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Eikonal particle scattering and dilaton gravity
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Approximating light charged pointlike particles in terms(obnextremal dilatonic black holes is shown to
lead to certain pathologies in Planckian scattering in the eikonal approximation, which are traced to the
presence of énaked curvature singularity in the metric of these black holes. The existence of such pathologies
is confirmed by analyzing the problem in an “external metric” formulation where an ultrarelativistic point
particle scatters off a dilatonic black hole geometry at large impact parameters. The maladies disappear almost
trivially upon imposing the extremal limit. Attempts to derive an effective three-dimensional “boundary” field
theory in the eikonal limit are stymied by four-dimensiofialilk) terms proportional to the light-cone deriva-
tives of the dilaton field, leading to nontrivial mixing of electromagnetic and gravitational effects, in contrast
with the case of general relativity. An eikonal scattering amplitude, showing decoupling of these effects, is
shown to be derivable by resummation of graviton, dilaton, and photon exchange ladder diagrams in a linear-
ized version of the theory for an asymptotic value of the dilaton field which makes the string coupling constant
nonperturbative[ S0556-282(97)00104-5

PACS numbsg(s): 04.62:+v, 04.50:+h, 11.80.Et, 11.80.Fv

[. INTRODUCTION situations[8].1 Also, while gravitational interactions charac-
terized by the dimensionless quant@®s are usually taken to
Nontrivial nonperturbative information regarding gravita- dominate in this region@s~1), compared to electromag-
tional interactions is now well known to be accessible vianetism, which is controlled by~ 1/137 for small momen-
point particle scattering in four-dimensional Minkowski tum transfers, with magnetic charges present this is no longer
space at Planckian center-of-mass energies and fixed, lothe casd7].
momentum transferfl,2]. The singular kinematics of this The variant of general relativity known as dilaton gravity
(eikona) approximation lead to a truncated dynamics amedis an important extension of the standard Einstein theory
nable to exact treatment without further approximations. Thdecause it appears in the low energy approximation to super-
easiest way to visualize these collision processes is throughing theory[11]. The behavior of dilaton gravity in the
the shock wavepicture[1,3]: an ultrarelativistic point particle Kinematics of the eikonal approximation is a question of in-
produces a background with the geometry of two Minkowskitrinsic interest V|s-a/.|s'the S|mpI|f|cat|ons mentioned above.
spacetimes glued together after a shift along the null direcOn Somewhat heuristic grounds, it has been shi@rthat
tion (in Minkowski spacg characterizing the motion of the (1€ decoupling of gravity and electromagnetism seen earlier
particle[4]. The other null direction can be taken to define may not actually accur for the case of dilaton gravity, owing

the affine parameter for the null geodesic of a test particl rimarily to the coupllmg. of the dilaton f|.e|d to the metfior
encountering this shock wave geometry. The quantum mes the electromagnet!cfleld strgngtltn §h|s paperweturn to -
' a more comprehensive analysis of dilaton gravity in the ei-

lchanlcal an“tu?]e of thls colhsmp Is exactly Caflqu(;at;:e’ SOonal domain, to see if these heuristic results may indeed
ong asGs~1, whereG is Newton's constant. Afield theo- a6 5 firmer basis. Thus, if the particles in question are

retic analysis reproduces identical results for the amplitudegy oximated in their static limit by charged dilatonic black

while yielding a reducedthreedimensional field theory pgjes, then is the geometry due to such a particle similar to a

which describes the suppression of standard graviton exravitational shock wave when the particle moves almost

changes relative to the instantaneous interaction mediated Byminally? The issue of the eikonal scattering amplitude in

the shock wav¢5]. Leading order corrections to the eikonal this case is an immediate consequence. The reduction of the

process have also been computed using superstring theory fill set of degrees of freedom to a truncated set amenable to

the Regge-Gribov formalisri2]. exact mathematical treatment is another issue of importance

The inclusion of and interplayof gravitation) with elec-  that must be addressed.

tromagnetism, in this kinematical domain, has also been in- The paper is organized as follows: in Sec. Il we review

vestigated in detai[6—10], incorporating situations where our earlier work using the boosting techniques of Réf.to

the particles may have both electric and magnetic charge. laxamine the interplay of gravity and electromagnetism. We

so far as general relativity is concerned, some remarkablirther demonstrate how the problems discerned might dis-

phenomena occur in the eikonal region: electromagnetic and

gravitational interactions seem to operate quite indepen-—

dently of each other, in contrast to more generic kinematical 'This has been further confirmed in an independent analysis using
the external metric formulation of the problem, wherein an almost
luminal particle scatters off the static metric of a char@Rdissner-

*Electronic address: saurya,partha@imsc.ernet.in Nordstran) black hole[10].
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appear in the extremal limit. In Sec. I, both the nonextremal dxt=dx"— [ 4Gp dx—,
and the extremal situations are reanalyzed within the external W
(static dilatonic black holemetric formalism; in the former

case, we show how it is impossible to reduce the equation of 1— o
motion of an ultrarelativistic particle in this metric to a solv- p|x~|

able Schrdinger-like form useful for extracting phase shifts.

