 

and have proved the effectiveness of it. Basically, a potential model is constructed by 
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defining the potential between node 𝑖 and node 𝑗. If the edge between node 𝑖 and node 

𝑗 is 𝑟𝑖𝑗, then we can set the potential between them as follows (Lu & Wan, 2013). 

Φ𝑖𝑗(𝑟𝑖𝑗) =

{
 

 −
1

𝑟𝑖𝑗
     𝑖𝑓 𝑟𝑖𝑗 ≥ 𝛿

−
1

𝛿
       𝑖𝑓 𝑟𝑖𝑗 <  𝛿

 

(4.1)    

Here, the parameter 𝛿 is determined from the correlation matrix of the data set 

by finding the average of the minimum edges between node 𝑖 and all the other nodes for 

node 𝑖 to node 𝑛 (M) and dividing the mean by a scale factor 𝑆. The formula for 

parameter 𝛿 is as follows. The value of scale factor 𝑆 is set to 10 in order to have a 

better balance between sensitivity and robustness (Lu & Wan, 2013). 

𝛿 =  
𝑚𝑒𝑎𝑛 (𝑀𝑖)

𝑆
 

(4.2) 

The total potential value for node 𝑖 is summed by all the potential value of nodes 

connected with node 𝑖.  

Φ𝑖 =∑Φ𝑖𝑗(𝑟𝑖𝑗)

𝑁

𝑗=1

 

(4.3) 

Following the potential model, Lu and Wan (2013) have launched a new 

similarity metric combining the potential field information and the data set information. 

The last step is to extract the clusters based on the edge-weighted tree of the data set by 
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applying another similarity computation method (Lu & Wan, 2013).  

In order to illustrate the PHA clustering process, we present an example with a 

six-node data set here: N1, N2, N3, N4, N5, N6; and they are located at (0.4, 0.8), (0.6, 

1.0), (1.4, 0.5), (2.0, 1.0), (2.3, 0.5), and (2.4, 0.7) respectively as shown in Fig 4.1. In 

this figure, the horizontal and vertical axes show the coordinates for all the six nodes. 

Besides this, the potential edges between any two different nodes are marked with the 

underlined numbers near the “edge” respectively in Fig 4.1. According to the potential 

model (4.1), we discover all the potential values respectively marked with the numbers in 

parentheses in Figure 4.1. Sorting all the calculated potential values, we find the sequence 

of all the six nodes to be: N6<N5<N2<N4<N1<N3.  

Therefore, the node containing the lowest potential value, N6, has been chosen as 

the first root. And the nodes containing the second lowest potential has been selected and 

is the nearest one connected with N6. Then, N2 is the next one chosen and is connected to 

N5 regarding the potential values. Similarly, N4 has been picked as the next one and is 

connect to N6 prior to N3, because the correlation between N4 and N6 is smaller than 

that between N4 and N3. And N1 is the next to be selected and connected with N2. Then, 

N3 is chosen and connected to N4.  
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Figure 4.1. The distribution of the data points. Adapted from “PHA: A Fast 

Potential-based Hierarchical Agglomerative Clustering Method,” by Y. Liu and Y. Wan, 

2013, Pattern Recognition, 46, p. 1127-1239. Copyright 2012 by Elsevier Ltd. 

So, summarizing the results above, we can tell that N6 and N5 are merged first as 

a new small cluster. According to the correlation or edge strength, N2 has merged with 

N1 to form (N2, N1) and is followed by the merge between N4 with the new small cluster 

(N6, N5). Then, N3 is merged with the newer cluster (N6, N5, N4) to form (N6, N5, N4, 

N3). And lastly, (N2, N1) has merged with (N6, N5, N4, N3). Finally, the dendrogram 

figure is built regarding the merging sequence mentioned and the respective correlation 

strength in Figure 4.2. In the dendrogram graph, the vertical axis shows the heights of all 

the different U-shapes representing the relative connection distance between any two 

small clusters or nodes.  
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Figure 4.2. The dendrogram derived from the PHA method. Adapted from “PHA: A 

Fast Potential-based Hierarchical Agglomerative Clustering Method,” by Y. Liu and Y. 

Wan, 2013, Pattern Recognition, 46, p. 1127-1239. Copyright 2012 by Elsevier Ltd. 

4.2.2 Backbone Extraction Method. Based on Leibon et al.’s method, Foti, 

Hughes, and Rockmore (2011) published a better method called LANS to extract the 

significant backbone of complex networks. They drew from the traditional “Disparity filter” 

method to get the fractional edge weight for every two nodes (Serrano, Boguñá, & 

Vespignani, 2009; Foti et al., 2011). Let 

𝑝𝑖𝑗 =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑘
𝑁𝑖
𝑘=1

 

(4.4) 

define the fractional edge weight from node 𝑖  to node 𝑗 . Here, 𝑁𝑖  represents the 

number of all the neighbors of node 𝑖 (for a weighted network, node 𝑗 is a neighbor of 

node 𝑖 if 𝑤𝑖𝑗 is larger than 0) (Foti et al., 2011). And 𝑤𝑖𝑗 denotes the edge weight 
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between node 𝑖 and node 𝑗, which is the correlation from the daily return time series 

between stock 𝑖 and stock 𝑗 (Foti et al., 2011).  

Next, in order to get the significant edge weight for all the nodes in a network, 

Foti et al. (2011) introduced an indicator function method to determine the selection of 

significant edge weight. Let 

𝐹̂(𝑝𝑖𝑗) =
1

𝑁𝑖
∑1{𝑝𝑖𝑘 ≤ 𝑝𝑖𝑗}

𝑁𝑖

𝑘=1

 

(4.5) 

Here, 1{ } denote the indicator function, 𝑁𝑖 represents the number of neighbors 

of node 𝑖 in the network, and the sum is to count the number of node 𝑖 that the edge 

weight is less or equal than 𝑝𝑖𝑗 (Foti et al., 2011). 𝐹̂(𝑝𝑖𝑗) denotes the probability of all 

the fractional edge weights that are less than or equal to 𝑝𝑖𝑗 (Foti et al., 2011). If we can 

select a significance level 𝛼 and that 1 − 𝐹̂(𝑝𝑖𝑗) is less than 𝛼, we can say that this 

edge weight between node 𝑖 and node 𝑗 is significant and extract it into the backbone 

network (Foti et al., 2011). According to the LANS pseudo code provided by Foti et al. 

