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ABSTRACT 

A characteristic of alpine drainage basins is the very sparse distribution of meteorological 

recording stations. This study models a contiguous distribution of microclimate and 

snowpaok accumulation in the upper Oldman River basin. To accomplish this goal, gaps 

between weather recording stations are first filled using a modified MTCL1M climate 

simulation model in conjunction with the spatial analysis capabilities of the PAMAP 

geographic information system (GIS). The GIS provides terrain information such as 

elevation^ slope, and aspect on a 100 metre grid as input into the microclimate simulator 

which, in turn, outputs daily meteorological conditions for a user-defined period of time. 

The estimation of snowpack accumulation is achieved with another component of the model 

which makes use of the modelled microclimate to calculate daily accumulation and ablation 

on a grid point basis. Simulation results are returned to the GIS for display and spatial 

analysis. Discussion includes such things as the grouping of terrain variables and the 

derivation of an altitudinal precipitation profile, both of which arc required for computational 

efficiency. 

While regression analysis indicates a very close relationship between observed and simulated 

temperature, precipitation is less successfully modelled at the daily time scale. Comparisons 

of simulated temperature with observed data resulted in an r 2 = 0.94 and arc therefore 

considered very reliable. Daily precipitation comparisons initially indicated a low correlation 
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between observed and simulated data. However, when monthly totals arc considered instead. 

r 2 rises to 0.66. When snowpack conditions are simulated for several snow pillows in the 

region, regression analysis with observed data produces r values as high as 0.896. 
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Chapter 1 

OVERVIEW 

1.1 Introduction 

The availability of water resources in southern Alberta is of paramount importance. As a 

result of the semi-arid climate experienced by much of the area, it is necessary to rely not only 

on inputs from precipitation to meet the many water demands of modem society. Common 

contenders for water include municipal water supplies, hydroelectric power producers, 

industry, and recreational activities. The region is characterized by an economy based heavily 

on the agrifood industry which means an additional demand on water for use in irrigation 

practices and for livestock production. The 1951-1980 mean annual total precipitation for 

much of southern Alberta is less than 500 mm which is insufficient to support all these needs 

thus a great deal of reliance is placed on runoff from water rich, snow fed, mountainous 

drainage basins. Streamflow rates reflect the condition of alpine snowpacks and the rate at 

which they melt. Therefore, attempts to improve estimation accuracy have obvious benefits 

to those living downstream. Another advantage of having accurate snow estimates is 

improved techniques for monitoring flood potential and therefore improved response 

contingencies. Both result in a reduced risk to human life and damage to property. 



The research undertaken reflects the author's interest in the application o f geographic 

information systems (GIS) to the analysis and management o f our natural resources. The 

study explores the spatial distribution of water resources with a particular emphasis on 

modelling the hydromcteorologic conditions in the topographically diverse terrain found along 

the eastern slopes of the Canadian Rockies. The methods described illustrate the integration 

of GIS, Fortran programing, and database management. 

The project can be divided into three broad stages; database creation, microclimate 

simulation, and snowpack simulation. The first of these involves the compilation and 

integration of datasets from several sources. This is done primarily within the PAMAP GIS 

through manual digitizing and database management Data layers collected include basin 

boundary, rivers, lakes, forest cover, point features, elevation, slope, and aspect. While the 

first 5 are collected manually from paper maps and tabular data, the latter 3 arc derived from 

raw elevation data purchased for this project. 

The second stage, daily microclimate simulation, is accomplished with a modification of the 

MTCLIM microclimate simulation model (Hungerford et a/., 1989) used in conjunction with 

the spatially continous data contained within the GIS. The modified program, currently 

known as SIMGRID, is capable of accepting gridded terrain information from the GIS and 

using it to generate a complete microclimate coverage from the sparse distribution of weather 

recording stations. In essence, the Fortran program simulates grid point microclimate from 

observed station data by making adjustments for differences in elevation, slope, aspect, forest 
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cover, and obstructions to incoming solar radiation between the station and each individual 

grid point. In this investigation, a 100 metre grid spacing is used. 

Snowpack simulation, the third stage, involves the utilization of previously simulated 

microclimate data to determine daily snow accumulation and melt on a grid point basis. The 

techniques used are based on the empirically-based accumulation model discussed by Wyman 

(1995) and the snow melt routines described by Pipes and Quick (1977). Within the model, 

daily maximum and minimum temperature is first used to ascertain whether falling 

precipitation takes the form of rain, snow, or some proportion thereof. Next, the temperature 

extremes are used to calculate daily melt expressed in millimetres of snow water equivalent 

(SWE). These two crucial pieces of information are finally applied in a balance equation 

which reflects daily fluctuations in total snowpack water equivalent 

To summarize, the major accomplishment of this research is the development of an alpine 

hydrometeorological simulation model (AHSM). The model includes detailed 

hydromctcorological Fortran code with database management linkages to a digital elevation 

model created within the PAMAP GIS. The AHSM has been calibrated with the best 

available data for the study area of interest, the Upper Oldman River basin. The model has 

been used to estimate the snow cover accumulation and ablation for the study basin over a 

period of 10 years (1970-1980) from which a number of interesting points arise. For 

example, the model indicates a sensitivity to the effects of aspect and elevation on certain 

simulated variables while apparently having no influence at all over others. 
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This analysis is pan of a much larger project whose goal is to study the impacts of potential 

future climate change on agricultural viability in the Canadian Prairies. The larger project, 

funded by the Nat Christie Foundation, is a joint venture between the Economics and 

Geography Departments at the University of Lethbridge and the Agriculture and Agrifood 

Canada Lethbridge Research station. The project is divided into a number of components 

including historic and future climate analysis, insect infestation, economic impact analysis, and 

a hydrology component. The latter of these is the context in which this study is carried out. 

1.2 Objectives: 

In the design stages of the project, consideration was given to a number of possible avenues 

to proceed. The following is a brief overview of objectives established at that time. 

1. To develop a spatially distributed hydrometeorological model for simulating 
daily microclimate, snow accumulation, and snow ablation in an alpine 
environment. 

2. To simulate the rrricroclimatic and snowpack conditions in the Upper Oldman 
River basin for a period of 10 years (1970 -1980). 

To accomplish these objectives a number of critical stages were identified; 

(i) Create a comprehensive digital database covering the region under 
investigation. Data collected includes hydrographic features (rivers, lakes, 
and drainage basin boundaries), point features (settlements, hydromctric 
stations, and climate stations), land cover information (forested verses non-
forested), historical environmental conditions (streamflow, temperature, 
precipitation, and snowpack), and complete digital elevation model (elevation, 
slope, and aspect). 

(ii) Simulate the microclimate for a series of regularly spaced grid points using a 
modified version of the Fortran program, MTCLIM (Hungcrford, et a/, 
1989), and historic climate data from nearby weather stations maintained by 
Atmospheric Environment Service (AES). 

(iii) Develop Fortran code to model snowpack accumulation from the simulated 
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climate. 

(iv) Generate a series of maps depicting snowpack conditions at several temporal 
scales using the GIS. 

(v) Correlate modelled snowpack accumulation to sparse historic snow course 
data. 

(vi) Estimate runoff based on volume of modelled snowpack. 



Chapter 2 

LITERATURE REVIEW 

2.1 Alpine Hydrology/Hydrologic Cycle 

Pertinent to the discussion of temperature and, more directly, precipitation is an overview of 

the process known as the hydrologic cycle. The hydrologic cycle involves the exchange of 

water molecules between the Earth and its surrounding atmosphere (Christopherson, 1992; 

Wilson, 1990, Maidment, 1993; and Environment Canada, 1994). Figure 2.1 is a 

representation of adaptations taken from a number of the referenced authors. Identified in 

the figure are the four principal processes of concern to hydrology: (i) 

evaporation/transpiration, (ii) precipitation, (iii) surface runoff, and (iv) groundwater flow. 

The relative percentages of total global water in each of ocean, atmosphere, lakes and rivers, 

and snow and ice are shown. The general distribution and interaction of water is depicted. 

Distinction of the four processes is based upon their respective roles in the transformation 

and/or transportation of water throughout the cycle. Evaporation primarily from oceans, but 

also from lakes, rivers, and land surfaces and transpiration from vegetation are the means by 

which water molecules pass from liquid to vapor state. Once airborne, water vapor is carried 



Figure 2.1 The hydrologic cycle. The four principal processes identified are: (i) evaporation/transpiration, (ii) precipitation, 
(iii) surface runoff, and (iv) groundwater flow. Numerical values represent the percentage of total global water found 
in each stage of the cycle. The total« 100.0 % (97.25 % + 0.0093 % + 0.001 % + 0.6118 % + 2.1 %). 
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by air masses until such time they are no longer capable of being supported. The amount of 

water vapor that an air mass may support is related to the temperature of the air and 

represented by the dewpoint. Dewpoint is the temperature to which air at a constant pressure 

and water vapor content must be cooled in order for saturation to occur. Precipitation occurs 

when an air mass cools to the dewpoint, condensation results, clouds form, and eventually 

water droplets coalesce and fall back to Earth as either rain, snow, or hail. Surface runoff by 

way of lakes and rivers or groundwater flow beneath the surface are both processes by which 

water is returned to the principal water storage source and sink, the oceans. 

Oceans, which occupy roughly 70% of the total Earth's surface, make up the single largest 

source of water on the planet, approximately 97.25% of global water. The second largest 

store of water, at about 2.1%, is found in the form of ice and snow storage which includes 

polar ice caps, glaciers, and snow. Next, around 0.0093% of all water is held up in freshwater 

lakes and rivers. Fourth, 0.6118% of global water resources are maintained in ground water 

and soil moisture. Finally, a miniscule amount (0.001%) is found in the atmosphere. 

The interactions taking place are important controls on the exchange of heat energy between 

the atmosphere and the Earth. As evaporation occurs at the surface of oceans, rivers, and 

lakes, energy is absorbed by the water vapor. This absorption of energy, known as latent heat 

of evaporation, is key to cooling in the Earths energy budget. The reverse occurs when water 

vapor held up in the atmosphere cools and condenses. The energy previously absorbed is 

released as latent heat of condensation and thereby offsets some of the cooling which occurs 
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due to increases in altitude. 

The mountainous areas under investigation in this thesis represent only a small portion of the 

Earth's hydrologic cycle as described above. As such, it is worth noting that many of the 

processes mentioned occur according to the genera- principles but deviate under the influence 

of alpine topography and land cover features. Distance from the primary sink of global water, 

the oceans, is another reason for this deviation from the global scheme of water interaction. 

Much of the precipitation in mountains is orographically driven by the westerly flow which 

picks up moisture from the Pacific Ocean and carries it eastward. 

2.2 Temperature Variation in an Alpine Environment 

Variations in local air temperature are driven primarily by the amount of solar radiation 

received at a given site. Solar radiation, in turn, is dependent upon such climatic controls as 

latitude, season, slope, and aspect. Proximity of the air mass to a heat source that may 

provide heating is also important to temperature. Shortwave incoming solar radiation is 

converted by the Earth into longwave radiation which, when emitted by the surface, warms 

the surrounding atmosphere. As a result, elevation or distance from the surface influences 

the amount of atmospheric heating. 

Latitude and seasonality factor heavily in the receipt of solar radiation at a site. Latitude is 

very important because angular distance north or south of the Equator determines the angle 
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at which incoming solar radiation is incident upon the Earth's surface. As well, latitude in 

association with seasonality determines daylength or period of exposure. 

Generally, the subsolar point which is the only point receiving insolation perpendicular to the 

surface, occurs in the lower latitudes. At the subsolar point, incoming solar radiation 

illuminates a small surface area and is therefore more intense. Areas other than the suspolar 

point receive insolation at an angle resulting in the energy being less concentrated. This 

diffusion of energy due to non-perperdicular incidence angles is more pronounced in the high 

latitudes where not only is the radiation spread over a larger surface area, but it must also 

travel through a greater depth of atmosphere before reaching the surface. The latter results 

in more scattering, absorption, and reflection by atmospheric materials. On an annual basis, 

the outer atmosphere above equatorial regions receives approximately 2.5 times more 

radiation than at the poles primarily as a result of variations in the angle of insidence alone 

(Christopherson, 1992). 

The period of exposure to incoming radiation, daylight hours, is a product of both latitude and 

season. It is highly variable with the Equator being the only region on Earth that receives a 

constant 12-hour mix of daylight and darkness. The higher the latitude, the greater the 

deviation from the Equatorial situation. During their respective summer seasons, the North 

and South Poles each receive 24 hours of daylight Conversely, during the winter they 

experience 24 hours of darkness. Obviously, this will greatly influence the amount of solar 

radiation received. In June, the North Pole actually receives slightly more solar radiation than 
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docs the Equator as a result of the constant exposure. In December, radiation receipt at the 

South Pole is again more than at the Equator, but with a slight increase even over the North 

Pole. 

According to Price (1981), mountains in the middle latitudes may experience an even greater 

intensity of solar radiation than surrounding lowland regions. This results from a combination 

of thinner atmosphere and solar rays striking slopes oriented directly toward the sun. Price 

states that a surface inclined 20° toward the sun in the mid-latitudes receives about twice as 

much radiation during the winter as a level surface. This certainly implies that slope and 

aspect are significant controls. Using Trier, West Germany and Tucson, Arizona (50°N and 

32°N respectively) Barry (1992) illustrates that on south facing slopes there is a shift in the 

maximum intensity of direct radiation from steeper slopes in the winter to gentler ones in the 

summer. North facing slopes receive a maximum intensity on gentler slopes in both summer 

and winter, but summer does show slightly increased intensity at low to mid range slopes. 

The last significant control acting upon air temperature is elevation. Much work has been 

done to determine the change in temperature with respect to increasing altitude. Although 

the Sun is the initial source of terrestrial energy, closeness to it does not imply an increase in 

temperature. On the contrary, shortwave radiation from the Sun is absorbed by the Earth's 

surface where it is converted into longwave energy. The Earth itself then becomes the 

radiating body so increasing distance from its surface means a decrease in heating. It is for 

this reason that highest temperatures usually occur at lower elevations (Price, 1981). In 



12 

addition, the atmosphere tends to be less dense and contains less water vapor and carbon 

dioxide, greenhouse gases, with increased altitude. Increased distance from a heat source and 

fewer greenhouse gases to absorb radiating energy result in an overall decrease in 

temperature. 

Actual changes in temperature due to increasing or decreasing altitude have been quantified 

in terms of air mass characteristics. An unsaturated air mass is defined as one that has a 

relative humidity less than 100%. In other words, it does not contain the maximum number 

of water molecules it is capable of holding. Such an air mass is cooled or heated according 

to the dry adiabatic lapse rate (DALR) of approximately 10°C per 1000 metres of elevation. 

An unsaturated air mass may go through the cooling and then heating process such that it 

attains the same temperature at the same elevation on either the windward or leeward side of 

a mountain. If a similar air mass is cooled to its dew point, its relative humidity reaches 100% 

and it is said to be saturated. A saturated air mass is cooled or heated according to the wet 

adiabatic lapse rate (WALR) which is approximately 6°C per 1000 metres of elevation. The 

WALR is lower than the DALR because the process of saturation and then condensation 

results in a release of latent heat into the air mass. This release of heat offsets some of the 

cooling due to expansion related to the DALR. The average decrease in temperature with 

respect to elevation is approximately 6.5°C per 1000 metres in the troposhere (Ahrens, 1985). 



23 Precipitation Variation in an Alpine Environment 

Due to the lack of sufficient spatially diverse data, modelling of mountain precipitation is at 

best an inexact science. It has been discovered that the amount and spatial distribution of 

precipitation depends on a number of characteristics including wind direction, temperature, 

humidity, depth of the air mass and its relative stability at different elevations, and surface 

orientation and configuration of the landforms (Price, 1981). Three of the more important 

surface factors are (i) elevation, (ii) slope, and (iii) aspect. Studies on the degree to which 

each influences precipitation are discussed below. It is important to remember that 

relationships derived between precipitation and these factors are highly variable in different 

geographic locations around the globe. 

The first, and certainly most important, control on precipitation is altitude. In looking at 

variation of precipitation with respect to elevation, it is important to consider temperature 

lapse rates according to relatively standard lapse rates. As mentioned in the previous section, 

an ascending air mass is cooled while descending air is heated. Lapse rates determine the 

temperature of an air mass and, in turn, determine its relative capacity to hold moisture. As 

rising air cools, relative humidity increases and the capacity to hold water vapor is reduced. 

Given that condensation occurs at or below the dewpoint temperature, when sufficient 

cooling takes place, the result will be the formation of clouds and eventually precipitation. 

It can be concluded then that as elevation increases, the greater the likelihood an air mass will 

have reached its dewpoint temperature, and therefore precipitate out more of its moisture. 
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When an air mass is forced to rise up and over an obstruction such as a mountain range, the 

resulting precipitation is known as orographic in nature. This is the case for air masses driven 

by the prevailing westerlies across the Rocky Mountains which run in a general northwest 

to southeast direction. This explains why orographic precipitation is common along the 

western (windward) slopes. 

In addition to elevation, slope and aspect appear to be significant contributors to the amount 

of precipitation received in an area. The relevance of aspect lays in the fact that it designates 

a surface as either windward or leeward, important in terms of orographic precipitation and 

the rainshadow effect. Prevailling winds generally have a westerly component but may come 

from a variety of directions. Further complicating this generalization are individual storm 

circulation characteristics. As a result, storm approach direction is highly variable in nature. 

A surface which is windward for one storm may very vrell be a lee slope for the next. 

However, the direction from which storms ''usually" approach may direct annual precipitation 

totals. In other words, it may be possible to define general synoptic patterns and their 

associated precipitation characteristics in relation to a given aspect (Yamal, 1984; Saunders 

and Byrne, 1996). 

Several examples below examine the variations resulting from differences in aspect. One in 

particular shows the marked difference between annual precipitation on windward and 

leeward slopes in the Austrian Alps (Barry, 1992). Often there exists a rainshadow effect on 

the leeward slopes of large mountain barriers produced by the descent of air. Not only does 
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the air mass lose much of its moisture as rain, snow, and clouds on the windward side, but 

also the descending air is also heated through compression, thus increasing its capacity to hold 

moisture. In other words, there tends to be less moisture on the lee slope due to a net drying 

by the descending airflow. 

Slope, although apparently less significant, does appear to play a small role in precipitation. 

Storr and Ferguson (1972) suggest that the regression coefficient relating precipitation and 

elevation is improved only slightly with the inclusion of slope. Perhaps the best explanation 

of variation with slope is due to the rate at which an air mass is forced to rise. When it is 

forced to rise quickly, moisture is precipitated more quickly and over a shorter distance than 

if it were to ascend gradually over a greater distance. Therefore the depth per unit area, 

where the area is a projection onto a horizontal surface, is greater on steeper slopes. 

Attempts at extrapolating moisture inputs for high altitude areas around the world are 

numerous. Since little exists in the way of recorded data for these sometimes inaccessible 

regions, it is necessary to devise methods by which to estimate such information. Barry 

(1992) summarizes a number of studies dating as far back as the late nineteenth century in the 

Himalayas and the Alps. One of the more significant surveys he mentions was one done by 

F. Lauscher in 1976. Lauscher succeeded in generating five generalized precipitation profiles 

using 1300 long term recording stations having an extensive horizontal and vertical coverage. 

He looked at 1029 stations below 1 km, 222 between 1-2 km, and 43 between 2-3 km for 10° 

latitude X 20° longitude sectors between 3 5 * 8 - 5 ^ and 13CPE-1ICW. He came up with 
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generalized precipitation profiles for tropical, equatorial, polar, transitional, and middle 

latitude climates. Figure 2.2 shows only those profiles for middle latitudes (M). tropical 

climates (T), and equatorial climates (E). The first two profiles (M and T) both imply an 

increase in precipitation with elevation at least until about 1,5 km at which time (T) reaches 

a maximum and then drops off higher up. The slope of (M) increases, indicating an even 

greater affect from 1.5km and higher. In contrast. (E) shows a general decline in precipitation 

with altitude. Once again there is a change in slope at about the 1.5 km mark. 

Another important example which Barry describes takes into account the affect of aspect in 

combination with elevation on annual precipitation. The investigation was carried out again 

by Lauscher (1976), but this time for the eastern Alps in Austria. He illustrated that there is 

indeed a difference between the amount and vertical distribution of precipitation depending 

whether the site was windward or leeward. Figure 2.3 shows the profiles he devised for 

Austria as a whole, Bregenz (windward situation), and Otz (leeward situation). It is apparent 

from the graph that windward slopes at the Bregenz district receive more precipitation and 

that there is a steep increase at lower elevations with a gradual levelling off higher up. The 

pattern differs for leeward slopes at Otz which receive less overall precipitation and a small 

increase per unit in elevation at low altitudes, but increases more rapidly at higher elevations. 

A significant observation exhibited by this work is that the elevation-precipitation relationship 

tends to be quite complex regardless of whether or not other factors are included. 

Storr and Ferguson (1972) investigate the distribution of precipitation in several mountainous 
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Figure 2.2 Mean annual precipitation versus altitude for the Middle latitudes (M), Tropical climates (T), and Equatorial Climates 
(E). Source: Barry, 1992 (after Lauscher, 1976). 
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Figure 2.3 Altitudinal profile of mean annual precipitation for two sites in Austria compared with the country as a whole. Bregenz 
represents a windward location while Otz is a lee location. Source: Barry, 1992 (after Laucher, 1976). 
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Summer Precipitation, 
R = -1.88 + 0.0939H (1) 
R = 1.29 + 0.0909H + 0.1696 (2) 

South facing gauges, 
R = -17.47 + 0.1027H (3) 
R = -10.03 + 0.0975H + 0.1608 (4) 

East facing gauges, 
R = 7.59 + 0.0883H (5) 
R = 1.44 + 0.927H - 0.4996 (6) 

Where, R = rainfall (mm) 
H = elevation (m) 
6 = slope O 

The results indicate that although the inclusion of slope and aspect increase the correlation 

coefficient, it also tends to increase the standard error. The authors illustrate, however, that 

actual isohyetal maps differ significandy from the elevation contour pattern. This confirms 

that not all variation is determined by elevation alone. Using data from nine storage gauges 

and two recording gauges they formulate the relationship shown in Figure 2.4. As expected 

with fewer data points, the correlation is lower and the standard error larger, but the results 

Canadian watersheds. One particular area they looked at was Marmot Creek Basin which is 

similar in many ways to the upper Oldman Basin (compare to Table 3.1). It is located on the 

west side of Kananaskis Valley and just east of the Continental Divide. The elevations range 

from 1585 to 2805 metres with an average slope of 39 percent and a general easterly aspect. 

Unlike the Oldman Basin, however. Marmot Creek has one of the densest precipitation gauge 

networks outside urban areas in Canada. Based on data from 33 sites, they performed a 

stepwise regression analysis on the mean rainfall. Table 2.1 summarizes the regression results 

for elevation, slope, aspect, and combinations thereof versus rainfall. The equations described 

by Storr and Ferguson are as follows: 
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F igu r e 2 .4 Mean rainfall and mean annual precipitation versus elevation at Marmot Creek. Source: Storr and Ferguson, 1972. 
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are informative regarding several precipitation functions. 

Independent Variable(s) Dependent 
Variable 

r Standard 
Error (mm) 

Elevation 0 ) Precipitation .905 10.51 

Elevation, Slope (2) Precipitation .906 10.61 

Elevation, Aspect(south) (3) Precipitation .948 9.61 

Elevation, Aspect(south), Slope (4) Precipitation .945 10.29 

Elevation, Aspect(east) (5) Precipitation .942 8.20 

Elevation, Aspect(east), Slope (6) Precipitation .941 8.92 

Mistaya Basin, adjacent to the continental divide and approximately 120 km northwest of the 

Marmot Creek site, is the focus of yet another elevation-precipitation study by Loijens 

(1972). Loijens, like Storr and Ferguson (1972), finds near linear relationships between three 

years (1970-1972) of spring snow water equivalent measurements and elevation which ranges 

between 1500 and 2800 metres (see Figure 2.5). Elevation is shown to be responsible for 

approximately 80% of the variance over the three year period, with slope explaining 10% and 

3% for 1970 and 1971 respectively. Slope orientation and forest stand density are found to 

be insignificandy related at the 95% probability leveL 

Garen (1995) identifies a similar precipitation-elevation relationship using mean annual 

precipitation over a ten year period. He uses seven stations ranging in elevation from 1795 

to 2676 metres along with their respective data to construct a linear regression which he 

applies throughout the Wood River watershed in south central Idaho (see Figure 2.6). Taking 
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Figure 2.5 Snow water equivalent versus elevation at Mistaya Basin in Banff National Park for the years 1970-1972. Source: 
Loijens, 1972. 
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Figure 2.6 Mean water year precipitation (1983-1993) versus elevation for the Wood River watershed in south-central Idaho. 
Source: Garen, 1995. 



24 

into account that elevation is not the sole control, he uses detrended kriging as a means of 

deriving a weighting factor for each grid cell in the study area which is then employed to 

adjust estimated precipitation values. The results he presents use a 2.5 km grid cell 

resolution. 

Tecle and Rupp (1995) simulate the spatial and temporal distribution of precipitation events 

across the Woods Canyon Watershed in north central Arizona. Temporal analysis produces 

a description of the time between events as well as the precipitation depths and durations of 

cold-season precipitation. Spatial analysis enables the estimation of event depth and duration 

across the entire watershed given the measured or simulated precipitation depth and duration 

at one point. To do this they use multivariate regression equations taking into account 

elevation, UTM easting, UTM northing, and aspect Aspect is adjusted such that instead of 

designating north as 0°, the direction of the prevailing wind is assumed to represent 0° and the 

leeward direction is set to 180°. In addition, aspect is designed to increase positively both 

clockwise and counter-clockwise from the windward direction. With these adjustments and 

regression equations, they use the modelling capabilities of GIS to map the spatial distribution 

of event characteristics. 

On the east slope of the Colorado Front Range, Barry (1973) discovered an almost perfectly 

linear relationship between mean annual precipitation and elevation from four ridge sites. 

Regression analysis on his data produces a correlation coefficient r=0.97 for the 1965-1970 

mean (Figure 2.7). 
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Figure 2.7 Mean annual precipitation versus elevation for the east slope of the Front Range, west of Boulder, Colorado. Source: 
Barry, 1973. 
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2.4 Snow Accumulation and Ablation in an Alpine Environment 

Accumulation and melting of snow is heavily influenced by many of the same climate controls 

discussed in relation to both temperature and precipitation. The following sections will 

elaborate on some of the theories of snow accumulation and ablation as well as review some 

research which has lead to the formation of these theories. Not unlike total precipitation, 

relationships between snowcover and elevation, slope, and/or aspect vary from location to 

location. 

