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 ABSTRACT 

The demand-supply relationship plays an important role in an order-driven stock market. 

In this thesis, we propose a stylized model by defining demand (supply) over a stock at 

a certain time as how many shares are on the bid (ask) side, which includes all buy (sell) 

limit orders and buy (sell) market orders. We treat two types of shares as two different 

species with an interaction effect and construct generalized Lotka-Volterra equations 

based on some properties or assumptions of an order-driven market. Also, we apply the 

model to simulate how the population of the two types of shares evolves over time 

under the condition that there is no signal information influencing the decisions of 

investors. The model suggests that the population of bid and ask shares moves either to 

a fixed point in the phase space or exhibits periodical dynamics. Also, our model 

explains, though not perfectly, why it is that stock prices sometimes behave chaotically. 

 

Keywords: Order-driven markets; Bid and ask shares; Generalized Lotka-

Volterra equation; Demand-supply relationship; Population dynamics 
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CHAPTER 1. INTRODUCTION 

Nowadays, more than half of stock exchange markets are order-driven. Because 

of its trading mechanism, an order-driven market is also recognized as an auction market, 

where almost all transactions are executed by using either limit orders or market orders. 

There is no doubt that the demand-supply relationship plays an important role in such 

an “auction” market. For instance, the market price of the commodity (or stock) largely 

depends on the demand-supply relationship (Samuelson, 1951). To define demand in 

this thesis, we first check a general definition which describes demand as the quantity 

of a good that consumers are able to purchase at various prices during a given period of 

time (O'sullivan & Sheffrin, 2003). On the basis of this definition, a simple statement 

of the demand for a stock at a certain time can be the number of shares on the bid side 

of a stock, which includes all buy limit orders and buy market orders at that time. In 

other words, we evaluate the power of demand at a certain time by observing the 

population of shares in all buy orders at that time (both limit and market)1. Conversely, 

supply can be stated as the number of shares on the ask side, which indicates supply. 

                                                   

1 We assume that the stock is only traded in one exchange and there are only two types of orders. 
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Figure 1: A “Snap” at a Single Stock in The Market: the horizontal line indicates the 

price grid 

As we can see in fig 1. The demand at a certain time is indicated by the total 

number of red circles, while supply is indicated by the number of green circles. Studying 

such a population dynamic between two types of shares helps us to gain a better 

understanding of the demand-supply relationship in an order-driven stock market. By 

simply analyzing the trading process of an order-driven market, we determined that, for 

a single stock, the total number of shares on the bid side (red circles) and shares on the 

ask side (green circles) keeps changing with time. Moreover, the two categories of 

shares are similar to two animal species with an interaction effect.  

First, we will briefly explain the basic trading mechanics of an order-driven 

market. As rules for lot size, which is the smallest amount of the asset that can be traded 
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within it, are different in different stock exchanges, for the purposes of simplicity and 

clarity, we make the following assumption for this thesis. That is the lot size is always 

one share. Also, we use the term “bid share” to indicate a share on the bid side and “ask 

share” to indicate a share on the ask side. The bid price at time t is the highest price 

among all active bid shares, while the ask price at time t is the lowest price among all 

active ask shares. The mechanics here are straightforward. A newly placed bid share in 

a limit order, for instance, can either match an outstanding ask share and both of them 

“disappear” as they are matched and executed, or the bid share cannot match anything 

and becomes an outstanding share on the bid side of the limit order book. Moreover, in 

this thesis, we propose a method to distinguish the shares in market orders from those 

in limit orders. The trading rule is that, in fig 1, the example, bid shares in buy market 

orders match with ask shares in sell limit orders in the order from the lowest price to 

the highest price of sell limit orders until all current bid shares in buy market orders are 

executed. Meanwhile, ask shares in sell market orders match with bid shares in buy 

limit orders in the order from the highest price to the lowest price of sell limit orders 

until all current ask shares in buy market orders are executed. Then, if there are still 

some shares in limit orders which match in price, they will trigger transactions among 

shares in limit orders (see fig 2). Note that those three steps can happen at the same time, 

as long as the “snap” is determined. We place all bid shares in buy market orders on the 

price level of positive infinite, indicating that no matter what the prices are of those sell 

limit orders, transactions will happen. Similarly, all ask shares in sell markets orders are 
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placed at the price level of 0. Moreover, if two shares have the same price, they will be 

executed from the bottom to the top (see fig 4)2. So, each share in the “snap” has a 

unique location on the price grid represented by the horizontal line. The “destiny” of 

each share is determined by its location. The “destiny” describes whether this share will 

be executed and, if it will, which share it will match. Overall, we distinguish shares in 

limit orders and market orders by their locations on the price grid, not by the 

“appearance” of those green and red circles (as what is shown in fig 1). In this thesis, 

we use X to indicate the total amount of bid shares, and Y to indicate the total amount of 

ask shares. It is obvious that the numbers of X and Y will change with time3. 

There are three factors affecting the population of two interactive animal species, 

namely newborns, interaction effect and death without interaction. There are also three 

factors responsible for the change in X and Y, and they correspond to those for species. 

The three factors for shares are newly placed orders, successful matches and 

cancellations. Now, we explore it further to see how such correspondences work. 

The action of investors placing new orders in (which contain some bid-ask 

shares) is similar to individuals of a single species being born. This is the only way a  

                                                   

2 In the real market, if two shares are at a same price, we always have a method to determine which share 
should be executed first by several dimensions, such as the time of placing orders, the size of the order 
and the grade of the investors. Then we array them from the bottom to the top based on the order of 
executing at that price level. 
3  Aggregating all shares is difficult in practice, we just propose an idea here and such an idea is 
theoretically possible. 
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a population can grow. Cancelation happens when investors do not want to trade 

anymore, or do not think their orders are at appropriate prices, therefore they want to 

cancel their orders. Cancelation is motivated by investors themselves, not by shares on 

the opposite side. Thus, it should be viewed as a natural death or as a death not impacting 

the population of the other species. Both cancelation and death lead to a decrease in 

population. If a bid share is at a price higher than or equal to a price where an ask share 

is, then the transaction happens, and both of them will be removed from the “auction” 

market. Note that a transaction happens only when two shares have an interaction.  

Figure 2: A Successful Match Among Shares in Limit Orders 

Figure 3: Matches Initiated by Market Shares   
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As we can see from figure 2, two shares will successfully match as the one on 

the bid side is at a higher price than the one on the ask side. And they will be 

immediately canceled out (therefore a time lag is not necessary). If we consider only 

interactions in fig 1, then it will evolve as follows based on the trading rule. 

Figure 4: The “Next Moment” of Figure 1: consider matches only 

Such an interaction effect between the two types of shares (or orders) did not 

escape the attention of previous studies. For instance, there is a category of studies of 
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modeling on limit order books called the “zero-intelligence approach” (details are later 

in this thesis), where shares are modeled as positron and negatron, two different 

particles which will annihilate after an encounter each other. Similarly, if we model bid-

ask shares as two competitive or mutually antagonistic animal species, any two 

individuals from different species will kill each other and perish together after an 

encounter. Also, in both types of studies, an encounter means two shares in different 

catagories get matched in price and therefore trigger a transaction. 

Therefore, in this thesis, we will treat shares on the bid side and shares on the 

ask side as two different species which interact (a single share corresponds to an 

individual of one species). We then apply generalized Lotka-Volterra equations 

(Hofbauer & Sigmund, 1998) to simulate how the species populations evolve based on 

some stylized facts of an order-driven market. Since the population of the two categories 

of shares indicates the power of demand and supply, respectively, the trend of stock 

price (market price) can be forecasted to some extent. 

This study focuses on the dynamic of an order-driven market. It does not 

simulate the dynamic of stock price, but instead it simulates the dynamic of bid orders 

and ask orders (they are bid and ask shares in this thesis), which are the lower 

dimensions of stock price. We can infer the behavior of stock price by observing the 

dynamic of its lower dimensions.  
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Compared with the previous studies about the stock dynamic, the model in this 

thesis has several features. First, the simulation is not about the evolution of a limit 

order book, which records only outstanding shares in limit orders. Instead, this model 

tracks those shares in either limit or market orders being executed. In other words, it 

describes the evolution of all shares in all orders for a single stock. Since it is a pure 

simulation of the population dynamics, we do not track the price element in a limit order 

book, such as bid-ask spread and mid-price. Second, the tool in this thesis is generalized 

Lotka-Volterra equations, which was not commonly used as a tool in previous studies. 

Moreover, our study specified the similarity between the interaction effect of two 

species and that of bid-ask shares. Third, the model is a deterministic dynamics system, 

so it is “statistics free”, meaning that the model does not involve any statistics or 

probability. 

For the academic community, the models offer insights on combining the study 

of stock markets and the study of mathematical biology with deterministic dynamical 

systems. The simulation discloses how the heterogeneity among investors generates 

stock market dynamics, and how external information impacts the market dynamic. 

Also, the simulation explains the possible reasons for some phenomena observed in a 

stock market, such as periodicity and chaos.  The model may also help investors make 

decisions under uncertainty (when they do not have any information about the stock). 

For example, periodical or quasi-periodical movements of stock price may indicate that 
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there is a lack of external information for this stock, resulting in chances for arbitrage 

by exploiting predictable external information 
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CHAPTER 2: CONTINUOUS DYNAMICAL SYSTEMS 

As our purpose is to simulate how the population of two different items change 

with time together, dynamical systems are no doubt a proper tool. Generally, a 

dynamical system can be classified as continuous or discrete. In this thesis, we will 

select continuous dynamical systems, because both the matching and placing of orders 

can happen in continuous time. 

2.1 Definition      

Firstly, we give a strict mathematical definition of dynamical systems described 

by Zhang (1987). The concept of dynamical system originated from the study of 

ordinary differential equations (ODEs). Now, consider the system of ordinary 

differential equations 

dX/dt=G(t;X) (1)  

which has the initial condition X(0)=X0  defined on 𝑅௡, where  𝑅௡ is a n-dimensional 

Euclidean space; X is a n-dimensional vector; G is a map on  𝑅௡ such that G∈C௥ 

( 𝑅௡,  𝑅௡)4. There is always solution for（1）in local area. If G(t;X) meets a certain 

condition, then its solution g(t,X0) is meaningful to all t∈R, X0∈ 𝑅௡. Replace X0 with 

X, the solution g(t,X) should meet two conditions. 1) g(0,X)=X, ∀X ∈  𝑅௡ . 2) 

g(s+t,X)=g(s,g(t,X)), ∀s, t∈R, ∀X∈R௡ . We call the map g: R௡ × R௡ → R௡ , which 

meets conditions 1) and 2), a dynamical system or flow on  𝑅௡. In particular, if the 

                                                   

2 That is rth order continuous differentiable function on 𝑅௡ 



11 

 

right-hand side of (1) does not contain t, we call the system an autonomous system. An 

autonomous system with two dimensions is an autonomous plane system, which is our 

focus in this thesis. 

In simple words, a dynamical system reveals how things change with time. 

Here, we take prey-predator equations as an example (From Wikipedia). 

൞𝑑𝑥𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦𝑑𝑦𝑑𝑡 = 𝛿𝑥𝑦 − 𝛾𝑦  

In the system above, x is the number of rabbits (prey), and y is the number of 

foxes (predator). The two equations tell us how the numbers of prey and predators 

change over time. Given the certain coefficients in the equations, the graph of figure 5 

is obtained. 

Figure 5: Population Dynamics in Prey-Predator Equations 

When G(t;X)=0, the derivatives of all the variables are equal to 0, which implies 

the system is in a static situation. In the study of a dynamical system, such a situation is 

named as a stationary state, which represents a critical point in the phase space. In the 
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research of economics and finance, we are usually concerned about the ultimate form 

of a system, or say, where will the system finally go. Under such a circumstance, 

studying the situation at critical points becomes extremely important. Because for a 

stable critical point, for instance, when the system is disturbed by external factors, the 

particle5 will depart from the critical point. However, due to the property of the stable 

critical point (this property will be explained later in the thesis), the particle will be 

attracted back to the critical point. This means that the particle will always be trapped 

in a neighborhood of the critical point, and that is the final form of the system. More 

information about critical points and stability will be given later. 

