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Abstract

Audio Visual Speech Recognition (AVSR) is the process of perceiving and under-

standing speech using audio and visual information. Combining visual information

with auditory stimuli has been shown to improve AVSR performance when compared

to purely auditory speech recognition when the task is performed in adverse condi-

tions with large amounts of distracting noise. This work examines the relationship of

auditory and visual speech information and the effect audio-visual temporary desyn-

chronization has on AVSR performance. Using a whole report task, we show that (1)

consistent with prior similar work, performance declines asymmetrically depending on

the direction and quantity of a temporal lag, and (2) a common, modern architecture

for computational AVSR does not show this asymmetry indicating a fundamental

difference in biological and computational AVSR methods.
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Chapter 1

Introduction

Communication is at the core of human civilization. Without mechanisms to exchange

complex information between people, society would not have developed to the stage

it is at today. The primary method for this communication is speech, be it talking

in-person, speaking remotely, or watching an audio-visual recording. The process of

perceiving and understanding human speech appears simple at first. Someone talks

while we listen and interpret the sounds they make to form words and sentences, and

then derive meaning from that processed information. Despite how simple it may seem

on the surface, there are many discrete processes that allow the successful perception

and recognition of speech, with each process effectively working to solve a particular

challenge associated with speech recognition. Speech recognition, as used in this

thesis, refers to the process of perceiving speech information and transforming it into

a phonetic representation. Examples of speech recognition challenges include the well-

known "cocktail party problem" [5] in which a listener attempts to perceive speech in

an environment with many background talkers, and the related segmentation problem

[28] in which we split continuous speech into individual words even when those words

are acoustically continuous. This thesis explores one of the brain’s most interesting

solutions to these problems: the use of vision to improve the perception of speech.

1



1.2. COMPARISON OF HUMAN AND ARTIFICIAL METHODS

1.1 Visual Speech Perception

Visual speech perception, sometimes referred to as "lip reading", is the ability of an

individual to use the visual information provided by mouth movements to understand

speech. Although lip reading by hearing-impaired individuals is perhaps the most

compelling instance of visual speech recognition, it has been shown that normal-

hearing listeners also use visual speech to aid in speech recognition [15, 42, 54]. Thus,

people are able to use visual information in conjunction with auditory information to

better solve the problems described above. The fusion of these two sensory modalities

in the service of speech perception is called Audio-Visual Speech Recognition (AVSR).

How visual information affects overall speech perception/recognition is demonstrated

by the "McGurk effect" [38] where when two conflicting auditory and visual syllables

are observed, a third "fused" syllable is perceived.

1.2 Comparison of Human and Artificial Methods

Humans have evolved a range of mechanisms for sensation and perception of com-

plex stimuli, and we have also developed a variety of artificial methods that attempt to

emulate human perception in machines. These range from early perceptron networks

that take in a feature vector and then output a binary classification [47] to modern

machine learning and artificial neural networks (ANNs). Modern ANNs can perform

a wide variety of tasks based on their structure and training, as demonstrated by Deep

Speech [17], which achieved near human-like performance on speech-to-text transcrip-

tion tasks, and various ANN image classifiers trained on the ImageNet dataset [46,

33]. Because state-of-the-art neural networks exhibit human-like performance in some

perception tasks, understanding how these networks process information can have sig-

nificant ramifications for neuroscience. It remains unclear whether the architectures

of such networks have converged on computational solutions that are common with

the human brain, or whether they represent computationally novel ways to solve the
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1.3. OUR CONTRIBUTIONS TO THE FIELD

same problems. Some recent work suggests that biological and artificial networks

exhibit some similarities. For example, the technique of Representational Similarity

Analysis (RSA) allows comparison of neural signals (electroencephalography, magne-

toencephalography, functional magnetic resonance imaging, etc.) to artificial models

designed to perform the same tasks [31, 29, 30, 23, 18]. RSA is applied such that

the activation patterns of biological and artificial neurons are compared to identify

how different systems represent various inputs. In this way we can gain a better

understanding of a wide variety of neural processes by comparing similarities and dif-

ferences in biological and artificial processes. Conversely, we can also design ANNs to

replicate known neural processes and use RSA to confirm if the ANN behaves like its

biological counterpart [48, 30]. Given the rapid advances in artificial neural networks

for solving perception problems, it has become of particular importance to investigate

in what ways such networks share commonalities with human perception. Exploring

the perception of humans and computers can provide insight to the relationship of

these two modalities of speech as well as highlight differences in how humans and

computers perform the same tasks, particularly in adverse conditions.

1.3 Our Contributions to the Field

When multi-modal stimuli that is normally consistently related in time becomes

temporally asynchronous, our ability to perceive it is affected. In the case of audio-

visual speech, changes in the temporal relationship of the corresponding audio and

visual stimuli have been shown to have an effect on our ability to perceive word-

like sounds, as well as the presentation of certain perception illusions [40, 55, 36, 7].

Despite there being work on how the perception of audio-visual illusions and speech-

like sounds are affected by audio-visual temporal asynchrony, there is no work on how

asynchronous stimuli affect AVSR in people or computational methods. The goals

of this thesis are therefore (1) to determine how temporal lags of audio and visual
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1.4. THESIS STRUCTURE

information affect people’s ability to understand natural speech, and (2) determine if

these temporal lags affect computer programs in the same way. It is our hope that

these insights will lead to better understanding of predictive coding mechanisms in

general as well as aiding in the development of better multi-sensory processes and

architectures for computer programs for speech perception.

1.4 Thesis Structure

Chapter 1 introduces the concepts and ideas explored by this thesis. Chapter 2

outlines prior work performed in the space of human AVSR. Chapter 3 presents a

brief history of computational methods in AVSR and describes the computer pro-

gram tested in the experiments presented in this thesis. Chapter 4 describes the

experimental methodologies as well as presents the results of the experiments, then

interprets the results and discusses the implications of our findings. Finally, chapter

5 summarizes the work performed in the completion of this thesis.
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Chapter 2

The Problem of Human Speech
Perception and the Role of Vision

2.1 The Cocktail Party Problem

Contending with complex auditory environments is one of the main challenges in

speech perception. The cocktail party problem describes the task of attempting to

perceive a single speaker’s voice in an acoustic environment composed of competing

talkers and sounds. An array of mechanisms exist in the human auditory brain,

and artificial computational methods have been developed, that attempt to solve this

problem. These include (1) spatial hearing, in which the listener uses a soundscape to

separate and isolate speakers [27], (2) selective attention, when once we have identified

a desired signal we are able to modulate the sensory gain on certain features of that

signal [21], (3) and gaining information by binding visual cues with acoustic speech

perception, which is the subject of this thesis [8, 19, 2, 9, 54].

2.2 The Segmentation Problem

One of the core problems associated with speech recognition is word segmentation.

When people speak they have a steady cadence of about 4-6 syllables per second [43].

Notably, the phonemes that make up a syllable are nested within this acoustic enve-

lope, creating structures characterized by amplitude and frequency modulations that

are reflected in the waveform envelope of speech. Despite syllables being perceptually

easy to distinguish from each other in continuous speech, syllables and the words they
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2.3. THE MCGURK EFFECT

comprise, often do not have acoustic boundaries between them. Instead, temporally

adjacent syllables are often co-articulated such that their temporal boundaries merge

[58, 10], resulting in a continuous stream of syllables that needs to be segmented into

individual words. Solving this segmentation problem is made more difficult when

linguistic boundaries need to be also differentiated from an uncorrelated acoustic

background. Yet, this is a difficult task that is performed every day by people when

observing vocal speech [28].

2.3 The McGurk Effect

The relationship between auditory and visual speech sounds has been investigated

in several prior studies. One of the first studies to examine this relationship was

McGurk et al. [38]. The McGurk effect is an audio-visual speech perception illusion

where when the video of one syllable (e.g. "Ba") is played while being dubbed with

a different syllable (e.g. "Ga"), the observer will perceive a different syllable (e.g.

"Da"). The syllable perceived depends on the two syllables presented, as well as

which syllable is auditory and which is visual. In addition to this, not all audio-visual

syllable combinations will result in a fused syllable when perceived, indicating there

is some degree of specificity in terms of how visual speech affects speech perception.

It is important as well to note that when such McGurk stimulus is presented and the

participant does not report the fused sound, they are much more likely to report the

auditory component of the stimuli than the visual component. This lends credence

to the assertion that AVSR is primarily an auditory process as seen in Giordano et

al. [13] where they conclude that the weighting of visual speech is modulated by

the quality of the auditory signal, where as the quality of the audio signal degrades

reliance on the visual signal increases.

Of particular interest are follow up studies that have examined how temporal

misalignment of auditory and visual speech information affects how often the McGurk
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2.4. PREDICTIVE CODING FOR AUDIO-VISUAL SPEECH

effect is reported in experiments. This work shows that the McGurk effect requires

that video be temporally aligned or precede the audio[40]. When audio leads video,

the rate at which listeners tend to perceive the illusion drops rapidly with increasing

lag. However when video leads audio there is a more gradual drop in the rate at which

fused syllable is reported [40, 55]. This asymmetric dependency of audiovisual speech

on the relative timing of audio and video is perhaps not surprising because visual

information in speech is known to precede auditory information by up to several

hundred milliseconds [49]. Importantly, this is not due purely to the dramatically

different speeds of light and sound, but rather reflects the fact that lip movements

give rise to subsequent acoustic events in speech production, and these lip movements

occur prior to the auditory onset of produced speech.