2.4.1. Snow Formation 

The controls on snowcover distribution and the physics of snow formation are reasonably well 

known. Input data with sufficient temporal and spatial resolution for accurate estimates are 

often unavailable, especially in remote areas. The role that each factor plays in determining 

snowpack amount and character has been investigated where adequate data are available. 

Gray and Prowse (1993) suggest that in order for snow to form in the atmosphere two 

conditions must be met (i) there must be a presence of water vapor and ice nuclei, and (ii) 

the ambient temperature must be below 0°C. Both conditions are readily met in that most 

clouds have high percentage of ice crystals. However, whether atmospheric snow reaches the 

Earth as snow or rain is dependent upon the characteristics of layers of air through which it 

descends. 

Previous discussion herein indicates that snow accumulation occurs earlier and in greater 

amounts with increasing elevation. Perhaps the best explanation for this phenomenon is the 



drop in temperature associated with higher altitudes. As such, precipitation that forms in the 

atmosphere is more likely to fall as snow in the cooler mountainous regions. Gray and Male 

(1981) include a figure depicting the mean date of snowcover formation which shows earlier 

dates occurring in the northern regions of the continent with a finger extending southward 

along the approximate extent of the Rocky Mountains. According to Gray and Prowse 

(1993) the amount of snowfall resulting from an individual storm normally decreases with 

elevation, however, the seasonal snowcover usually increases higher up. The latter, they 

suggest, is the result of more precipitation events combined with a decrease in evaporation 

and melt at higher elevations. This also implies that precipitation is only one factor 

contributing to snow accumulations, the role of melt and sublimation at lower altitudes need 

also be considered. 

As discussed with respect to elevation-precipitation relationships, Loijens (1972), finds near 

linear relationships between three years (1970-1972) of spring snow water equivalent 

measurements and elevation which ranges between 1500 and 2800 metres (Figure 2.5). With 

his dataset of 33 snow courses, he shows that elevation is responsible for on average 80% of 

the variance over the three year period. Slope appears to explain some of the variation for 

several years, but is still relatively unimportant overall. Other variables, azimuth and 

vegetation, he finds are statistically insignificant at the 95% probability level. 

Although Gray and Prowse (1993) agree there is a strong linear relationship between 

elevation and seasonal snowcover, they do not so easily discount the other variables. They 
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discuss the occurence of major snow accumulations on the lee slopes and in abrupt 

depressions. As well they suggest a decrease in snow depth with increased upslope distance 

along slopes oriented in the direction of the prevailing wind. Such conditions certainly 

suggest that slope and aspect also play a role. The link between vegetation and snowcover 

distribution is manifested in several ways. First, vegetation modifies the roughness of a 

surface and, in turn, the wind speed. Combined, these factors effect snow erosion, transport, 

dispersion, and sublimation. Second, vegetation cover influences energy exchange at the 

surface. Finally, the amount of snowfall that reaches the ground is related to tree density and 

species. For example, interception of falling snow is much greater for conifers than for 

deciduous trees simply because the latter lose their leaves for the winter. 

In an attempt to compute mountain snowpack accumumulation and depletion, Wyman (1995) 

describes an algorithm requiring only daily maximum and minimum temperatures and 

precipitation. This simplified model responds to the problem of infrequent or nonexistent 

recorded data in many high altitude watersheds. Wyman essentially describes several mean 

daily temperatures which define breakpoints determining the composition of falling 

precipitation. All precipitation below 0.6°C is identified as snow, all precipitation above 3.6°C 

as rain, and in between as a proportional mix. 

In a study correlating snowpack with topography and snowmelt runoff on the Marmot Creek 

Basin, it is discovered that the variables having the greatest effect on accumulation arc 

elevation, topographic position, aspect, slope, and forest density (Golding, 1974). Forty-eight 



29 

percent of the variability in snow accumulation is accounted for in a multiple regression with 

these variables. The May 1 - June 30 streamflow appears to be most closely correlated with 

the March snow course water equivalent. 

Of significance to any study of areal distribution of precipitation are the three spatial scales 

of variability outlined by Gray and Prowse ( i? Q 3). Selection of an appropriate resolution is 

paramount in the examination if representative snow cover variability is to be identified. 

Areas up to 106 km 2 with distances of 10 to 1000 kilometres are classified as macroscale or 

regional Examples of atmospheric effects of similar scale include standing Rossby waves in 

the atmosphere, directional flow around barriers, and lake effects. Linear distances of 100 

metres to 1 kilometre are classed as mesoscale and include such things as snow distribution 

due to wind, avalanches, terrain variables, and vegetation cover. The final category, 

microscale, extends over distances of 10 to 100 metres and includes small-scale turbulence 

generated by the surface roughness and convection, dust devils, and small cumulus clouds. 

In order to detect and identify phenomenon of interest in this study, microclimate and 

snowcover, the lower limit of the mesoscale category (100 m) is used. 

2.4.2. Measurement of Snowcover 

Methods of measuring snowcover are described by Gray and Prowse (1993) and Gray and 

Male (1981). In general the four types of information that may be measured are snow depth, 

snow density, areal coverage, and water equivalent The type of data recorded is directly 

related to the method of measurement Methods of measurement include snow ruler, snow 

pillows, snow surveys, radioisotope snow gauges, aerial markers, snowline flights, aerial 



30 

surveys, natural gamma radiation, airborne survey, microwave sensing of snowcover from 

aircraft, and satellite observations. 

The simplest type of data, snow depth, may be obtained using a snow ruler which is pushed 

through the snow to the ground surface. In remote areas or along frequently read snow 

courses, snow markers are used. For the aerial marker, snow depth is observed from distant 

ground points or from aircraft by means of binoculars or telescope. 

Snow pillows are pillows made from butyl rubber, neoprene rubber, sheet metal, or stainless 

steeL They are filled with an antifreeze mixture of methyl alcohol and water or a methanol-

glycol-water solution having a specific gravity of 1.0. The fluid pressure inside responds to 

changes in the weight of snow on the pillow and is measured with a manometer or pressure 

transducer to provide a snow water equivalent (SWE) for the site. Pillows are most 

commonly found in the form of an octagon or a circle, but shape does not appear to affect 

accuracy. Size varies and is determined by estimates of snowcover depths. Generally, larger 

snow depths require larger pillows in order to provide accurate snow water equivalents (Gray 

and Male, 1981). Daily SWE is made available through automated onsite data collection and 

transmission via meteor burst telemetry to a collection office. This form of transmission uses 

ionized meteor trails as reflectors for VHF radio signals to overcome line of sight limitations 

(Lettenmaier and Wood, 1993). 

Snow surveys are made at regular time intervals, usually every 2-4 weeks depending on 
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accessibility, and at designated locations throughout the winter to determine depth, vertically 

integrated density, and water equivalent of a snowcover. A snow course is a permanenUy 

marked traverse where snow surveys are conducted (Gray and Male, 1981). 

Radioisotope snow gauges are capable of measuring the total water equivalent and/or provide 

a density profile. They work on the basic principle that water in any state attenuates 

radiation. Snow accumulates between a radiation source and a detector such that as it 

accumulates, the count rate decreases in proportion to the water equivalent (Goodison, et al.y 

1981). Similar technology includes the use of natural gamma radiation which is detected by 

sensors mounted on aircrafts. Again, the water/snow attenuates the radiation proportionately. 

Microwave sensing systems mounted on aircrafts may be either active or passive. Passive 

systems detect natural radiation emitted by objects while active systems emit radiation and 

then measure that which is reflected. Since microwave emission changes with depth and 

wetness of snow, it is possible to derive water equivalents. A major advantage of either of 

these systems is the ability of microwave radiation to penetrate cloud cover. Examples of 

microwave systems are discussed by Rango (1990) and Wankiewicz (1990). 

The final method of measurement is satellite observation. Satellites such as Landsat, NOAA, 

and GOES provide, for the most part, areal extent of snowcover. The multispectral 

capabilities of Landsat, however, also allow for the interpretation of such snow characteristics 

as dryness, wetness, or whether or not it has been metamorphosed (Goodison, et at., 1981). 
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2.43. Snow Melt 

A snowpack is considered "primed" to produce melt when it is at a temperature of 0°C 

throughout and individual snow crystals are coated with a thin film of water. As well, small 

pockets of water may be found in the interstices between adjacent grains such that they 

amount to between 3 and 5% of the total snow by weight. When these conditions are met, 

the input of any additional energy results in the production of melt water which subsequently 

drains to the ground. 

Detailed analysis of snowmelt runoff characteristics is extremely difficult given the complex 

internal structure of snow which significantly influences the retention and movement of melt 

water through the pack. However, during most of the melt period the total melt water 

produced is governed by energy exchanges at both the upper and lower snow surfaces. 

The amount of snow-melting energy available on a daily basis can be calculated using the 

energy flux equation. This equation is described similarly by both Gray and Prowse (1993) 

and Gray and Male (1981) as follows: 

Qm = Qsn + Qto + Oh + Qc + Q B

 + Q P - fiU / M 

Where, Q,,, = energy flux available for melt (kJ/m2*d), 
Qjn = net shortwave radiation flux absorbed by the snow, 
Qb, = net longwave radiation flux at the snow-air interface, 
Q, = convective or sensible heat flux from the air at the snow-air interface, 
Q. = flux of the latent heat (evaporation, sublimation, condensation) at the 

snow-air interface, 
Q g = flux of heat from the snow-ground interface by conduction, 
Q p = flux of heat from rain, and 
AU / at = rate of change of internal energy per unit area of snow cover. 



JO 

While the net longwave radiation and convectivc heat transfer processes are restricted to the 

snow-air interface, the net shortwave radiation exchange docs penetrate in small amounts into 

the pack. The latter is strongest, however, also at the upper interface. Melt as a result of the 

normally modest ground heat flux at the lower surface is generally small. Melt water is 

produced at this lower interface only when the snow reaches 0°C and the pack is holding its 

maximum amount of liquid. Rain penetrating into the snowpack results in a more uniform 

distribution of heat throughout than does the other sources, but energy exchanges at the 

snow-air interface remain the principal source of melt water. 

Although these detailed calculations of energy flux are available, unfortunately input data 

necessary are not always available. Overall energy balances (Saunders and Bailey, 1994) and 

specific calculations to determine energy available for melt (Gray and Prowse, 1993) have 

been proposed for mountainous regions. Saunders and Bailey (1994) summarize some of the 

research on radiation and energy budgets of alpine tundra environments in North America. 

They suggest that difficulties ensue when attempting to define generalized alpine radiation and 

energy balances because of the myriad of possible combinations of slope, aspect, and surface 

type that may arise. 

Once the energy flux available for melt ( Q J has been calculated it is possible to determine 

the total daily snowmelt water equivalent using the following equation (Gray and Male, 

1981): 

M = Qm/(pH fB) 
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Where, M = snowmclt water equivalent (cm/d), 
Q m = energy flux available for melt (kJ/nr-d), 
H r = latent heat of fusion (kj/kg), 
p = density of water (kg/m 3). and 

B = thermal quality or the fraction of ice in a unit mass of wet snow. 

Latent heat of fusion and the density of water under normal melt conditions equal 333.5 k j / kg 

and 1000 kg/m3 respectively. Inserting these values into the formula results in a further 

reduction of the equation to: 

M = Q m / (3335 B) 

The thermal quality or the fraction of ice in a unit mass of wet snow relates back to the 

Statement regarding the percentage of water in a snowpack. It was mentioned previously that 

a primed snowpack normally contains 3-5% interstitial water of the snow by weight. Thermal 

quality for such a pack is 0.95 - 0.97. 

The physics of snow melt are quite complicated and variation is dependent on the availability 

of energy. The UBC watershed model accounts for energy resulting from convective heat 

transfer at the snow-air interface, net radiant energy gain from short and longwave radiation 

exchanges, and latent heat fluxuations as a result of condensation and evaporation at the snow 

surface (Pipes and Quick, 1977). A simplified melt calculation uses estimates of these energy 

sources based on the more readily available air temperature. The mean daily temperature is 

taken to represent the convective heat transfer while net energy gain is represented by the 

range between maximum and minimum temperatures. Assuming that the minimum 

temperature approximates the dew point, condensation and evaporation are functions of the 

temperature difference between the dewpoint and the freezing point. 



Wyman (1995) uses the UBC model to carry out similar calculations of snow melt. Energy 

sources are the same as those discussed in the previous paragraph so will not be reiterated. 

Other important parameters mentioned include snow albedo, sublimation, and wind speed. 

Wyman's model assumes that ground melt and heat from raindrops are negligible in deep 

mountain snowpacks, thereby simplifying the calculations. When the mean daily temperature 

is less than 2°C, melt is assumed negligible. Therefore, water equivalent melted during a 

given day (m,) is calculated as: 

m, = p m (t -2) 

Where, p m = the point melt factor in millimetres per day per °C 
t = the mean daily temperature in °C 

The amount of snow melt that can be absorbed by the underlying snow and the changes in 

snowpack density arc also considered. 

2.5 MTCLIM Microclimate Simulator 

MTCLIM was developed at the Intermountain Research Station in Ogden, Utah as a means 

of generating climate data for use in fire models, ecological models, insect and disease 

models, or aiding in the development of silviculture prescriptions (Hungerford, et al., 1989). 

This section describes the results from linear regression analysis between observed daily solar 

radiation, air temperature, relative humidity, and precipitation and those simulated by the 

MTCLIM model for a number of mountainous sites in western Montana. 

Solar Radiation: 

Recorded solar radiation data is available for only three of the nine test sites. The regression 

analysis of simulated to actual values produces three regression lines, all with slopes less than 



36 

Table 2.2 Predicted vs Observed solar radiation comparisons for three sites in Western 
Montana (after Hungerford a al„ 1989). 

Site Intercept Slope r Standard 
Error of the 
Estimate 

n 

Ambrose S. 102 0.78 0.55 102 174 

Ninemile S. 143 0.65 0.50 104 146 

Coram 12 5.6 0.74 0.50 4.4 184 

Although the authors admit the results are not as good as desired, they attribute at least part 

of the blame to variations in cloud cover between the higher altitude mountain sites and the 

base stations which are generally found in valley bottoms. They found that the MTCLIM 

model tended to overestimate for cloudy days and underestimate for clear days. The 

overestimation could be attributed to the fact that on days when it was partly cloudy in the 

•x-alley bottoms, the mountain sites were likely to be cloudier. Underestimation occurred on 

days when the weather was changing, thereby producing a small temperature amplitude. This, 

in turn, resulted in a lower predicted radiation because the model was simulating for cloudy 

skies when actually they were clear. The overestimation aspect could be significantly 

improved using a base station in close proximity to the site as a means of reducing the amout 

of cloud variation between the two locations. 

Daylight Average Temperature: 

For simplicity, evaluation of the three predicted temperature values is done separately by the 

1.0 and all with intercepts greater than zero thereby implying a general overestimation of 

lower values and underestimation of higher values. R : values fall between 0.50 and 0.55. 

Table 2.2 summarizes the regression results obtained for those Montana sites. 



MTCLIM authors. The first of these, daylight average temperature, is available at all nine 

stations so is tested most extensively. The results of the regression analysis between 

predicted and observed values is shown in table 2.3 below. It is obvious that temperature 

simulations, in general, arc very good as R 2 ranges from 0.87 to 0,93 and intercepts from 0.5 

to 2.3 °C. The statistics again indicate a slight tendency to overestimate low temperatures and 

underestimate high temperatures. The authors suspect this phenomena is a reflection of the 

choice of lapse rate (3.5°F/1000 ft or 6.4°C/1000 m). However, they suggest this to be the 

best compromise for their study area. 

Table 2.3 Predicted vs Observed daylight average temperature comparisons for nine 

sites in Western Montana (after Hungerford et aL, 1989). 

Location Year Intercept 

°C 

Slope •* 

r Standard 

Error of the 

Estimate °C 

n 

Lubrecht 1980 2.3 0.89 0.92 1.6 131 

Coram 14 1976 1.5 0.98 0.89 1.6 160 

Coram 33 1976 1.6 1.03 0.88 1.9 174 

Coram 12 1976 1.5 0.93 0.87 1.8 163 

Ambrose N. 1983 0.5 0.89 0.89 2.1 174 

Ambrose S. 1983 1.1 0.91 0.89 2.1 174 

Ninemile N. 1983 1.7 0.92 0.89 2.0 146 

Ninemile S. 1983 1.0 0.97 0.90 2.0 146 

Schwartz N. 1983 0.8. 0.83 0.93 1.6 172 
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Table 2.4 Predicted vs Observed daily maximum temperature comparisons for five sites 
in Western Montana (after Hungerford et al., 1989). 

Location Year MAXLAP 
•F/iooort 

Intercept 
°C 

Slope r Standard 
Error of the 
Estimate "C 

n 

Lubrecht 1980 4.5 0.56 0.94 0.94 1.6 131 

Coram 33 1976 4.5 2.6 0.92 0.89 2.1 175 

Coram 12 1976 4.5 2.1 0.91 0.86 2.3 172 

Coram 14 1983 4.5 2.0 1.03 0.92 1.7 173 

Ambrose S. 1983 4.5 -0.69 0.96 0.89 2.4 174 

Daily Minimum Temperature: 

The final temperature value to be simulated, daily minimum, produces slightiy less dcsircablc 

results than the previous two. It appears that due to the effect of frost pockets, cold air 

drainage, and temperature inversions, prediction is difficult Simulation accuracy depends on 

the relative locations of the base and the site. When the base is located in a basin or creek 

bottom locations, cold air tends to be trapped and a higher lapse rate is required in some 

Daily Maximum Temperature: 

Unlike daylight average, daily maximum temperature is available at only five of the nine test 

sites. However, the regression analysis between observed and simulated daily maximum 

indicates the same tendency to overestimate lower and underestimate higher temperatures as 

does the daylight average analysis which again the authors attribute to the lapse rate used 

(MAXLAP). Intercepts range from -0.69 to 2.6 and slopes lie between 0.91 and 1.03. R2 

values are between 0.86 and 0.94. A summary of the regression results may be found in table 

2.4 below. 
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Table 2J5 Predicted vs Observed daily minimum temperature comparisons for five sites 
in Western Montana (after Hungerford et a/., 1989). 

Location Year MINLAP Intercept Slope r 2 Standard n 
•F/tOOOft °C Error of the 

Estimate °C 

Lubrecht 1980 10.0 0.10 1.05 0.91 1.5 131 
2.0 3.70 1.05 0.91 1.5 131 

Coram 33 1976 10.0 -1.10 0.98 0.70 2.1 116 
2.0 3.28 0.98 0.70 2.1 116 

Coram 12 1976 2.0 0.76 0.76 0.56 2.8 118 
0 2.29 0.76 0.56 2.8 118 

Ambrose N. 1983 2.0 -0.39 0.77 0.61 3.3 174 
0 2.7 0.77 0.61 3.3 174 

Ninemile S. 1983 2.0 -1.50 0.97 0.75 2.7 145 
0 0.95 0.97 0.75 2.7 145 

Relative Humidity: 

Relative humidity is evaluated with only three sites since it is not recorded at the other test 

stations. Rcgresssion analysis produced intercepts between 19.7 and 23.9, slopes from 0.50 

cases. Predictions on mountain slopes tend to require a lower lapse rate and simulate more 

closely to observed values. Table 2.5 describes the regression analysis results where two 

lapse rates are tested at each site. Coram 33 and Lubrecht test a minimum lapse rate of 

10°F/1000ft because they represent a creek bottom station and a basin location respectively. 

Another factor found to influence lapse rate is season. The authors determined that minimum 

temperatures on the slopes are generally warmer than in valley bottoms during the months of 

September and October due to temperature inversions which they did not account for in their 

simulations. This effect could likely be offset simply by using a different lapse rate for those 

months than the rest of the simulation period (May 1 to September 1). 
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Table 2.6 Predicted vs Observed relative humidity comparisons for three sites in 
Western Montana (after Hungerford et a/., 1989). 

Location Intercept 
°C 

Slope r 2 Standard Error of the 
Estimate °C 

n 

Lubrecht N. 19.7 0.59 0.59 9.6 174 

Ninemile S 21.4 0.50 0.43 10.9 176 

Schwartz N 23.9 0.55 0.60 9.2 176 

Precipitation: 

Analysis of precipitation prediction is carried out on five different mountainous sites for which 

data are available. Linear regression is again used to compare observed against simulated 

daily precipitation for a number of scenarios. First, a comparison is performed to determine 

the impact of using one or two precipitation base stations and second, analysis is run against 

simulations for which the site to base isohyet ratios use either 30-year average annual or 5-

year May through October average. When two base stations are used, R 2 values range from 

to 0.59, and r values from 0.43 to 0.60 (Table 2.6). Once again the lower values tend to be 

overestimated while higher values are underestimated. Hungertbrd et al. (1989) suggest this 

is a reflection of the model's tendency to overpredict lower temperatures and undcrprcdict 

higher temperatures. Since temperatures at the high end of the scale arc lower than observed, 

relative humidity is simulated higher than observed. The reverse is also true for the 

overestimation of lower temperatures which causes the relative humidity to be lower than 

observed. This effect, which is typical of any iterative process, is an example of how minute 

errors introduced into a model can propagate throughout until subsequent calculations are 

eventually affected. 
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30-Yr Annual Ratio 5-Yr May-OctRatio i 

Location Intercept Slope R2 SEE1 Intercept Slope SEE 1 

Garnet 
1 base 
2 base 

0.03 
0.02 

0.84 
0.80 

0.30 
0.47 

0.22 
0.15 

0.03 
0.02 

0.70 
0.77 

0.30 
0.49 

0.19 
0.14 

Bozeman 
12NE 
1 base 
2 base 

0.02 
0.02 

1.04 
1.04 

0.35 
0.50 

0.32 
0.23 

0.02 
0.02 

0.72 
0.72 

0.35 
0.51 

0.22 
0.16 

Summit 
1 base 
2 base 

0.05 
0.03 

0.73 
0.84 

0.23 
0.54 

0.27 
0.16 

0.03 
0.02 

0.49 
0.65 

0.23 
0.59 

0.18 
0.11 

Deception 
Creek 
1 base 
2 base 

0.03 
0.03 

0.94 
0.89 

0.57 
0.68 

0.22 
0.17 

0.03 
0.03 

0.78 
0.73 

0.57 
0.68 

0.18 
0.14 

0.47 to 0.69, intercepts from 0.01 to 0.03, and slopes from 0.65 to 1.01. However, when 

only one precipitation base is used, R2 drops to between 0.23 and 0.57 and the standard error 

of the estimate increases (Table 2.7). In general, use of two base stations that are in 

reasonably close proximity to the site will significantly improve simulations. In addition to 

proximity, base stations should ideally be located at opposite ends of and possess similar 

prevailing weather paths to the site. Also evident in table 2.7 is the slight improvement of 

R2 and reduction of the standard error of the estimate when May through October ratios are 

applied. 

Table 2.7 Predicted vs Observed precipitation comparisons for five sites in Western 
Montana. The results are given using 1 and 2 base stations, the annual and 
May through October ratios of precipitation between site and base stations 
(after Hungerford etaU 1989). 
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30-Yr Annual Ratio 5-Yr May-OctRatio 

Location Intercept Slope R= SEE1 Intercept Slope R : SEE1 

Garnet 
1 base 
2 base 

0.03 
0.02 

0.84 
0.80 

0.30 
0.47 

0.22 
0.15 

0.03 
0.02 

0.70 
0.77 

0.30 
0.49 

0.19 
0.14 

Bozeman 
I2NE 
1 base 
2 base 

0.02 
0.02 

1.04 
1.04 

0.35 
0.50 

0.32 
0.23 

0.02 
0.02 

0.72 
0.72 

0.35 
0.51 

0.22 
0.16 

Pierce 
1 base 
2 base 

0.01 
0.01 

0.94 
0.83 

0.57 
0.68 

0.18 
0.12 

0.01 
0.01 

0.89 
0.84 

0.57 
0.69 

0.17 
0.12 

1 Standard error of the estimate 
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Chapter 3 

STUDY AREA 

3.1 Description 

For the purposes of this research, it was decided that the study area would be the upper 

Oldman River basin. The lower bound of this drainage basin is defined by the hydrometric 

gauging station near the intersection of the Oldman River and Highway #22 (South-western 

Alberta). To the west, the basin is bounded by the continental divide separating British 

Columbia and Alberta. The Whaleback Ridge marks its extent to the east. Coleman and 

Blairmore are located just south of the basin while Pekisko lies to the north. (Figure 3.1) 

The basin covers an area of approximately 1445 square kilometres, most of which is covered 

by needleleaf evergreen boreal forest. The boreal forest of North America is composed 

mainly of evergreen conifers such as spruce and fir (Strahler and Strahler, 1979). The rugged 

mountainous terrain with slope angles as high as 68° ranges in elevation from 1267 metres at 

the outlet to 3099 metres at Tornado Mountain. Table 3.1 summarizes the basin land use and 

physiographic characteristics as percentages of total area. Figure 3.2 illustrates the average 

monthly meteorological conditions for the Pekisko climate station. 



UPPER OLDMAN RIVER BASIN 
5026 502« 

4M4 

Figure 3.1 Upper Oldman river basin study area location, southwestern Alberta 



Tabic 3.1 Summary of Land Use and Topography for the Upper Oldman River Basin. 

MAP LAYER % OF TOTAL AREA 

Land Use 

Forested 80.43 

Non-forested 19.43 

Water 0.14 

Slope (%) 

0 - 4 2 74.94 

4 3 - 102 23.93 

103-250 1.13 

Elevation (m) 

1200- 1400 2.75 

1401- 1600 14.21 

1601 - 1800 26.03 

1801 -2000 28.82 

2001 - 2200 19.04 

2201 - 2400 7.02 

2401 - 2600 1.72 

2601 -2800 0.36 

2801 - 3000 0.05 

3001 -3200 0.003 

Aspect 

North 20.00 

South 21.00 

West 25.00 

East 34.00 

TOTAL BASIN AREA = 1445 km 2 



Climograph for Pekisko Weather Station 
1961-1990 Normals 

200 

Jan Feb Mar Apr May Jun Aug Sep 

Figure 3.2 1961-1990 normal meteorological conditions for Pekisko, Alberta. Derived from daily data recorded at the AFS-
operated climate station. 
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The streamflow gauging station is described by Environment Canada's Water Resources 

Branch as the Oldman River near Waldron's Corner, Station no. 05AA023; 49° 48' 50" N 

latitude, 114° 11' 00" W longitude (Environment Canada, 1985). 

3.2 Data Availability 

This project is founded on the integration of multiple data sources in such a way as to 

improve simulations in alpine regions. The following sections describe the individual datasets 

as they have been employed here. 