2.2 Some concepts and properties 

In this section, we will explain some of the basic concepts and properties 

which will be used in this thesis.  

Nullcline: The set of points on which ୢ୶ୢ୲ = 0 or ୢ୷ୢ୲ = 0. Usually, a nullcline 

divides the plane into several parts. For instance, if we have a system ୢ୶ୢ୲ = y − 𝑥ଶ,
ୢ୷ୢ୲ = 𝑥 − 2. The nullcline for ୢ୶ୢ୲ is y − 𝑥ଶ = 0, and is x = 2 for ୢ୷ୢ୲. 

Critical points: Critical points can be viewed as the intersection of nullclines. A 

critical point (𝑥଴, 𝑦଴)  is that point at which, 𝑥(ሶ 𝑥଴, 𝑦଴) = 0  and 𝑦(ሶ 𝑥଴, 𝑦଴) = 0 . In 

other words, the system will become static at critical points. 

                                                   

2 Imagine that there is a particle, which moves along the trace of the solution with a certain initial point. 
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Stability at critical point: The strict definition and classification of Lyapunov 

stability are as follows: Consider an autonomous nonlinear dynamical system 

dX/dt=G(X), X(0)=𝐗଴. Suppose the system has an equilibrium at which G(𝐗1) = 𝟎. 

Then 

1. This equilibrium is Lyapunov stable if, ∀ε>0, ∃σ>0, and║𝐗(0) − 𝐗1║< σ, then for any t>0, we have║𝐗(t) − 𝐗1║ < ε. 

2. The equilibrium of the above system is asymptotically stable if it is 

Lyapunov stable，and ∃σ>0, such that, if ║X(0)-X1║<σ, then lim௧→ஶ ║𝐗(t) − 𝐗1║=0 

3. The equilibrium of the above system is said to be unstable if ∃ε>0, for ∀σ>0, there is at least one initial position X(0) which satisfies ║X(0)-X1║<σ，and the 

corresponding solution X(t) satisfies ║X(t)-X1║>ε for at least one t>0. 
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Figure 6: Stable Critical Point 

Figure 7: Asymptotically Stable Point                            

 

Figure 8: Unstable Critical Point 

The content above is from Wang (2006). In simple terms, stability is a concept 

to describe whether those points within a neighborhood of a critical point will be 
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attracted towards or be repelled away from the critical point.  

The classification of critical points is based on eigenvalues: We only illustrate 

the cases of critical points in this thesis. Such classification is based on the eigenvalues 

of the Jacobian Matrix of the system at critical points (Zill & Wright, 2012). 

a) If  λଵ = λଶ > 0, then this is an unstable node. 

Figure 9: An Unstable Node 

b) If  λଵ = λଶ < 0, then this is a stable node. 

Figure 10: A Stable Node 

c) If λଵ < 0, λଶ < 0, λଵ ≠ λଶ, then this is also a stable node. 



16 

 

Figure 11: A Stable Node 

d) If  λଵ < 0, λଶ > 0, then this is a saddle point, which is unstable. 

Figure 12: A Saddle Point 

      e)  If λଵ and  λଶ are two complex numbers with the only imaginary part. 

The critical point is the center of a spiral under such a circumstance. 

Figure 13: A Spiral Point 

Unique Solution: The concept of "unique solution" is crucial for the study of 

differential equations and dynamical systems. When we analyze the solution of a system, 
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we cannot be certain that the solution matching a certain condition is unique. Also, the 

unique solution ensures that two traces of different solutions cannot intersect, otherwise 

a solution with an initial point at the intersection can have two different traces. Usually, 

if a system matches the Lipschitz condition, then it has the local unique solution. The 

Lipschitz condition is not easy to check under most circumstances, but we can use 

another more obvious condition to take the place of Lipschitz constant. That is, if 

G(𝐗) ∈ 𝐶1(U), where G(𝐗) was defined in 2.1 and 𝐗 = (𝑥ଵ, 𝑥ଶ … … 𝑥௡), on an open set U ⊂ 𝑅௡, the system meets the Lipschitz condition (the proof is in the Appendix 2). All 

systems in this thesis have such partial derivatives, and this is easy to verify. 

2.3 Generalized Lotka-Volterra (GLV) equations  

The prey-predator model in the previous section is proposed by Alfred J. Lotka 

(Lotka, 1926) and Vito Volterra (Volterra, 1927) , and serves as the foundation of 

modeling theory for populations of species. In this thesis, we will apply a family of 

generalized Lotka-Volterra equations in the form: 

d𝑥௜𝑑𝑡 = r(𝑥௜) + ෍ 𝛾൫𝑥௜, 𝑥௝൯𝑥௜𝑥௝ஶ
௝ୀଵ,௝ஷ௜  

where r(𝑥௜) indicates the growth of the ith species，and 𝛾൫𝑥௜, 𝑥௝൯𝑥௜𝑥௝ indicates the 

interaction effect between the ith species and jth species. Specifically, if we apply the 

logistic equation for r(𝑥௜), the equations become generalized Verhulst-Lotka-Volterra 

equations (Simin et al., 2018).  
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During the past several decades, the application of GLV equations has not been 

limited to biology alone, but has expanded to many other areas, such as economics, 

finance, management, marketing and many other social sciences. In this thesis, we will 

apply different types of function for both growth and interaction parts, and discuss the 

qualities of each model. Specifically, linear function and logistics growth will be applied 

to the growth term; constant and non-linear functions will be applied to the interaction 

term.   

 

 

 

 

 

 

 

 

 

 



19 

 

CHAPTER 3. AN OVERVIEW OF THE MODEL 

3.1. What should the model look like? 

Based on GLV equations, we write the model directly in the form applied in 

this thesis, 

൞𝑑𝑋𝑑𝑡 = 𝑅ଵ(𝑋) − 𝛾(𝑋, 𝑌)𝑋𝑌   𝑑𝑌𝑑𝑡 = 𝑅ଶ(𝑌) − 𝛾(𝑋, 𝑌)𝑋𝑌    

where 𝑅ଵ(𝑋)  and 𝑅ଶ(𝑌)  are the growth of bid and ask shares respectively, and 𝛾(𝑋, 𝑌)𝑋𝑌 is the interaction term indicating the trade volume. What is special here is 

that the interaction term indicates the trade volume at a certain time, which is identical 

to both X and Y, so the interaction term should be the same in the two equations. Also, 

the sign of 𝛾(𝑋, 𝑌) should always be negative, since successful matches make both X 

and Y decrease. The interaction of the two “species” here is competition (Odum, 1971), 

to some extent. But we should note that such a kind of competition is different from the 

typical competitive LV equation, which has the form ୢ୶ୢ୲ = 𝑟𝑥(1 − ௫௄ − ௔௬௄ ) . In this 

equation, two species exist in the same space and compete for the same resource, so 

individuals in one species will squeeze the living space of individuals in the other 

species. The competitive L-V equation is widely used in the study of marketing where 

several agents compete for the same client group for market share. In our case, bid and 

ask shares do not have such a quality (we cannot say that buying orders occupy the 

space of selling orders).  
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3.2. When can we apply the model? 

An obvious question is that given that behaviors of a stock market are 

normally erratic and diversified, can a dynamical system with ordinary differential 

equations cover all situations? The answer to this question is that such a system cannot 

cover all situations. Thus, we find a trade-off and describe only one situation.  

First, we define something as “signal information”, which provides investors 

with clear signals, according to which investors make decisions to buy or to sell. A 

canonical example of such signal information is good or bad news. Most investors tend 

to buy the stock on good news and to sell on bad news. Although such a signal is clear 

to investors, it can be faked or be incorrect, and can be appropriately classed as “noise”.  

Apparently, a single stock can behave disparately under different kinds of signal 

information, which makes the system unpredictable. For instance, let the growth of bid 

shares be 𝑟𝑋, where r is a constant referring for the growth rate. If the current r is 𝑟ଵ, 

then the value of r in the next moment will be unpredictable under the impact of signal 

information. For example, if good news arrives when r=𝑟ଵ, then r can rise to a number 

different than 𝑟ଵ, because most investors will be motivated to buy the stock under bull 

news. Such a change has nothing to do with the current values of X and Y, but totally 

depends on existing signal information. So, what we have to do is try to avoid the impact 

of such information. Thus, the model in the thesis is limited to the situation, where there 

is no signal information influencing the decision of investors. Under such a 
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circumstance, investors make decisions randomly and differently due to heterogeneity. 

Also, the analytical solution is smooth and follows the same pattern under this situation. 

The condition can be viewed as a stable environment; therefore, no sudden change is 

allowed. For example, the growth rate of X cannot rise sharply within a short time 

interval. Therefore, we created a zero-information situation. In more sophisticated 

words, we use such a zero-information situation as a benchmark, we can separate out 

the part of change on X and Y due to the impact of signal information, rather than let the  

impact of signal information change the parameters of the system. 

൞ 𝑑𝑋𝑑𝑡 = 𝑅ଵ(𝑋) − 𝛾(𝑋, 𝑌)𝑋𝑌 + ɛଵ   𝑑𝑌𝑑𝑡 = 𝑅ଶ(𝑌) − 𝛾(𝑋, 𝑌)𝑋𝑌 + ɛଶ   

We absorb the part of change in X and Y due to the information to ɛଵ and ɛଶ6, which 

indicate the change in X and Y under current signal information. In other words, ɛଵ and ɛଶ, are treated as the disturbance term. By doing so, we isolate the impact of signal 

information from the system. We still use the previous one as an example; good news 

comes when r=𝑟ଵ. We assume 𝑟ଵ jumps to a larger number 𝑟ଶ, and in the next moment, 

the growth becomes 𝑟ଶ𝑥 . Now, we rewrite this term as 𝑟ଵ𝑋 + (𝑟ଶ − 𝑟ଵ)𝑋 . In this 

equation, 𝑟ଵ𝑋  remains the same, and we attribute (𝑟ଶ − 𝑟ଵ)𝑋  to ɛଵ  as this is the 

change due to the signal information. In this thesis, we try to describe the situation when 

there is no impact due to signal information. Hence, both ɛଵ and ɛଶ should be equal 

                                                   

2 Since the relationships between the signal information and, X, Y and t are uncertain, we do not pose a function 

form for the disturbance. 
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to zero under this assumption. Overall, if we compare the signal information to a road 

sign which gives an obvious clue to passersby about which road to choose, what we try 

to describe in this thesis is the situation where such a road sign is missing.  

3.3. What do the system parameters suggest? 

i. R: The growth rate of X and Y indicates the frequency of newly placed shares 

when there is no signal information. It is also equal to the frequency of investors placing 

their orders. We make such rates for X and Y equal, because, when there is no signal 

information, the motivation of selling and buying should be the same. Note that 𝑟𝑋, for 

example, is determined by the difference between the frequency of newly placed orders 

and the frequency of canceled orders. We assume this is always positive. 

ii. K: The capacity of the environment. Here, that means the maximum values of 

X and Y. A detailed description appears later in this thesis. 

iii. σ: The parameter used to standardize the trade volume σ𝑋𝑌. σ is positively 

related to the trade volume, and is a measure of the possibility of successful matches, 

indicating the motivation of investors to make successful transactions. In reality, σ 

indicates the motivation of investors to choose market orders or to place limit buy (sell) 

orders at prices higher (lower) than current ask (bid) price.  

