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Abstract

Optimization is a crucial branch of research with application in numerous domain. Deter-

mination of sparsity is a vital stream of optimization research with potentials for improve-

ment. Manual determination of sparsity structure of Jacobian matrix for a large problem is

complicated and highly error-prone. The main motivation of this research is to propose an

efficient algorithm which can effectively detect and represent sparsity of unknown Jacobian

matrices. Automated sparsity detection algorithms find an optimal or near-optimal solu-

tion, which reduces time and space complexity for large scale data. Our proposed approach

efficiently generates symmetric pattern utilizing band matrix and reduces the number of

gradient evaluation. For efficient solution, we integrate our approach with existing pattern

detection process. Greedy coloring algorithm is used for column portioning and multilevel

algorithm with voting scheme is implemented for detection of sparsity pattern. Finally,

parallel computation is used to reduce processing time of the overall approach.
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Chapter 1

Introduction

Exploitation of sparsity plays an important role in the computer implementation of algo-

rithms, numerical analysis, and partial differential equations. Prior knowledge of sparsity

and the structure of matrices is beneficial for storage and computation. Application of nu-

merical methods (column partitioning and effective data structures) on the sparse matrix

can be effective with the known structural pattern of matrices.

This thesis focuses on sparsity calculation of sparse derivative matrices. Designing the

proposed approach of this thesis starts with an intuitive formulation of the derivative matrix

computation, data structure for storage and computation and sequential algorithm. In a step

by step manner, we incrementally develop a Multilevel version of our application and finally

arrive at an efficient sequential and multicore parallel implementation. The performance of

our solutions is demonstrated in the result section.

1.1 Motivation

Repeated evaluation of Jacobian matrices is a common challenge in numerical analysis

and computing algorithms in general. The problem becomes more significant when the

matrix is sparse. However, the computation of the Jacobian of a sparse matrix is more

challenging that of the dense one. In the computation of sparse matrix, zero elements are

not stored explicitly and also their computation is avoided. Matrix size, the pattern of data

organization, memory traffic, the organization of cache and also the member of floating

point operation affect computation complexity of sparse matrix.
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1.2. OUR CONTRIBUTIONS

In 1974, Curtis, Powell and Reid observed that the sparsity pattern of a Jacobian matrix

can be determined by using a few function evaluations [13]. In the context of minimizing

the number of function evaluations for computation of sparse matrix, matrix partitioning

problem is raised. Different researcher proposed different partition problem but those mod-

eled as a special graph coloring problem. The graph coloring models provide effective

heuristic algorithms for matrix partition.

Most methods for solving non-linear equation require the evaluation or estimation of

Jacobian matrices. Sparsity pattern detection for that Jacobian matrices can be tedious and

highly error-prone by hand even when the source code for the function evaluation program

is available. There are few works on automatically detection pattern process on the avail-

able source code. If the source code is unavailable, then there required another approach.

To solve this, Carter, Hossain, and Sultana [8] used symmetric information of derivative

matrices to detect the missing or wrong entries in the approximate sparsity pattern, for the

determination of the true pattern of sparse Jacobian matrices.

The overall objective of this research is to improve their implementation for effective

and efficient detection of symmetric, sparse, Jacobian matrix which is unknown. Existing

data set were analyzed and we overcome the limitations of existing approaches by utilizing

a band matrix instead of the random pattern. In addition, we added a parallel Multilevel

algorithm for solving systems of nonlinear equations where the Jacobian is known to be

sparse. Overall the main target will be reducing the number gradient evaluation and execu-

tion time.

1.2 Our Contributions

Since we assume that the Jacobian matrix is available as a black box which is symmetric

and sparse, we tried to identify the original pattern by utilizing symmetry. We have imple-

mented an efficient data structure for the sparse matrix to save memory space and time. Our

contributions are listed below:

2



1.3. THESIS ORGANIZATION

• Instead of the random matrix, we have used tridiagonal band matrix for generating

initial guess pattern which reduces gradient evaluation cost by almost half than pre-

vious [38].

• For column partitioning, we use the New Exact approach of DSJM [28] which can

give better coloring, compared to methods used in [9].

• To detect flaws (missing entries in the approximated pattern), the symmetric matrix

is usually expanded to full matrix as done in [9]. We avoid full expansion and deal

with non-zero entries outside of the tri-diagonal band, which increase efficiency.

• We used parallelism to improve the efficiency of thesis [38]. The limitations and

future works of [38] were identified and implemented accordingly in this thesis.

• We present our numerical results using large-scale data set collected from two verified

sources: [2] and [3].

• Table 5.2 and 5.3 shows the efficiency of this work, compared to [38]. Table 5.4 and

5.5 represent execution time comparison between two different computer configura-

tion and parallel implementations.

• Parallel execution using different multicore technique is presented in table5.6 and

table 5.7

1.3 Thesis Organization

Including this one, this thesis has six chapters. In this chapter, we have already dis-

cussed some basic concept on the Jacobian matrix, the necessity of Jacobian matrix and

some literature related to manipulation of sparse Jacobian matrix.

In chapter 2 we introduce some definition and preliminaries. This chapter will conclude

with a description of the CPR algorithm.

3



1.3. THESIS ORGANIZATION

In chapter 3 efficient data structures for sparse matrix storing and manipulation for our

algorithm are described. Some computation process to detect sparsity pattern is also in-

cluded in this chapter.

In chapter 4 we will discuss the processes to detect missing pattern elements and Mul-

tilevel algorithm for large-scale sparsity pattern of Jacobian matrix determination. Concept

of parallelism and implementation of it in the Multilevel algorithm will also be described

in the last part of this chapter.

In chapter 5 we represent our experimental results that demonstrate the efficiency of our

data structure and algorithm. We also show the comparison of efficiency among sequential

and parallel computational with results reported in the literature.

We wrap up this thesis with concluding remarks and possible future directions presented

in chapter 6.
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Chapter 2

Problem Definition and Background
Study

In this chapter, we will introduce some mathematical definition and preliminaries which

will be helpful to describe this thesis. We will also discuss the CPR algorithm to discover

sparse Jacobian matrix mismatch pattern. We will explain matrix partitioning and motiva-

tion of column partitioning for determination of sparse Jacobian matrix. Finally, we will

present the data structure for flaw identification.

2.1 Sparse Matrix

A matrix can be denoted as sparse whenever we can utilize the advantages of the large

number of zero elements and their locations. The Structural plot of BCSPWR02 [2] sparse

matrix containing 49 rows and 49 columns is shown in figure 2.1. The matrix has 49×49 =

2401 elements, but it only has 108 non-zero elements. Approximately 96% of total elements

are zeros in this matrix, which indicates high sparsity of this matrix.

5



2.2. BAND MATRIX

Figure 2.1: Example of Sparse Matrix (Non-zero elements are shown in black)
Name:bcspwr 02, size:49×49, 108 non-zero elements, collected [2]

2.2 Band Matrix

Band matrix is a sparse matrix in which the non-zero elements are located in a band

surrounding the main diagonal. Band is an area of non-zero elements which are confined to

the diagonal region or around specific regions inside the matrix. This implies that non-zero

elements will not be scattered all around the matrix. If a matrix has lower bandwidth p

then ai j = 0 where j > i and i > j+ p and for upper bandwidth q, ai j = 0 where i > j and

j > i+q [19].

Figure 2.2: Example of Band Matrix (Non-zero elements are shown in black)
Name:olm100, size:100×100, 396 non-zero elements, collected [2]

6



2.3. PROBLEM DEFINITION

Utilization of band Matrix for matrix computations, especially in a symmetric matrix,

is gaining popularity. To improve performance in optimization for sparse computations, the

concept of a band matrix can be a great approach. One such case is reported by Melgaard

and Sincovec, who have shown that band matrices can be estimated with a few evaluation

of Algorithmic Differentiation (AD) [32]. When the non-zero elements of a band matrix

located only on the diagonal plus or minus one column that matrix is called Tri-diagonal

Band Matrix [36]. In tri-diagonal band matrix k1 = k2 = 1. In this thesis, we will use

Tri-diagonal Band Matrix as an approximated symmetric pattern.

Figure 2.3: Example of Tri-diagonal Band Matrix (Non-zero elements are shown in black)
Name:young1c, size:841×841, 4089 non-zero elements, collected [2]

Figure 2.4: Example of Tri-diagonal Band Matrix with size 9×9

7



2.3. PROBLEM DEFINITION

2.3 Problem Definition

In numerical analysis getting the exact solution is not always possible and/or doing the

whole calculation by hand is error-prone. This is particularly true for optimization problems

where the variables correspond to mesh points in scattered position. As an example, if we

try to compute
√

3 by using a calculator, then it is easy to solve or get accurate answers.

This is a relatively small example which leads to a large scale problem. Now let us consider
√

3 as a solution of the equation f (x) = x2− 3 = 0. For this equation, it is hard to find

out an exact numerical solution. Since it is a nonlinear problem, solving the approximate

equation near a given point by its tangent line will be easier. Suppose, somehow we got an

initial approximation for this solution which is x0. This initial approximation is probably

not that good and so we would like to find a better approximation.

We know that f (x) = x2−3 so that f ′(x) = 2x. Now, this is where it becomes interesting

since we can repeat derivations which will provide even better approximate solutions to the

equation. We could generate better approximations for
√

3 at every step and apply linear

equation to get better results than before. This is the key concept of Newton’s Method

[14][27]. But one of the main drawbacks of Newton’s method is, it requires derivative

information for every iteration, which increases function evaluation cost[27].

2.3.1 Gradient

Let us consider a minimization problem min f (x) where x ∈ IRn. We assume that this

function f : IRn 7→ IR continuously differentiable twice. The first derivative of f (x) is de-

noted by g(x) : IRn 7→ IRn, which is the gradient of that function and g≡5 f . This gradient

function of f (x1,x2,x3, . . . ,xn) can be represented as

8



2.3. PROBLEM DEFINITION

g(x) =



∂ f
∂x1

∂ f
∂x2

∂ f
∂x3

.

.

.

∂ f
∂xn



(2.1)

whose elements ∂ f
∂xi

are the partial derivative with respect to xi|i = 1, . . . ,n of given

function f (x). Suppose we have a function

f (x) = 9x2
1 +Sinx1 +8x3

2 +Cosx2 (2.2)

The gradient g(x) for this function will be calculated depending on two independent

variable x1 and x2

g(x) =5 f (x1,x2) =

 ∂ f
∂x1

∂ f
∂x2



g(x1,x2) =

18x1 +Cosx1

24x2
2−Sinx2


2.3.2 Jacobian of the Gradient

Now the derivative of this gradient function g(x) is denoted by J, which is independent

of the order and symmetric. This Jacobian of function g : IRn 7→ IRn is also called Hessian

9



2.3. PROBLEM DEFINITION

of function f and J ≡52 f . This Jacobian function J : IRn 7→ IRn×n is symmetric and sparse

and it can be represented as:

J =



∂ f
∂x1

( ∂ f
∂x1

) . . . ∂ f
∂x1

( ∂ f
∂xn

)

∂ f
∂x2

( ∂ f
∂x1

) . . . ∂ f
∂x2

( ∂ f
∂xn

)

. . .

. . .

. . .

∂ f
∂xn

( ∂ f
∂x1

) . . . ∂ f
∂xn

( ∂ f
∂xn

)


(2.3)

If we calculate Jacobian J(x) of gradient g(x) for function f (x) (2.2) using equation

(2.3), it will be as follows:

J(x) =5g(x1,x2) =

 ∂ f
∂x1

( ∂ f
∂x1

) ∂ f
∂x1

( ∂ f
∂x2

)

∂ f
∂x2

( ∂ f
∂x1

) ∂ f
∂x2

( ∂ f
∂x2

)



J(x1,x2) =

18−Sinx1 0

0 48x2−Cosx2


Sparsity structure for matrix J ∈ IRn×n is symmetric where the nonzero entries are con-

fined to the main diagonal.