2.4 Predictive Coding for Audio-Visual Speech

Although the enhancement of speech perception by visual speech is well-known,

it remains unclear how the brain actually uses visual information in the service of

speech perception. One promising mechanistic theory is predictive coding. Predictive

coding theory proposes that the brain maintains a model of a given environment

and continuously updates that model based on our interactions with the sensory

world [11, 20]. Internal models make predictions about our environment and these

predictions are used, in conjunction with sensory evidence, to arrive at successful

perception of incoming stimuli. These predictive coding mechanisms use error between

predictions and sensory evidence as a means to update the model. This theory of

brain function explicitly describes two flows of information, bottom-up and top-down,

representing afferent sensory input and prediction signals, respectively. By computing

the mismatch between these signals, the brain can then adjust how it models the

sensory environment to minimize the prediction error [44].

While predictive coding as a mechanistic framework is promising, there are details
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2.4. PREDICTIVE CODING FOR AUDIO-VISUAL SPEECH

that are unresolved. For example, in the case of audiovisual speech, there are two ways

that visual information could be utilized. Visual information might be used to make

a forward prediction about upcoming speech features that will appear later in the

bottom-up signal (in the next few hundred milliseconds) [49]. This view of predictive

coding imagines that the two streams of information need not be perfectly coupled

to perform AVSR. Some prior work investigating the McGurk Effect supports the

notion that visual information is used asynchronously to provide forward predictions

for the auditory system. This is discussed further in section 2.6. A conceptually

alternative mechanism is that visual information might be encoded, cached, and then

fused with later auditory information after some fixed lag to account for the typical

delays between auditory and visual signals in audiovisual speech [49]. In this view,

visual information is not used for prediction but rather simply brought forward in time

to constrain later auditory evidence. In either case, there is a pressing question about

the temporal dynamics of the mechanism. Does the brain fuse auditory and visual

information with a strict temporal offset, or are forward predictions derived from

vision and then used without strict timing constraints to guide auditory perception?

These two possible modes of temporal interaction between visual and auditory

speech features lead to two different predictions with respect to the temporal structure

of audiovisual speech. If lip movements are used to forward predict upcoming speech

features and/or their timing, then the mechanism should be somewhat tolerant of

the predicting modality (vision) leading the predicted modality (hearing), at least

within some range of temporal lags. However, any lag in the other direction, that is,

audio leading video, should immediately disrupt the advantage of audiovisual speech,

because the auditory brain cannot use predictions based on visual features that have

not yet happened. By contrast, If lip movements are fused with strict time-locking to

their corresponding speech features, we would expect the system to be highly sensitive

to disruptions in the temporal relationship of auditory and visual stimuli. That is,

8



2.5. HUMAN AUDIO VISUAL SPEECH RECOGNITION

temporal asynchrony (i.e. audio leading video or video leading audio) should thus

disrupt the benefit of audiovisual speech, and the direction of asynchrony should not

matter: there should be symmetry of forward-shifted and backward-shifted stimuli.

2.5 Human Audio Visual Speech Recognition

2.5.1 Perception of Visual Speech

Sensory perception is the first component of speech recognition. Visual speech is

a key sensory modality used in speech recognition. By viewing the externally visible

motor movements of the vocal tract as someone speaks, we can infer what is being said

and even mentally synthesize speech sounds [4]. It is important to note that not all

motor movements that produce speech are visible externally, and that different speech

features can involve nearly indistinguishable lip movements. Thus visual speech is not

unambiguous. Furthermore, the time difference between when the visible movements

occur and when a given speech feature is produced is not consistent across phonemes.

For example, for the sound "pa" there is an approximately 300-400ms auditory lag on

visual speech, but for "ka" the lag is approximately 200-300ms [49]. For this reason,

visual speech alone does not always contain enough information to perfectly predict

speech, and is usually used in conjunction with auditory speech. The impact visual

speech can have on overall speech perception can be seen in the previously described

McGurk Effect.

2.5.2 Language Models

A language model is a structure used to predict what the next feature in a segment

of speech will be, based on what came previously in that string. A language model

considers factors such as sentence structure, grammar, and common phrases to predict

likely results of what is being and will be said. Additionally, speech patterns and

lexical clues specific to an individual speaker can be utilized if a listener is familiar
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2.5. HUMAN AUDIO VISUAL SPEECH RECOGNITION

with a speaker. For example, "recognize speech" and "wreck a nice beach" sound

very similar phonetically and look similar in terms of the speech-producing motor

movements, but conversational context would generally provide clues as to which of

those two phrases is more likely to have been said. Furthermore, the word "speech" is

more likely than "beach" following the word "recognize", particularly in the present

context. When speaking to another person perceived to be a competent speaker of

a language, people speak with a cadence that tends not to place clear acoustic space

between individual words, instead spacing syllables evenly in uninterrupted speech.

This is to say that if someone was to look at the waveform of speech, individual

syllables would be distinct, but words would not. For this reason the complex task

of grouping syllables into words, and words into phrases, is achieved by applying a

language model [37].

2.5.3 Multi-Modal Speech Recognition

Auditory and visual speech in conjunction with a language model provides the

human brain with sufficient information to perceive speech, even in complex auditory

environments. It has also been shown that our minds dynamically modulate how

much they rely on visual or auditory information based on the perceived reliability of

auditory information. When there is a high signal-to-noise ratio (SNR) for auditory

information (when the target auditory information isn’t being significantly obscured

by other signals), auditory information is primarily used to perceive speech, but when

the auditory SNR decreases, there is a stronger reliance on visual information. Addi-

tionally, during low auditory SNR there is more activity in regions of the brain that

are thought to have the unique role of enhancing the quality of auditory information,

the premotor and superior frontal cortex [13]. These regions are associated with vol-

untary movement and memory, and it has been shown that when observing speech,

these regions activate indicating that people mentally replicate the speech produc-
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2.6. THE TEMPORAL STRUCTURE OF SPEECH AND ITS EFFECT ON AVSR

tion process when performing speech recognition [53]. This demonstrates two effects:

One, the human brain is able to recognize low SNR situations, and two, it is able to

automatically modulate which stimuli are used in SR based on the reliability of the

presented stimuli. This means that as the quality of auditory stimuli degrades, the

brain will begin to rely more on visual stimuli for AVSR.

2.6 The Temporal Structure of Speech and its Effect on AVSR

When exploring the temporal dynamics of multi-sensory stimuli we must consider

differences in the stimuli and its transmission from production to detection. First we

must consider modal temporal resolution: audio contains several orders of magnitude

more time steps than video and conversely each time step in video is more data dense

than audio. This can be seen in the two modalities are modeled in computational

representations, specifically that audio has tens of thousands of time steps per second,

though only one value per time step and video has tens of time steps per second, but

often millions of values per time step [45]. Next we must consider transmission speed

of stimuli: light moves much faster than sound. We also know that while there is

a range of intervals between the beginning of the motivating motor movements and

production of auditory speech, the motivating movements will always precede the

auditory onset [49]. When considering the travel speed of the two modalities along

with the temporal relationship of visual and auditory onset, we can conclude that

visual speech will always precede auditory speech in a natural sensory environment.

In addition to the previously discussed experiments in temporal misalignment on

McGurk stimuli, experiments examining the intelligibility of speech-like sounds and

identifying synchronous and asynchronous speech have been performed. These ex-

periments found that visual information can lead auditory information up to a few

hundred milliseconds without having a significant impact on recognition performance

[36] and people are more likely to identify stimuli as synchronous when video leads
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2.6. THE TEMPORAL STRUCTURE OF SPEECH AND ITS EFFECT ON AVSR

audio [7] than when audio leads video. Massaro et.al. tested participant’s ability to

identify the speaker of a specific speech-like sound and Conrey et al. tested peoples

ability to identify temporally asynchronous speech. Massaro et al. found that mod-

ulation of correct speaker identification was consistent with larger temporal windows

when video lead audio rather than audio leading video. Conrey et al. found that when

video lead audio, participants were much more likely to identify audio-visual speech as

synchronous than when audio lead video. This indicates that in simple speech sounds,

visual information likely acts as a forward prediction rather than a "guess". Despite

many experiments being performed on McGurk stimulus and speech-like sounds, we

are not aware of any literature regarding temporal lags and natural speech in a longer

format such as phrases or sentences.

Prior work on audio-visual perception of simple speech sounds in humans has

shown (1) that visual speech can have a significant impact on overall perception, and

(2) there appears to be an asymmetry in how the temporal alignment of the modal

streams affect perception. Despite relatively extensive work on McGurk stimuli and

simple speech sounds, there appears to be no work on natural speech. For this reason,

this work will explore how temporal misalignment of natural speech affects our AVSR

capabilities.
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Chapter 3

The Problem of Artificial Perception
of Audio-Visual Speech

3.1 Artificial Methods for Speech Recognition

Artificial methods for Automatic Speech Recognition (ASR) have advanced rapidly

in recent years. As discussed in Chapter 1, speech recognition is an exceptionally

complex task that involves converting auditory and sometimes visual information

into words. This process requires the ability to parse and interpret large amounts of

sparse data to compress and convert it into another form. For this reason ANNs are

utilized for the task. An ANN is a computer program that is designed to emulate the

way it is believed biological brains process information [41].

