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Approximating light charged pointlike particles in terms of~nonextremal! dilatonic black holes is shown to
lead to certain pathologies in Planckian scattering in the eikonal approximation, which are traced to the
presence of a~naked! curvature singularity in the metric of these black holes. The existence of such pathologies
is confirmed by analyzing the problem in an ‘‘external metric’’ formulation where an ultrarelativistic point
particle scatters off a dilatonic black hole geometry at large impact parameters. The maladies disappear almost
trivially upon imposing the extremal limit. Attempts to derive an effective three-dimensional ‘‘boundary’’ field
theory in the eikonal limit are stymied by four-dimensional~bulk! terms proportional to the light-cone deriva-
tives of the dilaton field, leading to nontrivial mixing of electromagnetic and gravitational effects, in contrast
with the case of general relativity. An eikonal scattering amplitude, showing decoupling of these effects, is
shown to be derivable by resummation of graviton, dilaton, and photon exchange ladder diagrams in a linear-
ized version of the theory for an asymptotic value of the dilaton field which makes the string coupling constant
nonperturbative.@S0556-2821~97!00104-5#

PACS number~s!: 04.62.1v, 04.50.1h, 11.80.Et, 11.80.Fv

I. INTRODUCTION

Nontrivial nonperturbative information regarding gravita-
tional interactions is now well known to be accessible via
point particle scattering in four-dimensional Minkowski
space at Planckian center-of-mass energies and fixed, low
momentum transfers@1,2#. The singular kinematics of this
~eikonal! approximation lead to a truncated dynamics ame-
nable to exact treatment without further approximations. The
easiest way to visualize these collision processes is through
theshock wavepicture@1,3#: an ultrarelativistic point particle
produces a background with the geometry of two Minkowski
spacetimes glued together after a shift along the null direc-
tion ~in Minkowski space! characterizing the motion of the
particle @4#. The other null direction can be taken to define
the affine parameter for the null geodesic of a test particle
encountering this shock wave geometry. The quantum me-
chanical amplitude of this collision is exactly calculable, so
long asGs'1, whereG is Newton’s constant. A field theo-
retic analysis reproduces identical results for the amplitudes
while yielding a reducedthree-dimensional field theory
which describes the suppression of standard graviton ex-
changes relative to the instantaneous interaction mediated by
the shock wave@5#. Leading order corrections to the eikonal
process have also been computed using superstring theory in
the Regge-Gribov formalism@2#.

The inclusion of and interplay~of gravitation! with elec-
tromagnetism, in this kinematical domain, has also been in-
vestigated in detail@6–10#, incorporating situations where
the particles may have both electric and magnetic charge. In
so far as general relativity is concerned, some remarkable
phenomena occur in the eikonal region: electromagnetic and
gravitational interactions seem to operate quite indepen-
dently of each other, in contrast to more generic kinematical

situations@8#.1 Also, while gravitational interactions charac-
terized by the dimensionless quantityGs are usually taken to
dominate in this region (Gs'1), compared to electromag-
netism, which is controlled bya'1/137 for small momen-
tum transfers, with magnetic charges present this is no longer
the case@7#.

The variant of general relativity known as dilaton gravity
is an important extension of the standard Einstein theory
because it appears in the low energy approximation to super-
string theory@11#. The behavior of dilaton gravity in the
kinematics of the eikonal approximation is a question of in-
trinsic interest vis-a`-vis the simplifications mentioned above.
On somewhat heuristic grounds, it has been shown@8# that
the decoupling of gravity and electromagnetism seen earlier
may not actually occur for the case of dilaton gravity, owing
primarily to the coupling of the dilaton field to the metric~or
to the electromagnetic field strength!. In this paper we turn to
a more comprehensive analysis of dilaton gravity in the ei-
konal domain, to see if these heuristic results may indeed
have a firmer basis. Thus, if the particles in question are
approximated in their static limit by charged dilatonic black
holes, then is the geometry due to such a particle similar to a
gravitational shock wave when the particle moves almost
luminally? The issue of the eikonal scattering amplitude in
this case is an immediate consequence. The reduction of the
full set of degrees of freedom to a truncated set amenable to
exact mathematical treatment is another issue of importance
that must be addressed.