3.2.1 1:50000 National Topographic Series 

initially, some consideration was given to the possibility of using 1:20000 scale NTS maps 

because of their relatively high positional accuracy. However, upon investigation it was found 

that because of its relatively large expanse, the drainage basin falls on six 1:50000 NTS 

mapsheets which translates into approximately twelve 1:20000 mapsheets. The larger scale 

may have provided a higher level of accuracy, but the cost of time dedicated to manual 

digitizing would greatiy outweigh the potential benefits. In addition to the time, individual 

file size and total hard disk space required would be less manageable. 

Another reason for going with the smaller scale is related to the nature of the phenomena 

being modeled. A major focus of the study deals with hydrologic and meteorologic 

phenomena. Since these are rarely small scale, discrete entities, it was decided that the 

1:50000 scale maps would suffice. Reference back to the discussion in Chapter 2 indicates 

that these effects generally take place at the scale described as mesoscale. Mesoscale events 
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Table 32 NTS Mapsheets obtained from Maps Alberta. 

SHEET NO. TITLE SCALE PRODUCTION DATE 

82G/9 BLAIRMORE 1:50000 1967 

82G/10 CROWSNEST 1:50000 1980 

82G/15 TORNADO MOUNTAIN 1:50000 1980 

82G/16 MAYCROFT 1:50000 1970 

82J/1 LANGFORD CREEK 1:50000 1980 

82J/2 FORDING RIVER 1:50000 1975 

3.2.2 Digital Elevation Model 

Raw digital elevation data was purchased from Alberta Environmental Protection, Land 

Information Division in Edmonton. The X, Y, Z data is extracted to a file such that it is 

formatted into fixed-width columns. It is then imported into the geographic information 

system where a digital elevation model (DEM) is created. 

Digital elevation data are available at a scale of 1:20000 with optional grid spacings of 25,50, 

are characterized by areal extents between 100 metres and 1 kilometre. 

The key point is that the environmental conditions of interest in this case, namely alpine 

temperature and precipitation, fall well within the category identified as mesoscale, if not 

macroscale. As a result, very little is lost by going with the smaller scale maps. Table 3.2 

provides the particulars regarding the NTS mapsheets utilized. 
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STATION ID NAME LAT 
(dd:mm) 

LONG 
(dd:mm) 

ELEV( 
m) 

LENGTHO 
F RECORD 

DATA 
TYPE 
(T /P) 

3051720 Coleman 49:38 114:35 1341 1965-1989 T.P (daily) 

3055120 Pekisko 50:22 114:25 1439 1905-1989 T.P (daily) 

3050600 Beaver Mines 49:28 114:10 1286 1935-19S9 T.P (daily) 

and 100 metres. In addition to the regular grid of X,Y,Z information, it contains spot heights 

and breaklincs. The data is an ASCII file which conforms to the Digital Map Data Format 

(DMDF) (Alberta Environmental Protection, 1988). 

For reasons similar to those mentioned in the previous section, detail is sacrificed somewhat 

in order to keep data as simple as possible. For this model it has been decided to utilize the 

50 metre grid as it is not so generalized that significant detail is lost, yet there is not such an 

overwhelming volume of data as with the 25 metre grid. Also, given that manual digitizing 

is done from 1:50000 mapsheets, any spacing less than 50 metres is difficult to resolve and 

is within a margin of error associated with manual digitizing. 

3.23 Historic climate station data 

Historic climate data are supplied by Atmospheric Environment Service (AES) in the form 

of daily or monthly averaged temperature and precipitation. Table 3.3 summarizes the data 

availability for both Coleman and Pekisko observation stations. Beaver Mines is a possible 

alternate base station to the south of the basin since it too has recorded temperature and 

precipitation. Unfortunately, Beaver Mines is further from the basin than Coleman and 

MTCLIM simulation is dependant on the horizontal distance between base station and site. 

Table 3 3 Climate Station Summary 
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3.2,4 Snow Data 

Recorded snow pillow and snow course data that fall within the study area is sparse. In 

consultation with Dick Allison at the Lethbridge office of Alberta Environment's Technical 

Services Division, it was discovered that only two snow pillows fall either inside or within 

close proximity of the basin. They include the Racehorse Creek pillow located at 49" 49* N 

latitude, 114° 38' W longitude and the Lost Creek pillow located at 50* 10' N latitude, 114* 

43' W longitude. The Racehorse pillow has been in operation from 1983 to present while the 

Lost Creek pillow has only been in operation since 1987. Snow course data also exist for 

these two points. 
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Chapter 4 

METHODOLOGY 

4.1 Use of a Geographic Information System 

It was decided early in the program that a geographic informarion system (GIS) would be 

ideally suited to the task of modelling basin hydrometeorology in mountainous terrain. As 

described in the Alpine Hydrology section, the hydrologic cycle is driven primarily by such 

influences as temperature and precipitation which are, among other things, a function of 

elevation, latitude, and time of year. In the context of this research project, GIS is a 

computer-based system capable of capture, management, manipulation, analysis, modelling, 

and display of spatially referenced data. Since the distribution of temperature and 

precipitation are inherently spatial, GIS lends itself as an excellent tool to aid analysis. 

In the initial stages, PAMAP GIS is used primarily for data collection. PAMAP is a vector-

based software with raster data handling capabilities. Its strengths lie in natural resource 

applications as it was originally developed for such purposes. This characteristic was key in 

the decision to use PAMAP instead of some other GIS package. 
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As with any project of this sort, the most time-consuming task is the creation of a spatially 

referenced database for the area of interest. This is achieved by manually digitizing 

topographic, hydrographic, and land use information from paper maps. Many of these data 

are available in digital format, but the costs are prohibitive. Therefore, it was decided to 

digitize as much as possible. A major drawback with manual digitizing is not only that it is 

a time consuming process, but also that it introduces positional errors into the database. 

These errors are practically impossible to eliminate given the physical limitations of human 

dexterity and thus are also included in commercially available datasets. However, it is hoped 

that data sold commercially is systematically scrutinized for accuracy and consistency. 

One of the first layers to be collected is the hydrography. Included in these data are rivers 

sufficiently large that they are described as double-sided, their tributaries, and lakes (figure 

4.1). The double-sided rivers and lakes are stored as polygonal information while the 

narrower tributaries are defined strictly as vector data. In addition to the water bodies, the 

boundary defining the drainage basin is also captured. It too is stored in polygon format. The 

final layer to be digitized is the land cover polygons. For lack of another source for this 

information, the general distinction between forested and non-forested land found on 1:50000 

NTS maps is used. It was decided that for the spatial scale at which calculations are 

performed, these data are sufficient. The ideal alternative would, of course, be to use 

classified satellite imagery but the cost for such information is prohibitive at this time and may 

easily be incorporated at a later date. 



Hydrographic Network 
Upper Oldman Basin 

Figure 4.1 Double and single-sided rivers, major lakes, and drainage basin boundary 
as digitized from 1:50000 NTS mapsheets. 



Before further discussion of data layers is provided, it is important to make a distinction 

between the two ways of representing areal information in PAMAP GIS. A surface is 

composed of a series of regularly spaced pixels with each pixel having only a single value 

assigned to it. Surface levels are used to represent elevation, slope, aspect, or proximity 

buffers, for example. Like the surface, a polygon cover too is composed of regularly spaced 

pixels. Each pixel on a polygon level, however, is linked to a particular polygon and its 

associated database. While a surface can have only one attribute value (ie. elevation), a 

polygon can have up to 100 attributes including those inherent to the GIS (ie. Record 

Number, X_Coord, Y_Coord, etc). Also, each pixel on a surface represents an average, be 

it weighted or non-weighted, of surrounding point information within a specified scan radius. 

Each pixel on a polygon coverage is categorized as being either inside or outside an area 

enclosed by vectors. 

As mentioned in the data sources section, the raw digital elevation data for the area was 

purchased from Alberta Environmental Protection thus saving many hours of painstaking 

work. From the 50 metre spaced point data, was derived a digital elevation model (DEM) 

surface in PAMAP. Each pixel in the basin received a value for elevation in metres that 

represents a weighted average of surrounding points. Since point density is every 50 metres, 

each pixel uses a number of surrounding point values on which to base its interpolated 

elevation, from the DEM surface may be derived two other related physiographic surfaces, 

slope and aspect. Because of the microclimate simulator requirements, slope is derived as a 

percent slope and aspect is derived as an azimuth from 0°-360° (0° = north facing and 180 ° 
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= south facing). Maps of the DEM. slope, and aspect surfaces are illustrated in figures 4.2 

through 4.4 respectively. Figure 4.5 depicts the land cover polygons. The yellow areas 

represent non-forested land or open alpine meadow. The remainder of the basin is forested 

with evergreen tree species. 

4.1.1 Grid-Point Spacing 

Originally, it was believed it would be necessary to generate an evenly spaced grid of points 

over the study area and from it create a point database. These points were to be used as the 

study sites described later in the microclimate simulation section. Once a point database had 

been defined, it would be overlaid with the DEM, the slope, the aspect, and the land cover 

layers in order to append their respective attributes. The point database would then be 

exported to an ASCII file with the information necessary for use as input into the 

microclimate simulation model. 

However, PAMAP can quite easily export a surface or polygon coverage with the 

Topographer/Report utility. Grid point spacing is dependant upon pixel size (ie. a point is 

output for each pixel containing data). For this study, DEM surfaces have been created at 

pixel sizes of 100,200, and 500 metres. Since slope and aspect are derived from the DEM, 

their respective pixel sizes are also 100,200, and 500 metres. The result is a series of ASCII 

files containing easting, northing, and attribute, where attribute is one of elevation, percent 

slope, aspect, and percent forest coverage. 

4.1.2 Relating the Information 

After exporting the surface information from PAMAP, it is necessary to merge the individual 



gital Elevation Model 
Upper Oldman Basin 

ELEVATION (ml 

3001-3200 
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Figure 4.2 Digital Elevation Model (DEM) created using SO metre regular space grid 
from Alberta Environmental Protection. Pixel size is 100 metres. 



Terrain Slope 
Upper Oldman Basin 

Figure 4 3 Terrain slope us derived from the digital elevation model (DEM). The three 
classes represent approximately 23" slope each. Pixel size is 100m. 



Terrain Aspect 
Upper Oldman Basin 

Figure 4.4 Terrain aspect as derived from the digital elevation model (DEM). Pixel 
is 100m. 



Land Cover 
Upper Oldman Basin 

Figure 4.5 Land cover as digitized from the 1:50000 NTS mapsheets. Pixel size is 100m. 
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attributes into a single file for simplification of later calculations. Dbase IV provides the tool 

by which to join the surface and polygon data into one file. First, three database skeletons 

are set up to accommodate X,Y coordinates along with their attribute values (one file for each 

of elevation, slope, and aspect). The ASCII files are then appended into their respective 

database skeletons. Finally, the newly created databases are related by easting and northing 

at which point they are merged into yet another database skeleton called SITES.DBF. 

Appendix B illustrates the specific structure definition used in SITES.DBF. It should be 

noted that field type and size definitions are unchanged from those used in the individual 

databases prior to merging. 

A noteworthy advantage of dBase is its direct link with PAMAP. The version of PAMAP 

used for this study has been setup such that dBase is designated as the external database 

management system for handling point, line, and polygon databases. Another important 

advantage is dBase's ability to quickly and easily summarize numeric information (ie. mean, 

min, max, SD, sum, etc.) through reporting utilities. 

4.2 Single-Site Microclimate Simulation 

The basis for microclimate simulation is founded in the Fortran program, MTCLIM, 

developed at the Intermountain Research Station in Ogden, Utah (Hungerford et al.y 1989). 

Roger Hungerford was a research forester at the Intermountain Fire Sciences Laboratory in 

Missoula, Montana, while Ramakrishna Nemani, Steven Running, and Joseph Coughlan all 
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were pan of the University of Montana's School of Forestry. Their code and documentation 

is used extensively in the early stages of algorithm development for dealing with multi-site 

simulation. The following few sections describe the theory, data requirements, and overall 

workings of the original program. 

4.2.1 Model Theory 

The primary function of MTCLIM is the extrapolation of meteorological conditions for a 

single point of interest from another point at which conditions are recorded. In MTCLIM 

terminology, the location to be simulated is referred to as the SITE and the station for which 

records exist is known as the BASE, Generally speaking, this is accomplished by making 

corrections to BASE meteorologic data for changes in elevation, slope, and aspect between 

the two points. 

Figure 4.6 is a flowchart of the model subroutines as adapted from Hungerford et ai (1989). 

As the figure shows, included in the program are subroutines to calculate daily air 

temperature, incoming solar radiation, humidity, and precipitation. 

Air Temperature 

MTCLIM calculates three air temperature values per day for each SITE: daily maximum, daily 

minimum, and daylight average. The first two are obviously the highest and lowest 

temperatu.es for a day. The third represents the temperature averaged over the daylight 

hours. Since it is assumed that the daily minimum occurs sometime near sunrise, daily 

maximum around midday, and sunset to occur somewhere in between, the model utilizes a 

sine wave to approximate the daylight average temperature. The equation used to calculate 

http://temperatu.es


MTCLIM 
MOUNTAIN MICROCLIMATE MODEL 

Site Factors: elevation, slope, aspect, E-W horizon angles, stand LAI, base station identity 
Base Station: air temperature (max-min, daily), dewpoint (24-hr avg), precipitation (daily) 

SOLAR RADIATION 
Calculate day length 

• 
Potential Radiation 
(slope, aspect, and 

E-W horizon corrected) 

Atmospheric 
Transmissivity 

Total Daily 
Solar Radiation 

(kJ/m J) 

AIR TEMPERATURE 
Daylight average 

from max-min temp. 

Elevation correction 

1 Slope-aspect correction 
based on net 

shortwave radiation I 
Surface attenuation 

based on LAI 
Y 

Site Air Temp 
Min, Max, and 
Daylight Avg. 

CO 

HUMIDITY 
Daily dewpoint 

or night min temp 

Elevation correction 

Saturation vapor 
pressure 

Daylight Average 
Site Humidity 

m 

PRECIPITATION 
Annual PPT from 

Isohyet map 

1 
Site/Base multiplier 

i 
Daily base PPT 

Daily Total 
Precipitation 

(mm) 

Figure 4.6 Flowchart of the MTCLIM model (after Hungerford, et al, 1989). 
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the daylight average is: 

T„ = TEMCF * CT^ - T „ J + T _ 
where, 

TrK = weighted average daylight air temperature for the BASEt 

TEMCF = coefficient to adjust daylight average temperature (0.45 in 
MTCLIM), 

T ^ , = daily maximum temperature 
T ^ = arithmetic mean for the day [(T^, + T J / 2 ] 

The weighted average daylight temperature is next corrected for elevation, cloud cover, and 

aspect. The elevational lapse rate used for western Montana is 6.4°CY1000 metres (or 

3.5°F/10O0 feet). This value is increased by ten percent on clear days and decreased by ten 

percent on cloudy days. According to simulation test results reported later in this chapter, 

the lapse rate of 6.4°C/1000 metres also appears to be appropriate for southern Alberta. 

Theoretically, this should be the case since southern Alberta and western Montana are alike 

in many ways. Both fall on the east slopes of the Rocky Mountains with similar terrain 

variation, both experience a similar climate, and they are in relatively close proximity to one 

another, finally, aspect determines whether temperature is increased (south facing slopes) 

or is decreased (north facing slopes) according to the following formulae: 

South aspects: 

= T w - T ^ ((SE-BE)/1000) + (RADRAT * (1-(SLAI/MLAI))) 

North aspects: 
= T « - Tup (SE-BE)/1000 - (1/RADRAT) * (1+(SLAI/MLAI)) 

where, 
Tilb. = final calculated SITE temperature, 

= BASE station daylight average air temperature as above, 
T ^ = elevational lapse rate correction, 
SE = SITE elevation, 
BE = BASE elevation, 
RADRAT = ratio of slope radiation/flat surface radiation. 
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SLAI = SITE leaf area index, 

MLAI = maximum leaf area index is 10. 

Solar Radiation 

The equations for calculating the daily solar radiation are extremely complex. Considered arc 

many parameters, some of which are calculated by MTCLIM and others of which must be 

provided by the user. Important in determining solar radiation reaching the Earth's surface 

is the clear sky atmospheric transmittance which is first corrected for elevation and, in turn, 

is used to calculate atmospheric transmittance at the location as a function of daily maximum 

and minimum temperature range. This atmospheric transmittance value is then used in the 

following set of equations to derive the potential incoming radiation on a sloped surface. 

Qs = Is s + Ds 

where, 
Iss = cos$ (RJ**T l

A M ) 
AM = l/cos6+ 1.0* lO'7 

T t = A(i-exp(-B&TC» 
A = TRANCF + (SELEV) (0.00008) 
cos<|> = -sinS*sinAZ*sinH*cos8 + (-cosAZ*sinS*sinL + cosS*cosL)*cos8 

*cosH + (cosAZ*sinS*cosL + cosS*sinL)*sin8 
D s = D f *cos(S/2) 2 

D r = ((cosO R ^ T ^ ) 0 5 * (1-cosO R 0 NT t

A M ) ° 5 

cos6 = cos8*cosL*cosH + sin§*sinL 

and where, 
Q, = total incoming radiation on a sloping surface 
Is s = direct beam radiation on a sloping surface, 
cos<j> = cosine beam slope angle, 
cos8 = cosine zenith sun angle, 
R0 = solar constant, 
N = time interval for calculation in seconds, 
T t = atmospheric transmissivity constant, 
AM = optical air mass, 
A = maximum clear sky atmospheric transmittance, 
B = empirical coefficient (-0.0030 in MTCLIM), 
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C = empirical coefficient (2.4 in MTCLIM), 
TRANCF = clear sky transmittance equivalent to sea level (0.65 for 

western Montana, 
SELEV = elevation of the SITE in metres, 
AT = daily range of temperature, 
S = slope in degrees, 
AZ = aspect of SITE in degrees, 
H = hour angle of sun from solar noon, 
L = latitude of site in degrees, 
D, = diffuse radiation on a sloping surface, 
D r = diffuse radiation on a flat surface, 

Relative Humidity 

SITE humidity calculations are based on BASE station dew point and simulated SITE 

daylight average temperature. Where recorded dewpoint is not available for the BASE, night 

minimum temperature is assumed to be approximately equal. The original authors of 

MTCLIM tested this assumption with datasets from both western and central Montana 

producing an average R 2 = 0.87 and a regression line slope very near 1.0. The average 

daylight temperature, calculated by MTCLIM, is the same as that described previously and 

referred to as STEMP in the program. SITE dewpoint is estimated by correcting the BASE 

dewpoint according to an elevational lapse rate of 2.7 °C/km (or 1.5 °F/1000 ft). The final 

SITE dewpoint is combined with air temperature to produce a value for daylight average 

relative humidity. The formulae are as follows: 

SRH = (ES/ESD) * 100 

where, 
ES = 6 1078 * e ( 1 7 - 2 6 9 * S D E W V C 2 7 3 - 3 + S D E : w ) 

SDEW = BDEW - DLAPSE * (SELEV-BELEV)/1000 
ESD — 6.1078 * e ( 1 7 - 2 6 9 * y TEW p )T 2 7 3J+STEMP) 

and where, 
SRH = day average SITE relative humidity in percent. 
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More specifically, precipitation at an unknown location or site is derived from one of the 

following equations, depending on whether or not the optional second precipitation base 

station is available: 

One precipitation station: 

Two precipitation stations (optional): 
P I = ( P b I * A , / A b I + P b 2 * A i / A b 2 ) / 2 

where, 
P^ = daily precipitation at the SITE., 
P b , = daily precipitation input from the first or only base station, 
P b 2 = daily precipitation input from the second base station. 

ES = saturation vapor pressure at dewpoint, 
SDEW = dewpoint at the SITE, 
BDEW = dewpoint at the BASE station, 
DLAPSE = the humidity lapse rate (2.7°C/1000 metres elevation), 
ESD = saturation vapor pressure at the day average temperature, 

STEMP = daylight average temperature at the SITE calculated by MTCLIM. 

Precipitation 

Given the highly variable nature of mountainous precipitation, accurate simulation is not 

possible, especially at shorter time scales. For this reason, MTCLIM uses a simplified 

algorithm that applies the ratio between BASE to SITE annual average precipitation to the 

daily BASE station values. Hungerford et al, (1989) suggest these may be obtained by 

averaging the recorded data at the BASE and estimated from annual isohyet maps for the 

SITE. Isohyet maps are available for Canadian locations from such publications as the 

Climate Atlas collection (Environment Canada, 1986) but their reliability is unstated and 

important information such as point density is unknown. 
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A, = long-ierm average annual precipit?uon at the SITE, 
A M = long-term average annual precipitation at the first BASE, 
A b 2 = long-term average annual precipitation at the second BASE. 

4.2.2 Model Input 

Input requirements include terrain features, vegetation characteristics, and meteorological 

information for the SITE of interest. For the BASE, requirements include basic terrain 

fcatuies and meteorological information only. These variables plus several others relating to 

temperature and dewpoint lapse rates, enable MTCLIM to output simulated daily values for 

solar radiation, temperature average and extremes, relative humidity, and precipitation. 

Specific requirements for each module are discussed below. 

Physiographic features include elevation, slope, aspect, and east-west horizon angles. 

Inclusion of elevation is generally provided with a description of climate stations and may 

easily be obtained for the SITE using a topographic map or onsite survey using such 

technology as a global positioning system (GPS). Slope and aspect, required only for the 

SITE, may also be obtained using either a topographic map or by traditional survey 

techniques at the location. In its original form, MTCLIM, requires that slope be provided as 

a percentage while aspect must be in the form of degrees clockwise from north (zero). East-

west horizon angles are angles to the east and west horizon which are used to truncate direct 

solar illumination due to blocking by ridges and/or other obstructions at the SITE, be they 

natural or otherwise. These parameters may be measured onsite or, as with the previous 

factors, from maps using the equation: 

6 = arctan h/d 



where, 
6 = the horizon angle, 
h = the elevation difference between the SITE and the top of the 

obstruction, 

d = the horizontal distance from the SITE and the top of the obstruction. 

The only terrain variable required for the BASE is the location's elevation. 

Vegetation characteristics include Leaf Area Index (LAI) and the associated albedo. The LAI 

is a value which describes the leaf area per square metre of ground surface. In other words, 

it is an estimate of canopy coverage. Hungerford, et al. use an LAI of 1.0 and suggest it as 

being appropriate for a Northern Rocky Mountain coniferous forest. Associated not only 

with vegetated surfaces but also with non-vegetated ones is a measure of the reflective 

characteristics at the location to be simulated. This value, known as albedo, represents the 

percentage of solar radiation reflected by a surface. Reflection redirects radiation with no 

change in wave length or frequency. Forest canopies reflect approximately 10-20 %, grass 

20-25 %, and rock about 10-30 % of incoming radiation back into the atmosphere. Given 

these estimates, it can be assumed that remaining incoming energy is absorbed. MTCLIM 

requires that albedo be in decimal format so, for example, 20% is entered as 0.20. 

In order for the model to function, certain meteorological information describing the BASE 

is needed. First, the long-term average annual precipitation is required in the precipitation 

calculations. According to the World Meteorological Organization (WMO), long-term 

average is defined as the arithmetic average over a 30-year period. It is more commonly 

known as the "normal". Second, and more important, are the daily climate records. 
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Minimum requirements include daily maximum and minimum temperature and daily total 

precipitation at a single weather station. Optionally, the model makes use of daily dewpoint 

records when available. When dewpoint is unavailable, the program uses the minimum daily 

temperature. As well, MTCLIM provides the option of improving precipitation simulation 

by allowing the inclusion of data from a second precipitation base. Total daily precipitation 

is defined as being the sum of both rain and snow where rain, as recorded by AES, is given 

in millimetres and snow in centimetres. Given the accepted approximation of a 10:1 ratio 

between snow depth and snow water equivalent (SWE), the snow readings essentially 

represent SWE in millimetres and can therefore be added directly to the rain readings to give 

total daily precipitation in millimetres (Goodison, et al.y 1981). All that is required for the 

SITE in terms of climate is the long-term average annual precipitation. It is important that 

this value be derived from the same time period for both BASE and SITE stations since they 

arc applied as a ratio between the two locations. 

Appendix A includes sample datasets as described above. They are excerpts from the files 

used to test MTCLIM for microclimate simulation in southwestern Alberta. 

4.23 Model Output 

MTCLIM output consists of the simulated microclimate for a single site based on the data 

from one or two nearby weather recording stations. The units (ie. SI or English) supplied by 

the base station data determine the format of output. For example, the data obtained from 

AES use SI units, therefore all output temperatures are in degrees Celsius and all precipitation 

depths are in millimetres. 
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The output file is similar in form to the sample provided in Appendix A. 1 tOUTPUT). The 

file begins with a regurgitation of the initialization file as a means of easily identifying the 

input values for each run of the program, followed by a tabular display of the daily weather 

conditions for the time period supplied. The first column contains the Julian day for each day 

whose microclimate is simulated. Column two is the daily total solar radiation in kiloJoules 

per metre squared (kJ/m2). Columns three through five hold site temperatures ih C. 

STEMP, the first of these, is defined as the daily temperature averaged over the daylight 

hours (sunrise to sunset). The second and third temperature columns are the daily maximum 

and daily minimum temperatures respectively, also in °C. Column six is the relative humidity 

expressed as a percentage, averaged over the daylight hours. The seventh and final column 

holds the total daily precipitation in millimetres of water equivalent irrespective of form. 

4.2.4 Simulation Test Results 

The following sections describe how the microclimate simulator output is tested against 

observed data. First is a brief review of the findings presented by the original authors of 

MTCLIM, followed by an evaluation of the Upper Oldman Basin simulations. In both cases, 

results are compared using simple linear regression analysis with observed versus simulated 

daily data as the independent and dependent variables respectively. The original MTCLIM 

evaluation employs nine sites in Western Montana. Since regression analysis for the Oldman 

basin is restricted to temperature and precipitation, the same will be applied to the Montana 

analysis. Discussion of the other simulated variables and detailed results is addressed in the 

literature review and so will not be repeated. 
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Montana 

Comparison is carried out for the three simulated temperature values in Montana; daylight 

average, daily minimum, and daily maximum. The least accurate simulations occur for the 

daily minimum temperature which has an average r 2 = 0.706. The MTCLIM authors suggest 

this to be a result of frost pockets, cold air drainage, and temperature inversions which make 

prediction difficult. One possible solution suggested is the use of a higher lapse rate when the 

base station is located in a basin or creek bottom. Daylight average and daily maximum 

temperatures each produce an average r 2 = 0.90 with the latter having slightly higher y-

intercepts and standard error of the y-estimates. Overall, temperature simulations are very 

acceptable. 