Once again, the pathology is obviated in the extremal limit o
wherein solutions identical to those in a Schwarzschild back- 1-——
ground[10] ensue. In Sec. IV, we turn to a field theoretic dX =dx~ 2p|x”]|
analysis following[5], wherein we point out the difficulties a '
of reducing the theory in the relevant kinematical domain to 1- px~|

a boundary field theory which “lives” in a three-

dimensional space composed by the transverse two- dx, =dx, . )
dimensional plane and the boundary of the null plane. This

concomitantly demonstrates the nontrivial mixing of gravita-We observe that in addition to the shift in tké coordinate
tional and electromagnetic interactions in this case. Sectiofas for the Schwarzschild metyicthe coordinatéx —, de-

V probes the possibility of a derivation of the quantum eiko-pends on the charge. This is made explicit by choosing
nal amplitude by resummation of ladder-type exchanger to be small(achieved either by considering a small charge
graphs in a linearized version of the theory. The linearizatiorQ or by taking a large negative value ¢f). Then the above

is argued to be invalid in the regime of perturbative stringequations can be linearized to obtain

coupling. We conclude in Sec. VI with a few remarks on

what our results might indicate from a string theoretic stand- v .+ 4Gp A4« )
point. dx " =dx [ )72 +0O(a/p), ©)
(04
Il. DILATON GRAVITY HEURISTICS dx ~=dx™ + 2p%] +0(a?/p?). 4

This section is a brief review of our earlier wo&]. We S . . .
begin by considering the static, spherically symmetric and' "€« dependent shift ix™, being a continuous function of
electrically charged solution of dilaton gravity in the so- X+ ¢&n be removed by a diffeomorphism while the shift in

called “string metric” [12], which is a solution of the low X~ c_annot, Pecause of_ the presence of the discorjtinuous
energy string effective action: function 9(x7). Interestingly, for the Reissner-Nordstno

metric, the Q-dependent piece can also be removed by a
diffeomorphism. Now, for a test particle in the background
a\71 2GM 2GM\ 1 geometry of this right-moving particle, the coordinate
ds’= ( 1- W) [( 1- T) dt®— ( 1- T) dr? serves as its affine parameter, and a discontinuity in the latter
signals a serious breakdown of the boosting method. Specifi-
a | ., cally, the interpretation of the boosted metric as two
—| 1=y e (1) Minkowski spaces glued together at the null plate=0
after a shift in the coordinate” (cut and paste prescriptipn
is no longer possible as for the Schwarzschid or the
Here a=Q%e?%, Q being the electric charge angl, the Reissner-Nordsti [8] metric. This becomes apparent when
asymptotic value of the dilaton field. We confine ourselves tgne writes the classical geodesic equations for a light test
situations not subject to the extremality condition Particle in the background of the boosted dilaton metric and
Q%?%0=2GM?. It may be noted that this metric differs tries to solve it perturbatively in a power series in the mass
from the Reissner-Nordstmo solution of general relativity in M using singular perturbation theory. The failure of the latter
that it does not have two horizons, while it has a curvaturdndicates that the the null geodesics are incomplete in this
singularity atr = «/M. This difference is due to the presence case, and curvature singularity st /M shows up as an
of the dilaton field. As this metric describes the spacetimeextended naked singularity in the boosted lif8ik Thus the
around a point particle of madd, to obtain the same when geometry is intractably more complicated, which renders a
the particle is massless and travels along the null geodeskglculation of the corresponding scattering amplitude impos-
X~ =t—z=0, we boost this metric along the positizeaxis  Sible.
to a velocity 8 and take the limit3— 1. On parametrizing Having confronted the above mentioned difficulty, let us
the mass aM =p/y, where y=(1—8%) Y2 andp is the Iy to_ see whether the same can be circumvented for certain
energy of the particle, and introducing the other light coneSPecial values of the parameters. For example, the extremal
coordinatex* =t+z, we get[8] limit can be considered for its special role in certain other
situations(it has zero entropy and Hawking temperajure
For the space-time depicted in the metfig, the extremal
ds?—dx dXx~—(dx,)?, limit corresponds to the merging of the Schwarzschild hori-
zon and the sphere of curvature singularity. The condition
among the parameters is therefare-2GM?, which when
where translated in the expression for the metric yields
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) dr? p s (whereE is the energy of the test particle as measured by an
ds’=—dt*+ T oaMm2 Trdes (5 asymptotic observeand with the “string” metric(1) in the
- background, the radial part of E¢8) becomes
. . _ d?4(r) d(r?A) de¢(r) [l1(1+1) E?r?
On performing the boosting procedure on this, we get r2A 972 + 5 ST A ¢(r)=0.
r r r