The paper is organized as follows: in Sec. II we review
our earlier work using the boosting techniques of Ref.@4# to
examine the interplay of gravity and electromagnetism. We
further demonstrate how the problems discerned might dis-
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1This has been further confirmed in an independent analysis using
the external metric formulation of the problem, wherein an almost
luminal particle scatters off the static metric of a charged~Reissner-
Nordström! black hole@10#.
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appear in the extremal limit. In Sec. III, both the nonextremal
and the extremal situations are reanalyzed within the external
~static dilatonic black hole! metric formalism; in the former
case, we show how it is impossible to reduce the equation of
motion of an ultrarelativistic particle in this metric to a solv-
able Schro¨dinger-like form useful for extracting phase shifts.
Once again, the pathology is obviated in the extremal limit
wherein solutions identical to those in a Schwarzschild back-
ground @10# ensue. In Sec. IV, we turn to a field theoretic
analysis following@5#, wherein we point out the difficulties
of reducing the theory in the relevant kinematical domain to
a boundary field theory which ‘‘lives’’ in a three-
dimensional space composed by the transverse two-
dimensional plane and the boundary of the null plane. This
concomitantly demonstrates the nontrivial mixing of gravita-
tional and electromagnetic interactions in this case. Section
V probes the possibility of a derivation of the quantum eiko-
nal amplitude by resummation of ladder-type exchange
graphs in a linearized version of the theory. The linearization
is argued to be invalid in the regime of perturbative string
coupling. We conclude in Sec. VI with a few remarks on
what our results might indicate from a string theoretic stand-
point.

II. DILATON GRAVITY HEURISTICS

This section is a brief review of our earlier work@8#. We
begin by considering the static, spherically symmetric and
electrically charged solution of dilaton gravity in the so-
called ‘‘string metric’’ @12#, which is a solution of the low
energy string effective action:

ds25S 12
a

Mr D
21F S 12

2GM

r Ddt22S 12
2GM

r D 21

dr2

2S 12
a

Mr D r 2dV2G . ~1!

Here a[Q2e2f0, Q being the electric charge andf0 the
asymptotic value of the dilaton field. We confine ourselves to
situations not subject to the extremality condition
Q2e2f052GM2. It may be noted that this metric differs
from the Reissner-Nordstro¨m solution of general relativity in
that it does not have two horizons, while it has a curvature
singularity atr5a/M . This difference is due to the presence
of the dilaton field. As this metric describes the spacetime
around a point particle of massM , to obtain the same when
the particle is massless and travels along the null geodesic
x2[t2z50, we boost this metric along the positivez axis
to a velocityb and take the limitb→1. On parametrizing
the mass asM5p/g, whereg5(12b2)21/2 and p is the
energy of the particle, and introducing the other light cone
coordinatex15t1z, we get@8#

ds2→dx̃1dx̃22~dx̃'!2,

where

dx̃15dx12S 4Gp

ux2u

12
a

pux2u
D dx2,

dx̃25dx2S 12
a

2pux2u

12
a

pux2u
D ,

dx̃W'5dxW' . ~2!

We observe that in addition to the shift in thex1 coordinate
~as for the Schwarzschild metric!, the coordinatex̃ 2, de-
pends on the chargea. This is made explicit by choosing
a to be small~achieved either by considering a small charge
Q or by taking a large negative value off0). Then the above
equations can be linearized to obtain

dx̃15dx12
4Gp

ux2u
2

4a

~x2!2
1O~a2/p!, ~3!

dx̃25dx21
a

2pux2u
1O~a2/p2!. ~4!

Thea dependent shift inx1, being a continuous function of
x2, can be removed by a diffeomorphism while the shift in
x2 cannot, because of the presence of the discontinuous
function u(x2). Interestingly, for the Reissner-Nordstro¨m
metric, theQ-dependent piece can also be removed by a
diffeomorphism. Now, for a test particle in the background
geometry of this right-moving particle, the coordinatex2

serves as its affine parameter, and a discontinuity in the latter
signals a serious breakdown of the boosting method. Specifi-
cally, the interpretation of the boosted metric as two
Minkowski spaces glued together at the null planex250
after a shift in the coordinatex1 ~cut and paste prescription!
is no longer possible as for the Schwarzschild@4# or the
Reissner-Nordstro¨m @8# metric. This becomes apparent when
one writes the classical geodesic equations for a light test
particle in the background of the boosted dilaton metric and
tries to solve it perturbatively in a power series in the mass
M using singular perturbation theory. The failure of the latter
indicates that the the null geodesics are incomplete in this
case, and curvature singularity atr5a/M shows up as an
extended naked singularity in the boosted limit@8#. Thus the
geometry is intractably more complicated, which renders a
calculation of the corresponding scattering amplitude impos-
sible.

