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ABSTRACT 
 
 
In dryland environments, the availability of soil moisture is the primary control on plant 

species’ distributions. In the sandhill regions of the northern Great Plains, vegetation 

establishment has transformed highly mobile, desert-like dune fields into stabilized 

landscapes covered by mixed-grassland prairie. This study examines how dune stabilization 

has modified the spatiotemporal distribution of soil moisture resources. An ergodic (space-

for-time) approach was used, comparing soil moisture dynamics on active and vegetation-

stabilized dunes in the Bigstick Sand Hills of southwestern Saskatchewan. Results indicate 

that while dune stabilization has enhanced near-surface soil moisture availability, deeper 

profile soil moisture recharge is reduced. Through better understanding how vegetation has 

modified soil moisture dynamics in stabilizing sandhill regions, better management practices 

may be implemented to maintain water resource availability and ecosystem health. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

 

1.1 Motivation 

 Active and vegetation-stabilized aeolian sand deposits cover approximately 6% of the 

global land surface area and are present on every continent, giving these deposits widespread 

ecological and cultural significance (Pye & Tsoar, 2009). While the landforms (dunes) that 

usually denote these sand deposits may be readily observed at the surface, in the subsurface 

large quantities of accessible freshwater are often present. In regions exhibiting bare, active 

aeolian dune forms, rapid moisture infiltration rates encourage recharge of deep moisture 

reserves (Berger, 1992; Chen & Chen, 2004; Harvey et al., 2007). However, the moisture 

infiltration and storage properties of these sediments become modified following the 

introduction of vegetation during dune stabilization. To date, few studies have focussed on 

the changing soil moisture dynamics in naturally stabilizing or stabilized dune ecosystems 

(Berger, 1992; Shay et al., 2000). Most research has occurred in desert regions where active 

dunes have been artificially stabilized to enhance the anthropogenic utility of the soils (e.g. 

Duan et al., 2004; Li et al., 2004B; Zhang et al., 2008). Given the widespread and increasing 

anthropogenic reliance on aeolian groundwater sources, in conjunction with changing 

climate, a better understanding of the effects of natural dune stabilization on soil moisture 

and groundwater recharge is warranted to guide land-use management decisions now and in 

the future.  

In the southern Canadian Prairie region, large tracts of sand dunes have become 

vegetated over the last 200 years, representing a major transformation of these ecosystems 

(Wolfe et al., 2001; Wolfe & Hugenholtz, 2009; Hugenholtz et al., 2010). Following cold and 
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dry conditions during the Little Ice Age (ca. 1550-1850 AD) prairie dunefields (commonly 

referred to as sandhills) converted from desert-like conditions to the relatively verdant 

landscapes we see today (Wolfe & Hugenholtz, 2009). Beginning around 200 years BP, 

expanding vegetation cover transformed the dunes from highly mobile, barchan dunes to 

vegetation-stabilized parabolic dunes, which represents a complete reversal in dune 

morphology from active, bare dunes with arms pointing downwind to vegetation stabilized 

dune arms pointing upwind (David et al., 1999). Currently, less than 1% of Canadian Prairie 

dunefields are mobile and active, and it is expected that this percentage will soon approach 

zero (Epp & Townley-Smith, 1980; Hugenholtz et al., 2010). Changes in climate in 

conjunction with the establishment of vegetation have modified a variety of biophysical 

processes within these landscapes. (Hulett et al., 1966; Shay et al., 2000; Hugenholtz et al., 

2010). Elsewhere, it has been shown that dune stabilization reduces soil moisture recharge 

through increased evapotranspiration and reduced infiltration rates (Barnes & Harrison, 

1982; Berger, 1992; Li et al., 2007). However, few studies have investigated how natural dune 

stabilization influences soil moisture dynamics in climatic and geomorphological settings 

comparable to those of Canadian Prairie sandhill ecosystems. 

This thesis investigates the impact of vegetation expansion, i.e. sand dune 

stabilization, within a formerly active Canadian Prairie sandhill ecosystem. The objective of this 

research is to determine how the establishment of vegetation has modified the spatial and temporal distribution 

of soil moisture in a formerly active Canadian Prairie sand dune ecosystem. To accomplish this, an 

investigation was undertaken to compare soil moisture between bare, active dunes, which 

represent former landscape conditions, and vegetation-stabilized dunes, which represent the 

current state of the majority of this ecosystem. Following this introduction, a detailed 

background that provides an overview on soil moisture dynamics within active and stabilized 
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dune ecosystems is presented. In Chapter 2, temporal soil moisture dynamics within the 

vertical soil profiles of active and stabilized dunes are examined. In Chapter 3, the 

spatiotemporal dynamics of near-surface soil moisture in relation to topography and 

vegetation cover types are examined. In Chapter 4, the main conclusions of this research are 

outlined. However, before examining the details of the studies, I will provide the necessary 

background to place these chapters within the framework of dune soil moisture research. 

 

1.1.1 Literature review 

Soil moisture is an important component of the hydrological cycle and is influenced 

by several controlling factors, including: precipitation, evaporation, transpiration, 

interception, infiltration, storage, runoff, and discharge (Ward & Robinson, 2000). These 

controls modify soil moisture dynamics to varying degrees within different ecosystems, 

necessitating the study of soil moisture dynamics at the scale of individual, unique 

ecosystems (Knapp et al., 2008). This literature review will begin by discussing a simplified 

model of soil moisture controls for active dunes, where effects of vegetation are absent or 

minimized. Following this, I will review how vegetation modifies soil moisture dynamics 

within stabilizing dune ecosystems. Finally, I will outline my research hypothesis and thesis 

outline. 
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1.2.1 Dune soil moisture dynamics in the absence of vegetation 

From first principles the hydrological cycle comprises inputs, outputs, and storage of 

water. Soil moisture is a component of the latter. Precipitation is the primary moisture input 

for most dune ecosystems (Qiu et al., 2001). In dryland dune regions, convective 

precipitation often dominates the precipitation regime, especially during the summer months 

(HilleRisLambers et al., 2001; Kim & Wang, 2007). The high intensity, short duration, and 

spatial variability of convective precipitation may enhance the spatiotemporal heterogeneity 

of soil moisture across the landscape (Douville, 2004; Sridhar et al., 2008; Sridhar & Wedin, 

2009). If the intensity of incoming precipitation exceeds the infiltration rate of the soil, 

runoff and perched water tables may occur (Berger, 1992; Gosselin et al., 1999). However, if 

a precipitation event fails to deposit sufficient moisture, soil moisture recharge deeper within 

the soil profile will not occur (Salve & Allen-Diaz, 2001; Schneider et al., 2008).   

Condensation may act as an important input for soil moisture in some active dune 

environments. While Bagnold (1941) suggested that bare sand may not readily experience 

condensation near the soil surface due to poor heat conduction, others suggest that 

condensation is an important source of moisture in desert dune environments (Danin, 1991; 

Pan & Wang, 2009). Cooling of the soil surface after the mid-day temperature peak helps 

recharge desiccated near-surface soil layers through condensation of atmospheric moisture 

(Dincer et al., 1974). Water vapour sourced within moist soil layers below the surface may 

also condense near the surface as the ground cools, enhancing the redistribution of soil 

moisture within the near surface (Yamanaka & Yonetani, 1999). 

Precipitation falling on active sand dunes is usually absorbed quickly because the 

coarse texture and porosity of the deposit is conducive to rapid infiltration. Infiltration rates 
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in excess of 100 cm day-1 can occur (Chen & Chen, 2004; Wang et al., 2008). In contrast, 

infiltration rates in finer sediments (clays, silts) can be several orders of magnitude slower 

than those found in dune sands (Kramer, 1944; Yair, 1990; Kozak & Ahuja, 2005).  While 

relatively uncommon in regions with sandy soils, infiltration rates can decrease due to 

compaction (Yair,1990; Tao et al., 2001; Dunkerly, 2002), salinity (Mamedov et al., 2001) and 

sediment pore-clogging with finer sediment particles (Wakindiki & Ben-Hur, 2002).  

Soil texture also determines the moisture storage capacity of a soil by controlling the 

amount of pore space between sediment particles. Fine-textured soils generally store more 

soil moisture per soil volume than coarse soils (Bouma, 1977; Barnes & Harrison, 1982; 

Sridhar et al., 2008). While coarse soils have larger pore spaces between sediment particles, 

the total volume of these large pore spaces is less than that of the many smaller pore spaces 

found in fine-textured soils (Bouma, 1977; Sridhar et al., 2008).  

The capillary rise of soil moisture above a saturated soil zone is controlled by the 

matric suction of pore spaces within that soil (Wind, 1961). Matric suction is determined by 

the size of pore spaces within a soil; with smaller pore spaces exerting greater matric suction 

potential when the soil is dry (White, 1987). Because of this, the potential for capillary rise is 

greatest in fine soils (such as clays), and lowest in coarse, sandy soils (Kramer, 1944; Loope et 

al., 1995). Limited capillary rise in sandy soils protects moisture reserves within the soil 

profile from depletion by limiting moisture transfer to near-surface soil layers that are more 

susceptible to evaporative losses (Stephens & Knowlton, 1986). 

 Topography can strongly influence the spatiotemporal distribution of moisture on 

dunes. Slope position, aspect, and curvature can all influence soil moisture distributions on 

active dunes (Daultry, 1970; Miller et al., 1983). The gravitational redistribution of soil 
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moisture to lower slope positions often makes soils near the base of active dunes moister 

than those near the dune crest (Qiu et al., 2001; de Rosnay et al., 2009). The direction (or 

aspect) a dune slope faces affects the amount of solar radiation received at the surface, 

thereby influencing spatial soil moisture patterns by modifying ground temperature, 

evaporation, and transpiration within a dune landscape (Rummel & Felix-Henningsen, 2004). 

Slope steepness and curvature also influence moisture distribution on dunes (Daultry, 1970). 

Steep, convex dune slopes tend to be drier, whereas shallow, concave slopes tend to have 

higher moisture contents (Daultry, 1970; Maestre et al., 2003). 

Dune sediment laminae of different textures also affect the redistribution of 

moisture within the soil profile (Berndtsson et al., 1996). The laminae range in thickness 

from sub-centimetre to several decametres and are the result of different depositional 

mechanisms (e.g., ripple migration, grainfall, grainflow), often leading to significantly 

different sediment textures within adjacent dune laminae (Bridge & Best, 1988). Soil 

moisture infiltration within dunes can follow individual laminae instead of penetrating 

through them, thus enhancing the lateral redistribution of soil moisture (Gardner & 

McLaren, 1999). The combination of steep slopes and laminae may also significantly reduce 

moisture penetration into the dune profile and may at times enhance the potential for runoff 

(Berndtsson et al., 1996). 

Soil moisture outputs from active, unvegetated dunes are controlled mostly by water 

exchange with the atmosphere (evaporation) and groundwater discharge. The coarse texture 

of dune sands limits evaporation to near-surface (< 30 cm) layers (Gardner & McLaren, 

1999). Below this, evaporation is greatly reduced, with some soil water vapour being 

transported toward the surface along vapour gradients within the soil profile (Yamanaka & 
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Yonetani, 1999). Dune areas may also act as sources of surface water recharge for lower 

topographic positions (Winter, 1986; Chen & Chen, 2004). Steady surface stream flow may 

be maintained by dune moisture discharge in the form of steam baseflow (Gosselin et al., 

1999; Chen et al., 2003).  

So far I have discussed the hydrological controls on soil moisture in bare, active 

dune regions. However, some dune regions (such as the one being studied) have undergone 

vegetation stabilization, modifying some controls on dune soil moisture dynamics and 

introducing others. These modifications will be discussed in the next section. 

 

1.2.2 The influence of vegetation on dune soil moisture dynamics 

Active sand dunes are generally considered harsh environments for vegetation 

establishment (Mangan et al., 2004). On active dunes, erosion inhibits vegetation 

establishment through plant burial and root exposure (Chadwick & Dalke, 1965; Pavlik, 

1980; Tsoar, 2005). Sand near the dune surface is also easily dried through evaporation, 

limiting plant germination and growth potential (Gardner & McLaren, 1999; Yamanaka & 

Yonetani; 1999). Dune sands are also normally nutrient poor, further reducing plant growth 

potential (Mangan et al., 2004; Rosenthal et al., 2005).  

 Species that do well during initial dune colonization stages tend to germinate quickly 

to avoid seedling root exposure or burial, or invade from nearby vegetated areas through the 

spread of rhizomes (Danin, 1991). Initial vegetation growth dramatically lowers surface wind 

speeds, reducing sediment transfer and enabling other vegetation types to become 

established on the stabilizing dune (Baldwin & Maun, 1983; Fearnehough et al., 1998). As the 
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dune surface approaches stability, the near-surface soil properties of the dune change, thus 

modifying the storage and infiltration properties of the soil profile. Vegetation alters a 

number of processes that regulate the spatiotemporal variability of soil moisture, including: 

infiltration rate, interception, transpiration, macroporosity, and landcover heterogeneity. 

 As vegetation becomes established on a dune surface, the proportions of fine 

sediment and organic matter increase in the soil profile (Danin, 1991; Fearnehough et al., 

1998). The reduction of surface winds following vegetation establishment can lead to 

substantial layers of fines being added to the soil profile (Duan et al., 2004). Through 

succession, the amount of organic material also increases (Hulett et al., 1966; Li et al., 2007). 

The combination of greater fine sediment and organic matter contents increase the moisture 

storage capacity of vegetation stabilized dune soils (Baldwin & Maun, 1983; Duan et al., 

2004). However, these changes also reduce water infiltration rates and enhance the 

possibility of runoff in stabilized dune areas (Hennessy et al., 1985; Neave & Abrahams, 

2002). Locally, infiltration may be enhanced due to the presence of soil macropores that 

form as a result of dune stability, vegetative growth, and soil disturbance by animals (Canton 

et al., 2004; Ensign et al., 2006). 

 In addition to modifying soil properties, vegetation modifies dune soil moisture 

dynamics by altering interception and transpiration rates, and by introducing landcover 

heterogeneity. The interception of incoming precipitation reduces the total amount of 

precipitation that is incident upon the dune surface (Canton et al., 2004). Precipitation 

intercepted by vegetation on the dune surface may evaporate before reaching the soil, 

thereby modifying precipitation inputs into the subsurface (Berndtsson et al., 1996; Schneider 

et al., 2008). Furthermore, precipitation interception enhances soil moisture heterogeneity 
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beneath the vegetative canopy (Canton et al., 2004; Ensign et al., 2006). This enhanced 

heterogeneity is especially prevalent beneath shrub and tree cover types, where canopy cover 

has the greatest potential to redistribute moisture before it reaches the dune surface 

(Schneider et al., 2008). 

 One of the primary mechanisms through which moisture is removed from the soil 

profile in vegetated environments is transpiration. The effects of transpiration on soil 

moisture reserves vary with different landcover types. Grasses tend to have relatively shallow 

root systems compared to shrubs or trees, limiting soil moisture depletion to the near-

surface (Barnes & Harrison, 1982; Sridhar et al., 2006). Root systems for shrubs and trees 

often penetrate deeper into the subsurface, enabling those species to draw on and deplete 

deeper soil moisture reserves (Tolstead, 1941; Wilcox & Thurow, 2005). However, grasses 

usually have finer root systems that are capable of drawing on limited near-surface moisture 

supplies, giving them a competitive edge for survival under drought conditions (James et al., 

2003). This competitive edge can lead to a reduction in shrub cover on dunes during 

prolonged periods of drought (Duan et al., 2004; Li et al., 2004A).  

 From the synthesis of literature it seems clear that dune soil moisture dynamics are 

modified by vegetation stabilization. Because the stabilization process alters pedogenic 

properties, as well as soil moisture inputs (interception) and outputs (transpiration), it is 

likely that the presence of vegetation on sand dunes enhances soil moisture heterogeneity 

within these landscapes. In the next section, I will review the results of other studies that 

have investigated the effects of dune stabilization on the spatiotemporal distribution of soil 

moisture, thus establishing the foundation for my research hypothesis. 