Comparison of precipitation simulations with observed data for five mountainous sites in 

western Montana indicates significantly less reliable output from the model than is the case 

for temperature. Analysis carriei out to determine the value of including a second 

precipitation base strongly recommends inclusion when another is available. Further, 

proximity to and relative positioning of the two precipitation bases greatly influences 

simulations. A single base produces average r 2 values equalling 0.404 while use of two bases 

results in an average r 2 = 0.583. 

Upper Oldman Basin 

Evaluations of Upper Oldman basin simulations are restricted to the analysis of temperature 

and precipitation only. At present, these variables arc of primary concern since they provide 

sufficient information to predict snowpack, which in turn may be used to predict runoff from 



the study area. The temperature simulations are very close to observed values and appear to 

produce consistent results. Precipitation, on the other hand, leaves room for improvement 

so analysis is carried out using two different techniques for determining site and base isohyeis. 

AES operated weather stations arc sparse in the study area so the microclimate for one station 

is simulated using data from two other stations. In the case of this study, Coleman and 

Beaver Mines, south of the basin, are utilized to simulate climatic conditions for Pekisko 

which lies to the north of the basin. The base stations arc separated from the SITE station 

by approximately 70-80 kilometres which itself could be responsible for some of the variation 

produced. Pekisko is located at an elevation of 1439 metres while Coleman and Beaver 

Mines arc at 1341 and 1286 metres respectively. Table 4.1 is an example of the initialization 

Table 4.1 Initialization file, INIT.INI, used to simulate climate for Pekisko using 
Coleman and Beaver Mines as Base stations one an two respectively. 

. . . . . . . . . . . . . . . . MTCLIM DATA FILE FOR INTTAUZATION DATA * * • • • • « * • • • * • • • • • • • • • ' « 
• SIMULATE PEKISKO CUM ATE FROM COLEMAN & BEAVER MINES TO CHECK VALIDITY * 
VALIDATE.!? INPUT DATA FILE {COLEMAN(PPTl) & BEAVER MINES(PPT2) 1 
VAUDATE.OUT OUTPUT DATA FILE {PEKISKO} -1989 
N DEW POINT TEMPERATURE SUPPLIED 1Y OR N] 
2 NO. OF PPT STATIONS [] OR 2] IF 2 THEN USE 2 ISO! ? YETS BELOW 
N USE THRESHOLD RADIATATION [Y OR N] 
T TOTAL OR AVERAGE RADIATION IT OR A] 
Y USE YEARDAY (JULIAN) IN PLACE OF MONTH & DAY [Y OR NI 
365 NDAYS - INTEGER VARIABLE; ALL THE REST ARE REAL 
49.6 LATITUDE OF BASE STATION I COLEMAN) 
1439.0 SITE ELEVATION (METRES) {PEKISKO} 
1341.0 BASE ELEVATION (METRES) {COLEMAN} 
330.0 SITE ASPECT 0 TO 360 DEGREES (0=NORTH; 180=SOUTH) 
19.8 SITE SLOPE (PERCENT) 
1.0 SITE LAI (ALL SIDED) 
651.8 SITE ISOHYET (TOTAL ANNUAL PRECIPITATION.. MM) 
546.4 BASE ISOHYET STATION 1 (TOTAL ANNUAL PREOPITATION..MM){Colcman} 
605.1 BASE ISOHYET STATION 2 (OPTIONAL) SEE NO. OF PPT STATIONS.; BUtrmore} 
0.0 SITE EAST HORKION (DEGREES) 
0.0 SITE WEST HORIZON (DEGREES) 
0.2 SITE ALBEDO (0.2 = 20%) 
0.6S TRANCF (SEA LEVEL ATMOSPHERIC TRANS MISS IVITY) 
0.45 TEMPCF (TEMPERATURE CORRECTION TOR SINE APPROX) 
6.4 TEMP LAPSE RATE (DEC 0 1 0 0 0 M ) 
8.2 LASPE RATE FOR MAXIMUM TEMPERATURE (DEC C/1000M) 
3.8 LAPSE RATE FOR MINIMUM TEMPERATURE (DEG C/1000 M) 
2.7 DEW LAPSE RATE (Dcg C/1000 m ) 
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file used for model validation which describes the other variable settings. 

The MTCLIM model appears to work equally well for the mountainous regions of south­

western Alberta as it does for western Montana, especially for temperature predictions. Table 

4.2 outlines the results from linear regression analysis between observed and predicted daily 

average temperature and daily total precipitation for Pekisko. For these purposes, daily 

average temperature is defined as being the mean of daily minimum and maximum 

temperature and total precipitation is the total daily water equivalent irrespective of form. 

Table 4.2 Predicted vs Observed temperature and precipitation for Pekisko, Alberta 
(1989). Results are given using the 30-year average annual isohyets and the 
5-year Dec. 1-Mar.3laverage (1985-90). 

ISOHYET 

METHOD 

TEMP PRECIP ISOHYET 

METHOD Intercept Slope R 2 SEE1 I'.iCICCpt Slope R2 SEE1 

30-yr Annual 
Average 

0.33 0.92 0.94 Z52 1.45 0.53 021 4 2 2 

5-yr Dec l - Mar.31 
Average 

0.22 0.92 0.94 231 1.18 0.42 020 3.41 

1 Standard error of the estimate 

Results for temperature simulation are promising with an R 2=0.94, a slope very close to 1 

(0.92), andY-intercepts ranging between 0.33 and 0.22. As was the case for the Montana 

tests, there appears to be a slight overestimation of lower temperatures and underestimation 

of higher temperatures. Again, this is likely a side-effect of the choice in lapse rates, 

however, the statistics are sufficiently good to accept current parameters as laid out in table 

4.1 and Appendix A. 1. Figures 4.7 and 4.8 illustrate a typical scatter plot and comparison 

plot of observed to simulated temperature respectively. It is evident from the scatter of points 
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Figure 4.7 Typical scatter plot of observed versus simulated temperature for Pekisko, Alberta 1989. 
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Figure 4.8 Typical comparison plot of observed versus simulated temperature for Pekisko, Alberta 1989. 
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in figure 4.7 that a truly linear relationship exists between the two variables. This implication 

is strengthened in figure 4.8 which shows oniy slight deviation of the daily simulated values 

from the observed. 

Linear regression analysis between simulated and observed daily precipitation indicates a 

statistically less significant relationship than did the temperature. Table 4.2 shows regression 

results for two sets of analysis, one using the 30-year annual average isohyet and another 

using the 5-year Dec.l to Mar.3l average isohyet. Regardless of which is used, results are 

somewhat weak (figures 4.9 and 4.10). The 30-year average method produces a slope closer 

to one and a slightly better R2, but the 5-year winter average method produces a lower 

standard error of the estimate and an intercept which lies closer to the origin. Although it is 

tempting to proceed with the 30-year average method because of its slight improvements over 

the December to March method, winter precipitation is more important for this study and was 

therefore chosen as more representative of local hydrologic conditions. The reason for using 

the winter precipitation becomes more evident in later discussions of site isohyet estimation. 

Figures 4.11 and 4.12 demonstrate a much improved relationship when the simulated data are 

summarized as monthly totals and compared with data from the Race Horse automated 

meteorological station (DACQ). R2 is improved to 0.66 and the regression line slope of 

1.17832 is well within acceptable limits of statistical significance. Most notable in both plots 

is the presence of an outlier occurring in September. The MTCLIM model appears to have 

greatly overestimated the precipitation for this month, possibly due to the use of winter 
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Figure 4.9 Typical scatter plot of observed versus simulated precipitation for Pekisko, Alberta 1989. 



Comparison of Observed and Simulated 
Daily Precipitation for Pekisko 

35 j 
30 

25 

0 30 60 90 120 150 180 210 240 270 300 330 360 
Julian Day - 1989 

Observed Simulated 

Figure 4.10 typical comparison plot of observed versus simulated precipitation for Pekisko, Alberta 1989. 
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Figure 4.11 Scatter plot of observed versus simulated monthly total precipitation for the Racehorse Creek active meteorological 
station with telemetry (DACQ). 
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Figure 4.12 Observed versus simulated monthly total precipitation for the Racehorse Creek active meteorological station with 
telemetry (DACQ). 



average Isohyet for both base and site. Choice of isohyet averaging period impacts simulation 

results since it is influenced directly by changes in seasonal weather patterns. 

4.2.4 Sensitivity Analysis of the Model 

Due to the highly variable nature of terrain throughout the study area, it is necessary to 

uncover ways of simplifying site characteristics. The most difficult parameters to categorize 

arc the cast and west horizon angles since these would be unique to each and every point in 

the basin. To review, the horizon angle is the angle above the horizon from the SITE to the 

top of the highest visible obstruction, be that surrounding treecover, a building, or a mountain 

ridge. The following section attempts to identify the significance or insignificance of horizon 

angles for this study. Also considered is the influence of site slope on simulations. 

Analysis of horizon angles indicate that changing the east and/or west angles does not have 

a great impact on temperatures nor precipitation output by the model. The 1989 Pekisko 

simulation used for testing model validity is used here as the basis for assessment. It is 

determined from a 1:50000 NTS map that the east horizon angle for Pekisko is 2.2 and the 

west horizon angle is 4.0. When these values are changed to 0.0 and 0.0 or to 45.0 and 45.0, 

simulated temperatures did not change at all. However, the simulated solar radiation value 

is affected. Solar radiation values are significantly higher when east and west horizon angles 

both set to zero and lower when the horizon angles are set to ninety. In other words, when 

horizon angles are set to zero, it is implied that there exists no obstruction between the site 

and the horizon and so incoming solar radiation is not truncated. When horizon angles are 

set to ninety, it is implied that the only radiation reaching the site is that received from directly 



overhead. Since the purpose of horizon angles is to adjust for times during the day when the 

direct sunlight is blocked by natural or man-made obstructions, this is not unexpected. The 

results are provided in table 4.3. 

Table 4 3 Analysis of model sensitivity to changes in SITE East and West Horizon 
Angles. For simplicity, both horizon angles are set to 0", 45*, and then 90°. 

SITE 0° 45* 90" 

F E A T U R E M A X MIN A V G M A X MIN AVG MAX MIN AVG 

SOLAR 
RADIATION 
(kJ/m1) 

33292 69 12934 24048 69 8456 10167 4856 

DAY AVERAGE 
TEMPERATURE 
CO 

24 -37 5 24 -37 5 24 •37 5 

MAXIMUM 
TEMPERATURE 
CO 

30 -35 10 30 -35 10 30 -35 10 

MINIMUM 
TEMPERATURE 
CO 

13 -44 -5 13 -44 -5 13 -44 -5 

HUMIDITY (%) 98 10 51 98 10 51 98 10 51 

PRECIPITATION 
(mm) 

35 0 2 35 0 2 35 0 2 

Using the same dataset, the role of site slope is investigated by running the simulator for three 

different values. From the digital elevation model created in the GIS, slope was found to 

range from 0 to 250 percent (0° to 68? ). This range is broken into three classes of 

approximately 23° each with the exact breakdown described in table 4.4. Table 4.5 describes 

the simulation results for the three slope values. As expected, the solar radiation is affected 

simply because as the ground angle increases, there is a reduction in direct solar incidence. 

Also evident with an increased slope is a slight drop in daylight average and maximum 
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Table 4.4 Breakdown of the three classes of slope as they are used for simulation. 

Class Range Mid-Point Slope Slope Range 
<") O (decimal) m 

I 0-23 11.4 0.20 20.0 0-42 

2 23-46 34.2 0.68 68.0 43-102 

3 47-68 57.0 1.54 154.0 103-250 

Table 4.5 Analysis of model sensitivity to changes in SITE slope. East and West 
horizon angles are both set to zero. 

SITE 

F E A T U R E 

I1.4-, 34.2°, 5 7 . C SITE 

F E A T U R E MAX MIN AVG MAX MIN AVG MAX MIN AVG 

Solar 
Radiation 
fld/m1) 

32028 68 12130 26183 63 9537 19531 53 7089 

Day Average 
Temperature 
CO 

24.0 -37.0 5.1 24.0 -37.0 4.7 23.0 -37.0 4.2 

Maximum 
Tcmpcraiurc 
CO 

30.0 -35.0 9.4 30.0 -35.0 9.0 29.0 -35.0 8.5 

Minimum 
Temperature 
CO 

13.0 -44.0 •4.6 13.0 -44.0 -4.6 13.0 -44.0 -4.6 

Humidity 
(%) 

99.0 10.0 51.4 99.0 11.0 52.6 100.0 11.0 5 4 3 

Precipitation 
(mm) 

35.0 0.0 2.0 35.0 0.0 2.0 35.0 0.0 2.0 

(Approximate mid-points of the three equal classes as described in table 4.14. 

temperatures. Inversely related to the drop in temperature is a rise in relative humidity. 

Minimum daily temperature appears not to be affected. 



4.3 Multi-Site Microclimate Simulation Model 

Simulation of microclimate for multiple sites is achieved through a modification of the 

MTCLIM program in conjunction with output from the GIS. The modified program is 

currently referred to as S1MGRID in order to differentiate it from the original. The 

calculations described in previous sections are applicable and will therefore not be repeated. 

Some emphasis will, however, be placed on illustrating the difference and additions to the 

original techniques. Also explained are some generalizations and assumptions that must be 

accepted in order for model development to proceed. 

4.3.1 Model Input from the GIS 

In section 2.4.1 is a discussion of the spatial scale of snow cover variability as described by 

Gray and Prowse (1993). In it, horizontal distances of one hundred metres to one kilometre 

are classified as mesoscale and include such phenomena as snow distribution due to wind, 

avalanches, terrain variables, and vegetation cover. This appears to describe phenomena of 

concern in this study so it was decided to lean toward the lower end of the scale and employ 

a 100 metre grid over the entire basin. This increases the likelihood of simulations being 

more representative of actual field conditions. 

Inputs from the GIS include coordinate information, elevation, percent slope, and aspect. 

Within the GIS, each of these is represented by a separate surface layer for which pixel size 

is user-defined. Use of a 100 metre pixel size results in the generation of 144,558 pixels in 

total covering the basin. This corresponds to the total basin area of 1445 square kilometres 

described in chapter 3. The information contained on each of the three GIS surfaces is first 
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exported to ASCII files such that one record containing UTM easting, northing, and pixel 

value is output for each of the 144,55S pixels. The separate files are then related and 

combined into one file using a database management system. 

Due to the large number of sites for which the microclimate must be simulated, it is necessary 

to categorize terrain variables such that calculations are greatly simplified, yet still 

representative. Elevations in the basin range from 1267 metres at the river gauging station 

to 3099 metres at Tornado Mountain and are broken into ten elevation bands of 200 metres 

each starting at 1200. The slope values are broken into three classes ranging from flat (0 

percent) to reasonably steep (250 percent). Although this appears at first to be a wide range, 

in effect the maximum slope is only 68° above the horizon and each class represents 

approximately 23°. As discussed just previous, site slope docs affect the amount of incident 

solar radition and relative humidity, but plays only a minimal role in daily temperature 

extremes and precipitation (table 4.5). Finally, aspect is divided into the four groups of 90°, 

each representing the general compass directions of north, south, west, and east. See table 

3.1 for details on the individual categories and their respective percentages of total land area 

in the basin. 

The result is a maximum possible number of combinations equalling 120(10 x 3 x4). This 

represents a huge improvement in computational efficiency because the number of sites is 

essentially reduced from 144,558 to 120 points (0.08% of the original). Given that each point 

is accessed for every day in the user-defined period, this can make quite a noticeable 
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difference. 

4.3.2 Simulation of Site Isohyet 

In order for the multi-site microclimate simulator to run, each grid point in the basin requires 

an isohyet value. Again due to the severe lack of recorded data for the higher altitudes along 

the eastern slopes of the Canadian Rockies on which to base such values, it is necessary to 

develop a method to estimate the annual isohyet. Initially it was hoped that data from eight 

nearby weather stations (figure 4.13) could be used to determine a 30-year average annual 

precipitation value for each. This was done using a database management system (DBMS) 

to sum daily precipitation values by year for the 30 year period. The 1960-1989 period was 

chosen for calculations since it was common to all available datasets. Combining the 

calculated 30-year average precipitations with known station elevations provided the basis 

for a crude linear regression between precipitation and elevation. The results of the analysis, 

shown in Figure 4.14, indicates a somewhat weak relationship (r2 = 0.54), but it provides a 

starting point from which to progress. The following equation describes the linear 

relationship from that first attempt: 

P = -6.53 +(0.42 *E) (4.1) 

where, 
P = Precipitation, 
E = Elevation 

Consideration of this somewhat weak relationship prompted an investigation into ways by 

which it may be improved. Since the study area does lie on the eastern slopes of the 

Continental Divide, it was theorized that a great deal of the annual precipitation results not 

from westerly flows, but instead from easterly flows resulting when low pressure cells are 



Figure 4.13 Location of the stations from which climate data is analyzed in creating an Elevation/Precipitation regression. 
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Figure 4.14 Elevation versus the 1960-1989 average annual precipitation for eight mountainous weather recording stations. 
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forced southward along the mountains. Easterly winds, resulting from a counter-clockwise 

rotation, rise up the slopes and precipitate moisture. This theory implies that aspect and slope 

both play a role in the amount of precipitation an area receives. A method was devised 

whereby both factors could be expressed as a positive value for high influence and a negative 

value for low influence. The range of aspect values is 0 - 360° with 0° and/or 360° indicating 

a north-facing slope while 180° indicates a south-facing slope. As mentioned previous, east-

facing slopes (90° aspect) will theoretically receive greater amounts of precipitation, therefore 

it is assigned a positive one. Conversely, west-facing slopes (270° aspect) will receive lesser 

amounts of precipitation and therefore be assigned a negative one. Aspects to the north or 

south of either 90° or 270° vary proportionally. In other words, the simplified aspect value 

may be described as equal to SIN(ASPECT). where ASPECT is the bearing in degrees 

between 0-360°. A comparable adjustment of aspect was carried out by Teclc and Rupp 

(1995) as discussed in the literature review. A similar situation exists for the slope which, 

ignoring overhang cliffs, may range between 0° (flat) and 90° (vertical). Again, the SIN 

function may be applied to reduce degrees of slope to values ranging between 0, for a slope 

of 0° indicating Hale influence on the aspect and precipitation, and 1 for a slope of 90 

indicating a strong influence on aspect and precipitation. The adjusted slope and espect 

values are then multiplied to produce a single SLOPE/ASPECT coefficient for each station. 

Finally, a multiple regression is run with precipitation as the dependent variable, and elevation 

and the SLOPE/ASPECT coefficient as the independent variables. Unfortunately, the 

strength of the regression is improved only slightly with the inclusion of the slope and aspect 

parameters (^=0.55, only 0.01 better than the regression using only elevation as the 
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independent variable). The resulting equation is as follows: 

P = (0.39*E)-(166.56*SAC)+25.78 (4.2) 

where, 
P = Precipitation, 
E = Elevation, 

SAC = Slope/Aspect Coefficient 

The analysis did not provide any statistical support for the adoption hypothesis and related 

technique. 

Other attempts at deriving an equation for site precipitation include dropping the Jasper data 

from the first set of values and also trying the 1951-1980 annual average precipitation. The 

first of these was done on the basis of distance from the basin. Jasper is much further from 

the basin than the other available stations and it was thereby assumed it could be omitted. 

Unfortunately, the result was an r 2 equal to 0.0009 indicating an almost non-existant 

relationship between elevation and precipitation. The second of these attempts involved 

running a regression between sixteen station elevations and their 1951-1980 average 

precipitation taken from the Climate of Alberta Report for 1983 (Alberta Environment, 1983). 

Again, the improvement in results was not significant. The r 2 of 0.48 is actually lower than 

the 0.54 valued obtained using equation (4.1). 

Since a major portion of the research deals with the accumulation of snow, further analysis 

was directed at precipitation/elevation relationships using only average winter precipitation. 

For this purpose, winter precipitation is arbitrarily defined as that precipitation which falls 



between December 1st and March 31st. Precipitation during this period was assumed to be 

snow. Using only this winter period allows for the inclusion of snow pillow and snow course 

data which not only adds more points, but more importantly, points at higher elevations. In 

order to overlap the period of record for weather station, snow pillow, and snow course data, 

the mean winter precipitation is calculated for the 1985-1990 values. In total, seven weather 

stations, seven snow courses, and three snow pillows ranging in elevation from 1286 to 2160 

metres are employed. The regression improved to an r=0.71 (figure 4.15) and equation (4.3) 

is produced: 

P = -485.22 + (0.45 * E) (4.3) 

where, 
P = Precipitation 
E = Elevation 

Obviously, the best results occur from the method using winter precipitation only. Therefore, 

equation (4.3) is chosen as the means by which to extrapolate grid point isohyets. Although 

slope and aspect in theory play a role in precipitation, the available datasets did not indicate 

any significant relationships. Perhaps this is pardy due to the availability of only a few 

suitable data sources and may change for different areas. 

433 Model Output 

Like MTCLIM, SIMGRID output consists of simulated microclimate based on the data from 

several nearby weather recording stations. The difference with SIMGRID is the addition of 

two columns to the output file whose function is to identify the sites. The first of these is the 

category number (1-120) that describes a class of terrain variables to which it relates. The 

second column holds the two-digit year value (ie. "89") which is necessary since the program 
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1 75 365 
2 70 1 
2 70 2 
2 70 3 

2 75 365 

This format allows for relatively simple extraction of data based on category, year, and/or 

Julian day. It also lends itself to elementary summation functions such as maximum, 

minimum, and mean for any of the calculated variables. 

4.4 Snowpack Accumulation 

The estimation of snowpack accumulation and ablation is accomplished through yet another 

program which incorporates the snowmelt algorithm from the UBC Watershed Model (Pipes 

and Quick, 1977) and an empirically-based accumulation model that describes the 

composition of precipitation based on temperature (Wyman, 1995). Both techniques are 

fairly simplistic in that they derive normally complex parameters strictly from daily air 

temperature extremes. Quite often air temperature is all that is available in alpine study areas. 

may be run for periods longer than a single year. That is certainly the case in this study where 

microclimate is simulated for a ten year time frame. Output is formatted such that 

microclimate is listed for all days in the user-defined period one category at a time. For 

example, given that micTOclimate is to be simulated for two categories from 1970 to the end 

of 1975, the following would represent sample output: 

Cat Yr Jday plus the other variables (sec Appendix A . l ) 

1 70 1 
1 70 2 
1 70 3 
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The U B C snow melt technique takes into consideration three primary sources of snow 

melting energy. The first of these, convective heat transfer from warm air, is estimated as 

being equal to the mean daily temperature above freezing. Second, the net radiant energy 

gain from shortwave and longwave radiation exchanges is considered. It is represented 

simply as the daily temperature range. Finally, the latent heat gain from condensation or loss 

through evaporation at the surface is derived as a function of the range in temperatures 

between the dewpoint and the freezing point. 

Snowmelt is dependent upon the ability of a snowpack to store cold. Pipes and Quick (1977) 

take into account a negative melt decay function in their cold storage equation which serves 

to limit the effect of daily temperature conditions to the previous ten days. The following is 

referred to as the negative melt formula: 

TREQ; = (ANMLTF * T R E Q J + TMEAN ; 

where, 
TREQ, andTREQi., = snowpack cold storage on days i and i-1, 
ANMLTF = the decay constant (set to 0.85), 
TMEANj = mean daily temperature on day i, 

In order for melt to occur, the snowpack's cold storage must first be exhausted and when this 

happens open area melt takes place according the following formulae: 

MELT = PTM * (TMAX ; + TCEADJ * TMIN ;) 

where, 
MELT = m e I E depth in millimetres of water equivalent on day i, 
PTM = point melt factor in millimetres per day per °C (Pipes and Quick give 

a PTM=3, a value of 1.8 is recommended by Wyman, 1995, and 
Byrne, 1990 used 1.0 for the prairies.), 

TMAX; = daily maximum temperature on day i, 



O S 

TMIN, = daily minimum temperature on day i, 
TCEADJ =the energy partition multiplier. 

and where. 
TCEADJ = TMIN.+T/2 

XTDEWP + T/2 

T r = range of temperature over the particular day, 
XTDEWP = reference dewpoint that controls energy partioning between melt 
and sublimation (set to 18 °C), 

If falling precipitation is in the form of snow and temperatures are insufficient for melt to take 

place, then it is likely that existing snowpack will increase. The following formulae describe 

the criteria by which the distinction is made between precipitation that falls as snow and that 

which falls as rain (Wyman, 1995). 

Daily snow water equivalent (SWE): 
SNOW n = PPT n -RAIN n 

where, 
SNOW n = precipitation that falls as snow on day n (mm SWE), 
RAlN n = precipitation that falls as rain on day n (mm SWE), 
PPT n = total daily precipitation on day n (r^m SWE), 

and where, 
RAINn = 0 if mean daily temperature < 0.6 °C, 
RAIN n = PPTn * (TMEAN„/3 - 0.2) if mean daily temperature >0.6 °C and 
<3.6°C, 
RAIN„ = PPT n if mean daily temperature > 3.6 °C, 
TMEAN n = mean daily temperature on day n. 

In the basic equation, total snow on a given day, SNOWn, is defined as the total daily 

precipitation amount minus the amout of precipitation which falls as rain. The amount of rain 

on a given day, RAINn, is dependent upon, TMEAN. When TMEAN is less than 0.6"C, 

RAINn = 0 because all precipitation is considered to be in the form of snow. When TMEAN 

is greater than 3.6°C, RAINn = the total daily precipitation, because all precipitation is 
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considered to be in the form of rain. The case of TMEAN falling between 0.6 and 3.6°C is 

slightly more complex since the total daily precipitation is assumed to be a mix of snow and 

rain, the ratio of which is determined by the formula: 

RAIN n=PPT n *(TMEANn/3 - 0.2) 

The form precipitation takes determines the manner in which Wyman deals with its impact on 

the snowpack. Obviously, the addition of snow causes an increase in the depth of snow water 

equivalent held in the pack. The addition of rain, however, may do one of two things; 1. 

when the total rain added is less than that which the snowpack is capable of absorbing, the 

pack becomes more dense but no runoff occurs, 2. when the total rain added exceeds the 

pack's capacity to absorb water, additional rain and surface melt propogates through the pack 

where it contributes to runoff. 

4.4.1 Input from the Microclimate Simulator 

The microclimate simulator operating on a grid basis provides the much needed input into an 

attempt to model spatial variation in snowpack accumulation and ablation. The lack of an 

acceptable distribution and density of data collection stations in high altitude areas prompted 

the development of a technique to model the spatial and temporal distribution of snow from 

proxy conditions. 