(10

dg?=dx® —dx~ : (6)

+_agpd
dx 4Gp| 7
X For generic values of\, the first derivative term can be

ignored and on setting =1 (i.e., no dilatonic and/or electric

which can be seen to coincide with E@) for «=0. Note : : .
that this is the same as a boosted Schwarzschild geometﬁ)? gr%%hvv\czrrze;%%\ﬁ?jr ggikr;r%ljlﬁgﬁuatmn of a neutral particle

[4], although the metrig5) cannot be identified with a

Schwarzschild space-time. In fact, this metric is singularity 2 _ 2
free and geodesically complete. Since there is a shift in the d_];_ a+1) 23(Gs) — ZGSE_EZ f=0. (11
light cone coordinatex™ only, the affine parametex™ is dr r r

continuous, and the “cut-and-paste” prescription is emi- . o .
nently applicable. The corresponding scattering amplitude i§tere, ¢(r)=f(r)/r. For largel (the eikonal limi, this

the well-known eikonal resultl] equation is just the Schdinger equation for a charge in a
Coulomb potential, once we identify the electromagnetic
1T(1-iGs)[ 1 |~iCs coupling constantr with ag=Gs (with a minus sigh and
fst=1 m(_—t) : (7)  the momentunk with the energyE. The subsequent calcu-

lation of the scattering phase shifts is exact. The expression

wheres is the square of the center-of-mass energy. It may b&°" the phase shift i§14,10
noted that the above amplitude refers to gravitational inter-
actions only. In addition, due to charges on the particles,
there can be electromagnetic contributions to the scatteringl; ) ) ] ] ]
How they affect the latter has been dealt with at lengtfgjn | e scattering amplitude obtained from this phase shift
and[10]. We will briefly touch upon this issue in Sec IV. We agrees with Eq(7). However, we are interested to know

will also come back to the issue of taking the extremal limitWhether for generic values df, the above equation reduces

in the subsequent sections and try to understand why it lead® @ Schrdinger-like equation, amenable to scattering solu-
to a reasonable result. tions. In the latter case) vanishes and the centrifugal term

becomes singular at a radius: /M. In the limit thatM is
small, this corresponds to very large radial distances. Thus
the curvature singularity appears in the vicinity of the test
A better physical insight into why such a breakdown oc-particle trajectory(with fixed large impact parameté) and
curs for the generic dilaton gravity metric may emerge uporihe tacit assumption that the test particle trajectory is in a
analyzing the above physical situation by a manifestly covaregion of small curvature, fails. This warrants a careful
riant approach, in which we solve for the wave equation of sanalysis of the radial equation in this region. The coefficient
test particle in the fixed background space-time created bgf ¢(r) in Eq. (10) is
the other particle. As emphasized earlier, this space-time can

S=arg(I+1—-iGs). (12

lll. EXTERNAL METRIC APPROACH

be modeled by the dilaton black hole solution as in Eg. ,  Exr% 1(+1)
For simplicity, we define the quantities A A
A=1— 2GM In the domain of interest@r <o, p fails to be continu-
ous atr = a/M. This is because
and lim p(z)ﬁ-l—oc,
r—(alM)™
A=1-
Mr lim  p@— —oo, (14
r—(a/M)™
The Klein-Gordon equation of thespinles$ test particle is
given by andp®)|,_ u is not defined. An elementary theorem in the
theory of ordinary differential equations states that, under
D,D*¢=0, (8) these circumstances, a unigue solution of 8d) does not

exist[13]. Similar conclusions follow by considering the ra-
whereD , denotes the relativistically covariant derivative in dial equation in the “Einstein” metric, which is related to
the metric(1). Assuming a solution foes of the form the string metric by a Weyl transformation of the form
g, e"=e?%g""9. This can be seen by writing the radial