. 
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1.2.3  Previous soil moisture research in stabilizing dune environments 

Soil moisture research in dryland ecosystems has become a popular research topic in 

recent decades. While many studies have emphasized the effects of desertification (e.g. 

Schlesinger et al., 1990, Reynolds et al., 2007), relatively few studies have investigated changes 

in soil moisture dynamics in stabilizing dune environments (e.g. Duan et al., 2004; Zhang et 

al., 2008), and even fewer of these have been conducted in naturally (as opposed to 

anthropogenically) stabilized dune ecosystems (e.g. Berger, 1992; Shay et al., 2000). This 

section summarizes the key results of studies conducted in stabilizing dune ecosystems, 

providing context for my research hypothesis as well as defining how my research provides a 

unique contribution to soil moisture research in aeolian environments. 

 One of the most significant effects of dune stabilization by vegetation is the 

depletion of deep profile (> 50 cm) soil moisture and a reduction of groundwater recharge 

(Gupta, 1979; Berger, 1992; Duan et al., 2004; Li et al., 2004A). These changes are the result 

of vegetation-induced modifications of surface soil properties (i.e., sediment texture and 

organic matter), as well as increased withdrawals of soil moisture reserves through 

transpiration (Bowers, 1982; Fearnehough et al., 1998; Li et al., 2004B; Ensign et al., 2006). 

However, several studies have also found that changes in near-surface soil properties can 

enhance soil moisture availability in upper soil layers (e.g. Shay et al., 2000; Duan et al., 2004). 

Thus, it appears that soil moisture profiles within active dunes undergo a reversal during 

dune stabilization, from a desiccated surface layer with moisture available at depth under 

active dune conditions, to a moist surface layer with drier sediment at depth under 

vegetation-stabilized conditions.  



11 
 

 Of those stabilizing dune regions studied, few have been more exhaustively studied 

than the Tengger Desert in China. In this region, active dunes along the Baotou-Lanzhou 

railway were artificially stabilized using straw mats and xerophytic vegetation to reduce 

aeolian sediment transport, thus stabilizing the dune surface (Fearnehough et al., 1998; Duan 

et al., 2004). In the 55 years since artificial stabilization was initiated, dune soil moisture 

dynamics have substantially changed. Stabilization has reduced mean soil particle size and 

increased organic matter content (Duan et al., 2004; Li et al., 2004B). While these changes 

enhanced biodiversity on the dunes and facilitated the colonization of annual, non-

xerophytic vegetative species (Li et al., 2007), they also altered the soil moisture regime. As 

stabilization progressed, deeper soil layers within the dunes became desiccated because (i) 

finer sediment and organic material near the surface reduced infiltration rates, which reduced 

moisture recharge at depth, and (ii) the presence of dune vegetation increased 

evapotranspiration, which removed soil moisture (Fearnehough et al., 1998; Li et al., 2004A). 

It has been suggested that because of a lack of deep profile soil moisture recharge, deep-

rooted xerophytic species are becoming extirpated from the study region in favour of 

opportunistic, shallow-rooting species that take advantage of light, intermittent precipitation 

events (Fearnehough et al., 1998; Li et al., 2004B). These results suggest a significant shift in 

soil moisture conditions within dunes in this region, from higher moisture at depth under 

active dune conditions, to higher near-surface moisture and reduced moisture at depth under 

stabilized conditions. 

 Other studies similar to those mentioned above have obtained similar results. When 

compared to bare, active sand dunes, soil moisture recharge below the near-surface layers of 

stabilized dunes is reduced (Danin, 1991; Berger, 1992; Neave & Abrahams, 2002). 

However, most of these studies have been carried out in regions that experience significantly 
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less precipitation than the southern Canadian Prairie region examined in this study. In other 

dune ecosystems on the North American Great Plains, studies have shown that soil moisture 

dynamics may be different from those observed in drier desert regions. 

 The most studied stabilized dune ecosystem in the North American Great Plains is 

the Nebraska Sandhills. The Nebraska Sandhills ecosystem encompasses 50,000 km2 (¼ of 

Nebraska), and was active approximately 900 years BP (Mason et al., 2004). Because open 

sand is now restricted to small blowouts (wind erosion hollows) in this region, soil moisture 

research has focussed mostly on the stabilized dunes. In spite of this limitation, soil moisture 

recharge in the stabilized dunes of the Nebraska Sandhills contrasts with that observed in 

stabilized desert dunes. Deep profile soil moisture and groundwater recharge are commonly 

observed in the Nebraska Sandhills region (Winter, 1986; Gosselin et al., 1999; Sridhar & 

Wedin, 2009). The greater precipitation in the Nebraska Sandhills (400-700 mm year-1) 

compared to most desert dune regions could be a factor that enables moisture to percolate 

past fine surface sediments and the root systems of transpiring vegetation, allowing soil 

moisture and groundwater recharge to occur (Chen et al., 2003; Sridhar & Wedin, 2009). 

Another difference is that the transpiration output of dune vegetation in the Nebraska 

Sandhills is seasonal; thus, outside the growing season surface water is capable of infiltrating 

and recharging deep soil moisture and groundwater (Winter, 1986; Gosselin et al., 1999).  

It is unclear whether the understanding of soil moisture in the Nebraska Sandhills 

can be transferred directly to infer its dynamics in Canadian Prairie sandhill ecosystems. The 

vegetation is fundamentally different between these regions, especially in terms of the higher 

proportion of warm-season (C4) grasses in Nebraska, which have higher water-use efficiency 

than the cool-season (C3) grasses in Canada (Thorpe et al., 2001). Furthermore, there is an 
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increased proportion of shrub and forest in Canadian sandhills, which may affect deeper soil 

moisture dynamics (Thorpe et al., 2001). There may also be differences in the configuration 

of groundwater systems beneath sandhills in the two regions that could influence soil 

moisture distributions (Muhs & Wolfe, 1999). 

 

1.2.4  Canadian sandhill soil moisture research 

Soil moisture research within stabilizing Canadian Prairie sandhill regions has been 

limited to near-surface investigations, thereby preventing the characterization of soil 

moisture dynamics in the deeper rooting zone and beyond. A detailed study of near-surface 

(< 30 cm) soil moisture beneath active and stabilized dunes in the Bald Head Hills of 

Manitoba was conducted by Shay et al. (2000). They found that soil moisture availability was 

enhanced under stabilized conditions in near-surface sediments. Similar results were reported 

by Ensign et al. (2006) for a coastal dune system in Ontario. 

Studies investigating soil and vegetation properties of Canadian sandhill regions 

(Hulett et al., 1966) provide limited context for understanding the potential impact of dune 

stabilization on soil moisture dynamics. Furthermore, studies investigating the transpiration 

patterns of vegetation within Canadian sandhill ecosystems are limited, thereby reducing our 

ability to predict temporal dynamics of soil moisture beneath different landcover types found 

in these regions. Without this knowledge, it is difficult to predict how soil moisture dynamics 

have been modified by widespread dune stabilization. 

The objective of this study is to determine how the establishment of vegetation in a 

formerly active Canadian Prairie dune ecosystem has modified the spatiotemporal 
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distribution of soil moisture. Given the state of current research on soil moisture dynamics 

in stabilizing dune ecosystems, my hypothesis for this research is that soil moisture dynamics have been 

modified by the establishment of vegetation in the study region, with near-surface soil moisture availability 

being enhanced and deeper soil moisture recharge being reduced. I will now outline my thesis research 

objectives, briefly explaining how I aim to determine how soil moisture dynamics have been 

modified by the establishment of vegetation in the study region. 

 

1.3 Thesis outline 

This thesis presents results and discussion about soil moisture dynamics in a 

stabilized Canadian Prairie sandhill ecosystem. My objective is to determine how soil 

moisture resources vary between active and stabilized sand dunes. Through this comparative 

approach I will determine how soil moisture dynamics have changed as vegetation cover 

expanded, and thereby interpret the significance of these changes in the context of natural 

processes and anthropogenic demands on near-surface water resources.  

 First, following the work of Shay et al. (2000) and Hubbard et al. (2009), I 

investigated vertical soil moisture dynamics beneath active and stabilized dunes (Chapter 2). 

Previous soil moisture research in sandhills has mainly focussed on relatively shallow (< 100 

cm) soil moisture dynamics. My study measured soil moisture at depths beyond 100 cm, 

which provided a new perspective on its variability and dynamics within and below the plant 

rooting zone. The results of Chapter 2 indicate significant differences in vertical soil 

moisture dynamics beneath active and stabilized dunes, and that these differences become 

enhanced as depth increases. These results suggest a significant change in soil moisture 

availability and potentially even groundwater recharge due to dune stabilization. 
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 The second study examined the spatiotemporal dynamics of near-surface (< 6 cm) 

soil moisture across active and stabilized dunes (Chapter 3). This study follows that of Pan & 

Wang (2009) and clarifies the role of topography and vegetation cover on soil moisture 

dynamics in the uppermost soil layer. Results suggest that the establishment of vegetation on 

dunes has significantly increased the near-surface soil moisture storage capacity, thereby 

enhancing soil moisture availability for vegetative growth and establishment.  

 Finally, in Chapter 4 I summarize my findings and make recommendations on 

potential areas for future research.  

Overall, this thesis provides several interesting contributions. Sandhill soil moisture 

dynamics have been and continue to be modified through the establishment of vegetation in 

these ecosystems. This thesis adds to the understanding of how soil moisture dynamics 

change during the transition from bare, active dunes, to vegetation-stabilized dunes. Because 

this research is unique within the study region, it is anticipated that the results will contribute 

to future land use and water management strategies within Canadian sandhill ecosystems. 
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CHAPTER 2: FEEDBACK EFFECTS ON INFILTRATION AND SOIL 

MOISTURE RESULTING FROM SAND DUNE STABILIZATION, 

NORTHERN GREAT PLAINS, CANADA 

 

2.1  Chapter abstract 

Vegetation cover has increased steadily in Canadian Prairie sandhill ecosystems for 

the last 200 years, effectively transforming these once desert-like areas into relatively verdant 

ecosystems comprising mostly stabilized sand dunes. Despite considerable research on the 

geomorphology of Canadian Prairie sandhills and increasing pressure from energy 

development, little is known about the effects of dune stabilization on soil water resources. 

In other environments active sand dunes act as recharge pathways for soil moisture and 

groundwater. Therefore, the hypothesis for this investigation was that the active (bare) dunes 

would have higher soil moisture at depth than the stabilized dunes, because the presence of 

vegetation on the latter reduces the infiltration rate and removes soil moisture through 

evapotranspiration. We used an ergodic (space-for-time) approach by comparing infiltration 

and soil moisture on active and stabilized dunes in the Bigstick Sand Hills of southwestern 

Saskatchewan. We measured soil moisture dynamics throughout the 2010 growing season 

(April-October) using time-domain reflectometry (TDR) sensors installed at four depths 

down to 200 cm below the surface at an active and a stabilized dune. We also acquired soil 

samples from two active and two stabilized dunes ten times throughout the 2010 growing 

season to measure soil moisture dynamics at 50 cm increments down to 500 cm below the 

surface. The results of this investigation indicate that while soil moisture levels are elevated 

at 25 cm depth in the stabilized dunes, below that layer soil moisture recharge is significantly 
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lower when compared to the active dunes. Intra-site differences were less noticeable with 

changing depth at the active site than at the stabilized site. Inter-site differences in soil 

moisture dynamics are attributed to transpiring vegetation as well as changes in soil 

properties (increased clay, silt, and organic matter) attributed to the establishment of 

vegetation. Overall, the results of this study suggest that the establishment of vegetation 

within Canadian Prairie sandhill ecosystems has reduced profile soil moisture recharge and 

has likely had similar effect on groundwater recharge.  

 

2.2  Introduction 

Throughout the Canadian prairies, there are vast areas, known as sandhills, which 

consist of large tracts of sand dunes now mostly stabilized by vegetation. Before 

approximately 200 years ago, these unique ecosystems were characterized by mobile desert-

like barchanoid dunes that exist only in landscapes devoid of vegetation (Wolfe and 

Hugenholtz, 2009). A transformation ensued over the last 200 years, with the mobile 

barchanoid dunes evolving into parabolic dunes under the influence of expanding vegetation 

and a warmer, less arid climate regime. The relatively verdant sandhill ecosystems that now 

exist provide habitat for a number of endangered species (e.g. Dipodomys ordii, Falco peregrinus, 

Speotyto cunicularia) and support a wide array of land uses, including several that rely on 

shallow groundwater resources such as ranching and natural gas extraction. In more arid 

settings active sand dunes can be important pathways for groundwater recharge (Berger, 

1992). Thus, in light of the historical landscape transformation from active (bare) to 

stabilized (vegetated) dunes, as well as escalating anthropogenic water use since settlement in 

the late 1800s, it is increasingly important to understand the effect of sand dune stabilization 
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on the soil moisture and groundwater resources in sandhill ecosystems, especially in support 

of future land use decisions. To date, the effects of the landscape transformation on water 

resources in prairie sandhills are largely unknown. 

Previous research has demonstrated that the establishment of vegetation cover on 

formerly active sand dunes has the potential to modify soil hydrology. In the absence of 

vegetation, sandy soils allow rapid infiltration and storage of meteoric precipitation (Berger, 

1992; Wilcox & Thurow, 2006); however, these processes change once vegetation begins to 

colonize a stabilizing sand dune. At a basic level, vegetation extracts soil moisture for 

transpiration, thereby depleting soil moisture resources (Schneider & Childers, 1941). By 

intercepting precipitation and creating soil macropores along root channels it also modifies 

the amount and spatial distribution of meteoric water reaching the soil surface and 

infiltrating the subsurface (Aston, 1978; Allison et al., 1985; Orradottir et al., 2008). The 

addition of organic matter to soil through the death and decomposition of vegetation can 

also increase the amount of moisture that a soil can hold (Hulett et al. 1966; Maestre et al. 

2003). The gradual addition of organic matter to dune sands through soil genesis decreases 

the infiltration rate of moisture on stabilized dunes (Barnes & Harrison, 1982). Other studies 

have found that vegetation growth puts an added demand on near-surface soil moisture, 

depleting soil moisture resources on vegetated sandhills before the end of the growing 

season (Barnes & Harrison, 1982; Shay et al., 2000; Sridhar & Wedin, 2009). During drought 

years, a lack of soil moisture may limit plant transpiration (Chen & Chen, 2004). Prolonged 

drought may also lead to heterogeneous vegetation growth patterns, further enhancing soil 

moisture heterogeneity in dryland ecosystems (van de Koppel et al., 2002).  
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In order to gain insight into soil moisture dynamics in a stabilizing sandhill 

ecosystem we used an ergodic (space-for-time) approach by comparing the soil moisture 

regime of active and vegetation-stabilized dunes through the 2010 growing season. In this 

way we use the active dunes to represent the former mobile landscape (> 200 years ago) and 

the vegetated dunes to represent the outcome of the historical trend of dune stabilization. 

This work intends to provide new insight into profile soil moisture dynamics beneath the 

end-members of the dune activity continuum, from fully active to fully stabilized. 

Furthermore, soil moisture studies conducted in other sandhill ecosystems have been limited 

to the top 100 cm of the soil profile, preventing the characterization of soil moisture in the 

deeper rooting zone and beyond toward the groundwater table. Based on a literature review, 

the hypothesis for this investigation is that infiltration and soil moisture are higher beneath 

active dunes due to the absence of vegetation and organic matter in the soil, which remove 

near-surface soil moisture through evapotranspiration and reduce infiltration on the 

stabilized dune, respectively. However, due to anomalously high precipitation during the 

2010 growing season, we anticipated that the difference would be dampened somewhat by 

the sheer volume of precipitation that fell over the study area. 