In this thesis, we will fix the growth rate r and capacity K, and classify 

different situations for the system based on σ.  
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CHAPTER 4. RELATED LITERATURE 

4.1 Modelling of limit order books 

In this section, we will review some literature which focused on the evolution 

of limit order books (LOBs). Although our study is not directly of a LOB, there are still 

some similarities. Also, we applied some ideas and methods from the study of LOBs to 

this thesis. Martin et al. (2003) summarized and classified the models of LOBs into 

three categories. The first one is the perfect-rationality approach, the aim of which is to 

find the best trading strategy for investors to maximize their utility. For this category of 

study, the model is usually static. Scholars rely heavily on the assumption of 

fundamental value and perfectly rational investors. Kyle’s model (1985) assumes that 

there are both well-informed traders and noise traders in a market. In the first round, 

noise traders place limit orders with the price deviating from fundamental prices. Well-

informed investors will place market orders to match those limit orders at a wrong price 

and therefore obtain profits in the second round. Gottler, Parlour and Rajan (2006) 

proposed a model in which traders place orders following a Poisson process, and can 

arbitrarily choose the type and the price level of an order. Also, they can cancel and 

modify orders submitted. Once their orders are executed, they are not allowed to re-

enter the market. An interesting fact about this model is that all traders can pay to 

become and remain informed until they leave the market. Another branch of perfect-

rationality study is about minimizing the market impact of executed orders. For those 
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traders whose goal is to minimize trading cost generated by executing a big order, which 

has to be finished in several steps, Bertsimas and Lo (1998) obtained an optimal trading 

strategy. They demonstrated that if the movement of price follows a random walk 

process, traders should divide the order into N equal parts and submit those parts with 

the same time interval. Also, if the price is influenced by external information, then the 

optimal strategy involves properly adjusting trade quantities at every step. Almgren and 

Chriss (2001) derived an analogical strategy for those traders who want to maximize 

the utility of trading revenue for executing a large order. However, the assumption of 

fundamental value has been rejected by many researchers already, and as we mentioned 

before, such a model is usually static whereas the tool in this thesis is dynamical systems. 

Nevertheless, we will also make some assumptions about investors based on rationality, 

but such a level of rationality is far away from perfect-rationality and fundamentalism. 

Another category is the “zero-intelligence approach”. This approach focuses on 

the state and the evolution of LOBs, assuming that arrivals, cancellations and matches 

are purely stochastic processes. Thus, no trading strategy is involved, and stochastic 

processes totally govern the evolution. The framework of zero-intelligence approaches 

proposed by Bak, Paczuski and Shubik (1997) is similar to the one in this thesis. The 

price grid was described as a tube, and bid orders and ask orders were described as two 

kinds of particles (positrons and negatrons) injected from two ends of the tube. These 

particles are randomly diffused in this tube, where location indicates the price until two 

particles in different categories encounter each other. This process can also be viewed 
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as an interaction effect between two particles, and is similar to our model. Because we 

apply a continuous model in this thesis, we will focus on some zero-intelligence 

approaches in continuous time intervals. The first zero-intelligence model in continuous 

time was proposed by Daniels et al. (2003). They produced an equation for L(t), which 

is the state of a limit order book at time t, under the assumption that arrivals of limit and 

market orders, and cancellations are all Poisson processes. Also, they assumed that limit 

orders arrive at the same rate at each relative price level. Smith et al. (2003) solved the 

equation with tick size approaching to zero by using a mean-field approximate on that 

the depths available at neighboring prices are independent. By removing several 

assumptions in Smith’s article (2003)，Cont, Stoikov and Talreja (2010) proposed a 

stochastic model for order dynamics. They retained the assumption about Poisson 

processes and applied a two-way Laplace transform to obtain the conditional probability 

in the next moment of several market events, including the increase of mid-price, a limit 

order executed before the price moves and both buy and sell limit order executed before 

the price moves. The model performs well on predicting the evolution of order books 

in a short time. Similarly, Cont and Larrard (2013) proposed another stochastic model 

for describing the evolution of a limit order book, in which arrivals of market order, 

limit orders and order cancellations are described as a Markovian queueing system, 

which has the property of analytical tractability. Because of this property, they obtained 

analytical expressions for various quantities for next moment based on the state of the 

current order book, such as the distribution of the duration between price changes, the 
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distribution and autocorrelation of price changes, and the probability of price going up. 

The previous two models are usually viewed as successful in predicting the dynamics 

of limit order books and many other sequential studies modified and optimized them. 

For instance, a quixotic assumption in the model of Cont’s paper (2010) is that all orders 

are restricted to be the unit size. Huang and Kercheval (2012) relaxed this assumption 

in 2012. They also applied the Laplace transform to compute the conditional probability 

of several events which are similar to those in the article of Cont (2011). Also, based on 

some empirical studies, they relaxed the assumption that the arrival and the cancellation 

follow the Poisson process. Instead, the author applied a Hawkes process to describe 

the arrival and the cancellation of orders. In such a process, the arrival rate of market 

events is a function of the rate and the number of recent arriving orders. Toke (2011) 

also replaced the Poisson processes with the Hawkes processes. He observed that after 

the arrival of a market order, the average time for the next limit order arriving is less 

than the corresponding unconditional meantime. Based on this observation, Toke 

simulated the order flow that matches his observations more closely than those 

produced by a Poisson-process. As we can see, most zero-intelligence models are 

founded on the assumption that market events follow stochastic processes.  

There is also a third category lying between those of perfect-rationality and zero-

intelligence, namely, the “agent-based model” (ABM), which describes a large number 

of possibly heterogeneous agents interacting in a specified way (2007). The advantage 

of such models is that they can incorporate both the performance of individuals and 
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their aggregate effect. But the disadvantage is also obvious: Due to the complexity of 

interactions among different agents, it is difficult to compute parameters in such a model. 

Below are some selected agent-based models. In 1988, Cont and Bouchaud (2000) 

proposed a model for an order-driven stock market where random interactions among 

agents generate a heavy tail in the distribution of stock price changes in the form of a 

truncated power-law, which is similar to distributions observed in some empirical 

studies of high-frequency market data. Two famous market phenomena are linked by 

the model. The one is heavy tails observed in the distribution of stock returns, and the 

other one is the ’herding’ behavior in financial markets. Also, the study suggests a 

relationship between the excess kurtosis observed in asset returns and the market order 

flow, and the tendency of market participants to imitate each other. They introduced an 

order-driven market model with heterogeneous agents who set bids and asks, and post-

market or limit orders following certain exogenous rules and sharing a common 

valuation for the traded asset. They studied how trading strategies impact price 

dynamics, volatility and the trade volume. In their model, they noticed that the volatility 

produced by the simulation is by far lower than that in empirical data, and there is no 

volatility clustering. Therefore, they argued that there must be substantial heterogeneity 

among traders in a real order-driven market. Challet and Stinchcombe (2003) studied 

how allowing the parameters in a simple ABM for limit order books to change with time 

affects traded price series. They concluded that the mid-term over-diffusive price 

behavior is a result of the variability of market order and limit order rates. Also, they 
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argued the heavy-tailed distribution of mid-price changes and volatility clustering are 

led by such time-dependence. They also noted that, in many LOB models, parameters 

are assumed to remain constant, and they inferred that some stylized facts might be 

caused by erratic actions on the paper of traders. Lillo (2007) was engaged in the 

problem of the optimal limit order price of a financial asset in the framework of the 

maximization of the utility function of investors. By solving a utility maximization 

equation, he gave insight into the origin of observed power-law distribution of limit 

order prices. He concluded that the emergence of such power-law distribution is 

probably due to the power law heterogeneity of traders’ investment time horizons. 

Specifically, he showed that if mid-price movements are assumed to obey a Brownian 

motion, then each agent (assumed to be perfectly rational) will choose the relative price 

of her orders to be 

                             δ௫∗ = √2𝑇𝑔ିଵ(𝛼)𝑉 

where 𝑔ିଵ(𝛼)  is the degree of risk aversion of an agent, T is the time horizon of 

investors, and V is the volatility. Then, he studied how observed homogeneity affects 

the price choices of interacting agents with different risk aversions and different 

maximum time horizons. He also showed that heterogeneity of T is the main source of 

the power law distribution of δ௫∗. 

4.2 Application of dynamical systems in finance 

In this section, we will review some literature applying dynamical systems to 

model financial markets at the microstructure level. A deficiency of classic rational 
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expectations models or equilibrium models is that they lack the strength to explain the 

formation of price bubbles. Dynamical systems are usually an alternative which is 

applied to explain this financial phenomenon. Caginalp and Ermentrout (1990) 

developed a complete dynamical system for investor behavior. The model assumes a 

kinetic reaction among investors who rely on a fundamental value component and a 

trend-based component. The latter is based on a memory of price history decaying in 

time, and it captures the tendencies among investors to buy a recently rising stock and 

to sell a recently declining stock. Based on this, a dynamical model introduced by 

Caginalp and Balenovich in 1993 (G Caginalp & Ba1enovich, 1993) did an excellent 

work on predicting price patterns after calibrating a previous experimental bubble, 

given the initial condition for a new bubble and its controlled fundamental value. As an 

extension of the work of Caginalp and Balenovich , Porter and Smith (Porter & Smith, 

1994) reviewed the results of more than 70 laboratory asset market experiments which 

incorporate experimental treatments for suppressing bubbles that are suggested by the 

rational expectations theory or dominant prescription. The results suggest bubbles are 

the result of uncertain behaviors of investors. 

In 2016. Cheriyan and Kleywegt (2016) proposed a model of boundedly rational 

investor behavior, which involves asset price forecasts based on past price data. The 

model demonstrates how bubbles, crashes and asset price cycles may be led by the 

behavior of boundedly rational decision makers. Investor behaviors are represented by 

the parameters of the dynamical system. It is shown that the dynamical system can 
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converge to a fixed point, which corresponds to the fundamental value of the asset, or 

may converge to a limit cycle with both positive and negative bubbles, or may exhibit 

uncertain chaotic behavior.   

Dynamical systems are also applied to areas other than the study of financial 

bubbles. For instance, Slanina and Zhang (1999) introduced a model of an open 

economy composed of producers and speculators, and the model is investigated by 

numerical simulations. The economy is viewed as an open dynamical system, and the 

influx of capital leads to the coexistence of producers and speculators. They 

demonstrated that the existence of speculators can be useful to the economy by 

suppressing price fluctuations. They also show that the optima for producers and 

speculators lie close one to the other, and thus their mutual coexistence can be better 

described as symbiosis than parasitism. By employing random dynamical systems 

theory, Evstigneev, Hens and Schenk-Hoppe (2006) derived necessary and sufficient 

conditions for the evolutionary stability of portfolio rules. Specifically, the market is 

evolutionary stable if and only if stocks are evaluated by expected relative dividends. 

More often than not, there are links between dynamical systems, financial systems and 

ecology systems. Farmer (2002) proposed several dynamical system models for the 

financial market in 2002. The models can be concisely summarized into three words, 

which are “Force”, “Ecology” and “Evolution”. The first one indicates how a 

nonequilibrium price is formed by the market forces, which is mainly led by directional 

traders submitting market orders. The word “Ecology” implies that the 
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interrelationships of financial agents are similar to the biological case. In this section, 

the authors applied several common trading strategies and studied how they work on 

the price dynamics. “Evolution” literally indicates the short-term and long-term 

performance of the system. They found the combination of value investing and trend 

following can result in a boom-bust circle and in an excess of volatility. For the long-

term, the evolution is studied in terms of flows of money. The results indicated the 

reinvestment of profits leads to a capital allocation model which is equivalent to Lotka-

Volterra equations. 