Definition 2.1. The sparsity structure or sparsity pattern of any matrix J ∈ IRn×n denote

the nonzero entry specification of J. This thesis defines the sparsity pattern of J as M =

{(i,k)|mi,k 6= 0, i,k = 1,2, . . . ,n} where J ∈ IRn×n. Sparse matrix follows this kind of struc-

ture where most non-zero entries stayed in main diagonal entries or in a band. The entries

of the matrix outside the band allowed to be zero.

Definition 2.2. A sparsity pattern is symmetric if there is a non-zero element at position

10
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(i,k) where i is row index and k is column index for that non-zero element, then there must

be a non-zero element at (k, i) position.

In case of dense Jacobian matrix, it is not feasible to compute Hessian matrix. In this

situation, according to McCormick [31] approximation to the Hessian can be computed

using finite differences of the gradient. If that Jacobian hold sparse structure (i.e., some

certain elements are known to be zero), then it is possible to approximate that matrix with

a smaller number of gradient evaluations. Gradient evaluation in numerical analysis of a

nonlinear function is expensive. In our computation, we tried to keep step size as small

as possible. This evaluation process follows differentiation using specially selected sets of

vectors as needed.

2.3.3 Finite Difference Approximation

Application of finite difference techniques initiated in the early 1950s [30]. This tech-

nique helps to deal with the complex problem of numerical analysis including computation

of approximate value. The difference between the numerical solution and the explicit solu-

tion is determined by the flaw. This flaw is occupied by going from a differential operator

to a difference operator. The simple finite difference approximation is :

f ′ ≈ ( f (x+h)− f (x)
h

(2.4)

f ′ denotes the approximate first derivative for function f (x), which means f is differentiable

at point x. h= εei where i=1,2,. . . ,n, ei is the ith unit vector that is the vector whose elements

are all zero except for a 1 in the ith position. Since the ε is very small, so that error will

be small and the approximation derivative will be very close to true derivative. In equation

2.4 while h > 0 is considered as a forward difference, if h < 0 considered as a backward

difference. Jacobian of the first derivative of f can be obtained using finite difference.

Finite difference approximation comes from Taylor’s theorem and using this we can get

an approximation of Jacobian–vector product. Even if the gradient is not available, we

11
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can use Taylor’s theorem for approximation [34]. By exploiting symmetry it is possible

to determine unknown pattern of Jacobian matrix as we have already described about the

symmetry and sparsity of Jacobian matrix.

2.4 Determination of Sparse Derivative Metrics

Curtis, Powell, and Reid proposed an algorithm to estimate the sparse Jacobian matrix

called the CPR algorithm [13] for column partitioning. The CPR technique uses a greedy

method to partition columns of a matrix into structurally orthogonal groups. Powell and

Toint [35] extended the CPR method. McCormick [31] introduced two new ways of classi-

fying direct methods for pattern detection and graph coloring model for the computation of

the Hessian matrix.

Coleman and Moré suggested graph coloring heuristics [11] after analyzing column

partitioning problem. They showed that the problem of finding a minimum cardinality

of column partitioning is NP-Hard. And this problem is equivalent to a vertex coloring

problem of an associated graph.

On the other hand, Goldfarb and Toint [18] studied the finite difference approximations

for a partial differential equation which give an optimal estimation for the Jacobian matrix.

They developed a uniform graph-theoretic framework for studying the matrix partitioning

problems. A complete overview of graph coloring methods for detection of the sparse Ja-

cobian pattern is presented by Gebremedhin and et.al [16]. According to them, to get better

efficiency one should take advantage of sparsity and symmetry of the derivative matrices to

compute the non-zero entries.

Andreas and Christo [21] also propose a method to detect sparsity pattern of the Jaco-

bian matrix using Algorithmic Differentiation approach. According to Walther [41], spar-

sity pattern of Jacobian of gradient function, can be determined using forward accumula-

tion. Automatic Differentiation tools such as ADOL-C [41], MAD [15], ADMAT [1] are

able to calculate sparsity from the given function evaluation code. If the function evaluation

12
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code is unavailable or if the function is provided as black box then alternative efficient tech-

niques are required. One disadvantage of AD application is that it is expensive[40]. In this

situation, effective selection of data structure and efficient implementation of the algorithm

will help to reduce the number of gradient evaluation for different matrix operations.

2.4.1 CPR Algorithm

Column partitioning consistent with direct determination allows structurally dependent

column groups under certain restrictions. Methods in this category usually require fewer

gradient evaluations [35, 16]. CPR algorithm is very competitive in finding a minimal num-

ber of column group for Jacobian matrix. Implementation of CPR algorithm also requires

significantly less execution time for structurally orthogonal column partitioning [39].

Definition 2.3. Structurally Orthogonal Partitioning of the columns of a matrix M is the

allocation of columns into groups in such a way that there will be no two columns have the

non-zero elements in the same row position in a group. In other words, columns M(:, j)

and M(:,k) are structurally orthogonal if there is no such row index i for which mi j 6= 0 and

mik 6= 0. In this thesis we have denoted structurally orthogonal column partition with ψ.

Definition 2.4. ψ :{1,2,. . . ,n}→ {1,2,. . . ,p} is a mapping from the set of column indices to

groups or colors such that ψ( j) 6= ψ(l) implies columns j and l are structurally dependent.

If a group of columns of matrix M, say column j and l are structurally orthogonal, i.e.,

no two columns have non-zero entries in the same row position, only one extra function

evaluation

∂F(x+ tS)
∂t

|t=0 = F ′(x)S≈MS =
1
ε
[F(x+ εS)−F(x)]≡ Y (2.5)

is sufficient to read-off the non-zero entries from the product Y = MS, where S = e j + el

(e j= column j and el= column l)[13]. The value of ε is very small.

13
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Let matrix M be the Jacobian matrix of some function g(x) at x.

M =



m11 . m13 . .

. m22 . . m25

m31 . m33 . m35

. . . m44 .

. m52 m53 . m55



Table 2.1: Structurally orthogonal mapping ψ

1 1 2 1 3

There are three structurally orthogonal column group in matrix M, i.e. p = 3. Therefore

matrix M can be approximated with three extra function evaluations of form in equation

2.5 for direction set to e1 + e2 + e4,e3 and e5 in addition to evaluating F at x. The non-zero

entries of the matrix can be determined using Y = MS with:

S =

[
e1 + e2 + e4 e3 e5

]
and now

Y =



m′11 m′13 .

m′22 . m′25

m′31 m′33 m′35

m′44 . .

m′52 m′53 m′55


where ′ indicates the value which is different than M, result of M ∗ S . The value in

the matrix Y are computed by using Automatic Differentiation forward mode, thus free
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of truncation error are obtained at a small constant multiple of the cost of evaluating the

function f [8].

Product of M and S gives us compressed matrix Y from which we can see to approxi-

mate the matrix M we need extra three function evaluations. Which means that if we apply

CPR algorithm, then we just need 4 evaluations of f at x+ε for vector S. Otherwise we need

6 evaluations of function f . Algorithm 1 is presented the process of the CPR algorithm.

Algorithm 1 Construct Y using CPR
Output: Matrix Y

1: for i = 1 to p do
2: Calculate S(:k) {where S ∈ IRn×p}
3: Compute Y (:,k)←M ∗S(:,k)
4: end for

In this thesis, we guess an approximated pattern to determine the pattern of true Jacobian

where function code is unavailable. On that approximated pattern we will apply the CPR

algorithm. The mismatch (missing non-zero elements relative to original pattern) between

the approximated pattern and true Jacobian denoted as the word f law in this thesis. Detailed

description of different types of f law will be described in 3.
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Chapter 3

Efficient Data Structure for Storage and
Flaw Computation

In this chapter, we will discuss efficient data structure to store a sparse matrix. Different

types of data structure and their memory space requirement for computation will be de-

scribed in this chapter. Efficient data structure and flaw detection in the guess pattern, will

also be discussed in this chapter. At last, the method of flaw detection will be presented.

3.1 Data Structure for Sparse Matrix

In any sparse matrix, most elements are zero, as such, it is a wastage of space to store all

matrix elements (zeros and non-zeros). It is naive to use a two-dimensional array for sparse

matrix computation, as this is slow and requires large space because of storing zero entries.

In order to save memory and time, there are different approaches those use the different

data structure for storing the matrix along with the corresponding manipulation. This thesis

aims to gain efficiency both in terms of memory utilization and arithmetic operations we

can take advantages of the sparse structure.

As an example, let us consider the matrix shown in Figure 3.1 with dimension 87×87.

The matrix has been collected form Matrix Market [2]. That matrix has total 87×87= 7569

elements but only 541 elements are non-zero.
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Figure 3.1: Sparse Matrix(Non-zero elements are shown in black) Name:dwt 87, size:87×
87, 541 non-zero elements, collected [2]

If it can be determined that a matrix consists of few regions of diagonal non-zero ele-

ments then it is possible to generate a compressed version by simply storing these diagonal

values as vectors and the offsets of each diagonal with respect to the central band. Figure

3.2 represent the compressed version of Matrix dwt 87.

Figure 3.2: Compressed Matrix dwt 87, size 87×12
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For sparse structure of sparse matrix it is easy to compress based on graph partitioning

[10] which require less memory storage for computation. Here we discuss two categories

of storage technique which are related to this thesis i.e., Coordinate and Compress storage

processes.

3.1.1 Coordinate Storage

Coordinate storage represents any matrix by using three one-dimensional arrays which

one is value, row index i and column index j of each non-zero elements. In Coordinate

storage process, it is not mandatory to follow any kind of specific order for value storage.

The content of each array can be stored in any order but it maintains order among them-

selves. Procedure for Coordinate Storage is given in 1.

Procedure 1: Coordinate Storage
1: for k = 1 to nnz do
2: Store v[k] = M[i, j]
3: Store r[k] = i
4: Store c[k] = j
5: end for

We taken one test example matrix Mi× j which have 13 non-zero nnz components to

describe this process broadly. Data structure for coordinate storage is represented in figure

3.3:
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Figure 3.3: Coordinate Storage Data Structure for Sparse Matrix

In Coordinate Storage, size for value storing array is nnz and for each non-zero value

we require row index in row array and column index in col array. Which means coordinate

storage requires nnz+nnz+nnz = 3nnz units memory location to store any matrix. So

accessing the elements by row or column requires same cost.

3.1.2 Compressed Storage

Compressed storage can access all non-zero elements directly, making it cost effective

and more faster than Coordinate Storage or other traditional processes which utilize two
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dimensional array storage data structure. In the following sections we discuss two types of

Compressed Storage process to store sparse matrix on computer memory.

3.1.3 Compress Sparse Row (CSR) Data Structure

If a matrix is not regularly structured, then one of the most common and efficient storage

schemes is Compressed Sparse Row (CSR) scheme. In this scheme all non-zero elements

are stored in one dimensional array, while column indices and row pointer are stored in two

different arrays. Since this scheme is faster in terms of access and computation, we have

chosen CSR for storing and manipulation of matrix data.

In Compress Sparse Row format value of non-zero elements are stored in double type

array, column indices are stored in col ind array and row indices are stored in row ptr ar-

ray by pointing first column index of each row only for non-zero entries. CSR algorithm is

shown in procedure 2.

Procedure 2: Compress Sparse Row(CSR)
1: for k = 1 to N do
2: for l = row start[k] to row start[k+1]−1 do
3: v[k] = M[k, l]
4: c[k] = col ind[l]
5: r[k] = r[k]+nnz[k]∗M[l]
6: end for
7: end for

In figure 3.4 there is one small test example to make CSR data structure more under-

standable.
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Figure 3.4: CSR Data Structure for Sparse Matrix

If there are m number of rows in any matrix, then size of row ptr array will be m+ 1.

Number of non-zero nnz elements will define the size of both value and col ind array.

Therefore to store data of any sparse matrix using CSR requires 2nnz+m+ 1 memory

locations. Difference between col ind[row ptr[i]] and col ind[row ptr[i+ 1]− 1] indicate

column indices of any row i.

3.1.4 Compressed Sparse Column (CSC) Data structure

Compressed Sparse Column also store matrix as a collection of three tuples like CRS.

However, CSC stores row index and col ptr in place of col ind and row ptr (in CRS) re-
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spectively, the detailed account of CSC is presented in procedure 3.