(2011), we develop a MatLab programming to help us compute and select all the 

backbone components. By applying the LANS backbone extraction method, we construct 

a new correlation matrix with all statistically significant edge weights based on the 

normal correlation matrix. In this way, we can screen out the insignificant edge weight or 

outliers existing in the normal correlation matrix.  
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4.2.3 Dot Matrix Plot. Dot Plot is widely used in the bioinformation industry. Here, 

we apply one of the Network Toolboxes from the MIT network research center, Dot Matrix 

Plot. The Dot Matrix Plot can draw the matrix as a column and row displayed square 

dot-plot pattern according to the given number of clusters and the correlation matrix. Based 

on our previous methodology, we can discover the number of clusters by applying the PHA 

clustering method (Lu & Wan, 2013). As well, we can get the highly significant backbone 

correlation matrix from the LANS method (Foti et al., 2011). By applying the Dot Matrix 

Plot, we get the image display of the clusters from the backbone correlation matrix. Within 

the Dot Matrix Plot, we apply one of the algorithms by Newman and Girvan to display the 

sparsity plot of the clusters structures in complex networks sorted by 

‘betweenness’(Newman & Girvan, 2004). Newman and Girvan (2004) introduced a set of 

measures to split the nodes into different by computing a number of ‘betweenness’ 

measures. They proposed their algorithm to effectively detect the community structures in 

real-world complex networks (Newman & Girvan, 2004). By choosing the number of 

clusters computed by the PHA clustering method, we are able to discover the clusters 

structures or the so-called modularity in the Newman- Girvan algorithm.  
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5. Results and Discussion 

5.1 PHA Clustering 

5.1.1. Market Equilibrium State Clusters. Since we choose the 2008-2009 stock 

market crash as our study event, we selected the time period from the beginning of 2002 to 

the end of 2005 in order to reflect the market equilibrium state. We found the daily return of 

the 582 available stocks during the time period from January the 2nd 2002 till December the 

30th 2005. We ran the data with the PHA clustering method and record the results in Figure 

5.1.  

 

Figure 5.1. PHA result for the time period of Jan 2nd 2002 to Dec 30th 2005 

As we have explained in Section 4, Methodology, we use this dendrogram figure 

to display the computation results of the clusters during 2002 and 2005. In Figure 5.1, the 

C
o

rr
el

at
io

n
 S

tr
en

g
th

 

Cluster# 



 

 

36 

dendrogram figure actually shows us the cluster tree from our data set. The height of the 

U shapes or the corresponding value on the vertical axis in the dendrogram represents the 

distance between the two nodes. Applied to our data set, the height of the cluster tree 

shows us the correlation strength between any two nodes or small clusters. For the time 

period during 2002 to 2005, in order to capture as many as clusters, we set the correlation 

threshold as 0.08 and we found 27 clusters as shown in Figure 5.1. Therefore, we can 

conclude that there are 27 clusters in the market equilibrium state.  

Next, we also computed the number of clusters for several different time periods 

within the market equilibrium state to test our Hypothesis 2. We calculated the time 

periods of Jan 2nd 2002 to Dec 31st 2002, Jan 2nd 2003 to Dec 31st 2003, Jan 2nd 2004 to 

Dec 31st 2004, and Jan 3rd 2005 to Dec 30th 2005. We present the results for the four time 

periods as Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5 respectively. If we continue 

to use the threshold of 0.08 from the time period of Jan 2nd 2002 to Dec 30th 2005, we 

found similar number of clusters during the four time periods. For the time period of Jan 

2nd 2002 to Dec 31st 2002, we found 28 clusters as shown in Figure 5.2. For the time 

period of Jan 2nd 2003 to Dec 31st 2003, we found 26 clusters as shown in Figure 5.3. For 

the time period of Jan 2nd 2004 to Dec 31st 2004, we found 30 clusters as shown in Figure 

5.4. For the time period of Jan 3rd 2005 to Dec 30th 2005, we found 30 clusters as shown 

in Figure 5.5. 
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Figure 5.2. PHA result for the time period of Jan 2nd 2002 to Dec 31st 2002. 

 

Figure 5.3. PHA result for the time period of Jan 2nd 2003 to Dec 31st 2003. 
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Figure 5.4. PHA result for the time period of Jan 2nd 2004 to Dec 31st 2004. 

 

Figure 5.5. PHA result for the time period of Jan 3rd 2005 to Dec 30th 2005. 
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5.1.2 Market Disequilibrium Clustering. In order to capture the clustering 

building time period, we selected the time period from 2006 to 2009 as our Market 

Disequilibrium state. We assessed the daily return of the 582 available stocks during the 

time period from January the 3rd 2006 till September the 15th 2008 from the CRSP data 

center. We ran the data with the PHA clustering method and report the results in Figure 5.6. 

 

Figure 5.6. PHA result for the time Period of Jan 3rd 2006 to Sept 15th 2008. 

For the 2006 to 2008 time period, we applied the threshold of 0.08 from the 

Market Equilibrium State. As shown in Figure 5.6, we can see the number of clusters 

changing from 27 clusters to only one cluster. Therefore, we can conclude that there is 

only one cluster in the Market Disequilibrium State. 

Overall, the results from the PHA clustering method show us that the number of 
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clusters changed from 27 clusters of the market equilibrium state to 1 cluster of the 

market disequilibrium state. So, the results support our Hypothesis 1 and Hypothesis 2. 

5.2 LANS & Dot Matrix Plot  

In order to present a visual display of the clusters’ movement, we applied the 

LANS method and Dot Matrix Plot method to show this difference between the Market 

Equilibrium State and Market Disequilibrium State. By applying the LANS backbone 

extraction method to our data set, we indicate the significant correlation matrix to be at a 

significant level of 0.05. After extracting the highly significant correlation matrix, we 

applied the Dot Matrix Plot and discovered the clusters structures for different market 

states. We chose one of the plot methods, Newman-Girvan algorithm to capture these 

clusters structures during different time periods. The results for the Newman-Girvan 

algorithm recorded as follows. 

 

Figure 5.7. Dot Matrix Plot for the time period of Jan 2nd 2002 to Dec 30th 2005. 

For the 2002-2005 market equilibrium state, we reported the results in Figure 5.7. 

In this dot matrix plot figure, both the horizontal and vertical axes represent the actual 
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stocks in our target stock market network. From the result for the market equilibrium 

state, we can tell there are both larger and smaller clusters in this network. However, for 

the market disequilibrium state, we found the clusters structure as follows. 

 

Figure 5.8. Dot Matrix Plot for the time period of Jan 3rd 2006 to Sept 15th 2008. 

For the 2006-2009 market disequilibrium state, we found the results shown in 

Figure 5.8. From this result for the market disequilibrium state, it is obvious that the large 

and small clusters from the market equilibrium state have merged together to a larger 

cluster. 