A question regarding artificial AVSR neural networks follows: if ANNs are designed

to emulate human cognition, then we would expect them to perform AVSR tasks in

a similar way to humans. This can be tested by comparing the AVSR performance

patterns of the two groups.

3.1.1 Artificial Neural Networks

The general structure of an ANN consists of a series of connected layers that are

broadly classified as the input layer, the first layer where information is fed into the

network, the output layer, the last layer where processed data is reported by the

network, and the hidden layers, any layer between the input and output layers. Each

layer is composed of units known as neurons, and the depth of a network is measured

13



3.1. ARTIFICIAL METHODS FOR SPEECH RECOGNITION

in the number of layers in the network. A key feature of ANNs is they can learn to

perform various tasks through a process known as training.

Unit (i-1, 1)

Unit (i, 1)

Layer i-1 Layer i

Weight (i-1,1)

Unit (i-1, 2)
Weight (i-1,2)

Figure 3.1: A Basic ANN Structure

How the layers and neurons in an ANN are composed defines the network and

heavily influences how effective it is at successfully performing a task. The input

and output layers will have a number of neurons equal to the number of inputs and

outputs respectively, and hidden layers contain a number of neurons defined by the

network designer. Each neuron is connected to all the neurons in the immediately

adjacent layers, but not their own (with some exceptions, see Section 3.1.3), and

these connections are each assigned a unique modifier known as a weight. This will

be expanded on later. Neurons apply a mathematical operation to their input, called

an activation function, that determines the output of that unit. The input for all

neurons and their respective activation functions (other than those in the input layer

as those are provided to the network) is determined by calculation in equation 3.1,

with a visual diagram in figure 3.1. In this equation i is the layer index, j is the

neuron index, N is the number neurons in layer i, O is the output of a neuron, and

W is the weight of the connection between neurons Ii,j and Oi−1,j, and B is the bias

of the neuron. Bias is simply a value that is added to the input of a neuron regardless

of the previous layers output. This allows models to shift an activation function to

be more positive or negative overall.
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Ii,j = Bi,j +

Ni−1∑
j=1

(Oi−1,jWi−1,j) (3.1)

The process of calculating the final output of a network is known as forward

propagation where the equation above is applied to each neuron in a layer starting at

the first hidden layer and moving through the network. After the input of a neuron

is determined, the activation function chosen by the designer is applied and that final

value is used as the output of that neuron for the following layers input calculations.

An example of an activation function is the sigmoid function that can be seen in

equation 3.2. In this equation Oi,j is the output of neuron, Ii,j is the input to the

neuron, and e is Euler’s number. This is just one of many commonly used activation

functions, with the key takeaway being that the activation function takes the value

calculated in equation 3.1 and uses it as an input to calculate the output of the neuron.

At the end of this process, when the outputs for the neurons of the output layer are

calculated, this output is returned by the network.

Oi,j =
1

1 + e−Ii,j
(3.2)

In training an ANN "learns" to perform a task in a similar way to how biological

brains learn according to the predictive coding theory [14]. Inputs are processed by

the network using forward propagation to create a prediction, and that prediction

is compared to a known value. The difference between the known value and the

ANN output (often called "loss" or "cost") of the network is stored and later used in

adjusting the value of the weights in the ANN such that the cost is minimized. This

process is known as gradient descent and can be seen in figure 3.2.
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C
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t
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Learning Steps

Figure 3.2: Gradient Descent Process

3.1.2 The Application of Artificial Neural Networks in Automatic Speech

Recognition

Given the importance of speech perception in communication, it has been a press-

ing problem in human-computer and human-robot interaction to develop effective

speech recognition systems, resulting in modern machine learning algorithms and a

variety of speech-specific ANNs [1, 26, 52, 51].

3.1.3 Recurrent Neural Networks and Long Short-Term Memory

ANNs began to have success in ASR tasks with the development and application

of Long Short-Term Memory (LSTM) units. To understand an LSTM, you must first

understand the principles of Recurrent Neural Networks (RNNs). RNNs are a form

of ANN where the output of a neuron also functions as the input to other neurons in

the same layer on the next input, as shown in figure 3.3. RNNs excel in the analysis

of time series data which makes them a good candidate for ASR, however, RNNs

struggle with long term preservation of past information (generally when in excess of

1000 time steps) without greatly exaggerating or diminishing that information [39,

35]. This is an effect often seen in systems that feed into themselves. LSTMs were

developed to address this short coming. LSTMs add a gate to the recurrent portion

of conventional RNNs. The LSTM holds a value that is fed back into itself and other

units in the same layer, and the gate can be thought of as its own unit in the ANN.
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Where the LSTM unit learns how it connects to itself and other units, the gate learns

when to modify the data stored in the LSTM and how much to modify it by, as

shown in 3.4. This allows LSTMs to be less affected by irrelevant or erratic inputs

and preserve pertinent information [22]. This made LSTMs ideal for application in

ASR due to the long-term nature of speech signals, as well as the cluttered nature of

audio data.

Unit t-1

Input t-1

Unit t

Input t

Unit t+1

Input t+1

Output t Output t+1Output t-1

Figure 3.3: Recurrent Neural Network Structure

3.1.4 Sequence-to-Sequence Classification

Auditory speech is an extremely sparse form of data. On average people speak

in the range of 10-15 phonemes per second, based on a combination of syllables per

second and phonemes per syllable [43], and audio data that is being classified is often

recorded at or down sampled to 16000Hz. This means even in faster end of average,

there are more than 1000 auditory samples per phoneme. In the visual domain the

sample rate is much lower, commonly 25-30Hz for machine learning inputs, however,

each sample is often composed of hundreds or, more often in AVSR, thousands of

pixels. On top of this, speech is irregular. People often stop speaking mid-sentence
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Output t-1

Input t-1

LSTM Unit Update Gate Stored Value

Output t

Input t

LSTM Unit

Figure 3.4: Long Short Term Memory Structure

to either breath or to think about what they will say next. In ASR the final output

of an ANN is generally either plain text or phoneme representations of speech. These

are very dense forms of data, and in terms of the number of data points they are

much shorter. The result of this is one of the most difficult problems to solve in

machine learning, sequence-to-sequence classification. The complexity of this problem

requires the application of specialized ANN architectures one of the most popular

being connectionist temporal classification, which is discussed later in this chapter.

3.1.5 Encoder-Decoder Model of Classification

The encoder-decoder model for ANNs is a popular method for converting complex,

sparse data sources into more compressed and concise forms and is often applied to

sequence-to-sequence classification problems. The basic pipeline for the model is

as follows. Raw information is collected and presented to the network. That raw

information is then processed and condensed into useful features that identify and

differentiate the raw data. What these features are will depend on the type of raw

data and what the network is designed to do. In the case of auditory speech data it
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could be descriptors such as pitch or timbre. These encoded features are often referred

to as embedded features, or simply embeddings. These embeddings are then processed

by the decoder to classify some aspect of the raw data based on the embedded features.

The ability for the encoder-decoder model to take sparse, complex data and effectively

classify it makes it an extremely effective model for ASR [25].

3.1.6 Multi-Headed Attention Transformer Model for Classification

The transformer model in ANNs is an evolution of the encoder-decoder model.

With the broad concept of encoding raw data and decoding embeddings still em-

ployed, the transformer model makes use of structures known as attention heads.

What a head attends to is dependant on the training it receives, but broadly there

are 3 forms of attention. Self-attention in the encoder, self-attention in the decoder,

and encoder-decoder-attention in the decoder. These act in the following ways re-

spectfully, the input sequence attends to itself, the target sequence attends to itself,

and the target sequence attends to the input sequence. Individually these "heads"

break down an input and determine if a section of the input should be attended to

as well as how to attend to it. By using multiple attention heads (hence the term

multi-headed attention) in the same network it is possible to attend to multiple dis-

tinct attributes of the input data. Due to the nature of multi-headed attention having

multiple independent functions in the same section of the input analysis, the use of

a transformer model enables large scale parallel processing allowing for the potential

of greatly decreased real-time processing as well as more accurate results. The trans-

former model is also able to process an entire input sequence simultaneously, giving

them an edge in computation time over conventional RNN and LSTM based networks

that must process each data point individually [6]. One disadvantage of using multi-

headed attention is that unlike RNN and LSTM architectures that "perceive" each

chunk of data in order sequential order, multi-headed attention "perceives" the entire
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input simultaneously. To address this shortcoming, positional encoding is employed.

This is a relatively simple process where information for the position of a sample in-

cluding its relative and absolute positions in the input are stored in a data structure

and included in the input of that sample into the encoder. This results in a relatively

simple and lightweight method for achieving temporal resolution and still enabling

parallel computing.

3.1.7 Connectionist Temporal Classification

As explained previously, ASR requires the mapping of a long sequence of raw data

on to a relatively short output. To achieve this, it is common to use Connectionist

Temporal Classification (CTC) and its associated scoring function, CTC loss, for the

creation and evaluation of a networks output. The output of an analysis network,

regardless of the architecture (RNN, LSTM, Transformer, etc.), is a single label [14].