 

2.3  Study area 

The study area is the Bigstick Sand Hills (hereafter BSH; 50o10’ N, 109o12’ E), which 

represent a southerly extension of the Great Sand Hills of Saskatchewan (Figure 2.1). The 

nearest long-term meteorological station is located approximately 40 km southwest of the 
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Figure 2.1.  Overview map of the study area within the Bigstick Sand Hills of Saskatchewan, 
Canada, depicting the locations of and conditions present at the active (A1 & A2) and 
stabilized (S1 & S2) measurement sites. Additional meteorological sensors installed at these 
sites are part of a parallel investigation that lies outside the scope of this thesis.   
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research site in the town of Maple Creek. The BSH is characterized by parabolic sand dunes 

and flat inter-dune areas, both of which are stabilized by vegetation. Less than 1% of dunes 

are currently active (Wolfe & Hugenholtz, 2009). Geological and geomorphological evidence 

indicates that the parabolic dunes in the BSH transformed from barchanoid dunes about 200 

years BP (Wolfe & Hugenholtz, 2009). Since the transition began, the number of active 

dunes has substantially decreased (Hugenholtz and Wolfe, 2005; Hugenholtz et al., 2008). 

Little information is available to understand the implications of this trend on various 

ecosystem functions and resources. 

The climate of the study area is continental, with short, dry summers and long, cold, 

dry winters. Daily average temperature ranges from -10.4oC in January to 19.3oC in July. 

Precipitation averages 379.3 mm per year, with 109.6 mm falling as snow. Heavier 

precipitation in late spring contributes 60% of annual precipitation during the growing 

season (Environment Canada, 2011). During the winter, chinook winds occasionally raise the 

air temperature above 0oC, resulting in snowmelt. However, limited potential for infiltration 

occurs, due to the presence of frozen soil and ice lenses at depth (Hugenholtz et al., 2007). 

The 2010 growing season field measurements coincided with above normal 

precipitation and lower than normal air temperature (Figure 2.2). Total precipitation received 

in the study area was 482 mm from April to October, which is 76% above the 1971-2000 

Maple Creek station mean (Environment Canada, 2011). The combination of a deep 

snowpack (> 200% average), record precipitation in April and May, high intensity prolonged 

precipitation events in June, and a cool spring that limited transpiration combined to saturate 

the soil in areas surrounding the study site and manifested a 1:3700 year flood within the 

drainage area (Pentland et al., 2011). However, within the sandhills region precipitation was  
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Figure 2.2.  Monthly precipitation totals and air temperatures during the study period.  The 
observed precipitation was approximately double that recorded in an average year. Drier 
weather was observed in the Fall of 2010.  Observed air temperature was below mean 
monthly air temperature for most of the study period.  

 

quickly absorbed into the soil profile. Minimal ponding was observed and was limited to 

areas of sediment compaction in anthropogenically-modified inter-dune areas (e.g. trails, gas 

well pads). 

In order to examine the effects of dune stabilization on soil moisture we selected 

four sites, which include two active dunes and two stabilized dunes (Figure 2.1). The latter 

(S1 & S2) have been stabilized since at least 1946, which is the earliest available aerial 

photograph showing these sites. Rodent burrows (Dipodomys ordii and Thomomys talpoides) are 

commonly found on stabilized dune sites throughout the study area. Conversely, the active 
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dune sites (A1 & A2) have been devoid of vegetation since 1946. Two sites (one active dune 

and one stabilized dune) were instrumented with soil moisture probes and rain gauges (A1 & 

S1). The total distance between these sites is 3.2 km. Figure 2.1 shows the surface conditions 

at each instrumented site. These sites were also sampled throughout the 2010 growing 

season (April-October) to obtain vertical profiles of volumetric soil moisture, as were two 

other nearby sites, comprising one active dune and one stabilized dune (A2 & S2) (Figure 

2.1). Soils at all sites are classified as sand based on USDA soil texture classification (Davis & 

Bennett, 1927). Sand typically comprised 95% of sediment samples by mass. Silts, clays, and 

organic matter were more prevalent at the vegetated sites but still made up a small 

proportion of all soil constituents, as discussed in section 2.6. 

Vegetation at the two stabilized dunes is representative of other stabilized dunes in 

the area. Dominant species included scurf pea (Psoralea lanceolata), northern wheat grass 

(Agropyron dasystachyum), spear grass (Stipa comata), woods’ rose (Rosa Woodsii), and pasture 

sage (Artemesia frigida). Increased rooting depths are typically observed on dune-head sites 

due to ease of root penetration and the relative dryness of those sites (Canadell et al., 1996; 

Wang et al., 2008). The rooting depths of grasses typically penetrate to 100-200 cm depth, 

whereas shrub roots typically penetrate up to 500 cm in dryland ecosystems (Gibbens & 

Lenz, 2001). At stabilized dune sites, rooting depths in excess of 200 cm were observed for 

shrub species as well as grasses. 

 

2.4  Field methodology 

At each instrumented site (A1 & S1) we installed four time-domain reflectometry 

(TDR) probes (ML2x Theta, Delta-T Devices) on 09 April 2010. The principle behind TDR 
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measurements of soil moisture is based on a relation between the moisture content of the 

soil and the soils’ apparent dielectric constant (Topp et al., 1980). We installed the sensors at 

four depths below the ground surfaces (25, 50, 100, and 200 cm). These depths were chosen 

for two reasons. First, we wanted to ascertain the variability of soil moisture across depths 

within and near the limit of deeply rooted plants present at the stabilized dune site (Rosa 

woodsii), which was expected to range from 100-200 cm based on previous experience in the 

area (Nimlos et al., 1968). Second, for safety reasons it was not possible to install sensors 

below 200 cm. To install the TDR sensors, we excavated a narrow pit and installed the 

sensors in the undisturbed walls. During the process, we collected bulk soil samples from the 

pit walls at the same heights as the TDR sensors so as to enable sensor calibration and to 

characterize soil texture and organic content. Root density was also estimated using the 

profile wall method (Böhm & Köpke, 1977; Mickovski & van Beek, 2009). A count of root 

intersections along four 5 cm by 60 cm areas of the profile wall corresponding to each TDR 

sensor depth was taken and used as an estimate of root density at depth. This provided 

insight into the ability of overlying vegetation to draw on soil moisture at the sensor depths 

and also showed the presence of root channel macropores that would enhance infiltration. 

We also documented the nature and presence of stratigraphy resulting from aeolian 

depositional processes. 

The TDR probes were hardwired to a datalogger (Campbell Scientific CR1000) that 

recorded measurements at 1 minute intervals. The area around the instrumented sites was 

then fenced off to prevent damage from large free-ranging grazers such as cattle. The reason 

for choosing 1 minute was to gauge the near-surface response of the uppermost TDR 

sensors to precipitation events. Because the manufacturer’s recommended calibration 

procedure does not perform well in sandy soils (see Schmutz, 2007) we created a soil-specific 
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calibration curve using raw sensor output (mV) and volumetric soil moisture samples 

collected from the field sites. The soil samples were oven-dried to derive volumetric soil 

moisture content (θV). The analysis of multiple samples produced the linear calibration 

shown in Figure 2.3. The linear curve chosen for sensor output calibration has an R2 of 0.94 

and sy,x of 0.91, which exceeds the manufacturer’s average achievable accuracy of ±1% for 

soil-specific calibration. We adopted one calibration curve for both sites because the 

individual calibration curves for the active and stabilized sites differed by less than the 

minimum achievable error of the sensors.  

To compliment the high-resolution measurements we acquired auger samples from 

all four sites at 50 cm increments, down to 500 cm below the ground surface. Because we 

attempted to acquire the auger samples during dry periods, we were unable to establish a 

consistent time interval for the augering due to the variable nature of precipitation 

throughout the 2010 growing season. In total, we collected samples on ten occasions 

between 11 May 2010 and 20 October 2010. The samples represent the average gravimetric 

soil moisture over a narrow depth range (± 10 cm) centered at each 50 cm increment. Care 

was taken to minimize contamination from sloughing during the insertion of the auger to 

retrieve a sample at each interval. Samples were weighed immediately after their collection 

and again after they were dried so as to minimize measurement errors. In all cases the auger 

samples were acquired within a 25 m2 area with 1-2 m separation between boreholes. We 

assume the spatial distribution of soil moisture within the vertical profile of the sample area 

was consistent. After extracting the samples, each borehole was backfilled. The samples were 

dried and the gravimetric soil moisture content was determined following the protocols 

outlined by ASTM D2216-10. Gravimetric soil moisture content was then converted to 
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Figure 2.3.  Calibration data for the soil moisture probes.   

 

volumetric soil moisture content, by multiplying by the bulk density of the soil sample (Tan, 

2005). This conversion was performed so that soil moisture data from the TDR probes and 

the auger samples could be compared.  

In order to characterize the effects of dune stabilization on surface infiltration rate, 

we used a Decagon Mini Disk Tension Infiltrometer. To obtain the infiltration 

measurements, smooth soil surfaces devoid of vegetation were selected. At the vegetated 
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clusters, to ensure a smooth contact between the ceramic base of the infiltrometer and the 
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the cleaned soil patch and infiltration depth as a function of time was recorded. Infiltration 
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outlined by the manufacturer. In total, 30 infiltration measurements were acquired at each of 

the instrumented sites on 31 August 2010. We acquired soil samples following each 

measurement, to test our hypothesis about the role of texture and organic content in 

modifying infiltration rates. Soil samples from the top 5 cm of the soil profile were collected 

at each infiltrometer measurement site and stored for later laboratory analysis.  

Soil samples from the pits and the surface were analysed in order to determine the 

relative proportions of sand, silt, clay, and organic content. To determine these soil 

properties, we followed standard testing procedures for the textural analysis (ASTM D422 - 

63), and for the organic content measurements (ASTM F1647 - 11). 

 

2.5  Data analysis 

We re-sampled the raw, high-resolution (1 min) soil moisture measurements 

obtained with the TDR sensors to daily, monthly, and growing season averages. Results of 

Kolmogorov-Smirnov Goodness-of-fit tests determined that the soil moisture and 

precipitation data were non-normally distributed; therefore, we used a non-parametric test to 

determine inter- and intra-site differences in soil moisture and precipitation. Specifically, for 

comparisons between multiple (≥3) measurement depths, a Friedman non-parametric 

repeated measures test using a 0.05 significance level was employed. Post-hoc Wilcoxon 

Rank-Sum tests at the 0.05 significance level were then utilized to determine when, and at 

which depths, soil moisture distributions were significantly different between the active and 

stabilized sites. In addition, we applied a Wilcoxon Rank Sum test to determine if there was 

any significant difference in surface soil properties. The Wilcoxon Matched-Pairs Signed-

Ranks test was used to determine inter-site differences in precipitation. The Matched-Pairs 
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test was used to determine if there was a consistent difference in the daily precipitation 

amount falling on each site. Finally, to correct for multiple comparisons between the same 

sampling groups on different dates, a Dunn - Sidak procedure was used to modify the 

significance level at which the null hypothesis was rejected. 

 

2.6  Results 

2.6.1  Infiltration Rates 

As anticipated, surface soil moisture infiltration rates were higher at the active dune 

(Figure 2.4). The active dune site exhibited an average infiltration rate of 0.091 cm s-1, 

whereas the stabilized dune site exhibited an average infiltration rate of approximately 0.009 

cm s-1. This indicates that the infiltration rate at the former was one order of magnitude 

higher than the latter. The linear nature of the infiltration curve suggests that infiltration did 

not slow as moisture infiltrated into the soil profile, which indicates that the soils at both the 

active and stabilized sites were well drained. 

The TDR probes at 25 cm provide another perspective on the inter-site differences 

of infiltration in the shallow subsurface. Figure 2.5 shows a representative example of the 

soil moisture response to an intense convective rainfall event on 31 July 2010. Both stations 

recorded the event, yielding an average of 19.2 mm of rainfall over a 30 minute period (0.64 

mm min-1). At the active dune, the TDR signal at 25 cm increased abruptly approximately 25 

minutes after the onset of rainfall, whereas at the same depth in the stabilized dune the 

sensor began responding more slowly at 50 minutes. Thus, it took approximately twice as  
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Figure 2.4.  Infiltration data for the active and stabilized sites measured with the Mini Disk 

Infitrometer on 31 August 2010.  Error bars represent one standard deviation from the 

mean observed infiltration depth. 

 

 

Figure 2.5.  Soil moisture response to infiltration at 25 cm depth after an intense 
precipitation event July 31st, 2010.  Precipitation and soil moisture data were collected at 
instrumented sites A1 and S1. 
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much time for a soil moisture response to be registered at the stabilized dune than at the 

active dune site after the onset of the rainfall event. 

 

2.6.2  Temporal Soil Moisture Dynamics: TDR measurements 

Figure 2.6 shows vertical variations of average daily volumetric soil moisture through 

time at the instrumented sites. An initial visual comparison of the soil moisture and 

precipitation time series indicates that there is some correspondence in the overall pattern of 

changes throughout the growing season. Initially, both soil moisture and precipitation are 

low, but as the frequency and duration of precipitation events increased, the soil moisture 

increased and fluctuated in a similar broad-scale pattern. The decrease in precipitation 

towards the end of the growing season coincided with a gradual decrease in soil moisture. 

Low magnitude precipitation events recharged soil moisture only within those layers nearest 

to the surface, whereas higher-magnitude events (>20 mm day-1) allowed moisture to 

penetrate and recharge deeper layers within the soil profile. At the stabilized dune, it appears 

that multiple high magnitude precipitation events in close succession were required for soil 

moisture recharge at depths below 25 cm (Figure 2.6B). Despite similar growing season 

precipitation, there are marked differences at the inter- and intra-site scale that suggest 

fundamentally different soil moisture regimes in the near surface of the active and stabilized 

dunes. 

At the beginning of the growing season soil moisture increased with depth down to 

100 cm at the active dune, then decreased down to 200 cm (Figure 2.6A). At a seasonal time 

scale, soil moisture was relatively similar between the 25 cm, 50 cm, and 100 cm depths, 
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Figure 2.6. Daily volumetric soil moisture content (θV) and precipitation as measured over 
the study period at the active dune (A) and stabilized dune (B). Changes in soil moisture 
levels within the deeper soil layers were delayed and more gradual when compared to 
shallower soil layers.   
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with the 200 cm depth exhibiting lower soil moisture levels (Figure 2.7). However, by the 

end of the growing season Figure 2.6A shows that the soil moisture series at 25 cm 

decreased to levels similar to those measured at 200 cm. Over the growing season, the most 

frequent soil moisture fluctuations occurred at 25 cm, presumably due to greater drying 

potential near the surface. Below 25 cm, the frequency of soil moisture fluctuations 

decreased with increasing depth, but the amplitude of the fluctuations increased to a 

maximum at 100 cm, and then decreased substantially at 200 cm. Friedman statistical tests 

suggest that there are significant soil moisture differences between the four sampling depths 

throughout the sampling period (see Table 2.1A). Post-hoc results of the Wilcoxon Rank 

Sum tests shown (Table 2.1A) indicate that soil moisture at 25 cm, 50 cm, and 100 cm depth 

was similar at monthly intervals and over the entire growing season, whereas the 200 cm 

depth was significantly different at the 0.05 significance level. 

 

Figure 2.7 A comparison of measured volumetric soil moisture (θV) distributions at 25 cm, 
50 cm, 100 cm, and 200 cm levels at instrumented sites A1 and S1. Light grey box plots 
represent soil moisture measured at site A1, whereas dark grey box plots represent soil 
moisture measured at site S1. Maximum, minimum, median, and quartiles are displayed. 
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Table 2.1.  Results of the Wilcoxon Rank Sum and Friedman non-parametric repeated-
measures (F) test for resolving intra-site differences in daily average soil moisture values for 
each month and across the entire growing season (bottom row). The p-values show the 
probability of getting a test statistic value as extreme as the one observed if soil moisture 
variations are similar between depths (H0). Because the same samples were repeatedly 
measured at different time intervals, a modified Dunn-Sidak significance level of 0.0036 was 
used, representing the equivalent significance of a 0.05 significance level test repeated over 
seven monthly measurement periods. Non-shaded cells indicate a failure to reject H0 at the 
0.05 significance level. Grey shading indicates a rejection of H0 at the 0.05 significance level. 
The results for the active dune are shown (A), while the stabilized dune results are shown in 
(B).  

A. 

Active Dune Intrasite Soil Moisture Comparison 

  Sensor Depths Compared 

Month 
25 cm vs. 

