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ABSTRACT 

Play fighting in kindling-prone (FAST) and kindling-resistant (SLOW) rats: 

Potential genetic controls over the components of play. 

Even though the behavioral components of play fighting have been well characterized in 

the rat, little is known about the underlying neurobehavioral mechanisms that control 

them. FAST and S L O W lines of selectively-bred rats were used to determine whether the 

components of play fighting were dissociable. Differences in their respective play 

profiles suggest that there are genetic differences in the expression of different 

components of play. The effects of gene-environment interactions on the components of 

play suggest that playful attack and playful defense may be differentially labile, and that 

socially-relevant environmental manipulations may have a greater impact on social 

interactions in adulthood than in the juvenile phase. Furthermore, these findings suggest 

that the genetic constraints on each of the components of play fighting give each 

component a unique pattern of context-dependent change. Future experiments using 

FAST and SLOW, as well as other selectively-bred lines of rats may provide insight into 

the proximate mechanisms regulating play fighting. 
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CHAPTER ONE 

General Introduction 

What is play fighting? 

Play behavior is not easily defined (Bekoff & Byers, 1981; Burghardt, 1998; Fagen, 

1981) in terms of both its functional purpose (or lack thereof), and the wide range of 

behavioral patterns it may encompass. Bekoff and Byers (1981) have offered a definition 

that advocates a descriptive way of thinking about play which emphasizes the structure of 

play sequences rather than the putative functions of play: "Play is all motor activity 

performed postnatally that appears to be purposeless, in which motor patterns from other 

contexts may often be used in modified forms and altered temporal sequencing" (pp. 300-

1). Of importance for this thesis is the additional caveat: "If the activity is directed toward 

another living being it is called social play". 

Complementary to Bekoff and Byers ' descriptive account of play, Burghardt (1999) has 

more recently developed five criteria that a behavioral sequence must meet to be 

classified as play: (1) it does not appear to be adaptive or contribute to one ' s survival, (2) 

it appears to be spontaneous, voluntary, intentional, pleasurable, rewarding, (3) it differs 

(in at least one respect) from the "serious" performance of an ethotypic behavior, (4) it is 

observed repeatedly, but not as a fixed or stereotyped pattern of behavior, and (5) it is 

observed in healthy animals when they are in a relatively low-stress environment. 

Importantly, these criteria do not make any assumptions about the functions of play, and 

yet they are applicable to play behavior observed in various mammalian species (e.g., 

rats). 
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It is fairly well established that play is a distinct behavioral entity that is not simply a 

juvenile representation of more adult-typical behaviors (Fagen, 1981). Social play, 

specifically play fighting, has become the most frequently studied and reported form of 

play in the animal literature (Pellis & Pellis, 1998a), which should not be unexpected 

considering that it has been documented in most mammalian and many avian species, as 

well as in some reptiles (Burghardt, 1999). Despite the fact that no definition for play 

contains undisputed objective criteria (Pellis & Pellis, 1998a), there is near-universal 

agreement in recognizing instances of play fighting (Panksepp, Siviy, & Normansell , 

1984). During a play fight, partners compete with each other to gain some advantage 

(e.g., contacting a particular part of the opponent 's body) (Aldis, 1975; Pellis, 1988), but 

unlike serious fighting, the interactants provide the opportunity for the partner to gain an 

advantage (Pellis & Pellis, 1998b). These characteristic role reversals (i.e., of attacker 

and defender) between play partners are important for preventing the interaction from 

escalating to a serious fight, and are obvious during a bout of rough-and-tumble play, 

even to a naive observer. The study of play fighting then, can be guided to some extent 

by the definitions of play provided by Bekoff and Byers (1981), and Burghardt (1999), as 

well as an intuitive understanding of play fighting. 

Play fighting in the rat 

What do we know? 

The most commonly used model species for the study of play fighting is the laboratory 

rat (Panksepp, 1998; Siviy, 1998; Vanderschuren, Niesink, & Van Ree, 1997). Because 

rats begin to play fight approximately 18 days after birth (Bolles & Woods, 1964), and 
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continue to play into adulthood, albeit at a reduced frequency (Pellis & Pellis, 1990, 

1991a), they (as a model species) are well suited to investigate the development of play 

fighting. In particular, the behavioral components of play fighting have been well 

characterized in the rat. That is, previous studies have (1) identified behavioral 

characteristics that distinguish play fighting from serious fighting (e.g., target of attack) 

(Pellis & Pellis, 1987; Siviy & Panksepp, 1987a, 1987b), (2) generated detailed 

descriptions of the specific components of play fighting (i.e., attack and defense), and (3) 

documented the way in which components of play fighting change throughout 

development (Foroud & Pellis, 2002, 2003; Pellis, Field, Smith, & Pellis, 1997; Pellis & 

Pellis, 1997). 

A play fight between rats begins when one partner (i.e., the attacker) tries to make contact 

with and gently nuzzle the other partner's (i.e., the defender) nape of the neck (Pellis, 

1988). In contrast, during a serious fight, the attacker will direct bites to the defender 's 

lower flanks and rump (Pellis & Pellis, 1987). Because the target of playful attack does 

not change throughout development, we have a clear behavioral marker that allows us to 

differentiate whether or not rats are in fact play fighting. The frequency of launching 

playful attacks peaks during the juvenile phase (i.e., 30-40 days) (Thor & Holloway, 

1984), and it has been shown that the age-related decrease in play fighting can be 

attributed to a reduction in the number of playful attacks launched between play partners 

(Pellis & Pellis, 1990). 
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Once the attacker has launched a playful attack, the defender can use a variety of 

defensive tactics to protect the nape from being contacted (Pellis & Pellis, 1990). While 

the probability of defending against playful attacks remains relatively high at all ages 

(i.e., between 80-90%) (Pellis et al., 1997), the use of different tactics of defense changes 

in a characteristic, age-related manner (Pellis & Pellis, 1990, 1997). When defending, rats 

can either move away from the attacker (i.e., evade) or turn to face the attacker to protect 

the nape. To evade nape contact, the defender can run, leap, or simply turn away from the 

attacker. In facing defense, the defender turns to face the attacker, thus interposing its 

face between the attacker 's snout and its own nape. The facing maneuver can involve one 

of two tactics; turning around the mid-body while remaining standing (Pellis, Pellis, & 

McKenna, 1993), or by rotating cephalocaudally around the longitudinal axis of the body 

(Pellis & Pellis, 1987). Rotatory defenses account for 60% or more of all defensive 

actions (Pellis & Pellis, 1990), with its two variants undergoing age-related changes in 

predominance (Pellis & Pellis, 1987, 1990, 1997). During the first variant of rotatory 

defense, the rat only partially rotates, and so keeps one or both hind feet in contact with 

the ground, and in the second, the rat rotates completely to a supine position (i.e., all 

limbs lose contact with the ground) to face the attacker (Pellis & Pellis, 1987). 

Juvenile and adult rats differ in terms of the frequency with which they use different 

tactics of defense. The most common form of defense used during the juvenile phase of 

development is complete rotation (Pellis & Pellis, 1990, 1997); a tactic that is thought to 

be more conducive to the continued physical contact that is typical of complex play 

fighting (Pellis & Iwaniuk, 1999; Pellis & Pellis, 1998a). Evasion and partial rotation are 
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more frequently used in infancy and post-pubertally (Pellis & Pellis, 1990, 1997); the 

former putting an abrupt end to the attacker 's solicitation for playful contact, and the 

latter effectively blocking nape contact altogether (Pellis & Pellis, 1987, 1998b). 

The characteristic, age-related changes in play fighting exhibit sex differences. Both 

sexes show preference for the partial rotation tactic in infancy and the age-related change 

to a preference for the complete rotation tactic with the onset of the juvenile phase (Pellis 

& Pellis, 1997). Only males, however, exhibit the shift to the preference for the partial 

rotation tactic at puberty (Pellis, 2002; Pellis et al., 1997; Smith, Forgie, & Pellis, 1998). 

Furthermore, post pubertally, males are more likely to modulate their pattern of playful 

attack and defense depending on the identity of the partner with whom they are playing 

(Pellis & Pellis, 1991b, 1992; Pellis et al., 1993; Smith, Forgie, & Pellis, 1998). For 

example, in adulthood, pairs of male rats will form dominance-subordinance relationships 

(Lore & Stipo-Flaherty, 1984), and during play fighting, the subordinate male will launch 

more playful attacks than the dominant male, and use more juvenile-like defensive tactics 

(i.e., complete rotation) when attacked by the dominant (Pellis & McKenna, 1992; Pellis 

& Pellis, 1991b, 1992; Pellis, Pellis, & Kolb, 1992; Smith, Fantella, & Pellis, 1999). In 

contrast, female rats do not form the same kinds of dominance relationships as male rats 

(Barnett, 1975; Ziporyn & McClintock, 1991), and the asymmetry observed during play 

fighting between adult male rats is not observed in females (Pellis & Pellis, 1990, 1992). 

It seems that the attack and defense components of play fighting are clearly dissociable 

on a behavioral level. Furthermore, it has been suggested that the components of play 
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fighting are motivationally distinct (Pellis & Pellis, 1991a), being mediated by different 

neural systems (Siviy, Love, DeCicco, Giordano, & Seifert, 2003). For example, when 

rats are socially-isolated prior to testing, the frequency of playful solicitations (i.e., 

playful attacks) increases (Panksepp & Beatty, 1980; Pellis & Pellis, 1990; Siviy et al., 

2003), whereas playful defense remains constant irrespective of pre-testing social 

experience (Siviy et al., 2003). Similarly, studies that have examined the effects of 

various drugs on the components of play fighting (e.g., amphetamine, haloperidol, 

clonidine, RX821002) have shown that pharmacological agents do not have a uniform 

effect on all components of play behavior (e.g., Field & Pellis, 1994; Marshall, Pellis, 

Pellis, & Teitelbaum 1989; Siviy & Baliko, 2000). For instance, amphetamine (Field & 

Pellis, 1994) and haloperidol (Marshall et al., 1989) reduce playful attack at lower doses 

than they do defense; suggesting that the effects these drugs have on attack and defense 

may be relatively independent. 

What's missing? 

Not surprisingly, most of what we know about the neurobiology of play fighting has 

come from studies of the laboratory rat (Panksepp, 1998; Siviy, 1998; Vanderschuren et 

al., 1997). Indeed, there exists an extensive list of drug, hormone, and lesion experiments 

on play fighting in the rat (see Vanderschuren et al., 1997 for a thorough review), and yet 

we still do not fully understand the neurobehavioral mechanisms that control the 

components of play behavior. One limitation of much of the work done, is that 

researchers have examined only one aspect of play - pinning. Pinning refers to a posture 

in which one animal is on its dorsal surface and the other animal is on top in what appears 
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to be a 'dominant ' posture (Panksepp et al., 1984). As the primary dependent measure of 

play, pinning provides an index for overall playfulness (Siviy & Baliko, 2000). However, 

pinning behavior alone does not provide a complete picture of what goes on between play 

partners during a bout of play fighting. A select few studies have dissociated and 

examined individually, the attack and defense components of play fighting. In addition to 

the previously described method for dissociating playful attack and playful defense 

(Pellis & Pellis, 1987), another method of behavioral analysis has distinguished between 

pins (similar to complete rotation tactic of defense), and dorsal contacts (similar to 

playful attack of the nape) (e.g., Ferguson & Cada, 2004; Panksepp, Burgdorf, Turner, & 

Gordon, 2003 ; Siviy & Panksepp, 1987a, 1987b). If playful attack and playful defense 

are in fact controlled by different neural systems, then it would be beneficial for future 

studies to examine both components of play fighting (i.e., attack and defense) 

individually, and in both play partners, following any type of experimental manipulation. 

An additional limitation of the literature on play fighting is that few studies have 

examined potential genetic controls over the components of play fighting. While it may 

be the case that mice have been the tools more typically used (in terms of animal models) 

to study genetic controls over behavior, mice have only a rudimentary form of social play 

as compared to rats (Pellis & Pasztor, 1999). In fact, relative to other muroid rodent 

species, play fighting in the rat is more complex in that it involves more playful attacks, 

higher probabilities for defending against playful attacks, and intricate role reversals 

between attacker and defender (Pellis & Pellis, 1998a; Pellis, Pellis, & Dewsbury, 1989). 

Thus, rat strains that exhibit consistently different levels of play would be more beneficial 
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than mice for understanding the genetics behind mammalian playfulness (Siviy et al., 

2003). 

At present, the few studies that have compared play behavior between rat strains (e.g., 

Ferguson & Cada, 2004; Siviy, Baliko, & Bowers, 1997; Siviy et al., 2003), suggest that 

the components of play fighting are dissociable and that there is likely genetic variation 

that contributes to differences in play behavior. Further between-strain comparisons of 

play behavior in rats may prove to be an invaluable, non-invasive technique for 

investigating questions about genetic influences on play fighting, as well as how gene-

environment interactions may affect the development of play. Assuming that social play 

behaviors share similar characteristics in all mammals, including humans, characterizing 

the play profiles of selectively bred rats can be thought of as a first step toward 

understanding the neurobehavioral mechanisms that control play not only in the rat, but 

also in other mammals. 

Selective breeding and behavior 

In recent years, it has been increasingly common to breed animals selectively on the basis 

of differences in behavior in order to investigate the neurobiological mechanisms that 

may underlie behavioral differences (Ellenbroek & Cools, 2002). Selective breeding 

begins by measuring a trait of interest in a large founder population. Two-way artificial 

selection can then be used to create ' low' and 'high' lines that widely differ for the 

chosen trait (Koch & Britton, 2005). That is, the contrasting lines are derived by breeding 

those rats from the founder population that demonstrate extreme values for the trait of 
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interest. At each subsequent generation, the progeny are phenotyped for the particular 

trait, and the 'best ' rats (for the trait) are bred to create the next generation. The selection 

process continues until there is no overlap in the mean distributions for the trait between 

the two lines. 