Procedure 3: Compress Sparse Row(CCS)
1: for k = 1 to N do
2: for l = col start[k] to col start[[k+1]−1] do
3: v[k] = M[k, l]
4: r[k] = row ind[k]
5: c[l] = c[l]+nnz[l]∗M[k]
6: end for
7: end for

Figure 3.5: CSC Data Structure for Sparse Matrix
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For any column j, the col ptr(l) indicates the row index of first non-zero entry of that

column. Row indices of column l can be calculated in between row ind[col ptr[l]] and

row ind[col ptr[l +1]−1]. It takes same memory space of 2nnz+m+1, similar to CRS.

The figure represent the CSC data structure for Mk×l .

3.1.5 Cache Complexity of Sparse Matrix access

The computational complexity of sparse matrix operations depends on memory size,

memory traffic and the organization of cache memory. Cache memories minimize the data

movement between main memory and Central Processing Unit (CPU) to increase efficiency.

To hide the memory-processor speed gap, one approach is using massive multithreaded

architectures [7]. However, these architectures have limited availability at present and only

two levels of memory are popularly considered in the I/O model. Enormous amounts of

data are contained in a memory called Disks which are workhorse storage devices [6].

The pattern of data access in the hierarchical memory computing system is referred to as

locality of reference. The concept of data locality states that recently accessed (temporal)

and sequential data (spatial) are likely to be accessed in near future.

Because of structural pattern and floating point operation in memory accessing, cache

performance analysis is very important for sparse matrix computations. In a modern com-

puter, the performance of spatial locality in accessing the matrix is influenced because of

cachebased architectures. The performance of cache memory depends on the ratio of miss

and hit rate.

Cache memory saves frequently used data in memory according to level. When CPU

searched for particular data, cache memory starts searching in a level-wise manner. If the

data is found in cache memory a cache hit occurs, if not then it is treated as cache miss.

In case of a miss, the memory block containing the needed data is fetched from the slow

memory to fast memory. The I/O complexity of an algorithm can be roughly defined as the

23



3.2. DETECTION OF MISSING ELEMENTS WITH INITIAL GUESS PATTERN S0

number of memory transfers it makes between the Cache and Disk memories [4].

Bryant et.al [6] described in their book that the better spatial locality reduces cache

misses and improves the efficiency of cache memory.

From above discussion and literature review, we understand that if the elements of a

sparse matrix are accessed in arbitrary order for each row, then the number of cache misses

can be as high as O(nnz). Therefore to achieve full spatial locality in accessing matrix, the

elements in each row in CRS (or column in CCS) of a sparse matrix are accessed in the

order they are stored in their data structure. As a result, only those misses will occur which

are caused by the first reference to a location in empty cache memory.

3.2 Detection of Missing Elements with Initial Guess Pattern S0

In this section, we will identify missing non-zero elements of Jacobian matrix based on

an initial guess pattern where function code is available as a black box. To describe our

thesis work we have taken one symmetric initial guess pattern S0 and the symmetric pattern

of all possible f law have denoted as f law matrix.

Here we have listed the overall steps for determination:

• Assume an initial guess pattern S0 according to the size of our true matrix.

• Compute a structurally orthogonal partition ψ based on guess pattern S0

• Define the direction matrix S for CPR implementation based on structurally orthogo-

nal partition ψ

• Compute the compressed matrix Y using CPR Algorithm 1

• Detect the possible flaw locations using value symmetry

• Identify the flaw matrix P using pattern symmetry

• Add the flaw matrix P with initial sparsity pattern S0
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3.2.1 Determination of Sparsity Pattern with Good Guess Pattern

We have considered in our thesis two true matrix patterns, M∗ and M, to demonstrate

the effects of flaws. Both of them are in equal size with different pattern. To describe the

process, let us take a small test matrix M∗ of size 9× 9. M∗ is Jacobian matrix which is

symmetric and whose pattern is unknown. As described before, we have taken tri-diagonal

band matrix as an initial guess pattern S0 with size 9×9 and our original matrix pattern is

denoted by M∗.

M∗ =



1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1



S0 =



1 1 . . . . . . .

1 1 1 . . . . . .

. 1 1 1 . . . . .

. . 1 1 1 . . . .

. . . 1 1 1 . . .

. . . . 1 1 1 . .

. . . . . 1 1 1 .

. . . . . . 1 1 1

. . . . . . . 1 1


25



3.2. DETECTION OF MISSING ELEMENTS WITH INITIAL GUESS PATTERN S0

There are at most 3 non-zero elements in any row of our guess pattern. From the defini-

tion of structurally orthogonal column partitioning this initial pattern needs to be clustered

into at least 3 groups. For this guess pattern, the columns can be easily clustered into three

groups. We can keep columns 1,4,7 in color group 1, columns 2,5,8 in color group 2 and

columns 3,6,9 in color group 3. In our implementation, we have partitioned S0 into column

groups ψ using graph coloring algorithm implemented in DSJM [28] software.

A structurally orthogonal column partition ψ of guessed pattern S0 is represented below:

1 2 3 1 2 3 1 2 3

From structurally orthogonal column partition ψ we can define S as follows:

S( j,k) =

 β j 6= 0, if ψ( j) = k, k = 1,2, . . . , p

0, otherwise

Now we can represent our matrix S as:

S =



β1 . .

. β2 .

. . β3

β4 . .

. β5 .

. . β6

β7 . .

. β8 .

. . β9
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From our guess pattern S0, we can identify the specific array value for col ind, row ptr,

ψ, group and count shown accordingly in table 3.1, 3.2, 3.3, 3.4 and 3.5.

Table 3.1: Col ind of S0

1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9

Table 3.2: Row ptr of S0

1 3 6 9 12 15 18 21 24 26

Table 3.3: ψ of S0

1 2 3 1 2 3 1 2 3

Table 3.4: Color group for S0

group 1 group 2 group3

1 2 3

4 5 6

7 8 9

Table 3.5: Number of Non-zero elements of each row in S0

2 3 3 3 3 3 3 3 2

Since we have done column partitioning depending on only non-zero entries in a row,

in many cases multiplication with structurally orthogonal group matrix results in a dense

matrix. M∗ ∗ S = Y in most cases will be compact( most of its entries are not identically

zero). In this situation using a two dimensional array for Y is sensible. This will allow

locating entry mi,k (or ψ(k)mi,k) in Y efficiently.

27



3.2. DETECTION OF MISSING ELEMENTS WITH INITIAL GUESS PATTERN S0

Let M,S ∈ IRn where m1,m2, . . . ,mn columns of matrix M and columns are divided in

structurally orthogonal color group as M = {m j : j ∈ ψ}. To generate Y

Y = M ∗S (3.1)

M ∗S = ∑
j∈ψ

m j ∗β j (3.2)

Since no pair of columns have a non zero entries in the same row, so

yi = mi, j ∗β j (3.3)

Now we will compute Y using algorithm 1. If there is any missing non-zero entry at any

row in guess pattern S0 then there will be overlapping or mismatch in at least one color

group. And this perturbation can be observed in matrix Y . If there is no perturbation then

we can say, our guess pattern represents the pattern of the true matrix. So pattern of Y

matrix represents that how good our initial guess pattern is.
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Figure 3.6: Compressed Matrix Y for Good Guess Pattern

Figure 3.6 represents that there is no perturbation in Y , therefore our guess pattern was

good and returns the true pattern.
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3.2.2 Determination of Sparsity Pattern with Incorrect Guess S0

Suppose, our original matrix M is same size as before but has a different pattern. If we

take same initial guess pattern then there will be of course some overlapping and/or some

entries will be missing.

M =



1 1 0 0 0 0 0 0 1

1 1 1 0 0 1 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 1 0

0 0 0 1 1 1 0 0 0

0 1 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0

0 0 0 1 0 0 1 1 1

1 0 0 0 0 0 0 1 1



S0=



1 1 . . . . . . .

1 1 1 . . . . . .

. 1 1 1 . . . . .

. . 1 1 1 . . . .

. . . 1 1 1 . . .

. . . . 1 1 1 . .

. . . . . 1 1 1 .

. . . . . . 1 1 1

. . . . . . . 1 1


Now we have to follow the same procedure as described before. In this case since dimen-

sion of original matrix is equal and guess pattern is same, the directional derivative S is also

30



3.2. DETECTION OF MISSING ELEMENTS WITH INITIAL GUESS PATTERN S0

same as previous. For matrix M calculation of Y is given below

Figure 3.7: Compressed Matrix Y for Incorrect Guess Pattern

31



3.2. DETECTION OF MISSING ELEMENTS WITH INITIAL GUESS PATTERN S0

Because of misplaced non-zero elements perturbation will take place. Now from this

Y pattern we have to identify flaw position in the initial guess pattern S0 6= M by using the

value symmetry.

3.2.3 Determination of Flaw Location

This section provides a detailed description for identification of flaw location. To detect

flaw location we will apply CPR algorithm on sparsity pattern M0 and follow a set of rules

to upgrade that pattern. M0 is an approximation of M. By approximation we imply that few

entries in our guess pattern will be wrong (i.e., zero labeled non-zero and non-zero labeled

zero). Both types of wrong entries are considered as f laws.

Assume that there is a non-zero element at position (i,k), M(i,k) 6= 0 which has been

mislabelled as 0 in the pattern S0. As a result, product of M and S obtained via the CPR

method will have some wrong entries or perturbation. In this situation two scenarios are

possible:

i. S0(i,k) 6= 0 and ψ(k) = ψ(k′) where k 6= k′ there exist an index

ii. S0(i,k) 6= 0 and ψ(k) = ψ(k′) where k 6= k′ there does not exist an index.

Matrix Y is the result of the product, M and S, from which we have to identify charac-

teristics of flaw. We select one position as flaw position in sparsity pattern M0. We treat the

following as flawed elements:

Remark 3.1. Elements which are missing in approximated pattern

Remark 3.2. Elements that do not satisfy value symmetry

Definition 3.3. Assume that application of CPR algorithm 1 on initial guess pattern S0

results in structurally orthogonal color group ψk and the expansion matrix generated from

Y is W . If M0(i,k) 6=W0(i,k) then (i,k) and (k, i) both are treated as J flaw and denoted as

f J .

Definition 3.4. Assume that the application of CPR 1 on initial guess pattern S0 results in

matrix Y . If y(i, l) has non-zero element, but S0(i,k) = 0 where k ∈ ψ(l) then y(i, l) are
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treated as Y flaw and denoted as fY .

Remark 3.5. If m0(i,k′) 6= m0(k′, i) then it violates the value symmetry. Two flaws would

be counted at position (i,k) and (k, i) if |m0(i,k)−m0(k, i)| > η1, where η1 is a positive

threshold.

Remark 3.6. If m0(i,k) = 0 but Y0(i, l) 6= 0 where ψ(k) = l. Flaw counted at position (i, l)

of matrix Y0 if |Y0(i, l)|> εη2,where η2 is a positive threshold.

M0 is approximated guess pattern of M and i is row index for M0, M, S0 and Y . k

represents column index for matrix M, M0 and represent S0 where l is column index for

Y . ψ indicates color group and η1,η2 are considered as user adjustable tolerance. During

floating point operations, η is defined as a positive threshold to account for errors. Now that

we have identified the flaw and type (of flaw), the next step would be to identify the flawed

entry, i.e, if at position (i, j) there is a flaw, m0(i,k) 6= m0(k, i) which implies that there is

a flawed entry. Since we cannot recognize which one is actually flawed, we have counted

both of them as flawed entries.

Remark 3.7. m0(i,k) : m0(i, l) 6= 0 is not included in the current sparsity pattern of the

symmetric matrix where color column ψ(k) = ψ(l).

Remark 3.8. m0(k, i) : m0(k, l) 6= 0 is not included in the current sparsity pattern of the

symmetric matrix where color column ψ(i) = ψ(l).

Above discussion leads to algorithm 2

Algorithm 2 Flaw Detection of matrix M0
1: for i =1 to n do
2: a = row ptr(i) to row ptr(i+1)−1
3: m← col ind(a)
4: k← ψ

5: Wi, j ≡ Yi,k/ψ

6: end for
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Here W is our expansion matrix. Now we can access non-zero elements using algorithm

2. We know that at which position m(i,k) is mapped to positions in matrix Y (i,ψ(l)). After

mapping for each row we can identify all J flaws and rest of them in matrix Y is marked as

Y flaws.