50 cm 
25 cm vs. 
100 cm 

25 cm vs. 
200 cm 

50 cm vs. 
100 cm 

50 cm vs. 
200 cm 

100 cm vs. 
200 cm 

All 4 
Classes (F) 

April 0.065 0.428 0.000 0.141 0.000 0.000 0.000 

May 0.145 0.068 0.000 0.486 0.000 0.000 0.000 

June 0.294 0.000 0.000 0.000 0.000 0.000 0.000 

July 0.751 0.120 0.000 0.028 0.000 0.000 0.000 

August 0.588 0.005 0.000 0.024 0.000 0.000 0.000 

September 0.647 0.001 0.000 0.000 0.000 0.000 0.000 

October 0.000 0.000 0.034 0.000 0.000 0.000 0.000 

Entire Season 0.035 0.004 0.000 0.482 0.000 0.000 0.000 

 

B. 

Stabilized Dune Intrasite Soil Moisture Comparison 

  Sensor Depths Compared 

Month 
25 cm vs. 

50 cm 
25 cm vs. 
100 cm 

25 cm vs. 
200 cm 

50 cm vs. 
100 cm 

50 cm vs. 
200 cm 

100 cm vs. 
200 cm 

All 4 
Classes (F) 

April 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

May 0.000 0.000 0.000 0.000 0.018 0.000 0.000 

June 0.000 0.768 0.000 0.000 0.000 0.000 0.000 

July 0.000 0.014 0.000 0.000 0.000 0.000 0.000 

August 0.000 0.000 0.000 0.486 0.741 0.000 0.000 

September 0.000 0.000 0.000 0.000 0.745 0.000 0.000 

October 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Entire Season 0.000 0.000 0.000 0.029 0.495 0.435 0.000 
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At the stabilized dune, soil moisture decreased with depth at the beginning of the 

growing season. Below 25 cm, this pattern reversed by the end of the growing season (Figure 

2.6B). There was a long lag in the response at 100 cm and 200 cm early in the growing 

season, but once the moisture front reached these depths the response was rapid and 

substantial. Over the course of the growing season the frequency and amplitude of soil 

moisture fluctuations was greatest at 25 cm. There appears to be a transition in the time 

series sometime in June whereby the soil moisture at 100 cm and 200 cm steadily declined 

following a peak on 19 June. There also seems to high variability of soil moisture at 25 cm 

until September. Figure 2.7 shows the soil moisture was greatest nearest the surface 

throughout the growing season, but the greatest variation occurred at 100 cm. 

Compared to the active dune, variations in soil moisture were much higher 

throughout the growing season at the stabilized dune (Figure 2.7). While soil moisture was 

slightly higher at 25 cm at the stabilized site, measurement depths below 25 cm were 

significantly drier than those at the equivalent depth at the active site. Table 2.1B shows that 

there was also less intra-site similarity, although at a seasonal time scale there is some 

similarity between the 50 cm, 100 cm, and 200 cm measurement depths (Table 2.1B).  

When we compare inter-site differences for equivalent depths we find even fewer 

similarities, and more importantly, that soil moisture is statistically dissimilar at all depths for 

the entire growing season at the 0.05 significance level (Table 2.2). While there are some 

similarities between the measurement sites at some depths in some months, the prevailing 

soil moisture patterns are different between these sites down to 200 cm depth (Figure 2.7). 

Section 2.6.3 extends the record to 500 cm below ground surface but at a much 

coarser temporal resolution that precludes rigorous statistical testing. 



35 
 

Table 2.2.  Results of the Wilcoxon Rank Sum test for resolving inter-site differences in 
daily average soil moisture values for each month and across the entire growing season 
(bottom row). The p-values show the probability of getting a test statistic value as extreme as 
the one observed if soil moisture variations are similar between depths (H0). Because the 
same samples were repeatedly measured at different time intervals, a modified Dunn-Sidak 
significance level of 0.0036 was used, representing the equivalent significance of a 0.05 
significance level test repeated over seven monthly measurement periods. Non-shaded cells 
indicate a failure to reject H0 at the 0.0036 significance level. Grey shading indicates a 
rejection of H0 at the 0.0036 significance level. 

Intersite Soil Moisture Comparison 

  Sensor Depth Compared 

Month 25 cm 50 cm 100 cm 200 cm 

April 0.000 0.000 0.000 0.000 

May 0.001 0.000 0.043 0.002 

June 0.002 0.000 0.110 0.000 

July 0.179 0.000 0.000 0.000 

August 0.004 0.000 0.000 0.000 

September 0.028 0.000 0.000 0.000 

October 0.001 0.000 0.000 0.000 

Entire Season 0.001 0.000 0.000 0.000 

 

 

2.6.3  Soil Moisture Dynamics: Augered soil moisture measurements 

Deeper profiles obtained through augering and gravimetric soil moisture 

determination are shown in Figure 2.8. Within the active dune profiles (A1 & A2) there was 

a modest yet consistent increase in soil moisture toward the base of the profile that stayed 

consistent throughout the season. This contrasted with the stabilized sites (S1 & S2), which 

exhibited higher variability throughout the profile, with a sharp decline in soil moisture 

below 300 cm at S1. At the beginning of the season, available soil moisture was depleted at 

depths as shallow as 100 cm (as also seen in Figure 2.6). Throughout the course of the 

season, soil moisture infiltrated the dry layer at depth, reaching 300 cm at S1 and 500 cm at 
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S2 by the beginning of August. Most of this infiltration occurred during late June / early July 

following intense precipitation events in mid-June. 

 

2.6.4  Inter-site differences in precipitation and soil properties 

As a first step to document factors that could account for inter-site differences in soil 

moisture we tested whether precipitation amounts at each site were similar. Since the 

distance between sites is relatively small (4.9 km), it was expected that any difference would 

be minimal. Although there are some disparities at the daily scale (Figure 2.2), especially in 

June, which is likely the result of spatial variability due to convective precipitation, the results 

of Wilcoxon Rank Sums test indicate that the total precipitation did not significantly differ 

between the active and stabilized dune sites at either seasonal (p = 0.80) or monthly scales (p 

= 0.31). The maximum monthly difference in precipitation occurred in June (87.1 mm vs. 

127.2 mm). However, 70.6% (28.3 mm) of this difference is ascribed to one convective 

precipitation event that occurred on 22 June. Thus, consistent long-term differences in soil 

moisture between sites appear to be minimally-affected by variations in precipitation. Table 

2.3 shows the soil texture and organic content of the soils obtained from auger samples at 

the two instrumented sites (A1 & S1). The only notable difference between sites is at the 

surface, as shown by the elevated silt, clay and organic content at the stabilized dune (S1). 

Statistical differences in sand, silt, clay, and organic matter between the active and stabilized 

sites were all significant at the 0.001 significance level for surface samples. Below the surface 

the two sites have relatively similar texture, organic content, and bulk density down to 500 

cm. Both sites also have elevated organic content at 100 cm. Visual inspection of the pit  
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Figure 2.8.  Volumetrically determined soil moisture beneath both active (A1 & A2) and 
stabilized (S1 &S2) dune sites throughout the 2010 field season.  Dots represent the median 
soil moisture value observed.  Error bars represent 25% and 75 % quartiles on either side of 
the median. n = 10 for each sample depth at each sample site. 

 

walls did not identify evidence of a buried soil or other observable features that could 

account for the increased organic content. The source of the organic material is unknown at 

the active dune since the deposit is relatively young and historically devoid of vegetation. 

Elevated organic matter content at 100 cm depth at the stabilized site is potentially due to 

organic matter translocation along root macropores (Jenny, 1941; Rumpel et al., 2002).  
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Table 2.3.  Soil texture analysis of the active and stabilized dune sites.  Silt and clay 
proportions were higher at the stabilized than at the active dune sites.  Organic matter was 
higher at the surface and at 100 cm depth in the stabilized dune profiles.  Elevated organic 
matter content was also observed at 100 cm depth at the active dune sites. 

  Active Dune Sites Stabilized Dune Sites  

  Texture 
Organic 
Matter 

Bulk 
Density 

Texture 
Organic 
Matter 

Bulk 
Density 

Sample 
Depth 

Sand 
% 

Silt 
% 

Clay 
% 

% g*cm
-3

 
Sand 

% 
Silt 
% 

Clay 
% 

% g*cm
-3

 

Surface 96.87 1.12 2.01 0.63 1.32 91.39 3.37 5.25 2.40 1.20 

25 cm 95.88 1.22 2.91 0.60 1.34 95.07 2.00 2.94 0.60 1.33 

50 cm 96.35 0.87 2.78 0.40 1.61 96.30 1.36 2.35 0.99 1.60 

100 cm 97.48 0.90 1.63 1.40 1.62 96.41 0.91 2.69 4.60 1.64 

200 cm 96.87 1.49 1.65 0.59 1.61 95.41 0.82 3.78 1.40 1.63 

300 cm 95.72 0.66 3.62 0.88 1.62 94.13 1.97 3.91 0.40 1.61 

400 cm 97.48 1.10 1.43 0.69 1.63 93.49 2.06 4.46 0.20 1.63 

500 cm 96.28 1.80 1.92 0.60 1.62 94.52 1.73 3.76 0.00 1.65 

 

2.6.5  Vertical distribution of roots at instrumented stabilized dune 

The distribution of roots at depths corresponding to TDR sensor placement was 

measured to better understand the impact of transpiration on soil moisture fluctuations. 

Root density at depth is reported as a percentage of root observations along the pit wall 

(Böhm, 1977; Mickovski & van Beek, 2009). Root density was greatest near the soil surface; 

57.8% of all root deteections were observed 25 cm below the soil surface. At 50 cm and 100 

cm depth root densities were 18.3% and 16.2% of total root observations, respectively. Only 

7.7% of all root observations were observed at 200 cm depth, suggesting that many tap-roots 

beneath this vegetation community end between 100 cm and 200 cm depth.  
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2.7.  Discussion 

Despite record setting precipitation in the 2010 growing season, the results of this 

investigation show that the profile soil moisture regime was fundamentally different between 

active and stabilized dunes. Although rainfall varied between sites over short intervals (hours 

to days), we failed to statistically detect significant differences in precipitation between the 

two sites at monthly scales and across the entire growing season, suggesting that rainfall 

played a negligible role in explaining inter-site differences in soil moisture at these timescales. 

Thus, at monthly to seasonal scales, local factors are the most likely sources of inter-site 

diffferences; the most obvious being the presence of vegetation and its allied effects on soil. 

Surface infiltration rates were one order of magnitude higher at the active dune 

compared to the stabilized dune site. This is qualitatively consistent with the relatively coarse 

texture and low organic content of the near-surface soils at the active dune, which promote 

rapid infiltration due to high porosity. In contrast, the near-surface soil at the stabilized dune 

exhibited higher clay, silt, and organic content, which reduce infiltration by collectively 

reducing porosity. Part of the difference may also be attributed to the stratigraphy at both 

sites. During installation of the TDR sensors inclined (25-28°) laminae were noted at A1, 

which are consistent with grainflow deposition (Hugenholtz et al., 2008). There was very little 

indication of stratigraphy in S1, which is consistent with grainfall deposition onto vegetation 

during the early stages of stabilization (Hugenholtz et al., 2008). Steeply dipping grainflow 

laminae can lead to anisotropic movement of soil water, which may enhance surface 

infiltration via preferential flow paths (Ritsema & Dekker, 1994). The difference owing to 

this effect may be somewhat muted, however, by the presence of vegetation, which disturbs 

the soil surface in such a way as to cause a relative enhancement of infiltration where plant 
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stems meet the soil surface, whereas at locations where there are no stems perturbing the soil 

surface infiltration is greatly reduced (Orradottir et al. 2008). This may explain why the 

infiltration rates inferred from the 25 cm TDR sensors were about twice as fast at the active 

dune than the stabilized dune.  

Data from the instrumented sites show that soil moisture remained higher 

throughout the 2010 growing season at the active dunes, but was lower and more variable at 

depth in the stabilized dunes. Soil moisture increased in May and June at the active dunes 

and varied in response to precipitation events, but otherwise remained relatively consistent 

throughout the monitoring period as denoted by low dispersion in the data. This contrasts 

with the large amount of soil moisture variation observed at the stabilized dune sites. At one 

of the stabilized dunes (S1) there is evidence that soil moisture did not penetrate below 350 

cm, while at the other stabilized site (S2) it appears to have penetrated down to 500 cm. This 

contrast is likely due to the presence of enhanced macroporosity at S2. Rodent burrows 

(Dipodomys ordii and Thomomys talpoides) were more prevalent at S2, while other site parameters 

such as vegetation cover species were largely similar. The burrows could have increased 

macroporosity, thus enhancing soil moisture infiltration within the profile and allowing 

moisture to percolate below the rooting zone more quickly than at S1. This may have 

enabled deep soil moisture recharge to occur more frequently and at greater intensities than 

at S1. 

Vegetation is likely the primary discriminating factor between the soil moisture 

dynamics observed at the active and stabilized sites. While small variations in precipitation 

were observed between the active and stabilized sites, we failed to detect statistically 

significant differences in precipitation over monthly and seasonal time scales, ruling out 
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precipitation as a source of inter-site soil moisture differences. Organics and fine sediment 

particles were more prevalent near the surface of the stabilized dune, reducing infiltration 

rates and enhancing the soil moisture storage capacity of near-surface soils. This resulted in 

higher soil moisture content in the near-surface soil profile, while reducing soil moisture 

recharge in soils below 25 cm. The presence of transpiring vegetation depleted profile soil 

moisture more quickly at the stabilized sites than at the active sites, suggesting that the draw 

vegetation places on soil moisture resources is an important control on soil moisture 

dynamics in this ecosystem. While vegetation growth enhanced the moisture storage capacity 

of near-surface soils, decreased infiltration and enhanced evapotranspiration create a 

negative overall impact on deeper soil moisture resources at the stabilized dune sites.  

 According to the results of this research the transformation of dunes in the BSH 

from active to vegetation-stabilized has reduced deep soil moisture recharge. This is 

demonstrated by the lower frequency and intensity of deep soil moisture recharge at the 

stabilized dunes compared to the active dunes. With soil moisture content being lower 

throughout the season below 25 cm depth at the stabilized dune site the susceptibility of 

vegetation to drought conditions is enhanced (Fearnehough et al., 1998; Li et al., 2004B). In 

contrast, active dune sites exhibited higher overall profile soil moisture levels throughout the 

season. Given the anomalous growing season precipitation in 2010 soil moisture recharge at 

depth in stabilized dunes is less likely under more typical precipitation conditions. 

Overall, the results of this investigation are unique because they extend the 

understanding of soil moisture dynamics during the natural stabilization of sand dunes. Shay 

et al. (2000) looked at near-surface (< 30 cm) soil moisture dynamics in another Canadian 

sandhill ecosystem and documented higher soil moisture levels near the surface beneath 

stabilized dunes. Other studies in sandhill ecosystems have focussed on soil moisture 
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dynamics only on fully stabilized sand dunes to depths of 100 cm (Sridhar & Wedin, 2009; 

Hubbard et al., 2009). Those studies were conducted under average precipitation conditions 

and found that vegetation could deplete soil moisture resources by the end of the growing 

season. Like Berger (1992) and Wilcox & Thurow (2005) this study establishes that a 

significant reduction in deep soil moisture recharge occurs with the establishment of 

vegetation on active dunes. In addition, this study confirms the effects of stabilization on 

infiltration, thereby broadening the context of stabilization to a greater range of hydrological 

processes.  

The current vegetation-stabilized state that now dominates more than 99% of 

Canadian Prairie sandhill ecosystems has the potential to reduce soil moisture resources over 

time. Most current global circulation models (GCM’s) predict a reduction in the precipitation 

to potential evapotranspiration ratio (P:PE) throughout the Canadian Prairies (Wolfe & 

Thorpe, 2005; McGinn, 2010). A decrease in the P:PE would put more stress on soil 

moisture resources, especially in the most arid regions of the Canadian Prairies. As the 

growing season lengthens, there is potential for vegetation to increase total seasonal moisture 

usage (Sridhar & Wedin, 2009). Not only could seasonal moisture usage increase but the 

period of vegetation dormancy could decrease, reducing the period during which soil 

moisture recharge is most effective (Gosselin et al., 1999). Long periods of drought within 

the study area have been linked to periods of increased dune activity within Canadian Prairie 

sandhill ecosystems as recently as the mid 1980’s (Wolfe et al., 2001). Should these deeper 

moisture reserves be sufficiently depleted the vegetation present within Canada’s sandhill 

ecosystems would be more susceptible to drought thereby increasing the probability of dune 

surface blowouts and dune reactivation during prolonged drought periods. This type of 

scenario has been demonstrated in the US southwest where Laity (2003) reported dune 
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reactivation in response to a lowering of the groundwater table. In addition, there is 

increasing pressure on water resources in these ecosystems by the agricultural and energy 

(natural gas) industries. Should increased ecological and anthropogenic moisture usage 

exceed soil moisture recharge there is the potential to deplete the ecologically important soil 

moisture resources of this region. 