5.3 Discussion 

5.3.1 Market Equilibrium State. Figure 5.1 and Figure 5.7 show us the number 

of clusters and visual dot plot display of the stock network in the market equilibrium state 

respectively. If we assume the market is in the market equilibrium state, we will get 

sector clusters according to Leibon (2008)’s US stock market structure study (Leibon et 

al., 2008). Furthermore, Foti and his group (2011) have proved that there are 22 clusters 

within the S&P 500 index constituents when presenting the extraction method of 
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significant correlation matrix. For the 2002 to 2005 time period or the assumed market 

equilibrium state, we found 27 clusters from the S&P 500 constituents by applying the 

PHA clustering method. In addition, the Dot Matrix Plot showed us the visual display of 

clusters structure in the market equilibrium state, which corresponded to the result of the 

PHA method. Therefore, the PHA clustering and the Dot Matrix Plot results support our 

Hypothesis 1, which indicates that there should be at least 22 clusters in the market 

equilibrium state.  

 In order to test Hypothesis 2, we applied the PHA clustering method to four 

shorter time periods within the selected time period of Jan 2nd 2002 to Dec 30th 2005 in 

the market equilibrium state. Then, we received the results as shown in section 5.1. We 

continued to use the threshold of 0.08 from the time period of Jan 2nd 2002 to Dec 30th 

2005. And we can found similar number of clusters during the four time periods. For the 

time period of Jan 2nd 2002 to Dec 31st 2002, we found 28 clusters as shown in Figure 5.2. 

For the time period of Jan 2nd 2003 to Dec 31st 2003, we found 26 clusters as shown in 

Figure 5.3. For the time period of Jan 2nd 2004 to Dec 31st 2004, we found 30 clusters as 

shown in Figure 5.4. For the time period of Jan 3rd 2005 to Dec 30th 2005, we found 30 

clusters as shown in Figure 5.5. Therefore, our results also support Hypothesis 2, which 

means there should exist similar number of clusters during different time periods in the 

market equilibrium state.  
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Further, we can tell that the number of clusters remains similar even though it is 

changing from time to time according to our results above. The reasons for these clusters 

structure can be presented as follows. Firstly, it is one of the key features of a complex 

network. It is dynamic and the participants are interacting with each other continuously 

within this network. Secondly, the clusters show us the interaction activities inside a 

network. For a stock market network, those activities can tell us the strength of the 

connections between any two clusters and the order flows among the stocks in this 

network. According to LeBaron’s (2006) agent-based model in the stock market, the 

order flows collect information from the market participants’ opinions on different stocks 

and provide feedback to the market by showing the price movements. Under the market 

equilibrium state, information is available for all the market participants, so the order 

flows in and out of a large scale of stocks. The order flowing into a stock will cause the 

stock price to move up and will be shown as a positive return. Otherwise, the order 

flowing out of a stock will cause a negative return. Only a sufficient amount of both 

out-flowing and in-flowing orders will provide a reasonable level of heterogeneity in the 

stock market according to the agent-based model by LeBaron (2006). And only when the 

information is available to all the market participants will there be adequate order flows 

in the market, which means the market is in an equilibrium state (Grossman & Stiglitz, 

1980). Therefore, the clusters from our results provide an insight to the order flows 
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interactions and connections in the US stock market under the market equilibrium state. 

And we will compare the number of clusters in both market equilibrium state and market 

disequilibrium state in the next section, 5.3.2. 

5.3.2 Market Disequilibrium State. Figure 5.6 and Figure 5.8 have provided us 

with the number of clusters and a visual dot plot of the stock market under the market 

disequilibrium state. Comparing this result with the results from the market equilibrium 

state, we can see that the number of clusters has changed from 27 clusters to 1 large 

cluster by the clustering result of the PHA method. In addition, the Dot Matrix Plot result 

for the market disequilibrium state has showed us the visual clusters structure, which also 

corresponds to the PHA clustering result. These results together support our Hypothesis 3 

in which we think clusters from the market equilibrium state should converge into one or 

two large clusters during the pre-crash time period in the market disequilibrium state. 

According to the Efficient Market Hypothesis, the market should be in an equilibrium 

state while information is available to everyone (Fama, 1970). However, Grossman and 

Stiglitz (1980) have uncovered the truth that information could become unavailable to 

most of the participants in the market and become costly. Once valuable information 

becomes unavailable to some participants, the market will not fully follow the Efficient 

Market Rules and will be under a disequilibrium state. Grossman and Stiglitz (1980) have 

demonstrated the information-spreading process from informed investors to uninformed 
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investors by building a mock stock market system, and this process could be considered 

to explain the ‘Herding Behavior’ in the stock market. Once information becomes 

expensive, uninformed investors would start to observe and imitate informed investors’ 

behaviors, and this would lead to homogeneous trading orders in the market (Grossman 

& Stiglitz, 1980).  

In a market equilibrium state, once the uninformed traders start to make decisions 

by observing and imitating informed investors’ behaviors, both informed and uninformed 

traders would affect each other and move the stock price regardless of rationality 

(LeBaron, 2001). The influence from informed investors on uninformed investors would 

cause the imitating behavior or herding behavior, similar to the effect of asymmetric 

information in a market disequilibrium state. According to LeBaron’s (2006) agent-based 

model, the order flows capture the information spreading process. Once the market is not 

efficient, information becomes costly and investors start to mimic other investors’ 

behaviors and order flows will synchronize to only on one side, buying or selling, instead 

of the heterogeneous trading decisions. And the stock market participants converge to one 

dominant rule in a market disequilibrium state (LeBaron, 2006).  

This result could also be explained by another key feature of a complex network, 

synchronization. Synchronization describes the phenomenon that adding some small new 

information to a network can cause the network to significantly oscillate into a similar 
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movement (Watts & Strogatz, 1998). In natural networks, the normal state for the 

participants is to stay disordered and balanced. However, once new information is added 

to a network, it will start to synchronize and become ordered because of the interaction 

among all the participants, such as the ants’ homogeneous reaction to the signal of 

upcoming rain. In a stock market situation, informed investors bring this new information 

to the stock market network and cause the network participants to move homogeneously 

just like other networks. In a stock market network, the synchronization shows similar 

trading behaviors or herding behaviors and similar order flows in the market. This 

synchronization process will ultimately lead up to a market crash if there is no market 

regulation or interference. We can take the market pre-crash building-up stage as an 

apparent market disequilibrium state. What’s more, all these above findings have 

explained the pre-crash building-up process to some extent, especially in the area of 

network theory. 
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6. Contribution, Limitation, and Conclusion 

6.1 Contribution 

Based on the PHA clustering results and the Dot Matrix Plot results under the 

market equilibrium state and the market disequilibrium state, we have observed actual 

clusters’ movement and clusters’ converging from the market equilibrium state to the 

disequilibrium state. We have analyzed the whole process building up to the 2008 – 2009 

market crash by applying the network computation to the US S&P 500 index network. 