Having confronted the above mentioned difficulty, let us
try to see whether the same can be circumvented for certain
special values of the parameters. For example, the extremal
limit can be considered for its special role in certain other
situations~it has zero entropy and Hawking temperature!.
For the space-time depicted in the metric~1!, the extremal
limit corresponds to the merging of the Schwarzschild hori-
zon and the sphere of curvature singularity. The condition
among the parameters is thereforea52GM2, which when
translated in the expression for the metric yields
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ds252dt21
dr2

S 12
2GM

r D 2 1r 2dV2. ~5!

On performing the boosting procedure on this, we get

ds25dx'
22dx2Fdx124Gp

dx2

ux2uG , ~6!

which can be seen to coincide with Eq.~4! for a50. Note
that this is the same as a boosted Schwarzschild geometry
@4#, although the metric~5! cannot be identified with a
Schwarzschild space-time. In fact, this metric is singularity
free and geodesically complete. Since there is a shift in the
light cone coordinatex1 only, the affine parameterx2 is
continuous, and the ‘‘cut-and-paste’’ prescription is emi-
nently applicable. The corresponding scattering amplitude is
the well-known eikonal result@1#

f ~s,t !5
1

t

G~12 iGs!

G~11 iGs! S 1

2t D
2 iGs

, ~7!

wheres is the square of the center-of-mass energy. It may be
noted that the above amplitude refers to gravitational inter-
actions only. In addition, due to charges on the particles,
there can be electromagnetic contributions to the scattering.
How they affect the latter has been dealt with at length in@8#
and@10#. We will briefly touch upon this issue in Sec IV. We
will also come back to the issue of taking the extremal limit
in the subsequent sections and try to understand why it leads
to a reasonable result.

III. EXTERNAL METRIC APPROACH

A better physical insight into why such a breakdown oc-
curs for the generic dilaton gravity metric may emerge upon
analyzing the above physical situation by a manifestly cova-
riant approach, in which we solve for the wave equation of a
test particle in the fixed background space-time created by
the other particle. As emphasized earlier, this space-time can
be modeled by the dilaton black hole solution as in Eq.~1!.
For simplicity, we define the quantities

L512
2GM

r

and

D512
a

Mr
.

The Klein-Gordon equation of the~spinless! test particle is
given by

DmD
mf50, ~8!

whereDm denotes the relativistically covariant derivative in
the metric~1!. Assuming a solution forf of the form

f~rW,t !5f~r !Ylm~u,f!eiEt, ~9!

~whereE is the energy of the test particle as measured by an
asymptotic observer! and with the ‘‘string’’ metric~1! in the
background, the radial part of Eq.~8! becomes

r 2L
d2f~r !

dr2
1
d~r 2L!

dr

df~r !

dr
2F l ~ l11!

D
2
E2r 2

L Gf~r !50.

~10!

For generic values ofL, the first derivative term can be
ignored and on settingD51 ~i.e., no dilatonic and/or electric
charge!, we recover the radial equation of a neutral particle
in a Schwarzschild background@8#:

d2f

dr2
2F l ~ l11!23~Gs!2

r 2
2
2GsE

r
2E2G f50. ~11!

Here, f(r )5 f (r )/r . For large l ~the eikonal limit!, this
equation is just the Schro¨dinger equation for a charge in a
Coulomb potential, once we identify the electromagnetic
coupling constanta with aG[Gs ~with a minus sign! and
the momentumk with the energyE. The subsequent calcu-
lation of the scattering phase shifts is exact. The expression
for the phase shift is@14,10#

d l5argG~ l112 iGs!. ~12!

The scattering amplitude obtained from this phase shift
agrees with Eq.~7!. However, we are interested to know
whether for generic values ofD, the above equation reduces
to a Schro¨dinger-like equation, amenable to scattering solu-
tions. In the latter case,D vanishes and the centrifugal term
becomes singular at a radiusr5a/M . In the limit thatM is
small, this corresponds to very large radial distances. Thus
the curvature singularity appears in the vicinity of the test
particle trajectory~with fixed large impact parameterb) and
the tacit assumption that the test particle trajectory is in a
region of small curvature, fails. This warrants a careful
analysis of the radial equation in this region. The coefficient
of f(r ) in Eq. ~10! is

p~2![
E2r 2

L
2
l ~ l11!

D
. ~13!

In the domain of interest 0,r,`, p(2) fails to be continu-
ous atr5a/M . This is because

lim
r→~a/M !2

p~2!→1`,

lim
r→~a/M !1

p~2!→2`, ~14!

andp(2)ur5a/M is not defined. An elementary theorem in the
theory of ordinary differential equations states that, under
these circumstances, a unique solution of Eq.~10! does not
exist @13#. Similar conclusions follow by considering the ra-
dial equation in the ‘‘Einstein’’ metric, which is related to
the string metric by a Weyl transformation of the form
gmn
Einstein5e2fgmn

string. This can be seen by writing the radial
equation in this case, which is
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r 2L
d2f~r !

dr2
1Fd~r 2L!

dr
1
r 2L

D

dD

dr Gdf~r !

dr

2F l ~ l11!