 

2.8  Conclusion 

The results of this field study confirm the hypothesis: sand dune stabilization reduces 

infiltration and soil moisture storage in a northern Great Plains sandhill ecosystem. The 

infiltrometer measurements show that the surface and near-surface infiltration rates were 

lower on the stabilized dune compared to the active dune. This is explained by the higher 

clay, silt, and organic content in the former. Despite receiving approximately equivalent 

rainfall at monthly to seasonal scales, the vertical distribution of soil moisture in the upper 

200 cm of the soil profile was higher and significantly less variable throughout the 2010 

growing season in the active dune compared to the stabilized dunes. Deeper measurements 

(500 cm) also showed substantially higher soil moisture at the active dunes throughout the 

growing season, although by October deep soil moisture at one of the stabilized dunes 

increased, presumably due to enhanced infiltration from rodent burrows. The key difference 

between sites is the presence of vegetation, which reduces surface infiltration rate by altering 

soil texture and organic content and also reduces soil moisture storage through 

evapotranspiration. Overall, despite the anomalously high precipitation in the 2010 growing 

season, these results indicate that active dunes can absorb and retain greater moisture than 
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the stabilized dunes that now dominate prairie sandhill ecosystems. It is anticipated that 

these differences will be more pronounced during typical (drier) growing seasons. 

By extension, the broader implication of this investigation is that the progressive 

stabilization of this landscape has potentially reduced groundwater recharge. This long-term 

effect may be of concern to various stakeholders who rely on the shallow groundwater 

resources of these unique areas, such as ranchers and the energy companies. Thus, continued 

stabilization coincident with climate warming may require greater regulation of water 

resources in these unique areas. 
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CHAPTER 3: EFFECTS OF DUNE STABILIZATION ON SPATIOTEMPORAL 

PATTERNS OF NEAR-SURFACE SOIL MOISTURE,  

NORTHERN GREAT PLAINS, CANADA  

 

3.1  Abstract 

This Chapter reveals the effects of sand dune stabilization on the spatiotemporal 

distribution of near-surface soil moisture. Previous studies have recognized that spatial 

variations of soil moisture influence plant community development in dune landscapes; 

however, the effects of vegetation colonization and dune topography on near-surface soil 

moisture variability are not well-known. To document these effects, the spatiotemporal 

patterns of near-surface soil moisture were measured ten times throughout the 2010 growing 

season on active and a stabilized dune (sites A1 & S1; see Chapter 2). The effects of 

vegetation cover type on intra-site soil moisture variability were stronger than those related 

to dune topography. Nonparametric statistical tests show that near-surface (< 6 cm) soil 

moisture was higher and more variable at the stabilized dune than at the active dune. Effects 

of topography (slope and aspect) were also more pronounced at the stabilized dune, with 

consistently higher near-surface soil moisture on north-facing slopes and footslopes than 

elsewhere on the dune during a wet year. The primary differences between sites are related to 

direct and indirect influences of vegetation. Direct influences are related to the roughness 

effects of the vegetation, which reduce evaporative losses from the soil surface at the 

stabilized dune, resulting in higher near-surface soil moisture. Indirect influences include 

pedogenic alterations associated with vegetation that increase the moisture-holding capacity 

of soil at the stabilized dune, as a result of higher clay, silt and organic matter content. Near-
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surface intra-site soil moisture exhibited little spatial variation on the active dune, but 

significant differences were observed between the moister on north-facing slopes and other 

slope aspects at the stabilized dune, in association with differences in vegetation cover and 

solar insolation. Higher soil moisture was also observed along the stabilized dune footslope, 

consistent with lateral soil moisture flow or hydraulic redistribution of soil moisture by plant 

roots. Overall, this study suggests that the establishment of vegetation and the allied process 

of soil genesis have a feedback effect on soil moisture, increasing near-surface soil moisture 

availability at stabilized dunes, and enhancing topographic effects on soil moisture variations.  

 

3.2  Introduction 

The sand hill regions of the southern Canadian Prairies are comprised of parabolic 

aeolian sand dunes that have become stabilized by vegetation growth. The transformation 

from active, mobile dunes to vegetation-stabilized dunes began approximately 200 years BP, 

under the influence of warmer and drier conditions (Wolfe & Hugenholtz, 2009). Currently, 

less than 1% of the area comprising Canadian Prairie sandhills maintains active sand dunes 

devoid of stabilizing vegetation (Epp & Townley-Smith, 1980; Wolfe & Hugenholtz, 2009). 

Active dunes are ecologically important in largely stabilized sandhill ecosystems because they 

provide habitat for a variety of endangered species. Furthermore, Chapter 2 showed that 

they are important pathways for moisture recharge at depth. This Chapter expands the 

understanding of soil moisture dynamics in Canadian Prairie sandhill ecosystems by 

investigating the effect of dune stabilization on the spatiotemporal variations of near-surface 

soil moisture. We also examine how dune topography affects the distribution of near-surface 

soil moisture, including variations in slope angle, aspect, and slope position. 
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 The availability of soil moisture in the soil layers nearest the surface is one of the 

primary controls on vegetation establishment in active dune ecosystems (Barnes and 

Harrison, 1982; Maun, 1994; Moran et al., 2010). Whereas previous studies have 

demonstrated that the spatial distribution of dune vegetation is correlated with the spatial 

availability of soil moisture resources (Hulett et al., 1966; Barnes and Harrison, 1982; Berger, 

1992; Shay et al., 2000), the ability of vegetation to create temporal heterogeneity has received 

little attention. Moreover, topographic effects on dune soil moisture are poorly resolved, 

especially at middle latitudes where differences in solar insolation are more pronounced 

between north and south-facing slopes. Vegetation uses soil moisture for transpiration 

(Schlesinger et al., 1987; Lawrence et al., 2007). However, vegetation also reduces soil heat 

flux, thereby reducing soil moisture evaporation (Kustas et al., 2000). Slope aspect 

significantly modifies the amount of incoming solar radiation received on different slopes 

(Holland & Steyn, 1975; Bennie et al., 2008). In addition, the presence of vegetation traps 

windblown fines and adds organic matter to the near-surface soil profile, thereby reducing 

infiltration while increasing the moisture storage capacity of dune soils (Barnes & Harrison, 

1982; Dunkerley, 2002). 

 As in Chapter 2, this Chapter also applies an ergodic (space-for-time) approach to 

determine the effects of dune stabilization on the spatiotemporal dynamics of near-surface 

soil moisture. The goal was to test for differences in the spatiotemporal variability of soil 

moisture between active and stabilized dunes (sites A1 & S1; see Chapter 2), and to examine 

the contributions of dune topography to any observed differences. We relate the differences 

between the active and stabilized dunes to direct and indirect influences of vegetation, while 

topographic effects manifest in terms of slope steepness, aspect and relative slope position. 

The novelty of this research is that it is the first to resolve spatiotemporal variations of near-
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surface soil moisture in the context of dune stabilization, and to relate these variations to the 

effects of vegetation colonization on sand dunes. 

 

3.3  Study Area 

This study was conducted in the Bigstick Sand Hills, located approximately 40 km 

northeast of Maple Creek, Saskatchewan (Figure 3.1). The landscape is characterized by 

parabolic sand dunes largely stabilized by vegetation. The dunes within the study area are 

composed of former glacio-fluvial sands deposited 13,000 years BP that have been reworked 

intermittently by aeolian processes up to present (Wolfe & David, 1997). Currently less than 

1% of the dunes in the study area are active (Wolfe & Hugenholtz, 2009). Since the 

beginning of the last stabilization period, approximately 200 years ago, the number of active 

dunes has substantially decreased (Hugenholtz and Wolfe, 2005; Hugenholtz et al., 2008). 

Initial dune colonizing species observed during this study include lance-leaved psoralea 

[Psoralea lanceolata (Pursh) Rydb.], veined dock [Rumex venosus Pursh], and Russian thistle 

[Salsola kali L.]. Later colonizing vegetation types most commonly observed include 

thickspike wheatgrass [Elymus lanceolatus (Scribn, & J.G. Sm.) Gould ssp. lanceolatus], needle-

and-thread speargrass [Hesperostipa comata (Trin. & Rupr.) Barkworth ssp. comata], prairie 

Junegrass [Koeleria macrantha (Ledeb.) Schult.], woods’ rose [Rosa woodsii Lindl.], prairie 

sagewort [Artemesia frigida Willd.], and western snowberry [Symphoricarpos occidentalis Hook.]. 
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Figure 3.1. Overview of the study area, located 40 km NE of Maple Creek, Saskatchewan, 
depicting the sampling grid arrangement at the active and stabilized dune sites.  
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 The climate of the Bigstick Sand Hills is cool, dry sub-humid, with long, cold winters 

and short, warm summers. However, during severe drought, the area is distinctly semi-arid 

(Wolfe, 1997). Average daily temperatures in the study area range from -10.4 o C in January 

to 19.3 o C in July. According to the nearest meteorological station 40 km to the southwest 

(Maple Creek), yearly precipitation totals average 379.3 mm, with 109.6 mm on average 

falling as snow (Environment Canada, 2011). Convective precipitation is the dominant 

contributing precipitation type during the mid to late growing season (Kim & Wang, 2007).  

 Field measurements during the 2010 growing season coincided with lower than 

normal temperatures and above average precipitation. Total precipitation in the study area 

was 423 mm from April to August, which is 110% above the 1971-2000 Maple Creek station 

mean (Figure 3.2; Environment Canada, 2011). Measureable precipitation was recorded 

during 72 of the 131 days in this study, with no rain-free periods exceeding eleven days (May 

10-20). Cool spring temperatures, above average snowpack (>200%), record precipitation in 

April and May, and consistent, high intensity precipitation events throughout most of June 

saturated soils in areas surrounding the sandhills, leading to a 1:3,700 year flood event 

(Pentland et al., 2011). However, within the sandhills, the soil profile quickly absorbed this 

moisture in most areas.  

Data were collected at two sites in this study, including an active, largely bare sand 

dune and a nearby vegetation-stabilized dune exhibiting common final stage dune vegetation 

types across most of its surface (sites A1 & S1, respectively; see Chapter 2). The total 

distance between these sites is 3.2 km. The north-facing slopes of the stabilized dune 

exhibited shrubs such as prairie sagewort, western snowberry, and Woods’ rose, making this 

dune a reasonable representative of stabilized dunes within the Bigstick Sand Hills. Soils at  
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Figure 3.2. Monthly precipitation totals and air temperatures during the study period. 
Observed precipitation during the study period was more than double that recorded in an 
average year. Observed air temperatures were below average for most of the study period. 

 

all sites are classified as sand based on USDA soil texture classification (Davis & Bennett, 

1927). Sand typically comprised 95% of sediment samples by mass. Silts, clays, and organic 

matter were more prevalent at the stabilized dune but still made up a small proportion of all 

soil constituents.  
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3.4  Methodology 

This study focuses on soil moisture dynamics and dune topography, and excludes the 

surrounding inter-dune areas. This was done so as to minimize the influence of vegetated 

inter-dune areas that have access to near-surface groundwater resources. Groundwater 

resources in inter-dune areas enhance vegetation growth thereby enhancing the rate at which 

organic matter is added to the soil (Miller et al., 1985). Through limiting this study to dune 

forms and avoiding lower elevation interdune regions, the effects of groundwater on 

vegetative growth and soil genesis were minimized, thereby enabling a more clear 

comparison to be made between the near-surface soil moisture dynamics present at the 

active and stabilized dune sites.  

In order to acquire soil moisture measurements, an array of narrow aluminum pins 

was established on each dune (Figure 3.1). The pins served as reference points for the soil 

moisture measurements. The array of pins extended to the base of the dune slopes but did 

not extend onto the surrounding inter-dune area. In order to reconcile changes in soil 

moisture resulting from differences in the upslope contributing area pins were placed at 

three locations along dune slopes: crest, midslope and footslope. This order coincides with 

an increase in the upslope contributing area from crest to footslope. To create a 

spatiotemporal dataset of soil moisture variation across both dunes we measured near-

surface soil moisture ten times throughout the 2010 growing season. 

Soil moisture data were collected using an ML2x Theta time domain reflectometry 

(TDR) probe connected to an HH2 moisture meter (Delta-T Devices). The TDR probe 

estimates the volumetric soil moisture content (v) of the soil, based on the relation between 

volumetric soil moisture content and the apparent dielectric constant (Topp et al., 1980). At 
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each pin location, the TDR probe was fully inserted into the soil surface to a depth of 6 cm. 

Two measurements were taken within 100 cm of each pin, averaged, and then recorded. 

Because the manufacturer’s recommended calibration procedure does not perform well in 

sandy soils (see Schmutz, 2007), a soil-specific calibration curve was created using raw sensor 

output (mV) and volumetric soil moisture samples collected from the field sites (A1: n = 15; 

S1: n = 18). The soil samples were oven-dried to derive volumetric soil moisture content 

(θV). The analysis of multiple samples produced the linear calibration shown in Figure 3.3. 

The linear curve chosen for sensor output calibration has an R2 of 0.94 and sy,x of 0.91, 

which exceeds the manufacturer’s average achievable accuracy of ±1% for soil-specific 

calibration. We adopted one calibration curve for both sites because the individual 

calibration curves for the active and stabilized sites differed by less than the minimum 

achievable error of the sensor. 

Soil texture was determined on all samples collected for the TDR probe calibration, 

using the Bouyoucos (1962) hydrometer method (ASTM D422 - 63 (2007)). Soils were 

classified by percentage sand, silt, and clay based on USDA soil texture classification (Davis 

& Bennett, 1927). The percent organic matter content of each sample was determined using 

loss on ignition (LOI) methodology (ASTM F1647 - 11).  

Precipitation data collected at dunes A1 and S1 (see also Chapter 2) were used to 

quantify temporal variations in precipitation between the active and stabilized sites since 

those instrumented sites are centrally located within the array of pins delineating soil 

moisture measurement locations. These data were aggregated to a daily timescale and 

analysed using a Wilcoxon Matched-Pairs Signed-Ranks test to detect significant differences 

in precipitation between the sites.  
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Figure 3.3. Instrument calibration of the TDR probe for the soils present at the active and 
stabilized dune sites.  

 

 Each pin location was classified according to the surrounding vegetation functional 

group (grass or shrub) and topographic position. Sparse vegetation on the active dune 

coincided with five pins, but given the limited sample size, was not included in any statistical 

testing. On the stabilized dune a 2 x 2 m quadrat was placed on the ground, centred on each 

pin, and the dominate functional group was noted. Grasses occupied the majority of the pin 

sites (72.5% or 79/109) followed by shrubs (27.5% or 30/109). Since shrubs and grasses 

often occurred together, sites with greater than 10% shrub cover were classified as shrub. 

 The topographic properties (slope steepness, aspect) of each pin were determined 

using GIS procedures following a detailed survey of pin locations on both dunes with a real-
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time kinematic GPS. The positional error of the GPS measurements was sub-centimetre in 

the horizontal plane and less than 2 cm in the vertical plane. From the survey data a 25 cm 

resolution digital elevation surface was generated for each dune using a spline algorithm in 

ArcGIS 9.3. The algorithm was set so that only the nearest five points were used in the 

interpolation. Increased tension was used to minimize unknown surface curvatures between 

survey points. For each pin location the slope steepness, aspect, and slope position (crest, 

mid-slope, and footslope) were calculated from the corresponding digital elevation surface. 