4.3 Studies and simulations of GLV equations 

Based on the model of Lotka (1926) and Volterra (1927), Odum (1971) divided 

the interaction between two species among the classifications of “mutualism”, 

“competition” and “prey-predator”. All these relationships are indicated by the sign of 

the interaction term. The interaction is mutualism if signs of interaction terms, which 

indicate how A impacts B and B impacts A, are both positive; competition if the two 

signs are negative; prey-predator if two signs are different. In 1977, Hannan and 

Freeman (1977) introduced ideas such as these, originally from the field of ecology to 

the study of organizations, and mentioned the usage of Lotka-Volterra equations in 

competitive markets. Also, due to the complex nature among the peer industry, many 

studies regarding this area applied GLV equations with different interaction terms. The 

most common method is to fit parameters to check the sign of the interaction term and 

therefore determine the relationship among different markets or firms. For instance, 
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Kim and Lee (2006) studied the Korean mobile phone market by applying LV equations 

as the diffusion function. The article concluded that the relationship between two mobile 

phone markets (the PCS market and the cellular market) is commensalism. That means 

the PCS market has benefited from the cellular market while the former hardly 

influenced the latter. In other words, the interaction of the cellular market to the PCS 

market is positive, but is zero when the relationship is inversed. Similarly, Kreng and 

Wang (2009) studied the relationship between LCD TV and PDP TV in Taiwan. It was 

shown that actors on the LCD side took the role of prey and actors on the PDP side took 

the role of predator. These two studies described markets in which the products are 

different, so the relationship is not necessarily competitive. Below is some literature 

about the market with the same products manufactured by different firms. For instance, 

Michalakelis, Sphicopoulos and Varoutas (2011) applied LV equations to model the 

competition among three Greek mobile telephone providers, Vodafone, Cosmote and 

Wind. They forecasted that market shares of the three providers will finally reach an 

equilibrium. Samarajiva (2000) did similar research on the telecommunication 

providers in Sri Lanka. Moreover, some studies add a constraint to LV equations. That 

means they assume the total market share is 1. For instance, Huang ,Tsai and Wu (2014) 

modeled the market shares of different types retail industries in Taiwan. They made 

x(t)+y(t)=1, and substituted the y(t) with 1-x(t). Thus, the system becomes 

ቐௗ௫ௗ௧ = [𝑎 + 𝑏𝑥 + 𝑐(1 − 𝑥)]𝑥ௗ௬ௗ௧ = 1 − 𝑥   . The general method here applies past data to fit the 

parameters in the LV model and forecast the evolution of the whole system. However, 
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such a method gets constants for parameters, but in real markets, usually, one agent will 

change its strategy when its market share is low, and then the parameter will also change. 

Some studies noticed this and tried to optimize the model. For example, Tang and Zhang 

(2005) modeled the competition between two CPU vendors AMD and Intel. In the 

article, they replaced the interaction constant with a time-depended function. The 

system is 

ቐௗ௫ௗ௧ = 𝑟ଵ𝑥{1 − 𝑥 − [1 + (𝑏ଶଵ − 𝑏ଶଶ)𝑥]}ௗ௬ௗ௧ = 𝑟ଶ𝑦{1 − 𝑦 − [1 + (𝑏ଵଶ − 𝑏ଵଵ)𝑦]}. 

Here, 𝑏ଶଵ  and 𝑏ଵଶ  are creation functions, which indicate the innovation of 

new technology of two companies. And 𝑏ଵଵ and 𝑏ଶଶ are functions used to evaluate 

the pressure from other companies which benefited from the innovation of AMD and 

Intel, and released technology to compete with them. Note that all these four functions 

were time dependent without explicit functions. Similarly, in 2016, Marasco, Picucci 

and Romano (2016) applied a family of integrable nonautonomous LV models on 

modeling the utility function of different firms in a market. Their model has the 

formalism of  

ୢ௫೔(௧)ௗ௧ = 𝑥௜(𝑡)[𝑔௜(𝑡) − ∑ 𝑔௝(𝑡)ே௝ୀଵ 𝑥௝(𝑡)]. 
In this equation, the constant in the original LV model was replaced by an integrable 

function. Also, such type of function made the differential equation solvable. In the 

previous two cases, although we had the idea of changing constants with functions, no 

expression was provided. Now, we look at an example with a concrete function 

expression proposed by Caram, Caiafa, Proto and Ausloos (2010). They did a pure 
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simulation by GLV equations on the competition of agents with different sizes. The 

model is, 

ୢ௦೔ௗ௧ = 𝑎௜𝑠௜(𝑏௜ − 𝑠௜) − ∑ 𝛾൫𝑠𝑖, 𝑠𝑗൯𝑠𝑖𝑠𝑗∞𝑗=1,𝑗≠𝑖 ,  

where s௜ is the size of agent I and 𝑎௜𝑠௜(𝑏௜ − 𝑠௜) is the logistic growth, which will also 

be applied in this thesis. The interaction function 𝛾൫𝑠௜, 𝑠௝൯ is defined as exp [− ቀ𝑠𝑖−𝑠𝑗ఙ ቁଶ], 
which is a Gaussian function with some good mathematical properties. The author 

explained that the competition is higher if two agents have similar sizes (𝑠௜ − 𝑠௝  is 

small), and is lower when they are largely different in size. This is a typical example, in 

which the interaction function is a function of x and y, and is determined by the 

characteristics of what they want to model. Recently, Simin et al. (2018) applied this 

model again to simulate the size of love (the strength of love) among different people.  
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CHAPTER 5. PROPOSED MODELS 

In this section, we will propose several GLV models from simple (herding and 

radical treading strategy) to the most complex one (rational and conservative treading 

strategy). Our purpose is to observe how the populations of bid and ask shares evolve 

with time and therefore estimate the current situation of demand and supply. Based on 

this, we are concerned with the trajectories of a solution, which is expressed as how a 

particle on the plane7 moves from certain initial conditions, and following the system. 

Also, the ultimate situation is expressed as where the particle will finally go. 

5.1 Linear growth and interaction (System 1) 

5.1.1. Constructing the model 

Firstly, we consider the simplest model, which is purely the equations of the 

population of the prey in the prey-predator model. That is 𝑟𝑋 and  𝑟𝑌 indicate the 

growth of bid and ask share, respectively, while σxy indicates the trade volume.       

൞𝑑𝑋𝑑𝑡 = 𝑟𝑋 − 𝜎𝑋𝑌𝑑𝑌𝑑𝑡 = 𝑟𝑌 − 𝜎𝑋𝑌 （1） 

There is no capacity in the two equations. Both X  and 𝑌  follow a linear 

increase. The trade volume is also a linear function of 𝑋 and 𝑌, respectively. 

 

                                                   

2 For consistency with the two variables, X and Y, we consider the coordinate plane composed by X and Y axes. 
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5.1.2. Dynamical Analysis 

We will demonstrate the critical points and their types in table 1. Since the 

process of determining the type of each critical point is easy but tedious, we will not 

show it in detail for most cases.  

 

Table 1 
System 1: Critical Points and Their Types  

 

       

 

 

 

Figure 14: A Rough Stream Plot of System1 

We can know the sign of dx/dt and dy/dt in different areas (in figure 14), which 

are divided by nullclines. For instance, in area 1, we have X>0 and  r − 𝜎𝑌 > 0, so 

ௗ௑ௗ௧ >0. Similarly, we can have ௗ௒ௗ௧>0 in area 1. That means the particle in area 1 should 

move along a trajectory, on which, both X and Y will increase. But we should note what 

we can obtain from this method is just an approximated direction. In the rest of the 

Critical points Type of critical points 

(0，0) Unstable node 

(𝒓𝝈 , 𝒓𝝈) Saddle point 



37 

 

thesis, we will show graphs of approximated moving traces based on this analytical 

method. 

In addition to the properties of critical points, we can draw a rough stream plot. 

It is also important to note that the line X=Y is also a solution curve of the system. 

Moreover, because of the unique solution, any two of trajectories should not intersect. 

This property implies that any trajectory with initial points in the region of X>Y should 

always stay in this region and finally moves to Y=0 and X=+∞; so does a trajectory 

with an initial point in the region of Y>X. 

In this case, we can note that the population of bid and ask shares will go to the 

area where either X=0, Y=+∞ or Y=0, X=+∞. This indicates two situations in the end. 

The first is that all people want to buy this stock. The second is that all people want to 

sell this stock. However, at least the value of Y cannot go infinite. This is because the 

number of stock shares issued by one company is limited. Hence, the maximum value 

of Y should be equal with or less than the number of total shares issued. Besides, this 

model can be viewed as when investors apply herding strategy. The truth that the growth 

parts 𝑟𝑋 and 𝑟Y are larger when X and Y are larger reflects investors' inclination to 

follow the strategies of others and a generate feedback effect. Overall, herding strategy 

makes the stock go to the extremes. 
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Figure 15: Simulation Data for System 1: when r=0.1, σ=5×10ିହ, K=4000. 

5.2 Logistic growth for the ask side and linear interaction (System 2) 

5.2.1. Constructing the model.  

First, let us think about ask shares. As the number of total shares issued by a 

listed company is fixed, the value of Y cannot go infinite. Moreover, in reality, it is 

nearly impossible that all shares issued are requested to sell. For example, there are 

some extremely rational investors and fundamentalists who know that the stock will be 

under-evaluated if too many shares are on the ask side, especially when there is no signal 

information. Thus, they will not sell if there is already a large number of ask shares. 

Also, some stockholders will never sell for some particular reasons. Consequently, the 

maximum value of Y should be less than the number of total shares. Now, we assume 

the maximum value is a fixed number of “K” and Y will never go beyond K even with 

extremely bad news.  
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Such a relationship can also be viewed mathematically. Let the set Y={Y: Y is 

the possible number of ask shares}, and we have that the total number of shares issued 

is an upper bound of Y, while K is the supremum. But there is nothing wrong with 

treating K directly as the number of shares issued in terms of analyzing the system. So, 

we have to consider the growth part with a limit. The logistic growth equation should 

be an ideal choice. It indicates the growth rate will slow down with the increase of 

population, as more individuals bring more competition for a limited resource. The 

general form of such growth is ቂr ቀ1 − ୶୏ቁቃ 𝑥 where r is the logistic growth rate and K 

is the environment capacity indicating the maximum number of x. Notice that the 

growth rate part is r ቀ1 − ୶୏ቁ, which is a decreasing function of x. It is worth mentioning 

that most zero-intelligence models assume the placement of new orders follows the 

Poisson process. However, the number of new orders within a fixed time interval 

depends on the base number (how many orders are already there), as investors have 

strategies predicated on such a base number. Thus, this process is not one with an 

independent increment. Actually, some literature has already suggested that almost all 

social phenomena follow logistics growth (Solomon & Richmond, 2001). Also, if rY 

indicates the effect of those investors applying herding strategy, the term ቀ1 − ௒୏ቁ  

refers to the effect of another group of investors who know the stock will be undervalued 

if irrationally many investors want to sell the stock. If so, their motivation for selling 

will decrease with the increase in Y and no more people will sell the stock when Y 

reaches K (similar to the bid side). Thus, ቂr ቀ1 − ௒୏ቁቃ 𝑌 covers two groups of investors.   
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Now we apply the logistic growth to Y and we call,                                   

r𝑥௜(1 − 𝑥௜𝐾) + ෍ 𝛾൫𝑥௜, 𝑥௝൯𝑥௜𝑥௝ஶ
௝ୀଵ,௝ஷ௜  

the generalized Verhulst-Lotka-Volterra equations. Then the system becomes, 

  

൞𝑑𝑋𝑑𝑡 = 𝑟𝑋 − 𝜎𝑋𝑌                 𝑑𝑌𝑑𝑡 = 𝑟𝑌 ൬1 − 𝑌𝐾൰ − 𝜎𝑋𝑌           (2) 

5.2.2. Dynamical Analysis:𝜎 ≤ r/K 

We first check the case when K ≤ r/𝜎 or 𝜎 ≤ r/K. This indicates that the 

motivation for transactions are relatively low. 

Table 2  
System 2: Critical Points and Their Types (𝜎 ≤ 𝑟/𝐾) 

 

                    

 

 

 
Figure 16: A Rough Stream Plot of System 2 (σ ≤r/K) 

Critical points Type of critical points 

(0，0) Unstable node 

(௥ఙ , ௥ఙ) Saddle point 
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In this case, all points will move to Y=0 and X to infinite. That means this 

stock will finally go to the situation in which infinitely many people want to buy it. 