D
2
E2r 2

L Gf~r !50. ~15!

Here, in addition top(2), the coefficientp(1) of the first de-
rivative term also becomes discontinuous atr5a/M due to
the presence of the additionalD-dependent piece. So, we can
no longer ignore the first derivative term. In any case, a
unique solution still does not exist.

Thus we see that, for vanishing particle masses, it is im-
possible to extract a Schro¨dinger-like differential equation
for the dilaton gravity metric from which we can compute a
unique scattering solution and the corresponding phase shift.
Basically, the reason is that the factor in the metric incorpo-
rating dilaton effects, namely (12a/Mr ), blows up as
M→0, thus rendering the equation analytically intractable.
As the particle masses decrease, the location of the curvature
singularity of the black hole recedes farther away from the
origin r50 without limit. Any particle in the field of this
black hole, however large its impact parameter, is trapped
within this naked singularity. This is reflected in the nonex-
istence of well-defined quantum scattering solutions. The
gulf of difference between the earlier analyses involving the
Schwarzschild and Reissner-Nordstro¨m metrics@10# and the
present case need hardly be over emphasized. The problem is
obviously absent for macroscopic stellar objects with large
masses, for which the naked singularity is well hidden be-
hind the event horizon. One can then expand the coefficients
of the radial equation involvingD in powers of the small
parametera/Mr and obtain a perturbative solution. This
would yield finite a-dependent corrections to the scattering
amplitude ~7! which, however, detracts from our aim of
studying point particle scattering.

Instead, it makes more sense to investigate the extremal
limit which was seen to cure the malady in the previous
section. SubstitutingL5D, for the extremal limit in Eq.
~10!, we get

d2f~r !

dr2
1

1

r 2L

d~r 2L!

dr

df~r !

dr
2

1

L2 F l ~ l11!

r 2
2E2Gf~r !50.

~16!

ExpandingL in powers ofGM/r and retaining terms to the
appropriate order, this reduces to the Schwarzschild radial
equation~11!, and the scattering amplitude is once again Eq.
~7!. Identical conclusions follow when one uses the Einstein
metric instead of the string metric.

IV. SCALING AND BOUNDARY FIELD THEORY

So far, we have explicitly used the solutions of the dilaton
gravity action to model the point particles. In the second
section, the boosted particle was regarded as the source in
the background of which the slow particle scattered, while
the latter served as the source of a static spherically symmet-
ric geometry in Sec. III. In either case, the model failed
except in the extremal limit. Now we approach the eikonal
limit in a ‘‘solution-independent way.’’ In other words, by
imposing certain kinematical restrictions, we suitably trun-

cate the action of the theory such that it automatically incor-
porates the eikonal kinematics. An important observation en-
sues to the effect that all local degrees of freedom decouple
from the theory, leaving behind a residual boundary valued
action. This has been demonstrated in the case of general
relativity and electrodynamics separately in@5# and @6#, re-
spectively. Our task would consist of two parts. First, to
show that in the Einstein-Maxwell framework, the decou-
pling of the interactions takes place at the level of the action,
as claimed in@8# on the basis of a heuristic analysis. Second,
to investigate to what extent similar arguments would hold
for the case of the dilaton gravity action. The advantage of
this method is that one does not have to resort to explicit
classical solutions at all.

We begin with the Einstein action

SE52
1

GE d4xA2gR.

On choosing a gauge for the metric tensor such that its lon-
gitudinal (1,2) modes are manifestly decoupled from the
transverse modes (i , j ), and retaining only those configura-
tions which are consistent with the high momenta in the
longitudinal direction and low momenta in the transverse
direction, the Einstein action reduces to an action on the
boundary]M of the two-dimensional Minkowski subspace
in the form @5#

SE→SE[ ]M ]5
1

GE AgSAhRh1 1

4
Ahhi j ] igab] jggdeagebdD .

~17!

Here, all quantities pertaining tog ~with Greek indices! and
h ~Latin indices! are related to the longitudinal and trans-
verse subspaces, respectively. The metric components satisfy
the constraints

hi j5hi j ~x,y!,

gab5hab]aX
a]bX

b, ~18!

wherebyhi j is no longer a propagating degree of freedom,
and gab is conformally flat up to diffeomorphisms of the
longitudinal subspace. Thus, only the boundary values of the
diffeomorphism parameterXa remain as the surviving dy-
namical degrees of freedom in the eikonal limit.