And we have identified the significant change in the number of clusters from an 

equilibrium market to a pre-crash disequilibrium state. In this study, we propose an 

indicator of the bubble building-up state in the stock market. Imitation and herding 

behaviors can be detected as synchronization of a stock market complex network, which 

leads to fewer but larger clusters. We believe that we are the first to introduce this 

precursor of the stock market crashes to detect the bubble building-up state. 

Therefore, we believe that we have uncovered some insight into the study of the 

stock market crashes and we have also contributed towards retaining the stock market 

equilibrium state by providing a detecting tool for market regulators and investors. 

In the global stock market history, there have been two major crashes in the recent 

two centuries: the 1929 Wall Street Crash and the 2008-2009 Crash. Both of these two 

market crashes have caused billions in losses and have damaged investors’ confidence 
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significantly afterwards. Market regulators could have been blamed for the lack of proper 

interference and regulation in the market. In order to help maintain the market 

equilibrium state, it is necessary to identify the disequilibrium state or the bubble 

building-up stage. Our study provides a new indicator to detect the bubble or pre-crash 

building-up state by computing the number of clusters. Therefore, we would like to 

provide another possible indicator to detect a pre-crash disequilibrium state in the market. 

Once we observe a convergence of clusters in the market, there could be a bubble 

building up in the market. Under this circumstance, we suggest the market regulators 

should interfere in the market and correct the possible overpricing with transparent free 

information in the market. According to our theory, we believe that information is not 

available to all the market participants during the market equilibrium state. So, we also 

think that market regulators should try to increase the information transparency by 

releasing some valuable information to the market. Taking interest rate for an example, 

market regulators should increase the interest rate once a pre-crash market disequilibrium 

state has been identified in order to calm the market down and bring the market back to 

equilibrium state instead of supporting the bubble to continue building up. In our view, it 

is essential to be able to detect the crash before it bursts, because after the crash is simply 

too late: everyone will try to sell but no investors will be able to sell their holdings.  

However, investors should also have felt responsible for the market crashes. So, 
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from investors’ standpoint, we believe our cluster-detecting process should also be 

helpful for investors when they are making decisions. For investors, it is necessary to 

always keep rational and make decisions based on as much as information instead of 

imitating or following other investors’ behaviors. Once we observe a convergence of 

clusters in the market, there could be a bubble building up in the market. Then, investors 

should keep calm and try not to follow other investors. Under this circumstance, it is vital 

to keep applying the fundamental analysis and collect information as much as possible in 

order to make rational and long-term investment decisions. In this way, there will still be 

order flows in and out of the stocks; this will help in slowing down or even stopping the 

pre-crash building-up stage and will bring the market back to equilibrium state and 

reduce the volatility in the market. Therefore, in summary, our main contribution is to 

provide another indicator to be able to detect the crash before it actually happens.  

6.2 Limitation 

Even though we have identified clusters’ movement under different market states 

for the 2008 – 2009 market crash, it is important to test our model for other market 

crashes and provide more evidence to support our model. Therefore, our model and 

method are still not mature enough in their current stage. The results we have in this 

study can only explain the bubble building-up process for the 2008 – 2009 market crash 

and can only capture the clusters movement within the S&P 500 index constituents. We 
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hope there will be further studies to test other market crashes and further evidence to 

support our study. Other than that, there have also been quite different crashes in the 

stock market history. There are minor market crashes, major crashes, long-term and slow 

crashes, and short-term and fast crashes. In our study, we have only studied the 

2008-2009 crash that is considered to be a fast and major market crash. So, we still need 

to test other crashes and it is possible to adjust our method in order to fit other crashes. 

Besides of these study design limitations above, we also think that it is vital to question 

the difference between identifying the clusters movement for post crashes and forecasting 

a pre-crash building-up state. But we hope our study has shed some light on research in 

identifying clusters’ patterns in the stock market network and could be useful for market 

regulators, stock investors, and any other market participants. Therefore, we believe it is 

also worthwhile for other researchers to look into our limitations and provide further 

studies in the near future.  

6.3 Conclusion 

In the recent two centuries, two major crashes have occurred in the global stock 

market: the 1929 Wall Street Crash and the 2008-2009 Crash. Both of these two market 

crashes have caused billions of losses and have damaged investors’ confidence 

significantly afterwards. Researchers from multiple disciplines have tried to understand 

the mechanism of stock market crashes. Independent empirical evidence has converged to 
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prove the synchronization phenomenon as the trigger of stock market crashes (Tse et al., 

2010). As well, the Phase Transition Model explains the building-up mechanism and the 

critical point theory in stock market crashes (Yalamova & McKelvey, 2011). In this study, 

we have proposed a possible method to identify the synchronization or pre-crash 

building-up stage before the 2008 – 2009 crash by applying the network theory and 

methods.  

We have introduced a novel hierarchical clustering method called the 

Potential-based Hierarchical Agglomerative (PHA) clustering method used in biology 

and physics and applied this method to the US stock market network (Lu & Wan, 2013). 

In addition, we have applied another novel significant correlation matrix extraction 

method in order to build up the significant visual display of the clusters. What’s more, we 

have adopted a Dot Matrix Plot method that is mainly used in bioinformatics to show a 

graphical display of the clusters under different market states. By applying these methods 

to our data set, we found the results that support our hypotheses. We found 27 clusters 

during the time period from the beginning of 2002 to the end of 2005 that is considered to 

be within the market equilibrium state. Our findings correspond to Leibon et al.’s (2008) 

study on the topological structure and the existence of sector clusters in the US stock 

market. As well, our results also further support Foti et al.’s (2011) conclusion that there 

have been 22 clusters within the S&P 500 index constituents. Furthermore, we have also 
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identified that there exists the similar number of clusters during different time periods 

under the market equilibrium state. We found 28 clusters, 26 clusters, 30 clusters, and 30 

clusters during the time periods of Jan 2nd 2002 to Dec 31st 2002, Jan 2nd 2003 to Dec 31st 

2003, Jan 2nd 2004 to Dec 31st 2004, and Jan 3rd 2005 to Dec 30th 2005 respectively. More 

importantly, we have also identified the clusters’ convergence into only one large cluster 

in the market disequilibrium state, which further supports our hypotheses.  

Based on the results we have found, we also provide some suggestions to market 

regulators, investors, and other market participants. We believe that our study has 

provided another indicator to detect the pre-crash building-up stage. Market regulators 

should interfere in the market once the pre-crash signal has been detected by possible 

ways such as interest rate adjustment or information transparence regulation actions. 

Additionally, stock market investors should remain rational and collect as much as 

possible information before making decisions, especially when a pre-crash disequilibrium 

state is identified.  