The next step is the identification of flaw location. If there is a flaw at position (i,k)

where k ∈ ψm then it is possible that there can be flawed entries at any column of m color

group in row i. These concepts lead to following remark:

Remark 3.9. If m0(i,k) is a J flaw and column k belongs to color group a then it is possible

that there are missing one or more elements in row i. So that the set of possible position for

missing elements are (i,q) : q ∈ ψa.

Remark 3.10. If Y0(i, l) is an Y flaw and column l belongs to color group a then it is possible

that there are missing one or more elements in row i. So that the set of possible position for

missing elements are (i,q) : q ∈ ψa.

Algorithm 2 gives us this equation 3.4 for determination of missing elements in J

Since Y,S ∈ IRn× k where y1,y2, . . . ,yn columns of matrix Y and yl : l ∈ ψm(m= number of

color group). Let w1,w2, . . . ,wn columns of matrix W and wk : k ∈ ψm(m= number of color

group). Then we can calculate our expanded matrix W using equation3.4

w(i,k) = y(i, l)/ψ(m) (3.4)

Here w(i) and w(k) define row index and column index respectively in matrix W . And

w(i,k) indicate the position of non-zero elements in same matrix. Matrix Y and color group

ψm are result of CPR algorithm. Application of above equation 3.4 on our computed Y and

ψ(m) gives below result:
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3.2. DETECTION OF MISSING ELEMENTS WITH INITIAL GUESS PATTERN S0

Figure 3.8: Expanded Matrix W from the Compressed Matrix Y using w(i,k)= y(i, l)/ψ(m)

From the resulting matrix J we can clearly see overlapping in row 2,4,6,8 at column

3,5,5,7 accordingly. And in row 1 and 9 at column 3 and 7 respectively has flaw but there
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are no overlapping. So we can say that in our matrix W there are 4 J flaws and 2 Y flaws.

Here we have represented 2 types flaw matrix and the color group they belong. f J and fY

denote J flaw and Y flaw correspondingly.

3.3 Data Structure for Flaws

The efficiency of the algorithm largely depends on the data structure of matrix storage

and computation, especially for a sparse matrix. Column partitioning, flaw calculation,

intersection and union operation in our implementation use CSR data structure. As we

discussed previously that CSR(Compress Sparse Row) allow cache-friendly performance

to minimize cache misses. Calculation of flaw and explanation of data structure of flaw for

example matrix M is given below:

f J =



. . . . . . . . .

. . 3 . . . . . .

. . . . . . . . .

. . . . 2 . . . .

. . . . . . . . .

. . . . 2 . . . .

. . . . . . . . .

. . . . . . 1 . .

. . . . . . . . .


CSR Data Structure to store J flaw

Table 3.6: Row of J flaw

2 4 6 8

Table 3.7: Group index of J flaw

3 2 2 1
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Table 3.8: Flaw ptr of J flaw

1 2 3 4

fY =



. . 3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1 . .


CSR Data Structure to store Y flaw

Table 3.9: Row of Y flaw

1 9

Table 3.10: Group index of Y flaw

3 1

Table 3.11: Flaw ptr of Y flaw

1 2

• Since we discuss previously that if there is a flaw at position (i,k) then we consider

both (i,k) and (k, i) as a flawed location since we do not know which of these two

element is flawed.
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• And we also mentioned in 3.9, 3.10 that, if k is a member of m color group then any

element of m group at row i can be flawed.

Considering above conditions we can generate possible flaw matrix by performing the union

operation.

Remark 3.11. p= f J ⋃ fY

p(i,k) =


0 if f J(i,k)= fY (i,k) = 0

where i,k = 1,2, . . . ,n

1 otherwise




. . ∗ . . ∗ . . ∗

. . ∗ . . ∗ . . ∗

. . . . . . . . .

. ∗ . . ∗ . . ∗ .

. . . . . . . . .

. ∗ . . ∗ . . ∗ .

. . . . . . . . .

∗ . . ∗ . . ∗ . .

∗ . . ∗ . . ∗ . .


p=fJ ⋃ fY

CSR Data Structure to store flaw matrix

Table 3.12: Column of possible flaw in p = f J ⋃ fY

3 6 9 3 6 9 2 5 8 2 5 8 1 4 7 1 4 7
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Table 3.13: Flaw ptr of possible flaw in p = f J ⋃ fY

1 4 7 10 13 16 19

From f J and fY we can know that we have only 6 elements missing but in flaw matrix

we can see that 18 elements are detected as flawed. So there are lots of extra f lawed

elements. To determine the actual flaw we have to apply algorithm 3.

Algorithm 3 Determination of flaw locations
Input: S0,ψm and Yl ,
Output:Set of flaw locations

1: for each pair of M0(i, j) 6= M0( j, i) do
2: if j >= i then
3: if |M0(i, j)-M0( j, i)|> γ1 then
4: if i 6= j then
5: add (i,j) and (j,i )to the set of J flaw
6: end if
7: if i = j then
8: add (i,i)to the set of J flaw
9: end if

10: end if
11: end if
12: end for
13: for each pair of Y0(i,k) 6= 0 do
14: for each pair of M0(i, j) = 0 do
15: if ψ( j) = k then
16: if |Y0(i,k)|> ε∗ γ2 then
17: add (i,j) to the set of Y flaw
18: end if
19: end if
20: end for
21: end for

3.3.1 Asymptotic Analysis of Determination of Flaw Location

In algorithm 3 J flaw calculation is done within line 1 to 12 which executes one time for

level 0. So if it required k levels then the time complexity will be O(nk) for each addition,

i = i and i 6= j. Y flaw calculation is done within line 13 to 20 which requires also O(nk).As

a result, the total computational complexity will be (1 to 12) O(nk).
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3.3.2 Actual Flaw Identification using Value Symmetry

Since our Jacobian matrix is symmetric, we can take advantage of symmetric properties.

By taking intersection between p and pT we can discard those flawed elements which do

not satisfy value symmetry.

. . ∗ . . ∗ . . ∗

. . ∗ . . ∗ . . ∗

. . . . . . . . .

. ∗ . . ∗ . . ∗ .

. . . . . . . . .

. ∗ . . ∗ . . ∗ .

. . . . . . . . .

∗ . . ∗ . . ∗ . .

∗ . . ∗ . . ∗ . .



−→



. . . . . . . ∗ ∗

. . . ∗ . ∗ . . .

∗ ∗ . . . . . . .

. . . . . . . ∗ ∗

. . . ∗ . ∗ . . .

∗ ∗ . . . . . . .

. . . . . . . ∗ ∗

. . . ∗ . ∗ . . .

∗ ∗ . . . . . . .


p pT

Remark 3.12. P=p
⋂

pT

p(i,k) =


1 if f J(i,k)= fY (i,k)=1

where i,k = 1,2, . . . ,n

0 otherwise
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Figure 3.9: Location of f laws in Approximated Pattern

After calculation P = p
⋂

pT we have identified three pairs flaw (1,9)(9,1), (2,6)(6,2)

and (3,8)(8,3). It is not mandatory that after every calculation it will find all pair of flaws.

As there are only 3 pairs flaws here, it is identified easily the first time.
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Now add this flaw matrix P with our initial guess pattern S0 to get a new pattern. Figure

3.10 represents the upgraded sparsity pattern S1

Figure 3.10: Upgraded Sparsity Pattern S1

42



3.3. DATA STRUCTURE FOR FLAWS

We can repeat this whole process until that the number of flaws is zero or our flaw

matrix is empty.

3.3.3 Algorithm for Determination of Sparsity Pattern for Good Initial Pattern

Algorithm 4 Determination of sparsity pattern for good initial pattern
Input: A symmetric trial pattern S0 and nestimate
Output:The final true pattern

1: A tri Diagonal band matrix S0 with size n
2: Calculate column partitioning ψ using DSJM for S0
3: Generate matrix Y0 using S0,ψ,S {using CPR Algorithm 1}
4: Identify the flaw location F0 and count nestimate = nnz(P0) {using Algorithm 3}
5: Compute Flaw Matrix P = (p

⋂
pT ) ;

6: S1 = S0
⋃

P
7: Calculate column partitioning β0 using DSJM for S0
8: Generate Matrix Y0 using S1,ψ,S {using CPR Algorithm 1}
9: Exclude spurious elements from S0 {using Algorithm 4}

10: return The final pattern

3.3.4 Limitation of Algorithm 4

Algorithm 4 is able to detect sparsity pattern of a small dataset 80× 80 in size, even

without good guess. For a big set of matrix-like 600×600 in size, the same algorithm can

detect the result for a good guess. By a ’good guess’ we mean that very few elements are

missing in the initial guess pattern S0. According to Carter if nnz(M− S0) is sufficiently

modest then it is possible to handle spurious elements. Algorithm 4 detect sparsity pattern

if nnz(M−S0)<< n and number of flaws is small.

3.3.5 Elimination of Spurious Elements

Carter described in his paper [9] that most of the time there are spurious element besides

exact flaws. In the computation of flaw matrix for a large-scale dataset, more than one flaw

in each row is a very common pattern. As a result, spurious elements sometimes take place

in flaw matrix. In this section, we will discuss the process of abolition of extra flaw. The

process we are going to follow mostly resembles Carter’s procedure. To remove spurious

43



3.3. DATA STRUCTURE FOR FLAWS

elements which should be zero we will follow procedure 4. In this algorithm, ε0 is a positive

threshold to find spurious entities in S0. In our implementation, we take ε0 equal to be 10−6.

We can replace procedure 4 with 5 by a relative test if desired.

Procedure 4: Exclude spurious entities from S0

Output:The final pattern of J
1: Set the tolerance ε > 0
2: Set Se = ψ

3: for every pair (i,j)∈ S1 do
4: if j > i then
5: if both m0(i, j) and m0( j, i) are effectively zero

max(|m0(i, j),m0( j, i)|)< ε0 then
6: Add pair (i, j) and ( j, i) in Se
7: end if
8: end if
9: end for

10: Remove all elements in Se from S1 and M0
11: exit

Procedure 5: Another Approach to Eliminate spurious entities from S0

Output:The final pattern of J
1: Set the tolerance ε > 0
2: for every pair (i,j)∈M0 do
3: if j > i then
4: if both m0i, j > ε0 then
5: Set S0(i, j) = 1, M0(i, j) = 1
6: end if

else
7: Set S0(i, j) = 0, M(i, j) = 0
8: end if
9: end for
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Chapter 4

Detection of Jacobian Matrix Sparsity
Pattern

In this chapter, we will discuss the heuristic partitioning and ordering algorithm of DSJM. It

will be followed by the description of Smallest Last Ordering method and Sequential Color-

ing algorithm of DSJM. Then detail description of Multilevel Algorithm will be presented.

Finally, parallel implementation will be discussed, which was used to speed up execution.

4.1 Description about DSJM ToolKit

We have used DSJM toolkit to partition columns of the sparse matrix into a structurally

orthogonal color group. DSJM uses a cache friendly data structure (Compress Row, Com-

press Column or Bucket Heap Sort) for ordering and coloring algorithm which minimizes

cache misses. As a result, DSJM can provide better coloring, faster than existing implemen-

tations [22]. Two kinds of partitioning algorithms are used in DSJM for direct determination

of sparse Jacobian matrices. In the first kind, columns are scanned in either Largest First

Ordering (LFO), or Smallest Last Ordering (SLO) or Indence Degree Ordering (IDO), and

then partitioning is computed with a minimal number of colors group. Column ordering

and partitioning i.e, Saturation Degree (SD) partitioning and Recursive Largest First (RLF)

partitioning are done simultaneously. In our thesis, we will take advantage of Smallest Last

Ordering method and Sequential Coloring algorithm of DSJM, for structurally orthogonal

column partitioning.
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4.1.1 Smallest-Last Ordering

SLO appears to provide better result for preprocessing column [17, 12, 10]. Suppose

we have ordered set of vertices V ′ = vn,vn−1, . . . ,vi+1 of graph G. SLO selects ith vertex

u to put into ordered set of vertices from unordered set such that deg(u) is minimum in

G[V \V ′]. Here G[V \V ′] is a graph which is obtained from G by removing the vertices

of set V ′ from V . Major computational steps of Smallest Last Ordering procedure is given

below:

Procedure 6: Smallest Last ordering
Input: array Dn, to store degree information 1→ n
Output: array of ordered columns On, 1→ n

1: set Dn← n
2: set τ← 1, . . . ,n
3: while τ 6= φ do
4: Select i ∈ τ such that dg(k) ∈ G[V \V ′] is minimum
5: On(Dn)← k
6: Dn← Dn−1
7: τ← τ\ k
8: end while
9: return array of ordered columns,On

The largest computational cost of this algorithm is column deletion of the minimum

degree holder. It requires O(log i) cost to find the column i with min dg(i) ∈ G[V \V ′]. So

for n columns the computational cost will be O(∑n
i=1 log i) which is O(n logn).