The major value of inbred or selectively-bred strains of rats emanates from their close 

genetic uniformity and the following assumptions: (1) that environmental factors account 

for within-strain variation, and (2) that genetic factors account for between strain 

variation (Koch & Britton, 2005). In rats, two-way artificial selection has been used 

extensively to create models that allow researchers to examine and characterize 

differences in relatively complex traits such as emotionality (Blizard & Adams, 2002), 

anxiety (Landgraf & Wigger, 2002), alcohol preference (Murphy et al., 2002), and 

arousal to novelty (Viggiano, Vallone, Welzl, & Sadile, 2002), to name a few. Entire 

issues of Behavior Genetics (e.g., 1981, volume 1.1, issue 5; 2002, volume 32, issue 5) 

have been published to inform the scientific community of the utility of selective 

breeding programs with rats, and the subsequent progress that has been made in the study 

of mammalian behavior genetics. 

If one were to breed rats selectively for the purpose of studying the phenotypic 

expression of playful behavior, what specific behavioral features should be the basis for 

selection? Because play peaks in most species during the juvenile phase of development, 

some investigators have hypothesized that more frequent and elaborate play should be 

observed in species that exhibit relatively prolonged periods of juvenile development 
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(e.g., Fagen, 1981; Ortega & Bekoff, 1987; Pereira & Altmann, 1985). In support of this 

hypothesis, comparative analyses of play fighting between species of muroid rodents 

have indicated that there is an association between play complexity and juvenility (Pellis 

& Iwaniuk, 2000). That is, social play complexity is significantly predicted by the degree 

of prenatal growth in body size. Species that are born closer to their adult size (e.g., mice) 

show less complex play than species that require a greater proportion of postnatal growth 

to reach maturity (e.g., rats) (Pellis & Iwaniuk, 2000). However, these are broad cross-

species comparisons, which may not be informative about variation in the components of 

play fighting within a single species. Therefore, given the apparent association between 

play and juvenility, a plausible starting point for making within-species comparisons of 

play would be to select for rats that demonstrate juvenile-like traits in adulthood. 

As mentioned previously, rats have a relatively long period of postnatal development and 

they engage in complex and exuberant play fighting. However, if one were inclined to 

use selectively-bred rats to analyze play fighting, then it would be necessary to ask (1) 

what behavioral features are typical of juvenile rats, and (2) is it conceivable to select for 

features of juvenility in adult rats? Fortunately, there are suitable answers to both of these 

questions. In general, juvenile mammals are thought to be more hyperactive, impulsive, 

distractible, and less fearful than adult mammals (Spear, 2000). Coincidentally, there are 

two selectively-bred lines of rats (called FAST and SLOW), that show differences in both 

behavioral and neural features of juvenility (Mclntyre, Poulter, & Gilby, 2002; Racine, 

Steingart, & Mclntyre, 1999). Even though the selective breeding program from which 

these rats have stemmed was intended to examine the genetic underpinnings to seizure 
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predispositions (e.g., in epileptics), the lines have provided findings concerning many 

behavioral attributes that are under genetic control; this is to be expected in light of the 

fact that selective breeding can often result in the expression of comorbid features 

(Parmigiani, Palanza, Rodgers, & Ferrari, 1999). 

Why FAST and SLOW rats? 

Selective breeding of the FAST and SLOW lines began with a parent population derived 

from a mixture of Long-Evans and Wistar rats that showed strong genetic control in the 

rate of amygdala kindling (Racine et al., 1999). Briefly, the technique of kindling 

involves repeated sub-threshold electrical or chemical stimulation in the brain (e.g., 

amygdala), ultimately resulting in progressive and permanent changes in neural 

excitability that lead to the development of convulsive seizures (Mclntyre, Poulter, et al., 

2002). For 11 generations, the two lines of rats were selectively bred for their 

susceptibility to amygdala kindling. That is, the kindling-prone or FAST line was 

generated by breeding the rats that required the fewest amygdala stimulations to elicit a 

Stage-5 convulsive seizure (Racine, 1972), whereas breeding the rats that required the 

most amygdala stimulations generated the kindling-resistant or SLOW line. Despite the 

relaxation of further selection procedures, the two selected-lines (which will be referred 

to as 'strains ' from this point forward) continue to display their unique kindling rates. Of 

importance for this thesis are the enduring differences between the two strains for a 

number of juvenile-like behavioral attributes (presumably associated with differential 

temporal lobe excitability) (Mclntyre, Poulter, et al., 2002). 
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The initial concept for using the FAST and S L O W strains of rats to study questions about 

play fighting was prompted by an interest in the unique behavioral profile of the FAST 

rats. That is, FAST rats appear to retain juvenile-like behaviour and brain qualities in 

adulthood. Research carried out in various laboratories has shown that there is a tendency 

for impulsivity and hyperactivity in FAST rats (Mclntyre, Poulter, et al., 2002). For 

instance, during open field testing, FAST rats show persistent activity (hyperactivity) 

after several days of testing, indicating that they habituate poorly to the environment 

(Mohapel & Mclntyre, 1998). Similarly, Anisman and Mclntyre (2002) have shown that 

during learning tasks (e.g., Morris water maze), FAST rats are more easily distracted than 

S L O W rats by irrelevant cues in the environment. The impulsive nature of FAST rats is 

further exemplified by their behavior in sexual contexts. Specifically, FAST males have 

difficulty withholding their approach responses to non-estrous females (i.e., they 

immediately attempt to mount females that are not emitting the appropriate receptive 

cues) (Mclntyre, Poulter, et al., 2002). 

Conversely, at all ages, SLOW rats exhibit a more adult-typical behavioral phenotype. 

For example, SLOW rats show greater fear- and anxiety-related responses than FAST 

rats in both familiar and novel environments, in reaction to foot shock, in fear-based 

learning (e.g., inhibitory and active avoidance) (Mohapel & Mclntyre, 1998), and during 

play fighting (Reinhart, Pellis, & Mclntyre, 2004). Stress-related responses also differ 

between FAST and SLOW rats. In the context of physical restraint, SLOW rats adopt a 

relatively passive, immobile posture throughout the test period, whereas FAST rats 
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persistently struggle during the entire test period (Anisman et al., 1997); behavior that is 

reminiscent of the previously mentioned hyperactivity/impulsivity of FAST rats. 

With regard to differences in the brain, FAST rats retain a juvenile-like pattern of neural 

organization in adulthood, as compared to SLOW rats. Poulter and coworkers (1999) 

have shown that embryonic G A B A A subunits (i.e., a 2 , a 3 , and ce5) are highly up-

regulated in the amygdala, piriform cortex, and perirhinal cortex of adult FAST rats, and 

that consequently, there is low expression of the predominant adult subunit (i.e., a l ) . 

S L O W rats exhibit the opposite profile (i.e., under-expression of the embryonic subunits 

and over-expression of the adult subunit) (Poulter et al., 1999). These different receptor 

subtypes are associated with unique behavior at a physiological level (i.e., spontaneous 

miniature inhibitory postsynaptic currents), and the contrasting GABA response profiles 

in the two strains are presumed to be integral components in their differential behavioral 

attributes (Mclntyre, Hutcheon, Schwabe, & Poulter, 2002). 

It seemed reasonable to investigate how the FAST and SLOW strains of rats would 

behave in a social play situation, primarily because of the documented differences in their 

behavioral and neural profiles (specifically for juvenile-like traits). Conjointly, that FAST 

and SLOW rats were selectively-bred on the basis of differential amygdala excitability 

(function) reinforced further the adequacy of these animals for testing hypotheses about 

potential genetic controls over components of play fighting. Several lines of research 

suggest that the amygdala is an important neural substrate that modulates complex social 

behaviors (e.g., play) (Baron-Cohen et al., 2000; Emery et al., 2001 ; Meunier, 
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Bachevalier, Murray, Malkova, & Mishkin, 1999; Prather et al., 2001). Because there are 

known differences between FAST and S L O W rats for various social behaviors, one 

would expect that genetically-induced functional changes of the amygdala and other 

brain regions connected to the amygdala that are thought to be important for regulating 

social interactions (i.e., prefrontal cortex), may also lead to changes in the organization of 

play fighting. 

In addition to the evidence suggesting that the amygdala may be important for 

modulating complex social behaviors in general, there is more specific evidence that 

suggests the amygdala is critically involved in the sexual differentiation of social play 

(e.g., Meaney, Dodge, & Beatty, 1981; Meaney & McEwen, 1986), and that cortical 

brain regions connected to the amygdala may be involved in age- and partner-related 

modulation of play fighting (Pellis, Pellis, & Whishaw, 1992). In particular, the orbital 

frontal cortex (OFC), a brain region reciprocally connected with the amygdala, appears to 

be important for partner-dependent modulation of the pattern of play (Kolb, Pellis, & 

Robinson, 2004). Interestingly, anatomical analyses that have examined the complexity 

of cells in OFC, medial prefrontal cortex, and parietal cortex, show that there are between 

strain differences in cell morphology for FAST and SLOW rats (Reinhart, Mclntyre, 

Pellis, & Kolb, 2004). Thus, it appears that selective breeding for amygdala excitability 

renders differences between FAST and SLOW rats not only in terms of amygdala 

function, but also in the patterns of cell organization in brain regions that likely work in 

conjunction with the amygdala to regulate play behavior, making FAST and SLOW rats 

ideally suited to examine questions about play fighting. 
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The objectives for this thesis 

The primary objective of this thesis was to use two strains of selectively-bred rats (i.e., 

FAST and SLOW) to examine the development of play fighting, and thus ascertain 

whether there may be genetic underpinnings that control the components of play fighting. 

In particular, it was of interest to first examine the development of components of play 

fighting in the FAST and SLOW strains of rats. Same-strain pairs of FAST and SLOW 

rats were tested during the juvenile phase and in adulthood so that a 'play profile' for 

each strain could be created. It was thought that the characterization of both attack and 

defense during play fighting (in each strain) would help to answer two important 

preliminary questions regarding the potential for genetic control of play fighting. First, 

can developmental changes that lead to the retention of juvenile features produce more 

complex patterns of play? If so, we would expect that at all ages, the pattern of play in 

FAST rats would be more complex and juvenile-like than that observed in SLOW rats. 

Second, do all features associated with play (i.e., attack and defense) covary with changes 

in juvenility? Some comparative evidence suggests that changes in postnatal development 

can result in changes in different components of play fighting (Pellis & Iwaniuk, 2004). 

However, these comparisons have been made between different species of rodents, and 

not within the same species. The first experiment then, was designed to generate a basic 

understanding of how selective breeding may affect the entire suite of behaviors 

associated with play fighting, within a single species. 

Once play fighting had been characterized in each strain, it seemed logical to examine the 

potential effects that gene-environment interactions may have on the development of play 
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fighting. Genes and environment both play important roles in the expression of behavior. 

Therefore, in the second experiment, cross-strain pairs of FAST and SLOW rats were 

reared and tested together. Because a play profile for each strain had already been 

established, it was possible to determine which components of play fighting changed or 

stayed the same in response to a change in the environment (i.e., a change in the 

environment, relative to the previous same-strain experiment), and whether 

environmentally-influenced changes in play behavior were age-dependent. 

In retrospect, it seemed that there was an important limitation in the developmental 

studies of play fighting that needed to be addressed. In the previous two developmental 

experiments, the rats were housed as pairs from weaning onwards, and subsequently 

tested with their respective cage mate. Therefore, it could not be determined if changes in 

the pattern of play for one partner were due to the peculiarities in behavior of other 

partner (while they were in the play-testing situation), or if changes in play were 

representative of more general modifications in behavior that were a consequence of 

having been reared with a cage mate from a particular strain. For the third experiment, 

juvenile FAST rats were tested with an unfamiliar FAST and SLOW partner on 

subsequent occasions to determine whether or not their play behaviors were partner-

specific. That is, if focal animals were able to identify unfamiliar partners as being from 

the same or different strain by responding to their partner 's immediate behavior, then one 

would expect the focal animals to respond differently with unfamiliar FAST vs. S L O W 

partners. If the play behavior of the focal animals was partner-specific, it could be 
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suggested that the rats may have been responding to subtle behavioral cues from their 

play partners. 

FAST and S L O W rats have provided some new insights into the organization and 

regulation of play fighting. This thesis not only reinforces previous suggestions that 

genetic variation contributes to differences in play, and that components of play fighting 

are dissociable, but also that the genetic variation may be due, in part, to changes in 

juvenility. This work also brings forth the idea that different components of a distinct 

behavioral entity (i.e., play fighting) may be controlled by different neural mechanisms, 

and that the components may differ with regard to their capacity for modification. The 

independent variation for each component of play fighting may account for the species-

level diversity in the actual content and capacity of play fighting across species (Pellis & 

Iwaniuk, 1999, 2004). Furthermore, it seems that the respective efficacy that genetic and 

environmental factors may have on the expression of complex social behavior may differ 

depending on developmental stage at which they are experienced. That is, environmental 

influences may be more important at some ages than others (e.g., Arakawa, 2005; Workel 

et al., 2001). Interestingly, the present results suggest greater environmental modification 

in the adult rather than juvenile stage, revising the commonly held assumption that older 

animals are less susceptible to change (e.g., Hoi, Van den Berg, Van Ree, & Spruijt, 

1999; Van den Berg et al., 1999; Vanderschuren, Niesink, Spruijt, & Van Ree, 1995). 
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CHAPTER TWO 1 

Development of play fighting in kindling-prone (FAST) and kindling-resistant 

(SLOW) rats: How does the retention of phenotypic juvenility affect the complexity 

of play? 