At the active dune, surface accretion/deflation was also measured at each pin, enabling 

analyses of the effects of dune surface change on near-surface soil moisture availability.  

 Near surface (< 6 cm) soil moisture data was collected at both dunes ten times 

throughout the 2010 growing season. Intervals between measurement dates ranged from 5 

to 30 days. The longest period between measurements, from 11 May to 10 June, consisted of 

an extended period of heavy rainfall. Shorter measurement intervals were used during drier 

periods. The shortest interval corresponded to a warm (19.7 °C) and dry period between 24 

June and 29 June, which followed 89 mm of rainfall between 16 June and 22 June.  

 Soil moisture data were classified according to the land cover and topographic 

properties of each pin. The three land cover classes were: bare sand, grass and shrub. The 

topographic data were also classified by slope steepness (< 5o, 5o - 10o, 10o - 20o, 20o - 30o 

and > 30o) and site aspect (flat (< 5o), north, south, east, and west). The flat aspect was 

added as a control class, enabling comparisons between pin locations exhibiting steep slopes 

and those with relatively gentle slopes. Pins located on the outer slopes of the dunes were 

also classified according to their relative position (crest, midslope and footslope), similar to 

Sulebak et al. (2000). The data were classified and aggregated into land cover and topographic 
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classes for each survey date and also aggregated on a seasonal scale to compare soil moisture 

dynamics among sites with different land cover and topographic characteristics.  

 

3.5  Data Analysis 

 Nonparametric statistical analyses were chosen because the soil moisture data did not 

satisfy the normal population distribution and equal variance requirements of parametric 

tests such as t-tests and analysis of variance (ANOVA). We used the Wilcoxon Rank Sum 

(W), the Kruskal-Wallis (H) and Friedman non-parametric repeated-measures tests (F) at the 

0.05 significance level. The Wilcoxon Rank Sum test is the nonparametric alternative to the 

two-sample t-test and is used to determine differences in the distributions of two repeatedly 

measured samples. At the active dune a Wilcoxon Rank Sum (W) was also used to determine 

whether surface accretion or deflation affected near-surface soil moisture measurements. In 

addition, a Wilcoxon Matched-Pairs Signed Ranks test was used to determine if precipitation 

differed between the two dunes. The Kruskal Wallis (H) test is a nonparametric alternative 

to the ANOVA and is used to determine differences in the distributions of three or more 

independent samples on individual measurement dates. The Friedman non-parametric 

repeated measures test is a nonparametric alternative to the ANOVA and is used to 

determine differences in the distributions of three or more repeatedly measured samples at 

the seasonal scale. The goal of these tests was to detect statistically significant variations in 

near-surface soil moisture for different land cover and topographic properties. Because soil 

moisture was repeatedly measured at the same measurement sites on ten different occasions 

over the season, a Dunn - Sidak procedure was used to modify the significance level at 

which the null hypothesis was rejected for season-scale comparisons. 
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3.6  Results 

 Prior to describing differences in soil moisture between and across dunes, the site-

specific factors that may influence the spatiotemporal variability of near-surface soil moisture 

between the two dunes are outlined. Recall that the total distance between the dunes is 3.2 

km. The focus of sections 3.6.1 and 3.6.2 is on differences in precipitation and soil 

properties (texture and organic content). Following the description of these controls, the soil 

moisture data and results of statistical tests that reveal inter- and intra-site differences 

relating to the effects of vegetation and topography are presented in section 3.6.3. 

 

3.6.1  Precipitation 

 As explained in Chapter 2, above average precipitation fell throughout the 2010 

study period (April-August), with record precipitation in the watershed during April and 

May, 2010 (Pentland et al., 2011). Total precipitation during the study period was 423 mm, 

which is 110% more than the 1971-2000 mean of 203 mm (Figure 3.2; Environment 

Canada, 2011). Frequent precipitation precluded assessment of drought or dry spell effects 

on soil moisture distribution in active and stabilized dunes. To narrow the list of variables 

that may influence inter-site soil moisture variations, a Wilcoxon Matched-Pairs Signed 

Ranks test was used to determine if there was a significant difference in precipitation at both 

monthly and seasonal time scales. Results show that total precipitation volumes did not vary 

significantly between the sites at either the monthly (p = 0.31) or seasonal (p = 0.80) scales, 

suggesting that any long-term differences in soil moisture were minimally impacted by 

variations in precipitation input. Of the 40.4 mm precipitation difference between the sites, 

28.3 mm (70.0 %) of this difference is accounted for during a single precipitation event on 
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22 June. Thus, consistent long-term differences in soil moisture between sites appear to be 

minimally-affected by variations in precipitation. 

 

3.6.2 Soil properties 

 Soil texture was finer and more variable at the stabilized dune (Table 3.1). Clay and 

silt made up 8% of the near-surface sediment, whereas clay and silt made up only 3% of 

near-surface sediment at the active dune. Silt and clay contents are higher on all aspects of 

the stabilized dune compared to the active dune. Organic content was also higher at the 

stabilized dune. Intra-site variation of organic content was slightly more pronounced at the 

stabilized dune, with higher organic content on the north- and south-facing slopes. 

Differences in soil texture and organic matter content between the dunes were all significant 

at the 0.001 significance level. Increased variation of near-surface soil properties at the 

stabilized dune may be linked to effects of vegetation. For instance, enhanced organic 

content was observed beneath shrubs (3.09%) compared to grasses (1.69%). Most shrubs  

Table 3.1. Summary of near-surface soil texture and organic content at the active (n = 6) 
and stabilized (n = 6) dunes for each class.  

Study Site Aspect 
Soil Texture Organic Matter 

Sand % Silt % Clay % % 

Active North 96.85 1.27 1.87 0.67 

Active South 97.42 0.86 1.72 0.00 

Active East 98.57 0.66 0.77 0.60 

Active Flat 94.68 1.37 3.95 1.20 

Active Average 96.88 1.04 2.08 0.62 

Stabilized North 89.08 5.68 5.24 3.61 

Stabilized South 91.99 3.12 4.90 2.48 

Stabilized East 94.75 1.72 3.53 1.39 

Stabilized Flat 91.32 4.17 4.52 1.20 

Stabilized Average 91.79 3.67 4.55 2.17 
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were located on the north-facing slopes (53%), which could explain the enhanced organic 

matter, as well as the elevated silt and clay content. 

 

3.6.3  Effects of vegetation on the spatiotemporal dynamics of soil moisture 

 The highest near-surface soil moisture variability was observed early in the growing 

season (9 April & 22 April) at both dunes (Figure 3.4). On a seasonal scale, the average soil 

moisture across the active dune was less variable than across the stabilized dune. Wider 

ranges of soil moisture were observed during periods when median soil moisture was high 

(Figure 3.5). While a smaller number of soil moisture measurement intervals coincided with 

extended dry periods, the coefficient of variation did not change significantly for shorter dry 

periods, suggesting that the relative soil moisture variability during all measurement intervals 

was similar (Table 3.2). 

 The near-surface soil moisture data collected at the stabilized dune was higher and 

more variable than at the active dune (Table 3.2). Maximum soil moisture variation was 

observed on 9 April, following snowfall on 8 April. While the snow melted before 

measurements were taken on 9 April, redistribution of the snow by high winds may have 

played a role in enhancing soil moisture heterogeneity at both dunes. Wilcoxon Rank Sum W 

tests suggest that near-surface soil moisture was significantly different between the two 

dunes during most measurement intervals. The smallest difference between the dunes 

occurred on 29 June, which also corresponded to the driest measurement interval of the 

study. 
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Figure 3.4. Spatio-temporal distribution of near-surface (< 6 cm) soil moisture at the active 
and stabilized dune sites. 
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A. 

 

B. 

 

Figure 3.5. Statistical distribution of volumetric soil moisture (θV) measurements captured at 
the active (A) and stabilized (B) dunes on each measurement date. Maximum, minimum, 
median, and quartiles are displayed. n = 83 for each active dune site measurement date. n = 
109 for each stabilized dune measurement date. 
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Table 3.2. A comparison of the mean, standard deviation (St. Dev.), and coefficient of 
variation (Co. Var.) of soil moisture values measured at the instrumented active (n = 83) and 
stabilized (n = 109) dune sites over the entire study period. p-values were derived using the 
Wilcoxon W Rank Sum test and show the probability of getting a test statistic value as 
extreme as the one observed if soil moisture varies similarly across the surface of the active  
and stabilized dunes (H0). A Dunn-Sidak modified significance value of 0.0025 was used to 
determine whether H0 should be rejected at the 0.05 significance level for ten repeated 
measurement dates for the season-level comparison. 

 
Active Stabilized 

 

 
Mean St. Dev. Co. Var. Mean St. Dev. Co. Var. p-values 

9 Apr 4.02 2.02 0.50 6.74 2.87 0.43 0.000 

22 Apr 4.91 2.14 0.44 5.71 1.97 0.35 0.073 

11 May 6.51 1.65 0.25 8.90 1.83 0.21 0.000 

10 Jun 8.08 1.18 0.15 7.20 2.11 0.29 0.000 

24 Jun 7.31 0.99 0.14 8.14 1.81 0.22 0.025 

29 Jun 3.47 0.73 0.21 3.56 0.85 0.24 0.893 

6 Jul 8.84 1.24 0.14 12.98 2.42 0.19 0.000 

28 Jul 5.29 0.94 0.18 4.94 1.65 0.33 0.001 

5 Aug 6.52 0.93 0.14 8.24 2.40 0.29 0.000 

18 Aug 5.66 0.87 0.15 7.41 2.05 0.28 0.000 

Entire 
Season 

6.06 2.12 0.35 7.35 3.16 0.43 0.000 

        

Note: 
       White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 
 

  

 Statistical differences between the three land cover classes shown in Table 3.3 

provide additional detail on the effects of vegetation on near-surface soil moisture. In some 

cases the difference between these classes is less pronounced than when all measurements 

for each dune are used as a basis for comparison. For example, on several measurement 

dates the differences between bare sand and grass, and between bare sand and shrub are 

weaker than when the data are aggregated for each dune. Grass and shrub classes had very 

few strong differences. At the seasonal scale, however, each of the pairings showed a strong  
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Table 3.3. p-values depicting the results of the Wilcoxon Rank Sum test (W), Kruskal-Wallis 
(H), and Freidman non-parametric repeated-measures (F) test for resolving differences in 
near-surface (< 6 cm) soil moisture values between and among bare, grass and shrub classes. 
p-values show the probability of getting a test statistic value as extreme as the one observed if 
soil moisture varies similarly beneath different vegetation cover types (H0). A Dunn-Sidak 
modified significance value of 0.0025 was used to determine whether H0 should be rejected 
at the 0.05 significance level for ten repeated measurement dates at the seasonal scale. n = 
78, n = 79 and n = 30 on each measurement date for the bare, grass and shrub classes 
respectively. 

  Vegetation Classes Compared 

Date Bare vs. Grass (W) Bare vs. Shrub (W) Grass vs. Shrub (W) All 3 Classes (H) 

9-Apr 0.000 0.000 0.022 0.000 

22-Apr 0.226 0.041 0.153 0.000 

11-May 0.000 0.000 0.206 0.000 

10-Jun 0.000 0.088 0.181 0.000 

24-Jun 0.260 0.001 0.012 0.000 

29-Jun 0.769 0.366 0.291 0.132 

6-Jul 0.000 0.000 0.024 0.000 

28-Jul 0.000 0.331 0.250 0.000 

5-Aug 0.000 0.000 0.221 0.000 

18-Aug 0.000 0.000 0.041 0.000 

Entire 
Season 

0.000 0.000 0.000 0.000 (F) 

     Note: 
    White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 
 

statistical difference. The Kruskal-Wallis (H) tests indicate that soil moisture was most 

similar (p = 0.132) beneath all three vegetation classes on 29 June, corresponding with the 

driest measurement date of the field season. On a seasonal scale, the Friedman test statistic 

confirms that statistically significant soil moisture differences are present between all three 

vegetation classes. 
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3.6.4  Effects of topography on the spatiotemporal dynamics of soil moisture  

 On a seasonal scale, the median and range of soil moisture measurements were very 

similar for each slope steepness class across each dune (Figure 3.6). We failed to detect 

significant differences in soil moisture between different slope steepness’s on most 

measurement dates at either the active dune (Table 3.4) or the stabilized dune (Table 3.5) 

sites. While statistically significant differences were observed between some classes on some 

individual measurement dates, on a seasonal scale significant soil moisture differences were 

not observed at either site between the slope steepness classes.  

 Soil moisture measurements classified according to aspect exhibited significant 

variation at a seasonal scale at the stabilized dune, whereas soil moisture distributions were 

similar at a seasonal scale between aspect classes across the surface of the active dune (Figure 

3.7). Soil moisture on the north-facing slope of the stabilized dune was higher and more 

variable than soil moisture measured on other aspects. Because none of the measurement 

sites on the active dune were located on a west-facing aspect, statistics could not be 

compiled for that aspect. Soil moisture was significantly different among aspects on several 

measurement dates at both the active (Table 3.6) and stabilized (Table 3.7) dunes. At both of 

these sites, the north-facing aspect was significantly wetter on most measurement dates, 

accounting for most of the intra-site variability. At the stabilized site, the drier south-facing 

slope had significantly lower soil moisture on several measurement intervals compared to 

other aspects. However, at the seasonal scale, only the stabilized dune exhibited a statistically 

significant difference in soil moisture between aspects. The flat, east, and west aspects at the  
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A. 

 

B. 

 

Figure 3.6. Statistical distribution of volumetric soil moisture (θV) measurements at different 
slope angles on the active (A) and stabilized (B) dunes over the entire field season. 
Maximum, minimum, median, and quartiles are displayed.  
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Table 3.4. p-values depicting the results of the Wilcoxon Rank Sum test (W), Kruskal-Wallis 
(H), and Freidman non-parametric repeated-measures (F) test for resolving differences in 
near-surface (< 6 cm) soil moisture between and among five different slope classes on the 
active dune. The p-values derived show the probability that the compared slope classes 
exhibited similar surface soil moisture distributions (H0). A Dunn-Sidak modified 
significance value of 0.0025 was used to determine whether H0 should be rejected at the 0.05 
significance level for ten repeated measurement dates at the seasonal scale. n = 11, 39, 17, 8 
and 8 on each measurement date for the <5, 5-10, 10-20, 20-30 and 30-40 degree slope 
classes respectively. 

Date 

Downslope Angle (Degrees) 

<5  
vs.  

5-10 

(W) 

<5  
vs.  

10-20 

(W) 

<5  
vs. 

 20-30 

(W) 

<5  
vs.  

30-40 

(W) 

5-10 
vs.  

10-20 
(W)  

5-10 
vs.  

20-30 

(W) 

5-10 
vs.  

30-40 

(W) 

10-20 
vs.  

20-30 

(W) 

10-20 
vs.  

30-40 

(W) 

20-30 
vs.  

30-40 

(W) 

All 5 
Class 
(H) 

9 Apr 0.033 0.165 0.650 0.021 0.190 0.040 0.562 0.232 0.081 0.000 0.011 

22 Apr 0.051 0.173 0.043 0.000 0.004 0.001 0.000 0.415 0.000 0.000 0.000 

11 May 0.003 0.100 0.322 0.283 0.289 0.145 0.246 0.727 0.816 0.160 0.027 

10 Jun 0.331 0.438 0.934 0.342 0.735 0.533 0.921 0.560 0.727 0.768 0.825 

24 Jun 0.219 0.082 0.039 0.026 0.297 0.033 0.033 0.130 0.466 0.595 0.004 

29 Jun 0.287 0.384 0.117 0.173 0.831 0.428 0.428 0.268 0.162 0.000 0.152 

6 Jul 0.406 0.760 0.058 0.063 0.378 0.018 0.021 0.097 0.130 0.346 0.012 

28 Jul 0.308 0.029 0.483 0.026 0.105 0.921 0.039 0.415 0.322 0.022 0.030 

5 Aug 0.125 0.067 0.107 0.003 0.247 0.358 0.003 0.930 0.039 0.284 0.000 

18 Aug 0.007 0.095 0.137 0.006 0.702 0.745 0.068 0.816 0.116 0.035 0.002 

Entire 
Season 

0.747 0.825 0.250 0.744 0.994 0.224 0.806 0.280 0.870 0.459 
0.092 

(F) 

            

Note: 
           White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 
 

 

stabilized dune exhibited similar soil moisture on most measurement dates. When soil 

moisture on all aspects is analysed simultaneously using the Kruskal-Wallis (H) statistic, 

significant differences are observed throughout most of the season at both dunes, suggesting 

that at least one aspect at each site exhibits significantly different soil moisture dynamics 

from the others on most measurement dates.  
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Table 3.5. p-values depicting the results of the Wilcoxon Rank Sum test (W), Kruskal-Wallis 
(H), and Freidman non-parametric repeated-measures (F) test for resolving differences in 
near-surface (< 6 cm) soil moisture between and among four different slope classes on the 
stabilized dune. The p-values derived show the probability that the compared slope classes 
exhibited similar surface soil moisture distributions (H0). A Dunn-Sidak modified 
significance value of 0.0025 was used to determine whether H0 should be rejected at the 0.05 
significance level for ten repeated measurement dates at the seasonal scale. n = 9, 38, 57 and 
5 on each measurement date for the <5, 5-10, 10-20, and 20-30 degree slope classes 
respectively. 