As mentioned in the previous section, the snowpack model, known as SNOPAC, operates on 

daily temperature extremes and daily total precipitation as basic inputs. These, of course, are 

available from the simulated data which provide daily maximum, minimum, and daylight 

average temperature as well as daily total precipitation. It is important to recognize that the 



simulated precipitation is heavily dependent upon the elevation/precipitation regression 

developed early in the program. Although it is acknowledged earlier that this particular 

regression is somewhat weak, the actual procedures carried out are considered robust. 

4.4.2 Simulation Test Results 

Comparison of simulated and observed snowpack is very promising. Regression analysis on 

the Racehorse Creek snow pillow produced an r of 0.8, a slope of 0.821, and an intercept 

of 39.0 for the 1983-84 season. Figure 4.16 illustrates a typical comparison plot for simulated 

and observed snowpack conditions. It is evident from the graph that the simulations closely 

reflect the short-term trends recorded at the site. However, there is some deviation in the first 

month of 1984 as well an undersimulated peak snowpack occurs at an approximate Julian 

date of 131. 

Figure 4.17 is a comparison plot for the Lust Creek snow pillow versus the corresponding 

simulated snowpack. Regression analysis on this particular station for the 1988-89 season, 

produced an r 2 of0.896, a slope of 1.11, and an intercept of 5.578. The left half of the graph 

indicates a very close relationship between observed and simulated data. However, after 

approximately one and a half months into the new year, the two lines begin to diverge with 

an apparent over simulation in the latter pan of the snow season. Originally, it was suspected 

this was caused by a number of factors. The first of these is the over simulation of site 

precipitation at higher elevations as discussed earlier. Second, it is believed that there is a 

problem with certain coefficients in the SNOPAC program which control melt. Without 

sufficient data to investigate the first, emphasis focused on the latter. 
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Figure 4.16 Comparison of snowpack model simulations with the Racehorse Creek snow pillow observed data for the 1983-198-1 
snow season. A point melt factor (PTM) of 1.8 is used. 
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Figure 4.17 Comparison of snowpack model simulations with the Lost Creek snow pillow observed data for the 1988-1989 snow 
season. A point melt factor (PTM) of 1.8 is used. 
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The primary driving force behind snowmclt appears to be a variable know as the point melt 

factor (I rrM). Its units are described in millimetres per day per °C. It is described by Wyman 

(1995) and Pipes and Quick (1977) as a necessary input into the UBC Watershed Model melt 

routines. Wyman suggests a PTM of 1.8 is suitable for the Canadian Rockies of British 

Columbia. For this reason, 1.8 is also employed in this study as a reasonable starting point. 

Figures 4.16 and 4.17 illustrate the results for two snow pillows using that point melt factor. 

Figure 4.18 represents the same period as figure 4.16 except that a PTM of 1.3 is used. A 

slight lag appears in the spring, but the peak snowpack is brought closer to the observed peak. 

This lower PTM results in an r 2 = 0.9 which is a small improvement over the previous 

simulation. Along the same lines, figure 4.19 illustrates an improved simulation over figure 

4.17. The peak is still overestimated, but lag in spring melt is brought closer to the recorded 

data and r is increased to 0.941. To accomplish this, a PTM of 2.2 is used. Perhaps an even 

higher PTM would bring the simulated and observed lines closer still. 

Analysis indicates that the point melt factor is an important parameter in the snowmelt 

routine. Unfortunately however, it does not appear to be constant even within the study area. 

Without supporting field data, it is believed that the point melt factor is linked to elevation. 

In the previous discussion it is shown that for Racehorse Creek a PTM of 1.3 produces the 

best results while 2.2 appears more appropriate for Lost Creek. The main difference between 

the two sites is that Racehorse lies at 1920 metres while Lost Creek is at 2160 metres. With 

more snowpack recordings at varied elevations, this theory could be further investigated. 
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Figure 4.18 Comparison of snowpack model simulations with the Racehorse Creek snow pillow observed data for the 1983-1984 
snow season. A point melt factor (PTM) of 1.3 is used. 
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Figure 4.19 Comparison of snowpack model simulations with the Lost Creek snow pillow observed data for the 1988-1989 snow 
season. A point melt factor (PTM) of 2.2 is used. 
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Chapter 5 

RESULTS 

5.0 Overview 

This chapter is a presentation of the findings of the project in the form of maps, tables, and 

statistical analysis. The early part of the chapter deals with output from the microclimate 

simulation model, SIMGRID, while the latter part illustrates the snowpack accumulation and 

ablation component derived from the gridded microclimate. 

5.1 Microclimate Simulator 

The following sections provide an overview of the microclimate as simulated by the 

SIMGRID model. The results have been imported into the GIS for map generation where 

several overlays and statistical analysis have been carried out. Where appropriate, 

shortcomings and/or problems which lend themselves to further investigation are discussed. 

5.1.1 Temperature 

All simulations in this study are reported at a daily interval. Such a data structure lends itself 

to a great deal of flexibility in terms of how the results arc presented and analyzed. For 

example, any of the reported variables may be averaged in terms of daily, monthly, seasonally, 

and even long-term time periods. 
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Table 5.1 Areal extent of minimum temperature as a function of elevation in km 2. 

Elevation 
Band <-10 -10-9 - 9 - 8 

TO 
- 8 - 7 - 7 - 6 -6*-5 - 5 - 4 

Total 
w i 

Weighted 
Mean co 

1200-1400 0.00 0.00 0.00 0.00 0.00 1.04 38.05 39.09 ^.53 
1401-1600 0.00 0.00 0.02 0.00 3.30 199.70 0.40 203.42 -5.51 
1601-1800 0.00 0.00 0.00 0.00 369.64 3.40 0.00 373.04 -6.49 
1801-2000 0.00 0.01 0.00 5.52 407.08 0.00 0.00 412.61 -651 
2001-2200 0.00 0.16 3.34 260.75 5.73 0.17 0.01 270.16 -7.49 
2201-2400 0.00 1.59 90.70 3.10 0.36 0.11 0.06 95.92 -8.47 
2401-2600 0.02 21.21 0.42 0.11 0.43 0.10 0.00 22.29 -9.40 
2601-2800 0.11 3.79 0.01 0.03 0.16 0.01 0.00 4.11 -9.38 
2801-3000 0.62 0.04 0.00 0.00 0.04 0.00 0.00 0.70 -1021 
3001-3200 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 -1050 

Total 0.80 26.80 94.49 26951 786.74 20453 3852 142139 -6.68 

For the purposes of illustration, two maps have been generated depicting temperature 

distribution throughout the study area. Figure 5.1, illustrates the spatial distribution of daily 

minimum temperature averaged over the ten year simulation period of 1970- 19S0. This figure 

docs not reveal much new or surprising information, however it does indicate altitudinal 

controls exerted on temperature. As would be expected, the higher minimum temperatures 

occur at the lower elevations and decrease with increasing altitude. Generally, drainage of 

cold air to lower elevations is accompanied by adiabatic warming thus preserving the inverse 

relationship between altitude and temperature. The primary factor controlling the 

elevation/temperature function is the selection of lapse rates for use within the model 

(Appendix A). These are used to adjust the base station temperatures according to a 

calculated difference in elevation between it and the sites. Slope and aspect corrections do 

not appear to influence heavily the distribution of minimum temperature when averaged over 

the ten-year period. Table 5.1 summarizes the areal distribution of each two-hundred metre 
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Figure 5.1 Long-term average daily minimum temperature for the 1970-1980 decade 
as derived from microclimate simulatioas. Pixel size is 100 metres. 
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elevation band in relation to the seven temperature classes and provides an area-weighted 

mean minimum temperature value for each elevation. The dispersion of data values 

representing area in km 2, indicates an obvious negative correlation between elevation and 

average minimum temperature. Areas in the "<-10" temperature class lie exclusively at the 

higher elevations while the warmer temperatures are generally found at lower elevations. 

There is a slight deviation from the linear distribution of points at either end of the 

temperature scale. Finally, the graph in figure 5.2 clearly illustrates the nearly linear negative 

relationship between elevation and the area-weighted mean minimum temperature. For 

reference purposes, figure 5.3 has been included to show the areal distribution of elevation 

in the study area. 

Figure 5.4 demonstrates the spatial variability of the mean daylight temperature, described 

earlier as STEMP, averaged over the 1970 to 1980 simulation period. Unlike the previous 

map, mean STEMP is sensitive to aspect. A close inspection of the map reveals that the 

south-facing facets tend to be slighdy warmer (generally by 1-2 °C). This is not surprising 

since daylight average temperature is driven, for the most pan, by the interaction between 

incoming solar radiation and the reflective properties of ground features. This feature does 

not appear on the previous map because the daily minimum temperature is less sensitive to 

aspect. More specifically, the minimum daily temperature is most likely to occur during the 

non-daylight hours. The appearance of this differentiation between north and south-facing 

slopes reaffirms the selection of pixel size and therefore spatial resolution used in the model. 

It indicates that the model is detecting small scale variations consistent with established 
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Figure 5.2 Area-weighted mean daily minimum temperature as a function of elevation. 
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Figure 5.3 Areal distribution of elevation throughout the study area. 
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Figure 5.4 Long-term mean daylight average temperature fSTEMP) for the 1970-1980 
decade as derived from microclimate simulations. Pixel size is 100 metres. 
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general principles which would suggest differences due to slope orientation are likely to 

occur. Table 5.2 shows the total area in km 2 for each of eight temperature classes versus the 

ten elevation bands as well as the area-weighted mean STEMP. Once again, the strongly 

negative correlation between elevation and temperature is shown by the nearly linear 

dispersion of data values from the lower left of the table to the upper right. However, 

Table 5.2 Areal extent of average STEMP (Average daylight temp.) as a function of 
elevation in km 2. 

Elevation 
Band <-7 -7 -5 - 5 - 3 -3-1 

C O 
-1-1 1-3 3-5 5-7 

Total 
(km*) 

Weighted 
Mean ca 

1200-1400 0.00 0.00 0.00 0.00 0.00 0.00 28.30 10.79 39.09 4 5 5 
1401-1600 0.00 0.00 0.00 0.02 0.00 3.28 156.24 43.88 203.42 4.40 
1601-1800 0.00 0.00 0.00 0.00 6.91 278.11 8753 0.49 373.04 Z44 
1801-2000 0.00 0.00 0.01 0.00 32051 29.36 62.73 0.00 412.61 0.75 
2001-2200 0.00 0.00 0.10 3.40 210.64 55.79 0.23 0.00 270.16 0.39 
2201-2400 0.00 0.00 0 5 0 73.84 21.18 0.22 0.15 0.03 95.92 -155 
2401-2600 0.00 0.02 3 5 0 1733 1.03 0.31 0.09 0.01 22.29 -2.14 
2601-2800 0.00 0.11 2 5 5 1.25 0.13 0.06 0.01 0.00 4.11 -3.21 
2801-3000 0.00 0.41 0.25 0.00 0.00 0.04 0.00 0.00 0.70 -4.83 
3001-3200 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.05 -6.40 

Totnl O.Ol 058 v,?l 95.84 560.40 367.17 335.28 55.20 1421.39 1,5* 

consideration of figure 5.5 implies that the mean daylight temperature is not related 

completely linearly to elevation as some deviation occurs in the 1700 -1900 metre elevation 

range.. Essentially, this implies that elevation, although very important, is not the only 

significant factor. Table 5.3 is similar to the previous table except that the temperature 

classes are reported as total areal extent within each of the four aspect categories. When the 

area-weighted mean STEMP for each aspect is plotted as in figure 5.6, it becomes evident 

that south-facing slopes do react differently than the others in that temperatures are 
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Figure 5.5 Area-weighted mean daylight average temperature as a function of elevation. 
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Figure 5.6 Area-weighted mean daylight average temperature as a function of terrain aspect. 
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Table 5.3 Areal extent of STEMP as a function of aspect in km\ 

Aspect (*C) 
<-7 - 7 - 5 - 5 - 3 - 3 - 1 -1 -1 1-3 3-5 5.7 

Total Weighted 
Mrtin m 

North 0.00 0.25 2.16 19.12 137.40 77.53 48.55 v7h :ss.77 1.12 
Easi 0.00 0.21 4.51 43 .86 230.55 124.12 85.62 0.00 4S8.S7 0.W 

South 0.00 0.00 0.48 5.42 21.49 77.63 142.9S 52.0S 300.08 3.42 
West 0.01 0.16 1.72 33.SS 179.27 PI ,S0 61 .OS 0.00 367. S6 0 l>h 

Total 0.01 0.62 8.87 102.25 56S.71 371.08 338.20 55.84 1445.58 1.51 

significantly higher. Finally, regression analysis presented in table 5.4 illustrates the influence 

of not only elevation but also aspect and slope on mean daylight temperature. According to 

simulation results, STEMP as a function of elevation alone produces an r of 0.699 while 

aspect alone results in an insignificant r 2 of 0.001. Inclusion of aspect along with elevation 

results in a slight improvement. Slope does not appear to be significant on its own. 

Table 5.4 STEMP regression analysis summary. 

Independent 
Var(s) 

Dependent 
Var 

Constant SEYE* R 3 No. of 
Obs. 

D O P X 
Coef(s) 

SEC* 

Elevation STEMP 13.845 1.116 0.699 5782 5780 -0.0067 0.000058 

Aspect STEMP 1.332 2.035 0.001 5782 5780 0.0007 0.000270 

Elevation 
Aspect 

STEMP 13.712 1.114 0.701 5782 5779 -0.0067 
0.0008 

0.000057 
0.000148 

Elevation 
Aspect 
Slope 

STEMP 13.614 1.113 0.701 5782 5778 -0.0066 
0.0008 

-0.0023 

0.000066 
0.000148 
0.000790 

SEYE" = Standard Error of the Y Estimate 
DOF* = Degrees of Freedom 
SEC" = Standard Error of Coefficient 

5.1.2 Precipitation 

Due to the fact that precipitation is determined to be strictly a function of elevation with the 

limited datasets available for this study, the map of its distribution is very similar in 

appearance to the digital elevation model portrayed in chapter 4. Figure 5.7 depicts the ten-
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Figure 5.7 Average annual total precipitation for the 1970-1980 decade as derived from 
microclimate simulations. Pixel size is 100 metres. 



115 

year (1970-19S0) average annual total precipitation in millimetres of snow water equivalent 

(SWE). The map implies that the greater annual precipitation occurs at the highest elevations 

while the areas near the gauging station receive the least amounts. Several other factors 

including slope, aspect, prevailing wind direction, and distance from the continental divide 

may also play roles. These, along with elevation, are identified in the literature as being 

important in determining the occurrence and quantity of precipitation (Price, 1981; Barry, 

1992; Storr and Ferguson, 1972). However, these influences are not identified to be 

statistically significant with the datasets used. 

Table 5.5 shows a breakdown of the areal extent of the precipitation classes as a function of 

elevation and the area-weighted mean annual precipitation. This time there is a positive 

relationship with precipitation becoming more abundant as elevation increases. The data 

values deviate only slighdy from the upper left to the lower right diagonal. However, the 

graph in figure 5.8 implies a non-linear relationship between elevation and precipitation when 

the area-weighted mean is used. The graph suggests precipitation increases in a nearly linear 

fashion before approximately 2000 metres and then the rate at which it increases drops off. 

At approximately 2500 metres, the total annual precipitation levels off implying further 

elevation gain has no effect. This is likely a product of the insignificant area above 2500 

metres (Table 3.1 and Figure 5.3). 

Related to temperature and moisture is relative humidity which is the amount of water vapor 

in the air expressed as a percentage of the amount it can hold at a particular temperature and 
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Figure 5.8 Area-weighted mean total annual precipitation as a function of elevation. 
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pressure. The same air parcel at different temperatures would report very different relative 

Table 5.5 Areal extent of average annual total precipitation as a function of elevation in 
km2. 

Elevation 
Band 

0 -
500 

5 0 1 -
1000 

1001-
1500 

(mm) 
1501-
2000 

2001-
2500 

>2500 Total 
(Vml 

Weighted 
Mean 

Imml 

1200-1400 38.05 1.04 0.00 0.00 0.00 0.00 39.09 263.30 
1401-1600 0.40 199.70 3.30 0.00 0.02 0.00 203.42 757.2S 
1601-1800 0.00 3.40 362.55 7.09 0.00 0.00 373.04 1254.95 
1801-2000 0.00 0.00 6.74 405.86 0.00 0.01 412.61 1741.86 
2001-2200 0.01 0.17 0.10 266.38 3.34 0.16 270.16 1755.90 
2201-2400 0.06 0.11 0.16 3.30 90.70 1.59 95.92 2236.45 
2401-2600 0.00 0.10 0.25 0.29 0.42 21.23 22.29 2701.77 

2601-2800 0.00 0.01 0.06 0.13 0.01 3.90 4.11 2690.39 

2801-3000 0.00 0.00 0.04 0.00 0.00 0.66 0.70 2664.29 

3001-3200 0.00 0.00 0.00 0.00 0.00 0.05 0.05 2750.00 

Total 38.52 204.53 373 .20 683.05 9 4 4 9 ... 27.VV 1421.39 1486.83 

humidities even though the actual quantity of water vapor or absolute humidity remains 

constant Therefore, changes in temperature occurring as a result of increased or decreased 

elevation directiy influence this ratio. 

Figure 5.9 illustrates not only the distribution of relative humidity, but also exemplifies the 

flexibility with which model output may be analyzed. In this case, conditions are mapped 

using the most basic temporal unit, an individual day. It is apparent from the map that relative 

humidity is at least partially driven by elevation in that there is a general rise with increased 

altitude. As there is some deviation from the DEM, however, other factors obviously play 

a role. The east-west orientation of dark bands throughout the map indicate that aspect is 

also an important influence. The darkest areas, representing the lowest relative humidity, 

invariably occur along south-facing facets in the terrain. As with the change due to elevation, 



% Relative Humidity 

Figure 5.9 <7c Relative Humidity on August 15. 1973 as derived from microclimate 
simulations. South-facing slopes indicate a lower relative humidity 
than surrounding cells. Pixel size is 100m. 
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Table 5.6 shows a positive near linear relationship between relative humidity and elevation 

as evidenced by the data value distribution. Figure 5.10 too implies relative humidity is 

Table 5.6 Areal extent of relative humidity as a function of elevation in km 2. 

Elevation 
Band <40 4 1 ^ 5 

%RH 
46-50 51-55 56-60 61-65 

Total 
(km1) 

Weighted 
Mcant%RH> 

1200-1400 10.79 28.30 0.00 0.00 0.00 0.00 39.09 41.12 
1401-1600 43.90 156.22 328 0.02 0.00 0.00 203.42 41.50 
1601-1800 84.92 3.09 285.03 0.00 0.00 0.00 373.04 45.18 
1801-2000 0.25 85.31 324.88 2.16 0.01 0.00 412.61 46.49 
2001-2200 0.00 55.92 120.54 93.60 0.10 0.00 270.16 48.20 
2201-2400 0.04 0.21 18.89 75.42 1.36 0.00 95.92 51.56 
2401-2600 0.01 0.15 4.52 5.73 11.86 0.02 22.29 54.08 
2601-2800 0.00 0.01 1.22 0.04 2.73 0.11 4.11 54.58 
2801-3000 0.00 0.00 0.04 0.18 0.04 0.44 0.70 58.79 
3001-3200 0.00 0.00 0.00 0.00 0.00 0.05 0.05 62.50 

Total 139.91 329.21 758.40 177.15 16.10 0.62 1421.39 46.10 

explained mostly by elevation. However, regression results lound in table 5.7 suggest that 

aspect is slightiy more important than it is for STEMP and that r 2 is notably improved by the 

inclusion of aspect and/or slope along with the vertical component. As with STEMP, the 

area-weighted mean relative humidity is calculated for the four aspect classes (table 5.8) and 

plotted as in figure 5.11. Interestingly, the south-facing slopes clearly produce significantly 

this effect is likely the direct result of changes in surface heating and therefore surrounding 

air temperature. It has been shown earlier that temperature decreases with altitude and that 

it is sensitive, at least in part, to terrain aspect. Therefore, higher temperatures on south-

facing slopes and at lower elevations result in a decreased relative humidity. Conversely, 

lower temperatures on slopes other than south-facing and at higher elevations result in an 

increased relative humidity. 
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Figure 5.10 Area-weighted mean relative humidity (%) as a function of elevation. 
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Figure 5.11 Area-weighted mean relative humidity {%) as a function of aspect. 
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Table 5.7 Relative humidity regression analysis summary. 

Independent 
Var(s) 

Dependent 
Var 

Constant SEYE* R 1 No. or 
Obs. 

DOF- X 
Coef(s) 

S E C 

Elevation RH 26.033 2.631 0.519 5782 5780 0.0107 0.000136 

Aspect RH 46.213 3.790 0.002 5782 5780 -0.0017 0.000504 

Elevation 
Aspect 

RH 26.340 2.625 0.521 5732 5779 0.0107 
-0.0019 

0.000135 
0.000349 

Elevation 
Aspect 
Slope 

RH 26.908 2.613 0.526 5782 5778 0.0102 
-0.0019 
0.0133 

0.000156 
0.000347 
0.001856 

SEYE* = Standard Error of the Y Estimate 
DOF" = Degrees of Freedom 
SEC = Standard Error of Coefficient 

Table 5.8 Areal extent of relative humidity as a function of aspect in km 2. 

Aspect 
<40 41-45 

% RH 
46-50 51-55 56-60 61-65 

Total Weighted 
IVJean -.an 

North 6.97 47.14 192.84 36.87 4.70 0.25 288.77 47.26 
East 0.02 86.41 312.44 8035 9.44 0.21 488.87 47.64 

South 134.08 138.13 25.33 2.24 0.25 0.05 300.08 40.78 
Weft 0.00 61.06 236.47 65.47 4.69 0.17 367.86 47.69 

Tot:il 141.07 332.74 767.08 184.93 19.08 0.68 1445.58 46.15 

5.2 Snowpack Accumulation/Ablation 

The modelled snowpack distribution is based on and therefore dependent upon simulated 

microclimate. As a result, shortcomings discussed in the previous section propagate through 

into this component of the model and thus affect overall accuracy. The best example of this 

is the overestimation of precipitation at higher altitudes which also results in an 

overestimation of snowpack in those areas. Fortunately, however, only 0.04 percent of the 

total basin area lies above 2600 metres which is the area of most concern (see table 3.1) for 

lower relative humidities whereas the other aspects have relatively high humidities. 
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simulation accuracy. 

5.2.1 Snowpack Monitoring 

As with the other variables, snowpack accumulation and ablation may be presented in a 

number of ways. Obviously, conditions can be depicted as daily, monthly, seasonally, and 

long-term averaged values or alternatively it may be possible to determine the appropriate 

time frame from the model output itself. Figures 5.12 and 5.13 represent the depiction of 

snowpack for a date which is chosen to be representative of spring snow conditions. Both 

show the same information, but the latter is displayed with the class at which a noticeable 

change occurs enhanced for ease of interpretation. Upon close inspection it is possible to 

detect a noticeable decrease in the snowpack depth of south-facing facets, especially in the 

western half of the basin. These areas have been enhanced in figure 5.13 so that they are 

more easily distinguished. Generally speaking, the effects of aspect are slight in the lower 

portions of the basin. However, there appears to be a critical elevation of approximately 2200 

metres where slope orientation becomes a sufficient influence to cause increased or decreased 

accumulations. The variations that do occur are in the range of 100 to 150 millimetres of 

snow water equivalent. 

Table 5.9 indicates an increase in snowpack accumulation with elevation which is logical 

given that generally precipitation is greater and temperature lower at higher altitudes. When 

the area-weighted snowpack depth is plotted against elevation as in figure 5.14, it is implied 

that elevation alone plays a major role in controlling April 1 snowpack depth. This is 

confirmed by the regression analysis results found in table 5.10 which implies no improvement 
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Figure5.12 Snowpack conditions on April 1.1971 as derived from the snowpack 
simulations. South-facing slopes indicate a lower snowpack depth 
than surrounding cells. Pixel size is 100m. 
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Figure 5.13 Snowpack conditions on April 1, 1971 as derived from the snowpack 
simulations. The 750-900 mm class has been highlighted to illustrate 
the class most noticeably affected by aspect. Pixel size is 100m. 



Table 5.9 Areal extent of April 1, 1971 snowpack as a function of elevation in km2. 

Elevation 0- 151- 301 • 451- 601- 751-
SWE 
901-

(mm) 
1051. 1201- 1351. 1501- 1651. 1801- 1951- 2101- 2251- 2501- Total 

IVclphl 
Mran 

Band 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250 2500 2700 fkm') (mm> 

I20O-14OO 38.05 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ___Q.0P 39.09 7S 99 
140I-1600 0 4 0 199.61 0.09 3.30 0.00 0.00 0.00 0 0 2 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.00 0.00 203.42 229.7.1 
1601-1800 0.00 3.40 0 0 0 362.55 7.09 0 0 0 0.00 0.00 0.00 o.oo 0 0 0 0.00 0.00 0.00 0.00 0.00 0 0 0 373 01 525.12 
I80I-2O0O 0.00 0.00 0.00 6,74 400.34 0.09 5.43 0.00 0 0 1 0 0 0 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0 0 0 41261 67f 55 
2001-2200 0.01 0.17 0.00 0.10 5.63 55.96 204.79 3.34 0.16 0.00 0.00 0.00 0.00 0 0 0 0.00 0.00 0 0 0 270.16 9 3 9 0 ( 
2201-2400 0.06 0.11 0.00 0.16 0.20 0.08 3.02 90.70 1.49 0.00 0.10 0.00 0.00 0.00 0 0 0 0.00 0.00 95.92 1119 21' 
2401-2600 0.00 0.10 0.00 0.25 0.18 0.05 0.06 0.42 20.77 0.00 0.44 0.00 0.02 0.00 0 0 0 0 0 0 0.00 22.29 125SS5 
2601-2800 0.00 0.01 0.00 0.06 0.10 0.00 0 0 3 0 0 1 0 21 0.00 3.58 0.00 0.11 0.00 0.00 0.00 0 0 0 4.11 1521.72 
3801-3000 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0 0 0 0.04 0.18 0.44 0.00 0.00 0.00 0 0 0 0.70 1742 14 
3001-3200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0 0 0 0.00 0.05 1965 00 

Tolal 204.44 0Q? 37?,?P 413.54 56,1? 2 1 3 3 3 94.49 2264 0.00 4r1f 0.1 R 0.5? 0 0 1 0 0 0 0 0 0 0 0 0 1421.19 64S U 
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R*2 = 0 997 AplSN = (1.045 *Elev) - 1292.439 

Figure 5.14 Area-weighted mean April 1, 1971 snowpack as a function of elevation. 
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Figure 5.15 shows the 1970-1980 average maximum snowpack depth derived from the 

simulations. Again, it is apparent that elevation is a key control on the occurrence of 

Table 5.10 April 1 snowpack regression analysis summary. 