ABSTRACT 

Rats selectively bred for susceptibility to amygdala kindling (FAST) have been shown to 

retain neural and behavioral features of the juvenile phase into adulthood. In contrast, rats 

selectively bred for resistance to amygdala-kindling (SLOW) are neurobehaviorally more 

typically adult. The development of play fighting in male and female rats of both strains 

was studied. Given the apparent association of juvenility and play often noted in the 

literature for mammals in general, it was predicted that the FAST rats should be more 

playful and be more likely to retain the juvenile tactics of play that lead to more 

prolonged and complex patterns of social contact. As expected, FAST rats initiated more 

playful attacks and were more likely to defend against attacks than S L O W rats as both 

juveniles and adults. Unexpectedly, however, both strains exhibited patterns of defense 

that reduced the likelihood of complex and prolonged social contact. Importantly, the two 

strains did so by very different means. FAST rats did so by avoiding contact, whereas 

SLOW rats did so by responding in an adult-typical manner that blocks contact. That is, 

FAST rats exaggerated the changes typically occurring at puberty, whereas SLOW rats, 

at all ages, responded in a more adult manner. These data suggest that the different 

components of play fighting do not change uniformly with changes in the 

neurobehavioral underpinnings of juvenility. 
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INTRODUCTION 

Social play, especially play fighting, is the most common type of play observed in the 

juveniles of most mammalian species (Pellis & Pellis, 1998a), and despite the near 

universal agreement in recognizing instances of this behavior (Panksepp, Siviy, & 

Normansell, 1984), little is known about the neurobehavioral mechanisms that control 

these playful interactions. Most of what is known about the neurobiology of play has 

been derived from studies of rodents, especially rats. Play fighting in rats involves attack 

and defense of the nape of the neck (Pellis & Pellis, 1987; Siviy & Panksepp, 1987b). If 

contacted, the nape is gently nuzzled (Pellis, 1988). To defend against nape contact, the 

recipient of an attack can use a variety of defensive tactics, the frequency of which 

change in a relatively predictable manner during development (Pellis & Pellis, 1990, 

1997). 

The frequency of play peaks during the juvenile phase in most species, and this 

observation has led several investigators to hypothesize that species with relatively long 

periods of juvenile development should show more frequent and elaborate play (e.g., 

Fagen, 1981; Ortega & Bekoff, 1987; Pereira & Altmann, 1985). In support of this 

possibility, a comparative study by Pellis and Iwaniuk (2000) has shown that social play 

complexity in muroid rodents is significantly predicted by the degree of prenatal growth 

in body size. In other words, species that are born closer to their adult size, and, therefore, 

more mature at birth, show less complex play than species requiring a greater proportion 

of postnatal development to reach maturity (see Diamond & Bond, 2003, for similar 

findings for birds); however, this is a cross-species correlation, leaving two questions 
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unanswered. First, is the relationship between an increased juvenile phase and increased 

prevalence of play or play complexity a specific effect on play or a more general effect 

on a wide range of neurobehavioral systems? Second, do all features associated with play 

covary, and if so, is variance on this suite of characters present within a species? 

Some comparative evidence suggests that all features of play fighting typical of juveniles 

are not exaggerated or contracted together. Rather, changes in postnatal development can 

result in changes in different aspects of play fighting, in different lineages of rodents 

(Pellis & Iwaniuk, 2004). Conversely, there is evidence that suggests that prolonged 

postnatal development affects a wide range of neurobehavioral systems, and not just play. 

For example, mice (Mus domestlcm) have only a rudimentary form of social play 

compared to rats (Pellis & Pasztor, 1999), although the solitary, locomotor forms of play 

in mice seem to be as complex as that in rats (Laviola & Alleva, 1995; Pellis & Pellis, 

1983; Terranova, Laviola, & Alleva, 1993). Not only do mice have a rudimentary pattern 

of social play but they also are simpler than rats for a wide range of social and non-social 

cognitive capacities (Whishaw, Metz, Kolb, & Pellis, 2001). With regard to development, 

mice have more of their neural growth occurring before birth than do rats (Pellis & 

Iwaniuk, 2000). Therefore, comparison of these two species suggests the possibility that 

changes in developmental timing could account for species differences in the complexity 

of play, which in turn reflects a general change in cognitive complexity. But again, these 

are broad species comparisons, which may not be informative about the pattern of 

relationship of these traits within a single species. 
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Some preliminary comparisons between rat strains suggest that there may be dissociated 

differences in the performance of the attack, defense, and counterattack components of 

play fighting (Pellis, Field, Smith, & Pellis, 1997; Siviy, Baliko, & Bowers, 1997). 

Indeed, a detailed comparison of play fighting in Lewis and Fischer-344 rats has shown 

that Lewis rats initiate play more frequently (attack) and respond (defend) in ways that 

leads to more prolonged bodily contact (Siviy, Love, DeCicco, Giordano, & Seifert, 

2003). While such differences across strains support the idea that there is likely genetic 

variation that contributes to differences in various types of play (Siviy et al., 2003; 

Walker & Byers, 1991), it is not clear that these differences are associated with variation 

in juvenility. 

In the present study, two strains of rats showing differences in the presence of behavioral 

and neural features of juvenility (Mclntyre, Poulter, & Gilby, 2002; Racine, Steingart, & 

Mclntyre, 1999) were contrasted with respect to their pattern of play. It was predicted 

that the strain that has retained the most juvenile-like pattern of neural organization and 

behavior in adulthood also should be more juvenile-like in its pattern of play fighting. 

Such a test is possible because rats continue to play after puberty, albeit at a reduced 

frequency (Pellis & Pellis, 1990, 1991a). It is also possible to differentiate between play 

fighting and serious fighting because in the rat, the two behaviors involve different 

targets of attack (Pellis & Pellis, 1987). In a play fight, the target of attack is the 

opponent 's nape of the neck, whereas in a serious fight the attacker will direct bites to the 

opponent 's lower flanks and rump. In rats, playful targets persist into adulthood, and 

there also are distinctive, age-related changes in the tactics of playful defense (Pellis & 
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Pellis, 1987, 1990). Therefore, clear behavioral markers can be used (discussed later) to 

assess whether adult rats are in fact play fighting, and whether they are playing like 

juveniles or like adults. 

From a parental stock derived from breeding two strains, Long-Evans and Wistar, two 

lines of rats were selectively bred for 11 generations for their susceptibility to amygdala 

kindling (Racine et al., 1999). More specifically, the FAST (kindling-prone) line was 

generated by breeding the rats that required the fewest amygdala stimulations to elicit a 

Stage-5 convulsive seizure (Racine, 1972), whereas the SLOW (kindling-resistant) line 

was generated by breeding the rats that required the most amygdala stimulations. These 

strains have different amygdalar physiology as well as significant differences in behavior 

(Mclntyre, Kelly, & Dufresne, 1999). Of particular interest for the present study is that 

FAST rats appear to be juvenile-like in many respects when adult. The expression of 

G A B A A subunits in different areas of the limbic system, for example, shows interesting 

differences (Poulter et al., 1999). Poulter and coworkers (1999) show that in FAST rats, 

the a 2 , 3, and 5 subunits are highly up-regulated and the a l subunit is significantly 

down-regulated compared to control rats and the SLOW line (which shows the opposite 

trend). This is an important finding because, normally, the a 2 , 3, and 5 subunits are 

highly expressed early in development and are diminished and replaced by the a l subunit 

in adulthood. FAST rats are thus expressing a juvenile G A B A A subunit pattern in 

adulthood. 
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Similarly, with regard to behavior, there is a tendency for hyperactivity/impulsivity in 

FAST rats. This is presumed to be associated with increased temporal lobe excitability 

(Mclntyre, Poulter, et al., 2002). During tasks that measure exploratory behavior in an 

open field, FAST rats show persistent activity over days of testing, indicating poor 

habituation to the environment. In addition, FAST rats show vigorous struggling 

throughout the entire test period during physical restraint whereas S L O W rats show a 

relatively non-hyperactive, immobile posture in the same context. During learning 

procedures such as the Morris water maze, FAST rats are more easily distracted by 

irrelevant cues than are SLOW rats, although pretraining can ameliorate these 

performance deficits (Anisman & Mclntyre, 2002). The impulsive nature of FAST rats 

also is evident in the context of tests for sexual behavior in that the males have difficulty 

withholding approach responses to non-estrous females (Mclntyre, Poulter, et al., 2002). 

Mating behavior is normally highly dependent upon the male 's response to various 

sensory cues emitted by a receptive female (Beach, 1976), but FAST males immediately 

attempt to mount females irrespective of those appropriate cues. The impulsivity of the 

FAST line is further exemplified by their lower stress-related responses to anxiety-

producing tests (Mohapel & Mclntyre, 1998). 

Impulsivity, distractibility, and reduced fear are typical features of juveniie mammals 

(Spear, 2000). That is, as adults, the FAST strain retains more juvenile-like features. We 

therefore studied the development of play fighting and its constituent components, attack 

and defense, in these rats. We predicted that FAST rats would show a juvenile-like play 

profile in adulthood and that SLOW rats would show more adult-typical behavior. More 
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specifically, we predicted that FAST rats should initiate more play fights than S L O W rats 

both in the juvenile and adult phases, and retain the juvenile-typical pattern of defense 

into adulthood. If so, this would support the possibility that a relatively simple 

developmental change leading to the retention or prolongation of juvenile characteristics 

could produce more complex patterns of play. Since selective breeding can often result in 

the expression of comorbid features (Parmigiani, Palanza, Rodgers, & Ferrari, 1999), the 

relative levels of activity and anxiety of the animals also were measured. We therefore 

wanted to assess differences in the rate of play, independent of differences in overall 

activity. Because of the known differences in the response to stressors between these 

strains (Mohapel & Mclntyre, 1998) and the inhibitory effect that stress is often thought 

to have on play behavior (Burghardt, 2004; Fagen, 1981), it also was relevant to assess 

differences in behaviors that are indicative of anxiety. 

METHODS 

Animals. 

Kindling-prone (FAST) and kindling-resistant (SLOW) rats were obtained from Carleton 

University, and breeding pairs were established at the animal housing facility of the 

Department of Psychology & Neuroscience at the University of Lethbridge. A total of 71 

animals derived from these breeding pairs were used in several experiments. Breeding 

pairs were housed in 46 x 25 x 20 cm polyethylene tubs with processed corn cobs for 

bedding. In all cases, the animals had ad libitum access to food and water. The animal 

colony was maintained at 21 °C on a 12:12 hr light: dark cycle (lights on at 0730 hr). The 

care and use of animals was in accordance with local standards set by the Animal 
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Welfare Committee, as well as the national standards set by the Canadian Council for 

Animal Care. 

Experiment 1. Social interaction tests 

Subjects. 

Twenty-four FAST (12 males, 12 females) and 24 SLOW (12 males, 12 females) rats 

from four litters of each were used. At weaning (Day 22), the subjects were removed 

from their mothers and placed in same-sex, same- strain pairs (6 pairs of males and 6 

pairs of females per strain), in polyethylene tubs. All rats were weighed every 5 days 

beginning on the day of birth until Day 95. 

Procedure. 

On Days 29, 30, and 31 , each pair was given 15-min habituation periods in the test 

enclosure. On Day 31 , following habituation, each animal was isolated for 24 hr in a 46 x 

25 x 20 cm polyethylene cage, as such isolation prior to testing has been shown to 

increase the frequency of play fighting (Panksepp & Beatty, 1980; Pellis & Pellis 1990). 

On Day 32, following isolation, each pair of rats (cage mates) was placed together in the 

test enclosure. Following testing on Day 32, the animals were once again housed as pairs. 

On Day 33, each pair again went through the 15-min habituation and 24-hr isolation 

procedures, and was tested on Day 34. The animals were then housed as pairs until the 

adulthood, at which time the procedure was repeated. On Days 87 and 88, the animals 

were habituated for 15 min. On Days 89 and 9 1 , the animals were both habituated and 

isolated. On Days 90 and 92, the animals were tested and then again housed in pairs. 
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Unfortunately, it is not possible to control the amount of social experience each 

individual subject will have between testing phases when using a group-housing 

paradigm. Some researchers have tried to control for the amount of social experience by 

using prolonged individual housing (Ikemoto & Panksepp 1992; Panksepp, 1981), but 

several studies have shown that social isolation is not a neutral manipulation. Even social 

isolation lasting days rather than weeks can lead to severe social deficits (for review, see 

Pellis, Pellis, & Foroud, 2005). Controls isolated for the 2 months necessary to cover the 

age changes from the juvenile phase to the early adult phase would likely result in adults 

with profound deficits in social behavior. For example, Hoi, Van den Berg, Van Ree, and 

Spruijt (1999) showed that during postnatal Weeks 4 and 5, social isolation in the rat 

causes reduced social activity in adulthood. Von Frijtag, Schot, van den Bos, and Spruijt 

(2002) showed that as adults, rats reared individually during the juvenile period display 

less ability to use stress-reducing behaviors when confronted by stressful social situations 

and less success in averting aggression directed at them. Finally, it has also been shown 

that rats exhibit individual differences in their style of play behavior (Pellis & McKenna, 

1992; Reinhart & Pellis, unpublished observations); this emphasizes the importance of 

testing the same individuals during both the juvenile and adult phases of development. 

Thus, although the uncontrolled level of play an individual might experience in a group-

housed rearing condition may attenuate our ability to draw causal conclusions regarding 

the effects of that experience, it would seem that using a paradigm where individuals are 

not exposed to social interactions for prolonged periods of time would be worse. Studies 

using the same paradigm as that used here have shown the same pattern of developmental 

change (Pellis, 2002). The small differences in social experience among rats when reared 
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in social groups may account for the differences in magnitude in those developmental 

patterns seen across studies; however, this issue was beyond the scope of the present 

study. 

Habituation and testing commenced each day between 0800 to 0900 hr. On the first day 

of habituation in both the juvenile and adult phases of testing, the black and white pelage 

markings for each animal were drawn so that the animals could be identified during video 

analysis. A movable mirror located at the back of the enclosure facilitated observation of 

otherwise hidden parts of the rats' bodies. The dimensions of the enclosure during the 

juvenile testing were 50 x 50 x 32 cm; during the adult testing, they were 50 x 50 x 50 cm 

to accommodate the larger body size of the adults. Test periods lasted 10 min and were 

videotaped in the dark using the "night shot" function on a Sony 8-mm camcorder. The 

camera was placed in front of the enclosure at an oblique angle at a distance that could 

capture the entire volume of the testing area. 