If there are ρi number of non-zero elements in each row i, then computational cost for

non-zero entries will be O(∑i|m(i, j) 6=0 ρi), and for all column will be O(∑n
i=1 ∑i|m(i, j) 6=0 ρi).

For ρi number of non-zero elements each row will be searched ρ2
i times to find minimal

number of groups. For N number of rows, this algorithm will take O(∑n
i=1 ∑i|m(i, j) 6=0 ρi)

which is proportional to O(∑n
i=1 ρ2

i ). So the total computational complexity is O(∑n
i=1 ρ2

i )

[22].
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4.1.2 Sequential Coloring Method

According to Coleman and Moré [11] the problem of finding a minimum number of col-

umn partitioning is equivalent to a vertex coloring problem of an associated graph and that

problem is NP-Hard. According to researchers, the greedy algorithm defines the minimal

number of color groups when the columns are in specific order [23, 26, 24, 25]. Sequen-

tial coloring method is a greedy coloring algorithm which is a variant of CPR partitioning.

Before implementing this algorithm, columns should be ordered in either Largest First Or-

dering (LFO), Smallest Last Ordering (SLO) or Indence Degree Ordering (IDO). Sequential

coloring procedure 5 is given below:

Algorithm 5 Sequential Coloring algorithm
Input: Order array On for non-zero entries i→ n
Output: Color array ψm of color columns i→ m

1: ψ← 0
2: τ← 1,2, . . . ,n
3: for i = 1 to n do
4: k← Order(i)
5: let cm= min {c|c ∈ i, . . . ,ψ+1 6=Cgrp(l), l ∈Cg(k)}
6: Cgrp(k)← cm
7: if (cm >Cgrp) then
8: ψ← ψ+1
9: end if

10: end for
11: return Color array of color columns

Input for the sequential algorithm is the sparsity pattern of the matrix, with n number

of columns. For scanning, an array will be maintained called order. Cg(k) represents the

set of neighbors column i which cannot be within the same group as column i stayed. cm

represents the least number of the structurally orthogonal group to which column j can be

added. ψ contains the total number of structurally orthogonal groups in resulting partition.

It takes O(n) steps to find N columns, which is compared with the neighbour (non-zero

entries) to find the optimal number of columns.
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In each row i if there are ρi number of non-zero elements then computational cost for

non-zero entries is O(∑i|m(i, j)6=0 ρi), and for all columns it will be O(∑N
i=1 ∑i|m(i, j) 6=0 ρi). For

ρi number of non-zero elements, each row will be searched ρ2
i times in total to find minimal

number of groups. So for N number of rows this algorithm will take O(∑N
i=1 ρ2

i ) operations

which is proportional to O(∑N
i=1 ∑i|m(i, j) 6=0 ρi). Time complexity for sequential algorithm is

O(∑N
i=1 ρ2

i ) [22].

4.2 The Multilevel Algorithm

As discussed about the limitation of algorithm 4 (in the previous chapter), the single

compilation is not enough for detection of all missing elements, specially for large-scale

data set. To overcome this problem, the following steps would be followed:

• Instead of using S0 for first computation to get augmented pattern S0
⋃
(P

⋂
PT ), we

can take S1 = S0 +R1 as the initial guess pattern.

• For column partition, we can take help from DSJM toolkit.

• Determine the set of flaws for each pattern. Then compute intersection among all such

flaws to find the location of missing elements and finally generate the flaw matrix P1.

• Augment the guess pattern S0 with the matrix P1 (which have been computed) to get

new pattern S1.

• Implement the whole process on a serial computer.

In this case, R1 is one kind of symmetric pattern whose main purpose is making the

initial guess pattern a little different than previous, rather than improving it [9].

Since we have taken R1 randomly so that it has a randomized effect on the location of

the spurious element. As a result PT
1
⋂

P1 is significantly different than PT
0
⋂

P0. If we con-

sider P = (PT
0
⋂

P0)
⋂
(PT

1
⋂

P1) . . .
⋂
(PT

l
⋂

Pl) then the number of spurious elements will

be reduced significantly. In the absence of an initial pattern S0 random sparsity pattern, R0
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can be used as the guess pattern. In this case, the augmented pattern will be populated. As

a result implementation of CPR algorithm will provide no benefit for this heavily populated

matrix.

Our main target is minimizing the gradient evaluation cost so that:

• Wise selection of random sparsity pattern is done, where the modest number of sym-

metric pattern is appointed. If the bandwidth of this pattern is higher than the aug-

mented pattern S1 will be crowded. On the other hand, if it is low, then it will require

more time iterations for flaw calculation. In both cases, the cost of gradient evalua-

tion will increase. Therefore to reduce the number of gradient evaluation, a modest

number of the symmetric pattern should be implemented.

• Use threshold values to avoid generating dense patterns. It is a pretty simplistic ap-

proach where flaw computation will terminate if the number of possible flaw locations

equals or greater than the predetermined threshold. Once terminated, the algorithm

will restart with a different set of randomly generated sparsity pattern Rk.

This process will continue as long as a manageable number of possibilities are obtained

to generate a new augmented pattern Ml|l ∈ N. To generate a reduced number of possi-

bilities multiple iterations are required. Each process of this algorithm is called level and

the repetition of this level is denoted as Multilevel Algorithm. For determination of sparsity

pattern of the large-scale data, we need to implemented the multilevel algorithm. It is worth

mentioning that this technique draws heavily from Carter’s approach [9]. Implementation

of this multilevel algorithm generates far better results even for a bad or non-existing guess

pattern.

However, execution of this algorithm will require large space to store the intermediate

patterns in the calculation at level l. Fortunately, it is not needed to store an immediate

pattern of flaws Pi nor the pattern for Pl

P = (PT
0
⋂

P0)
⋂
(PT

1
⋂

P1) . . .
⋂
(PT

l
⋂

Pl)
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The calculation of corresponding flaws gives an augmented pattern for addition with

initial guess pattern S0. For any reason, if that augmented flaw matrix becomes overpop-

ulated then the algorithm terminates for that level. Finally, after the removal of spurious

flaw entries, true pattern of the Jacobian matrix will be revealed. Application of multilevel

algorithm is better for large dimensional matrix rather than smaller ones.

4.2.1 Voting between Levels

We can find flaw locations by comparing individual elements of trial matrix Sl in a level

wise manner. In the multilevel algorithm flaw elements can be detected by using voting

scheme [9]. We store Y (i, l) where ψ(i) = l for i = 1,2, . . . ,n at every step of the multilevel

algorithm.

If any diagonal element at position (i, i) is zero but was considered as non-zero element,

in such cases voting scheme can help. The diagonal element at location (i, i) is zero or not,

is decided by a distinct tolerance value which acts as a positive threshold. If most of the

elements for Sl(i, i), where l = 0,1, . . . ,k hold the same value within that given threshold,

then we can speculate that the value is correct for J(i, i). Since voting scheme has no effect

on Y flaws, we will calculate only J flaws using this.

This voting method can provide much better result as the required number of levels

increase. To obtain the best efficiency, we have followed these condition:

• γi = 10−12 where i = 1,2,3.

• βi 6= βk for all i,k we calculated βi as βi=ri ∗θi where ri is randomly selected number

and θi= 10−12

The process to calculate flaws locations using voting between levels is given in algorithm

7.

In this voting procedure 7, Sl is guess pattern at any level l and array ψl represents

the column partitioning group of symmetric guess pattern Sl . Yl is the compressed matrix
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Procedure 7: Compute flaw locations using voting between levels
Input: Sl ,ψl and Yl ,
Output: P { computing J flaw}

1: for i = 1 to n do
2: if |Ml(i, i) – Ml−1(i, i)|< γ3 ∗ (|Ml(i, i)−Ml−1(i, i)|) where l=0,. . . ,k then
3: for l = 0 to k do
4: if |Ml(i, i)-Ml(i, i)|> γ1 then
5: add (i,i) to the set of flaw J
6: end if
7: end forelse
8: for l = 0 to k do
9: add (i,i) to the set of J flaw

10: end for
11: end if
12: end for
13: for each pair of Ml(i,k) 6= Ml(k, i) with k >= i at level l do
14: if i 6= k then
15: if |Ml(i,k)−Ml(k, i)|> γ1 then
16: add (i,k) to the set of J flaw
17: end if
18: end if
19: end for
20: for each pair of Yl(i,k) 6= 0 at level l do
21: for each pair of Ml(i,k) = 0 do
22: if ψ(k) = l then
23: if |Ml(i,k)|> γ2 ∗ ε then
24: add (i,k) to the set of Y flaw
25: end if
26: end if
27: end for
28: end for

obtained from CPR 1 and P is collection of all flaws locations within a matrix. Here γi

represents some positive threshold where i = 1,2,3.

Two neighbour elements in diagonal position Ml(i, i) and Ml−1(i, i) are recognized as

equal if and only if |Ml(i, i) - Ml−1(i, i)|< γ3(|Ml(i, i)| + |Ml−1(i, i)|). However, the follow-

ing issue may arise. Suppose βi=β j for all i, j, then for equal non-zero values, computed

location for any flawed element in J will be equal. Then it will be difficult to differentiate

and identify. It clearly indicate that, since the value of non-zero and threshold constants
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affect the algorithm efficiency, we should be careful in selection of those values.

4.2.2 Asymptotic Analysis of Voting Scheme

J flaw calculation is done within line 1 to 12 which executes k times, k is the number of

levels. The time complexity of voting at line 2 is O(k) and adding (i, i) flaws from line 3 to

9 is also O(k). As a result, the total computational complexity within line 1 to 12 is O(nk2).

For i 6= k at line 13 require O(np) time to execute J flaw within line 13 to 18. Since Y

flaw has no effect of voting scheme still it required O(np) time as we discussed in algorithm

3. So the complete time complexity for voting algorithm 7 is O(nk2)+O(np).

4.2.3 Finding all Possible flaws

Let us consider the following example for Pl generation. Suppose we identified flaw at

position (i, j), at first we will check if this is within f J
l i.e., if this is an element with position

(i,m), where m is same group of column j. Next it be checked if the flaw is within fY
l -

is this an element with position (i,k) where k is same group of column j. If any of these

conditions are true than we will add this flaw in possible flaw matrix Pl . Same process will

be followed for ( j, i) position. When we identified one flaw in row position i for column

group j, we will add flaws in each column of column group j at row position i, because any

one element of that flawed group for this row can be the flaw. For representation and easy

calculation we have maintained these arrays like [9], but for sorting elements we have used

DSJM [22] toolkit rather than heap sort. The mentioned arrays are as follows:

• A sorted list of array for j flaws, to store(i,m)row and column indices of flaws accord-

ingly.

• A sorted list of array for y flaws, to store(i,k)row and column indices of flaws accord-

ingly.