H(r,)=d(r)Y (0, )€, (9)  equation in this case, which is
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d?¢(r) [d(r?A) r2A dA]de(r) cate the action of the theory such that it automatically incor-
r2A dr2 [ dr + A W} dr porates the eikonal kinematics. An important observation en-
sues to the effect that all local degrees of freedom decouple
I(1+1) E?r? from the theory, leaving behind a residual boundary valued
A A |¢(nN=0. (19 action. This has been demonstrated in the case of general
relativity and electrodynamics separately[B1 and[6], re-
Here, in addition tp(®), the coefficienp® of the first de- spectively. _Our task wo.uld consist of two parts. First, to
rivative term also becomes discontinuous ata/M due to  Show that in the Einstein-Maxwell framework, the decou-
the presence of the additionatdependent piece. So, we can pling qf the _interactions tak_es place at'th.e level of the action,
no longer ignore the first derivative term. In any case, &5 _clalmv_ad i8] on the basis of a heurlstlc analysis. Second,
unique solution still does not exist. to investigate to Wha_t extent S|m|lar z_irguments would hold
Thus we see that, for vanishing particle masses, it is imfo_r the case pf the dilaton gravity action. The advantage_ qf
possible to extract a Schiimger-like differential equation this method is that one does not have to resort to explicit
for the dilaton gravity metric from which we can compute a classical solutions atall. ,
unique scattering solution and the corresponding phase shift. W& Pegin with the Einstein action
Basically, the reason is that the factor in the metric incorpo-
rating dilaton effects, namely (1a/Mr), blows up as SE:_EJ d*x\V—gR.
M —0, thus rendering the equation analytically intractable. G
As the particle masses decrease, the location of the curvature ] ) ]
singularity of the black hole recedes farther away from theéOn choosing a gauge for the metric tensor such that its lon-
origin r=0 without limit. Any particle in the field of this gitudinal (+,—) modes are manifestly decoupled from the
black hole, however large its impact parameter, is trappedf@nsverse modesd,(), and retaining only those configura-
within this naked singularity. This is reflected in the nonex-tions which are consistent with the high momenta in the
istence of well-defined quantum scattering solutions. Théongitudinal direction and low momenta in the transverse
gulf of difference between the earlier analyses involving thedirection, the Einstein action reduces to an action on the
Schwarzschild and Reissner-Nordstranetrics[10] and the ~ boundarydM of the two-dimensional Minkowski subspace
present case need hardly be over emphasized. The problemifisthe form[5]
obviously absent for macroscopic stellar objects with large 1 1
masses, for which the naked singularity is well hidden be- _ ij ay _Bo
hind the event horizon. One can tﬁen egpand the coefficientSt ~ “EIM] _EJ \/6( VhRy+ Z\/ﬁhm‘g“ﬁﬁjgwe 7).
of the radial equation involvin@\ in powers of the small (17)
parametera/Mr and obtain a perturbative solution. This N o ) o
would yield finite a-dependent corrections to the scatteringHere, all quantities pertaining @ (with Greek indicesand
amplitude (7) which, however, detracts from our aim of h (Latin indices are related to the longitudinal and trans-
studying point particle scattering. verse subspaces, respectively. The metric components satisfy
Instead, it makes more sense to investigate the extrem#t€e constraints
limit which was seen to cure the malady in the previous

section. Substituting\ =A, for the extremal limit in Eq. hij=hi;(x,y),
(10), we get )
gaB: 77ab(?axaé’ﬁx ' (18)
d?¢(r) 1 d(r’A)de¢(r) 1[I(1+1) _,
arZ TrZA T ar dr A% 7z _E7|#()=0.  wherebyh; is no longer a propagating degree of freedom,

(16) and g, is conformally flat up to diffeomorphisms of the
longitudinal subspace. Thus, only the boundary values of the
ExpandingA in powers ofGM/r and retaining terms to the diffeomorphism parametex® remain as the surviving dy-
appropriate order, this reduces to the Schwarzschild radidl@mical degrees of freedom in the eikonal limit.
equation(11), and the scattering amplitude is once again Eq. 1h€ corresponding electromagnetic actionfiat space,
(7). Identical conclusions follow when one uses the Einsteir?@mely,
metric instead of the string metric.
Sem= —%f d*xF, F*"
IV. SCALING AND BOUNDARY FIELD THEORY