Behavioral Analyses. 

After collecting the behavioral data, each 10-min test period was scored for various 

components of play and other behaviors. The 8-mm tapes were converted to VHS format 

with the addition of a time-code (30 t h of a s), which allowed for slow-motion and frame-

by-frame inspection. Each of the following measures of play fighting were quantified for 

all animals (for more detailed description, see Pellis, Pellis, & Whishaw, 1992): 

(I) Frequency of attack: the number of playful initiations (i.e., nape contacts) per 10-

min period 
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(II) Probability of defense: the number of times an animal elicits a defense 

(withdrawal of the nape area from the snout of an approaching partner) relative to 

the number of attacks received per 10-min period 

(III) Type of defense: 

(i) Probability of evasion - the number of evasive defenses (withdrawal of 

the nape by leaping, running, or turning away from the partner) relative to 

number of total defenses 

(ii) Probability of complete rotation - the number of times the defender rotates 

around its longitudinal axis to lie supine (facing the attacker to block nape 

access) relative to number of total defenses 

(iii) Probability of partial rotation - number of facing defenses whereby the 

defender turns to face the attacker by rearing on the hind legs relative to 

number of total defenses 

In addition, two behaviors were scored for each individual rat in the 10-min tests that 

provide a measure of anxiety and stress. These measures were of body shakes (which 

could involve the whole body or just the head) and hind leg scratches of the anterior of 

the body. Both measures have been shown to be more frequent in stressful contexts in 

rodents and other mammals (Redmond & Huang, 1979; van Hooff & Aureli, 1994; van 

den Bos, 1998). Although freezing is a more common measure of fear and anxiety in 

rodents (Fendt & Fanselow, 1999), it rarely occurred during the play sessions. Shakes and 

scratches were combined to provide an anxiety index. Therefore, if these measures do 

reflect anxiety, then a high score on this index would represent a higher level of stress. 
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Experiment 2. Circadian Activity 

Subjects. 

Twelve FAST (6 males, 6 females) and 11 SLOW (5 males, 6 females) rats, each from 

two different litters, were used. At weaning, subjects were removed from their mothers 

and placed into same-sex, same-strain groups. 

Procedure. 

Animals from each of the four types (strain, sex) were randomly chosen to form three 

groups: two groups of 8 animals and one group of 7 animals. The use of groups was 

necessary to accommodate the limits of the testing apparatus. Animals from each of the 

three groups were housed singly in computer-monitored circadian activity cages for 48 hr 

so that baseline activity levels could be analyzed (Gibb, 2001). These cages are fitted 

with infrared light beams and detectors so as to assess activity by monitoring motion. 

Each time the animal disrupts the light beam, the computer records the side of the cage at 

which the activity occurred, and a combined activity (for activity occurring across both 

left and right sides of the cage) is computed. During activity monitoring, the animals 

continued to have ad-lib access to food and water and were maintained on a 12:12 hr 

light: dark cycle. The animals were tested during the juvenile period (Days 36-41), and 

again in adulthood (Days 88-93). The information on movement or activity for each 

individual animal was used to calculate group means ± SEM. 
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Statistical Analyses 

For all datasets collected, an ANOVA with strain (FAST or SLOW), sex (male or female) 

and age at testing (juvenile or adult) as independent factors was used for analysis. For 

graphical purposes, the group means are shown. 

RESULTS 

Play fighting involves attack by one animal and defense by the other. Therefore, the 

overall frequency of play can be influenced by both the frequency of launching attacks 

and the probability of defending against attack. In this study, there were age and strain 

effects on these measures of play. For attacks, there was a significant age effect (F( l , 88) 

= 154.90, p < 0.00011, and strain effect [F( l , 88) = 9.42, p < 0.011. Juveniles attacked 

more frequently than adults, and FAST rats attacked more frequently than S L O W rats 

(Figure 2.1 A). Probability of defense showed a significant age effect [F( l , 88) = 9.13, p < 

0.011, and strain effect [F( l , 88) = 27.32, p < 0.0001]. Juveniles defended against attacks 

more frequently than adults, and FAST rats defended against attacks more frequently 

than S L O W rats (Figure 2. IB ) . While there was a decrease in the probability of defense 

during development for all groups, the magnitude of the decrease appeared to be 

especially large for SLOW males; however, there was no significant sex difference 

between SLOW males and females (p > 0.05) for the probability of defense. 
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Figure 2.1 Developmental changes in the mean frequency of attack (A) and the mean 
probability of defending against attack (B) for FAST and S L O W rats. 
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When defending, rats can either move away (i.e., evade), or turn to face to protect the 

nape. For probability of evasion, there was a significant Age x Strain interaction [F( l , 88) 

= 11.92, p < 0.001], with FAST rats using this defensive tactic more often in adulthood 

than S L O W rats. With age, FAST rats increased the use of evasion whereas S L O W rats 

decreased their use of this tactic (Figure 2.2A). With regard to turning to face defensive 

tactics, there was a significant age effect [F( l , 88) = 8.46, p < 0.01], and Age x Strain 

interaction [F(l , 88) = 5.15, p < 0.05], for complete rotation. Typically, the complete 

rotation tactic is used more frequently in the juvenile phase, but then declines with 

puberty when it is replaced by the partial rotation tactic, the more frequent tactic in 

adulthood (Pellis & Pellis, 1990). Not only did FAST rats perform the complete rotation 

more often than S L O W rats as juveniles but also FAST rats, unlike S L O W rats, showed 

the typical age-related decline of use of the complete rotation tactic (Figure 2.2B). 

Although the decrease was strongest in male FAST rats, the decline was not significantly 

different to that of the female FAST rats. Similarly, there was a significant age effect 

|F (1 , 88) = 6.75, p < 0.05], Age x Strain interaction [F(l , 88) = 8.19, p < 0.05], and Strain 

x Sex interaction [F( l , 88) = 4.09, p < 0.05], for probability of partial rotation. That is, 

there was an age-related increase in partial rotation, complementing the decrease in 

complete rotation, with this increase being more marked in S L O W rats than in FAST rats. 

Furthermore, SLOW females increased their use of partial rotation with age, whereas 

FAST females showed a slight reduction in the frequency with which partial rotation was 

used in adulthood. 
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Figure 2.2 Developmental changes in the mean probability of evasion (A), the mean 

probability of complete rotation (B), and the mean probability of partial rotation (C) 

FAST and SLOW rats. 
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For the anxiety index score, there was a significant strain effect [F( l , 88) = 8.70, p < 

0.011, sex effect [F( l , 88) = 21.87, p < 0.0001], and Age x Sex interaction [F( l , 88) = 

7.35, p < 0.01]. Females had higher anxiety index scores than males, which increased 

with age, and S L O W rats had higher scores than FAST rats (Figure 2.3). There were no 

significant effects for the circadian activity data (p > 0.05). That is, both strains were 

active for comparable amounts of time during the 48-hr test period. With regard to body 

weight, there was a significant age effect [F(14, 660) = 563.30, p < 0.0001 ], strain effect 

|F( 1, 660) = 120.79, p < 0.0001], sex effect [F( l , 660) = 1592.95, p < 0.00011, and Age x 

Sex interaction [F(14, 660) = 46.68, p < 0.0001]. Body weight increased as the animals 

aged, with the males outweighing the females, and FAST rats outweighing S L O W rats 

(Figure 2.4). With regard to strain differences, the growth curve shows that FAST rats 

grew faster than SLOW rats. 
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Figure 2.3 Developmental changes in mean levels of anxiety scores for FAST and S L O W 
rats. 
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Figure 2.4 Developmental changes in mean body weights for FAST and S L O W rats. 

36 



DISCUSSION 

In part, the results were as predicted. FAST rats were more playful and remained more 

playful into adulthood than S L O W rats. However, some results were not as predicted, 

suggesting that the components of play fighting are a mosaic which can change 

independently of one another 2 . Previous studies have shown that the decline in the 

frequency of play fighting at puberty results from a decrease in the frequency of initiating 

playful attacks, whereas the probability of defense remains relatively unchanged 

throughout development (Pellis & Pellis, 1990, 1997). In the present study, FAST rats 

were more playful than SLOW rats throughout development in that they launched playful 

attacks more frequently and were more likely to defend themselves when attacked (Table 

1). Even though both strains exhibited a decline in playfulness with age, the reduction 

observed in FAST rats was less than that observed in S L O W rats. Unexpectedly, there 

was a significant decrease in the probability of defense with age, although the decrease in 

FAST rats was small and overall within the typical range found in other studies (Pellis et 

al., 1997). Conversely, the decline in probability of defense for SLOW rats, especially for 

the males, was large and well outside the range of previous studies (Table 1). 

The coincident, age-related decreases in both frequency of attack and probability of 

defense suggest that the SLOW strain, being selected for a more extreme adult 

phenotype, may have a predisposition for being less playful. Furthermore, it appears that 

the play behaviors of SLOW rats in the juvenile phase of development are indeed 

representative of adult-typical behavior (Table 1). The FAST strain, being selected for the 

retention of a juvenile-like phenotype, seems to retain a higher level of playfulness, but 
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Table 1. Levels of play behavior observed in same-strain pairs of FAST and S L O W rats, 
expressed in comparison to previously quantified levels of the same behaviors in Long 
Evans rats (e.g., Pellis & Pellis, 1990, 1992; Pellis et al., 1992; Smith et al., 1998). 

Play 

Behavior 

EXPECTED CONTROL OBSERVED FAST OBSERVED SLOW Play 

Behavior Juvenile Adult Juvenile Adult Juvenile Adul t 

At tack + + + + + + + + + + + + + + + + 

Defense + + + + + + + + + + + + + + + + + + + + + 

Evasion + + + + + + + + + + + + + + + + + + + 

Complete + + + + + + + + + + + + + + + 

Partial + + + + + + + + + + + + + + + 
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one that is still within the typical range of playfulness that has been reported in several 

studies using Long-Evans rats (Table 1). The pattern of age-related change in the use of 

defense tactics is only partially consistent with this interpretation. 

With the onset of puberty, two changes are typical for the type of defensive tactics most 

often used. The likelihood that an attack will be defended against by moving away from 

the partner (evasion) tends to increase, and when the defender defends itself by turning to 

face the attacker, it is more likely to do so by only partially rotating around the 

longitudinal axis of the body rather than by fully rotating to the supine position (Pellis & 

Pellis, 1987) (Table 1). These changes are more pronounced in males than in females 

(Pellis, 2002; Pellis et al., 1997). The two strains studied here differed from this typical 

pattern, but in different ways. FAST rats exhibited an atypically large age-related 

increase in evasion whereas SLOW rats had a modest decrease (Table 1). With regard to 

complete rotation, FAST rats exhibited the age-related decrease, with the change in males 

being greater than the change in females. In contrast, SLOW rats did not change with 

regard to complete rotation; it remained at a low likelihood at both the juvenile and adult 

stages. 

The large increase in evasion by FAST rats is unexpected because evasion reduces the 

physical contact so characteristic of complex and exuberant play fighting (Iwaniuk, 

Nelson, & Pellis, 2001; Pellis & Iwaniuk, 2000). This seems counter to this strain's 

retention of a higher frequency of play fighting in adulthood. The lack of change in the 

likelihood of using the complete rotation by SLOW rats is unexpected because it shows 
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that at all ages they are more likely to use not only evasion, but also partial rotation, a 

tactic with a stronger agonistic component and one that more effectively blocks the 

partner from gaining the advantage; thus curtailing prolonged bouts of play fighting 

(Pellis & Pellis, 1987, 1998b). 

Previous studies in the Pellis lab suggest that the relationship between rotatory tactics of 

defense (i.e., complete rotation and partial rotation) is reciprocal. If so, then it would be 

expected that changes in complete rotation would be accompanied by changes in partial 

rotation, in the opposite direction. However, the present study suggests that rotatory 

tactics of defense may not be reciprocal, and that independent changes are possible for 

complete rotation and partial rotation. FAST rats show the expected age-related decrease 

in complete rotation and little change in partial rotation, whereas S L O W rats show the 

expected age-related increase in partial rotation and little change in complete rotation 

(Figure 2.2B, 2.2C). In this regard, S L O W rats resemble rats that have been decorticated 

at birth. Decorticates do not show the age-related switch in complete to partial rotation, 

but rather, from the outset, perform complete rotations at a lower frequency than partial 

rotations (Pellis, Pellis, & Whishaw, 1992). That is, they exhibit the adult-typical pattern 

of playful defense at all ages. 

One way of interpreting the differences between the strains is that in terms of overall 

levels of play fighting (frequency of attacks plus probability of defense), the more 

juvenilized animals (i.e., FAST strain) are the more playful. However, regarding the 

content of the play, which is determined by the actions taken during the play fight such as 
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the defensive tactics employed (Foroud & Pellis, 2003; Pellis & Pellis, 1987), the overall 

juvenility of the subjects seems less of a determining factor. FAST rats are more likely to 

avoid physical contact and SLOW rats are more likely to use adult patterns of defense at 

all ages. These subtle, but significant, differences in the content of play fighting between 

these strains suggest that this activity is a composite, with different components being 

regulated by different mechanisms, if that is the case, it is likely that all differences in the 

complexity of play across species can be accounted for only in part, by differences in the 

duration of the juvenile phase. It is likely that overall playfulness may be sensitive to 

changes in life history patterns, but also that specific components of play have arisen due 

to particular functional needs within different lineages (Pellis & Iwaniuk, 2004). 

Moreover, the differences in play between the two strains are not a by-product of more 

general differences. 