However, our study is only based on the US stock market S&P 500 index 

constituents and is only built on the 2008 – 2009 market crash, which leads to the study’s 

design limitations. Besides this, we also acknowledge ourselves that there is a difference 

between identifying the clusters’ movement for post crashes and forecasting a pre-crash 

building-up state. But we do hope our study could shed some light on research in 
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identifying clusters’ pattern in the stock market network. Therefore, we believe it is also 

worthwhile for other researchers to look into our limitations and provide further studies 

in the near future. And we are confident that future studies could be much more useful for 

market regulators, stock investors, and any other market participants in order to maintain 

the market equilibrium state and reduce market volatility.  
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Appendix 

S&P 500 Constituents List from FactSet. 

Name Symbol 

S&P 500 SP50-SPX 

10 Energy 

      101010 Energy Equipment & Services 

           Baker Hughes Incorporated BHI-US 

          Cameron International Corporation CAM-US 

          Diamond Offshore Drilling, Inc. DO-US 

          Ensco plc ESV-US 

          FMC Technologies, Inc. FTI-US 

          Halliburton Company HAL-US 

          Helmerich & Payne, Inc. HP-US 

          National Oilwell Varco, Inc. NOV-US 

          Noble Corporation plc NE-US 

          Schlumberger NV SLB-US 

          Transocean Ltd. RIG-US 

     101020 Oil Gas & Consumable Fuels 

           Anadarko Petroleum Corporation APC-US 

          Apache Corporation APA-US 

          Cabot Oil & Gas Corporation COG-US 

          Chesapeake Energy Corporation CHK-US 

          Chevron Corporation CVX-US 

          Cimarex Energy Co. XEC-US 

          ConocoPhillips COP-US 

          CONSOL Energy Inc. CNX-US 

          Devon Energy Corporation DVN-US 

          EOG Resources, Inc. EOG-US 

          EQT Corporation EQT-US 

          Exxon Mobil Corporation XOM-US 

          Hess Corporation HES-US 

          Kinder Morgan Inc. Class P KMI-US 

          Marathon Oil Corporation MRO-US 

          Marathon Petroleum Corporation MPC-US 

          Murphy Oil Corporation MUR-US 

          Newfield Exploration Company NFX-US 

          Noble Energy, Inc. NBL-US 
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          Occidental Petroleum Corporation OXY-US 

          ONEOK, Inc. OKE-US 

          Phillips 66 PSX-US 

          Pioneer Natural Resources Company PXD-US 

          QEP Resources, Inc. QEP-US 

          Range Resources Corporation RRC-US 

          Southwestern Energy Company SWN-US 

          Spectra Energy Corp SE-US 

          Tesoro Corporation TSO-US 

          Valero Energy Corporation VLO-US 

          Williams Companies, Inc. WMB-US 

15 Materials 

      151010 Chemicals 

           Air Products and Chemicals, Inc. APD-US 

          Airgas, Inc. ARG-US 

          CF Industries Holdings, Inc. CF-US 

          Dow Chemical Company DOW-US 

          E. I. du Pont de Nemours and Company DD-US 

          Eastman Chemical Company EMN-US 

          Ecolab Inc. ECL-US 

          FMC Corporation FMC-US 

          International Flavors & Fragrances Inc. IFF-US 

          LyondellBasell Industries NV LYB-US 

          Monsanto Company MON-US 

          Mosaic Company MOS-US 

          PPG Industries, Inc. PPG-US 

          Praxair, Inc. PX-US 

          Sherwin-Williams Company SHW-US 

          Sigma-Aldrich Corporation SIAL-US 

     151020 Construction Materials 

           Martin Marietta Materials, Inc. MLM-US 

          Vulcan Materials Company VMC-US 

     151030 Containers & Packaging 

           Avery Dennison Corporation AVY-US 

          Ball Corporation BLL-US 

          MeadWestvaco Corporation MWV-US 

          Owens-Illinois, Inc. OI-US 

          Sealed Air Corporation SEE-US 
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     151040 Metals & Mining 

           Alcoa Inc. AA-US 

          Allegheny Technologies Incorporated ATI-US 

          Freeport-McMoRan, Inc. FCX-US 

          Newmont Mining Corporation NEM-US 

          Nucor Corporation NUE-US 

     151050 Paper & Forest Products 

           International Paper Company IP-US 

20 Industrials 

      201010 Aerospace & Defense 

           Boeing Company BA-US 

          General Dynamics Corporation GD-US 

          Honeywell International Inc. HON-US 

          L-3 Communications Holdings, Inc. LLL-US 

          Lockheed Martin Corporation LMT-US 

          Northrop Grumman Corporation NOC-US 

          Precision Castparts Corp. PCP-US 

          Raytheon Company RTN-US 

          Rockwell Collins, Inc. COL-US 

          Textron Inc. TXT-US 

          United Technologies Corporation UTX-US 

     201020 Building Products 

           Allegion PLC ALLE-US 

          Masco Corporation MAS-US 

     201030 Construction & Engineering 

           Fluor Corporation FLR-US 

          Jacobs Engineering Group Inc. JEC-US 

          Quanta Services, Inc. PWR-US 

     201040 Electrical Equipment 

           AMETEK, Inc. AME-US 

          Eaton Corp. Plc ETN-US 

          Emerson Electric Co. EMR-US 

          Rockwell Automation, Inc. ROK-US 

     201050 Industrial Conglomerates 

           3M Company MMM-US 

          Danaher Corporation DHR-US 

          General Electric Company GE-US 

          Roper Industries, Inc. ROP-US 
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     201060 Machinery 

           Caterpillar Inc. CAT-US 

          Cummins Inc. CMI-US 

          Deere & Company DE-US 

          Dover Corporation DOV-US 

          Flowserve Corporation FLS-US 

          Illinois Tool Works Inc. ITW-US 

          Ingersoll-Rand Plc IR-US 

          Joy Global Inc. JOY-US 

          PACCAR Inc. PCAR-US 

          Pall Corporation PLL-US 

          Parker-Hannifin Corporation PH-US 

          Pentair plc PNR-US 

          Snap-on Incorporated SNA-US 

          Stanley Black & Decker, Inc. SWK-US 

          Xylem Inc. XYL-US 

     201070 Trading Companies & Distributors 

           Fastenal Company FAST-US 

          United Rentals, Inc. URI-US 

          W.W. Grainger, Inc. GWW-US 

     202010 Commercial Services & Supplies 

           ADT Corporation ADT-US 

          Cintas Corporation CTAS-US 

          Pitney Bowes Inc. PBI-US 

          Republic Services, Inc. RSG-US 

          Stericycle, Inc. SRCL-US 

          Tyco International PLC TYC-US 

          Waste Management, Inc. WM-US 

     202020 Professional Services 

           Dun & Bradstreet Corporation DNB-US 

          Equifax Inc. EFX-US 

          Nielsen N.V. NLSN-US 

          Robert Half International Inc. RHI-US 

     203010 Air Freight & Logistics 

           C.H. Robinson Worldwide, Inc. CHRW-US 

          Expeditors International of Washington, Inc. EXPD-US 

          FedEx Corporation FDX-US 

          United Parcel Service, Inc. Class B UPS-US 
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     203020 Airlines 