By taking a series of short segments from raw data and using them as the input for an

analysis network, you get a series of labels. Importantly blank/null is a valid label, and

this series of labels is decoded into a final output. The decoding process utilized by the

CTC architecture is what makes it so effective for sequence to sequence classification.

The decoding process compresses the output by considering the output in sequential

order and removing repeated labels in the sequence. This makes the model particularly

good at ASR when the target output is a series of phonemes as phonemes rarely repeat

in a word. However, in text outputs, repeated letters are common. In these instances

it can be seen why null being a valid output is important, as it can be used to indicate

breaks between repeated letters. This prevents the decoding process from removing

these repeated letters and can correctly identify words that contain 2 or more of the

same character in a row [16].
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3.2 Comparing Human and Artificial Methods

Comparing human and artificial methods for performing the same task can have a

wide range of benefits. Previously we have discussed the history of ANNs in SR tasks,

and briefly touched on the general history of ANNs. ANNs were initially developed

to emulate the processes believed to take place in brains and neural tissue [47]. This

followed the principles of biomimetics where artificial designs are based on biological

systems that already perform a given task [56]. Starting with more basic perceptron

networks and evolving into the structures we know today, ANNs have grown in scale

and complexity, however, during this evolution there has been a decoupling of the roots

of ANNs and their current directions. Advances in computing science have rapidly

out paced advances in neuroscience and while ANNs were initially often specifically

designed to emulate what was believed to be the human process of performing a

task, this is often not the case anymore. Now, often when a network is designed to

perform a human task, designers think in terms of what types of networks and units

handle a specific type of data well or have been known to perform a similar task in

the past rather than directly considering the biological systems that perform that

task. This exposes the interesting question of potential convergent evolution. If an

artificial system is initially designed to emulate a biological one, but diverges from

this design philosophy and then after many iterations is trained to perform a task

that the biological system can also perform, could the artificial system exhibit the

same behaviours as the biological system?

A variety of studies have shown that the behavioural and empirical experimental

results between artificial and human methods show similar trends, and when RSA is

applied the underlying dynamics of how data is processed are often similar [30, 23].

This shows that utilizing biomimetic designs for artificial models can have benefits

including the reduction of network size as well as requiring less training data and

training cycles [48, 18, 24]. If we compare the behavioural traits of human and artificial
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AVSR and find distinct differences between them, it is likely that the architecture of

Deep AVSR, the ANN tested in this research, could be modified to better recognize

speech in adverse conditions.

3.3 Deep AVSR

As one of the purposes of this research was to determine differences between the

behaviour of human and artificial methods in AVSR, it was vital to select a model

that was developed relatively recently and implemented modern ANN structures. For

these reasons the network called Deep AVSR [50], based on the paper Deep Audio-

Visual Speech Recognition from Afouras et al. [1], was chosen. This is a state of

the art AVSR network that uses a Transformer Model CTC (TM-CTC) architecture

for AVSR. The network separately processes the audio and visual streams initially.

Both data streams feed into their own encoders that have 6 layers with each layer

containing 8 attention heads to create feature vectors. These 2 feature vectors are

then concatenated and go through a convolution layer to reduce their size by half for

the purpose of maintaining consistency in the transformer functions. The compressed

feature vector then feeds into a decoder with the same architecture as the encoders.

An initial decoding is performed using a beam search that minimizes the total distance

between all likely output options, then the CTC decoder is applied as described in

the above section. Finally a language model is applied to the result of the CTC

decoder. This converts character outputs to real words based on a combination of

1) how close the string of characters is to a given word and 2) how likely a word

is to exist at that point in the output based on prior words in the output. For a

broad overview of the structure and data flow of Deep AVSR, as shown in 3.5. A

more in-depth description of the architecture can be found in the paper and in the

repository of the implementation [50]. This implementation of the network is trained

on the LRS2-BBC dataset, containing approximately 150,000 AV utterances with a

22



3.3. DEEP AVSR

Audio
Input

Audio
Encoder

Video
Input

Video
Encoder

Feature
Joining

Joint
Feature
Convo-
lution

Joint
Feature
Decoder

Output
Decoding

Language
Model

Final
Output

Figure 3.5: Deep AVSR Structure

total of approximately 2.4 million words.

23



Chapter 4

An Investigation of Temporal
Dynamics in Human and Artificial
Audio-Visual Speech Recognition

4.1 Preamble

In chapter 1 we outlined the primary goals of this research. Broadly, these were

to compare and contrast human and artificial speech recognition, particularly with

respect to the integration and use of visual speech information.

More specifically, we aimed to test two ideas that follow from a Predictive Cod-

ing view of the temporal dynamics of audio-visual integration for speech recognition.

These ideas are derived from a 1) continuous (human) and 2) simultaneous (trans-

former model) model of the perception of time-series data where correlated events do

not occur simultaneously. These ideas are 1) Queuing, wherein a "queue" of visual in-

puts are continuously compared to new auditory events in a broad range of time steps,

and 2) mapping where visual feature "embeddings" are "mapped" onto and compared

to embeddings generated from the auditory input at an interval in the future. This

interval is informed by the visual embedding. In the case of queuing, we would expect

to observe an asymmetric performance reduction where when video leads audio the

drop is gradual but when video lags audio there will be a rapid drop in performance.

Conversely, mapping should exhibit a symmetric, rapid drop in AVSR performance

as a lag grows.

Importantly, these predictions are irrespective of whether the listener is a human
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brain or an artificial neural network. In this way we can make a novel assertion re-

garding any temporal dependency of AVSR in natural speech, in both people and

ANNs. Using a whole-report task we tested the AVSR capabilities of human par-

ticipants and an artificial program, then analyzed and compared the results. This

chapter describes the experiment and analysis methods performed, and discusses the

results of the experiments.

We predicted that the human listeners would exhibit an asymmetry in perfor-

mance with respect to asynchrony between auditory and visual speech. Specifically,

we predicted that, consistent with the previously described "queuing" behaviour,

performance should be relatively robust to video leading audio by up to a few hun-

dred milliseconds, whereas performance should decline rapidly and substantially when

audio leads video. These predictions follow from previous related studies [40, 55]

that examined the influence of asynchrony in audio-visual speech. In these studies

McGurk-style stimuli (i.e. single audio syllables paired with congruent or incongruent

visual lip movements) were lagged in time such that audio would either lead or lag

video, thereby introducing an artificial audio-visual temporal asynchrony. The results

showed that the frequency of the McGurk effect occurring (i.e. misperception rate)

rapidly dropped when audio led video. This means that visual input had little effect

on perception of auditory syllables if those syllables lead the video even by a small lag.

Conversely, the misperception rate dropped slowly as audio lagged video by increas-

ing amounts, demonstrating a distinct asymmetry in misperception rate depending on

the direction of the temporal lag. Thus visual input effectively modulated auditory

perception even when it led by many tens of milliseconds. We expected AVSR perfor-

mance in a whole-report speech recognition task to modulate in the same way, with

a rapid drop in performance when audio led video and a gradual drop when video led

audio.

In potential contrast with human listeners, Deep AVSR does not include layers or
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neuron types that would be able to dynamically compensate for shifting audio-visual

synchronicity if such shifting synchronicity is not present in the training dataset.

Notably, the training dataset for this network primarily contained television clips,

which are often temporally well aligned. For these reasons we speculated that AVSR

performance emulate the previously described "mapping" behaviour, and performance

would drop uniformly and rapidly in each direction as the audio-visual asynchrony

increased. If this were the case, it would mean that Deep AVSR and human listeners

use visual information in fundamentally different ways.

4.2 General Design

4.2.1 Construction of the Stimulus Test Set

Six fluent English speakers, 3 male and 3 female, were video recorded saying 28

unique phrases selected from the TIMIT dataset [12]. These 28 videos were then

copied and programmatically edited so that the audio was shifted temporally by a

series of lags (in ms, +/- 60, +/-240, +/-360, +/-480, +/-600, +/-720, and +/-840

for video leading (+) and lagging (-) audio, respectively). As audio was shifted to

achieve the lags, depending on the direction of the shift there was empty audio space

created at the beginning or end of a video and additional audio extending past the

beginning or end of the video. The empty space was filled with silence and extra audio

was truncated to keep the length of the audio and video the same. For the lagged

videos an alphanumeric code is used to represent the temporal lag in the format of

a letter followed by a three-digit number. The letter will be a ‘B’ or ‘I’ indicating

audio "Behind" video and audio "In-front" of video respectively, and the number is

the millisecond value of the lag. For example, I240 indicates that the audio track

lead the video by 240ms. Additionally, there were "base" and "jumble" trials. In

base trials, video was the original unmodified video, with audio and video perfectly

synchronized; that is, 0 ms lag. Jumble takes the video and audio tracks from two
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different base clips of the same length and speaker, and combines them to create a

video with incongruent auditory and visual components. The intention of the jumble

trials was to provide a worst-case baseline in which the visual information could not be

used at all to aid in recognition. This choice of worst-case baseline has the advantages

that 1) it uses audio-visual speech as the stimuli, and 2) unlike the temporal lags,

there is no consistent correlation between the audio and video that could be used

to aid in the recognition of speech. Additionally, for the human trials, babble noise

was added to increase the difficulty of the task. Babble noise was directly added

over the audio track of the video, including the sections that were filled with silence.