The corresponding electromagnetic action inflat space,
namely,

SEM52 1
4 E d4xFmnF

mn

truncates~in the Lorentz gauge! to @6#

SEM→SEM[ ]M ]5 R dtE d2r'S 12V2¹2]tV
1

2
1

2
V1¹2]tV

2D , ~19!

with the constraints for the fields:
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F650; A65]6V; V~x!5V1~x1,rW'!1V2~x2,rW'!.
~20!

Ai is a classical background and can be taken to be zero
without loss of generality. For both the gravity and electro-
magnetic actions, it can be shown that the addition of the
terms representing interaction with matter currents does not
alter the topological nature of the action because the eikonal
form of the source currents can also be written as boundary
terms. Incorporating these terms, theS matrix can be easily
derived from the action in the saddle point approximation.
The resulting scattering amplitude is the expression~7! for
gravity andGs→2ee8 for electromagnetism. In a short
while we shall see how both these terms can be incorporated
in a single scattering amplitude formula. Finally, with the
full Einstein-Maxwell action

S5SE1SEM52E d4xA2gS RG1
1

4
gmrgnlFmnFrlD ,

~21!

the first ~pure gravity! part once again reduces to the action
on the boundary. For the second~electromagnetism coupled
to gravity! part, the argument is more subtle. The results are
best demonstrated in the units of Ref.@5#, where it was as-
sumed thatdxms were dimensionless, whereasgmn had di-
mensionsL2, L signifying a length dimension. For dimen-
sional consistency, the other relevant quantities are
associated with the dimensions

A2g;L4, gmn;L22;

d4x;1, xm;L2

]m;1, ]m;L22;

Am;L22, Am;1;

Fmn;1, Fmn;L24.

Now let us consider the Maxwell action in an arbitrary
space-time background:

SEM52 1
4 E d4xA2gFmnF

mn. ~22!

Splitting it up into the longitudinal, transverse, and the mixed
parts, it takes the form

SEM52 1
4 E d4xA2g~FabF

ab12Fa iF
a i1Fi j F

i j !.

~23!

Now we scale the longitudinal components of all the tensors
by a small dimensionless parameterl;At/s, as

xa→l2xa;

Fmn→Fmn , Fab→l24Fab, Fa i→l22Fa i ;

gab→l2gab , A2g→l2A2g.

Note that the transverse components remain unchanged. The
rationale behind this scaling is that due to the high center-of-
mass energyAs, the longitudinal length scales undergo a
high Lorentz contraction which is incorporated in the small-
ness of the corresponding scaled quantities. The field com-
ponents that survive after taking the limitl→0 in the action
are to be regarded as the only relevant degrees of freedom in
the kinematical domain of interest. With this in mind, the
scaled electromagnetic action is

SEM→2
1

4E d4xA2gl2S 1l4FabF
ab

1
1

l22Fa iF
a i1Fi j F

i j D . ~24!

As in the case of flat space-time, the first term is highly
oscillatory in the quantum partition function, which dictates
the dominant modes to be

F650,

admitting of the earlier solution

A65]6V.

As already mentioned, the transverse components of the
gauge potentialAi can be set to zero since they decouple; the
reduced action is thus

SEM52 1
2 E d4xA2gFa iF

a i . ~25!

Now, as pointed out after Eq.~18!, the metricgab is con-
formally flat in the longitudinal subspace, so that the confor-
mally invariant quantityA2ggab can be transformed into
the longitudinal Minkowski metrichab by local variations of
Xa. Consequently, using Eq.~18! we can write

SEM52 1
2 E d2x'Ahhi j E dx1dx2Fa iF j

a . ~26!

On substituting the constraints~20!,

SEM5 1
2 E d2x'Ahhi j E dx1dx2] i]aV] j]

aV.

As before, in the Lorentz gauge, this reduces to the action
~19! for Minkowski space scattering which enforces
hi j5d i j .

In summary, the Einstein-Maxwell action in totality re-
duces to two separate terms, representing the gravity and
electromagnetic interactions, respectively:

SE1SEM→SE[ ]M ]1SEM[ ]M ] . ~27!

Thus, theSmatrix calculated from the total boundary action
will just be an incoherent superposition of the individualS
matrices. This is the statement of decoupling that was
sought. For completeness, we give the expression for the
scattering amplitude of two point particles with chargese
ande8 interacting via gravity and electromagnetism@9# :
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f ~s,t !5
1

t

G~12 iGs1 iee8!

G~11 iGs2 iee8! S 1

2t D
2 iGs1 iee8

, ~28!