Given that there were no differences in activity level, this cannot account for the higher 

frequency of play in the FAST strain. Even if the activity levels for the strains were 

different, Walker and Byers (1991) showed that differences in the activity rates of inbred 

BALB/c and DBA/2 strains of house mice do not vary predictably with the mean rate of 

locomotor play. That is, changes in the rate of activity that may result from selective 

breeding do not necessarily facilitate similar changes in the rate of play. Similarly, while 

there were significant differences in body weight changes between FAST and SLOW 

rats, these differences were unlikely to have produced the differences in play. The reason 

for this conclusion is that the sexes showed the patterns of play typical of the strain, even 

though there were sex differences in body weight that were larger than the differences 
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between the strains. Furthermore, the strains followed a similar trajectory in their rate of 

growth (i.e., the body weight changes that occur during development). Indeed, it 

appeared that FAST rats physically matured faster than S L O W rats (see Fig. 4), which, if 

prolonged juvenility were to account for more play, should have led to less play and 

faster decline in play by FAST rats. The same logic that applied to the strain differences 

in weight also applies to the differences between the strains in response to stress. 

Consistent with earlier findings (Mohapel & Mclntyre, 1998), SLOW rats were found to 

exhibit the behavioral markers of stress more often than FAST rats. It has been frequently 

noted that play is suppressed in stressful situations (Fagen, 1981). But again, the stress 

effects are larger for the sexes than for the strains, therefore differences in stress between 

the two strains are unlikely to account for the differences in play. 

The differences between FAST and SLOW rats suggest that play fighting does not 

change as a whole, but that the subcomponents of play are dissociable and are able to be 

modified independently. The two strains do not change in the same way for both the 

frequency and content of play. That juvenile features of play can be almost completely 

lost in some subcomponents in SLOW rats, suggests that not all traits in play fighting 

change concurrently. Indeed, this conclusion is consistent with developmental and 

experimental studies showing that different components of play fighting are dissociable 

(e.g., Pellis & Pellis, 1990, 1997; Pellis, Pellis, & Whishaw, 1992; Siviy, 1998; Smith, 

Forgie, & Pellis, 1998). 
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Unlike the findings which have shown that male rats play fight more frequently than 

females (e.g., Meaney & Stewart, 1979, 1981; Pellis & Pellis, 1990; Poole & Fish, 1976), 

and, more specifically, that males initiate play (i.e., attack) more frequently than do 

females (Pellis & Pellis, 1990; Thor & Holloway, 1983), the present results showed an 

absence of a sex difference in play. Indeed, if anything, there was a trend for females to 

launch playful attacks more frequently; however, note that sex differences in the 

frequency of play have not been reported for all paradigms in which play is tested 

(Panksepp, 1981; Panksepp et al., 1984; Thor & Holloway, 1984). Nonetheless, the 

paradigm used for testing play in the present study has repeatedly revealed sex 

differences in the frequency of play (e.g. Pellis & Pellis, 1990, 1997; Pellis, Pellis, & 

McKenna, 1994; Smith et al., 1998). Relative to previous studies that have employed this 

method for the analysis of play behavior, the absence of a sex difference in the frequency 

of play in the present study was unexpected, although the results are consistent with 

earlier findings that the amygdala is critically involved in the sexual differentiation of 

play in rats. Meaney, Dodge and Beatty (1981) found that bilateral amygdala lesions in 

weanling rats decreased social play in male rats, but had no effect on the social play of 

female rats, indicating that the sex differences in the anatomy and physiology of the 

amygdala, arising from the effects of testosterone (Meaney & McEwen, 1986), partly 

accounts for the sex differences in social play. That FAST and SLOW rats have been 

selectively bred for their susceptibility to amygdala kindling suggests that the selective 

breeding of these strains may have altered some of the neural mechanisms (particularly 

those involving the amygdala) that control the behavioral responses necessary to produce 

the sex difference in the frequency of play. 
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Various lines of research, when considered in combination, favor the amygdala as a 

likely candidate for being an important neural substrate that modulates social behavior. 

For example, it has been shown that (a) the amygdala is crucial for regulating fear (Fendt 

& Fanselow, 1999), (b) damage to the amygdala alters social behavior in non-human 

primates (Emery et al., 2001; Meunier, Bachevalier, Murray, Malkova, & Mishkin, 1999; 

Prather et al., 2001), and (c) there are signs of amygdala dysfunction in people with 

autism (Baron-Cohen et al., 2000). Not unexpectedly, then, genetically induced 

functional changes to the amygdala, as seen in FAST and SLOW rats, lead to marked 

changes in the organization of a complex social behavior such as play fighting. 

Because of the behavioral and anxiety differences that have been observed in the strains, 

it would be of interest to investigate how individuals from different strains would behave 

when paired together in our paradigm for testing play. How would the play interaction 

proceed? Would the FAST individual dominate during the interaction because of its 

impulsive, juvenile-like nature, or would it be the S L O W individual with the more adult-

typical phenotype that would regulate the content of play sessions? Future studies could 

test these competing alternatives, and so characterize more fully the behavioral profiles of 

the FAST and SLOW strains of rats, yielding potentially new insights into the function of 

the amygdala. 
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NOTES 
1. This chapter was modified from the following publication: Reinhart, C.J., Pellis, S.M., 
& Mclntyre, D.C. (2004). Development of play fighting in kindling-prone (FAST) and 
kindling-resistant (SLOW) rats: How does the retention of phenotypic juvenility affect 
the complexity of play? Developmental Psychobiology, 45, 83-92. © 2004 John Wiley & 
Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc. 

2. A concern may arise given that some measures used are absolute measures and some 
are proportions. This mixture of measures reflects the fact that not all developmental 
changes in play behavior can be measured using the same units. This, however, is no 
different to physical development, where weight, size and shape need to be measured 
using different units. It is the pattern of change and how these different measures 
correlate with one another over development that is the issue. Based on numerous 
previous studies on the development of play fighting in rats, we have shown that there are 
consistent age-related changes in the frequency of initiating play (i.e. attack) and in how 
rats respond to being attacked (i.e. defense) (Pellis, 2002). 
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CHAPTER THREE 1 

Play fighting between kindling-prone (FAST) and kindling-resistant (SLOW) rats. 

ABSTRACT 

Differences in the play behavior of two strains of rats suggest that (1) different 

components of play fighting (PF) can be modified independently, and (2) there are 

genetic contributions to the expression of play behaviors. The development of PF in 

cross-strain pairs was examined to determine whether the typical PF in each strain may 

be altered by interacting with a non-congruent pairmate. Changes in PF were observed in 

both strains throughout development, however, environmental context was more 

influential during adulthood. These data suggest that components of play may be highly 

stable, highly labile, or contingently labile. That is, some components of play may be 

more resistant to environmental context than others. 
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INTRODUCTION 

Play fighting is one of the most common forms of play observed (Aldis, 1975; Bekoff & 

Byers, 1981; Fagen, 1981; Pellis & Pellis, 1998b), and it has been documented in 

mammalian and avian species, as well as in some reptiles (Burghardt, 1999). Despite the 

frequency with which play fighting is observed, and the diversity of species that engage 

in this behavior, most of what is known about the neurobiology of play has come from 

studies of the laboratory rat (Panksepp, 1998; Siviy, 1998; Vanderschuren, Niesink, & 

Van Ree, 1997). The characteristic behaviors that distinguish play fighting from serious 

fighting, such as target of attack (Pellis & Pellis, 1987) and the specific components of 

play fighting (i.e., attack, defense), have been well characterized in the rat (e.g., Pellis, 

Field, Smith, & Pellis, 1997; Pellis & Pellis, 1997), but little is known about the 

neurobehavioral mechanisms that control different aspects of play fighting. 

Play fighting in rats involves playful attack by one individual, and subsequent defense by 

the other, with successful contact involving gentle nuzzling of the partner 's nape (Pellis, 

1988). The frequency of launching playful attacks peaks during the juvenile phase, 

between 30-40 days (Thor & Holloway, 1984). The recipient of a playful attack can use a 

variety of defensive tactics to prevent nape contact (Pellis & Pellis, 1990); the frequency 

of which changes in a distinctive, age-related manner (Pellis & Pellis, 1990, 1997). 

Because rats continue to play into adulthood, albeit at a reduced frequency (Pellis & 

Pellis, 1990, 1991a), it has been possible to identify how attack and defense components 

change during development. Attack and defense components of play fighting are clearly 
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dissociable at the behavioral level, and previous studies suggest that these components 

are also motivationally independent (Pellis & Pellis, 1991a; Siviy, Love, DeCicco, 

Giordano, & Seifert, 2003). That is, frequency of attack depends on the animals ' 

motivational state (e.g., social isolation prior to testing increases the frequency of playful 

solicitations) (see Panksepp & Beatty, 1980; Pellis & Pellis, 1990; Siviy et al., 2003), 

whereas the probability of defending against attacks remains between 80-90% throughout 

development (Pellis et al., 1997), regardless of pre-testing social experience (Siviy et al., 

2003). 

Animals selectively bred on the basis of differences in behavior have been increasingly 

used to investigate the neurobiological mechanisms underlying behavioral differences 

(Ellenbroek & Cools, 2002). Strains of rats with consistent, quantifiable differences in 

play behavior have been identified, suggesting that there are genetic controls over the 

components of play behavior (e.g., Ferguson & Cada, 2004; Reinhart, Pellis, & Mclntyre, 

2004; Siviy, Baliko, & Bowers, 1997; Siviy et al., 2003), but how stable are these 

genetically-based neurobehavioral traits? Both genetic and environmental factors play an 

important role in determining the phenotypic expression of behaviors (Ellenbroek & 

Cools, 2002). By using selectively bred rat strains with unique play profiles, we can ask 

(a) which components of play fighting change or stay the same when the testing 

environment changes, and (b) whether environmentally-influenced changes in play 

behavior are age-dependent? 
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Reinhart, Pellis and Mclntyre (2004) examined the development of play fighting in 

kindling-prone (FAST) and kindling-resistant (SLOW) rats; two lines of rats selectively 

bred for their susceptibility to amygdala kindling (for more detailed description, see 

Racine, Steingart, & Mclntyre, 1999). The FAST (kindling-prone) strain was generated 

by breeding the animals that required the fewest electrical stimulations of the amygdala 

to elicit a Stage-5 convulsive seizure (Racine, 1972), and the SLOW (kindling-resistant) 

strain was generated by breeding the animals that required the most amygdala 

stimulations. These strains show differences in amygdalar physiology (i.e., miniature 

GABA inhibitory postsynaptic potentials and G A B A A subunit expression) (Mclntyre, 

Hutcheon, Schwabe, & Poulter, 2002; Poulter et al., 1999) and in various behavioral 

characteristics such as Morris water maze performance (Anisman & Mclntyre, 2002), 

measures of impulsivity (Mclntyre, Poulter, & Gilby, 2002), fear-related responses 

(Mohapel & Mclntyre, 1998), and stress-related responses (Mclntyre, Kent, Hayley, 

Merali, & Anisman, 1999). When considered in combination, the physiological and 

behavioral data suggest that in many respects, FAST rats express a juvenile-like 

phenotype, whereas SLOW rats express an adult-typical phenotype. 

In the play study (Reinhart et al., 2004), same-strain pairs were tested as juveniles and 

adults, and it was found that (a) FAST rats were more playful than S L O W rats throughout 

development, (b) FAST and SLOW rats used different patterns of defense in adulthood to 

reduce the likelihood of prolonged social contact, (c) FAST rats exaggerated the 

defensive changes typically occurring at puberty, and (d) S L O W rats behaved in a more 

adult-typical manner at all ages. 
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In the present study, the development of play behavior in cross-strain pairs of FAST and 

S L O W rats was examined. Because specific differences in the play profiles of the two 

strains have already been identified for same-strain pairs, it was possible to examine how 

components of play fighting changed in each strain, in response to changes in the rearing 

and play-testing environments. If genetic differences are independent of environmental 

factors, it was predicted that juvenile-like FAST rats would be more playful than adult­

like S L O W rats. More specifically, FAST rats should show a relatively higher frequency 

of playful solicitations (i.e., playful attacks), a higher probability of defending against 

attacks, and should use defensive tactics that signal a willingness to continue playful 

encounters more so than SLOW rats. If these proved to be true then, this would suggest 

that providing a FAST rat with a less nurturing play environment (i.e., less playful 

SLOW partner) does not overcome the genetic predisposition to be more playful. 

Similarly, we predicted that SLOW rats would be less playful, and more frequently use 

adult-typical defensive tactics that reduce the physical contact necessary during play 

fighting, thus suggesting that providing an environment that is more conducive to playful 

interaction (i.e., more playful FAST partner) does not overcome the genetic 

predisposition for a low level of playfulness. 

In addition to the development of play fighting between FAST and S L O W rats, the 

development of social dominance between the strains was examined. It has been shown 

that in adulthood, male pairmates exhibit dominance-subordinance relationships (Lore & 

Stipo-Flaherty, 1984), and that these dominance relationships appear to be reflected in the 

play fighting of male pairmates (Pellis & Pellis, 1991b; Pellis, Pellis, & McKenna, 1993). 
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Subordinate pairmates in adult pairs of male rats initiate more playful attacks than the 

dominant, and when attacked, defend themselves in a more juvenile manner (Pellis & 

Pellis, 1992). In the present study, we wanted to assess which strain would be dominant 

in observational (i.e., play fighting), competitive (i.e., food competition, water 

competition), and physiological (i.e., plasma corticosterone levels, body weight) 

measures of social status. That is, when paired together, would the more juvenile-like 

(i.e., FAST) or the more adult-like (i.e., SLOW) pairmate become socially dominant? 

It was predicted that SLOW rats would be dominant in all measures of social status 

because of their generally adult-typical behavioral phenotype. More specifically, S L O W 

rats should playfully attack less frequently than FAST rats during play fighting and 

should use adult-typical tactics of defense more than FAST rats. If S L O W rats are 

dominant, they should also weigh more than FAST rats, have priority of access to limited 

resources in competitive tests of social dominance, and exhibit lower levels of stress 

hormones (see later). If one strain was shown to be dominant, this would support the 

possibility that the systems that have been selected in the creation of the two strains, also 

affect traits necessary for the establishment of social status. In turn, a strain bias in 

developing dominance relationships could account for any observed changes in the 

strain-typical play profile of adult rats. 
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METHODS 

Animals. 