This extra background noise encouraged the use of visual information to aid in the

recognition of the speech [13], and adjusted performance to avoid floor or ceiling

effects. Babble noise mimics the temporal and spectral dynamics of human speech,

though crucially does not contain linguistic information [32]. This allows it to act as a

distractor or masker to make the experimental task more difficult without introducing

information that could be construed as identifiable speech [32]. Noise was not added

to the computational experiment as it caused a floor effect for Deep AVSR.

4.2.2 Human Participants

The participants in the following experiments were students recruited from courses

in Psychology or Neuroscience at the University of Lethbridge, Canada. The partici-

pants joined the experiments remotely via a custom-built website due to constraints

of the COVID-19 pandemic. Students who participated in the experiments were com-

pensated with course credit. Students were provided with a questionnaire prior to the

start of the experiment to record their age, biological sex, handedness, if they were

aware of any hearing problems, if they were using headphones or speakers to com-

plete the study, and if their first language was English. We encouraged participants

to use headphones rather than free-field speakers because headphones generally have

27



4.3. ANALYSIS

a higher audio quality. If subjects had known hearing issues or English was not their

first language they were allowed to participate in the experiment, however this was

recorded to test if these participants significantly affected results. In all experiments,

we observed no difference when either the ESL group, hearing impaired group, or both

groups were excluded from the analysis: both the overall pattern seen in the results

as well as which lags were significantly different from each other did not change. For

this reason the results for both groups were included in our analysis.

The procedure adhered to the proscriptions of the Document of Helsinki and was

approved by the University of Lethbridge Human Subjects Review Board. All partic-

ipants gave informed consent prior to participating.

4.2.3 Computer Participant

Deep AVSR was chosen as the computational model to be tested in our experi-

ments. This was for three main reasons: First, it had developer created pre-trained

weights available for use in research that performed very well according to the re-

sults published by the developers. Second, and most importantly, it implemented a

TM-CTC architecture which was shown by Afouras et al. [1] to be a highly effective

architecture for performing sequence-to-sequence classification, particularly in AVSR.

Additionally, as Deep AVSR uses a language model it can provide better results for

the word-to-phoneme conversion tool used. Details about this tool can be found in

the following section. Finally, Deep AVSR is a well-recognized solution to the AVSR

problem (e.g. at the time of writing, the original 2018 Deep AVSR paper has been

cited in 95 research papers). Its architecture is based on state-of-the-art approaches

and it represents a good standard benchmark for such networks.
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4.3 Analysis

The metric used for the analysis of the results was Phoneme Error Rate (PER).

PER is a variation of Word Error Rate (WER). WER has been shown to be an

effective measure of one’s ability to understand speech [57] and is a standard metric

for measuring speech recognition performance. We chose to use PER over WER

as it allows for more granularity in our results. PER is calculated as the number of

insertions (I), transformations (T ), and removals (R) required to transform a response

into the correct target, divided by the number of phonemes in the target (N):

PER =
I + T +R

N
× 100% (4.1)

By decomposing words into phonemes and then comparing those versions of the

responses and targets we can better determine if part of a word was correctly heard

and gain a better understanding of the capabilities of the participants. For example,

if a response was "word" and the target was "ward", WER would calculate a 100%

error rate where PER calculates a 25% error rate.

To convert the word responses of the human participants and Deep AVSR into

phonemes, a program called Phonemizer was utilized [3]. This program uses the

Festival text-to-speech engine to take words and convert them to phonemes using a

custom defined phoneme transcription that contains all the phonemes used in the

English language.

For overall PER in the experiments, each response was analyzed individually

against its target, then all PER values for a given condition in a group were averaged

and standard error was calculated to get an average value and error bars.

Two variations of the PER analysis were also performed. In the first we broke

PER into the individual correction operations to see if there were any differences in

the required corrections between groups. In the second we compared the first and
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second half of responses to the respective halves in the target. This was done by

taking the string of phonemes and splitting it in half, rounding up in the event of an

odd number of phonemes. For example, if there was a 7-phoneme long response, the

split would result in two 4-phoneme long strings with the two sharing one phoneme.

As with the base PER analysis, standard error was used for error bars.

The design of the experiment allowed for direct comparison between the various

conditions in the same experiment, thus t-tests were used to identify when a given

lag was significantly different from its respective +/- lag as well as the jumble for

that experiment. We were particularly interested in comparing "symmetric" positive

and negative lags since any significant difference would indicate an asymmetrical ro-

bustness to misalignment. We thus predicted that positive lags (video leading audio)

would allow significantly lower PER when compared to corresponding negative (audio

leading video) lags. A Benjamini-Hochberg method with a false discover rate (FDR)

of 5% was used to adjust for inflation of Type I error rate due to multiple comparisons.

Finally, the length of targets and responses (in phonemes) were averaged for each

lag in each experiment. Standard error was used for error bars. This analysis was

performed to provide insight into our operation results.

4.4 Experiment 1 - Human Participants

The basic paradigm for the human experiments was as follows: The participant

was shown a video clip with its associated auditory track leading or lagging in time.

The task was to listen to the entire sentence and then type the sentence into a text

box that appeared after the video clip completed.

A practice segment consisted of 2 iterations of the basic loop, using 2 pre-determined

sentences that were not included in the experiment set. Responses from the practice

segment were not recorded or analyzed. After practice, participants entered the main

experiment which consisted of 48 iterations of the basic loop using a data set that
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was generated and unique to each participant. The experiment was a full report task

so participants were asked to type into a text box what they believe was said in

each stimulus video. The raw responses were recorded to a database along with the

speaker, clip number, and lag.

Each participant had a unique set of videos generated for them programmatically.

This set contained 6 temporal lags, a base video, and a jumble video for a total of

8 videos from each of the 6 recorded speakers; thus a total of 48 videos plus the

two practice videos. The set was generated such that each participant was presented

with each lag being tested from every speaker, and the order of videos was shuffled.

Participants were thus presented with 48 unique sentences without repetition of any

sentence during the session.

Three variations of Experiment 1 were carried out, which differed in the asyn-

chronies tested and the level of babble noise.

4.4.1 Experiment 1A

Experiment 1A had 25 participants (19 female and 6 male); 24 participants were

native English speakers and 2 had known hearing impairments. The videos presented

in this experiment had the base and jumble videos, along with I360, I240, I060, B060,

B240, and B360 from each speaker. For this experiment the added noise track was

balanced to -10dB relative to the speaker audio track.

Results

The results of Experiment 1A revealed the predicted asymmetry in AVSR perfor-

mance with respect to audio leading or lagging video. This asymmetry is most evident

in the PER figure 4.1 and in the t-test results found in table 4.1. We found that PER

for the base, I060, B060, B240, and B360 lags was significantly different from the jum-

ble condition whereas the I240 and I360 lags were not. Furthermore, the I/B240 and

I/B360 pairs of lags were significantly different from each other: in both cases PER
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Comparison
Type Offset p-values

Experiment 1a Experiment 1b Experiment 1c

Same Temporal
Value

I/B060 0.466 N/A N/A
I/B240 *3.16e-3 N/A N/A
I/B360 *8.69e-6 *6.01e-3 *6.17e-4

Against Jumble

I360 0.976 0.502 0.780
I240 0.180 N/A N/A
I060 *2.33e-13 N/A N/A
Base *4.87e-8 *2.24e-9 *1.07e-15
B060 *1.77e-10 N/A N/A
B240 *2.01e-5 *7.73e-4 *1.05e-5
B360 *8.03e-6 *1.17e-3 *5.88e-4
B480 N/A 0.240 *8.63e-4
B600 N/A *2.90e-2 *3.15e-3
B720 N/A 7.25e-2 0.239

Table 4.1: T-Test Results for Human Experiments. This table shows where
offsets stop being significantly different from the jumble condition as well as if sym-
metric offsets are significantly different from each other across experiments 1a, 1b,
and 1c.
* p-value < 0.05

was significantly worse when audio lead video than when video led audio by the same

lag. This indicates that there was a lag corresponding to somewhere between I060

and I240 at which visual information ceased to be effective in aiding AVSR. However,

because of the pronounced asymmetry in the data, we could not find a similar lag

in the video-leading-audio direction beyond which AVSR performance was as poor as

the jumble condition. At all lags we tested in Experiment 1A, when video led audio

there was a significant benefit of AVSR relative to the jumble condition.

In terms of correction operations (insertions, transformations, removals), figure 4.2

shows that in experiment 1A insertions were the primary required correction, and were

most modulated with overall error rate. Breaking errors down by first and second half

of the sentence, we found that the first half was consistently lower than the second

half as shown by figure 4.3. Finally, when examining response lengths, it appears

that as PER increases, response length decreases as seen in figure 4.4. Based on the
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*

*

*

*

Figure 4.1: Human Experiment PER Analysis. For experiment 1a the asterisks
show that I/B240 and I/B360 are significantly different from each other. In exper-
iments 1b and 1c the asterisk indicates the last offset that is significantly different
from I360.

correction operation results it appears that the participants will generally not respond

unless they are highly confident of a response. This is backed up by the analysis of the

lengths of targets and responses. Additionally, the results seen in the response section

error rate are counter to what would be expected if an adaptation effect was present,

though the presence of this pattern in the base and jumble conditions indicates that

instead of a lack of adaptation, another effect is causing this pattern.