In effect, this means that we can replace the gravitational
‘‘coupling’’ Gs by the effective coupling constant
Gs2ee8 in the presence of electromagnetism. It is remark-
able that this decoupling is manifest already at the level of
the action, once the kinematical restrictions are imposed on
it.

We now move on to dilaton gravity. The action that we
must consider is~in the Einstein metric!

SD5E d4xA2gS 2
R

G
1e22fFmnF

mn12]mf]mf D .
~29!

The first term is identical to the general relativity action and
independent of the dilaton field, yielding Eq.~17! once
again. However, the interaction term involving the Maxwell-
Einstein–dilaton fields is no longer amenable to earlier sim-
plifications. Although the scaling arguments will still hold,
the counterparts of Eqs.~25! and ~26! are, respectively,

SEM52 1
2 E d4xA2ge22fFa iF

a i ~30!

and

SEM52 1
2 E d2x'Ahhi j E dx1dx2e22fFa iF j

a . ~31!

The constraintF650 will remain unchanged along with its
solutionA65]6V. As before,Ai is taken to be zero. Thus
the above equation becomes

SEM52 1
2 E d2x'Ahhi j E dx1dx2$]a@e22f~] iV!~] j]

aV!#

2e22f~] iV!~] j]a]aV!1e22f~] iV!~] j]
aV!]af%.

~32!

The first term is a total divergence and hence can be con-
verted into a boundary term. The second term can be made to
vanish by virtue of the Lorentz gauge condition. The new
significant piece is the last term, which is a ‘‘bulk’’ piece,
dependent on the local field coordinates. This term can nei-
ther be made to vanish, nor be transferred to the boundary
]M for generic values of the dilaton field. Thus, the local
degrees of freedom fail to decouple from the theory and ei-
konal approximation techniques used to calculate the
S-matrix can no longer be employed. These conclusions are
of course not dependent on the choice of coordinates. In
terms of the string metric, the dilaton couples to the scalar
curvature as well as the gauge fields. Thus, in this case, both
the terms in the action would fail to give pure boundary
terms.

As in the previous sections, it is natural to investigate the
status of the above analysis in the extremal limit. However,
here since we are dealing with the action and not with the
solutions, it is not clear as to how one can implement the
extremality condition. Note however that the bulk term dis-
appears for dilaton configurations that are independent of the

null coordinates, i.e., when the dilaton ceases to be a propa-
gating degree of freedom. For example, consider the ex-
tremal limit of the black hole solution. The solution for the
dilaton field, derived from the action~29! is

e2f5e2f0S 12
a

Mr D . ~33!

The extremality condition simplifies this to

e2f5e2f0S 12
2GM

r D . ~34!

Now, the eikonal limit requires that we take the particle
masses to be vanishingly small. Hence, on takingM→0 in
the above equation, we see thatf approaches its constant
asymptotic valueidentically. Thus the extremal dilaton solu-
tion certainly is sufficient since the dilaton field is frozen at
its extremal value; however, it appears to be a bit of an
overkill, since all one needs to eliminate the bulk term is a
dilaton field depending only on the transverse coordinates.

V. RESUMMATION OF LADDER EXCHANGES

Historically, the earliest approach to the eikonal approxi-
mation in relativistic field theory entailed analyses of an in-
finite set of ladder-type exchange Feynman graphs in which
the momenta of the external lines are assumed to remain
more or less fixed on-shell, so that virtual particles carried
almost no momenta@15#. The motivation behind this restric-
tion is the assumption that in the high energy limit, there are
well-defined classical trajectories for the particles, which de-
viate only slightly from free particle trajectories. Ignoring
standard radiative corrections, the infinite sum is seen to ad-
mit @15# a closed form expression, which indeed captures the
leading behavior of the scattering amplitudes for high center-
of-mass energies. A similar eikonal resummation for linear-
ized gravity, involving ladder exchange of gravitons, was
performed in Ref.@16#, which reproduced the quantum me-
chanical result~7!. The Feynman rules were derived from the
following linearized gravity action:

SLG5
1

GE d4x
1

8
hmn~hmlhns1hmshnl2hmnhls!hhls

1
1

2
xhx1

1

2
hmnS ]mx]nx2

1

2
hmn]sx]sx D , ~35!

where the metric has been linearized asgmn5hmn1hmn .
The scalar fieldx corresponds to the particles undergoing
scattering. The eikonal amplitude obtained in this case, for
nonvanishing masses, is given by@16#

iM~s,t !;
As~s24m2!

t

G„12 ia~s!…

G„ia~s!…
, ~36!

where,

a~s!5G
~s22m2!222m4

As~s24m2!
. ~37!