• Array for row pointer to to point the first flaw of each row
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Flaw matrix need not be constructed explicitly and also need not to be stored. We

illustrate the full construction here for better understanding. Another task related to flaws

calculation is identification of possible source of flaws. Procedure 8 represents this process:

Procedure 8: Compute possible source of flaws

Input: f j
l and f y

l , kmax ≥ 2
Output: Possible P matrix

1: Set P = ψ

2: for each (i,j) in f h
l do

3: kc = 0;
4: for each (i,k) where k ∈ ψ( j) do
5: if k > i then
6: kc = kc+1;
7: if kc > kmax then
8: exceed threshold,Terminate immediately
9: end ifelse

10: add (i,k) and (k,i) to flaw matrix
11: end if
12: end for
13: end for
14: for each (i,j) in f y

l do
15: kc = 0
16: for each (i,k) where k ∈ ψ( j) do
17: if k > i then
18: kc = kc+1
19: if kc > kmax then
20: exceed threshold,Terminate immediately
21: end ifelse
22: add (i,k) and (k,i) to flaw matrix
23: end if
24: end for
25: end for

For procedure 8 we have set the value for kmax greater than or equal to 2. Carter [9] sug-

gested value for kmax is 5 in his paper. As we described before, flaws in row i for the column

k can be in any column of row i to which the k column belong. Using possible source of

flaws and color group array we can compute set all possible flaw matrix. Algorithm 9

describe the member of flaw matrix detection process using structurally orthogonal color

group ψ.
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Procedure 9: Compute set of all possible flaws
Input: Yl ,ψ and Pl ,
Output: The set of possible flaws P

1: Set P = φ

2: for each pair of flaw (i,k) do
3: for each entry of (i,q) where q ∈ ψ(k) do
4: if l > i then
5: add (i,q) and (q.i) to flaw matrix P
6: end if
7: end for
8: end for

4.2.4 Multilevel Algorithm to Determine the Sparsity Structure of Jacobian Matrix

In this section we will present Multilevel Algorithm 6 for detection of sparsity pattern

of an unknown Jacobian matrix .This algorithm is a combination of CPR algorithm, DSJM

toolkit, voting scheme and flaw computation.

To determine the number of missing elements for initial calculation, we have measured

nestimate based on the initial guess pattern. Then we update the value of nestimate by the num-

ber of non-zero elements in flaw matrix P. We use a random number generator to produce

pairs of integers (i, j)k,k = 1,2, . . . ,m/2 (with each integer between 1 to n) to generate a

symmetric pattern Rk with m entries. And set Rk will be the union of these pairs, along

with the union of (i, j)k,k = 1,2, . . .m/2. The reason for taking random pattern Rk is to

generate different guess patterns, so that Sk = Sk−1
⋃

Rk at each level of computation. For

better performance we should be careful in bandwidth selection for random sparsity pattern.

• The number of non-zero elements in Sk should be at least a small multiple of nestimate,

i.e. nnz(Sk)≥ kc1 ∗nestimate

• The number of non-zero elements in Rk should be at least a small multiple of n, i.e.

nnz(Rk)≥ kc2 ∗n
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Algorithm 6 Multilevel Algorithm to determine the Sparsity Structure of the Jacobian Ma-
trix
Input: Symmetric trial pattern S0 and nestimate
Output: The final true pattern

1: A tri−diagonal band matrix S0 with size n
2: Set k = 0
3: if (nnz(S0)< k1 ∗ηestimation) then
4: Generate a random symmetric pattern R0 where, nnz(R0)≥ k ∗n
5: S0 = S0 +R0
6: end if
7: Calculate column partitioning ψ using DSJM for S0
8: Generate Matrix Y0 using S0,ψ,S {using CPR Algorithm 1}
9: Identify the flaw location p and count nestimate = nnz(p)

10: Compute Flaw Matrix P0 = (P0
⋂

PT
0 ) ;

11: while P0/α > nestimate do
12: k = k+1
13: Generate a random symmetric pattern Rk where, nnz(Rk)≥ k ∗n
14: Sk = Sk−1

⋃
Rk where nnz(Rk)+nnz(Sk−1)≥ k1 ∗nestimate

15: Calculate column partitioning ψk using DSJM for Sk
16: Generate Matrix Yk using Sk,ψk,S {using CPR Algorithm 1}
17: Identify the flaw location Pk
18: Estimate the number of missing elements nestimate = nnz(Pk)
19: if (k < 2) then
20: go to step 11
21: end if
22: Compute the set of flaws P = (P0

⋂
PT

0
⋂

P1
⋂

PT
1
⋂
. . .

⋂
Pk

⋂
PT

k )
23: end while
24: Set k = 0
25: S1 = S0

⋃
P

26: Calculate column partitioning ψ0 using DSJM for S0
27: Generate Matrix Y0 using S0,ψ0,S {using CPR Algorithm 1}
28: Identify the flaw location P0
29: Estimate the number of missing elements nestimate = nnz(P0);
30: Get the final pattern of J matrix by eliminating spurious entries from S0 {using proce-

dure 4}
31: if (nestimate = 0) then
32: exit
33: end if
34: go to step 9;
35: return the final pattern

• The while loop should execute until the number of non-zero elements in flaw matrix

pattern is significantly small than nestimate, i.e. nnz(p)/α > nestimate. Where kc1 ≥ 2,
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kc2 ≥ 1 and α≥ 5.

• When there exist no initial guess pattern then steps (4-5) execute. This steps also

compute if the number of non-zero elements in initial guess pattern is less then mul-

tiple of nnz and nestimate, i.e. nnz(Sl)≥ kc1 ∗nestimate

To compute the set of flaws P we do not need to calculate or store the intermediate pat-

terns Pk because P can be directly calculated from the flaws. Through our implementation,

we use compressed matrix Yl and sparsity structure of trial pattern Sl , instead of expanding

our Jacobian Ml into full matrix at any level l.

4.2.5 Asymptotic Analysis of Multilevel Algorithm

In the multilevel algorithm, most computationally expensive operations are performed

within the while loop iteration. As we discussed before, column partitioning using DSJM

toolkit has time complexity O(∑N
i=1 ρ2

i ) [22]. CPR algorithm 1 requires O(nnz) to compute

matrix Yk. The time complexity for voting scheme is O(nk2)+Onp) to compute the flaw

locations. The time for eliminating spurious entries from S0 in line 30 is O(nnz) where nnz

is the number of non-zero elements of matrix S0 in algorithm 4.

From this analysis we can see that Multilevel algorithm improves efficiency in detection

of sparsity pattern but it takes longer to execute. To reduce this time consumption we can

take advantage of parallel computing techniques.

4.3 Parallel Implementation

Parallel implementation is used extensively in high performance computing environ-

ment to enhance performance of sequential code. For detection of sparsity pattern of an

unknown Jacobian matrix we have chosen Multilevel algorithm. And to reduce the execu-

tion time of that algorithm we have added parallel concept.

Principles of Parallel Algorithm Design A parallel algorithm is a technique to solve a

sequential task using multiple processors. To design parallel algorithm the following needs
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consideration [20]:

• Identify the segment of tasks for which concurrent operations are possible

• Vital mapping of possible concurrent tasks onto multiple processes running in parallel

• Appropriate distribution of input, output and intermediate data

• Careful management of shared data accessing

• Process synchronization during stages of parallel program execution

4.3.1 Multicore Technique

The term multicore is used for several core in the entire processor of a single machine

[37]. For parallel implementation we have used multicore technique to make our implemen-

tation faster. Multicore technique refers to code executing on more than one core of single

CPU chip at a time. This technique allows operating systems and applications to schedule

multiple threads to logical processors of CPU as they perform on multiprocessor systems

at a time. Instructions obtained from logical processors are executed simultaneously on

shared resources. When multiple threads schedule simultaneously, as the resources are

shared for execution,it is important to determine how and when to interleave the execution

of the threads. The design of distribution affects cachemisses rate [5].

4.3.2 OpenMP: a standard for directive based parallel programming

For our parallel implementation, we have used OpenMP. OpenMP is an API for writing

multithreaded code in C and C++ [20]. Concurrency, synchronization and data handling are

provided by OpenMP directives. It is a standard for directive based parallel programming

[29]. One of the advantage is that OpenMP can execute sequentially until directions for

parallelism is provided. In C++ it regulates based on pragma compiler directives. The

omp get num threads() function returns the number of threads and omp get thread num()

function returns the identification number of each thread. OpenMP directives generates
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number of threads for parallel processing. Variables in an OpenMP parallel region is called

shared if there exists one instance of this variable which is shared among all threads. And

private variable in an OpenMP parallel region is local variable for each thread.We can

assign private and shared variable in the directive for data handling.

4.3.3 Parallel Multilevel Algorithm

In this section we will present parallel implementation in Multilevel Algorithm 6. To

design a model for parallel algorithm we have to apply mapping technique and appropri-

ate strategy to minimize interaction. Since in parallel implementation, tasks are executed

concurrently, it is expected that the execution speed will be doubled. Unfortunately this

does not happen in practice due to inter-process communication, idling and excess compu-

tation [29]. Good serial algorithms need not be well suited for parallel implementation. In

most parallel implementations, processes need to switch or swap data with other processes.

This swapping affects the efficiency of parallel algorithm by introducing interaction delay.

Moreover, good coding structure for serial implementation is not always perfect for par-

allel computing. To get best performance from parallel implementation, it is important to

analyze algorithm, hardware platform and overhead. Overhead in parallel implementation

indicates the total time required for processing elements over and above required for same

sequential implementation. If sequential implementation requires Ts time and for the par-

allel if it is Tp then the overhead To = Tp−Ts. Speed up measures the ratio of the time for

solving the same problem in sequential to parallel implementation. Efficiency of parallel

implementation represents a fraction of time, in which processing elements get ready to be

employed.

In parallel implementation we have followed the process outlined for multilevel algo-

rithm, using the same set of constants and tolerance values. In addition, to improve effi-

ciency few parallel constant have been applied in multilevel algorithm 6, which are given

below:
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• Parallel concept is applied only within inner loop of multilevel algorithm 6

• private and shared variables are defined at the declaration of pragma

• Used multiple threads for concurrent task execution

Parallel multilevel algorithm is presented in 7. In that algorithm, total number of thread

is denoted as nthread and thread number is set using tid variable in algorithm 7. Symmetric

trial pattern Rk is calculated as private variable in each thread. Number of iteration, initial

guess pattern and flaw matrix are denoted respectively as k, S0, and P, those are shared

variables.
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Algorithm 7 Parallel Multilevel Algorithm to determine the Sparsity Structure of Jacobian
Matrix
Input: Symmetric trial pattern S0 and nestimate
Output: The final true pattern

1: A tri−diagonal band matrix S0 with size n
2: Set k = 0
3: if (nnz(S0)< k1 ∗ηestimation) then
4: Generate a random symmetric pattern R0 where, nnz(R0)≥ k ∗n
5: S1 = S0 +R0
6: end if
7: Calculate column partitioning ψ using DSJM for S0
8: Generate Matrix Y0 using S0,ψ,S {using CPR Algorithm 1}
9: Identify the flaw location F0 and count nestimate = nnz(P0)

10: Compute Flaw Matrix P0 = (P0
⋂

PT
0 ) ;

11: while P0/α > nestimate do
12: #pragma omp parallel private(nthreads, tid,Rk) shared(k,S,P)
13: tid = omp get thread num() { obtain thread number}
14: nthreads = omp get num threads() { only master thread does this }
15: k = k+1
16: Generate a random symmetric pattern Rk where, nnz(Rk)≥ k ∗n
17: Sk = Sk−1

⋃
Rk where nnz(Rk)+nnz(Sk−1)≥ k1 ∗nestimate

18: Calculate column partitioning ψk using DSJM for Sk
19: Generate Matrix Yk using Sk,ψk,S {using CPR Algorithm 1}
20: Identify the flaw location Pk
21: Estimate the number of missing elements nestimate = nnz(Pk)
22: if (k < 2) then
23: go to step 11
24: end if
25: Compute the set of flaws P = (P0

⋂
PT

0
⋂

P1
⋂

PT
1
⋂
. . .

⋂
Pk

⋂
PT

k )
26: end while
27: Set k = 0
28: S1 = S0

⋃
P

29: Calculate column partitioning ψ0 using DSJM for S0
30: Generate Matrix Y0 using S0,ψ0,S {using CPR Algorithm 1}
31: Identify the flaw location P0
32: Estimate the number of missing elements nestimate = nnz(P0)
33: Get the final pattern of J matrix by eliminating spurious entries from S0 {using proce-

dure 4}
34: if (nestimate = 0) then
35: exit
36: end if
37: go to step 9;
38: return the final pattern
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Chapter 5

Numerical Experiments

In this chapter, we provide numerical results of proposed algorithms and their application

on some test instances. Detail description of test data set for our experiment is given in

Section 5.1. Numerical environment to apply our algorithm for the large sparse matrix

is described in section 5.2 and finally in section 5.3 the findings of our methodology is

presented.