Independent 
Var(s) 

Dependent 
Var 

Constant SEYE- R : No. of 
Obs. 

DOF- X 
Coef(s) 

SEC* 

Elevation Aprl Pack -1216.904 75.129 0.922 5782 5780 1.0128 0.003875 

Aspect Aprl Pack 668.919 268.94 0.0002 5782 5780 -0.0367 0.035737 

Elevation 
Aspect 

Aprl Pack -1208.498 74.960 0.922 5782 5779 1.0129 
-0.0517 

0.003867 
0.009961 

Elevation 
Aspect 
Slope 

Aprl Pack -1217.123 74.873 0.923 5782 5778 1.0214 
-0.0519 
-02024 

0.004456 
0.009949 
0.053177 

SEYE' = Standard Error of the Y Estimate 
DOF = Degrees of Freedom 
SEC = Standard Error of Coefficient 

maximum snow depth with aspect functioning as a secondary factor. The lower maximums 

in r when aspect is used in combination with elevation, but the inclusion of slope and aspect 

together do result in a slight increase. Elevation alone produces an r 2 = 0.922. 

5.2.2 Maximum Snowpack 

Maximum snowpack accumulation is a fairly reliable indicator of the amount of melt water 

that will be available during the melt period. Total annual accumulations and the timing of 

snow disappearance can be directly influenced by the depth of maximum accumlation. It is 

also indicative of the type of winter experienced in a region. Cold winters with lots of 

precipitation events will result in a substantially higher snowpack than will a warm winter 

having fewer events. 
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Figure 5.15 Average maximum snowpack conditions as derived from the snowpack 
simulations. Pixel size is 100m. 
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with respect to surrounding cells tend to form in areas of low elevation and along south-

facing slopes. These areas have shallower snowpacks because they generally experience 

warmer temperatures as a result of solar heating. Obviously, temperature differences 

influence snow accumulation and subsequent melt Although not accounted for in this model, 

wind speed and direction possibly contribute to snow redistribution after it has reached the 

ground. 

The distribution of maximum snowpack classes versus elevation is presented in table 5.11 and 

plotted in figure 5.16. Both indicate a generally positive correlation between elevation and 

maximum accumulated snowpack. Figure 5.16 shows a truly non-linear relationship between 

elevation and the area-weighted mean maximum snowpack. The curved nature of the data 

points indicates a gradual increase in maximum snow depth at lower elevations while higher 

up, depth increases more rapidly with elevational changes. Apparently, elevation is not the 

only factor in determining snowpack depth and so one is inclined to believe that other 

parameters such as aspect and slope are involved. Since precipitation inputs are controlled 

exclusively by elevation in the model, snowfall amounts alone cannot explain this 

phenomenon. The logical source of this curved relationship would then be the effects aspect 

and slope have on other snowpack processes, melt being the most obvious. The regression 

analysis results in table 5.12 demonstrate, as with the April 1 snowpack, that elevation 

explains a great deal of the distributional variation (r 2 = 0.816) and that both aspect and slope 

may be included for improved estimation. 



Table 5.11 Areal extent of 10-year average maximum snowpack as a function of elevation in km 2. 

Hcvallon 
Rand 

0- 151- 301- 451- 601 . 751-
SWE 
901-

(mm) 
1051* 1201- 1351. 1501- 1651- 1801- 1951- 2101- 2251- 2501. Tolal 

Weight 
Mean 

Hcvallon 
Rand 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1955 2100 2250 2500 2700 ftm1) (mm) 

1200-1400 39.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.09 75.00 

HOI-1600 200.12 3.28 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 203.42 77.48 

1601-1800 87.83 278.30 6 91 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 373.04 192.46 

1801*2000 0.25 91.75 315,17 5.43 0.00 0.00 0.00 0.01 0.00 0.00 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 412.61 3J3.46 

2001-2200 0.18 0.21 61.48 204.79 3.34 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0 0 0 270.16 492.54 

2301-2400 0.18 0.15 0.28 10.88 82.84 0.00 0.00 1.49 0.00 0.00 0.02 0.08 0.00 o.oo 0 0 0 0.00 0.00 95.92 663.33 

2401-2600 0.10 0.26 0.22 006 0.42 0.00 4.06 16.71 0.00 0.00 0.23 0.21 0.00 0.00 0.02 0.00 0.00 22.29 1076.21 

26M.2S00 0.01 0.06 0.10 0.03 0.01 0.00 0.00 0.21 0.00 0.02 2.62 0.94 0 0 0 0.00 0.11 0.00 0.00 4.11 1539.23 

2601-3000 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.18 0.44 0.00 0.00 0.70 1995.00 

3001-3200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.05 2430.00 

Trtliil 727.76 374,01. 221,1?.. 0.00 4.06 0.00 0.02 2.R9 . 1,25 0 0 0 0.18 0.59 0.00 0 0 3 1421.39 324.14 
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Figure 5.16 Area-weighted mean maximum snowpack as a function of elevation. 
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Table 5.12 Maximum snowpack regression analysis summary. 

Independent 
Var(s) 

Dependent 
Var 

Constant SEYE* No. of 
Obs. 

DOF* X 
Coeds! 

SEC* 

Elevation MaxPack -1122.422 92.988 0.S16 5782 5780 0.7676 0.004797 

Aspect MaxPack 313334 216.58 0.001 5782 5780 -0.0673 0.028780 

Elevation 
Aspect 

MaxPack -1109.636 92.669 0.817 57S2 5779 0.7677 
-0.07S7 

0.004780 
0.012314 

Elevation 
Aspect 
Slope 

MaxPack -1083.710 91.9S9 0.820 5782 5778 0.7423 
-0.0781 
0.6084 

0.005474 
0.012240 
0.065334 

SEYE" = Standard Error of the Y Estimate 
DOF = Degrees of Freedom 
SEC = Standard Error of Coefficient 

Figure 5.17 delineates the mean Julian date at which maximum snowpack occurs as derived 

from the simulation model There is a range between day 74 near the gauging station to day 

144 at Tornado Mountain. This means that the maximum snowpack occurs in early to mid 

March in the lower regions in the basin, while snowpack at much higher elevations reach their 

peak as late as the end of May. Table 5.13 provides total area information relating the 

fourteen day time periods to the elevation bands as well as the area-weighted mean Julian date 

for each elevation band. The general trend shown in the dispersion of data values indicates 

an increase in Julian date with increased elevation. This makes sense that snow is still 

accumulating higher up even long after maximum snow depths have been reached at lower 

elevations. Figure 5.18 illustrates that the positive relationship between elevation and the 

weighted mean Julian date is curved rather than linear with a levelling off around Julian day 

150 (late May) as annual accumulation ends and melt begins. 



Figure 5.17 1970-1980 mean Julian date at which maximum snowpack occurs. 
Contour Interval = 14 days. 
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R A2 = 0.924 MaxSNDate = (0.048 * Hlcv) + 14.594 

Figure 5.18 Area-weighted mean Julian date at which maximum snowpack occurs. 
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Table 5.13 Areal extent of date at which maximum snowpack occurs as a function of 
elevation in km2. 

Elevation 
Band 0-74 75-88 89-102 

Julian 
103-116 

Date 
117-130 131-144 >144 

Total 

Weighted 
Mean 
Date 

1200-1400 38.30 0.78 0.01 0.00 0.00 0.00 0.00 39.09 67.29 
1401-1600 80.65 91.91 29.53 1.13 0.00 0.00 0.00 203.22 77.63 
1601-1800 0.26 28.76 79.81 263.95 0.26 0.00 0.00 373.04 103.83 
1801-2000 0.00 0.11 3.15 324.49 84.30 0.56 0.00 412.61 111.78 
2001-2200 0.00 0.00 0.02 30.76 214.54 23.47 1.37 270.16 122.76 
2201-2400 0.00 0.00 0.00 0.30 34.97 51.54 9.11 95.92 133.14 
2401-2600 0.00 0.00 0.00 0.00 0.92 10.76 10.61 22.29 143.09 
2601-2800 0.00 0.00 0.00 0.00 0.00 0.61 3.50 4.11 148.92 
2801-3000 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.70 151.00 
3001-3200 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 151.00 

Total 119.21 121.56 112.52 620.63 334.99 86.94 25.34 1 4 2 U ? 107.74 

5.2.3 Snow Melt 

Of relative significance to the general timing at which maximum snowpack occurs is the 

period of snow melt. Again using the simulated data, a map of mean Julian date at which the 

snowpack disappears is developed (figure 5.19). For this map, snow disappearance is defined 

as the earliest date at which snowpack equals zero for several consecutive days. The results, 

not surprisingly, indicate that snow tends to mek earlier in the lower altitudes and tends to 

linger higher up. The actual range of values is between day 148 and day 218, mid to late May 

and late July to early August, respectively. The areal extent data presented in table 5.14 and 

figure 5.20 indicate a positive relationship between elevation and snowpack disappearance. 

As with the maximum snowpack date, the relationship between elevation and area-weighted 

Julian date is represented by a curve. The curve again levels off this time around Julian day 

222 by which time all snow has disappeared from the basin. 



Figure 5.19 1970-1980 mean Julian date at which maximum snowpack occurs. 
Contour Interval =14 days. 
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R A 2 = 0.738 NoSNDalc » (0.014 * Elcv) + 107.4-10 

Figure 5.20 Area-weighted mean Julian date at which the snowpack disappears. 



Table 5.14 Areal extent of date at which snowpack disappears as a function of elevation 
in km2. 

Elevation 
Band <14S 149-162 163-176 

Julian 
177-190 

Date 
191-204 205-21S 219-233 

Total 

Weighted 
Mean 
Date 

1200-1400 29.63 9.28 0.18 0.00 0.00 0.00 0.00 39.09 144,45 
1401-1600 2.17 149.88 50.01 1.36 0.00 0.00 0.00 203.42 158.48 
1601-1800 0.00 10.21 109.72 167.67 72.29 11.94 1.21 373.04 181.86 
1801-2000 0.00 0.00 0.51 19.29 85.43 211.21 96.17 412.61 210.00 
2001-2200 0.00 0.00 0.00 0.08 1.87 45.74 222.47 270.16 22242 
2201-2400 0.00 0.00 0.00 0.00 0.00 4.26 91.66 95.92 224.38 
2401-2600 0.00 0.00 0.00 0.00 0.00 1.04 21.25 22.29 224.35 
2601-2800 0.00 0.00 0.00 0.00 0.00 0.12 3.99 4.11 224.59 
2801-3000 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.70 225.00 
3001-3200 0.00 0.00 0.00 0.00 0.00 0,00 0.05 0.05 225.00 

Total 31.80 169.37 lvv,42 188.40 159.59 274.31 437.50 1421.39 197.05 

5.2.4 Volumetric Forecasting 

A potentially useful tool resulting from this research is the development of a technique 

whereby the total volume of snow water equivalent available for runoff may be approximated 

for any date throughout the melt season. To do this maps of the average snowpack 

conditions for each Julian day arc overlaid with a map delineating the mean date at which the 

snowpack disappears. Total volume of water equivalent held in the snowpack is determined 

for areas above the snowline for a particular Julian date. This procedure is repeated for each 

of the "snow disappearance" isochrones and a graph is created with Julian date along the x-

axis and total volume of SWE remaining along the y-axis (figure 5.21). The actual data 

values used are presented in table 5.15. It should be noted that the quantities represented in 

the graph include water which will contribute to both ground and surface water flow. This 

could be a very useful tool for forecasting the available water resources and for 

evaluating/monitoring such things as flood risk. 



SIMPLE FORECASTING TOOL 
Average Volume of SWE Held in Snowpack 
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Figure 5.21 Simple forecasting tool for approximating the average volume of snow water equivalent (SWE) held in the remaining 
snowpack per Julian date. 
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Table 5.15 Simple volumetric forecasting tool illustrating the average volume of snow­
water equivalent held in the remainining snowpack at 14-day intervals. 

Julian 
Date 

Snow Covered 
Area 
<m:) 

Mean Depth 
ofSnow 

(m) 

Volume of SWE 
Remaining 

(m') 

14-Day Melt 
Volume 

InO 

MS 1413170000 0.51635 729690329.50 

162 1242080000 0.49970 620667376.00 109022953.50 

176 1078460000 0.46067 496814168.20 1238532O7.80 

190 890060000 0.44493 396014395.80 100799772.40 

204 729950000 0.42214 308141093.00 87873302.80 

218 452100000 0.52739 238433019.00 69708074.00 
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Chapter 6 

SUMMARY AND FURTHER RESEARCH 

6.1 Summary 

A number of different data sources have been combined for this research. This non-trivial 

task is accomplished by means of Fortran programming, database management, and using a 

geographic information system (GIS). The integrated data approach to problem solving is 

crucial to projects such as this with highly variable data formats covering a large geographic 

area. Data sources used include observed meteorologic information, hardcopy maps, and 

digital elevation datasets. 

PAMAP GIS is the tool by which all spatially referenced data is assembled. PAMAP is 

capable of storing up to 64 levels of information in a single map. Each of the 64 levels can 

contain graphic elements, one database, and one surface. The graphic elements may be one 

of points, lines, or text. Databases may be stored for either points, polygons, or vectors. 

Surfaces are generally used for such single attribute data as a digital elevation model 

(elevation, slope, and aspect), but can quite easily accommodate any XYZ information. 
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A digital geographic database is created for the upper Oldman River basin in southwestern 

Alberta by way of manual digitizing from 1:50,000 national topographic series (NTS) 

mapsheets. Map layers obtained in this manner include drainage basin boundary, 

hydrographic features, and natural land cover. The basin boundary is identified on the NTS 

maps as the topological divide and then digitized into a digital map layer. Hydrographic 

features include single (small) and double-sided (large) rivers as well as lakes. Natural land 

cover is distinguished simply as the differentiation between forested and non-forested areas 

displayed on the NTS maps. 

A digital elevation model (DEM) is created from the commercially available gridded height 

data (50 metre) by importing the elevations and their corresponding UTM coordinates into 

PAMAP. Once there, the software offers a choice of three interpolation techniques to be used 

in generating a continuous surface coverage for the enure map area. For this study, the 

weighted average algorithm is used. It interpolates a pixel's value as a weighted average of 

the data points closest to the pixel. From the DEM surface, slope and aspect surfaces arc 

derived. 

Daily observed meteorologic data is available from Atmospheric Environment Service (AES) 

for many recording stations along the foothills of the Canadian Rocky Mountains. Several 

record local conditions year-round but most higher elevation sites report only for the summer 

season due to inaccessibility. As a result, very few weather stations are suitable for use and 

so snow pillows and snow courses are used. To do this, it was decided to select a period 
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during the winter when it could be assumed that "most" precipitation would be in the form 

of snow. This allows the combination of regular precipitation records with snow water 

equivalent readings from snow pillows and snow courses. 

After compilation of the digital database is complete, gridded microclimate is simulated with 

a modification of MTCLIM (Hungerford, et a/., 1989). The modified program, SIMGRID, 

is capable of simulating the daily microclimate conditions for a user-defined number of grid 

points over any period of time. SIMGRID requirements include a number of parameters 

describing both the base station and each individual grid point site. For the base station, daily 

maximum/minimum air temperature, daily total precipitation, and average isohyet are basic 

requirements. The isohyet value is obtained from the long-term daily records using simple 

summation functions. When available, daily dewpoint temperatures are used but if they are 

not, minimum night temperature has been shown to be approximately equal (Hungerford, et 

a/., 1989). The capability of including a second precipitation base is also built in to improve 

the simulations. The only terrain variable needed for the base station is its elevation. For 

each individual grid site the basic requirements include elevation, slope, aspect, east-west 

horizon angles, leaf area index (LAI), and average isohyet. The horizon angles are set to a 

constant throughout the study area as is the leaf area index. The terrain-related variables are 

derived from the GIS and the site isohyet is approximated using a crude linear regression 

between elevation and precipitation. 

The surface layers created in the GIS are produced at a one hundred metre pixel size. This 
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is sufficient to capture such mesoscale phenomena as snow distribution to wind, avalanches, 

terrain variables, and vegetation cover (Gray and Prowse, 1993). As a result of this, the 1445 

km 2 study area is represented by 144,558 pixels/grid points for each layer of information. 

Surface information layers such as the DEM, slope, aspect, and land cover arc easily exported 

to ascii files. These ascii files are related to one another using dBASE IV and FoxPro for 

Windows such that a single file containing easting, northing, elevation, slope, aspect, and land 

cover is created. First attempts at using this file as input into SIMGRID resulted in the 

program running extremely slowly. Therefore, it was decided to devise a method of grouping 

the site terrain variables to reduce the number of calculations. The range of elevations is 

grouped into ten 200m bands; aspect is grouped into four classes of 90° each; and slope is 

grouped into three classes of approximately 23° each. The combinations of the three variables 

are next simplified to produce a maximum number of distinct categories equalling one 

hundred and twenty (10*4*3 = 120). The result is a reduction in the number of points at 

which microclimate is simulated from 144,558 to 120, a drastic improvement in 

computational efficiency. Each of the 144,558 points has an associated category identifier 

which is used later for bringing simulation results back into the GIS. 

Using the simplified terrain variable categories, daily microclimatic conditions are simulated 

for the ten year period between 1970 and 1980. This time frame is chosen primarily on the 

basis of the availability of AES climate records for these times. It is also a common period 

of continuous data coverage found at each of the chosen recording stations. 
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The microclimate results appear to be very good for temperature, but less than perfect for 

precipitation. Regression analysis between simulated and observed temperatures produce un 

r = 0.94 over a one year period of daily simulations. The slope of the regression line is 0.92 

and the y-intcrcept is 0.33 which together indicate an insignificant overestimation of lower 

temperatures and a likewise underestimation at higher temperatures. Precipitation is less 

successfully modelled producing r = 0.21 for the same 365 day period. In other words, the 

model docs not estimate daily total precipitation very well in this study area. It is worth 

noting, however, that precipitation in the mountains is by nature highly variable and difficult 

to model. When similar regression analysis is carried out using monthly total precipitation, 

i 2 increases to 0.66. This is still somewhat weak, but it does at least imply that total volume 

of water over longer time scales is more successfully modelled. After all, the amount of 

available water resources is driven more by monthly and seasonal trends than by individual 

daily precipitation events. Exceptions to this rule include such catastrophic events as 

triggered the flooding of southern Alberta rivers in June 1995 when several hundred 

millimetres of rain fell on an already above average snowpack. It is also theorized that the 

crudeness of the precipitation/elevation relationship compounds the problem in weak 

simulations. Methods of improving this component are discussed in a later section. 

The grid-based microclimate is next employed in the estimation of daily snowpack conditions 

accumulation through to ablation. This is done within another program, SNOPAC, which 

operates on an adaptation of the UBC Watershed model snow melt routines (Pipes and Quick, 

1977) in conjunction with an empirically-based accumulation model (Wyman, 1995). Unlike 
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many attempts at modelling snowpack, this program carries out calculations at a 100m pixel 

resolution from the same scaled microclimate. It is, therefore, sensitive to small scale 

variations in such things as aspect and slope where slight changes in solar radiation receipt 

at the surface are detectable. Generally, previous modelling attempts provide only snapshots 

or generalized pictures of snow cover conditions. An important improvement in this model 

is the generation of a continuous temporal record from which the daily conditions may be 

extracted for any stage thoughout the simulation period. 

Regression analysis between simulated and observed snow water equivalent at several snow 

pillow sites is promising. Racehorse Creek which is at an elevation of 1920 metres produces 

an r 2 of 0.80, a y-intercept of 39.0, and a slope of 0.82 for the 1983-84 winter season (218 

days). The same site for 1988-89 results in a slight increase in the correlation statistics 

( r ^ . 9 5 , slope=0.80, y-intercept = -29.38), well within acceptable limits. The 1988-89 

simulations for Lost Creek which sits at an elevation of 2130 metres are about par with either 

of the Racehorse Creek years. R 2 is 0.89, slope increases to 1.11, and y-intercept is 5.58. 

Generally speaking, the minute changes in total snow water equivalent are well reflected in 

the simulations for both locations during the accumulation period. Problems arise around 

about the time of snow accumulation peak. In both years, Racehorse peaks are 

underestimated while the Lost Creek simulations are over. A number of causes may be at the 

root of this problem, not the least of which is the problem with estimation of precipitation at 

higher elevations. This certainly contributes more to the Lost Creek site than to Racehorse 

Creek. Alternatively, more refinement needs to be done on the melt routines used. Perhaps 
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field data will assist in the calibration of certain parameters. 

Several interesting products have resulted from this thesis work. The obvious ones include 

maps depicting average conditions for both microclimate and snowpack. There now exists 

a fine resolution average annual precipitation database covering the basin although it will be 

improved through the addition of several important factors that were previously unavailable. 

Another map has been generated for the average maximum snow water equivalent. This 

could be potentially useful for comparison type analysis in nearby watersheds. A significant 

outcome is the creation of two maps, one describing the mean date at which maximum 

snowpack occurs and the other the mean date at which the snow cover disappears. From the 

latter it was possible to derive a general relationship between Julian date and an the 

approximate total volume of water remaining for future runoff. 

6.2 Suggestions for Further Research 

Several aspects of the research methodology presented in this thesis lend themself to further 

work in hopes of refining the simulation results. Some of the suggestions to follow came 

about as a result of the findings and were not anticipated at the onset of the research design. 

Important to the practical application of this model is a refinement of the microclimate 

simulator. At present the original program, MTCLIM, has been modified to accommodate 

simulations for a user-defined number of grid points for any time period. The limiting factor 
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in the latter is. of course, the capability of the computer on which the prc>gram is run. 

Looping structures within SIMGRID are easily modified to accommodate the correct number 

of grid points and days. 

The inherent weakness of the microclimate simulator is found in precipitation estimations. 

This thesis presents a crude method of deriving site isohyet using elevation exclusively. 

Although this is not an entirely valid hypothesis, it did provide acceptable estimates so that 

model development could continue. As discussed earlier, the limited data used in creating this 

elevationally driven precipitation estimator indicated that other obvious controls on 

precipitation are statistically insignificant. This is definitely an area for further field work. 

Theoretically, the inclusion of slope, aspect, prevailing wind direction, and distance from the 

continental divide along with elevation will result in better simulations. Currently, such data 

are being collected by the Water Resources Institute at The University of Lethbridge for the 

Crowsnest basin which lies immediately south of the Upper Oldman basin. From this it is 

hoped to create an extensive climate/snow cover record representing spatially and temporally 

diverse areas. In terms of the spatial distribution of data collection, attempts arc being made 

to include both vertical as well as horizontal variation. If these field data have sufficient 

coverage, other improvements such as seasonally adjusted temperature lapse rates may be 

derived. 

Although snowpack accumulation is simulated reasonably well, there exist some shortcomings 

in snow melt routines. This certainly warrants more investigation if more accurate volume 
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estimates arc expected. The current model is fairly simplistic in terms of snow melt in that 

it is heavily reliant upon air temperature. Not taken into consideration are the affects of such 

things as the absorption of rain and surface melt into the snowpack, snow densification, the 

occurrence of rain on snow, and the re freezing of melt (Wyman, 1995). Further investigation 

is needed to identify relationships between the point melt factor and terrain variable that may 

influence it. Another possible avenue to pursue is the role winds, particularly chinooks, play 

in snow melt Certainly, such winds modify the typical vertical temperature profile as 

described by accepted lapse rates which are assumed to be consistent throughout the study 

area. 

In the absence of widely dispersed observed snow cover information, a logical extension of 

this work is to incorporate remotely sensed imagery for qualifying and quantifying the 

simulated output at more than just individual points. At the very least, areal extent of the 

snow cover can be determined and compared with simulations. Rango (1990), for example, 

describes how snow cover derived from satellite imagery is used in a snow melt-runoff model. 

Leavesley and Stannard (1990) apply remotely sensed data to a distributed-parameter 

watershed model. Wankiewicz (1990) describes an example of correlations between spring 

runoff and satellite data collected in the microwave portion of the spectrum. Forsythe (1995) 

completed a master of science thesis using an integrated data source approach for snow 

modelling within a geographic information system. One of his primary datasets includes 

LandSat Thematic Mapper (TM) imagery. Clearly, the appropriateness of satellite imagery 

in the modelling of hydrologic processes has been established. Perhaps it could used to 
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further calibrate the model presented in this thesis. 

It would be interesting to generate microclimate and snow cover maps from the regression 

equations provided in chapter 5. Using surface modelling techniques available within the GIS 

it is possible to derive these maps entirely from terrain surfaces such as elevation, aspect, and 

slope. These could be compared to the earlier simulation results as well as to data collected 

in current field projects to evaluate the potential for generating "quick looks" of the basin. 

If these proved to be acceptable, it is possible they be applied to nearby basins. 

Finally, it is hoped that the model can be used as a tool to assist in the management of water 

resources. Using the simple forecasting tool presented in the previous chapter in conjunction 

with recorded spring runoff, it may be possible to estimate runoff volumes at a given point 

in rime. These could aid in the prediction of water surpluses or deficits. An interesting task 

may be to simulate the snowpack for a series of winter seasons preceding major flood events. 