4.4.2 Experiment 1B

Experiment 1A revealed the predicted asymmetry with respect to lag, but failed to

show the extent of the asymmetry. This was due to the fact that listeners were able to
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Figure 4.2: Experiment 1 PER Analysis by Correction Type. These graphs
indicate that insertions are the primary correction type required for human responses
regardless of lag direction or quantity.

derive an AVSR advantage at every positive lag tested. Experiment 1B was designed

to find a lag beyond which even video-leading-audio conferred no AVSR benefit. This

experiment had 19 participants (13 female, 6 male); 14 were native English speakers

and none had known hearing impairments. For this experiment we tested the base

and jumble conditions along with I360 as an audio-leading baseline. We tested video-

leading conditions of B240, B360, B480, B600, B720. In this experiment the noise

was balanced at -3dB relative to the speaker audio track in an attempt to achieve

better stratification in the results.
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Figure 4.3: Experiment 1 PER Analysis by Response Section. These graphs
show that contrary to what would be expected with a predictive coding model, PER
in the second half of human responses is higher than that of the first half.

Results

Graphs for overall PER in experiment 1B can be found in figure 4.1 and t-test

results can be found in table 4.1. Experiment 1B also replicated the asymmetry

found in Experiment 1A and revealed the positive extent. We found that the base,

B240, B360, and B600 lags all allowed significant AVSR benefit relative to the jumble

condition, whereas the I360, B480, and B720 lags did not. Additionally, the I/B360

lags were significantly different from each other. In terms of correction operations,

figure 4.2 shows that in experiment 1B insertions were the primary required correction,

and were most modulated with overall error rate. This was consistent with experiment

1A. For first and second half error rates we found that the first half of the sentence
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Figure 4.4: Experiment 1 Length Analysis. These graphs show that the length
of responses is 1) much shorter than that of the target on average, and 2) inversely
related to overall PER.

was consistently lower than the second half as shown by figure 4.3, which was the

same as experiment 1A. Finally, when examining response lengths, we saw the same

relationship between overall error rate and average response length as seen in figure

4.4 seen in experiment 1A.

4.4.3 Experiment 1C

Experiment 1B replicated the asymmetry shown in Experiment 1A and showed

that it extended out to approximately 500 ms of lag, when video led audio. However

the substantial increase in noise floor of Experiment 1B resulted in much higher

overall PER relative to Experiment 1A and appeared to cause a flooring effect in
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the results. For this reason we repeated Experiment 1B but with less noise added to

the speech signal. Experiment 1C had 29 participants (22 female, 7 male); 24 were

native English speakers and none had known hearing impairments. As in Experiment

1B, we tested the base and jumble along with I360, B240, B360, B480, B600, B720.

In this experiment the noise was balanced at -7dB relative to the speaker audio track

in an attempt to resolve the flooring effect seen in Experiment 1B.

Results

Experiment 1C replicated Experiments 1A and 1B. Graphs for overall PER in

experiment 1C can be found in figure 4.1 and t-test results can be found in table 4.1.

The results of experiment 1C found that the base, B240, B360, B480, and B600 lags

were significantly different from the jumble condition and the I360, and B720 lags

were not. Additionally, the I/B360 lags were significantly different from each other.

With the B480 and B600 both being significantly different from the jumble in this

experiment, there is likely a similar boundary between the B600 and B720 lags as

the one seen between I060 and I240 in experiment 1A. In terms of correction oper-

ations, figure 4.2 shows that in experiment 1C insertions were the primary required

correction, and modulates most with overall error rate. This was consistent with the

previous experiments. For first and second half error rates we found that first half

was consistently lower than second half as shown by figure 4.3, which was consistent

with the previous experiments. Finally, when examining response lengths, we saw

the same relationship between overall error rate and average response length seen in

experiments 1A and 1B as shown by figure 4.4.

4.5 Experiment 2 - Deep AVSR

Experiment 1 demonstrated an asymmetrical dependence of AVSR on positive

versus negative lag between audio and video. This result reveals a critical aspect of
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how humans perceive and fuse visual information in the service of auditory speech

recognition. Experiment 2 sought to test whether an effective deep neural network

trained to recognize audio-visual speech exhibits a similar asymmetric dependency on

temporal synchronization.

For this experiment a pipeline was created in which the network was initialized

with pre-trained weights provided by the developer, then each video was processed

by the network as per the procedure described in section 3.3. The raw responses

were then recorded to a text file along with the speaker, clip number, and lag. It is

important to note that the artificial model is not capable of learning the dataset as

it was not in a training mode. Therefore it was possible to test every lag of every

clip from every speaker. We did not train the network ourselves as 1) the pre-trained

weights are made available for research purposes, and 2) the training would have taken

approximately 2 years on the hardware we had available at the time.

4.5.1 Data Set

We tested the lags +/-060, +/-240, +/-360, +/-480, +/-600, +/-720, and +/-840

as well as the base and jumble videos. Additionally, the program was forced to use

audio and visual information so we used clips that did not contain the babble noise

present in the human experiments as the inclusion of this noise showed a flooring

effect in experiments.

4.5.2 Results

The results of Experiment 2 reveal that Deep AVSR performs quite unlike human

listeners with respect to audio-visual synchronization. Whereas human listeners ex-

hibit a pronounced robustness to video leading audio, Deep AVSR can make use of

visual information only when it was tightly synchronized with audio. Furthermore the

asymmetric relationship between error rate and lag that was characteristic of human

listeners was not evident in the Deep AVSR results. Graphs for the overall PER in
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Comparison Type Offset p-values

Same Temporal Value

I/B060 0.826
I/B240 0.841
I/B360 0.987
I/B480 0.772
I/B600 0.838
I/B720 0.418
I/B840 0.352

Against Jumble

I840 0.259
I720 0.254
I600 0.170
I480 0.150
I360 0.165
I240 0.156
I060 *2.02e-5
Base *1.11e-6
B060 *4.80e-6
B240 0.121
B360 0.179
B480 9.66e-2
B600 0.113
B720 5.71e-2
B840 †4.20e-2

Table 4.2: T-Test Results for Experiment 2. These results indicate that there is
a symmetric and small window in which Deep AVSR is able to use visual speech to

aid in AVSR.
* p-value < 0.05

† p-value < 0.05, but the Benjamini-Hochberg procedure (FDR=5%) determined
this to be a false discovery

Deep AVSR’s responses can be found in figure 4.5 with p-scores for the t-tests in

table 4.2. These results show that only the I/B060 and base conditions were signif-

icantly different from the jumble condition, and that none of the lagged pairs were

significantly different from their I/B counterpart. This demonstrates a lack of the

performance asymmetry seen in experiment 1. Regarding the analysis of operations,

as seen in figure 4.6, transformations were the primary source of error in addition to

being the source of error that modulated most with overall error rate. When compar-

ing error rates in the first and second half of responses, we found that error rate was
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Figure 4.5: Computer Experiment PER Analysis. These results show that no
paired I/B lags are significantly different from each other, demonstrating symmetric
performance across various lags.

consistently lower in the first half, though not significantly so as seen in figure 4.7.

When looking at response and target lengths in figure 4.8, we found that responses

were consistently shorter than targets, though not to the extent seen in the human

trials, and these lengths modulated slightly with overall error rate.

4.6 Discussion

4.6.1 Summary of Key Findings

Our research found that in the human results there was a distinct, temporally

asymmetric pattern of performance. Specifically, the pattern was consistent with

the "queuing" interpretation of predictive coding - suggesting that visual speech acts

as a dynamic, forward predictor of upcoming auditory speech. Figures 4.1 and 4.5

show that human listeners exhibited a surprising tolerance to audio lag (up to several

hundred milliseconds) but were substantially less tolerant of video lag. By contrast,

we found that Deep AVSR exhibited a rapid drop in performance in both temporal

directions as the value of the lag grew, consistent with the "mapping" interpretation of
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Figure 4.6: Experiment 2 PER Analysis by Operation. This graph shows the
PER broken into correction types. We can see that transformations are the most
common correction, and that it is what modulates with overall PER.

predictive coding. This pattern in the Deep AVSR data is consistent with a mechanism

in which multi-sensory evidence is fused with a tightly controlled time relationship

across the modalities. In this mechanism, current visual speech is used to make

predictions about future auditory speech without any flexibility in when that auditory

evidence should appear in the sequence. Thus Deep AVSR, at least in its current

architecture, uses different mechanisms to fuse visual and auditory speech information

as compared to human listeners.

We also saw a distinct difference between human participants and Deep AVSR

with respect to the kinds of errors that were made. In figures 4.2 and 4.6 it is shown

that the human participants and Deep AVSR consistently had different patterns in

terms of the required correction types, and which correction type modulated most with

overall PER. In the human participants we saw transformations and removals stay

relatively consistent across different lags, whereas a decrease in the rate of required

insertions accounted for decreases in overall PER. This contrasts with Deep AVSR for

which the insertions and removals stayed relatively consistent while transformations
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Figure 4.7: Experiment 2 PER Analysis by Response Section. This graph
shows the error rate in the first and second half of Deep AVSR’s responses. These
results contradict what we would expect to see based on the predictive coding model
of AVSR.

were modulated with lag. This behaviour makes sense when one considers response

length across lags: human responses were consistently shorter than the targets. By

contrast, for Deep AVSR the lengths of responses were more similar to that of the

targets as shown in figures 4.4 and 4.8. Thus when human listeners had difficulty

with the task, they tended to simply not report words, whereas Deep AVSR tended

to guess incorrectly.