5.1 Test Data Sets

To evaluate our proposed approach we have collected and applied the proposed method

on some test data sets. We have collected our data set from two verified sources. First

data set is gathered from Matrix Market Collection [2] and second data set is obtained from

University of Florida Matrix Collection [3], shown in table 5.2 and 5.3. In all tables, column

labeled Matrix represent name of the matrix which we have used for our test procedure. The

number of columns is equal to number of rows of a matrix as these are all square matrix,

which is shown in columns labeled n. The column nnz (Number of Non-zero) is used to

represent the total number of non-zero elements in that matrix.

5.2 Test Environment

We have done all our numerical experiments with test data sets in Table 5.2 and Table

5.3, varying the number of cores and using different computer configuration.
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Table 5.1: Description of the machine for implementation

Processor Operating System Cache (L2) RAM No. of Core
Intel R©CoreTMi5

6360 CPU @ 2.00GHz
macOS

(High Seirra)
256 KB 8 GB 2 (Virtual - 4)

Intel R©CoreTMi7
4770 CPU @ 3.40GHz

64 bit Linux 256KB 8 GB 4

5.3 Test Results

To increase performance we have chosen band matrices for initial guess pattern and

used an efficient sparse data structure to handle sparse matrices for our purposed method.

In this case, our proposed data structure can save space by at least fifty percent. Carter [9]

used heap sort for most of the sorting. But we found that SLO (Smallest Last Ordering)

sorting algorithm of DSJM [22] is more efficient for sorting. So in both sequential and

parallel implementation we have utilized the benefits of DSJM [22] for sorting. For parallel

implementation we have used multicore technique by using thread in pragma compiler

directives. Parallel section can execute multiple tasks at the same time, which reduces the

total execution time.

5.4 Numerical Experiments

We have represented our numerical results in table 5.2 by using data sets obtained from

Matrix market collection [2]. For table 5.3 we have utilized data sets gathered from Uni-

versity of Florida Matrix Collection [3]. For both table 5.2, 5.3, ρmax denotes the maximum

number of non-zero elements in a row of that matrix. In our experiment, range of ρmax

is 3-218. The number of color groups in the structurally orthogonal partition of true Ja-

cobian is listed under column ncolor. The column ngeval represent the total number of

gradient evaluations required to detect the sparsity pattern for each test problem. Gradient

evaluations from Sultana’s thesis is presented in the column n f eval. Comparison of these

two columns highlights the improvement attained by our implementation. For easier per-
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formance comparison, we have represented ngeval and n f eval column values in a graph.

Graph 5.1 has been generated from table 5.2 and graph 5.2 from table 5.3 respectively. We

have implemented our sequential implementation in two different environment which we

have already described in Test Environment section in table 5.1. In table 5.4 and 5.5 ex-

ecution time for sparsity detection of each matrix using Intel corei5 processor is listed in

the column corei5(execution time) and Intel corei7 processor is listed in the column labeled

corei7(execution time) respectively. Parallel implementation was done on the Intel corei7

machine and execution time using two threads is presented in the column Parallel. We

have also examine the efficiency by using multiple processor in Intel corei7 computer. That

experimental result for data set 1 is presented in table 5.6 and data set 2 is in table 5.7

Table 5.2: Matrix data set 1 - computational cost for sparsity detection and comparison with
previous work

Matrix n nnz ρmax ncolor ncpr ngeval nfeval

bcspwr05 443 1,623 10 10 6 150 154

nos6 675 3,255 5 5 7 172 151

young1c 841 4,089 5 5 8 147 162

rdb1250 1,250 7,300 6 8 7 226 297

bcsstm12 1,473 19,659 22 25 7 304 713

lshp1561 1,561 10,681 7 8 7 209 368

plat1919 1,919 32,199 19 24 10 419 780

Continued on next page
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Table 5.2 – continued from previous page

Matrix n nnz ρmax ncolor ncpr ngeval nfeval

rdb2048 2,048 12,032 6 10 7 232 273

orsreg 1 2,205 14,133 7 11 9 239 239

zenios 2,873 27,191 14 48 9 932 1,095

bcsstk21 3,600 26,600 9 14 9 354 535

e20r0000 4,241 131,556 62 69 14 1,613 2,516

fidapm09 4,683 95,053 37 45 12 806 1,567

mhd4800b 4,800 27,520 10 10 10 277 497

bcspwr10 5,300 21,842 14 14 11 267 329

s1rmt3m1 5,489 219,521 48 50 12 1,638 2,864

fidap018 5,773 69,335 18 22 14 792 1,277

fidap015 6,867 96,421 18 22 14 811 1,297

e30r1000 9,661 306,356 62 70 11 1,678 2,998

bcsstk17 10,974 428,650 150 150 10 2,774 3,580

bcsstk18 11,948 149,090 49 49 10 1,065 1,680

Continued on next page
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Table 5.2 – continued from previous page

Matrix n nnz ρmax ncolor ncpr ngeval nfeval

bcsstk29 13,992 619,488 71 72 12 2,611 5,069

bcsstk25 15,439 252,241 59 59 16 1,145 2,950

e40r5000 17,281 553,956 62 70 12 1,925 3,380

bcsstk30 28,924 2,043,492 218 219 12 6,077 9,131

Figure 5.1: Graphical representation of comparison between ngeval and n f eval for Dataset
1
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Table 5.3: Matrix data set 2 - Computational cost for sparsity detection and comparison
with previous work

Matrix n nnz ρmax ncolor ncpr ngeval nfeval

662 bus 662 2,474 10 10 5 106 214

dwt 758 758 5,994 11 12 6 209 342

rdb800l 800 4,640 6 9 6 220 286

olm1000 1,000 4,994 6 6 6 112 241

jagmesh3 1,089 7,361 7 7 7 194 284

jagmesh5 1,180 7,750 7 8 8 197 246

jagmesh8 1,141 7,465 7 10 8 199 324

dwt 1242 1,242 10,426 12 15 10 247 409

lshp1270 1,270 8,668 7 8 7 204 256

jagmesh9 1,349 9,101 7 9 8 200 251

jagmesh4 1,440 9,504 7 9 8 197 263

bcspwr06 1,454 5,300 13 13 7 179 293

bcspwr08 1,624 6,050 14 14 14 178 451

filter2D 1,668 10,750 9 11 11 202 589

Continued on next page
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Table 5.3 – continued from previous page

Matrix n nnz ρmax ncolor ncpr ngeval nfeval

ex 33 1,733 22,189 18 21 14 299 825

watt 1 1,856 11,488 7 12 5 234 259

G26 2,000 39,980 40 82 9 582 1,504

t2dal a 4,257 37,465 9 12 12 255 894

nasa4704 4,704 104,756 42 47 15 629 1,805

EX5 6,545 295,680 120 192 16 1,015 3,205

Kuu 7,102 340,200 96 108 14 1,801 4,744

G65 8,000 32,000 19 20 12 179 318

delaunay n13 8,192 49,049 12 14 10 269 578

aft01 8,205 125,567 21 25 11 817 1,367

nemeth02 9,506 394,808 52 52 13 1,664 3,739

wing nodal 10,937 150,976 28 29 9 778 1,520

linverse 11,999 95,977 9 11 15 456 764

stokes64 12,546 140,034 11 20 12 582 1,083

Continued on next page
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Table 5.3 – continued from previous page

Matrix n nnz ρmax ncolor ncpr ngeval nfeval

barth5 15,606 107,362 11 11 13 789 1,235

gyro m 17,361 340,431 120 120 15 1,978 4,287

trefethen 20000b 19,999 554,435 84 84 16 3,345 4,110

t3dl e 20,360 20,360 1 3 2 3 3

tube1 21,498 897,056 48 48 11 3,059 5,251

Figure 5.2: Graphical representation of comparison between ngeval and n f eval for Dataset
2
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Table 5.4: Execution time for sparsity detection of data set 1 using corei5 and corei7 pro-
cessors, with sequential and parallel implementation on corei7.

Matrix n nnz corei5(execution time) corei7(Execution time)

Sequential Parallel

bcspwr05 443 1,623 0.34055 0.21 0.16

nos6 675 3,255 0.84878 0.6 0.41

young1c 8,41 4,089 1.65833 1.19 0.89

rdb1250 1,250 7,300 2.85592 1.57 1.4

bcsstm12 1,473 19,659 5.09057 2.42 2.01

lshp1561 1,561 10,681 5.39875 2.12 1.97

plat1919 1,919 32,199 9.38063 6.24 4.64

rdb2048 2,048 12,032 7.56246 4.217 1.21

orsreg 1 2,205 14,133 7.56246 4.68 3.02

zenios 2,873 27,191 10.1719 9.41 5.53

bcsstk21 3,600 26,600 71.1954 16.22 14.81

e20r0000 4,241 13,1556 127.171 83.59 54.14

fidapm09 4,683 95,053 98.822 69.38 43.68

Continued on next page
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Table 5.4 – continued from previous page

Matrix n nnz corei5(execution time) corei7(Execution time)

Sequential Parallel

mhd4800b 4,800 27,520 45.9701 22.55 15.34

bcspwr10 5,300 21,842 47.9037 22.38 12.04

s1rmt3m1 5,489 219,521 115.593 106.062 88.05

fidap018 5,773 69,335 146.796 94.6542 71.98

fidap015 6,867 96,421 153.124 146.167 78.37

e30r1000 9,661 306,356 429.054 381.537 189.75

bcsstk17 10,974 428,650 591.236 459.973 356.61

bcsstk18 11,948 149,090 548.3762 349.632 278.429

bcsstk29 13,992 619,488 694.377 374.191 301.375

bcsstk25 15,439 252,241 558.1949 398.42 261.45

e40r5000 17,281 553,956 894.1562 542.311 332.128

bcsstk30 28,924 204,3492 919.238 702.14 503.01
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Figure 5.3: Execution time (for sparsity detection of matrices listed in data set 1) of sequen-
tial implementation on Intel corei5 and Intel corei7 processor and parallel implementation
on Intel corei7 are presented respectively

Table 5.5: Execution time for sparsity detection of data set 2 using corei5 and corei7 pro-
cessors, with sequential and parallel implementation on corei7.

Matrix n nnz corei5(Execution time) corei7(Execution time)

Sequential Parallel

662 bus 662 2,474 0.73897 0.21 0.12

dwt 758 758 5,994 1.33236 1.28 0.76

rdb800l 800 4,640 1.11063 0.7 0.45

Continued on next page

71



5.4. NUMERICAL EXPERIMENTS

Table 5.5 – continued from previous page

Matrix n nnz corei5(execution time) corei7(execution time)

Sequential Parallel

olm1000 1,000 4,994 1.59536 1.15 0.93

jagmesh3 1,089 7,361 2.97602 2.09 1.56

jagmesh5 1,180 7,750 3.3905 2.09 1.87

jagmesh8 1,141 7,465 3.4183 2.73 1.86

dwt 1242 1,242 10,426 4.63796 2.44 1.65

lshp1270 1,270 8,668 4.25776 3.89 2.52

jagmesh9 1,349 9,101 4.89385 3.50 2.961

jagmesh4 1,440 9,504 4.73182 3.89 3.00

bcspwr06 1,454 5,300 2.63179 1.97 1.59

bcspwr08 1,624 6,050 3.25584 2.38 2.16

filter2D 1,668 10,750 7.58624 6.80 4.32

ex 33 1,733 22,189 9.01422 6.53 4.88

watt 1 1,856 11,488 10.41707 6.13 3.56

Continued on next page
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Table 5.5 – continued from previous page

Matrix n nnz corei5(execution time) corei7(execution time)

Sequential Parallel

G26 2,000 39,980 17.0781 11.57 9.14

t2dal a 4,257 37,465 61.4602 46.1 27.56

nasa4704 4,704 10,4756 92.0456 69.24 51.0289

EX5 6,545 295,680 212.403 159.276 98.16

Kuu 7,102 340,200 249.929 197.556 140.15

G65 8,000 32,000 132.671 72.29 55.72

delaunay n13 8,192 49,049 146.346 86.1 57.35

aft01 8,205 125,567 252.821 175.48 123.58

nemeth02 9,506 394,808 432.201 346.836 211.59

wing nodal 10,937 150,976 541.256 351.11 269.86

linverse 11,999 95,977 517.349 317.33 252.29

stokes64 12,546 140,034 565.293 314.58 264.4

barth5 15,606 107,362 664.53 426.19 309.7

Continued on next page
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Table 5.5 – continued from previous page

Matrix n nnz corei5(execution time) corei7(execution time)

Sequential Parallel

gyro m 17,361 340,431 745.450 575.18 306.37

trefethen 20000b 19,999 554,435 744.834 567.38 478.16

t3dl e 20,360 20,360 584.4398 367.65 254.31

tube1 21,498 897,056 990.236 783.19 502.47

Figure 5.4: Execution time (for sparsity detection of matrices listed in data set 2) of sequen-
tial implementation on Intel corei5 and Intel corei7 processor and parallel implementation
on Intel corei7 are presented respectively
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Table 5.6: Comparison between thread = 2 and thread = 4, for sparsity pattern detection
in data set 1 based on gradient evaluation and execution time.