           American Airlines Group, Inc. AAL-US 

          Delta Air Lines, Inc. DAL-US 

          Southwest Airlines Co. LUV-US 

     203040 Road & Rail 

           CSX Corporation CSX-US 

          Kansas City Southern KSU-US 

          Norfolk Southern Corporation NSC-US 

          Ryder System, Inc. R-US 

          Union Pacific Corporation UNP-US 

25 Consumer Discretionary 

      251010 Auto Components 

           BorgWarner Inc. BWA-US 

          Delphi Automotive PLC DLPH-US 

          Goodyear Tire & Rubber Company GT-US 

          Johnson Controls, Inc. JCI-US 

     251020 Automobiles 

           Ford Motor Company F-US 

          General Motors Company GM-US 

          Harley-Davidson, Inc. HOG-US 

     252010 Household Durables 

           D.R. Horton, Inc. DHI-US 

          Garmin Ltd. GRMN-US 

          Harman International Industries, Incorporated HAR-US 

          Leggett & Platt, Incorporated LEG-US 

          Lennar Corporation Class A LEN-US 

          Mohawk Industries, Inc. MHK-US 

          Newell Rubbermaid Inc. NWL-US 

          PulteGroup, Inc. PHM-US 

          Whirlpool Corporation WHR-US 

     252020 Leisure Products 

           Hasbro, Inc. HAS-US 

          Mattel, Inc. MAT-US 

     252030 Textiles Apparel & Luxury Goods 

           Coach, Inc. COH-US 

          Fossil Group, Inc. FOSL-US 

          Hanesbrands Inc. HBI-US 

          Michael Kors Holdings Ltd KORS-US 
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          NIKE, Inc. Class B NKE-US 

          PVH Corp. PVH-US 

          Ralph Lauren Corporation Class A RL-US 

          Under Armour, Inc. Class A UA-US 

          V.F. Corporation VFC-US 

     253010 Hotels Restaurants & Leisure 

           Carnival Corporation CCL-US 

          Chipotle Mexican Grill, Inc. CMG-US 

          Darden Restaurants, Inc. DRI-US 

          Marriott International, Inc. Class A MAR-US 

          McDonald's Corporation MCD-US 

          Royal Caribbean Cruises Ltd. RCL-US 

          Starbucks Corporation SBUX-US 

          Starwood Hotels & Resorts Worldwide, Inc. HOT-US 

          Wyndham Worldwide Corporation WYN-US 

          Wynn Resorts, Limited WYNN-US 

          YUM! Brands, Inc. YUM-US 

     253020 Diversified Consumer Services 

           H&R Block, Inc. HRB-US 

     254010 Media 

           Cablevision Systems Corporation Class A CVC-US 

          CBS Corporation Class B CBS-US 

          Comcast Corporation Class A CMCSA-US 

          DIRECTV DTV-US 

          Discovery Communications, Inc. Class A DISCA-US 

          Discovery Communications, Inc. Class C DISCK-US 

          Gannett Co., Inc. GCI-US 

          Interpublic Group of Companies, Inc. IPG-US 

          News Corporation Class A NWSA-US 

          Omnicom Group Inc. OMC-US 

          Scripps Networks Interactive, Inc. Class A SNI-US 

          Time Warner Cable Inc. TWC-US 

          Time Warner Inc. TWX-US 

          Twenty-First Century Fox, Inc. Class A FOXA-US 

          Viacom Inc. Class B VIAB-US 

          Walt Disney Company DIS-US 

     255010 Distributors 

           Genuine Parts Company GPC-US 
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     255020 Internet & Catalog Retail 

           Amazon.com, Inc. AMZN-US 

          Expedia, Inc. EXPE-US 

          Netflix, Inc. NFLX-US 

          Priceline Group Inc. PCLN-US 

          TripAdvisor, Inc. TRIP-US 

     255030 Multiline Retail 

           Dollar General Corporation DG-US 

          Dollar Tree, Inc. DLTR-US 

          Family Dollar Stores, Inc. FDO-US 

          Kohl's Corporation KSS-US 

          Macy's Inc. M-US 

          Nordstrom, Inc. JWN-US 

          Target Corporation TGT-US 

     255040 Specialty Retail 

           AutoNation, Inc. AN-US 

          AutoZone, Inc. AZO-US 

          Bed Bath & Beyond Inc. BBBY-US 

          Best Buy Co., Inc. BBY-US 

          CarMax, Inc. KMX-US 

          GameStop Corp. Class A GME-US 

          Gap, Inc. GPS-US 

          Home Depot, Inc. HD-US 

          L Brands, Inc. LB-US 

          Lowe's Companies, Inc. LOW-US 

          O'Reilly Automotive, Inc. ORLY-US 

          Ross Stores, Inc. ROST-US 

          Staples, Inc. SPLS-US 

          Tiffany & Co. TIF-US 

          TJX Companies, Inc. TJX-US 

          Tractor Supply Company TSCO-US 

          Urban Outfitters, Inc. URBN-US 

30 Consumer Staples 

      301010 Food & Staples Retailing 

           Costco Wholesale Corporation COST-US 

          CVS Health Corporation CVS-US 

          Kroger Co. KR-US 

          Sysco Corporation SYY-US 
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          Wal-Mart Stores, Inc. WMT-US 

          Walgreens Boots Alliance Inc. WBA-US 

          Whole Foods Market, Inc. WFM-US 

     302010 Beverages 

           Brown-Forman Corporation Class B BF.B-US 

          Coca-Cola Company KO-US 

          Coca-Cola Enterprises, Inc. CCE-US 

          Constellation Brands, Inc. Class A STZ-US 

          Dr Pepper Snapple Group, Inc. DPS-US 

          Molson Coors Brewing Company Class B TAP-US 

          Monster Beverage Corporation MNST-US 

          PepsiCo, Inc. PEP-US 

     302020 Food Products 

           Archer-Daniels-Midland Company ADM-US 

          Campbell Soup Company CPB-US 

          ConAgra Foods, Inc. CAG-US 

          General Mills, Inc. GIS-US 

          Hershey Company HSY-US 

          Hormel Foods Corporation HRL-US 

          J. M. Smucker Company SJM-US 

          Kellogg Company K-US 

          Keurig Green Mountain, Inc. GMCR-US 

          Kraft Foods Group, Inc. KRFT-US 

          McCormick & Company, Incorporated MKC-US 

          Mead Johnson Nutrition Company MJN-US 

          Mondelez International, Inc. Class A MDLZ-US 

          Tyson Foods, Inc. Class A TSN-US 

     302030 Tobacco 

           Altria Group, Inc. MO-US 

          Lorillard, Inc. LO-US 

          Philip Morris International Inc. PM-US 

          Reynolds American Inc. RAI-US 

     303010 Household Products 

           Clorox Company CLX-US 

          Colgate-Palmolive Company CL-US 

          Kimberly-Clark Corporation KMB-US 

          Procter & Gamble Company PG-US 

     303020 Personal Products 
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          Estee Lauder Companies Inc. Class A EL-US 