4.6.2 Interpretation of Key Findings

Overview

This research has shown that when auditory and visual components of speech are

temporally lagged, human listeners demonstrate an asymmetric reduction in AVSR

performance with respect to the direction of lag. This result is consistent with prior

work, which showed that the inclusion of visual speech with auditory speech was more

likely to aid AVSR performance when visual speech was aligned with or temporally
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Figure 4.8: Experiment 2 Length Analysis. This graph shows that response
lengths were slightly shorter on average than target lengths.

led auditory speech than when it lagged auditory speech [40, 36, 55, 7]. For example,

the McGurk effect exhibits a similar asymmetry over similar range of asynchronies

[40]. In the range of -120 to +300, the McGurk effect was consistently present (50%

or greater rate of misperceived syllables) and it was particularly prominent (60% or

greater misperception rate) in the range +/-000 to +180. This indicates a requirement

that visual information needs to be aligned with or lead auditory information for it

to have a significant effect on the human perception of AV speech [40]. Our work is

consistent with these results and reinforces the assertion that visual speech perception

in humans acts as a forward predictor for upcoming auditory information.

Deep AVSR does not show this same asymmetry, instead showing a temporally

symmetric drop in performance to similar that of the jumble condition at any tested

lag greater than 60ms. Thus there is a fundamental difference in the human and

artificial methods of performing AVSR. We speculate that this is a result of two

main factors, 1) the network architecture, and 2) the training data. First, the TM-

CTC architecture does not contain recurrent, convolutional, or LSTM units that
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function in the temporal domain. Instead, it relies on positional encoding to allow

for temporal resolution in the analysis of stimuli. While this method is effective in

the trials performed by the network developers and allows for parallel computing to

increase real-time efficiency, it may not allow for information in the auditory and

visual domain to be shifted relatively in time to affect the output at a broad range

of time steps. Rather, by enforcing a static representation of cross-modal temporal

dynamics learned from the BBC-LRS2 training data it mismatches encodings in time

when faced with asynchronies it did not encounter in training. It has been shown

that the true temporal relationship of real-world AV speech is inconsistent. When

examining initial motivating mouth movements and auditory onset, depending on

the phoneme and speaker, the delay between mouth movement and corresponding

acoustic phoneme is in a range from 100 to 400ms [49]. The implication of this is

that in the TM-CTC architecture, the visual onset of each mouth movement will be

applied to the relative position in the future where the auditory onset is expected to

happen, and in this way, visual information can predict, or at least inform, auditory

information. As there is a speaker dependency in this lag, Deep AVSR should learn

some range of asynchrony for each phoneme, however, it has not been trained with

other natural lags. As a result, any significant lag in the stimuli will greatly reduce

the usefulness of the visual information and it could even begin acting as a distractor

- with mismatching frames of evidence being merged across modalities. For these

reasons, the architecture of Deep AVSR makes it more efficient in processing speech

data when assumptions of a fixed asymmetry are met, but it also "perceives" these

data in a fundamentally different way that humans. Another important note is that

the dataset used to train the network (BBC-LRS2) consisted of television clips. These

clips will have very closely aligned data, devoid of the natural lags that listeners will

often encounter in realistic audio-visual stimuli (see section 4.6.3). This is to say that

there is a clear distinction in how Deep AVSR and human listeners tend to receive
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audio-visual information, particularly during learning. These are likely two prominent

factors in the different performance patterns seen in the human and Deep AVSR PER

results.

Error in Perception

When perceiving speech, whether by human listeners or by artificial means, there

is always the potential for errors. Broadly speaking we observed three ways for error

to be introduced into the responses of our subjects as described by the error rate

metric. The observed error rate tracks these by the correction required (insertion,

transformation, removal), which we take to reflect something about the underlying

(error) process in the brain (or computer). Identifying the error rather than the cor-

rection provides insight into the root cause of errors in perception. These errors are

replacing a phoneme that was said with a different one that was not spoken, creating

a brand new phoneme, and not perceiving something that was said. I refer to these

sources of error as replacement (corrected by transformation/substitution), creation

(corrected by removal), and omission (corrected by insertion) respectively. Differenti-

ating between replacement and creation errors is difficult as it is highly dependant on

context, though both are caused by errors in the synthesis of information, so we group

substitution and creation into generative error as both involve generating information

that does not exist in the stimuli. Errors of omission are errors where produced speech

is not perceived. This gives us two broad categories of error to examine, generative

and omissive.

The assertion that there is a fundamental difference in how humans and Deep

AVSR perform speech recognition is supported by the analysis of error types as it

shows that the type of errors made by human participants and Deep AVSR are

distinctly different. Humans primarily made omissive errors, whereas Deep AVSR

primarily made generative errors. When examining the average response lengths at
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different lags we see why this is the case. As shown in table 4.3, human participants

had shorter responses overall when compared to both the targets and Deep AVSR

results. Further more, in figure 4.4, we see that higher error rate lags and noise con-

ditions result in shorter average response lengths relative to less adverse experimental

conditions in the human participants. By contrast, Deep AVSR consistently had a

near identical average response length and variance with the targets. Notably the

length of response does not modulate with error rate in any significant way. This

explains the difference in correction type. Additionally, it shows that Deep AVSR is

consistently able to solve the segmentation problem, finding close to the right number

of phonemes despite often struggling with correct selection. Conversely, human par-

ticipants appear to struggle to perceive the presented speech in the first place, however

when they do so successfully, they appear to be much more likely to select the correct

word, and by extension phonemes. It is important to note that in this experiment

humans have the unique ability to simply give up and not input a response, or input

a partial response if they are uncertain. In the experimental instructions they were

asked to do their best, but if they didn’t know an answer they could enter an empty

response. Being a computer program, Deep AVSR will always respond with its best

guess. This could partially explain the difference in error types in the human and

computer participants, though further research would be required to confirm this.

Analysis of First- vs Second-half of Sentences: Real-time Adaptation to

Audio-Visual Asynchrony and Bayesian Prediction

An interesting possible explanation of the difference in performance between hu-

mans and Deep AVSR might be that humans are able to adapt in near real-time to

lags between audio and video. To consider this possibility we also analyzed error rates

split between the first and second half of responses (see section 4.3 for the analysis

approach). We predicted that real-time adaptation to a particular audio-visual lag
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Experiment Category Average Length Standard Deviation

Experiment 1a Target 45.06 0.91
Response 28.08 1.19

Experiment 1b Target 44.60 0.89
Response 16.95 1.15

Experiment 1c Target 44.93 0.85
Response 17.28 1.11

Experiment 2 Target 45.04 0.86
Response 40.74 0.90

Table 4.3: Response and Target Lengths and Variance for all Experiments.
These results demonstrate the differences between the lengths and variance of the
human and Deep AVSR responses as compared to each other and the targets. The
human participants had shorter and more varied response lengths as compared to
Deep AVSR.

should result in greater error rates in the first half relative to the second half of each

sentence. However, this was not the case as shown in figures 4.3 and 4.7. Instead

both humans and Deep AVSR tended to make more errors related to the second half

of sentences relative to the first half.

This result also stands in contrast to a predictive coding view of AVSR. Broadly,

if a Bayesian mechanism exists that adjusts an adapting linguistic model to make

predictions about upcoming speech sounds, one would expect it to perform better as

evidence accumulates over time. Predictive coding should work better for the second

half of a sentence, since the predictive mechanisms should benefit from the constraints

provided by the first few words in a sentence. The fact that we see precisely the

opposite pattern in our data suggests that a simple Bayesian mechanism is not a

sufficiently good model of AVSR. We speculate that the performance difference seen

is a result of either reduced attention in the second half of the task or sentences being

more complex and difficult to predict in their second halves, though more research is

required to identify the root cause of this effect.
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Presentation of Predictive Coding

In the introduction we discussed that there were two ways that visual information

might be used in the service of auditory speech recognition: one in which vision is

used to predict upcoming audio and another in which visual information is encoded,

cached, and fused with audio with an appropriate lag. Our data do not speak directly

to these alternative mechanisms, but they do impose a key requirement for any future

model of audio-visual speech: regardless of the mechanism, it is remarkably flexible

with respect to timing provided that video leads audio, and quite inflexible when

audio leads video. We speculate that it is a predictive mechanism that is likely to be

more tolerant of asynchrony.

This is interesting in that it shows that how predictive coding presents is not

strictly dependant on the presented task. More research is required to determine

what precisely created the behavioural difference seen in the artificial and human

participants, however it is likely a combination of how Deep AVSR was designed,

specifically how it handles time-series stimuli, as well as the training data, which

would have little to no temporal lag in AV alignment, are major contributing factors.

It may seem obvious that AV training stimuli would or even should be temporally

aligned, though when you consider differences in the nature of audio and visual stimuli,

perhaps introducing a temporal lag into it may be a good idea as we learn using stimuli

that has a lag as discussed in section 4.6.3.