FAST (kindling-prone), and SLOW (kindling-resistant) weanling rats were obtained from 

Carleton University and cross- strain pairs (one FAST and one SLOW animal per cage) 

were established at the animal housing facility of the Department of Psychology & 

Neuroscience at the University of Lethbridge. Pairs were housed in 46 x 25 x 20 cm 

polyethylene tubs with processed corncobs for bedding. The animals had ad libitum 

access to food and water, and the animal colony was maintained at 21°C on a 12:12 hr 

light: dark cycle (lights on at 0730 hr). The care and use of animals was in accordance 

with local standards set by the Animal Welfare Committee, and the national standards set 

by the Canadian Council for Animal Care. 

Subjects 

Twelve FAST and 12 SLOW male rats were used. On postnatal Day 26, when the 

animals arrived to the University of Lethbridge facility, they were housed as cross-strain 

pairs. 

Part 1. Play fighting 

Procedure 

On postnatal Days 28, 29, and 30, each pair was given 15-min habituation periods in the 

testing apparatus. On Day 30, following habituation, each animal was isolated for 24 hr 

in a 46 x 25 x 20 cm polyethylene cage, as such isolation prior to testing has been shown 

to increase the frequency of play fighting (Panksepp & Beatty, 1980; Pellis & Pellis, 
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1990). On Day 31 , following isolation, each pair of rats (cage mates) was placed together 

in the testing apparatus. Following testing on Day 3 1 , the animals were once again 

housed as pairs. On Day 32, each pair again went through the 15-min habituation and 24 

hr isolation procedures, and was tested on Day 33. The animals were then housed as pairs 

until adulthood, at which time the procedure was repeated. On Days 87 and 88, the 

animals were habituated for 15 min. On Days 89 and 9 1 , the animals were both 

habituated and isolated. On Days 90 and 92, the animals were tested and then again 

housed in pairs. 

Habituation and testing commenced each day between 1430-1500 hr. On the first day of 

habituation in both the juvenile and adult phases of testing, the black and white pelage 

markings for each animal were drawn so that the animals could later be identified during 

video analysis. The testing apparatus had a Plexiglas floor lined with processed corncobs, 

two wooden walls, an anterior Plexiglas wall, and a mirrored posterior wall. The movable 

mirror located at the back of the testing apparatus facilitated observation of otherwise 

hidden parts of the rats ' bodies. The dimensions of the apparatus during the juvenile 

testing were 50 x 50 x 32 cm; during the adult testing, they were 50 x 50 x 50 cm to 

accommodate the larger body size of the adults. Test periods lasted 10 min and were 

videotaped in the dark using the "night shot" function on a Sony 8-mm camcorder. The 

camera was placed in front of the apparatus at an oblique angle at a distance that could 

capture the entire volume of the testing area. 
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Behavioral Analyses 

After collecting the behavioral data, each 10-min test period was scored for various 

components of play. The 8-mm tapes were converted to VHS format and a time code 

(30 t h of a s) was added using an Horita TRG-50 time encoder (Horita, Mission Viejo, 

CA). Videos were viewed in slow motion and analyzed frame-by-frame. Each of the 

following measures of play fighting were quantified for all animals (for more detailed 

description, see Pellis, Pellis, & Whishaw, 1992): 

(I) Frequency of attack - the number of playful initiations (i.e., nape contacts) per 

10 min period 

(II) Probability of defense - the number of times an animal elicits a defense 

(withdrawal of the nape area from the snout of an approaching partner), 

relative to the number of attacks received per 10 min period 

(III) Type of defense: 

(i) Probability of evasion - the number of evasive defenses (withdrawal of 

the nape by leaping, running, or turning away from the partner) relative to 

number of total defenses 

(ii) Probability of complete rotation - the number of times the defender rotates 

around its longitudinal axis to lie supine (facing the attacker to block nape 

access) relative to number of total defenses 

(iii) Probability of partial rotation - number of facing defenses whereby the 

defender turns to face the attacker by rearing on the hind legs, relative to 

number of total defenses 
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Statistical Analyses 

For the play data collected, an ANOVA with strain (FAST or SLOW) and age at testing 

(juvenile or adult) as independent factors was used for analysis. For graphical purposes, 

the group means are shown. 

It should be noted that when animals are group-housed it is not possible to control the 

amount of social experience each individual subject will have between testing phases. 

Indeed, the uncontrolled level of play an individual may experience in a group-housed 

rearing condition may result in small differences in the pattern of behavioral development 

observed in each animal. Individual housing has been a method used by some researchers 

(e.g., Ikemoto & Panksepp 1992; Panksepp, 1981) to control the amount of social 

experience an individual will have. However, social isolation lasting even less than one 

week can lead to severe social deficits (see review in Pellis, Pellis, & Foroud, 2005). The 

play-testing paradigm used in the present study has been used for several experiments 

and study after study has shown the same pattern of developmental change (Pellis, 2002; 

Reinhart et al., 2004). 

Part 2. Social dominance 

Procedure. 

A. Play measures 

In part 1 of the present study, various components of play fighting were analyzed and the 

data were collated in terms of age and strain. For part 2 of the experiment, the adult play 

scores for each strain were examined more closely. Lore and Stipo-Flaherty (1984) have 
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shown that male pairmates exhibit a dominance-subordinate relationship in adulthood, 

thus affecting the social interactions that take place between adult male rats. Previous 

studies on play fighting and dominance (Pellis & McKenna, 1992; Pellis & Pellis, 1991b, 

1992; Pellis, Pellis, & Kolb 1992; Smith, Fantella, & Pellis, 1999) have shown that as 

adults, dominants launch fewer playful attacks than subordinates, and that their defensive 

responses to attacks received from subordinates are more adult-typical (i.e., partial 

rotations). In the present study, the relative playful attack rates of FAST and S L O W rats 

at the adult stage were used to identify the more frequently and the less frequently 

attacking strain, with the less frequent attackers being "dominant," and the more frequent 

attackers being "subordinate." Similarly, the probability of using the partial rotation 

defense in adulthood was compared between strains. It was predicted that the less 

frequently attacking, or dominant strain, would also be the strain that was more likely to 

use partial rotation in adulthood. 

B. Competitive measures 

In addition to the observational measures of social dominance that were analyzed as part 

of play fighting between pairmates, competitive measures of dominance were examined. 

Most competitive tests may be classified into two main categories (Syme, 1974). 

The first competitive test involved the animals in an all-or-none food competition where 

pairmates had to compete for a single food item. Habituation and testing commenced 

each day at 1700 h. On Days 110, 111 and 112, four food items (almonds) were placed in 

the home cage of each pair of cage mates to habituate the animals to the novel food item. 
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The pairs were observed on all three days to ensure that each individual consumed at 

least one food item per day. On Days 113 and 114, the animals were individually placed 

in the testing apparatus and given two food items so that they would become more 

comfortable eating the now familiar food item in the novel environment. Animals were 

returned to their home cages immediately after they had finished eating the food items. 

The testing apparatus was a thin Plexiglas cylinder, 40 cm in diameter and 45 cm high, 

that was positioned on a table with a clear glass surface. On pre-test and test days, the rats 

were filmed with a Sony 8-mm camcorder, from a ventral view, off a mirror that was 

mounted under the glass table top at 45 degrees (see Figure 1, Field, Whishaw, & Pellis, 

1997). Two 150-W spotlights provided additional light. Pre-testing took place on Days 

115, 116, 117 and 118 to habituate pairmates to being in the cylinder together. Pairmates 

were placed in the testing apparatus together and filmed until all food items (four items 

for pre-tests 1 and 2, five items for pre-tests 3 and 4) were consumed. For test days 1-4 

(Days 119, 120, 121 and 122), one food item was placed in the apparatus and pairmates 

were then placed inside to compete for the item. Once the item was fully consumed, the 

animals were placed back in their home cage and the trial was repeated four more times 

(for a total of five trials per day per pair). 

Field, Whishaw, Forgie, & Pellis (2004), have shown that food deprivation is not 

necessary when highly palatable food items such as almonds are used in a competitive 

context. Thus, the animals in the present experiment were not food deprived prior to 

testing. For all filming days, one rat from each pair was marked on the ventral surface for 
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identification purposes. The total amount of food items consumed by each rat was 

quantified during video analysis, and the scores from each competition were cumulated. 

The number of items consumed by each rat over the four testing days was converted to a 

percentage (number of items consumed/ total possible items x 100%), and mean strain 

comparisons were made - the strain that consumed more food items being "dominant ," 

and the strain that consumed fewer food items being "subordinate." 

The second competitive test was a limited access situation in which pairmates had to 

compete for control of a drinking tube. In this competition, the reward source (i.e., 

drinking tube) was restricted to a point location. Therefore, only one animal could drink 

from the tube at a time and pairmates had to compete for control of the water source 

during the test period. Pre-testing and testing for the water competition took place at 0900 

hr. The testing apparatus was a 64 x 57 x 62 cm Plexiglas aquarium lined with processed 

corncobs. A 27 x 33 cm section of one wall of the apparatus was removed and it was 

replaced with a section of wire mesh. A water bottle was attached to the outside of the 

apparatus, such that only the end of the drinking tube entered the inside of the testing 

apparatus through the wire mesh at a height of 17 cm from the floor. Water bottles were 

removed from the home cages at 1700 hr so that the animals were water deprived for 16 

hr prior to pre-testing days 1, 2 and 3 (Days 129, 130 and 131). On pre-testing days 1-3, 

each individual was placed inside the testing apparatus for 3 min to habituate to the novel 

environment and allow them to drink from the mounted drinking tube. Two water bottles 

were placed on the home cage after pre-testing to prevent pairmates from fighting for 

water, and both bottles were removed later in the day to ensure the appropriate length of 
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water deprivation preceded the next testing session. Pre-testing days 4, 5 and 6 (Days 

132, 133 and 134) were the same as the previous days except that water bottles were 

taken from the home cages at 1500 hr (for 18 hr of water deprivation), and individuals 

were placed in the testing apparatus for only 2 min. On testing days 1 and 2 (Days 135 

and 136), pairmates were simultaneously placed in the testing apparatus after 18 hr of 

water deprivation, and allowed to compete for access to the drinking tube for 2 min. 

Pairmates were weighed immediately before and after the competition period so that 

changes in the subjects' weights could be used as an index for the amount of water 

consumed. Following the competition sessions, the animals were returned to their home 

cages, which were equipped with two water bottles per cage. Individual scores (i.e., water 

volume consumed) from each competition were summed to provide a composite score 

and strain comparisons were made - the strain that consumed the most water being 

"dominant," and the strain that consumed less water being "subordinate." 

The water competition paradigm used in the present study was a modified version of that 

used by Drews and Dickey (1977). To reduce the water deprivation to as little as 

possible, an intermediate period between the 23.5 hr used by Drews and Dickey (1977), 

and the 14 hr used by Baenninger (1970) was selected. 

C. Plasma corticosterone 

In addition to evaluating behavioral markers of social dominance, we also assessed 

plasma corticosterone (CORT), which can be used as a physiological marker of social 
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status. Previous studies have shown that plasma CORT levels are higher in subordinate 

rats (Blanchard, Sakai, McEwen, Weiss, & Blanchard, 1993; Raab et al., 1986), and mice 

(Veenema, Meijer, de Kloet, & Koolhaas, 2003), relative to dominants. Therefore, 

relative levels of plasma CORT were compared between strains. When all behavioral 

testing was completed, blood samples were collected on Day 144 to determine the level 

of plasma CORT for each rat. All rats were weighed 30 min prior to sacrifice and cage 

mates were transported to the tissue processing room one pair at a time, The rats were 

killed by decapitation between 0930 to 1030 hr. Trunk blood was collected in lOmL 

polyethylene tubes, and tubes were kept on ice until centrifugation. Plasma samples were 

centrifuged for 10 min at 2500 rpm and serum aliquots were frozen at -20°C. 

Corticosterone was measured using solid-phase radioimmunoassay kits (Coat-A-Count, 

Diagnostic Products Corp., Los Angeles, CA). 

D. Body weight 

It has been shown that weight asymmetries develop when male rats mature in stable 

groups, with the heaviest male being dominant (Lore & Stipo-Flaherty, 1984). Therefore, 

body weight was measured for each pairmate throughout the experiment (i.e., Days 30, 

40, 90, 100, 110and l20) . 

Statistical Analyses 

Unpaired t-tests were used for the behavioral and physiological measures of social 

dominance and a repeated measures ANOVA was used to analyze the body weight 

measures. 

60 



RESULTS 

Part 1. Play fighting 

There was a significant age effect [F (1,44) = 48.26, p < 0.00011, but no significant strain 

effect (p > 0.05) for frequency of attacks (Fig. 3.1A). Conversely, for probability of 

defense, there was a significant strain effect [F (1,44) = 49.38, p < 0.0001], but no 

significant age effect (/? > 0.05) (Fig. 3.IB). Juveniles attacked more frequently than 

adults for both strains, and there was a trend, although not significant, for FAST rats to 

attack more frequently than SLOW rats. Unlike the case for the attack data, FAST rats 

defended against attacks more frequently than S L O W rats as both juveniles and adults. 

With regard to types of defense, there was a significant age effect for evasion [F (1,44) = 

6.34, p < 0.051, with adults using this type of defense more frequently than juveniles (Fig. 