35 Health Care 

      351010 Health Care Equipment & Supplies 

           Abbott Laboratories ABT-US 

          Baxter International Inc. BAX-US 

          Becton, Dickinson and Company BDX-US 

          Boston Scientific Corporation BSX-US 

          C. R. Bard, Inc. BCR-US 

          DENTSPLY International Inc. XRAY-US 

          Edwards Lifesciences Corporation EW-US 

          Intuitive Surgical, Inc. ISRG-US 

          Medtronic Plc MDT-US 

          St. Jude Medical, Inc. STJ-US 

          Stryker Corporation SYK-US 

          Varian Medical Systems, Inc. VAR-US 

          Zimmer Holdings, Inc. ZMH-US 

     351020 Health Care Providers & Services 

           Aetna Inc. AET-US 

          AmerisourceBergen Corporation ABC-US 

          Anthem, Inc. ANTM-US 

          Cardinal Health, Inc. CAH-US 

          Cigna Corporation CI-US 

          DaVita HealthCare Partners Inc. DVA-US 

          Express Scripts Holding Company ESRX-US 

          HCA Holdings, Inc. HCA-US 

          Henry Schein, Inc. HSIC-US 

          Humana Inc. HUM-US 

          Laboratory Corporation of America Holdings LH-US 

          McKesson Corporation MCK-US 

          Patterson Companies, Inc. PDCO-US 

          Quest Diagnostics Incorporated DGX-US 

          Tenet Healthcare Corporation THC-US 

          UnitedHealth Group Incorporated UNH-US 

          Universal Health Services, Inc. Class B UHS-US 

     351030 Health Care Technology 

           Cerner Corporation CERN-US 

     352010 Biotechnology 

           Alexion Pharmaceuticals, Inc. ALXN-US 
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          Amgen Inc. AMGN-US 

          Biogen Inc. BIIB-US 

          Celgene Corporation CELG-US 

          Gilead Sciences, Inc. GILD-US 

          Regeneron Pharmaceuticals, Inc. REGN-US 

          Vertex Pharmaceuticals Incorporated VRTX-US 

     352020 Pharmaceuticals 

           AbbVie, Inc. ABBV-US 

          Actavis Plc ACT-US 

          Bristol-Myers Squibb Company BMY-US 

          Eli Lilly and Company LLY-US 

          Endo International Plc ENDP-US 

          Hospira, Inc. HSP-US 

          Johnson & Johnson JNJ-US 

          Mallinckrodt Plc MNK-US 

          Merck & Co., Inc. MRK-US 

          Mylan N.V. MYL-US 

          Perrigo Co. Plc PRGO-US 

          Pfizer Inc. PFE-US 

          Zoetis, Inc. Class A ZTS-US 

     352030 Life Sciences Tools & Services 

           Agilent Technologies, Inc. A-US 

          PerkinElmer, Inc. PKI-US 

          Thermo Fisher Scientific Inc. TMO-US 

          Waters Corporation WAT-US 

40 Financials 

      401010 Banks 

           Bank of America Corporation BAC-US 

          BB&T Corporation BBT-US 

          Citigroup Inc. C-US 

          Comerica Incorporated CMA-US 

          Fifth Third Bancorp FITB-US 

          Huntington Bancshares Incorporated HBAN-US 

          JPMorgan Chase & Co. JPM-US 

          KeyCorp KEY-US 

          M&T Bank Corporation MTB-US 

          PNC Financial Services Group, Inc. PNC-US 

          Regions Financial Corporation RF-US 
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          SunTrust Banks, Inc. STI-US 

          U.S. Bancorp USB-US 

          Wells Fargo & Company WFC-US 

          Zions Bancorporation ZION-US 

     401020 Thrifts & Mortgage Finance 

           Hudson City Bancorp, Inc. HCBK-US 

          People's United Financial, Inc. PBCT-US 

     402010 Diversified Financial Services 

           Berkshire Hathaway Inc. Class B BRK.B-US 

          CME Group Inc. Class A CME-US 

          Intercontinental Exchange, Inc. ICE-US 

          Leucadia National Corporation LUK-US 

          McGraw Hill Financial, Inc. MHFI-US 

          Moody's Corporation MCO-US 

          NASDAQ OMX Group, Inc. NDAQ-US 

     402020 Consumer Finance 

           American Express Company AXP-US 

          Capital One Financial Corporation COF-US 

          Discover Financial Services DFS-US 

          Navient Corp NAVI-US 

     402030 Capital Markets 

           Affiliated Managers Group, Inc. AMG-US 

          Ameriprise Financial, Inc. AMP-US 

          Bank of New York Mellon Corporation BK-US 

          BlackRock, Inc. BLK-US 

          Charles Schwab Corporation SCHW-US 

          E*TRADE Financial Corporation ETFC-US 

          Franklin Resources, Inc. BEN-US 

          Goldman Sachs Group, Inc. GS-US 

          Invesco Ltd. IVZ-US 

          Legg Mason, Inc. LM-US 

          Morgan Stanley MS-US 

          Northern Trust Corporation NTRS-US 

          State Street Corporation STT-US 

          T. Rowe Price Group TROW-US 

     403010 Insurance 

           ACE Limited ACE-US 

          Aflac Incorporated AFL-US 
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          Allstate Corporation ALL-US 