Matrix n nnz ngeval execution time

thread=2 thread=4 thread=2 thread=4

bcspwr05 443 1623 150 102 0.16 0.19

nos6 675 3,255 172 172 0.41 0.57

young1c 1,138 4,054 147 146 0.89 0.96

rdb1250 1,250 7,300 226 194 1.4 1.55

bcsstm12 1,473 19,659 304 304 2.01 2.38

lshp1561 1,561 10,681 209 201 1.97 2.06

plat1919 1,919 32,199 419 400 4.64 5.48

rdb2048 2,048 12,032 232 207 1.21 2.56

orsreg 1 2,205 14,133 239 238 3.02 3.72

zenios 2,873 27,191 932 912 5.53 6.77

bcsstk21 3,600 26,600 354 275 14.81 14.90

e20r0000 4,241 131,556 1613 1567 54.14 76.1

fidapm09 4,683 95,053 806 805 43.68 68.81

Continued on next page
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Table 5.6 – continued from previous page

Matrix n nnz ngeval execution time

thread=2 thread=4 thread=2 thread=4

mhd4800b 4,800 27,520 277 271 15.34 19.73

bcspwr10 5,300 21,842 267 268 12.04 16.09

s1rmt3m1 5,489 219,521 1,638 1,636 88.05 94.5

fidap018 5,773 69,335 792 506 71.98 75.23

fidap015 6,867 96,421 811 765 78.37 104.04

e30r1000 9,661 306,356 1,678 1,650 189.75 257.49

bcsstk17 10,974 428,650 2,774 2,709 356.61 400.25

bcsstk18 11,948 149,090 865 864 278.429 315.16

bcsstk29 13,992 619,488 2,611 2,545 301.375 375.80

bcsstk25 15,439 252,241 1,145 1,089 261.45 303.49

e40r5000 17,281 553,956 1,925 1,873 332.128 514.6

bcsstk30 28,924 204,3492 6,077 5,089 503.01 683.75
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Figure 5.5: The number of gradient evaluation required for data set 1 in implementation
thread = 2 and thread = 4

Figure 5.6: Execution time required for data set 1 in implementation thread = 2 and
thread = 4
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Table 5.7: Comparison between thread = 2 and thread = 4, for sparsity pattern detection
in data set 2 based on gradient evaluation and execution time.

Matrix n nnz ngeval execution time

thread=2 thread=4 thread=2 thread= 4

662 bus 662 2,474 106 98 0.12 0.19

dwt 758 758 5,994 209 200 0.76 0.9

rdb800l 800 4,640 220 218 0.45 0.67

olm1000 1,000 4,994 178 178 0.93 0.94

jagmesh3 1,089 7,361 194 193 1.56 1.59

jagmesh5 1,180 7,750 197 190 1.87 1.9

jagmesh8 1,141 7,465 199 192 1.86 1.9

dwt 1242 1,242 10,426 247 241 1.65 1.96

lshp1270 1,270 8,668 204 194 2.52 2.94

jagmesh9 1,349 9,101 200 176 2.961 3.32

jagmesh4 1,440 9,504 197 197 3.0 3.32

bcspwr06 1,454 5,300 179 120 1.59 1.72

Continued on next page
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Table 5.7 – continued from previous page

Matrix n nnz ngeval execution time

thread=2 thread=4 thread=2 thread=4

bcspwr08 1,624 6,050 178 178 2.16 2.20

filter2D 1,668 10,750 202 202 4.32 5.16

ex 33 1,733 22,189 299 150 4.88 6.47

watt 1 1,856 11,488 234 234 3.56 5.82

G26 2,000 39,980 582 471 9.14 10.41

t2dal a 4,257 37,465 255 255 27.56 42.00

nasa4704 4,704 104,756 629 453 51.0289 63.71

EX5 6,545 295,680 1,015 1,013 98.16 112.40

Kuu 7,102 340,200 1,801 1,737 140.15 175.59

G65 8,000 32,000 179 160 55.72 63.38

delaunay n13 8,192 49,049 2,696 2,685 57.35 65.08

aft01 8,205 125,567 417 817 123.58 146.34

nemeth02 9,506 394,808 1,664 1,403 211.59 323.21

Continued on next page
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Table 5.7 – continued from previous page

Matrix n nnz ngeval execution time

thread=2 thread=4 thread=2 thread=4

wing nodal 10,937 150,976 778 757 269.86 293.08

linverse 11,999 95,977 456 378 252.29 269.49

stokes64 12,546 140,034 582 58 264.4 285.6

barth5 15,606 107,362 789 783 309.7 349.63

gyro m 17,361 340,431 1,978 1,690 306.37 429.04

trefethen 20000b 19,999 554,435 3,345 3,330 478.16 559.97

t3dl e 20,360 20,360 3 3 254.31 259.1

tube1 21,498 897,056 3,059 3,041 502.47 694.77
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Figure 5.7: Number of gradient evaluations required for data set 2 in implementation
thread = 2 and thread = 4

Figure 5.8: Execution time required for data set 2 in implementation thread = 2 and
thread = 4
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Number of Iterations

The number of iteration, inside the while loop, to obtain the true sparsity pattern will be

discussed here. From table 5.2 and 5.3 we observed the inner loop iterate 1 to 2 times for

the small number of non-zero entries. However, for large number of non-zero elements this

sometimes requires 4 to 5 iterations. Actually, the number of iteration within inner loop

depends on the randomly generated sparsity pattern at each level. The number of iteration

depends on how much good that randomly generated sparsity pattern is. The same holds

true for outer loop iteration. For a small number of non-zero entries the number of outer

iterations for the multilevel algorithm is 1 to 2 but for a large number of non-zero elements,

number of iteration is between 1 and 4. In case of parallel implementation, sometimes this

requires less number of iteration not only for parallelism but also for good guess of random

sparsity pattern. For parallel implementation, number of iteration happens within the thread

which saves time and sometimes minimizes gradient evaluation cost.

Parallel Implementation

In case of parallel implementation iteration within while loop accomplished at the same

time in the different core. We have used OpenmMP for parallel execution and thread to

compute iteration process. It is expected to half the execution time for the inner while loop,

but does not happen in reality due to many overheads. But required time reduced in parallel

execution, keeping evaluation cost same as serial computing in most of cases.

Number of CPR calls

We need CPR algorithm for flaw identification. After every addition of Rk CPR algo-

rithm is required to identify missing elements. If we set R for the first time and add R at

each level after calculation and addition of flaw, then we do not need to execute CPR algo-

rithm repeatedly. But this poses one disadvantage, if our initial guess pattern is not good
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enough, then the number of iteration will increase which will also affect number of gradient

evaluation.

Number of Gradient Evaluations

Depending on non-zero value positions and the maximum number of non-zero entries

in a row, gradient evaluation differs for approximately same size matrix. Each directional

derivative costs one extra evaluation and the sum of total function evaluation is calculated

as the gradient evaluation. This gradient evaluation increase inside the while loop iteration

because of randomly generated sparsity pattern Rk (step 11 to step 18) in the multilevel

algorithm and decreases outside the while loop. In our implementation, we noticed that the

number of gradient evaluation is almost half of the previous implementation [38]. We have

reported the gradient evaluation values from Sultana’s thesis for comparison. Comparison

between two columns, ngeavl and n f eavl, presented in figure 5.1 and 5.2 clearly identify

the improvement of our implementation. Usage of band matrix, appropriate implementation

of Rk and efficient algorithm reduce the number of gradient evaluation for sparsity detection.

5.4.1 Important Aspects

In this section, we will present some key facts and observations.

• Initial guess pattern is not always mandatory in our implementation. But to increase

the efficiency of our algorithm and reduce gradient evaluation we have assumed an

initial band matrix of bandwidth three for pattern detection of an unknown sparse

Jacobian matrix. That matrix S0 is symmetric and sparse with size n×n

• nestimate = nnz - ( 3 ∗ number of rows). Here nnz denotes number of non-zero entries

in the true pattern M ∈ Rn×n

• For compilation with different guess patterns, we have calculated band matrix R of

bandwidth five which is generated randomly. This band matrix will be added with

our traditional guess pattern within condition nnz(S0)< k1∗nestimate
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• In multilevel operation, we have chosen the value for k < 2. And we have noticed

that if we increase the value of k, then the total number of iteration decreases but

gradient evaluation increases. The same happened when we increase the bandwidth

of symmetric random pattern

• One advantage of voting scheme is, through the whole implementation we need not

store flaw matrix after adding it with the symmetric pattern. This saves more space

and makes process faster

5.4.2 Summary of Numerical Experiment

Listed below are the key findings obtained obtained from analyzing the facts and figures

reported primarily in tables 5.2, 5.3, 5.4 and 5.5.

• There is required at least ρmax number of color group for each matrix. In most cases,

the number of color groups is equal to ρmax. From which we can state that the value

of ncolor is optimal.

• ncpr for test metrics is quite modest and independent of the matrix dimension.

• The partitioning algorithm is very efficient for sparse patterns.

• On average parallel implementation decreases time almost half for inner loop itera-

tion. This affects total execution time and give better performance.

• A key observation is that efficient structure of coding in parallel implementation can

reduce overhead and give better performance.
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Chapter 6

Conclusion

In this thesis, we have improved multilevel algorithm by integrating band matrices for de-

tection of the unknown pattern of a sparse Jacobian matrix, specially for the large-scale

matrices. Our proposed model reduces gradient evaluation, memory storage and execution

time. We have also provided a detailed description of how to take advantage of the struc-

tural pattern of a sparse matrix. In addition, we have formulated and implemented a parallel

version of the multilevel algorithm, where the usage of multicore techniques for parallelism

makes our approach faster.

In our results section, we have presented tables which shows the performance of our pro-

posed approach on test data sets collected from Matrix Market and University of Florida.

Performance figures show that our proposed approach works better compared to existing

techniques. In particular, we have been able to reduce the gradient evaluation and execu-

tion time for sparsity pattern detection. The results segment also shows that the proposed

approach performs efficiently for the different processor, operating system, and single/par-

allel implementations.

6.1 Future Works

There are many scopes to extend this thesis, but it will require further analysis of ad-

ditional data structure, DSJM toolkit implementation and knowledge about parallel imple-

mentation. Listed below are some possible future directions for research.

• Increasing the number of processes for parallel programming on a good structure of
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coding can reduce gradient evaluation and execution time [20]. This experiment is

being implemented.

• For parallel implementation CUDA C programming language with NVCC compiler

on Linux environment [33] can be implemented for fast processing. But without the

proper understanding of our model, it would be difficult for anyone.

• Generating symmetric trial pattern at each level increases gradient evaluation and

consumes more time. Instead of generating the symmetric pattern at each level, using

the previous one might prove useful for saving time and partitioning which might be

an interesting future direction.
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