Form50, this reduces to Eq.~7!.
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In the dilaton gravity case, if we start with the dilaton
gravity action coupled to the matter fieldx in the string
metric,

S5E d4xA2ge22fS 2
R

G
24]mf]mf1F22

1

2
]mx]mx D ,

~38!

then the condition of the existence of the classical trajectory
of the test particles appears invalidated, since as already
mentioned, for small particle masses, the space-time singu-
larity at r5a/M spreads indefinitely and traps any other test
particle at arbitrarily large impact parameters. Thus an eiko-
nal graph calculation with the above action is seemingly
fraught with pitfalls. Despite these, we proceed with linear-
izing the dilaton field, as was done for the metric tensor. We
write f in the form

f5f01 f ,

wheref represents the small quantum fluctuations around the
constant asymptotic valuef0. Before embarking on pertur-
bative calculations with this simplified action, a heuristic jus-
tification of this linearization may be given as follows. A
rough estimate of the magnitude off can be made from the
classical solution~33!:

f'uf2f0u;U lnS 12
a

Mr D U.
Demanding this to be small leads to the condition

U12
a

Mr U'1⇔U a

Mr U'0,

for arbitraryr . This of course means thata should approach
zero at least asM2, which is the extremality condition.
Hence a linearized approximation seems reasonable in the
extremal limit.

To leading orders in the graviton and dilaton fluctuations,
the dilaton gravity action now becomes

S5
e22f0

G E d4x~122 f !
1

8
hmn~hmlhns1hmshnl

2hmnhls!hhls2e22f0E d4xS 11
1

2
ha

aD ~122 f !

3~24]m f ]
m f1F21]mx]mx!. ~39!

Since the graviton and photon ladder summations are known,
we concentrate on the dilaton-matter field interactions, given
by the last term. The new momentum dependent
(x2x2 f ) vertex is associated with the factor22p•p8,
wherep andp8 are the momenta associated with the twox
lines. They give rise to an infinite set of ladders with inter-
mediate dilaton exchanges. Since these can be summed in a
fairly straightforward manner, we simply give a schematic
derivation of the final result. The Born amplitude~corre-
sponding to a single dilaton exchange! is

iMBorn5
ip1

2p2
2

~p12p3!
22 i e

. ~40!

Here, p1 and p2 are the incoming andp3 and p4 are the
outgoing four-momenta. They are related by the constraint
p11p22p32p450. For the next higher order ladder, there
are four distinct diagrams depending on the momentum la-
bels for the two exchanged particles. Using the eikonal form
of the external matter propagators@15,16#, namely,

1

~p1k!21m22 i e
'

1

2p•k2 i e
,

the one loop amplitude is

p1
4p2

4E d4k

~2p!4
1

k22 i e

1

~p12p32k!22 i e

3
1

2 S 1

22p1•k2 i e

1

2p2•k2 i e

1
1

22p1•k2 i e

1

22p4•k2 i e

1
1

2p3•k2 i e

1

2p2•k2 i e
1

1

2p3•k2 i e

1

22p4•k2 i e D .
By doing the combinatorics carefully, it can be shown that
the infinite set of ladders exponentiate to give the final am-
plitude as

iM52p1
2p2

2E d4xe2~p12p3!•xD~x!
eic21

c
, ~41!

whereD(x) is the Fourier transform of the dilaton propaga-
tor and

c52p1
2p2

2E d4k

~2p!4
eik•x

1

k22 i e S 1

22p1•k2 i e

1

2p2•k2 i e

1
1

22p1•k2 i e

1

22p4•k2 i e
1

1

2p3•k2 i e

1

2p2•k2 i e

1
1

2p3•k2 i e

1

22p4•k2 i e D .
Assuming small momentum transfers, we can takep1'p3
andp2'p4, to obtain

c52
p1
2p2

2

16pEp
lnmx' .

Here x' is the transverse coordinate, (E,6p) are the four-
momentum vectors of the two particles in the center-of-mass
frame andm is an irrelevant mass parameter. With this, the
explicit evaluation ofM in Eq. ~41! leads to

iM5
ip1

2p2
2

2t

G~12 ip1
2p2

2/32pEp!

G~11 ip1
2p2

2/32pEp!
S 4m2

2t D
2 i ~p1

2p2
2/32pEp!

,

~42!

where2t is the square of the momentum transfer. Now,
plugging in the on-shell conditionsp1

2 ,p2
25m2, the above

amplitude decays to zero for vanishing particle masses. This
means that these ladders do not contribute to the scattering
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amplitude at all. Thus we are left with the original set of
matter-graviton and matter-photon ladder diagrams of Refs.
@16,6# and the corresponding finite scattering amplitude for
Einstein-Maxwell theory~28!.