4.6.3 The Temporal Nature of Audio-Visual Stimuli

Previously we have discussed how the motor movements (visual stimuli) in speech

occur prior to auditory onset. We have yet to discuss differences in the speed at which

light and sound travel. The speed of light is effectively infinite on the spatial scale over

which a conversation can reasonably occur. By contrast, the speed of sound is a much

slower 343m/s. This means that all observed speech has an AV lag introduced by
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how the two forms of stimuli travel to an observer. This inherent lag between video

and audio is, however, quite small relative to the set of lags tested in the present

study. If someone speaks to you from 10 meters away, there is just over 29ms of lag

between the visual and auditory stimuli. The LRS2 dataset used to train Deep AVSR

uses stimuli taken from television programs. In the case of a newscast or a narration,

microphones are generally placed within a metre of the talker, and in the case of a

conventional show, there is often a microphone directly above the talker just out of

frame. This means there is little to no lag in the expected visual and auditory onsets,

though in the real world, conversations can happen over relatively large distances, on

the order of tens of meters depending on context. This is to say that people learn to

perceive audio-visual speech with variable lags that are roughly similar to the smallest

lag (60ms, or approximately 20 meters) used in our stimuli.

The relatively long lags tested in the present study, especially in Experiment 1B

and 1C present an interesting question regarding audio-visual perception. The 360ms

lag is equivalent to listening to someone from over 100 metres away. At this distance,

the entire face of the talker would span approximately 1/10th of a degree of visual

angle and the speech would be barely distinguishable above a noise floor. Thus, we

rarely encounter meaningful speech stimuli at the lags tested in the present study, yet

participants were at least somewhat tolerant of lags in the hundreds of milliseconds.

One explanation is that speech is not the only form of audio visual stimuli since people

regularly observe events with associated sounds at long distances, albeit not usually

intelligible speech. Therefore it is reasonable to think that we may have learned

a general-purpose dynamic temporal relationship of visual and auditory events not

specific to speech, and tolerance to lag in audio-visual speech is simply a consequence

of tolerance to lag in other kinds of sound events. Similarly, there are no naturally

occurring scenarios in which an auditory stimulus will arrive earlier than its associated

visual event.
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4.6.4 Limitations of the Findings

Accuracy of Metrics and the Types of Errors Generated by Humans and

Deep AVSR

It is important to note that the metric used in the analysis of these results will

have an artificially high error rate in the human participants, but not in Deep AVSR.

This is because, for the human participants, spelling errors could contribute towards

the overall PER if it changes how the phoneme conversion engine analyzed them. In

the case of Deep AVSR, the language model directly selects words based on a scoring

method, meaning that while it may not select the correct word, the selected word

will always be spelled correctly, and thus there is no chance of accidental phoneme

corruption. Notably, both groups are still able to make grammatical errors, though

grammatical errors will usually not result in a phonetic difference, so there was likely

minimal effect for this.

Prior Work in Adaptation for Audio-Visual Asynchrony

We performed the analysis of comparing first- and second-half split responses with

the aim of testing for an adaptation effect in AVSR. Namely, we expected performance

would improve in the second half of a response if a participant was able to adapt to

lag in near-real-time. We concluded that the results do not support such an effect,

though we also state that these results also do not support the complete absence of

this effect. It has been shown by Lennert et al. that adaptation effects in audio-visual

perception appeared over multiple consecutive trials [34], however, their participants

could not adapt within individual trials. It should be noted that in the Lennert et

al. study, a simple visual dot and auditory beep was used as the stimulus making

adaptation in a single trial virtually impossible, however it shows that humans find

it difficult to compensate for audio-visual lags with a small sample size of the lag.

Nevertheless, the sentences presented to listeners on each trial were on a relatively
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short scale, and listeners encountering temporal lags at random on successive trials.

These factors suggest that listeners were unable to make rapid adaptations to audio-

visual lag, at least within the parameters of our study, and there is the possibility of

long-term adaptation being possible.

Error Rate Discrepancies in Deep AVSR

One major concern with our results is the difference in performance when compar-

ing our tests to that of the Deep AVSR developers. According to the repository for

Deep AVSR [50], they were able to achieve a WER of 6.8% (the Deep AVSR develop-

ers did not use PER for training or testing) where in our trials the WER was 56.5%

under the same conditions (no temporal lag or background noise). Previously we have

discussed the testing and training data sets for Deep AVSR, that being LRS2-BBC,

though in our experiments we used recordings of the TIMIT dataset. In addition to

differences in general speaker accent, the LRS2 dataset is a more accurate represen-

tation of natural English speech as compared to TIMIT, which was designed to be

a stringent test of phoneme combinations and speech patterns in English, with sen-

tences often having complex sentence structure and a broad vocabulary. Additionally,

the language model used was also trained on the LRS2-BBC dataset. As a language

model utilizes linguistic structure to make predictions and it was trained on a much

simpler dataset, it would likely have difficulty analyzing the generally more complex

linguistic structures seen in TIMIT. It should also be noted that the testing data set

was recorded at a much higher quality than the network can take as an input. For

this reason, the data set had to be edited and exported multiple times to reduce the

size of the video frame and reduce the audio sample rate. Despite our attempts to

limit data compression, the quality of the audio and video was relatively low com-

pared to what was shown to the human participants. Although these factors together

explain why the performance of Deep AVSR was substantially worse on our test than
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reported buy the network developers, it nevertheless performed above chance. The

goal was not to compare Deep AVSR to humans in terms of absolute performance, but

rather to consider whether Deep AVSR would exhibit the same pattern of sensitivity

to audio-visual lag. We conclude that, despite its relative overall poor performance,

the evidence clearly suggests that Deep AVSR would not exhibit human-like tolerance

to positive lags under any circumstances short of retraining it on datasets with longer

lags explicitly included.

Audio Only Condition

The final notable limitation in this research is that there was no comparison with an

audio-only condition. This was considered as an alternative to the jumble condition to

fill the role of the worst case scenario. Ultimately we chose to use the jumble condition

as we wanted to keep the experiment as an AVSR task. It could be beneficial for future

studies to include an audio-only condition along side the jumble condition to test if

incongruent visual speech acts as a distractor or is simply ignored in AVSR.

4.6.5 Future Directions

Finding a more effective method for testing for an adaptation effect should be a

priority for future studies. Presenting consecutive trials with the same temporal lag

and then comparing PER between consecutive trials would allow for the longer-term

lag adaptation seen in Lennert et al. [34] to occur. This would allow for a more

definitive conclusion regarding the presence of such a compensating effect in AVSR.

In addition to modifying the experiment to test for an adaptation effect, it is

imperative to also test different ANN architectures. In the background section we

discussed the history of AVSR in artificial models, and one of the previous methods

involved the use of recurrent or LSTM units rather than the current TM-CTC method.

Making use of recurrent or LSTM units might allow for the forward propagation of

visual information in a broad temporal range.
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Additionally, including stimuli with slightly lagged audio-visual streams would

replicate the natural processes for learning AVSR. Developing an ANN that has

structures to allow for broad temporal resolution and including training stimuli with

temporal lags could result in the creation of an AVSR network that replicates the be-

havioural phenomena seen in human AVSR with asynchronous audio-visual streams,

and potentially create a more robust ANN for AVSR. In its current form, Deep AVSR

would be a poor choice for realistic free-field applications such as robotics, in which

speech sometimes must propagate over long distances. Deep AVSR is not tolerant of

such lags, but could be altered and trained otherwise.
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Chapter 5

Conclusion

Humans have incredible capabilities for perceiving audio-visual speech in adverse con-

ditions. With the rise of artificial ANNs, automatic speech recognition is becoming a

viable, everyday technology that can be leveraged by even basic computers. Given the

prominence of webcams, AVSR is a widely accessible option, though determining the

optimal mechanisms and architectures becomes difficult when considering the speed

at which these technologies evolve.

5.1 Summary of Work and Findings

By using PER as an evaluation metric we were able to perform experiments to

identify and compare behavioural patterns present in both human participants and

the ANN chosen for these experiments, Deep AVSR. We were able to demonstrate

that behavioural patterns regarding the temporal integration of audio-visual stimuli

shown by people in the perception of asynchronous speech-like stimuli are also present

in the recognition of natural speech. Conversely, this behavioural pattern was not

demonstrated by Deep AVSR. Human participants demonstrated "queuing" and Deep

AVSR showed a "mapping" pattern. This highlights a distinct difference in how

humans observers and Deep AVSR perceive audio-visual speech information. It is

unclear if this is a result of the training data, ANN architecture, or a combination of

these and other factors, though we can say with confidence that Deep AVSR with the

weights provided by the developers is not optimal for performing AVSR in natural
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environments that might include long lags between video and audio. We were unable

to identify a near-term adaptation effect in our results which is counter to a purely

Bayesian interpretation of predictive coding in AVSR.

5.2 Future Directions

This work has led to several ideas regarding future work. First, it is our hope that

the results found in this work can be used to improve the performance and efficiency

of future ANN designs. This would be achieved by implementing structures into an

ANN that allow for dynamic temporal resolution as well as training on asynchronous

audio-visual data. Second, we would like to perform similar experiments that include

audio-only and jumble conditions to assess if visual speech can act as a distractor.

Finally, we would like to modify the procedure to test if consecutive presentations of

the same asynchrony allow for the perceptual compensation of said asynchrony.

Ultimately this work has identified a previously unknown effect, that human par-

ticipants and Deep AVSR demonstrate separate and distinct patterns in AVSR per-

formance when presented with asynchronous AV speech conditions, and paved the

groundwork for several future studies.
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