However, based on the reality of stock markets, or economic phenomena, it is 

impossible that infinite people want to buy an item in the long run. Because an 

overage of demand will finally lead to price bubbles and then to crashes.  

 Figure 17: Simulation Data for System 2 (σ ≤r/K): when r=0.1, σ=2×10ିହ, K=4000. 

5.2.3. Dynamical Analysis：𝜎 > r/K. 

The other case of system (2) is when 𝜎 > r/𝐾. This indicates that the 

motivation for making transactions are relatively low. 

Table 3 
System 2: Critical Points and Their Types (𝜎 > 𝑟/𝐾)  

 

 

 

    Critical points    Type of critical points 

(0，0)        Unstable node 

(0, K)       Stable node 

     (୰஢ (1 − ୰୩஢), ୰஢)        Saddle point 
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Figure 18: A Rough Stream Plot of System 2 (σ > r/K) 

 

Figure 19: Simulation Data for System 2 (𝜎 > 𝑟/𝐾): when r=0.1, σ=1×10ିହ, K=4000. 

In this case, the particle will go either Y=0, X=+∞ or (0, K). This means that in 

the end, all investors want to buy this stock. Otherwise, all holders want to sell it. The 

problem here is similar to that of the previous case. Moreover, theoretically, it is possible 

that all the holders want to sell. But what we describe is when there is no signal 

information in the market. Under this assumption, it is unlikely that a stock will go to 

such an extreme situation.
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5.3 Logistics growth for both sides and linear interaction (System 3) 

5.3.1. Constructing the model 

  Now, we consider adding a limit to the buy side as well. As we mentioned in the 

previous paragraph, demand cannot go infinite. Also, let us consider that, in a rational 

market, and to avoid an excessive demand or excessive supply, the limit of ask shares 

should be equal with that of bid shares. 

                 
 

 

5.3.2. Dynamical Analysis：𝜎 > 𝑟/K. 

Similar to system (2), there are two cases for system (3). The first case is when 𝜎 > 𝑟/𝐾, which also indicates that the motivation for transactions is relatively high. 

Table 4 
System 3: Critical Points and Their Types (σ>r/K) 

       

 

 

 

൞𝑑𝑋𝑑𝑡 = 𝑟𝑋(1 − 𝑋𝐾) − 𝜎𝑋𝑌𝑑𝑌𝑑𝑡 = 𝑟𝑌(1 − 𝑌𝐾) − 𝜎𝑋𝑌 
(3) 

     Critical points Type of critical points 

        (0，0) Unstable node 

       （0,K） Stable node 

        (K,0) Stable node 

      ( ௞௥௞ఙା௥ , ௞௥௞ఙା௥) Saddle point 



44 

 

Figure 20: A Rough Stream Plot of System 3 (𝜎 > 𝑟/𝐾) 

In this case, most of the solutions will finally go either to the critical point (K,0) 

or to (0, K). It is also important to note that X=Y is a solution for the system. Because 

for every point on X=Y, we have ୢ௒ୢ௑ = ௨ି௒௨ି௑ where u= ௞௥௞ఙା௥, it follows that the particle 

on X=Y will move along this line to (u, u). In addition to the truth that any two traces of 

a solution cannot intersect, we can determine that the attract basin of (K,0) is the area 

X>Y; the attract basin of (0, K) is the area Y<X. The attract basin indicates that if there 

are more bid shares than ask shares at 𝑡଴, the stock will finally go to a bubble build area, 

where everyone wants to buy it. The opposite situation happens when there are more 

ask shares at the initial time. However, even if we add a logistics part to the equations, 

the particle will still go to the extremity. We will explain the reason in a later paragraph. 
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Figure 21: Simulation Data for System 3 (𝜎 > 𝑟/𝐾): when r=0.1, σ=0.75×10ିସ, 
K=2000. 

5.3.3. Dynamically Analysis：𝜎 ≤ 𝑟/K 

The other case is when 𝜎 ≤ 𝑟/𝐾, which indicates that the motivation for 

transactions is relatively low. 

 

Table 5 
System 3: Critical Points and Their Types (𝜎 ≤ 𝑟/𝐾). 

      

  

 

  

 

 

 

Critical points Type of critical points 

(0，0) Unstable node 

(0, K) Unstable node 

(K,0) Unstable node 

( ௞௥௞ఙା௥ , ௞௥௞ఙା௥) Stable node 
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Figure 22: A Rough Stream Plot of System 3 (𝜎 ≤ 𝑟/𝐾) 

It is obvious that all the traces will finally move to ( ௞௥௞ఙା௥ , ௞௥௞ఙା௥). This means that 

the stock will reach an equilibrium in the end. The number of both bid and ask shares 

will become unchanged since the particle has reached the point. It is reasonable that a 

market reaches an equilibrium when there is neither good nor bad news. But the 

drawback is that this equilibrium situation is an extremely static state, in which the total 

number of bid and ask shares, and the trade volume, which is relatively high when the 

system reaches the fixed point, will all remain unchanged in the long run. Although such 

hyper-equilibrium seems a castle in the air, it brings us to a situation other than being 

mired in extremities. 
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Figure 23: Simulation Data for System 3 (𝜎 ≤ 𝑟/𝐾): when r=0.1, σ=0.3×10ିସ, 
K=2000. 

5.4 Logistics growth and non-linear interaction (System 4) 

5.4.1. Constructing the model 

The previous models are more or less flawed in the final situation. In other words, 

the stock is unlikely to exhibit extreme variation between supply and demand when 

there is no signal information. We therefore go back to check our model, which is 

composed of two parts. The first part indicates growth, and this part seems unflawed as 

both X and Y should have a limit. So, we turn our consideration to the second part— σxy. Actually, in the first place, Lotka admitted this term should be 𝛾(x, y)xy, where 

𝛾(x, y) is an interaction function for x and y. He made assumption that 𝛾(x, y) can be 

expanded in Taylor series with only constant term remained.  

We now consider replacing the constant σ with an appropriate function. We 

make two simple assumptions about investors. First, if there is no signal information, 

the motivation of most buyers to make successful transactions (place limit orders with 
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a price higher than ask price, or place market orders) will decline while the exercise 

price rises. For sellers, such motivation will decline while the exercise price falls8 . 

Second, for investors who chose market orders, they will know the trend of change on 

the exercise price with the change on X and Y. For instance, sellers who chose sell 

market orders will realize that the exercise price will decrease if X remains unchanged 

while Y increases constantly. This is because the power of supply is rising, but demand 

does not change. 

For our model, σ𝑋𝑌 indicates the linear relation between the trade volume and 

bid-ask shares. This means that when X remains unchanged, the increase in the trade 

volume will increase proportionally with the increase in Y. Also, such a linear relation 

indicates the population of either ask or bid shares is purely and positively related to the 

trade volume. In the following paragraphs, we will demonstrate that the population of 

bid shares and ask shares can result in a blocking effect acting on the trade volume. It 

follows because of this that an increase in X and Y is not only able to increase the 

probability of successful matches (just as an increase in foxes and rabbits results in more 

mutual interactions), but also has the tendency to make such a probability decrease, 

which may not be obvious in the case of two biological species with interactions. 

Now we introduce a simple example, in which both X and Y are 50 at 𝑡଴, and 

the 

                                                   

2 This assumption is based on the property of demand curves and supply curves. 
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number of successful matches is 5. These shares are distributed on the price grid 

represented by the horizontal line. 

   Figure 24: An Example at T଴ 

If there are 10 newly placed ask shares at 𝑡ଵ, then the number of successful 

matches should be 6 according to proportional increase. Here, we assume that locations 

of original shares at 𝑡଴ do not change at 𝑡ଵ. 

Figure 25: An Example at tଵ 

Note that among the ten newly placed ask shares, there should be at least one 

placed on the left-hand side of that yellow line, or overlapping with it, to ensure the 

proportional increase. That means a newly placed ask share has to be executed at a lower 

exercise price to make another transaction happen. If we repeat this process, to ensure 

another successful match, at least one newly placed order should be placed to the left of 
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the purple line at 𝑡ଶ, and to the left of the grey line at 𝑡ଷ. That means the excise price 

for sellers will go down with the increase in ask shares. It is likely that, for the purple 

line, as the exercise price becomes lower, we need 11 ask shares to ensure there is at 

least one investor willing to make a transaction at that price level. And such a chance or 

a proportion will become less and less as Y keeps increasing. So, the real increase should 

be less than the proportional increase. Now, suppose that U(𝑋, 𝑌) is the real value of 

the trade volume, and U(𝑋, 𝑌)= σ𝑋𝑌 when X=𝑋଴ and 𝑌 =𝑌଴. Then ∀ ∆𝑋, ∆𝑌 > 0, 

we have U(𝑋଴ + ∆𝑋, 𝑌଴ + ∆𝑌) <σ(𝑋଴ + ∆𝑋)(𝑌଴ + ∆𝑌) . Otherwise, the trade volume 

has a proportional or even a larger increase at（𝑋଴, 𝑌଴）. Now we have to consider 

when U(𝑋, 𝑌) will be equal or almost equal to σ𝑋𝑌. This is a signal of a blocking 

effect of bid-ask shares on the trade volume, or say, on σ𝑋𝑌 in this system. In other 

words, the increase in X or Y cannot be fully (linearly) reflected by the increase in the 

trade volume. And such a blocking effect will increase with the increase in X or Y. 

Apparently, only when both X and Y are extremely small (and the blocking effect is also 

small), we have U(𝑋, 𝑌) ≈ σ𝑋𝑌. For almost all points in region [𝐾, 0] × [0, 𝐾], we 

have U(𝑋, 𝑌) < σ𝑋𝑌. 

Besides, such a blocking effect can also be generated from another source-

heterogeneity, which means different investors can apply different trading strategies 

under the same X and Y. Such a heterogeneity can even result in a negative relation 

between Y (X) and the trade volume. Let us return to the previous case, where there were 

50 ask shares at 𝑡଴, and consider it from the perspective of buyers. The increase in Y, 
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which implies an increase in the power on the ask side, is likely to decrease the 

motivation of some buyers to make transactions. Because buyers do not have any 

information, they specifically do not know whether there is information held by others. 

From the perspective of buyers, the increase in Y may indicate the existence of negative 

information which they are unable to access. Thus, for the buyers' part, the motivation 

to place market orders to have instant transactions will be weakened. If these buyers are 

dominant, such a phenomenon can exacerbate the blocking effect on trade volume.  

As with the first source, the more Y increases, the lower the number of market 

bid shares will be. In the previous case, at 𝑡ଵ, the worst situation without considering 

the second source is that no seller wants to trade at the price represented by the yellow 

line, and the trade volume will remain unchanged from that at 𝑡଴. Now we remove one 

bid market share at 𝑡ଵ due to the second source. As we assumed that the value of X is 

fixed, we have to place a bid limit share to keep X unchanged because of the removed 

market share. What is subtle here is that the loss of market share will absolutely result 

in a decrease in the trade volume, while the newly placed limit share cannot guarantee 

a successful match. Then, the worst situation at 𝑡ଵ results in that no seller wants to 

trade at the price represented by the yellow line, and the limit bid share applied to 

replace the lost market bid share is placed at a price lower than the one represented by 

the yellow line. If so, the trade volume at 𝑡ଵ will decrease from the trade volume at 𝑡଴. 
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Now, we have already recognized the existence of the blocking effect, which is 

positively related to the value of X and Y. Another critical issue is that we set a limit K9 

for both X and Y. In this case, we should keep our system in the region of [𝐾, 0] ×[0, 𝐾] . In other words, the region [𝐾, 0] × [0, 𝐾]  should be an invariant set for our 

system. Because of the blocking effect and the invariant set, we propose that the 

interaction term be, 

σ𝑋𝑌(1 − ௑୏)(1 − ௒௄). 