It now seems that the pathologies that we had encountered
earlier have disappeared. Note however that the preceding
results would only hold when the dilaton fluctuations are
small enough for linearization to go through, i.e.,
uf2f0u!1 ~in Planck units!. Now, in the low energy limit
of string theory, the string coupling parametergs is usually
related to the asymptotic value of the dilaton,gs[exp(f0).
In the regime of perturbative string theory one must have
gs!1, which implies thatf0 itself should be large and nega-
tive ~in Planck units!, i.e., uf0u@1. It is not clear that these
dual requirements are compatible. Thus, our linearization of
the dilaton gravity action may not correspond to the pertur-
bative domain of string theory. But if we now relax this
restriction to include largegs regimes, then the linearization
is perfectly justified and there is no problem with resumma-
tion of dilatonic ladder exchanges. Since certain extremal
black hole solutions of string theory@17# have been adver-
tized as exact quantum states not subject to the perturbative
restrictiongs!1, it is perhaps not surprising that Planckian
scattering of point particles, which is inherently nonpertur-
bative in nature, is reasonable only outside the perturbative
regime of string theory.

VI. CONCLUSION

We begin this section with a survey of our principal find-
ings. The curvature singularity away from the origin in the
nonextremal charged dilaton black hole metric is shown to
be responsible for the absence of a plane-fronted gravita-
tional shock wave, when such a black hole is Lorentz-
boosted to luminal velocities. Instead of a single plane
(x250 in the Schwarzschild case!, the singular geometry in
the Planckian eikonal limit consists of a three-dimensional
region whose thickness is proportional to the dilatonic
chargea[Q2exp(2f0). Consequently, Planckian scattering
amplitudes in this model can no longer be computed using
the simple techniques of Ref.@1#. The problem resurfaces in
the external metric approach in that the radial component of
the particle equation of motion does not reduce to a
Schrödinger-like equation in the eikonal approximation. In
fact, the discontinuities in the coefficients of this equation in
the relevant kinematical limit render the equation unsolvable.
Remarkably, in both approaches, the malady disappears upon

imposing the extremal limit; in the first~heuristic! approach,
the dilaton charge simply shrinks to zero upon boosting,
thereby yielding the same plane-fronted gravitational shock
wave as in the Schwarzschild case. An identical situation
ensues in the external metric formalism, where the disconti-
nuities previously preventing the solution of the quantum
equation of motion are now gone. Since the static extremal
dilatonic black hole metric looks quite different from the
Schwarzschild metric, the end result is a pleasant surprise.

The alternative approach involving identification of the
degrees of freedom participating in eikonal scattering and an
effective field theory of these degrees of freedom contained
in Ref. @5# has also been pursued for the dilaton gravity
action. Indeed, unlike in the case of the Einstein-Hilbert and
Maxwell actions, this action doesnot reduce in the appropri-
ate scaling limit to a ‘‘boundary’’ field theory. The offending
terms disappear for nonpropagating dilaton configurations
such as would appear for extremal black hole solutions in the
massless limit. The situation is, however, quite different for
the standard field theoretic approach to the eikonal of sum-
ming ladder exchange Feynman graphs. In this case, a lin-
earized approximation to the dilaton gravity action, retaining
terms only up to quadratic in the dilaton field, does indeed
yield a summed amplitude of ladders and crossed ladders in
a closed form in the eikonal kinematical domain. The prob-
lem shows up in a rather subtle manner: the restriction on the
asymptotic value of the dilaton field from string perturbation
theory is not compatible with the requirement of small dila-
ton fluctuations around the asymptotic value necessary for
linearization of the action~and the subsequent derivation of
the eikonal amplitude!.

The above analyses point unambiguously to the fact that
extremal black holes play a very special role in eikonal scat-
tering. Recall that our motivation to consider dilaton gravity
was to model charged point particles as sources of the dila-
ton gravity metric instead of the canonical Reissner-
Nordström metric. The reason was of course that the low
energy string equations of motion naturally give rise to the
former. However, this modeling seems to work only in the
extremal limit. Perhaps this is the manner in which string
theory, which gives rise inexorably to dilaton gravity at low
energies as an effective theory of gravitation, also cures the
problems that go with it. The central role played by extremal
black holes is emphasized time and again in recent literature
on duality because of the strong possibility of their being
elementary string excitations@17#. Our work stresses this fur-
ther in terms of nonperturbative behavior in the eikonal limit.
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