Date 

Downslope Angle (Degrees) 

<5 vs. 
5-10

 

(W) 

<5 vs. 
10-20

 

(W) 

<5 vs. 
20-30

 

(W) 

5-10 vs. 
10-20 
(W) 

5-10 vs. 
20-30

 

(W) 

10-20 vs. 
20-30

 
(W) 

All 4 
Classes 

(H) 

9 Apr 0.491 0.062 0.009 0.067 0.079 0.162 0.023 

22 Apr 0.964 0.704 0.643 0.439 0.025 0.293 0.616 

11 May 0.761 0.772 0.165 0.841 0.004 0.112 0.356 

10 Jun 0.646 0.449 0.165 0.835 0.036 0.210 0.472 

24 Jun 0.715 0.802 0.877 0.342 0.011 0.717 0.761 

29 Jun 0.482 0.859 0.217 0.991 0.005 0.149 0.510 

6 Jul 0.797 0.919 0.316 0.615 0.027 0.455 0.786 

28 Jul 0.292 0.794 0.877 0.258 0.011 0.965 0.537 

5 Aug 0.925 0.562 0.877 0.679 0.015 0.942 0.926 

18 Aug 0.925 0.702 0.758 0.427 0.016 0.896 0.842 

Entire 
Season 

0.598 0.394 0.235 0.693 0.302 0.399 0.160 (F) 

 

Note: 

White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 
 

 

 Relative slope position was the most significant topographic control in determining 

the spatiotemporal distribution of soil moisture. The median and range of soil moisture 

measurements collected at the active dune were similar at a seasonal scale at crest, mid-slope, 

and footslope positions (Figure 3.8). However, along the footslope of the stabilized dune soil 

moisture was higher and more variable than other slope positions. In contrast, soil moisture  
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A. 

 

B. 

 

Figure 3.7. Statistical distribution of volumetric soil moisture (θV) measurements on 
different slope aspects at the active (A) and stabilized (B) dunes over the entire field season. 
Maximum, minimum, median, and quartiles are displayed.  
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Table 3.6. p-values depicting the results of the Wilcoxon Rank Sum test (W), Kruskal-Wallis 
(H), and Freidman non-parametric repeated-measures (F) test for resolving differences in 
near-surface (< 6 cm) soil moisture between and among four different aspect classes on the 
active dune. The p-values derived show the probability that the compared aspect classes 
exhibited similar surface soil moisture distributions (H0). A Dunn-Sidak modified 
significance value of 0.0025 was used to determine whether H0 should be rejected at the 0.05 
significance level for ten repeated measurement dates at the seasonal scale. n = 18, 8, 46, and 
11 on each measurement date for the north, south, east and flat aspect classes respectively. 

  Aspects Compared - Active Dune 

Date 
Flat vs. 
North 
(W) 

Flat vs. 
East  
(W) 

Flat vs. 
South 
(W) 

North vs. 
East  
(W) 

North vs. 
South 
(W) 

East vs. 
South 
(W) 

All 4 
Aspects  

(H) 

April 9 0.029 0.010 0.007 0.748 0.001 0.000 0.000 

April 22 0.000 0.176 0.934 0.000 0.001 0.162 0.000 

May 11 0.669 0.001 0.302 0.002 0.487 0.033 0.000 

June 10 0.048 0.606 0.934 0.039 0.012 0.503 0.039 

June 24 0.004 0.169 0.483 0.003 0.008 0.503 0.000 

June 29 0.041 0.253 0.837 0.160 0.030 0.201 0.007 

July 6 0.164 0.864 0.620 0.115 0.075 0.495 0.178 

July 28 0.009 0.249 0.386 0.008 0.017 0.932 0.005 

Aug 5 0.004 0.089 0.342 0.013 0.026 0.618 0.001 

Aug 18 0.001 0.012 0.650 0.031 0.004 0.050 0.000 

Entire 
Season 

0.290 0.939 0.462 0.148 0.602 0.453 0.029 (F)  

        

Note:        

White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 

 

 

was similar at footslope, mid-slope, and crest positions for almost all measurement intervals 

at the active dune (Table 3.8). However, at the stabilized dune, significant differences in soil 

moisture between the footslope and the other two slope positions was evident on most 

measurement dates. Soil moisture at crest and mid-slope positions at the stabilized dune 

could not be statistically differentiated.  
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Table 3.7. p-values depicting the results of the Wilcoxon Rank Sum test (W), Kruskal-Wallis 
(H), and Freidman non-parametric repeated-measures (F) test for resolving differences in 
near-surface (< 6 cm) soil moisture between and among five different aspect classes on the 
stabilized dune. The p-values derived show the probability that the compared aspect classes 
exhibited similar surface soil moisture distributions (H0). A Dunn-Sidak modified 
significance value of 0.0025 was used to determine whether H0 should be rejected at the 0.05 
significance level for ten repeated measurement dates at the seasonal scale. n = 25, 48, 22, 5 
and 9 on each measurement date for the north, south, east, west and flat aspect classes 
respectively. 

  Aspects Compared - Stabilized Dune 

Date 

Flat 
vs. 

North 
(W) 

Flat 
vs. 

East 
(W) 

Flat 
vs. 

South 
(W) 

Flat 
vs. 

West 
(W) 

North 
vs. 

East 
(W) 

North 
vs. 

South 
(W) 

North 
vs. 

West 
(W) 

East 
vs. 

South 
(W) 

East 
vs. 

West 
(W) 

South 
vs. 

West 
(W) 

All 5 
Aspects 

(H)  

Apr 9 0.007 0.025 0.555 0.894 0.159 0.001 0.037 0.059 0.061 0.605 0.002 

Apr 22 0.013 0.408 0.232 0.440 0.001 0.000 0.046 0.739 0.943 0.823 0.000 

May 11 0.258 0.215 0.372 0.641 0.006 0.007 0.616 0.575 0.057 0.065 0.008 

June 10 0.274 0.003 0.622 0.549 0.159 0.043 0.290 0.000 0.034 0.773 0.000 

June 24 0.109 0.483 0.608 0.841 0.001 0.000 0.221 0.414 0.242 0.420 0.001 

June 29 0.598 0.528 0.140 0.947 0.881 0.026 1.000 0.031 0.755 0.171 0.000 

July 6 0.015 0.663 0.189 0.182 0.000 0.000 0.141 0.331 0.134 0.015 0.000 

July 28 0.049 0.296 0.498 0.083 0.163 0.001 0.597 0.021 0.134 0.028 0.000 

Aug 5 0.053 0.862 0.678 0.947 0.004 0.000 0.126 0.397 0.950 0.543 0.001 

Aug 18 0.033 0.931 0.477 0.841 0.001 0.000 0.266 0.343 0.553 0.394 0.000 

Entire 
Season 

0.000 0.360 0.352 0.576 0.000 0.000 0.024 0.009 0.930 0.128 
0.000 

(F)   

            

Note:            

White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 

  

  
 Surface elevation change at the active dune was greatest in April, when average wind 

speeds where greater than at any other point during the study (> 5 m s-1). However, an 

analysis of active dune surface change versus soil moisture did not show any distinguishable 

differences in surface soil moisture between accreting and deflating surfaces at any point 

during the study period (p > 0.05). 
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A. 

 

B. 

 

Figure 3.8. Statistical distribution of volumetric soil moisture (θV) measurements at different 
slope positions captured at the active (A) and stabilized (B) dunes over the entire field 
season. Maximum, minimum, median, and quartiles are displayed.  
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Table 3.8. p-values depicting the results of the Wilcoxon Rank Sum test (W), Kruskal-Wallis 
(H), and Freidman non-parametric repeated-measures (F) test for resolving differences in 
near-surface (< 6 cm) soil moisture between and among five different slope positions (crest, 
mid-slope, footslope) at the active and stabilized dune sites. The p-values derived show the 
probability that the compared slope position classes exhibited similar surface soil moisture 
distributions (H0). A Dunn-Sidak modified significance value of 0.0025 was used to 
determine whether H0 should be rejected at the 0.05 significance level for ten repeated 
measurement dates at the seasonal scale. n = 16 for all slope position classes on each 
measurement date at the active dune site. n = 21, 24 and 21 on each measurement date for 
the crest, mid-slope and footslope classes respectively at the stabilized dune site.  

  Active Dune Slope Position Comparison Stabilized Dune Slope Position Comparison 

Date 

Crest  
vs. 

Footslope 
(W) 

Crest 
vs. 

Mid-
slope 
(W) 

Mid-slope 
vs. 

Footslope 
(W) 

All 3 
Slope 

Positions 
(H) 

Crest  
vs. 

Footslope 
(W) 

Crest 
vs. 

Mid-
slope 
(W) 

Mid-slope 
vs. 

Footslope 
(W) 

All 3 
Slope 

Positions 
(H) 

9 Apr 0.910 0.572 0.665 0.836 0.004 0.357 0.032 0.011 

22 Apr 0.283 0.109 0.792 0.280 0.005 0.329 0.065 0.017 

11 May 0.207 0.880 0.283 0.380 0.002 0.207 0.030 0.004 

10 Jun 0.638 0.940 0.865 0.917 0.174 0.547 0.317 0.342 

24 Jun 0.083 0.012 0.337 0.020 0.000 0.259 0.007 0.000 

29 Jun 0.880 0.585 0.638 0.797 0.191 0.219 0.030 0.034 

6 Jul 0.318 0.221 0.851 0.415 0.001 0.116 0.017 0.001 

28 Jul 0.221 0.266 0.763 0.358 0.011 0.433 0.114 0.036 

5 Aug 0.070 0.073 0.806 0.109 0.001 0.811 0.006 0.002 

18 Aug 0.706 0.207 0.181 0.188 0.001 0.776 0.004 0.002 

Entire 
Season 

0.650 0.264 0.499 0.150 (F) 0.000 0.146 0.000 0.000 (F) 

 

Note: 

White cells indicate failure to reject H0 at the 0.05 significance level 

Grey cells indicate a rejection of H0 at the 0.05 significance level 

 

3.7  Discussion 

The results of this study indicate that near-surface soil moisture was higher and more 

variable on a stabilized dune than on an active dune during a relatively wet growing season. 

For a given environment with active and stabilized dunes, the active dunes typically 
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experience higher wind speeds near the surface, greater fluctuation of ground surface 

temperature, higher surface evaporation, erosion and deposition of sand, as well as lower 

fine sediment and organic matter content (Lichter, 1998). By contrast, vegetation-covered 

dunes experience lower wind speed due to increased roughness, little to no erosion, lower 

ground surface temperature fluctuation, reduced evaporation, especially on north-facing and 

lee slopes, and increased soil moisture holding capacity due to increased organic matter 

content and deposition of finer sediment (Li, 2005; Zhao et al., 2007). 

 Intra-site soil moisture variation resulting from dune topography influenced the 

spatiotemporal distribution of soil moisture less strongly than land cover type. Slope 

steepness did not have a strong impact on soil moisture distributions at either dune. At the 

stabilized dune, soil moisture was consistently higher at pins coinciding with shrub cover. 

Soils associated with shrubs had higher organic, silt, and clay content than those associated 

with grasses and bare sand. Enhanced soil moisture, shrub cover, and organic content were 

all measured on the north-facing slope of the stabilized dune. More pronounced differences 

in soil moisture distributions between north- and south-facing slopes were anticipated at the 

active dune owing to differences in insolation and its effect on evaporation; however, this 

did not materialize to the extent expected, presumably because aspect alone is not as 

significant without vegetation, or because there simply wasn’t enough drying to establish 

aspect-related differences on the active dune during the 2010 growing season. Instead, 

stronger differences due to aspect were found on the stabilized dune, but this appears to be 

more closely related to different vegetation functional groups rather than aspect. It is 

possible that the higher proportion of shrubs on the north-facing slope of the stabilized 

dune is related to aspect, but a causal connection is difficult to resolve from the short 

measurement period. Strong differences in soil moisture at footslope positions at the 
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stabilized dune may either be associated with lateral soil moisture redistribution toward the 

footslopes or that plant roots may be accessing deeper soil moisture reserves from the 

adjacent inter-dune area (Caldwell et al., 1998).  

 Surface accretion and deflation were not significant controls on the spatial 

distribution of near-surface soil moisture at the active dune site in this study. This was likely 

due to the high frequency of precipitation events during the field season, which limited 

sediment transport while frequently recharging near-surface soil moisture on both freshly 

accreted and eroded surfaces, thereby minimizing the potential for the detection of soil 

moisture differences. In addition, 78.6% of all measured accretion was less than 6 cm deep 

between measurement dates. Because the top 6 cm of the soil profile was measured during 

soil moisture sampling, most soil moisture measurements on accreting surfaces would 

comprise a mixture of recently deposited and previously extant sand, thus potentially 

reducing observed soil moisture differences between accreting and deflating surfaces during 

the study period.  

As stated, record precipitation fell during the 2010 growing season, preventing an 

assessment of near-surface soil moisture dynamics under drought or dry spell conditions, 

when spatiotemporal differences are most likely to manifest under different land cover types 

and topographic positions (Mahmood & Hubbard, 2007). While daily precipitation varied 

between the two sites by up to 28 mm, no significant bias in daily precipitation volumes was 

observed over longer monthly or seasonal timescales, suggesting that rainfall played a 

negligible role in creating inter-site differences in near-surface soil moisture at the seasonal 

scale. Therefore, while spatially variable precipitation could influence soil moisture 

measurements at individual measurement intervals, these differences were likely negated at 
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the seasonal time scale, making other factors such as vegetation, pedogenic modifications 

and topographic effects the most likely sources of both inter and intra-site variability.  

The presence of vegetation at the stabilized dune promotes the fining of dune 

sediments through the settling of fine wind-borne sediment particles (Muhs & Wolfe, 1999). 

Increased silt, clay, and organic matter content were all detected at the stabilized dune site, 

which collectively increase the available water holding capacity of those soils (Feustal & 

Byers, 1936; Li, 2005; Zhao et al., 2007). In addition, vegetation shades the sediment surface 

and reduces wind velocity near the soil surface, thereby reducing evaporation from the soil 

surface (de Castro Teixeira et al., 2008). Because the soil composition at the two dunes is 

significantly different, higher near-surface soil moisture content is expected at the stabilized 

sites under similar weather conditions, despite the negative effect of plant water-use on soil 

moisture availability that is commonly observed in non-dune environments (James et al., 

2003). These results are similar to those of Shay et al. (2000), which demonstrated higher soil 

moisture in the upper 5 cm at stabilized dunes compared to active dunes. 

The heterogeneous distribution of different vegetation types across different aspects 

of the stabilized dune has likely enhanced soil moisture variability. Shrubs occupied north- 

(53%), east- (23%) and south- (20%) facing slopes, with shrub cover on the south-facing 

slope concentrated near the footslope. While organic matter, clay, and silt content were 

higher across the stabilized dune than the active dune regardless of vegetation type, 

measured organic matter was 100-200% greater on average beneath shrub cover. Distinct 

seasonal transpiration patterns have been observed beneath shrubs and grasses (Schlesinger 

et al., 1990; Pockman & Small, 2010). Plant water extraction tends to be more gradual for 

shrub-dominated sites than grassed sites, because the latter exhibit more profligate water use 
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during periods when soil moisture is available (Kurc & Small, 2007; Letts et al., 2010). 