          American International Group, Inc. AIG-US 

          Aon plc AON-US 

          Assurant, Inc. AIZ-US 

          Chubb Corporation CB-US 

          Cincinnati Financial Corporation CINF-US 

          Genworth Financial, Inc. Class A GNW-US 

          Hartford Financial Services Group, Inc. HIG-US 

          Lincoln National Corporation LNC-US 

          Loews Corporation L-US 

          Marsh & McLennan Companies, Inc. MMC-US 

          MetLife, Inc. MET-US 

          Principal Financial Group, Inc. PFG-US 

          Progressive Corporation PGR-US 

          Prudential Financial, Inc. PRU-US 

          Torchmark Corporation TMK-US 

          Travelers Companies, Inc. TRV-US 

          Unum Group UNM-US 

          XL Group Plc XL-US 

     404020 Real Estate Investment Trusts (REITs) 

           American Tower Corporation AMT-US 

          Apartment Investment and Management Company Class A AIV-US 

          AvalonBay Communities, Inc. AVB-US 

          Boston Properties, Inc. BXP-US 

          Crown Castle International Corp CCI-US 

          Equity Residential EQR-US 

          Essex Property Trust, Inc. ESS-US 

          General Growth Properties, Inc. GGP-US 

          HCP, Inc. HCP-US 

          Health Care REIT, Inc. HCN-US 

          Host Hotels & Resorts, Inc. HST-US 

          Iron Mountain, Inc. IRM-US 

          Kimco Realty Corporation KIM-US 

          Macerich Company MAC-US 

          Plum Creek Timber Company, Inc. PCL-US 

          Prologis, Inc. PLD-US 

          Public Storage PSA-US 

          Realty Income Corporation O-US 
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          Simon Property Group, Inc. SPG-US 

          SL Green Realty Corp. SLG-US 

          Ventas, Inc. VTR-US 

          Vornado Realty Trust VNO-US 

          Weyerhaeuser Company WY-US 

     404030 Real Estate Management & Development 

           CBRE Group, Inc. Class A CBG-US 

45 Information Technology 

      451010 Internet Software & Services 

           Akamai Technologies, Inc. AKAM-US 

          eBay Inc. EBAY-US 

          Equinix Inc. EQIX-US 

          Facebook, Inc. Class A FB-US 

          Google Inc. Class A GOOGL-US 

          Google Inc. Class C GOOG-US 

          VeriSign, Inc. VRSN-US 

          Yahoo! Inc. YHOO-US 

     451020 IT Services 

           Accenture Plc ACN-US 

          Alliance Data Systems Corporation ADS-US 

          Automatic Data Processing, Inc. ADP-US 

          Cognizant Technology Solutions Corporation Class A CTSH-US 

          Computer Sciences Corporation CSC-US 

          Fidelity National Information Services, Inc. FIS-US 

          Fiserv, Inc. FISV-US 

          International Business Machines Corporation IBM-US 

          MasterCard Incorporated Class A MA-US 

          Paychex, Inc. PAYX-US 

          Teradata Corporation TDC-US 

          Total System Services, Inc. TSS-US 

          Visa Inc. Class A V-US 

          Western Union Company WU-US 

          Xerox Corporation XRX-US 

     451030 Software 

           Adobe Systems Incorporated ADBE-US 

          Autodesk, Inc. ADSK-US 

          CA, Inc. CA-US 

          Citrix Systems, Inc. CTXS-US 
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          Electronic Arts Inc. EA-US 

          Intuit Inc. INTU-US 

          Microsoft Corporation MSFT-US 

          Oracle Corporation ORCL-US 

          Red Hat, Inc. RHT-US 

          salesforce.com, Inc. CRM-US 

          Symantec Corporation SYMC-US 

     452010 Communications Equipment 

           Cisco Systems, Inc. CSCO-US 

          F5 Networks, Inc. FFIV-US 

          Harris Corporation HRS-US 

          Juniper Networks, Inc. JNPR-US 

          Motorola Solutions, Inc. MSI-US 

          QUALCOMM Incorporated QCOM-US 

     452020 Technology Hardware Storage & Peripherals 

           Apple Inc. AAPL-US 

          EMC Corporation EMC-US 

          Hewlett-Packard Company HPQ-US 

          NetApp, Inc. NTAP-US 

          SanDisk Corporation SNDK-US 

          Seagate Technology PLC STX-US 

          Western Digital Corporation WDC-US 

     452030 Electronic Equipment Instruments & Components 

           Amphenol Corporation Class A APH-US 

          Corning Incorporated GLW-US 

          FLIR Systems, Inc. FLIR-US 

          TE Connectivity Ltd. TEL-US 

     453010 Semiconductors & Semiconductor Equipment 

           Altera Corporation ALTR-US 

          Analog Devices, Inc. ADI-US 

          Applied Materials, Inc. AMAT-US 

          Avago Technologies Limited AVGO-US 

          Broadcom Corporation Class A BRCM-US 

          First Solar, Inc. FSLR-US 

          Intel Corporation INTC-US 

          KLA-Tencor Corporation KLAC-US 

          Lam Research Corporation LRCX-US 

          Linear Technology Corporation LLTC-US 
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          Microchip Technology Incorporated MCHP-US 

          Micron Technology, Inc. MU-US 

          NVIDIA Corporation NVDA-US 

          Skyworks Solutions, Inc. SWKS-US 

          Texas Instruments Incorporated TXN-US 

          Xilinx, Inc. XLNX-US 

50 Telecommunication Services 

      501010 Diversified Telecommunication Services 

           AT&T Inc. T-US 

          CenturyLink, Inc. CTL-US 

          Frontier Communications Corporation Class B FTR-US 

          Level 3 Communications, Inc. LVLT-US 

          Verizon Communications Inc. VZ-US 

55 Utilities 

      551010 Electric Utilities 

           American Electric Power Company, Inc. AEP-US 

          Duke Energy Corporation DUK-US 

          Edison International EIX-US 

          Entergy Corporation ETR-US 

          Eversource Energy ES-US 

          Exelon Corporation EXC-US 

          FirstEnergy Corp. FE-US 

          NextEra Energy, Inc. NEE-US 

          Pepco Holdings, Inc. POM-US 

          Pinnacle West Capital Corporation PNW-US 

          PPL Corporation PPL-US 

          Southern Company SO-US 

          Xcel Energy Inc. XEL-US 

     551020 Gas Utilities 

           AGL Resources, Inc. GAS-US 

     551030 Multi-Utilities 

           Ameren Corporation AEE-US 

          CenterPoint Energy, Inc. CNP-US 

          CMS Energy Corporation CMS-US 

          Consolidated Edison, Inc. ED-US 

          Dominion Resources, Inc. D-US 

          DTE Energy Company DTE-US 

          Integrys Energy Group, Inc. TEG-US 



 

 

73 

          NiSource Inc. NI-US 

          PG&E Corporation PCG-US 

          Public Service Enterprise Group Incorporated PEG-US 

          SCANA Corporation SCG-US 

          Sempra Energy SRE-US 

          TECO Energy, Inc. TE-US 

          Wisconsin Energy Corporation WEC-US 

     551050 Independent Power and Renewable Electricity Producers 

           AES Corporation AES-US 

          NRG Energy, Inc. NRG-US 

 

 