So far, we have explicitly used the solutions of the dilatontruncates(in the Lorentz gaugeto [6]
gravity action to model the point particles. In the second

section, the boosted particle was regarded as the source in _ o (1o

the background of which the slow particle scattered, while Sem— Sempom) = 3{; de d ri(EQ Vo)

the latter served as the source of a static spherically symmet-

ric geometry in Sec. lll. In either case, the model failed —}SFVZ& Q) (19)
except in the extremal limit. Now we approach the eikonal 2 T '

limit in a “solution-independent way.” In other words, by
imposing certain kinematical restrictions, we suitably trun-with the constraints for the fields:
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F.=0: A.=d.0: Q(x)=Q+(x+,r1)+Q‘(x‘,r1). No.te that the.trans.verse pomponents remain unchanged. The
- (20 rationale behind this scaling is that due to the high center-of-

mass energy/s, the longitudinal length scales undergo a

A, is a classical background and can be taken to be zerbigh Lorentz contraction which is incorporated in the small-

without loss of generality. For both the gravity and electro-ness of the corresponding scaled quantities. The field com-

magnetic actions, it can be shown that the addition of th@ponents that survive after taking the limit-0 in the action

terms representing interaction with matter currents does natre to be regarded as the only relevant degrees of freedom in

alter the topological nature of the action because the eikondhe kinematical domain of interest. With this in mind, the

form of the source currents can also be written as boundargcaled electromagnetic action is

terms. Incorporating these terms, tBematrix can be easily L L

derived from the action in the saddle point approximation. o

The resulting scattering amplitude is trl?e exprzzs{ﬂjnfor Sem— — ZJ d4x‘/__g)\2<FF“BF g

gravity and Gs— —e€' for electromagnetism. In a short

while we shall see how both these terms can be incorporated

in a single scattering amplitude formula. Finally, with the

full Einstein-Maxwell action

1 ) .
+FZFMF“'+F”F”). (29

As in the case of flat space-time, the first term is highly

. R 1 ok oscillatory in the quantum partition function, which dictates
S=Se+Seu=— | dXV=09| 5T 79797 FuFa . the dominant modes to be
21
@) F.=0,

the first(pure gravity part once again reduces to the action
on the boundary. For the secofelectromagnetism coupled admitting of the earlier solution
to gravity) part, the argument is more subtle. The results are

best demonstrated in the units of RES], where it was as- A==0-4.
sumed thaddx*s were dimensionless, wheregg, had di-
mensionsL?, L signifying a length dimension. For dimen-
sional consistency, the other relevant quantities ar
associated with the dimensions

_g~L41 g/‘“}NLiZ; SEM:_%J d4X\ _gFaiFai. (25)

4 2
d*x~1, x,~L

As already mentioned, the transverse components of the
gauge potentiad; can be set to zero since they decouple; the
reduced action is thus

Now, as pointed out after E418), the metricg,,z is con-
formally flat in the longitudinal subspace, so that the confor-
mally invariant quantity\’—gg®? can be transformed into
the longitudinal Minkowski metrie;*# by local variations of
X2, Consequently, using E418) we can write

-2.

9,~1, #~L72
-2 .
A~L72 A,~1;

Fo~1 F~L% B
SEM:_%j dZXL\/ﬁhIJJ dX+dX_FaiFJ§Y. (26)
Now let us consider the Maxwell action in an arbitrary

space-time background: On substituting the constraintg0),

_ 4 v ..
SEM—_%f d*xv—gF,, F*". (22) SEM:%f dle\/ﬁh'lf dx*dX3,0,0,0°Q.
Splitting it up into the longitudinal, transverse, and the mixedag before, in the Lorentz gauge, this reduces to the action
parts, it takes the form (19) for Minkowski space scattering which enforces
hij = 5|J .
SEM:_%f d%x /__g(FaBFaB+2FaiFai+FijFij)_ In summary, the Einstein-Maxwell action in totality re-
duces to two separate terms, representing the gravity and

(23 electromagnetic interactions, respectively:

Now we sca[e the !ong|tud|nal components of all the tensors St + Sew— Sepam + Sempam) (27)
by a small dimensionless parameler yt/s, as

Thus, theS matrix calculated from the total boundary action

Xo— A%y will just be an incoherent superposition of the individ&al
. , e matrices. This is the statement of decoupling that was
Fuo—Fu, FrPN"4FeB, FA\"2F, sought. For completeness, we give the expression for the

scattering amplitude of two point particles with charges
gaﬁ—ngaﬁ, V—g—\2J—g. ande’ interacting via gravity and electromagneti$® :
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f(s,t)z—F Gs_iee . (28 gating degree of freedom. For example, consider the ex-
t I(1+iGs—iee’) tremal limit of the black hole solution. The solution for the

aqiilaton field, derived from the actiof29) is

1T(1-iGs+iee)| 1 —iGs+tiee’ null coordinates, i.e., when the dilaton ceases to be a propa-
=