3.2A). There was also a significant age effect for probability of complete rotation [F 

(1,44) = 15.54,/? < 0.001], with juveniles using this defensive tactic more frequently than 

adults (Fig. 3.2B). Finally, for probability of partial rotation, there was a significant age 

effect IF (1,44) = 10.56, p < 0.01], and strain effect [F (1,44) = 5.96, p < 0.05] 
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Figure 3.1 Developmental changes in the mean (± SE) frequency of attack (A) and the 
mean (± SE) probability of defending against attack (B) for FAST and S L O W rats. 
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Figure 3.2 Developmental changes in the mean (+ SE) probability of evasion (A), the 
mean (+ SE) probability of complete rotation (B), and the mean (+ SE) probability of 
partial rotation (C) for FAST and SLOW rats. 
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(Fig. 3.2C). While not significantly different, the trend was for FAST rats to decrease 

their use of complete rotations more slowly with age than S L O W rats; this is consistent 

with the differential increase in the use of partial rotations. Overall, the data show that 

both strains undergo age-related changes in the components of play fighting that are 

typically reported for Long Evans hooded rats (Pellis, 2002). 

A C I L L O U u i i i i J u a . i X v c 

A. Play Measures 

The mean rate of playful attacks launched during adult play fighting was significantly 

lower for SLOW rats as compared to FAST rats (Mean ± SE: 14.8 ± 1.6 vs. 22.0 ± 2.5; t 

= 2.39, df = 22, p< 0.05), and the percentage of partial rotations used in adulthood was 

significantly greater for SLOW rats as compared to FAST rats (Mean ± SE%: 21.9 + 

3 . 1 % vs. 13.6 ± 2.4%; t = -2.15, df = 22,p< 0.05). While not significant, S L O W rats 

tended to use complete rotations less often (Fig. 3.2B) and evasive defense more often 

(Fig.3.2A). These patterns of difference in play are consistent with studies showing 

dominance-subordinance among pairmates (Pellis & Pellis, 1991b; Smith et al., 1999). In 

this case, the SLOW rats behaved in a manner consistent with them being dominant 

members of the pairs. 

B. Competitive measures 

There was no significant strain difference for the mean percentage of food items 

consumed during the food competitions (p > 0.05), although the tendency was for S L O W 

rats to express greater food consumption than FAST rats (Mean ± SE%: 54.9 + 8.7% vs. 
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45.1 ± 8.7%). In the water competition, S L O W rats consumed significantly less water 

than FAST rats (Mean ± SEg: 3.8 ± 0.5g vs. 5.5 ± 0.5g; t = 2.45, df = 22,p< 0.05). The 

competitive tests thus yield inconsistent results with regard to determining dominance. It 

should be borne in mind, that limited access paradigms, may produce measures of skill or 

competitive performance at a specific task (e.g., individual reaction times to take a 

reward), rather than providing an index that is predictive of social dominance (Drews & 

Dickey, 1977). 

C. Plasma corticosterone 

There was no significant strain difference in plasma CORT concentrations (p > 0.05), 

although the present results, showing that S L O W rats had slightly higher plasma CORT 

concentrations than FAST rats (Mean di.SE ng/mL: 93.3 ± 7.8 ng/mL vs. 91.8 ± 11.3 

ng/mL), are consistent with previous literature for these strains (Anisman et al., 1997). 

D. Body weight 

There was a significant strain effect [F (1,22) = 10.13,/? < 0.01], and Age x Strain 

interaction [F (1,5) = 11.82, p < 0.0001] for body weight (Fig. 3.3). Unpaired t-tests at all 

ages showed that there were no significant strain differences (p > 0.05) on Days 30 and 

40, and that S L O W rats were significantly heavier {p < 0.05) than FAST rats from Day 

90 onwards. The heavier body weight of SLOW rats is consistent with them being the 

dominant pairmates (Lore & Stipo-Flaherty, 1984). 
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Figure 3.3 Developmental changes in mean body weights for FAST and S L O W rats. 
( * p < 0 . 0 5 ) 
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DISCUSSION 

Play fighting involves both attack and defense, and changes in the frequency of play 

bouts may vary due to changes in either or both (Pellis et al., 1997). In this study, when 

tested in cross-strain pairs, probability of defense was significantly higher in FAST rats 

during the juvenile phase and in adulthood, as was previously shown for play between 

same-strain pairs (Reinhart, et al., 2004). Similarly, Siviy and coworkers (2003) found 

that Fischer-344 and Lewis rats also differed significantly along this dimension of play 

fighting; Fischer-344 rats were less likely than Lewis rats to respond playfully when 

approached and contacted by another rat. Given that playful defense does not change as a 

function of age (Pellis et al., 1997) or the level of social isolation prior to testing (Siviy, 

et al., 2003), it may be the case that SLOW rats and Fischer-344 rats may have a 

predisposition for lower levels of response to playful solicitations. As playful defense 

remains stable, irrespective of the partner involved (Table 1), it may represent a relatively 

stable, genetically determined, neurobehavioral trait. 

In the present study, while FAST rats showed a tendency for higher frequency of attack, 

there was no significant strain difference as was the case when they played with partners 

of the same strain (Reinhart et al., 2004). Surprisingly, both strains attacked more 

frequently than expected both as juveniles and adults (Table 1). Ferguson and Cada 

(2004) have shown similar results for juvenile Sprague-Dawley rats. That is, Sprague-

Dawley rats were more playful when paired with a different strain partner (e.g., 

Spontaneously Hypertensive rats or Wistar-Kyoto rats) compared to a same strain 

partner. One possible explanation for these results is that there is a contagion effect 
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Table 2. Levels of play behavior observed in cross-strain pairs of FAST and 
SLOW rats, expressed in comparison to previously quantified levels of the same 
behaviors in same-strain pairs. 

Play Behavior FAST/SLOW FAST/SLOW 
Juvenile Adult 

Attack higher/higher higher/higher 

Defense same/same same/same 

Evasion same/less less/same 

Complete rotation higher/higher higher/same 

Partial rotation less/higher same/higher 

* higher, less, or same as, seen in same-strain pairs (Reinhart et al., 2004) 
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between play partners. Previous studies have shown that a more playful partner can 

stimulate more play in the other rat (e.g., Hole & Einon, 1984; Pellis & McKenna, 1992; 

Pellis, Pellis, & Kolb, 1992; Reinhart & Pellis, unpublished observations; Varlinskaya, 

Spear, & Spear, 1999). In the present case, FAST rats could have stimulated more play in 

their SLOW partners. 

The defensive tactics used by SLOW rats during juvenile play fighting provide further 

support for the possibility that there was a contagion effect. As juveniles, S L O W rats 

played very much like FAST rats in that they attacked more, evaded less, and used 

complete rotations more frequently than was expected (Table 1). Although juvenile 

FAST rats were slightly more playful than expected in the present study (i.e., higher 

frequency of attack and less partial rotations), the overall changes in play behavior, when 

pairs of different strain partners were examined, were much greater in S L O W rats. One 

way of interpreting the changes in juvenile play behavior for the strains is that for S L O W 

rats, exposure to highly playful FAST partners is an environmental influence sufficient to 

overcome the SLOW rats ' genetic predisposition to play less. 

Environmental context seems to be more influential in adult play fighting compared to 

play fighting during the juvenile phase (Table 1). The levels of play fighting and tactics 

of defense used by each strain during the juvenile phase were very similar. However, the 

use of particular defensive tactics diverged between the strains in adulthood (see Fig. 

3.2B and 3.2C). That is, FAST rats switched to a more juvenile-like defensive strategy by 

evading less and using complete rotations more frequently than was expected, based on 

69 



their same-strain behavior. In turn, S L O W rats switched to a more adult-like defensive 

strategy in adulthood by increasing their use of partial rotations. 

It is possible that some of the changes in play fighting that were observed in adulthood 

result from the adoption of a dominant or subordinate status within the pairs. Indeed, the 

results for the observational measures of social status in play fighting and body weight 

measures suggest that SLOW rats were dominant. The prediction that the adult-typical 

phenotype expressed by SLOW rats would manifest into social dominance was supported 

by several results; (1) SLOW rats playfully attacked less frequently than FAST rats 

during adulthood, (2) SLOW rats used partial rotation (an adult-typical tactic of defense) 

more frequently than FAST rats, and (3) SLOW rats were significantly heavier than 

FAST rats in adulthood. These behavioral indices of dominance in play fighting have 

been reported multiple times in previous studies (see method section for specific 

references). In the present study, the body weight results were especially convincing. In 

the same-strain play study (Reinhart et al., 2004), rats were reared with a cage mate of the 

same strain and the developmental changes in mean body weight for each strain were 

examined. It was shown that FAST rats grew at a faster rate than S L O W rats, but there 

were no significant strain differences in body weight from Day 85 onwards. In contrast, 

in the present study, SLOW rats were significantly heavier than FAST rats from Day 90 

onwards, supporting the argument for SLOW selected-line dominance (see Lore & Stipo-

Flaherty, 1984; Pellis & Pellis, 1991b). 
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Given the observed changes in the tactics of defense used by each strain in adulthood and 

the observed body weight asymmetry, it appears that providing FAST rats with socially 

dominant S L O W partners can overcome the genetic predisposition for FAST rats to use 

their (previously identified) highly evasive style of defense, and to mature physically at a 

faster rate. Instead, their rate of growth is decreased and they switch to using the more 

juvenile-typical patterns of playful defense (i.e., complete rotation) characteristic of 

subordinates. In contrast, SLOW rats increase their rate of growth and exaggerate the use 

of the more forceful patterns of playful defense typical of dominant adult males (i.e., 

partial rotation). 

Unlike the findings for the observational measures of social dominance, the results for the 

competitive measures did not suggest that the SLOW strain was dominant. We expected 

that if dominant, then SLOW rats would obtain more food items and consume more water 

than FAST rats in the competitive tests of dominance. However, there were no strain 

differences in the food competition and FAST rats consumed significantly more water in 

the water competition. Because FAST rats have been shown to be hyperactive and 

impulsive (Mclntyre, Poulter, et al., 2002), easily distracted by irrelevant cues (Anisman 

& Mclntyre, 2002), and to habituate poorly to novel environments (Mohapel & Mclntyre, 

1998), it would have seemed likely that these behavioral characteristics would hinder 

their performance in competitive tasks. However, our competitive tasks were relatively 

simple and the testing environments were uncomplicated, thus strain differences in 

learning ability may have been minimized. 
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Even if S L O W rats were dominant in the food competition, as indicated by their greater, 

but not significant, consumption of food, there are several reasons why this may not have 

been clearly indicated by the results. When pairmates were placed inside the relatively 

confined area of the cylinder that was used for the food competition, it appeared that the 

physically smaller FAST rats were able to maneuver more easily than SLOW rats to get 

to the food items. Mclntyre, McLeod and Anisman (2004) have previously reported that 

FAST rats are much faster in a T-maze (i.e., from the start box to the choice point) for 

food reinforcement as compared to S L O W rats. In addition, and although the following 

measure was not quantified, FAST rats appeared to steal food items from their SLOW 

partners more frequently than vice versa. FAST rats have been shown to respond 

inappropriately in other social contexts (e.g., Mclntyre, Poulter, et al., 2002), and so 

perhaps in the present study, the FAST rats' impulsiveness (as indicated by their speed 

and aggressiveness during competition), may have led them to steal food items regardless 

of their "subordinate" status. That being said, one should expect that if FAST rats reach 

the limited resource (i.e., food or water) first, then they should acquire more of the 

resource than SLOW rats regardless of their dominance status. 

The FAST rats' greater water consumption in the water competition test may be 

attributed to a differential physiological requirement for water between strains. When 

water intake has been measured throughout development and early adulthood in FAST 

and SLOW rats reared in same-strain pairs, in all instances, it has been the case that 

FAST rats drink more water than S L O W rats (Mclntyre, unpublished observations). 

Thus, FAST rats may actually "need" more water than SLOW rats. For the water 
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competition in particular, the duration of drinking during the two-minute testing period 

may have been greater for FAST rats as compared to S L O W rats, or perhaps FAST rats 

were drinking more efficiently (i.e., faster) when they had access to the drinking tube. 

There were neither apparent dominance postures observed for SLOW rats, nor aggressive 

interactions at the spout during competitions. Therefore, even if SLOW rats were 

dominant in the water competition, their lesser need for water consumption may have led 

them to be tolerant of FAST rats (i.e., allowing their FAST pairmates access to the 

drinking tube). 

In order to regard a competitive measure as a dominance index, you need proof that it is 

indeed an adequate measure of a socially mediated event, in that one animal has priority 

of access over another (Syme, 1974). It is possible that our conflicting results reflect 

differences in the animals' abilities to perform in these specific competitive tasks, rather 

than indicating the respective social status of each strain. The discrepancy between the 

two competitive measures of social dominance, and more generally, between the 

observational and competitive measures of social dominance in the present study is not 

uncommon. Previous studies, in both rats and mice, that have used more than one 

competitive measure, often fail to find a high correlation between competitive measures 

(e.g., Baenninger, 1970; Benton, 1982; Benton, Dalrymple-Alford, & Brain, 1980; Drews 

& Wulczyn, 1975). The lack of consistency between different tests of dominance lend 

support to the idea that dominance is not a unidimensional trait in the rat (Baenninger, 

1970). Also, dyadic relationships may be multifaceted (Drews, 1993), with pairmates 

exhibiting different relationships in different conflict contexts. 
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Social conflict can result in long-lasting behavioral and physiological changes that are 

detectable long after the termination of the stressful encounter (Meerlo, Sgoifo, De Boer, 

& Koolhaas, 1999), which is why, in addition to the behavioral analyses, a physiological 

marker of stress that has been shown to change in response to subordination stress was 

examined in the present study. Blanchard and coworkers (1993) have shown that 

subordinate male rats have higher levels of plasma CORT, a stress hormone, than 

dominant male rats. Based on the view that subordination involves chronic social stress 

for male rats, and that social defeat can result in prolonged increases in plasma CORT 

levels (Blanchard et a l , 1993), it was predicted that the subordinate strain in the present 

study would show higher levels of plasma CORT. However, no significant difference 

between FAST and S L O W rats was found. Even though our expectation, that 

(presumably subordinate) FAST rats would have higher CORT levels than S L O W rats, 

was not met, our results indeed replicate previous work by Anisman and coworkers 

(1997). That is, SLOW rats had slightly higher levels of plasma CORT than FAST rats. 