Furthermore, grasses tend to have shallower rooting networks that extract water more 

rapidly from the uppermost soil horizons, whereas woody species use water over a greater 

range of depths (Sala et al., 1989; McLaren et al., 2004). High rates of water-use during 

periods of moisture availability, combined with higher insolation and lower roughness may 

explain the tendency for more rapid near-surface moisture depletion at sites with grass-

dominated rather than shrub-dominated vegetation. The net effect of this process is 

enhanced spatiotemporal soil moisture variability at the stabilized dune, due to the effect of 

heterogeneous vegetation functional groups on near-surface soil water extraction and 

evaporation.  

 Higher soil moisture variability is often observed under dry conditions (Qiu et al. 

2001; Mahmood & Hubbard, 2007). By contrast, soil moisture variability was lowest on the 

driest measurement date in the Bigstick Sandhills in 2010. We also found that slope 

steepness was not a significant control on soil moisture distribution, whereas previous 

studies have demonstrated a slope effect (Sulebak et al., 2000; Qiu et al., 2001). Runoff is 

typically enhanced at steeper slope angles, resulting in lower rates of soil moisture recharge 

(Dalrymple et al., 1968; Sulebak et al., 2000). Thus, we interpret that dune stabilization in the 

southern Canadian Prairies has increased near-surface soil moisture relative to active dunes. 

The stabilizing vegetation creates a feedback effect by altering the near surface soil texture 

and organic content, which, in turn, enhances shallow soil moisture. Even at pin locations 

with the steepest slope angles, infiltration rates were sufficiently high to prevent runoff, 

thereby minimizing the effect of slope angle on soil moisture variability. 

The presence of vegetation has enhanced both the availability and variability of soil 

moisture resources at the stabilized dune relative to those observed at the active dune. As 
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Canadian Prairie sandhill regions progressively become more stabilized by vegetation, near-

surface soil moisture resources should also increase as vegetation modifies soil conditions 

through the addition of fine soil particles and organic matter, enhancing moisture storage 

capacity (Jenny, 1961; Miller et al., 1985). At a landscape scale, enhanced availability of near-

surface soil moisture can enhance both vegetation growth and seedling establishment 

potential (Maun, 1994; Moran et al., 2010). Other Canadian sandhill studies (Shay et al., 2000) 

have also measured higher soil moisture near the surface of stabilized dunes than active 

dunes, suggesting that higher near-surface soil moisture associated with stabilized dunes is 

not uncommon in Canadian Prairie sandhill ecosystems. While topography did play a 

significant role in modifying soil moisture conditions at the stabilized dune, vegetation 

played a more significant role overall in modifying near-surface soil moisture conditions at 

both individual measurement intervals and over the entire field season.  

Near-surface soil moisture availability has been enhanced by the presence of 

vegetation and allied soil-genesis processes. However, deeper soil moisture recharge was 

discovered to be negatively impacted by dune stabilization, as seen in Chapter 2. The 

establishment of vegetation in the Bigstick Sandhills has modified the soil moisture dynamics 

of this ecosystem. While the establishment of vegetation has led to enhanced near-surface 

soil moisture conditions through soil genesis, soil moisture recharge deeper within the 

stabilized dune soil profile has been negatively impacted. Through understanding how soil 

moisture dynamics have changed as vegetation has expanded in sandhill ecosystems, we may 

better manage those resources, thereby preserving the hydrological utility these regions well 

into the future.  
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3.8  Conclusion 

The results of this field study confirm the hypothesis that the establishment of 

vegetation in Canadian Prairie sandhill ecosystems has significantly modified near-surface 

soil moisture dynamics during the transition from bare, active dunes to stabilized dune 

ecosystems. Lower and less variable soil moisture was measured across the active dune 

surface as compared to the stabilized dune. Enhanced soil moisture variability at the 

stabilized dune can be attributed to the spatial variability of vegetation types, relative slope 

position, and dune slope aspect. At the active dune, slope aspect was the only topographic 

control that influenced soil moisture distributions, but only on north-facing aspects. Active 

dune surface accretion and deflation did not significantly influence soil moisture 

distributions across the active dune surface on a seasonal scale. Slope angle affected spatial 

soil moisture distributions at neither the active nor stabilized dune, presumably because of 

the high infiltration rate and low potential for runoff on either dune surface. Overall, these 

results indicate that dune stabilization and the allied process of soil genesis have increased 

soil moisture availability in near-surface soil layers, thereby enhancing the conditions for 

vegetation establishment and growth within these ecosystems. As this period of stabilization 

progresses, continuing soil development may further enhance near-surface soil moisture 

conditions at stabilized dunes. 

 While the results of this chapter suggest that near-surface soil moisture availability is 

improved through dune stabilization and soil genesis, the results of Chapter 2 indicate that 

dune stabilization has negatively impacted deeper profile soil moisture recharge at the 

stabilized dune. While near-surface soil moisture is higher across vegetation-stabilized dunes, 

deeper profile soil moisture recharge is reduced by the presence of vegetation. The broader 
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implication of these findings is that anthropogenic water use must be considered in light of 

the historical landscape changes that have occurred, and how these changes have affected 

soil moisture resources within sandhill ecosystems.  
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

 

4.1 Summary of conclusions and contributions 

Soil moisture provides an important physical link between vegetation, topography, 

soil, and climate. However, because the controls on soil moisture dynamics are not 

consistent between different ecosystems, it is necessary to study soil moisture dynamics in 

individual ecosystems. This study looked at soil moisture dynamics in a sandhill ecosystem 

that has undergone recent vegetation stabilization, transforming the region from a once 

desert-like dune landscape, to the relatively verdant, ecologically diverse ecosystem that 

exists today. Specifically, this thesis used an ergodic (space-for-time) approach to examine 

how the establishment of vegetation in the study area has modified both near-surface and 

deeper profile soil moisture dynamics relative to soil moisture dynamics observed at active 

dunes, which represent the former condition of the landscape. The key conclusions of this 

study can be summarized as follows:  

 

(1) Dune stabilization reduces infiltration and soil moisture storage within the soil profile (see 

Chapter 2). Soil genesis associated with sand dune stabilization results in higher silt, clay 

and organic matter content.  In the Bigstick Sandhills, this caused lower infiltration rates 

at the stabilized dune, relative to the active dune. In the upper 200 cm of the soil profile, 

soil moisture content was higher and less variable at the active dune than at the stabilized 

dune, with the exception of the 25 cm measurement depth. Deeper measurements (500 

cm) show that soil moisture was significantly lower beneath stabilized dunes, although 

soil moisture infiltrating from the surface reached 500 cm depth at one stabilized dune by 
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October, presumably because rodent burrows enhanced macroporosity. A broader study 

implication is that the progressive stabilization of this sandhill landscape may have 

reduced groundwater recharge. This could impact the various stakeholders reliant on 

shallow groundwater resources in this area. As the last active dunes stabilize and soil 

genesis progresses, the continuing reduction in profile soil moisture recharge may 

necessitate greater regulation of water resource consumption in sandhills with comparable 

climate and vegetation characteristics. 

 

(2) Dune stabilization enhances near-surface (< 6 cm) soil moisture storage and soil moisture 

variability (see Chapter 3). Near-surface soil moisture content was significantly higher at 

the stabilized dune than at the active dune. At the stabilized dune, soil moisture content 

was higher beneath shrubs than grasses. Higher near-surface soil moisture content was 

highly correlated with increasing organic matter, silt, and clay content resulting from soil 

genesis at the stabilized dune. Topography played a lesser role in modifying the spatial 

distribution of soil moisture at the sites. Downslope angle did not have a statistically 

significant impact on soil moisture, whereas aspect produced significant differences only 

between the moister north-facing aspect and the rest of the stabilized dune. The broader 

implications of this study are that enhanced near-surface soil moisture availability at 

stabilized dunes improves conditions for vegetation establishment and growth, reducing 

the likelihood of dune reactivation as vegetation-associated soil genesis develops soil 

moisture storage potential through the addition of silt, clay, and organic matter to the 

near-surface soil profile.    
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The establishment of vegetation across more than 99% of the study area has 

modified soil moisture dynamics. Near the dune surface, higher and more variable soil 

moisture resources are present at the stabilized dune than at the active dune. However, 

below 25 cm depth, soil moisture resources were lower and more variable beneath stabilized 

dunes than active dunes. While soil genesis has enhanced the soil moisture storage capacity 

near the surface, it has also reduced the ability of soil moisture to infiltrate deeper within the 

soil profile toward the groundwater table. The presence of transpiring vegetation has also 

created a draw on soil moisture resources to depths below 200 cm, depleting profile 

moisture resources more quickly after recharge events at stabilized dunes than active dunes. 

While the presence of vegetation enhances soil moisture availability near the dune surface, 

vegetation growth also detrimentally affects deeper profile and possibly groundwater 

recharge.  

There are positive ecological and anthropogenic implications for increased near-

surface soil moisture following vegetation establishment. Soil moisture storage capacity is 

enhanced by soil genesis, thereby improving conditions for the establishment and 

maintenance of vegetation growth across stabilized dune surfaces. Plant growth within the 

sandhills is critically important for the ranching industry, making improved soil conditions 

following vegetation establishment desirable. However, as the last few remaining active 

dunes become stabilized by vegetation, species reliant on dune activity could become 

extirpated from this ecosystem.  

Natural and anthropogenic water users that rely on deeper sources of soil moisture 

and groundwater may be negatively impacted by progressive vegetation stabilization and soil 

genesis. The reduction of infiltration rates and deep profile recharge events, coupled with the 
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draw transpiring vegetation puts on soil moisture resources have combined to reduce and 

occasionally prevent soil moisture recharge at greater depths within the soil profile. A further 

reduction in deeper soil moisture recharge as the last active dunes stabilize and soil genesis 

progresses could have further negative impacts on deep profile soil moisture infiltration and 

storage within sandhill regions than those observed in this study. In addition, past (and 

potentially future) reductions in deep profile soil moisture recharge resulting from 

continuing dune stabilization and allied processes have likely reduced groundwater recharge 

in sandhill ecosystems. In these regions, groundwater is utilized by deep-rooting vegetative 

species in interdune locations and is also utilized by the ranching and petrochemical 

industries. If soil moisture depletion exceeds soil moisture recharge either now or at some 

point in the future, water resources in these ecosystems may become depleted, necessitating 

greater regulation of anthropogenic water use in these regions. 

 

4.2 Future research directions  

 This study investigated soil moisture beneath active and stabilized dunes, 

encompassing the two end-members of the dune stabilization continuum. Dune vegetation 

cover within this ecosystem encompasses a range from barren, to initial colonizers, to 

grassland, to shrubs, up to fully treed sites at interdune locations. Interdune regions exhibit 

different vegetation cover types from those associated with dunes, and could potentially 

exhibit different soil moisture dynamics than those observed in this study. In addition, 

vegetation access to groundwater resources could be enhanced at the topographically lower 

interdune positions, increasing the potential for the hydraulic redistribution of soil moisture 

by plant roots within the soil profile. At sites where the groundwater table is at a shallower 
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depth, precipitation may better infiltrate and reach the groundwater table, enabling 

groundwater recharge at some interdune sites when groundwater recharge is not possible 

through stabilized dune crests. Studies examining profile and near-surface soil moisture 

dynamics at interdune locations and beneath landcover types not examined in this study 

would complement this research, enabling a more complete assessment of soil moisture 

dynamics within the study area. 

    Plant water-use data were not collected as part of this study. Individual plant 

species are likely to use soil moisture at different rates and at different times of the year. 

Differential transpiration rates among species could explain some of the enhanced soil 

moisture variation observed across the surface of the stabilized dune in Chapter 3. Further 

studies could help determine the moisture utilization characteristics of individual plant 

species, enabling analyses of soil moisture usage beneath all sandhill land cover classes. 

 Precipitation during this study was anomalously high. Ideally, the precipitation 

regime during the study period would have been more representative of climate normals. 

Soil moisture infiltration was likely much higher than would have been observed under 

average precipitation conditions. More importantly, it was not possible to observe soil 

moisture during prolonged rain-free periods, which are common in dryland regions. 

Additional soil moisture measurements conducted during a drought or dry spell would add 

to our understanding of soil moisture dynamics when soil moisture input is lower. 

 In this study, it was assumed that soil moisture infiltrated and flowed vertically within 

the soil profile, with limited horizontal soil moisture redistribution. The soil moisture profile 

study sites used in Chapter 2 were selected at topographically-prominent high-points, to 

prevent confounding influences on soil moisture, such as lateral flow, groundwater intrusion 
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and capillary rise. However, it is possible for soil moisture to be redistributed laterally at the 

profile sites, especially if a flow impediment such as a buried soil were present. Ideally, 

tensiometers would have been deployed to estimate lateral soil moisture movement 

potential. However, the deployment of tensiometers was beyond the scope of this study. 

 Lastly, continuous profile soil moisture monitoring was limited to one active site and 

one stabilized site for this study. Ideally, other monitoring locations could have been located 

at different dune locations and possibly beneath different landcover types at interdune 

locations. While extending the continuous soil moisture monitoring program to other sites 

of interest would be informative, those benefits would have to be weighed off against the 

costs of developing a more intensive monitoring program. 

 

4.3 Concluding remarks 

 Throughout the time I have spent designing, implementing, analyzing, and writing up 

my research I have been asked “why are you studying soil moisture in a small remnant 

ecosystem,” and “what do you hope to add to the body of scientific knowledge through your 

study.” To answer these questions, I will begin by saying that the Great Sand Hills of 

Saskatchewan (of which the Bigstick Sand Hills are an extension) comprise by far the largest 

contiguous undisturbed tract of prairie grassland in Saskatchewan (Epp & Townley-Smith, 

1980). Far from being a small, remnant ecosystem, the ecological diversity of the study area 

provides habitat for rare, dune-dwelling species (Dipodomys ordii), endangered avian species 

(Falco peregrines), and large mammals (Odocoileus hemionus, Antilocapra americana). Because of 

minimal human interference in these landscapes, sandhill regions have become important for 

the preservation of biological diversity on the Canadian Prairies. The study of soil moisture 
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in sandhill regions adds to our understanding of how the availability of soil moisture, one of 

the primary limiting factors for life in these former dune landscapes, varies at both seasonal 

and longer time scales as these landscapes become stabilized by vegetation.  

 My research began with the hypothesis that the active (bare) dunes would have 

higher profile soil moisture content than the stabilized dunes because the presence of 

vegetation on the latter reduces infiltration and removes soil moisture through 

evapotranspiration. While the occurrence of depleted soil moisture below vegetation 

stabilized sandhills has been observed in other studies, this study has looked deeper within 

the soil profile than other comparable studies (500 cm) and observed a lack of soil moisture 

recharge below 300 cm at one stabilized dune and a large reduction of soil moisture recharge 

at the other. That these observations were made during one of the wettest recorded growing 

seasons adds strength to the hypothesis that vegetation significantly reduces soil moisture 

recharge in sandhill ecosystems. While the combination of dune stabilization and soil genesis 

have combined to enhance near-surface soil moisture conditions on stabilized dunes, these 

factors have also reduced soil moisture recharge at greater depth. Even as enhanced near-

surface soil moisture conditions improve conditions for seedling establishment, vegetative 

growth, and dune stability, it comes with the trade-off of lower soil moisture and, possibly, 

groundwater recharge. 

 Understanding the consequences of changes to the spatiotemporal distribution of 

soil moisture in sandhill ecosystems is of great importance.  This is especially true given that 

anthropogenic utilization has been increasing, potentially straining sandhill groundwater 

resources. Understanding how sandhill soil moisture dynamics have changed since the onset 
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of vegetation stabilization will help us better manage water resources and enhance ecosystem 

sustainability within Canadian Prairie sandhill ecosystems.  
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