The items within this term are explained below 

1. X indicates the positive impact of bid shares on trade volume. 

2. Y indicates the positive impact of ask shares on trade volume. 

3. (1 − ௑୏) indicates the blocking effect of bid shares on trade volume. 

4. (1 − ௒௄) indicates the blocking effect of ask shares on trade volume. 

Of the properties we analyzed earlier, this term has the following: 1)The value 

of the term is less than σxy 2) The self-block term (1 − ௑୏)(1 − ௒௄) is a decreasing 

function for X and Y. 3) The increase in the trade volume is less than the proportional 

increase. 4) The region of [𝐾, 0] × [0, 𝐾]  is an invariant set for our system (an 

explanation appears later in this thesis). However, a remarkable feature about this 

interaction term is that the trade volume is zero when either X or Y reaches K. In reality, 

it is hard to say what the trade volume should be when X or Y reaches its maximum 

                                                   

2 We assumed that X and Y can never go beyond K even with the impact of signal information. 
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possible value since there is a lack of empirical study to describe such a situation, 

especially since we prescribed there should be no signal information. Fortunately, we 

do not have to worry about such an “undefined” situation (such as ∞ − ∞ in some 

cases of mathematics). That is because the trace of a solution is unable to reach the 

boundary of the [𝐾, 0] × [0, 𝐾] plane if the particle moves purely under the impact of 

our system, unless the initial point is on the boundary. In other words, a single stock 

cannot go to the extremity of almost all investors wanting to buy or to sell when there 

is no signal information. The only possibility for K is that the particle moves to [𝐾, 𝐾]. 
We will clarify this later. The model follows: 

 

 

We do a small transformation firstly.                                                    

⎩⎨
⎧𝑑𝑋𝑑𝑡 = 𝑋 ൬1 − 𝑋𝐾൰ [𝑟 − 𝜎𝑌 + 𝜎𝑌ଶ𝑘 ]𝑑𝑌𝑑𝑡 = 𝑌 ൬1 − 𝑌𝐾൰ [𝑟 − 𝜎𝑌 + 𝜎𝑌ଶ𝑘 ] 

The nullclines of the system are: 

   X: 𝑋 = 0, 𝑋 = K, 𝑟 − 𝜎𝑌 + ఙ௒మ௞ = 0 

   Y: 𝑌 = 0, 𝑌 = K, 𝑟 − 𝜎𝑋 + ఙ௑మ௞ = 0 

As both X and Y are from 0 to K, 𝑋 ቀ1 − ௑௄ቁ and 𝑌 ቀ1 − ௒௄ቁ are positive. So, 

if  𝑟 − 𝜎𝑋 + ఙ௑మ௞  and 𝑟 − 𝜎𝑌 + ఙ௒మ௞   are also positive when X and Y are from 0 to K, 

both ௗ௑ௗ௧  and ௗ௒ௗ௧  are positive. Under such a circumstance, the stream plot is very simple. 

൞𝑑𝑋𝑑𝑡 = 𝑟𝑋(1 − 𝑋𝐾) − 𝜎𝑋𝑌(1 − 𝑋𝐾)(1 − 𝑌𝐾)𝑑𝑌𝑑𝑡 = 𝑟𝑌(1 − 𝑌𝐾) − 𝜎𝑋𝑌(1 − 𝑋𝐾)(1 − 𝑌𝐾) (4) 



54 

 

All the traces will finally flow to (K, K), which is a stable node. Another thing we have 

to notice is that, as X=K and Y=K are nullclines for Y and X respectively, all traces with 

initial points in the square region of [0, K] × [0, K]  will always be trapped in this 

region. In other words, the region is an invariant set for the system. This fact is important, 

as it ensures the unique solution for all t ≥ 𝑡଴. Proof can be found in page 61 of Khalil’s 

book (1996). This global condition is stronger than the local unique solution.  

Now let f(𝑋) = 𝑟 − 𝜎𝑋 + ఙ௑మ௞   as an example, for which ∆= 𝜎ଶ − ସఙ௥௞ =𝜎(𝜎 − ସ௥௞ ) . This indicates that when 𝜎 ≤ ସ௥௞  , the function will be always positive. 

Besides, note that if f(X)=0 has two roots, the smaller one (say, 𝐿ଵ) must be between 

zero and K/2 and the larger one (say, 𝐿ଶ) must be between K/2 and K. If the situation 

above happens, that means 𝜎 is very small. A small 𝜎 indicates that the motivation of 

investors to place market orders is extremely low, therefore few transactions happen. 

But there are still buy orders and sell orders placed as limit buy or sell orders at 

relatively low or high prices respectively. In other words, there is both demand and 

supply in the market, but buyers and sellers do not reach a consensus for the trading 

price. Finally, although there are lots of bid shares and ask shares, there are very few 

successful transactions. Such “K vs K” stagnation is not very common in the real market, 

but it is theoretically feasible, as the motivation for trading can be very low when there 

is no signal information. 
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Now we attach more importance on the other case when 𝜎 > ସ௥௞ . In this case, 

the motivation level for trading is high and successful transactions happen more 

frequently.  

5.4.2. Dynamical Analysis 

Unlike previous cases, this case has eight critical points. 

Table 6 
System 4: Critical Points and Their Types (σ>4r/K) 

         

 

 

 

 

We will give a detailed description about the situations at (𝐿ଵ，𝐿ଶ) and (𝐿ଶ，𝐿ଵ), since determining the type of them is not as easy as others. Also, these two points 

are important for the rest of thesis. Since the system is symmetric, we take (Lଵ，Lଶ) as 

an example. The Jacobian Matrix at this point is 0 −σ𝐿ଵ(1 − 𝐿ଵ𝐾 )(1 − 2𝐿ଶ𝐾 )−σ𝐿ଶ(1 − 𝐿ଶ𝐾 )(1 − 2𝐿ଵ𝐾 ) 0  

 

Critical points Type of critical points 

(0，0) Unstable node (0, K) Saddle point 
(K,0) Saddle point 
(K, K) Stable node (Lଵ, Lଵ) Saddle point (Lଶ, Lଶ) Saddle point (Lଵ, Lଶ) Spiral point  (Lଶ, Lଵ) Spiral point 
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And, we have λଶ=σଶ𝐿ଶ𝐿ଵ(1 − ௅మ௄ )(1 − ଶ௅భ௄ )(1 − ௅భ௄ )(1 − ଶ௅మ௄ ). 

Notice that  𝐿ଵ < ଶ௄ , 𝐿ଶ > ଶ௄, 

thus  σଶ𝐿ଶ𝐿ଵ ቀ1 − ௅మ௄ ቁ ቀ1 − ଶ௅భ௄ ቁ ቀ1 − ௅భ௄ ቁ ቀ1 − ଶ௅మ௄ ቁ < 0. 

Let σଶ𝐿ଶ𝐿ଵ ቀ1 − ௅మ௄ ቁ ቀ1 − ଶ௅భ௄ ቁ ቀ1 − ௅భ௄ ቁ ቀ1 − ଶ௅మ௄ ቁ = −𝑎, 

and we have λ = ±√𝑎𝑖. 
So, the eigenvalues at (𝐿ଶ，𝐿ଵ) and (𝐿ଵ，𝐿ଶ) are two pure imaginary numbers, which 

implies the existence of spirals around the two points. Also, the presence of spirals 

suggests the existence of periodical solutions. However, the sizes of such spirals are 

unknown, so further analysis is needed. 

Figure 26: A Rough Stream Plot for System 4 (σ>4r/k) 
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However, this stream plot above gives us little information. So, we have to 

explore the phase plot further. Based on the system, we have that 

ୢ௒ୢ୶ = ௥௒(ଵିೊ಼)ିఙ௑௒(ଵି೉಼)(ଵିೊ಼)௥௑(ଵି೉಼)ିఙ௑௒(ଵି೉಼)(ଵିೊ಼). 
Transform this equation into  ቄKr − ቂ ଵ௒(௄ି௥)ቃ − 𝜎ቅ 𝑑𝑦 = ቄKr − ቂ ଵ௑(௄ି௥)ቃ − 𝜎ቅ 𝑑𝑥. 

As X and Y are independent, we can integrate both sides for Y and X separately.                                 ׬ ቄKr − ቂ ଵ௒(௄ି௥)ቃ − 𝜎ቅ 𝑑𝑌=ቄKr − ቂ ଵ௑(௄ି௥)ቃ −𝜎ቅ 𝑑𝑋. 

Thus, we have rln𝑌 − rln(K − 𝑌) − σ𝑌 = rln𝑋 − rln(K − 𝑋) − σ𝑋 + C. 

Constant C is determined by the initial point. As the initial point and 𝐶଴ are determined, 

all the points satisfying the equation rln𝑌 − rln(K − 𝑌) − σ𝑌 = rln𝑋 − rln(K − 𝑋) − σ𝑋 + 𝐶଴ 

should be on the same curve, which is the trace of a solutions meeting the initial 

condition C=𝐶଴.  Note that this is an implicit function and we cannot get an explicit 

form, but we can still figure out a way to draw the graph of the function and do the 

dynamical analysis for the system. Let  F(𝑋) = rln𝑋 − rln(K − 𝑋) − σ𝑋. 

Then F(𝑌) can be inferred by vertically moving the graph of F(𝑋) by C units. We will 

apply the following method to get the graph for the solution of F(𝑌) =F(𝑋)+C. As the 

system is totally symmetric, we can assume without loss of generality that C>0. 



58 

 

First, draw the graph of F(x), which is an elementary function, and lim௑→଴ F(𝑋) = −∞, lim௑→௄ F(𝑋) = +∞. 
The derivative is 

 
ୢ୊(୶)ୢ୶ = ௥୶ + ௥௄ି୶ −  𝜎=ఙ୶మିఙ௞୶ା௥௞୶(௞ି୶)   

and ∆= (𝜎𝑘)ଶ − 4𝜎𝑟𝑘. 

In this case, the discriminant ∆ is positive. And the two roots are:  

𝐿ଵ = 𝐾2 ቌ1 − ඨ1 − 4𝑟𝜎𝐾ቍ < 𝐾2 , 𝐿ଶ = 𝐾2 ቌ1 + ඨ1 − 4𝑟𝜎𝐾ቍ > 𝐾2. 
They are the values of X at the maximum and the minimum points. Based on the sign 

of ௗி(௑)ௗ௑  , we have F(X) is monotonously increasing when 𝑋 ∈ [0, 𝐿ଵ) ∪ (𝐿ଶ,𝐾] , and 

monotonously decreasing when 𝑋 ∈ [𝐿ଵ, 𝐿ଶ,]. Thus, we have a graph. 

Figure 27: Approximated Graph of F(x). 
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We first consider the simplest case when C=0. Under such a circumstance, we 

have rln𝑌 − rln(K − 𝑌) − σ𝑌 = rln𝑋 − rln(K − 𝑋) − σ𝑋 

Figure 28: The Graph (Horizontal) (C=0)10. 

The solutions of X and Y for the equation above are those points sharing the 

same height. For instance, in figure 28, we have 𝐹(𝐺ଵ)=𝐹(𝐿ଶ). That means there should 

be a point with the coordinates （𝐺ଵ, 𝐿ଶ）on the trace of the solution. Note that X=Y 

is always a solution for 𝑟𝑙𝑛𝑌 − 𝑟𝑙𝑛(𝐾 − 𝑌) − 𝜎𝑌 = 𝑟𝑙𝑛𝑋 − 𝑟𝑙𝑛(𝐾 − 𝑋) − 𝜎𝑋, as all 

the points on X=Y satisfy this equation. Now, we try to find all the Y corresponding to 

every X on the bottom line. When 0<X< 𝐺ଵ, each X corresponds to only one Y which 

is the value of X itself. As we can see in figure 25, there is no other point sharing the 

same height with the blue triangle. If X=𝐺ଵ, then Y=𝐿ଶ and Y=𝐺ଵ correspond to it. 