In effect, this means that we can replace the gravitation
“coupling” Gs by the effective coupling constant o
Gs—e€' in the presence of electromagnetism. It is remark- ez‘f’:eZ%( 1- M_> (33
able that this decoupling is manifest already at the level of r

;cthe action, once the kinematical restrictions are imposed O%he extremality condition simplifies this to

We now move on to dilaton gravity. The action that we ) ) 2GM
must consider igin the Einstein metric e?f=e?%| 1 — (34
SD:f d4x\/—_g(—5+e2¢F FAY42g ¢c9"d>)- Now, the eikonal limit requires that we take the particle
G r a masses to be vanishingly small. Hence, on talihg-0 in

(29 the above equation, we see thatapproaches its constant
asymptotic valuaedentically. Thus the extremal dilaton solu-

The first term is identical to the general relativity action andtion certainly is sufficient since the dilaton field is frozen at

independent of the dilaton field, yielding E4l7) once its extremal value: however. it 's 10 b bit of an
again. However, the interaction term involving the Maxwell- S extremal value, however, It appears to be a ol a
overkill, since all one needs to eliminate the bulk term is a

Einstein—dilaton fields is no longer amenable to earlier Sim_d'laton fild denending onlv on the transverse coordinates
plifications. Although the scaling arguments will still hold, ! ' pending only v ! :

the counterparts of Eq$25) and (26) are, respectively,
V. RESUMMATION OF LADDER EXCHANGES

Sen= _%J' d4x\/—_ge*2¢FaiF“i (30) Historically, the earliest approach to the eikonal approxi-
mation in relativistic field theory entailed analyses of an in-
finite set of ladder-type exchange Feynman graphs in which
the momenta of the external lines are assumed to remain

- more or less fixed on-shell, so that virtual particles carried
Sen= —%J' d?x, \/ﬁh”j dx"dx e ??F,F. (3)  almost no momentfl5]. The motivation behind this restric-
tion is the assumption that in the high energy limit, there are
The constrainf . =0 will remain unchanged along with its Well-defined classical trajectories for the particles, which de-
solutionA. = d..Q). As before,A is taken to be zero. Thus Viate only slightly from free particle trajectories. Ignoring
the above equation becomes standard radiative corrections, the infinite sum is seen to ad-
mit [15] a closed form expression, which indeed captures the
o ) i e 24 W leading behavior of the scattering amplitudes for high center-
Sem= _if d*x, vhh f dx"dx"{d.[e”*(di2)(9;0*Q)]  of-mass energies. A similar eikonal resummation for linear-
_2 o ized gravity, involving ladder exchange of gravitons, was
— e 2%(3,Q)(9;0,0°0) +e72%(5,Q)(3;0°0) 3, p}. performed in Ref[16], which reproduced the quantum me-
(32) chanical result7). The Feynman rules were derived from the
following linearized gravity action:
The first term is a total divergence and hence can be con- 1 1
verted into a boundary term. The second term can be made toc  _ = [ 44~ A vo O UN_  uv, \o
vanish by virtue of the Lorentz gauge condition. The new SLG_GJ d o) U 7 E
significant piece is the last term, which is a “bulk” piece, 1 1 1
dependent on the local field coordinates. This term can nei- - - Lo ave, o uw o
ther be made to vanish, nor be transferred to the boundary XXt 2h’”((9 XTX= M aXTX | 39
dM for generic values of the dilaton field. Thus, the local ) ) ]
degrees of freedom fail to decouple from the theory and eiwhere the metric has been linearized @8,=7,,th,,.
konal approximation techniques used to calculate thdhe scalar fieldy corresponds to the particles undergoing
S-matrix can no longer be employed. These conclusions ar§catter|.ng.. The e|konall amphtude obtained in this case, for
of course not dependent on the choice of coordinates. IRONVanishing masses, is given k6]

and

terms of the string metric, the dilaton couples to the scalar o .

curvature as well as the gauge fields. Thus, in this case, both i M(s,t)~ S(s—4m )F(l.—|a(s)) (36)
the terms in the action would fail to give pure boundary ’ t I@ia(s)

terms.