Attempts could then be made to identify warning signals, if any, of catastrophic melt events 

such as that which occurred in June of 1995. 
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Appendix A 
MTCLIM 

A.l Sample Input and Output files 

INIT.INI (INPUT) 

**.****»*««•*** MTCLIM DATA FILE FOR INITALI2AT10N DATA **•*•**' 
* Simulate Pekisko climate from Coleman & Beaver Mines to validate code 
VALIDATETP INPUT DATA FILE (Cotcman(pptl) & Beaver Mincs(ppi2)] 
VALIDATE.OUT OUTPUT DATA FILE {Pekisko) -1989 
N DEW POINT TEMPERATURE SUPPLIED [Y OR NI 
2 NO. OF PPT STATIONS [I OR 21 rF 2 THEN USE 2ISOH YETS BELOW 
N USE THRESHOLD RADIATATION [Y OR N] 
T TOTAL OR AVERAGE RADIATION [T OR Al 
Y USE YEARDAY (Julian) IN PLACE OF MONTH & DAY IY OR NI 
365 NDAYS - INTEGER VARIABLE; ALL THE REST ARE REAL 
49.6 LATITUDE OF BASE STATION {Coleman) 
1439.0 SITE ELEVATION (metres) {Pekisko) 
1341.0 BASE ELEVATION (metres) {Coleman) 
330.0 SITE ASPECT 0 to 360 degrees (0=North; 180=South) 
19.8 SITE SLOPE (Percent) 
1.0 SITE LAI (all sided) 
651.8 SITE ISOHYET (total annual prccipiution..mm) 
546.4 BASE ISOHYET STATION 1 (total annual prccipi\ation.jnm){Cmn) 
605.1 BASE ISOHYET STATION 2 (optional) Sec No. of PPT StaUons. {BM} 
0.0 SITE EAST HOREION (degrees) 
0.0 SITE WEST HORiZION (degrees) 
0.2 SITE ALBEDO (0.2 = 20%) 
0.65 TRANCF (Sea Level Atmospheric Transmissivily) 
0.45 TEMPCF (Temperature Correction for Sine Approx) 
6.4 TEMP LAPSE RATE (Dcg C/1000 m) 
8.2 LASPE RATE FOR MAXIMUM TEMPERATURE (Dcg C/1000 m) 
3.8 LAPSE RATE FOR MINIMUM TEMPERATURE (Dcg C/1000 m) 
2.7 DEW LAPSE RATE (Dcg C/1000 m) 



VAMIMTE.TP (INPUT) 

J U L I A N M A X _ T M I N _ T P P T J P P T _ 2 

1 -1.50 -25.50 0.00 0.00 
2 4.00 -9.00 0.00 0.00 
3 7.00 -4.50 11.80 2.10 
4 4.00 -2.00 19.00 22.00 
5 -3.00 -6.00 6.00 20.00 

355 -7.00 -29.00 0.00 0.00 
356 3.50 -27.50 0.00 0.00 
357 4.00 -13.50 0.00 0.00 
358 3.50 0.00 0.00 0.00 
359 6.00 1.00 0.00 0.00 
360 6.00 2.50 0.00 0.00 
361 4.00 2.50 0.00 4.00 
362 0.00 -3.50 0.00 4.00 
363 -0.50 -7.00 0.00 0.00 
364 1.00 -3.50 0.00 0.00 
365 6.00 -1.50 5.30 0.00 



VALIDATE.OUT (OUTPUT) 

MTCLIM DATA FILE FOR INITAHZATION DATA • 
* Simulate Pekisko climate from Coleman & Beaver Mines to validate code 
VALIDATE.TP INPUT DATA FILE {Coleman(ppil) & Beaver Mincs(ppl2)} 
VALIDATE.OUT OUTPUT DATA FILE {Pekisko) -1989 
N DEW POINT TEMPERATURE SUPPLIED [Y OR NJ 
2 NO. OF PPT STATIONS [1 OR 2] IF 2 THEN USE 2 1SOII YETS BELOW 
N USE THRESHOLD RADIATATION [Y OR N| 
T TOTAL OR AVERAGE RADIATION [TOR A] 
Y USE YEARDAY (Julian) IN PLACE OF MONTH & DAY IY OR N] 
365 NDAYS - INTEGER VARIABLE; ALL THE REST ARE REAL 
49.6 LATITUDE OF BASE STATION (Coleman) 
1439.0 SITE ELEVATION (metres) {Pekisko} 
1341.0 BASE ELEVATION (metres) {Coleman] 
330.0 SITE ASPECT 0 to 360 degrees (0=North; 180=South) 
19.8 SITE SLOPE (Percent) 
1.0 SITE LAI (all sided) 
651.8 SITE ISOHYET (total annual precipitation..mm) 
546.4 BASE ISOHYET STATION 1 (total annual prccipitaiion..mm)lCmn] 
605.1 BASE ISOHYET STATION 2 (optional) Sec No. of PPT Stations. {BM J 
0.0 SITE EAST HOREION (degrees) 
0.0 SITE WEST HORIZION (degrees) 
0.2 SITE ALBEDO (0.2 = 20%) 
0.65 TRANCF (Sea Level Atmospheric Transmissivity) 
0.45 TEMPCF (Temperature Correction for Sine Approx) 
6.4 TEMP LAPSE RATE (Dcg C/1000 m) 
8.2 LASPE RATE FOR MAXIMUM TEMPERATURE (Dcg C/1000 m) 
3.8 LAPSE RATE FOR MINIMUM TEMPERATURE (Dcg C/1000 m) 
2.7 DEW LAPSE RATE (Dcg C/1000 m) 

JDAY RADIATION STEMP MAXT MINT RH PPT 
KJ/M**2 C C C % mm 

1 2591.13 ^4. -26. 27. .00 
2 625.87 -1. 2. -9. 55. .00 
3 534.57 2. 5. -5. 61. 8.17 
4 220.98 1. 2. _2. 81. 23.18 
5 220.98 -6. -5. -6. 95. 14.35 

355 2711.63 -15. -10. -29. 29. .00 
356 2733.09 -7. 1. -28. 18. .00 
357 1294.63 -3. 2. -14. 42. .00 
358 88.87 1. 2. -0. 93. .00 
359 88.87 3. 4. 1. 86. .00 
360 88.87 3. 4. 2. 93. .00 
361 88.87 2. 2. 2. 99. 2.15 
362 88.87 -3. -2. -4. 92. 2.15 
363 88.87 -4. -2. -7. 78. .00 
364 88.87 -2. -1. -4. 88. .00 
365 146.47 2. 4. -2. 75. 3.16 
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PROGRAM SIMGRID 
CM LAST MODIFIED [MM-DD-YY]: 01-02-96 
CM SIMGRID 
CM VERSION 1.0 6-13-95 
CD THIS PROGRAM PREDICTS MICROCLIMATE CONDITIONS FOR A GRID OF POINTS 
CD IN MOUNTAINOUS TERRAIN GIVEN BASE STATION METEOROLOGICAL DATA, PLUS 
CD SITE AND BASE STATION CHARACTERISTICS. 
CD 
CD 
CVF SIMGRID FILES/VARIABLES 
CVF 'IFILE':FILE CONTAINING BASE AND SITE DESCRIPTIONS - SEE "READMRDOC 
CVF CODE BELOW DESCRIBES SOMEOFTHE FILES FORMAT. 
CVF BFILE: INPUT- BASE STATION CUMATE DATA 
CVF FILE STRUCTURE: 1 LINE PER RECORD IN FREE FORMAT 
CVF THE ORDER OF VARIABLES IS FOUND IN SUBROUTINE BREAD. 
CVF GFILE: INPUT GRID POINT DATA FILE. 
CVF SFILE: OUTPUT- SIMULATED SITE CLIMATE FILE 
CVF WRITTEN IN FORMATTED OUTPUT AT END OF PROGRAM SIMGRID 
CVF INFILE: INTEGER FILE UNIT NUMBER CONNECTED TO BFILE 
CVF 
CVI SITE VARIABLES: 
CVI SLAT: SITE LATITUDE 
CVI SELEV: SITE ELEVATION IN METERS 
CVI SASPCT: SITE ASPECT DEGREES 
CVI SSLOPE: SITE SLOPE % 
CVI SLA1: SITE LEAF AREA INDEX (ALL SIDES) 
CVI SISOH: SITE ISOHYET 
CVI SALBDO: SITE ALBEDO % 
CVI SEHORZ: EAST-HORIZON 
CVI SWHORZ: WEST HORIZON 
CVI SFILE: FILE NAME FOR OUTPUT OF MICROCLIMATE OFTHE SITE 
CVI 
CVI BASE VARIABLES: 
CVI BELEV: BASE ELEVATION IN METERS 
CVI BISOH: BASE ISOHYET 
CVI BMAX: BASE MAX TEMPERATURE, CELSIUS 
CVI BMIN: BASE MIN TEMPERATURE, CELSIUS 
CVI BPPT: BASE PRECIPITATION OF STATI0N(S), 1 OR 2 ARE SUPPORTED 
CVI BFILE: NAME OF THE FILE CONTAINING BASE STATION MET DATA 
CVI 
CVI PARAMETERS: 
CVI TLAPSE: LAPSE RATE FOR AIR TEMPERATURE 
CVI DLAPSE: LAPSE RATE FOR DEW POINT TEMPERATURE 
CVI MAXLAP: LAPSE RATE FOR MAX TEMPERATURE 
CVI MINLAP: LAPSE RATE FOR MIN TEMPERATURE 
CVI NDAYS: ff OF DAYS TO BE SIMULATED 
CVI MLAI: MAXIMUM LEAF AREA INDEX, ASSUMED TO BE 10 
CVI 
CVO OUTPUT VARIABLES: 

A.2 SIMGRID FORTRAN Code Listing 



CVO SRAD: SITE INCIDENT RADIATION 
CVO STEMP: DAYLIGHT AVERAGE AIR TEMPERATURE FOR THE SITE 
CVO SMIN: NIGHT MINIMUM TEMPERATURE FOR THE SITE 
CVO SMAX: MAXIMUM TEMPERATURE FOR THE SITE 
CVO SHUMD: DAYLIGHT AVERAGE RELATIVE HUMIDITY FOR THE SITE 
CVO SPPT: PRECIPITATION AT THE SITE. CM 
C 

REAL BMAX,BMIN,BDEW,SELEV,SLAT,SASPCT,SSLOPE 
REAL B1S0H(2),BPPT(2).TRAN(365) 
REAL SlSOH,SEHORZ,SWHORZ,SLAl,MLAI,SALBDO 
REALSARAD,FARAD,TLAPSE1DLAPSE,SRAD.FRAD.MAXLAP,M1NLAP 
REAL BELEV, TRANCF,TEMPCF,SMIN,SMAX,SHUMD.SPPT,STEMP 
CHARACTERS ANS0,ANS1.ANS2,ANS3,ANS4 
CHARACTER *12 SFILE,BF1LE(IF1UE,GFILE 
INTEGER INF1LE 
INTEGER ND AYS.NPPT4 J DAY,FLAG,NPIX,P,CAT,SYEAR,YR 
LOGICAL USEJD. USEENG, USEDEW, USETOT, USETHR 

C MAX LAI IS SET TO 10.0 
DATA MLAI/10.0/ 

C BEGIN 
wrT5c*;(////////////////)') 
WRiTE(V) * SIMGRID VI.0* 
WR.TE(*,*)' //////////AWWWW 
WRITE(V)" 
WRTTE(*,*)' Mountainous Terrain Miaoclimatc Simulator' 
WRITEC*,*)1 Copyright 1995.' 
WRITE(V)'' 
WRITE(*,*)'' 
WRTTE(*,*)' * SIMGRID needs an Initialization file describing* 
WRITEC*,*) * the Sites and Base Station.' 
WRTTEC*,*)'1 

WRITE( V ) ' ' 
WRTTEC*,*)'' 
WRITEC*,*)" 
WRTTEC*,*)'* 
WRTTE(*,*) "Enter the Initialization file name Cic. SIMGRID.INI):' 
WRTTEC*,*)" 
READ(*,90)IFILE 

90 F0RMAT(1A12) 

C FORMAT FOR SIMGRID.INI IS 1 VALUE FOLLOWED BY COMMENTS, PER LINE 
C REAL VALUES IN COLUMNS 1 TO 12, COMMENTS FROM 13 ONWARD. 
C READ 1 VARIABLE PER LINE BY REUSING F12.0 FORMAT STATEMENT 

OPENajrTLEsIFILE.STATUS^OLD') 
READCU00) BFTLE,GF1LE,SF1LE 

100 FORMAT(/y,A12y,Al2yA12) 

C QUESTIONS NOW ANSWERED IN THE SIMGRID.INI FILE. 
C 'DO YOU HAVE DEW POINT TEMPERATURE (Y OR N) ?*) 

READfJ.l) ANS0 
C 'HOW MANY PRECIP STATIONS CI OR 2) ?*) 



READT7.-) NPPT 
C 'DO YOU WANT THRESHOLD FOR RADIATION (Y OR N) ?") 

READC7J) ANSI 
C 'DO YOU WANT TOTAL RAD OR AVERAGE RAD (TOR A) ?') 

READC7.0 ANS2 
C 'USE YEAR DAYfJUL IAN DAY) IN PLACE OF MONTH, DAY (Y OR N) ?' 

READ(7,!) ANS4 
1 F0RMAT(1A1) 

CTEMP USEENG=(ANS3 .EQ. 'E' .OR. ANS3 .EQ. 'E) 
USEDEW=(ANSO .EQ. 'Y' .OR. ANSO .EQ. "Y") 
USETHR=(ANS1 .EQ. 'Y' .OR. ANSI .EQ. 'Y") 
USETOT=(ANS2 .EQ. T .OR. ANS2 .EQ. T ) 
USEJD=(ANS4 .EQ. 'T .OR. ANS4 .EQ. T) 

READC7,*) NDAYS 
101 FORMAT(FIZ0) 

READ(7.10I) SLAT.BELEV.SLAI 
READ(7.10I)BISOH(1).BISOH(2),SEHORZ,SWHORZ,SALBDO 
READ(7,10I) TRANCF,TEMPCF,TU\PSE,MAX1.AP,MIKLAP 
READ(7.*) NPIX 
READ(7,*) SYEAR 
CLOSE(7) 

C COMPUTE ATMOSPHERIC TRANS MISSrVITY 
INFILE = 8 
CALL TRANSM(INHLE,SELEV,TRAN,BFILE,NDAYS,TRANCF, 
1 USEDEW.USEENG.NPPT.USEJD) 

C INITIAL E E OUTPUT FILE 
0PEN(1NF1LE,F1LE=BHLE,STATUS='0LD') 
OPEN(10,FlLE=GFu^E,STATUS='OLD') 
OPEN(9.FILE=SFILE,STATUS='UNKNOWN0 

C LOOP FOR NPIX 
D 0 22P=1,NPIX 

201 F0RMAT(I8,4F93) 
YR=SYEAR-1 
READ(10,201)CAT,SELEV,SSLOPE,SASPCTtSISOH 
PRINT*,CAT,SELEV,SSL0PE,SASPCT,S1S0H 

C LOOP FOR NDAYS - COMPUTE AND PRINT MICROCLIMATE 
DO 11 J=1,NDAYS 

C ECHO NDAYS TO SCREEN. 
PRTNTV 
CALL BREADaNFILEJDAY,BMAXBMlN.BDEW3PPTaNPPT, 

1 USEDEW.USEENG.USEJD) 
C THE VARIABLE FLAG IS SET TO 1 FOR SLOPED TERRAIN; FLAT TO 0 

FLAG=1.0 
CALL RAD (SLAT,SASPCT,SSLOPEJDAY,SEHORZ,SWHORZ,TRAN, 

1 SAI3DO.SRAD^ARAD,FLAG,USETHR,USETOT) 
FLAG=0 
CALL RAD (SLAT,SASPCT,SSL0PEJDAY,SEH0R2,SWH0RZ,TRAN, 

I S ALBDO,FRAD,FARAD,FLAG ,USETHR,USETOT) 
CALL TEMP (BMAX,BM1N,SELEV3ELEV,SLALMLALSARAD,FARAD. 
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1 TLAPSE,TEMPCF,M AXLAP.MINLAP.STEMP.S M1N.SM AX) 
CALX HUMD (BDEW,DLAPSE,STEMP.SELEV,BELEV,SHUMD) 
IF(SHUMD .GE. 100.0) SHUMD=99.0 
CALL RAIN (NPPT,BPPT,BlSOH.SISOH,SPPT) 

CTEMP YR=SYEAR 
1F(JDAY .EQ. 1) YR=YR+1 
CALL WRITE9(CAT,YRJDAY,SRAD,STEMP,SMAX.SMIN.SHUMD.SPPT) 

11 CONTINUE 
WRlTE(*,*)*Pixcl '.P.' of '.NPIX,' complete....: 
REW1ND(S) 

22 CONTINUE 
STOP 
END 

C ***** END MAIN PROGRAM ***** 

CC SUBROUTINE: TRANSM - COMPUTES TRANSMlSSIVrTY FOR EACH DAY BASED ON 
CC BRISTOW, K l . AND G.S. CAMPBELL 1984 ON THE 
CC RELATIONSHIP BETWEEN INCOMING SOLAR RADIATION 
CC AND DAILY MAXIMUM AND MINIMUM TEMPERATURE. 
CC AGRIC. FOR. METEOROL. 31,159-66 
CD 
CD ORIGINAL CODE WRITTEN BY R.K. NEMANI 
CD REWRITTEN BY J. C COUGHLAN ON 4-1-89 (MTCLIM) 
CD MICROSOFT FORTRAN VERSION 4.1 IN STANDARD, TRANSPORTABLE FORTRAN 
CD 
CV PARAMETERS 
CVF FILES: 
CVF INFfLE :UNIT NUMBER FOR BASE STATION CLIMATIC INPUT FILE 
CVI INPUT: 
CVI SELEV :SITE ELEVATION IN METERS 
CVI BFILE :INPUT FILE NAME OF BASE STATION MET. DATA 
CVI NDAYS :TOTAL NUMBER OF DAYS TO SIMULATE 
CVI USEDEW :FLAG TO DEW POINT PRESENT IN BFILE 
CVI NPPT :NUMBER OF PREC STATIONS IN BFILE 
CVO OUTPUT: 
CVO TRANCF :CLEAR SKY TRANSMISSrVITY AT SEA LEVEL 
CVO TRAN -.ATMOSPHERIC TRANSMlSSIVrTY ARRAY 
CVI 
CVL LOCAL VARIABLES 
CVL TAMP :TEMPERATURE AMPLITUDE 
CVL DRAIN :RAINY DAYS 
CVL CLTRAN-.CLEAR SKY TRANSMlSSrVITY 
CVL XTRANS:ACTUAL TRANSMlSSIVrTY 
CVL TRANCF:SEA LEVEL CLEAR SKY TRANS (D.M.GATES 1980 BIOPHYSICAL ECOLOGY) 
CVL PCTRAN:% TRANSMITTANCE OF CLEAR SKY POTENTIAL. TEMP AMP OF 20 = 100% 
CVL PPTMIN:M1N PPT FOR REDUCING ATMOSPHERIC TRANS (CM) 
CVL TRANMN:(CONSTANT) MINIMUM TRANSMITTANCE IN % 
CVL J DAY : YEARDA Y FROM INPUT FILE 
CVL JDAY1JIRST DAY IN THE INPUT RLE 
CVL JDAYL :LAST DAY IN THE FILE 
CVL KDAY :POINTER TO ARRAYS REFERENCED BY YEARDAY 



CD 

C RAINY DAY CORRECTIONS 
IF (BPPT .GT. PPTMIN) THEN 

SUBROUTINE TRANSM (rNFILE,SELEV,TRAN,BRLE,NDAYS,TRANCF. 
1 USEDEW,USEENG,NPPT,USEJD) 
REAL AMP(366).DRAIN(366).TRAN(366) 
REAL S ELE V.TRANCF 
LOGICAL USEDEW.USEENG 
CHARACTER *12 BFILE 
INTEGER NPPT. LNFILE, NDAYS 
LOGICAL USEJD 

REAL BPPTA(2), BPPT.BMAX,BMIN,BDEW,BMAX1 .BMINl ,BPPT1 TAMP 
REAL DIFF.CLTRAN, PCTRAN.XTRANS 
REAL PPTMIN, TRANMN 
INTEGER K,KDAYJDAYJDAYUDAYL,I,MJ 

C CONSTANTS 
DATA PPTMIN/0.254/ 
DATA TRANMN/0.1/ 

C BEGIN 
K=0 
KDAY=0 
OPEN(INHLE,RI-E=BFILE,STATUS='OLD*) 
REWIND(INFILE) 

C READ FOR THE 1 ST DAY TO LNITIALIZE THE LOOP 
CALL BREADGNFILEJDAY,BMAX,BMIN,BDEW3PPTA,NPPT, 
1 USEDEW.USEENG.USEJD) 
LF (NPPT JEQ. 2) THEN 

BPPT = (BPPTA(l) + BPPTA(2)) / 2 
ELSE 

BPPT=BPPTA(1) 
END IF 

C MAKE NOTE OF THE FIRST DAY 
JDAY1 =JDAY 

C READ TO OBTAIN TEMP AMPLITUDE 
D012J=1,NDAYS-1 

CALL BRRAD0NFILE,KDAY3MAX13MIN1,BDEW3PPTAJ*IPPT, 
1 USEDEW.USEENG.USEJD) 

IF (NPPT .EQ. 2) THEN 
BPPT1 = (BPPTA(l) + BPPTA(2)) / 2 

ELSE 
BPPT1 =BPPTA(1) 

END IF 

C COMPUTE AMPLITUDE 
TAMP = BMAX - ((BMIN + BMINl)/2.) 



K=K+1 
DRAIN(K) = JDAY 
TAMP = TAMP* 0.75 

END IF 

C SWITCH THE VALUES FROM J+l DAY TO J 
AMP(JDAY) = TAMP 
JDAY = KDAY 
BMAX = BMAX1 
BMIN = BMINl 
BPPT=BPPT1 

12 CONTINUE 

JDAYL = JDAY 

C EXCEPTION FOR THE LAST DAY 
121 TAMP = BMAX-BMIN 

IF (BPPT .GT. PPTMIN) TAMP = TAMP*0.75 
AMP(JDAY) =TAMP 

C CORRECT AMPL VALUES FOR P RE-RAINY DAYS 
DO 30 I=1,K 

KDAY = DRALN(I) 
C CANNOT CORRECT THE 1 ST AND 2ND DAY SO SKIP 

IF ((KDAY-2) .GE. JDAY1) THEN 
DIFF = AMP(KDAY-2) - AMP(KDAY-l) 
IF (DEFF.GE.2.0) AMP(KDAY-1) = AMP(KDAY-i) * 0.75 

ENDEF 
30 CONTINUE 

C COMPUTE CLEAR SKY TRANSMITTANCE AT SITE (GATES 1980) 
CLTRAN = TRANCF+ SELEV * 8.0E-5 
CLTRAN = AMIN1(CLTRAN,1.0) 

C COMPUTE TRANSMISSIVITY FOR EACH DAY (BRISTOW AND CAMPBELL 1984) 
DO 40 M = JDAY1, JDAYL 
PCTRAN = (1 - EXP(-0.003*(AMP(M)**2.4))) 
XTRANS = CLTRAN * PCTRAN 
TRAN(M) = AMAX1 (XTRANS.TRANMN) 

40 CONTINUE 

C REWIND FILE 8 TO USE AGAIN 
REWIND(8) 
CLOSE (8) 
RETURN 
END 

CC SUBROUTINE: RAD - COMPUTES INCIDENT SHORTWAVE RADIATION AND 
CC NET SHORTWAVE RADIATION FOR ANY GIVEN DAY 
CC BASED ON SURFACE CHARACTERISTICS, SUN-EARTH 
CC GEOMETRY, AND TRANSMISSIVITY. 
CD 



CD DO LOOP MODIFIED BY DENNIS SHEPPARD 6-02-95 TO INCREASE THE 
CD COMPUTATIONAL EFFICIENCY. 
CD 
CD VALIDATED TO BUFFO BY JCC ON 4-19-89 
CD ORIGINAL CODE WRITTEN BY R. K. NEMANI 
CD REWRITTEN BY J. C. COUGHLAN ON 4-1-89 (MTCLIM) 
CD MICROSOFT FORTRAN VERSION 4.1 IN STANDARD, TRANSPORTABLE FORTRAN 
CD 
CV VARIABLES 
CVI INPUT 
CVI SLAT: SITE LATITUDE DEGREES 
CVI SASPECT:SITE ASPECT % 
CVI SSLOPESITE SLOPE % 
CVI JDAY: CURRENT YEARDAY 
CVI SEHORZSITE EAST HORIZON IN DEGREES FROM 0 
CVI SWHORZ:SrrE WEST HORI IN DEGREES FROM 0 
CVI TRAN:TRANSMISSIVITY ARRAY % 
CVI ALBDO:SITE ALBEDO % 
CVI FLAG:1 MEANS SLOPING TERRAIN, 0 MEANS FLAT SURFACE 
CVI USETHR:THRESHOLD RADIATION OF 70 W/M*2 
CVI USETOT:TOTAL RADIATION IF = TO T KJ/MA/DAY 
CVI ELSE DAYLIGHT AVERAGE W/M f t2 
CVO OUTPUT: 
CVO ARAD:ABSORBED RADIATION, W/M2 
CVO RADN:INCIDENT RADIATION W/M2 
CV 
CVL LOCAL VARIABLE LIST: 
CVL SOL =S0LAR CONSTANT DERIVED FROM SOLCON ARRAY 
CVL AM =OPTICAL AIR MASS FOR ANGLES > 21 DEGREES 
CVL A =OPTICAL AIR MASS ARRAY FOR ANGLES BETWEEN 
CVL 0 AND 21 DEGREES ABOVE HORIZON 
CVL DECL =DECLIN AT10N 
CVL JDAY =DAY OF YEAR 
CVL ASP =ASPECT IN DEGREES 
CVL DSLOP =SLOPE IN DEGREES 
CVL H = ANGLE OF SUN FROM SOLAR NOON 
CVL TRAN =TRANSMISSIVITY CONSTANT 
CVL TRAM =TRANSMlSSrVlTY CORRECTED FOR AIR MASS 
CVL NNH CALCULATION INTERVAL IN SECONDS. 600= 10 MINUTES 
CVL NC =SECONDSINONEDAY(24HOURS) 
CVL N =NUMBER OF INTERVALS OF LENGTH NNH IN ONE DAY 
CVL DT =DIRECT SOLAR PERPENDICULAR TO SUN ON THE 
CVL OUTSIDE OF ATMOSPHERE FOR INTERVAL (KJ/M**2) 
CVL ETF =DIRECT SOLAR ON OUTSIDE OF ATMOSPHERE 
CVL PARALLEL TO EARTHS SURFACE FOR INTERVAL 
CVL GRAD =TOTAL DAILY RADIATION AT GIVEN LOCATION (KJ/M**2) 
CVL HRAD =DIRECT SOLAR ON EARTHS SURFACE (FLAT) " 
CVL TDIF =TOTAL DAILY DIFFUSE RADIATION 
CVL DIFRAD=DIFFUSE ON SLOPE FOR INTERVAL 
CLL DRAD =DIRECT ON SLOPE FOR INTERVAL 
CVL CZA =COSINE ZENITH ANGLE 
CVL CBSA =COSINE BEAM SLOPE ANGLE 



CVL GLOBF =GLOBAL RADIATION. DETERMINING DIFFUSE 
CVL DIFFL =DIFFUSE ON FLAT FOR INTERVAL 
CVL DAYL =DAYLENGTH (HOURS) 
CVL ALBDO =ALBEDO 
CVL 

SUBROUTINE RAD(SLAT,SASPCT,SSLOPEJDAY,SEH0R2.S\VH0RZ,TRAN, 
1 ALBDO,RADN,ARAD.FLAG,USETHR.USETOT) 
INTEGER FLAG 
REAL SLAT.SASPCT.SSLOPE.SEHORZ.SWHORZ 
REAL ALBDO.ARAD.RADN 
REAL DEC(46).SOLCON(l 2).A(2l ).TR AN(365) 
LOGICAL USETHR,USETOT 

C LOCAL VARIABLES 
INTEGER NNH,NC,N,MO,IDEC,NH,K,ML 
REALCONV,X,ASP,DLAT,SLOPE,DSLOP,XTRAN,DECLGRAD.TDIF 
REALCOSDECUCOSDSLOP,COSDLAT.SLNDECL,SINDSLOP,SLNDLAT 
REAL DAYL2>DH,CZA,HAMTTRAM,DT,ETF,HRADtGLOBF,DlFFL,CBSA 
REAL DRAD,SE,DIFRAD,RADT,AVERAD.DAYL,SOL,TDRAD 

C CONSTANTS 
DATA A/2.90,3.05,3.21,339,3.69,3.S2,4.07,4.37,4.72,5.12 
1 ^.60,6.18,6.88,7.77,8.90,10.39,12.44,15.36,19.79,26.96 
230.00/ 
DATA DEC/-23.-22..-21 „-19.,-17.,-l 5.,-l 1.-9..-6..-3. 
10.,3..6.,9.,1Z,14,17.,19^2U22^23.,23.5,234,23., 
221.5.20..18..16.,14.,1 Z.9.,6.3.,0.,-3.,-6.,-9.,-12., 
3-lS.,-l7.,-19.,-2U-22«-23.,-23.5,-23.S/ 
DATA SOLCON/1.445,1.431,1.410,1.389,1.368,1.354,1354 
1,1375,1.403,1.424,1.438.1.445/ 

C FUNCTIONS 
C CONVERSION STATEMENT FUNCTION FOR DEGREES TO RADIANS 

CONV(X)=X/57.296 
C BEGIN 
C SET THE SLOPE & ASPECT VALUES DEPENDING ON THE FLAG VALUE 

IF (FLAG-GT.0) THEN 
ASP=CONV(SASPCT) 
SLOPE=SSLOPE 

ELSE 
ASP=0 
SLOPE=0 

ENLIF 
C 
C CONVERT PERCENT SLOPE TO DEGREES AND TO RADIANS 

DLAT=CONV(SLAT) 
DSLOP=ATAN(SLOPE/100.)*57.29 
DSLOP=CONV(DSLOP) 
XTRAN=TRAN(JDAY) 
NNH=600 
NC=86400 
N=IFIX(NC/NNH+1.) 
DAYL=0. 
MO=IHX(JDAY/30.+1.) 
EF(MO.GT.12)MO=12 



C SOI.CON AkKAY IS IN UNITS OF K W / M " 2 
SOL=SOLCON(MOj 
lDEC=tFlX(l.+JDAY/X.) 
DECL=CONV(DF.C!lPE-'C)) 
GRAD=0. 
TDIF=0. 
TDRAD=0. 
N1M) 
DAYL2=0. 