That means there should be two points on the curve, (𝐺ଵ, 𝐺ଵ) and (𝐺ଵ,𝐿ଶ). When 𝐺ଵ <
                                                   

12 For this type of graph, we use the word “horizontal” since the graph demonstrates the relationship between X and 

Y on the horizontal direction. In other words, how triangles correspond to ellipses on the horizontal direction.  
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𝑋 < 𝐿ଵ, there are two other Y’s corresponding to it (except X itself). As in the graph, 

two green ellipses correspond to the green triangle. As the triangle moves from 𝐺ଵto 𝐿ଵ, the right ellipse will move from 𝐿ଶ to 𝐿ଵ, while the left one moves from 𝐿ଶ to 𝐺ଶ. When 𝐿ଵ < 𝑋 < 𝐿ଶ, there are still two other ellipses. The left one will move from 𝐿ଵ to 𝐺ଵ; the right one will move from 𝐺ଶ to 𝐿ଶ. A similar situation occurs when X 

is between 𝐿ଶ  and 𝐺ଶ . Again, when X is larger than 𝐺ଶ , only X itself (on X=Y) 

corresponds to it. So, when C=0, it is obvious that the curve of the solution is determined.  

Figure 29: The Graph of 𝐹(𝑌) =𝐹(𝑋)+C (C=0): plotted by WolframAlpha when 
r=0.1, K=2000, C=0, σ=0.0003. 

Notice that, the curve rlny − rln(K − y) − σy = rlnx − rln(K − x) − σx 

(ignore x=y here) divide the plane into two parts. That is the one inside the circle, and 

the one outside the circle. This divide is useful in later analysis.  
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Another possible case is that C ≥ F(𝐿ଵ) − 𝐹(𝐿ଶ).  

Figure 30: The Graph (Horizontal) (𝐶 ≥ 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ))  

 

Figure 31: The Trace of a Solution (𝐶 ≥ 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ))11 

                                                   

11 This demonstrates a solution for the system 4 on X-Y plane when 𝐶 ≥ 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ). 
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The lower curve in figure 31 is F(Y), while the upper curve is F(X)+C, which 

should be equal to F(Y) to get our solution. In this case, C is larger than F(𝐿ଵ) − 𝐹(𝐿ଶ), 

which is also the difference between the maximum value and the minimum value. Still, 

we use the same method to analyze it. When 0<X< 𝐺ଵ, each X corresponds to a Y，and 

Y>X. In the graph, the brown triangle corresponds to only one brown ellipse. When 

X=𝐺ଵ, there are two X’s corresponding to it. When 𝐺ଵ < 𝑋 < 𝐺ଶ, each green triangle 

corresponds to three different green ellipses. And, the left ellipse will move from 𝐺ଷ to 𝐿ଵ; the middle one will move from 𝐿ଶ to 𝐿ଵ; the right one will move from 𝐿ଶ to K. 

The left and middle ellipses will overlap at 𝐿ଵ when X reaches 𝐺ଶ. Once X goes far 

beyond 𝐿ଵ, there will be only one Y corresponding to it (purple triangle and ellipse). It 

is obvious that all the traces with initial condition C଴ ≥ F(𝐿ଵ) − 𝐹(𝐿ଶ)  will finally 

converge on (K, K). Below is the graph plotted by WolframAlpha. 

Figure 32: The graph of 𝐹(𝑌) =𝐹(𝑋)+C (𝐶 ≥ 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ)): plotted by 
WolframAlpha when r=0.1, K=2000, σ=0.0003 and C=0.09. 
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The final case is when C < F(𝐿ଵ) − 𝐹(𝐿ଶ) 

Figure 33: The Graph (Horizontal) (𝐶 < 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ)) 

 
Figure 34: The Trace of a Solution (𝐶 < 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ)) 

In this case, the curve of the solution when X is less than 𝐺ଶ is almost the same 

as the curve in the previous case, but the location is different, as any two curves cannot 
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intersect. The difference happens when X reaches 𝐺ଷ. As we can see from figure 33, 

the yellow triangle corresponds to three yellow ellipses, while it corresponds to only 

one in the previous case. Also, among the three ellipses, the one on the right-hand side 

also appears in the previous case. That means this is a regular solution no matter how C 

changes. In the graph, no matter how the vertical lines move, there will always be at 

least one intersection with the upper curve. Now, we concentrate on the left and middle 

ellipses. When the yellow triangle moves from 𝐺ଷ  to 𝐿ଶ , the left ellipse moves 

from 𝐿ଵ to the location of the golden square on the left；the middle one moves from 𝐿ଵ to the location of the golden square on the right. When the yellow triangle moves 

from 𝐿ଶ to 𝐺ସ, the two yellow triangles move back and finally converge to the position 

of 𝐿ଵ. Therefore, this part of the trace is a closed orbit from the analysis above. And 

this orbit is consistent with eigenvalues at this point, which are two pure imaginary 

numbers. We will show a strict proof in the Appendix 1 that each solution in this area 

forms a closed orbit. Also, it is not difficult to see that there is a necessary and sufficient 

condition for a periodical solution. That is, when X=𝐿ଶ, there should two values of Y 

corresponding to it; the smaller one should be less than 𝐿ଵ; the larger one should be 

between 𝐿ଵ and 𝐿ଶ. And the situation is the same when Y=𝐿ଶ (that is, the graph should 

be symmetric). This can easily be observed from figure 31. Above all, for both cases, 

the trace of the solution should either go (K, K) or be periodical.  
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Figure 35: The Graph of 𝐹(𝑌) =𝐹(𝑋)+C (𝐶 < 𝐹(𝐿ଵ) − 𝐹(𝐿ଶ)): plotted by 
WolframAlpha when r=0.1, K=2000, σ=0.0003, C=0.05. 

Now, we move a little further to classify which curve will go to (K, K) and which 

will be periodical, based on different initial points. Also, there is another critical fact: 

In this system, none of the curves can go across X=Y. Because any point on this line 

will move along this line (ௗ௒ௗ௑ = 1). Note that, when C=0, the closed curve meeting  rln𝑌 − rln(K − 𝑌) − σ𝑌 = rln𝑋 − rln(K − 𝑋) − σ𝑋  

divides the plane into two parts. For simplicity, we call this curve “V”. 

Proposition: All the traces with initial points inside V will periodically move 

within this area, and the rest will move to (K, K).   

Proof: Firstly, we prove the first half of this proposition. If a trace of a solution 

with the initial point inside this curve is not periodical, it must go (K, K) which is located 

outside the curve V. However, V is a closed curve and the solution is continuous. The 

trace must go across V to reach K. This contradicts with unique solution of the system. 
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In other words, any two traces cannot intersect. Thus, any periodical solution with the 

initial point inside V cannot move out of V, otherwise it intersects V.  

Figure 36: A Trace with the Initial Point Inside V: if a trace with the initial point A 
inside V moves to (K, K), then it must have an intersection with V 

Now we prove the second part. As we mentioned above, there is a sufficient and 

necessary condition for a periodical solution. That is, when X=𝐿ଶ, there should be two 

values of Y corresponding to it; the smaller one should be less than 𝐿ଵ; the larger one 

should be between 𝐿ଵ and 𝐿ଶ. Also, the line segment between (𝐿ଶ, 𝐿ଶ) and (𝐿ଶ, 𝐿ଵ) is 

inside V. So, if a trace with an initial point outside V moves across any point on the 

segment, given the fact that V is a closed curve and that the traces of the solutions are 

continuous, then the trace must have an intersection with V. This also contradicts with 

the unique solution property. 
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Figure 37: A Trace with the Initial Point Outside V: if a trace with the initial point A 
outside V moves across the red line then it must have an intersection with V 

Now, we can conclude that any trace with an initial point satisfying [F(y) −F(x)] × (y − x) < 0 is periodical, otherwise it will finally converge to (K, K). 

   

Figure 38: The Simulation Date for The System 4 (σ>4r/K): plot by simulated data, 
where r=0.1, K=2000, σ=0.0003 

 

5.4.3. Remarks 
The model, as we can see, has several interesting qualities. The size of the 

periodical region, which is encircled by V, depends on the value of σ. The larger σ 
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is, the larger the area is. In other words, the system is more likely to be periodical if 

investors are more willing to choose market orders. In the rest of the paper, we will 

assume 𝜎 is large enough to cover the majority of the region of [K, 0] × [K, 0]. 

Figure 39: The Size of The Periodical Region (σ=0.0005): when r=0.1, K=2000, 
σ=0.0005 

Figure 40: The Size of The Periodical Region (σ=0.0003): when r=0.1, K=2000, 
σ=0.0003 

The single stock cannot switch from the buyer’s market to the seller’s market or 

vice versa without being impacted by signal information. As we can see, the particle 

cannot go across X=Y if the movement of the particle follows the system. For example, 

if there are more bid shares than ask shares at 𝑡଴, then X will always be larger than Y. 
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However, this does not necessarily mean that the stock price will rise forever. There 

may be an uptrend in the long run, but not at every moment. Such an inability of 

switching also matches reality, as switching from one type of market to the other usually 

needs a stimulation, or an obvious change in the relationship between demand and 

supply. The switch cannot be done under a mild and stable environment which is 

assumed in this thesis. 

 Periodicity or quasi-periodicity is a typical phenomenon in the stock market. 

When X and Y, which represent the power of demand and supply respectively, change 

periodically, it is likely that the stock price will oscillate within an interval. Such 

oscillation of stock prices indicates that most investors have a “wait and see” attitude, 

which can also be interpreted to indicate that current information is not powerful enough 

to motivate investors.  

In this case, there will also be some traces converging to (K, K). But in reality, 

as mentioned above, such a “K vs K” situation is not common. This is because, for most 

initial points, it takes a long time for a trace to reach (K, K). So, during this process, and 

with a large probability, some piece of signal information will arrive to disturb the 

system. This fact will be made clearer after an explanation in section 6.2.  
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CHAPTER 6. EXPLORATORY DISCUSSIONS 

 6.1 Moving along a single circle 

Now, we discuss the situation when the particle moves along a single circle. As 

discussed above, X and Y change periodically. The price of a stock, as with a commodity, 

is largely dependent on the relationship between demand and supply. If the powers of 

demand and supply change periodically, it is likely that stock price will also change in 

a periodic trend. However, a single circle is either in the area of X>Y (where the power 

of demand surpasses the power of supply), or in the area of Y>X (where the power of 

supply surpasses the power of demand). For this reason, if the circle is in the area of 

X>Y, the stock price may move in a quasi-periodicity with an up-trend in the long run. 

Such quasi-periodicity was noted in some studies. Ramsey and Zhang (1996) used 

waveform dictionaries to study Standard and Poor’s 500 stock market index and they 

found tentative quasi-periodical activities across all frequencies. However, they did not 

firmly claim the existence of quasi-periodicity, as such a phenomenon was not that 

obvious (writing that the phenomenon "may not be so clear visually" in the paper). In 

terms of our model, such a "tentative quasi-periodicity" may result from the switch 

between information and non-information situations. Quasi-periodicity appears only 

when the power of external news is slight. Any coming news will disturb the quasi-

periodicity. Thus, it is not clearly observed if external news arrives often. Also, having 

different frequencies implies having circles of different sizes. 
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6.2 Dynamic between information and non-information 

Our model tries to describe the movement of X and Y when there is no signal 

information on this stock, and we name the set containing all the movements under such 

circumstance, “Mଵ”. However, once an essential news comes，no matter whether it is 

good or bad, the system is going to be broken by it, and the movement will no longer 

follow the original trace. Then, the movement totally depends on the information itself，

and we name the set containing all the movements under such circumstance, “Mଶ ”. 