As in the previous sections, it is natural to investigate theVhere,
status of the above analysis in the extremal limit. However, 22 4
here since we are dealing with the action and not with the _(s72m%)"—2m
. L . a(s)=G . (37
solutions, it is not clear as to how one can implement the Js(s—4m?)
extremality condition. Note however that the bulk term dis-
appears for dilaton configurations that are independent of theor m=0, this reduces to Ed7).
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In the dilaton gravity case, if we start with the dilaton Here, p; and p, are the incoming ang; and p, are the
gravity action coupled to the matter fielg in the string outgoing four-momenta. They are related by the constraint
metric, p1+p.—p3—pP4s=0. For the next higher order ladder, there

are four distinct diagrams depending on the momentum la-
S_f d*x\—g 2¢( _ E_ “ 2 } “ ) bels for the two exchanged particles. Using the eikonal form
= ge 4&#@? ¢+F dux* x|,

G 2 of the external matter propagatdikb,16, namely,
(38 1 1
then the condition of the existence of the classical trajectory (p+K)Z+m>—ie ~ 2p-k—ie’

of the test particles appears invalidated, since as already

mentioned, for small particle masses, the space-time singyhe one loop amplitude is

larity atr = a/M spreads indefinitely and traps any other test

particle at arbitrarily large impact parameters. Thus an eiko- , , d*k 1 1

nal graph calculation with the above action is seeminglyP1P2 (2m)* K2—ie (p,—p3—K)Z—ie
fraught with pitfalls. Despite these, we proceed with linear-

izing the dilaton field, as was done for the metric tensor. We 1( 1 1

write ¢ in the form XE —2p;-k—ie 2p,-k—ie

¢:¢0+f1 n 1 1
_2p1k_|€ _2p4k_|6

wheref represents the small quantum fluctuations around the
constant asymptotic valueé,. Before embarking on pertur- 1 1 1 1

bative calculations with this simplified action, a heuristic jus- + o -t - |
tification of this linearization may be given as follows. A 2p3-k—i€2py-k—ie  2pg-k—ie —2ps-k—ie

rough estimate of the magnitude bftan be made from the By doing the combinatorics carefully, it can be shown that

classical solution(33): the infinite set of ladders exponentiate to give the final am-
o plitude as
iM=—pip;5 | d*xe (P1P3) XA (x) . (41

Demanding this to be small leads to the condition v

o w whereA(x) is the Fourier transform of the dilaton propaga-

— |~ — |~ tor and
‘1 M le T 0,
for arbitraryr. This of course means thatshould approach 2 2f d*k ikox L ( 1 1
. =~ P1P2 € v |\ Ton i

zero at least asv?, which is the extremality condition. (2m) k"—ie\—2p;-k—ie 2p,-k—ie
Hence a linearized approximation seems reasonable in the 1 1 1 1

extremal limit. + - — + - -
To leading orders in the graviton and dilaton fluctuations, —2py-k=ie =2p,-k=ie  2py-k—ie2p,-k—ie
the dilaton gravity action now becomes 1 1 )

T opsk—ie —2py;k—ie

e72¢0

4 1 N Vo o, V\
S=—g5—| dx@=20) gh. (2" 2"+ 77

Assuming small momentum transfers, we can tpke-ps
andp,~p,, to obtain

1
_nﬂvn}\ﬂ)ljh}\(r_efz¢of d4x 1+ Eha“)(l—Zf) 2.2
PP X
= — — ILL -
2
X (—43,f0"f+F2+39,x3"x). (39 1omEp
Since the graviton and photon ladder summations are knowrerex, is the transverse coordinatet (= p) are the four-
we concentrate on the dilaton-matter field interactions, givermomentum vectors of the two particles in the center-of-mass

by the last term. The new momentum dependenframe andu is an irrelevant mass parameter. With this, the

(x—x—f) vertex is associated with the facter2p-p’, explicit evaluation ofM in Eq. (41) leads to
wherep andp’ are the momenta associated with the two o o o
lines. They give rise to an infinite set of ladders with inter- ip1p5 ['(1—ipip3/327Ep) (4pu?) ~' (PLP2/327ER)
mediate dilaton exchanges. Since these can be summed in aM=— I (1+ip2p232mEp) | —t :
fairly straightforward manner, we simply give a schematic (42)
derivation of the final result. The Born amplitudeorre-
sponding to a single dilaton exchangs where —t is the square of the momentum transfer. Now,
L plugging in the on-shell conditionp?,p3=m?, the above
. . IP1P2 amplitude decays to zero for vanishing particle masses. This
i Mpom= (40)