C 
C PERFORM TRIGONOMETRIC FUNCTIONS OUTSIDE OF "DO LOOP" TO 
C SAVE TIME - DENNIS SHEPPARD. 
C 

COSDECL=COS(DECL) 
COSDSLOP=COS(DSLOP) 
COSDLAT=COS(DLAT) 
SINDECL=SIN(DECL) 
SINDSLOP=SlN(DSLOP) 
SIN DLAT=S 1N( DLAT) 

C 
C DO LOOP INCREMENTS 10 MINUTES, STOPS AFTER 24 HOURS 

DO 11 K=1,N 
NH=NH+NNH 

C DETERMINE ANGLE FROM SOLAR NOON 
DH=(NH^3200)\0041667 
H=CONV(DH) 
CZA=COSDECL*COS((DLAT))*COS((H))+SIN(CDECL)) 
1 *SIN((DLAT)) 

IF(CZA.GT.0.)THEN 
C DAYLENGTH BASED ON SOLAR ELEVATION ABOVE A FLAT HORIZON 

DAYL2=DAYL2+(NNH/3600.) 
C NEXT 6 LINES, DETERMINE OPTICAL AIR MASS 

AM=iy(CZA+.0000001) 
IF(AM.GT.Z9) THEN 

ML==IFIX(ACOS(CZA)/.0174533)-69 
IF(M1_LT.1)ML=1 
IF(ML.GT.21)ML=21 
AM=A(ML) 

ENDIF 
TRA M=XTR AN * * AM 
DT=SOL*NNH 
ETF=CZA*DT 
HR AD=ETF*TRAM 
DT--DT*TRAM 
G LOBF=SQRT(H RAD *ETF) 
DIFFL=GLOBF*(l .-GLOBF/ETF) 
CBSA=-SINDSLOP*SINCASP)*SINCH) 

1 *COSDECL-K-CCS(ASP)*SINDSLOP 
2 *SINDLAT+COSDSLOP*COSDLAT) 
3 *COSDECL*COS(HWCOS(ASP)*SINDSLOP 
4 *COSDLAT+COSDSLOP*SINDLAT) 



5 -S1NDECL 
1F(CBSA.GE.0.)THEN 

DRAD=CBSA"DT 
C THE FOLLOWING THREE LINES COMPUTES A TOPOGRAPHIC REDUCTION OF 
C DIRECT RADIATION 
C EHE = EAST HORIZON ELEVATION (DEGREES) 
C WHE = WEST HORIZON ELEVATION (DEGREES) 

SE=1.57-ACOS(CZA) 
IF(DH.LT.0..\ND.SE.LT.CONV(SEHORZ))DRAD=0. 
IF(DH.GT.0.AND.SE.LT.CONV(SWHORZ))DRAD=0. 

ELSE 
DRAD=0 

END IF 
C 

DIFRAD=DIFFL*(COS((DSLOP*.5))**2.) 
RADT=(DRAD+DIFRAD)/FLOAT(NNH) 

C THE FOLLOWING PROVIDES A MINIMUM RADIATION THRESHOLD OF 
C 70 W/M"2 (0.1 LY/MIN) FOR DAYLENGTH AND RADIATION SUMMATION. 

IF(USETHR) THEN 
IF(RADT.GT.0.07) THEN 

DAYL = DAYL + (NNH/3600.) 
GRAD = GRAD + DRAD + DIFRAD 
TDLF = TDIF + DLFRAD 
TDRAD = TDRAD + DRAD 

END IF 
ELSE 

DAYL = DAYL + (NNH/3600.) 
GRAD = GRAD + DRAD + DIFRAD 
TDLF = TDIF + DIFRAD 
TDRAD = TDRAD + DRAD 

END IF 
ENDIF 

11 CONTINUE 
IF(USETOT) THEN 

RADN = GRAD 
ARAD = RADN • (1- ALBDO) 

ELSE 
AVERAD=(GRAD/(DAYL*3600.)) 

C CONVERT KW/M**2 TO W/M**2 
RADN = AVERAD * 1000.0 . 
ARAD = RADN - (1 -ALBDO) 

ENDIF 
RETURN 
END 

CC SUBROUTINE: TEMP - COMPUTES SITE DAYLIGHT AVERAGE TEMPERATURE, 
CC AND SITE MAX & MLN TEMPS BASED ON BASE STATION 
CC DATA AND THEN CORRECTS IT FOR ELEVATION, SLOPE, 
CC AND ASPECT. 
CD 
CVI PARAMETER LIST 
CVI 



CVI INPUT: 
CVI BMAX :BASE STATION MAX TEMP 
CVI BMIN :BASE STATION MIN TEMP 
CVI SELEV :SITE ELEVATION IN METERS 
CVI BELEV : BASE ELEVATION IN METERS 
CVI SLAI :SITE LAI (ALL SIDES) 
CVI MLAI :MAX1MUM LAI (ALL SIDES) FOR SIMGRID ALGORITHMS 
CVI SARAD :SITE RADIATION KJ/MA2/DAY 
CVI FARAD :FLAT SURFACE RADIATION AT SITE KJ/MA2/DAY 
CVI TLAPSE .LAPSE RATE FOR DAYUGHT AVE TEMP C/1000M 
CVI TEMPCF CONSTANT FOR DAYLIGHT AVE. TEMP (RUNNING ET.AL. EQ. 1) 
CVI MAXLAP :LAPSE RATE FOR MAX TEMPS C/1000M 
CVI MINLAP:LAPSE RATE FOR MIN TEMPS C/IOOOM 
CVO OUTPUT: 
CVO STEMP :SITE DAYLIGHT AVE TEMP C 
CVO SMIN :SrTE MIN TEMPC 
CVO SMAX :SITE MAX TEMPC 
CVL 
CVL LOCAL VARIABLE LIST 
CVL MLAPSE: LAPSE RATE FOR NIGHT MTN TEMPERATURES 
CVL DAYLT: DAYUGHT AVERAGE TEMPERATURE 
CVL TSYNOP: SYNOPTIC TEMPERATURE AT THE SITE 
CVL RADRAT: RATIO OF FLAT AND SLOPE RADIATION 
CVL TADD: TEMPERATURE INCREMENT FOR SOUTH SLOPES 
CVL TSUB: TEMPERATURE DECREMENT FOR NORTH SLOPES 
CVL MLAI: MAXIMUM LAI (ALL SIDES) 
C 

SUBROUTINE TEMP (BMAX,BMIN,SELEV,BELEV,SLALMLAI,SARAD, 
I FARAD,TLAPSE,TEMrcF,MAXLAP.MJNLAP,STEMP,SMIN,SMAX) 

REAL BMAX, BMIN, SELEV, BELEV, SLAI, MLAI, SARAD, TEMPCF 
REAL FARAD, TLAPSE, MAXLAP, MINLAP.STEMP, SMIN, SMAX 

C LOCAL VARIABLES 
REAL LA I,TMEAN 
REAL DAYLT,DELEV,TSYNOP,RADRAT,TSUB,TADD 

C IF SITE LAI > MAX LAI THEN USE MAX LAI IN EQUATIONS BELOW 
IF (SLAI .GT. MLAI) THEN 
LAI = MLAI 

ELSE 
LAI = SLAI 

ENDIF 
C COMPUTE DAYLIGHT AVERAGE TEMP 

TMEAN= (BMAX+BMIN)/2.0 
DAYLT= ((BMAX-TMEAN) TEMPCF) + TMEAN 

C CORRECT FOR LAPSE RATE 
DELEV = SELEV-BELEV 
TSYNOP = DAYLT - TLAPSE * (DELEV/1000.0) 
SMIN = BMIN - (DELEV/1000.0 * MLNLAP) 
SMAX = BMAX - (DELEV/1000.0 * MAXLAP) 

C COMPUTE THE RATIO OF SLOPE AND FLAT RADIATION 
RADRAT = SARAD/FARAD 
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C ADJUST SYNOPTIC TEMP TO OBTAIN SLOPE TEMP 
C ADDITIONS MADE ON 10/SS TO ADJUST MAX TEMPS TO RADIATION. 
C NOT VALIDATED BY LITERATURE. 
C NOT ADJUSTING MINIMUM TEMPERATURE BECAUSE LONGWAVE NIGHT ADJUSTMENT. 
C 

IF (R A DRAT.LT. 1.0) THEN 
TSUB=((1/RADRAT)*(1+(LAI/MLA1))) 
STEMP = TSYNOP - TSUB 
SMAX = SMAX-TSUB 

ELSE 
TADD= (RADRAT* (HLAI/MLAI))) 
STEMP = TSYNOP + TADD 
SMAX = SMAX + TADD 

ENDIF 
RETURN 
END 

CC SUBROUTINE: HUMD - COMPUTES RELATIVE HUMIDITY BASED ON BASED 
CC ON BASE STATION DEW POINT. 
CD 
CVI PARAMETERS 
CVI INPUT: 
CM BDEW :BASE STATION BEW POINT C 
CVI DLAPSE:DEW POINT LAPSE RATE 
CVI STEMP :DAYLIGHT AVE. TEMP. LAPSE RATE 
CVI SELEV :SITE ELEVATION IN METERS 
CVI BELEV :BASE ELEVATION IN METERS 
CVO OUTPUT: 
CVO SHUMD :SITE HUMIDITY % 
CVL 
CVL LOCAL VARIABLES 
CVL SDEW :SITE DEW POINT C 
CVL ES :AMBIENT VAPOR DENSITY 
CVL ESD SATURATED VAPOR DENSITY 

SUBROUTINE HUMD (BDEW,DLAPSE,STEMP,SELEV,BELEV,SHUMD) 
REAL BDEW, DLAPSE,STEMP,SELEV,BELEV,SHUMD 
REAL SDEWJSS^ESD 

C CORRECT DEW POINT FOR LAPSE 
SDEW = BDEW - (DLAPSE * ((SELEV-BELEV)/1000.)) 

C COMPUTE RELATIVE HUMIDITY 
ES = 6.1078 * EXP((17.269*SDEW)/(237.3 + SDEW)) 
ESD = 6.1078 * EXP((17.269 * STEMP)/(237.3 + STEMP)) 
SHUMD=(ES/ESD) * 100.0 
RETURN 
END 

CC SUBROUTINE: RADN - COMPUTES SITE PRECIPITATION BY MULTIPLYING 
CC THE BASE STATION PRECIPITATION WITH THE RATIO 
CC OF BASE AND SITE ISOH YETS. 
CC 



C NPPT: NUMBER OF BASE PPT STATIONS 
SUBROUTINE RAIN (NPPT.BPPT.BISOH.SISOH.SPPT) 
INTEGER NPPT 
REAL BISOHf2),SISOH,SPPT.BPPT(2) 
REAL RAT1.RAT2 

C COMPUTE RATIO OF *i HE ISOHYET(S) 
C RATI =SISOH/BISOH(l) 

RATI = SISOH/I46.9 
IF (NPPT .EQ. 2) THEN 

C RAT2 = SISOH/BISOH(2) 
RAT2 = SISOH/176.1 
SPPT = (BPPT(1)*RAT1 + BPPT(2)*RAT2)/2.0 

ELSE 
SPPT = RAT1*BPPT(I) 

ENDIF 
RETURN 
END 

CC SUBROUTINE: WRITE9 - WRITE TO OUTPUT FILE. 
CC 

SUBROUTINE WRrTE9(CAT,YRvIDAY,SRAD,STEMP,SMAX,SMIN,SHUMD,SPPT) 
INTEGER JDAY.CAT.YR 
REAL SRAD,STEMP,SM AX,SMIN,SHUMD,SPPT 
PRINT 110,CAT,YRJDAY,SRAD,STEMP.SMAX,SMIN,SHUMD,SPPT 
WRITE(9,110) CAT,YRJDAY,SRAD,STEMP,SMAXTSMIN,SHUMD,SPPT 

110 FORMAT(l X.I4.1 X 3 . 1 X,I3.2X,FS.2,4(F6.1),1 X.F8.1) 
RETURN 
END 

CC SUBROUTINE: BREAD - READ BASE STATION DATA. 
CC 
CVI VARIABLES 
CVI INPUT: 
CVF INFILE: INTEGER UNIT NUMBER OF BASE STATION CLIMATIC INPUT FILE 
CVI USEDEW: IS DEW POINT SUPPLIED IN FILE 
CVI IF NOT THEN SET IT TO NIGHT MINIMUM TEMPERATURE. 
CVI USEENG: IS INPUT IN ENGLISH OR SI UNITS 
CVO OUTPUT: 
CVO JDAY: YEARDAY 
CVO BMAX: MAXIMUM TEMPERATURE 
CVO BMIN: MINIMUM TEMPERATURE 
CVO BDEW: DEW POINT TEMPERATURE 
CVO NPPT: NUMBER OF BASE STATIONS 1 OR 2 
CF FUNCTION F2C: DEGREE F TO DEGREE C 

SUBROUTINE BREAD(INFD-EJDAY,BMAX,BMIN,BDEW3PPTJ^PPTl 

1 USEDEW.USEENG.USEJD) 
INTEGER INFILE, JDAY, NPPT 
REAL BMAX,BMtN 
REAL BPPT(2) 
LOGICAL USEDEW, USEENG 



LOGICAL USEJD 

REAL F2C.X.YEARDAY 
INTEGER DAY, MON 
F2C(X) = (X-32)*0.5556 

C BEGIN 
IF (USEJD) THEN 

IF(USEDEW) THEN 
IF(NPPT.EQ. 1) THEN 

READ(INF1LE,*) JDAY, BMAX BMIN, BDEW. BPPT(1) 
BPPT(2) = 0.0 

ELSE 
READ(8,*) JDAY, BMAX. BMIN, BDEW. BPPT(1), BPPT(2) 

ENDIF 
ELSE 

IF(NPPT.EQ. 1) THEN 
READCINFILE,*) JDAY, BMAX, BMIN, BPPT(1) 
BPPT(2) = 0.0 
BDEW=BMIN 

ELSE 
READ(INFLLE,*) JDAY, BMAX, BMIN. BPPT(1), BPPT(2) 
BDEW = BMIN 

ENDIF 
ENDIF 

ENDIF 

IF (USEENG) THEN 
C CONVERT ENGLISH UNITS TO SI 

BPPT(1) = BPPT(1)*2,54 
BPPT(2) = BPPT(2) * Z54 
BMAX = F2C(BMAX) 
BMLN = F2C(BMIN) 
BDEW = F2C(BDEW) 

ENDIF 

RETURN 
END 

C 
C END LISTING 

CD COMMENT GUIDE: 
CD 
CD 'C ANY OLD COMMENT NOT TO BE EXTRACTED TO A DOCUMENTATION FILE 
CD 'CV VARIABLE 
CD 'CVF FILE PARAMETER/VARIABLE 
CD 'CVI' INPUT PARAMETER/VARIABLE 
CD 'CVO' OUTPUT PARAMETER/VARAIBLE 
CD 'CVL' LOCAL VARIABLE 
CD 'CM' MODULE NAME AND CALLINF CONVENTION 
CD 'CD' DESCRIPTION OF MODULE 
CD 'CF STATEMENT FUNCTIONS 

C 
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Appendix B 
SITES.DBF Database Structure 

B.l SITES database structure 

FIELD FIELD 
NAME 

TYPE WIDTH DECIMALS INDEX 

1 EASTING Numeric 11 3 N 

2 NORTHING Numeric 12 3 N 

3 ELEVATION Numeric 9 3 N 

4 SLOPE Numeric 8 3 N 

5 ASPECT Numeric S 3 N 

6 PRCNT_FOR Numeric 12 3 N 

TOTAL: 61 

SrTES.DBF is an important input into the microclimate simulator. It provides topographic 

information which is used primarily in the adjustment of solar radiation receipt at a location. 

The data structure described above is used in the creation of SITES.DBF as well as by the 

"READ" statements within the model. The fields themselves are self explanatory with the 

possible exception being PRCNT_FOR. This field contains a value representing the 

percentage of forest cover per unit area which is reflected in the model by the Leaf Area 

Index (LAI). 



Appendix C 
SNOPAC 

C.1 SNOPAC Code Listing 

PROGRAM SNOPAC 
CH LAST MODIFIED: 01-02-96 
CH 
CH THIS PROGRAM READS THE GRIDDED MICROCLIMATE AS SIMULATED BY 
CH SIMGRID, CALCULATES SNOW MELT FOR EACH DAY, AND THEN WRITES 
CH THE RESULT TO AN OUTPUT RLE. 
CH 
CH VERSION 1.0 COPYRIGHT 1995 
CH ORIGINAL CODE WRITTEN BY DENNIS SHEPPARD ON 6-26-95 
CH MICROSOFT FORTRAN 5.0 

CC 
REALSRAD,STEMP,SMAX,SMIN,SHUMD,SPPT.LASTTREQ.LASTMELT 
REAL PACK,TREQ.TCEAD J, MELT.SNO W.TMEAN 
INTEGER CAT,YRJDAY,NUMDAY 
CHARACTER* 12 IN FI LE.OUTFILE 
WRITEC*^///////////)-) 
WRITEC*.*)' SnoPac Vcr. 1.0' 
WRITEC*,*)' ////////..AWWWV 
WRITEC*,*) *' 
WRITEC*,*)' Snowmclt Simulator' 
WRITEC*.*)' Copyright 1995' 
WRITEC*,*) *' 
WRITEC*,*)" 
WRITEC*,*) *' 
WRITEC*.*)'' 
WRTTEC*,*)" 
WRTTEC*,*) *' 
WRTTEC*,*)' Enter the input file name:" 
READ(MOO) INFILE 
WRITEC*,*)' How many DAYS arc in ',INFILE.T 
READ(V) NUMDAY 
WRTTEC*,*)' Enter the output file name:' 
READCM00) OUTFILE • 

100 FORMATC1A12) 
OPEN(7,FILE=INRLE,STATUS='OLD] 
OPEN(9,FILE=OUTHLE,STATUS='UNKNOWN') 

CC 
CC LOOP FOR 120 CATEGORIES OF ELEVATION. SLOPE, AND ASPECT. 



CC 

SUBROUTINE WRITER(CAT,YRJDAY,SMAXSMIN,SPPT,PACK,TREQ,TCEADJ, 
I POTMELT.ACTMELT) 

CH THIS SUBROUTINE WRITES CALCULATED OUTPUT TO SCREEN AND/OR FILE. 

REAL SMAX,SMIN,SPPT,PACK,TREQ,TCEADJ,POTMELT,ACTMELT 
INTEGER CAT.YRJDAY 

150 FORMAT(I3,1X,I3,IX.I3,1X,3(F7.1),F10.1,4(F7.1)) 
CTEMP PRINT 150, CAT,YRJDAY,SMAX,SMIN(SPPT,PACK.TREQ,TCEADJ, 
CTEMP 1 POTMELT.ACTMELT 

WR1TE(9,150) CAT.YRJ DA Y,SM AX.SMIN ,SPPT,PACK.TREQ,TCEADJ, 
1 POTMELT.ACTMELT 
RETURN 
END 

DO 20J=I,120 
LASTTREQ = 0.0 
LASTMELT= 0.0 
PACK = 0.0 
SNOW =0.0 

CC 
CC LOOP FOR NUMBER OF DAYS (IE. 731 FOR 1971 AND 1972) 
CC 

DO 10I=1,NUMDAY 
READ(7.1S0)CAT,YRJDAY,SRAD,STEMP.SMAX,SMIN,SHUMD,SPPT 

150 F0RMAT(1X,I4,1X,I3,1X,I3,2X,F8.2,4(F6.1).1X,F8.1) 
CTEMP PRINT 150, CAT,YRJDAY,SRAD,STEMP.SMAX,SMIN,SHUMD,SPPT 

CALL SNOWMELT(SMAX,SMIN>LASTTREQ.TREQ,TCEADJ,MELT) 
CALL SNOWACC(SMAX,SMIN,SPPT1SNOW) 
PACK = PACK + SNOW - LASTMELT 
IF(PACK .LT. 0.0) PACK = 0.0 
POTMELT = MELT 
IF(PACK .LE. 0.0) MELT = 0.0 

CTEMP IF(SMIN .LE. 0.0) MELT = 0.0 
TMEAN = (SMAX + SMIN)/2 
IF(TMEAN .LT. 2.0) MELT = 0.0 
ACTMELT = MELT 
IF(PACK .LT. MELT) ACTMELT = PACK 
IF(JDAY .EQ. 91) THEN 
CALLWR1TER(CAT.YRJDAY,SMAXSMIN,SPPT,PACK,TREQ. 

1 TCEADJ .POTMELT, ACTMELT) 
ENDIF 
LASTTREQ = TREQ 
LASTMELT = ACTMELT 
PRINT*, I 

10 CONTINUE 
20 CONTINUE 

STOP 
END 

CC* END OF MAIN PROGRAM *CC 
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SUBROUTINE SN OWMELT(S M AX,SMIN,LASTTREQ,TREQ,TCEA DJ, M ELT) 
CH THIS SUBROUTINE ESTIMATES DAILY SNOW MELT AS DEPTH OF WATER. THE 
CH METHOD WAS DEVELOPED FOR USE IN THE UBC WATERSHED MODEL. 
CH 
CR PIPES. ANTHONY AND MICHAEL QUICK, 1977. UBC WATERSHED MODEL USFRS 
CR GUIDE. DEPARTMENT OF CIVIL ENGINEERING. UNIVERSITY OF BRITISH 
CR COLUMBIA. 
CC 

REAL AN MLTF.SM AX.S MIN ,LASTTR£Q.TREQ,TCEADJ .MELT.TMEAN 
REALPTM 
INTEGER XTDEWP 

CC 
CC PTM = POINT MELT FACTOR SET TO 1.8 (WYMAN. R.R., 1995). 
CC XTDEWP = REFERENCE DEWPOINT CONTROLLING ENERGY PARTITIONING BETWEEN 
CC MELT AND SUBLIMATION SET TO IS DEGREES CELCIUS. 
CC ANMLTF= DECAY CONSTANT SET TO 0.85. 
CC 

PTM= 1.S 
XTDEWP =18 
ANMLTF = 0.85 
TMEAN = (SMAX + SMIN)/2 
TRANGE = SMAX - SMIN 
TREQ = ANMLTF * LASTTREQ + TMEAN 
TCEADJ = (SMIN + (TRANGE/2))/(XTDEWP + (TRANGE/2)) 
MELT = PTM * (SMAX + TCEADJ * SMIN) 
RETURN 
END 

SUBROUTINE SNOWACC(SMAX,SMIN,SPPT.SNOW) 
CH THIS SUBROUTINE ESTIMATES DAILY SNOW WATER EQUIVALENT IN MM. 
CH 
CR WYMAN.R.R., 1995. MODELING SNOWPACK ACCUMULATION AND 
CR DEPLETION. IN: GUY, B.T. AND J. BARNARD, 1995. MOUNTAIN HYDROLOGY. 
CR PEAKS AND VALLEYS IN RESEARCH AND APPLICATIONS CONFERENCE 
CR PROCEEDINGS. MAY 16-19 IN VANCOUVER, B.C. 
CC 

REAL SMAX,SMIN.SPPT,SNOW.RAIN,TMEAN 
TMEAN = (SMAX + SMIN)/2 
IF(TMEAN .LT. 0.6) RAIN = 0 
1F((0.6 .LE. TMEAN) .AND. (TMEAN .LE. 3.6)) RAIN= 
I SPPT*((TMEAN/3)-0.2) 
IF(TMEAN .GT. 3.6) RAIN = SPPT 
SNOW = SPPT- RAIN 
RETURN 
END 

CC 
CC* COMMENT LEGEND *CC 
CC 



CH - PROGRAM OR SUBROUTINE HEADER 
CR - BIBLIOGRAPHIC REFERENCE 
CTEMP - TEMPORARILY COMMENTED OUT 
CC - INTERNAL DOCUMENTATION 