Once the impact of such information cease (we assume such impact will cease), the 

movement will follow our system again from a new initial point. So, it is a switch under 

two different situations. Below is an example: 

Figure 41: How a Stock Switches between Two Situations 
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We assume that, in the first phase, the particle moves along 𝑆ଵ, which is the 

green circle. Signal information arrives when the particle is at A. Then the particle 

moves along H (the brown curve) to B be under the effect of the information. In the 

second phase, the impact of the signal information vanishes at B, where the movement 

follows the system again. Point B is the initial point of the new phase and it will 

determine the trace of a new trace of movement. Later, another piece of signal 

information arrives when the particle is at C; then the particle will be “dragged” again 

by the information to D where the third phase begins. As we can see in fig 38, 𝑆௜, 𝑖 =1, 2, 3 are traces of movement without information and they follow our system. Curves 

O and H are traces when there is signal information and they do not follow the system. 

Overall, the dynamic of X and Y keeps oscillating between the sets Mଵ  and Mଶ . 

Moreover, the impacts of the signal information represented by H and O are strong, 

since they are able to drag the particle a long distance. But such strong signal 

information is not common in the real world. If the impact of the signal information is 

slight, it may just “shock” the particle from one place to another nearby. Since two close 

trajectories are very similar to each other, such slight change is not easily observable.  

6.3 Self-similarity and chaos 
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Obviously, the particle can move along different traces at different times. Each 

circle in the phase diagram represents a function (with a different constant, 𝐶଴),  rln𝑌 − rln(K − 𝑌) − σ𝑌 = rln𝑋 − rln(K − 𝑋) − σ𝑋 + 𝐶଴.  

The graphs of this family of functions are similar in shape (although not totally 

homothetic), but different in size. 

 

 

                                    

 

 

 

Figure 41: Similar Trajectories  

Also, the size of each circle represents the length and range of different 

periodicities, while the shape represents the configuration of each periodicity. In other 

words, they are scale-free to some extent and thus may generate some self-similar 

periodicities for the movement of stock price12. Self-similarity is a canonical expression 

of chaos and has been confirmed by many previous studies since first noticed by 

Mandelbrot (1963). For instance, the famous Elliot wave principle (Frost & Prechter, 

2005) has already suggested that the market price consists of periodicities with different 

                                                   

12 For this case, we need to imagine that the particle is carried by the signal information from one circle to another 

constantly. 
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size waves. In addition to some other studies in chaos theory, our model explains, 

though not perfectly, the reason that stock prices can behave chaotically. This principle 

conforms to our model for both periodicity and self-similarity. Another interesting 

finding is that the sizes of circles are positively related to the lengths of periodicities. 

When the length is shorter, such as a couple of minutes or hours, it is more likely that 

the system holds. For instance, the probability of neither good nor bad news arriving 

during several hours is apparently larger than that of arriving during several months. 

This may be the reason why intraday periodicity is widely recognized (Andersen & 

Bollerslev, 1997) , while there are fewer studies for longer periods. 
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CHAPTER 7: CONCLUSION 

We determined that bid and ask shares in limit and market orders are similar to 

two animal species with an interaction effect. Thus, we are motivated to simulate how 

the population of bid-ask shares evolve over time by using GLV equations. Both growth 

functions and interaction functions should match some properties of bid-ask shares in 

the real stock market. Besides this, the model works when there is a lack of signal 

information which influences the trading strategy of agents. The model in 5.1 is an 

expression of a pure herding strategy market where investors copy the strategy of others 

and are craving to make transactions happen. Thus, the system will finally go to a 

situation in which either everyone buys or everyone sells. Most of the models in 5.1-5.3 

have a similar extremity situation. They are all led by the linear interaction effect, which 

indicates a large trade volume, regardless of what items are in the growth part. The only 

exception is the case 2 in 5.3. The model gives a clue that if the trade volume is small 

(σ  is very small there), something different than an extremity can happen. After 

detecting a blocking effect acting on the trade volume resulted by the X and Y, we 

proposed our final model. The main result of the simulation is that, given a certain initial 

point, the population of bid and ask shares will move periodically along a specified trace. 

This result indicates the stock price is likely to have a quasi-periodical movement until 

a piece of signal information arriving to disturb the system. Also, the movement of the 

particle keeps switching between a situation with signal information and a situation 

without signal information. In the latter situation, traces for the movement are different 



76 

 

circles, which are similar in the configuration but different in size. Since such circles 

may correspond to self-similarity and chaos theory, our model indicates that the reason 

that chaotic behavior in the stock price results from heterogeneity and signal 

information, which can “drag” the particle from one trace to another. The limit is that 

since X and Y are two abstract concepts, and the impact of signal information is difficult 

to measure, it is difficult to statistically test the model. Besides, the interaction function 

proposed is just one possible form.  

A future research opportunity is to work on the impact of signal information to 

make the model more “realistic”. Specifically, if we assume the impact of signal 

information follows a stochastic process, then the ordinary dynamical system may be 

modified to a random dynamical system. Based on the classification made by Saaty 

(2012), the impact of signal information can result in three types of randomness to the 

system. 1) Random initial conditions. 2) Random forcing functions. 3) Random 

coefficients. Besides, we can modify the model directly to a discrete dynamical system, 

which may show us chaos even without the impact of signal information.  
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APPENDIX 1: THE PROOF OF THE PERIODICAL SOLUTION 

As there are two critical points on the border of the target area, the Poincare-

Bendixson theorem fails here. And this proof is almost the same as the proof of 

periodical solution for prey-predator model. We largely refer to the method from Hirsch 

and Smale et al (2012) and more information can be found there. Let 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦) = rlny − rln(K − y) − σy − [rlnx − rln(K − x) − σx]. 
The solution with initial point (𝑥଴, 𝑦଴) which is different than (𝐿ଶ, 𝐿ଵ) . There are 

two qualities about 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦): 1) The trace of this solution is not a limit circle, 

as 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦)  is not constant under any open set. 2) It is easy to check 𝐿௧೙(௫బ,௬೚)(𝐿ଵ, 𝐿ଶ) is a strict local maximum point. We proved that the trace inside V 

will be always be trapped in this area already. That is to say, the trace moves spirally 

around critical point (𝐿ଶ, 𝐿ଵ). It indicates the trace will move across nullcline X=𝐿ଶ 

countless times. And, apparently, X=𝐿ଶ is also a local section of this system. So, 

there is a doubly infinite sequence … . < 𝑡ିଵ < 𝑡଴ < 𝑡ଵ … … and 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦) will 

move across X=𝐿ଶ countless times. If points on 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦) are not on a closed 

orbit, then they are monotone on X=𝐿ଶ. Since there is no limit circle, 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦) 

should be approach (𝐿ଶ, 𝐿ଵ) , when either n → +∞, or n → −∞  . Also,we have 

that 𝐿௧೙(௫బ,௬೚)(𝑥, 𝑦) 
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is a constant alone a certain solution. This indicates  𝐿௧೙(௫బ,௬೚)(𝑥଴, 𝑦଴) = L(𝐿ଵ, 𝐿ଶ) 

 However, this contradicts with the fact that L(𝐿ଵ, 𝐿ଶ) is a local maximum point 

APPENDIX 2: THE PROOF ABOUT THE LIPSCHITZ CONDITION 

Here, we want to prove that continuous first order partial derivatives indicate 

the Lipschitz condition in a plane autonomous system, which is applied in the thesis. 

Let the system be as follow: 

൞𝑑𝑥𝑑𝑡 = 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑡 = 𝑔(𝑥, 𝑦) 

Both f(x, y) and g(x, y) have continuous first order partial derivatives for x 

and y. Then we have, ‖𝐺(𝑡ଶ; 𝑋ଶ) −𝐺(𝑡ଵ; 𝑋ଵ)‖‖𝑋ଶ −𝑋ଵ‖ =  ඨ[𝑓(𝑥ଶ, 𝑦ଶ) − 𝑓(𝑥ଵ, 𝑦ଵ)]ଶ + [𝑔(𝑥ଶ, 𝑦ଶ) − 𝑔(𝑥ଵ, 𝑦ଵ)]ଶ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ  

Suppose that, when 𝑡ଵ  and 𝑡ଶ  are very close, we can linearize the part                                      [𝑓(𝑥ଶ, 𝑦ଶ) − 𝑓(𝑥ଵ, 𝑦ଵ)]ଶ + [𝑔(𝑥ଶ, 𝑦ଶ) −𝑔(𝑥ଵ, 𝑦ଵ)]ଶ 

as follows: 

[∂f∂x ∣௫ୀ௫భ,௬ୀ௬భ (𝑥ଶ − 𝑥ଵ) − ∂g∂x ∣௫ୀ௫భ,௬ୀ௬భ (𝑥ଶ − 𝑥ଵ)]ଶ                          + [∂f∂y ∣௫ୀ௫భ,௬ୀ௬భ (𝑦ଶ − 𝑦ଵ) − ∂g∂y ∣௫ୀ௫భ,௬ୀ௬భ (𝑦ଶ − 𝑦ଵ)]ଶ, 
which is equal to 
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  (ப୤ப୶ ∣௫ୀ௫భ,௬ୀ௬భ− ப୥ப୶ ∣௫ୀ௫భ,௬ୀ௬భ)ଶ × (𝑥ଶ − 𝑥ଵ)ଶ+(ப୤ப୷ ∣௫ୀ௫భ,௬ୀ௬భ− ப୥ப୷ ∣௫ୀ௫భ,௬ୀ௬భ)ଶ ×(𝑦ଶ − 𝑦ଵ)ଶ. 

Based on our assumption of continuous first order partial derivatives for x and y,                          ∂f∂x ∣𝑥=𝑥1,𝑦=𝑦1  ,  ப୥ப୶ ∣௫ୀ௫భ,௬ୀ௬భ , ப୤ப୷ ∣௫ୀ௫భ,௬ୀ௬భ  , ப୥ப୷ ∣௫ୀ௫భ,௬ୀ௬భ  

should be all bounded in the closed zone [K, 0] × [K, 0]. Thus, we have   (ப୤ப୶ ∣௫ୀ௫భ,௬ୀ௬భ− ப୥ப୶ ∣௫ୀ௫భ,௬ୀ௬భ)ଶ   

and                (∂f∂y ∣௫ୀ௫భ,௬ୀ௬భ− ∂g∂y ∣௫ୀ௫భ,௬ୀ௬భ)ଶ 

are bounded. Let both of them ≤ L. Then, [∂f∂x ∣௫ୀ௫భ,௬ୀ௬భ (𝑥ଶ − 𝑥ଵ) − ∂g∂x ∣௫ୀ௫భ,௬ୀ௬భ (𝑥ଶ − 𝑥ଵ)]ଶ
+ [∂f∂y ∣௫ୀ௫భ,௬ୀ௬భ (𝑦ଶ − 𝑦ଵ) − ∂g∂y ∣௫ୀ௫భ,௬ୀ௬భ (𝑦ଶ − 𝑦ଵ)]ଶ 

=  (ப୤ப୶ ∣௫ୀ௫భ,௬ୀ௬భ− ப୥ப୶ ∣௫ୀ௫భ,௬ୀ௬భ)ଶ × (𝑥ଶ − 𝑥ଵ)ଶ+(ப୤ப୷ ∣௫ୀ௫భ,௬ୀ௬భ−
ப୥ப୷ ∣௫ୀ௫భ,௬ୀ௬భ)ଶ × (𝑦ଶ − 𝑦ଵ)ଶ ≤ L[(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ]. 

Therefore, we have 

‖ீ(௧మ;௑మ)ିீ(௧భ;௑భ)‖‖௑మି௑భ‖ =  ට[௙(௫మ,௬మ)ି௙(௫భ,௬భ)]మା[௚(௫మ,௬మ)ି௚(௫భ,௬భ)]మ(௫మି௫భ)మା(௬మି௬భ)మ ≤ L, 

where L can be treated as Lipschitz constant. 