(p1—p3)’—ie’ means that these ladders do not contribute to the scattering
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amplitude at all. Thus we are left with the original set of imposing the extremal limit; in the firgheuristio approach,
matter-graviton and matter-photon ladder diagrams of Refd¢he dilaton charge simply shrinks to zero upon boosting,
[16,6] and the corresponding finite scattering amplitude forthereby yielding the same plane-fronted gravitational shock
Einstein-Maxwell theory(28). wave as in the Schwarzschild case. An identical situation
It now seems that the pathologies that we had encounteregnsues in the external metric formalism, where the disconti-
earlier have disappeared. Note however that the precedingyities previously preventing the solution of the quantum
results would only hold when the dilaton fluctuations areequation of motion are now gone. Since the static extremal
small enough for linearization to go through, i.e., dilatonic black hole metric looks quite different from the
|— ¢ol<1 (in Planck unity. Now, in the low energy limit ~ Schwarzschild metric, the end result is a pleasant surprise.
of string theory, the string coupling parametgyris usually The alternative approach involving identification of the
related to the asymptotic value of the dilatan=exp(e). degrees of freedom participating in eikonal scattering and an
In the regime of perturbative string theory one must haveeffective field theory of these degrees of freedom contained
gs<1, which implies thaip, itself should be large and nega- in Ref. [5] has also been pursued for the dilaton gravity
tive (in Planck unit$, i.e., |¢o|>1. It is not clear that these action. Indeed, unlike in the case of the Einstein-Hilbert and
dual requirements are compatible. Thus, our linearization oMaxwell actions, this action doemt reduce in the appropri-
the dilaton gravity action may not correspond to the perturate scaling limit to a “boundary” field theory. The offending
bative domain of string theory. But if we now relax this terms disappear for nonpropagating dilaton configurations
restriction to include largg, regimes, then the linearization such as would appear for extremal black hole solutions in the
is perfecﬂy jUStlfled and there is no prob|em with resummafﬂfﬂSSlESS limit. The situation iS, however, quite different for
tion of dilatonic ladder exchanges. Since certain extremalhe standard field theoretic approach to the eikonal of sum-
black hole solutions of string theoff.7] have been adver- Ming ladder exchange Feynman graphs. In this case, a lin-
tized as exact quantum states not subject to the perturbati@rized approximation to the dilaton gravity action, retaining
restrictiongs<1, it is perhaps not surprising that Planckian terms only up to quadratic in the dilaton field, does indeed
scattering of point particles, which is inherently nonpertur-yield a summed amplitude of ladders and crossed ladders in
bative in nature, is reasonable only outside the perturbativ@ closed form in the eikonal kinematical domain. The prob-

regime of string theory. lem shows up in a rather subtle manner: the restriction on the
asymptotic value of the dilaton field from string perturbation
VI. CONCLUSION theory is not compatible with the requirement of small dila-

ton fluctuations around the asymptotic value necessary for

We begin this section with a survey of our principal find- linearization of the actiofand the subsequent derivation of
ings. The curvature singularity away from the origin in the the eikonal amplitude
nonextremal charged dilaton black hole metric is shown to The above analyses point unambiguously to the fact that
be responsible for the absence of a plane-fronted graviteextremal black holes play a very special role in eikonal scat-
tional shock wave, when such a black hole is Lorentz-tering. Recall that our motivation to consider dilaton gravity
boosted to luminal velocities. Instead of a single planewas to model charged point particles as sources of the dila-
(x~=0 in the Schwarzschild cagehe singular geometry in ton gravity metric instead of the canonical Reissner-
the Planckian eikonal limit consists of a three-dimensionaNordstran metric. The reason was of course that the low
region whose thickness is proportional to the dilatonicenergy string equations of motion naturally give rise to the
chargea= Q2%exp(— ¢). Consequently, Planckian scattering former. However, this modeling seems to work only in the
amplitudes in this model can no longer be computed usingxtremal limit. Perhaps this is the manner in which string
the simple techniques of Rdfl]. The problem resurfaces in theory, which gives rise inexorably to dilaton gravity at low
the external metric approach in that the radial component oénergies as an effective theory of gravitation, also cures the
the particle equation of motion does not reduce to gproblems that go with it. The central role played by extremal
Schralinger-like equation in the eikonal approximation. In black holes is emphasized time and again in recent literature
fact, the discontinuities in the coefficients of this equation inon duality because of the strong possibility of their being
the relevant kinematical limit render the equation unsolvableelementary string excitatiofid 7]. Our work stresses this fur-
Remarkably, in both approaches, the malady disappears updiner in terms of nonperturbative behavior in the eikonal limit.
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