While inconsistent with the presumed pattern of dominance, the CORT levels may be 

consistent with the higher scores on behavioral measures of stress and anxiety in SLOW 

rats (Mohapel & Mclntyre, 1998; Reinhart et al., 2004). That is, SLOW rats may have a 

higher baseline level of stress. 

It is clear that the observational and competitive analyses of social dominance behavior 

were not congruent; perhaps the level of dominance asymmetry between FAST and 

SLOW pairmates was not sufficient to cause chronic social stress and the associated 

physiological change that was expected. A greater difference between strains may have 
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been found had the samples been collected immediately following a session of play, 

during which time the SLOW strain appeared to be behaviorally dominant, rather than 

eight days after the final behavioral tests were completed. Because the strength of 

dominance relationships (i.e., level of dominance asymmetry), and the resulting stress on 

individual rats can be varied (Blanchard et al., 1993), it appears that the intensity of 

subordination stress can be manipulated and thus account for some differences between 

behavioral and physiological markers of social status. 

Irrespective of whether SLOW rats become dominant over FAST pairmates, what is 

striking is that there are large changes in some aspects of play fighting when interacting 

with a same or opposite strain partner (Table 1). Intriguingly, some components of play 

appear to be more resistant to context-dependent change than others. Indeed, it would 

seem that different components of play fighting fall into one of three categories: (1) 

highly stable, irrespective of environment (e.g., defense), (2) highly labile, with the 

absolute level varying markedly with environment (e.g., attack), or (3) contingently 

labile, with modulation of the absolute level being constrained within a narrow boundary 

(e.g., rotatory defense changes, but remains low compared to Long Evans hooded rats). 
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NOTES 
1. This chapter is modified from a paper that has been submitted for publication. 
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CHAPTER FOUR 1 

Play fighting between unfamiliar pairs of kindling-prone (FAST) and kindling-

resistant (SLOW) juvenile rats. 

ABSTRACT 

Previous studies of play fighting in two strains of rats suggest that selective breeding does 

not change all components of play uniformly, and that some components of play are more 

resistant to context-dependent change than others. Play fighting between unfamiliar pairs 

of juvenile rats of opposite strains was examined to determine whether behavior during 

play fighting is partner-specific at the time of testing, or reflective of prior behavioral 

modifications that are contingent on cage-mate identity. Focal animals behaved 

differently with unfamiliar partners of each strain. These data suggest that juvenile rats 

may be capable of identifying differences between unfamiliar conspecifics and that they 

are able to subsequently alter their play behaviors in response to subtle behavioral cues 

from their play partners. 
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INTRODUCTION 

One of the most common forms of social behavior observed in the juveniles of many 

mammalian, avian, and even some reptilian species is play fighting (PF) (Aldis, 1975; 

Bekoff & Byers, 1981; Burghardt, 1999; Fagen, 1981; Pellis & Pellis, 1998a). Even 

though PF is frequently observed in young animals and has been documented in an 

assortment of species, little is known about the neurobiology of play. Most of what is 

known about the neurobehavioral mechanisms that control different components of PF 

has come from studies of the laboratory rat (Panksepp, 1998; Siviy, 1998; 

Vanderschuren, Niesink, & Van Ree, 1997). 

Play fighting in the rat can be partitioned into attack and defense components (Pellis, 

Field, Smith, & Pellis, 1997; Pellis & Pellis, 1997), the latter of which can be further 

subdivided (e.g., different defensive tactics can be used). During a play fight, the attacker 

tries to make contact with and gently nuzzle the nape of the defender's neck (Pellis, 

1988). Simultaneously, the defender tries to prevent nape contact (Pellis & Pellis, 1990). 

To facilitate PF, play partners must alternate the roles of attacker and defender to prevent 

the interaction from escalating into a serious fight (Pellis & Pellis, 1990, 1991b). Not 

only are attack and defense dissociable behaviorally, but it has also been suggested that 

they are motivationally distinct (Pellis & Pellis, 1991a; Siviy, Love, DeCicco, Giordano, 

& Seifert, 2003), being mediated by different neural systems (Field & Pellis, 1994). For 

example, while the frequency of playful interactions increases when animals are socially 

isolated prior to testing (Panksepp & Beatty, 1980; Pellis & Pellis, 1990; Siviy et al., 

2003), playful defense remains unchanged when pre-testing social experiences have been 
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manipulated (Siviy et al., 2003). Furthermore, amphetamine (Field & Pellis, 1994) and 

haloperidol (Marshall, Pellis, Pellis, & Teitelbaum, 1989) reduce attack at lower doses 

than defense, suggesting that pharmacological agents do not have a uniform effect on all 

components of play behavior. Thus, it appears that attack and defense components of P F 

may involve separate neural control systems. 

Studies that have used different strains of rats also suggest that the components of PF are 

dissociable and can be independently modified (Ferguson & Cada, 2004; Reinhart, 

Mclntyre, Metz, & Pellis, 2005; Reinhart, Pellis, & Mclntyre, 2004; Siviy, Baliko, & 

Bowers, 1997; Siviy et al., 2003). In a developmental study of PF, Reinhart and 

coworkers (2004) characterized the play profiles of two selectively-bred lines of rats 

based on differential amygdala excitability (kindling-prone or FAST and kindling-

resistant or SLOW) (see Racine, Steingart, & Mclntyre, 1999, for a detailed description 

of the selective breeding procedures). They reported that the strains employed different 

tactics of defense, that FAST rats were more playful than SLOW rats throughout 

development, and that at all ages SLOW rats played in a more adult-typical manner. 

These data suggest that selective breeding can lead to changes in PF that are distinct to 

each component, rather than being generalized across all components. 

In a subsequent study (Reinhart, Mclntyre, Metz, et al., 2005), FAST and S L O W pairs of 

rats were crossed-reared (post-weaning) to evaluate the stability of the neurobehavioral 

traits of PF. That is, Reinhart and coworkers (2005) examined whether all aspects of PF, 

during the juvenile phase and in adulthood, were equally influenced by changes to rearing 
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and testing environments. Based on the results of that study, they proposed that some 

components of PF were more resistant to context-dependent change than others, and that 

PF behaviors may be categorized as (1) highly stable (e.g., defense against playful 

attacks), (2) highly labile (e.g., frequency of playful attacks), or (3) contingently labile 

(e.g., use of particular defensive tactics). To summarize, it appears that different aspects 

of PF between FAST and SLOW rats are differentially affected by gene-environment 

interactions, and that environmental influences on play behavior are stronger during 

adulthood, as compared to the juvenile phase of development. 

During PF between pairs of FAST and SLOW rats, the respective strain of each play 

partner appears to influence the expression of PF behaviors. However, a limitation of the 

developmental studies of PF in same (Reinhart et al., 2004) and different (Reinhart et al., 

2005) strain pairs of rats is that pairs were housed and tested with the same cage mate 

from weaning onwards. Therefore, it cannot be determined if changes in patterns of play 

in one partner were due to the incongruent pattern of play of the other partner at the t ime 

of testing, or due to an adaptation process that preceded the testing. That is, is the play 

being modified because of the known idiosyncrasies of the partner with whom each 

animal has been reared, or because of the immediate behavior of the present play partner? 

The present study assessed the play behavior of FAST juvenile females that were tested 

with unfamiliar same and different strain partners. It was hypothesized that, if the focal 

animals were (1) identifying unfamiliar play partners as being from the same or different 

strain, and (2) responding to that partner's immediate behavior, then focal animals should 
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behave differently with FAST vs. S L O W unfamiliar partners. That is, focal animals 

should modify their play behaviors at the time of testing, so as to complement the unique 

play behaviors being expressed by their particular partners. 

METHODS 

Subjects. 

Eighteen FAST and 6 S L O W female rats that were obtained from Carleton University 

were used for the present study. When the animals arrived at the University of Lethbridge 

facility on postnatal Day 26, they were housed as same-strain pairs (6 pairs of FAST 

females) and same-strain triads (2 triads of FAST females, 2 triads of SLOW femaies). 

Animals were housed in 46 x 25 x 20 cm polyethylene tubs with processed corncobs for 

bedding. The animals had ad libitum access to food and water, and the animal colony was 

maintained at 21 °C on a 12:12 hr light: dark cycle (lights on at 0730 hr). The care and use 

of animals was in accordance with local standards set by the Animal Welfare Committee, 

and the national standards set by the Canadian Council for Animal Care. 

It should be noted that dominance asymmetry in PF has been documented in both 

juvenile and adult male rats, and that behavior during PF can be modified depending on 

an individual 's status (Pellis & Pellis, 1991b, 1992; Pellis, Pellis, & Kolb, 1992; Pellis, 

Pellis, & McKenna, 1993). In addition, Reinhart and coworkers (2005) have shown that 

dominance asymmetries are evident during PF between pairs of FAST and SLOW adult 

male rats (i.e., SLOW rats become dominant over FAST pair mates during PF). However, 

females neither form the same types of dominance-subordinance relationships as males 
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(Barnett, 1975; Ziporyn & McClintock, 1991), nor do they have the PF asymmetries that 

are observed in males (Pellis & Pellis, 1990, 1992). To avoid any possibility of a 

dominance effect, and because it has been shown that there are no within strain sex 

differences in the frequency of play in FAST and SLOW rats (Reinhart et al., 2004), 

juvenile females were tested in the present study. 

Procedure. 

One individual from each of the FAST pairs was designated as the focal animal, and the 

other individual was designated (and will be referred to as) the "familiar partner." On 

postnatal Days 27, 28, and 29, each of the six FAST pairs was given 30-min habituation 

periods in the testing apparatus. On Day 29, following habituation, each animal was 

isolated for 24 hr in a 46 x 25 x 20 cm polyethylene cage, as such isolation prior to 

testing has been shown to increase the frequency of PF (Panksepp & Beatty, 1980; Pellis 

& Pellis, 1990). On Day 30, following isolation, each pair of FAST rats was placed 

together in the testing apparatus for 10 min. Following testing on Day 30, the animals 

were once again housed as pairs. On Days 31 , 33, 35 , 37, 39, 4 1 , 4 3 , and 45, each pair 

again went through the 30-min habituation and 24 hr isolation procedures, and were then 

tested on Days 32, 34, 36, 38, 42, and 44. 

On Days 40 and 46, the focal animals from each FAST pair were not tested with their 

familiar partner, but with an unfamiliar, age-matched partner of either the same or 

different strain. The unfamiliar partners were similarly habituated with their cage mates 

(see triads above) on Days 37, 38, 39, 43 , 44, and 45 . Following habituation on Days 39 
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and 45 , the unfamiliar partners were isolated for 24 hr prior to testing. Pairing of the focal 

animals with unfamiliar same or different strain partners on Days 40 and 46 was 

counterbalanced (i.e., half of the focal animals were paired with a FAST partner and half 

with a S L O W partner on Day 40, followed by pairing with the opposite strain on Day 

46). 

Habituation and testing commenced each day at 0730 hr. On the first day of habituation, 

the black and white pelage markings for each animal were drawn so that the animals 

could later be identified during video analysis. The testing apparatus had a Plexiglas floor 

lined with processed corncobs, two wooden walls, an anterior Plexiglas wall, and a 

mirrored posterior wall. The mirror located at the back of the testing apparatus facilitated 

observation of otherwise hidden parts of the rats ' bodies. The dimensions of the apparatus 

during testing were 50 x 50 x 32 cm. Test periods lasted 10 min and were videotaped in 

the dark using the "night shot" function on a Sony 8-mm camcorder. The camera was 

placed in front of the apparatus at an oblique angle at a distance that could capture the 

entire volume of the testing area. 

Behavioral Analyses. 

After collecting the behavioral data, each 10-min test period with an unfamiliar partner 

was scored for various components of play. The 8-mm tapes were converted to VHS 

format and a time code (30 t h of a s) was added using an Horita TRG-50 t ime encoder 

(Horita, Mission Viejo, CA). Videos were viewed in slow motion and analyzed frame-by-
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frame. Each of the following measures of play fighting were quantified for all animals 

(for more detailed description, see Pellis, Pellis, & Whishaw, 1992): 

(I) Frequency of attack - the number of playful initiations (i.e., nape contacts) per 

10 min period 

(II) Probability of defense - the number of times an animal elicits a defense 

(withdrawal of the nape area from the snout of an approaching partner), 

relative to the number of attacks received per 10 min period 

(III) Type of defense: 

(i) Probability of evasion - the number of evasive defenses (withdrawal of 

the nape by leaping, running, or turning away from the partner) relative to 

number of total defenses 

(ii) Probability of complete rotation - the number of times the defender rotates 

around its longitudinal axis to lie supine (facing the attacker to block nape 

access) relative to number of total defenses 

(iii) Probability of partial rotation - number of facing defenses whereby the 

defender turns to face the attacker by rearing on the hind legs, relative to 

number of total defenses 

Statistical Analyses 

Matched pairs t-tests were used for all measures of play. 
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RESULTS 

There were no significant partner effects for frequency of playful attack and probability 

of playful defense (p > 0.05) (Table 2). Focal animals did not differ in the frequency with 

which they attacked FAST and SLOW unfamiliar partners, and the probability of defense 

against attacks from unfamiliar partners was comparable to levels that have been reported 

in previous studies on the PF of FAST rats (Reinhart et al., 2004; Reinhart et al., 2005). 

With regard to the defensive tactics used by focal animals during PF, there were 

significant partner effects for probability of evasion [t(5) = 3.78, p < 0.05], and 

probability of complete rotation [t(5) = 3.67, p < 0.05] (Table 2). Focal animals were 

more likely to use evasion and less likely to use complete rotation when playing with 

unfamiliar FAST partners. The opposite tendency was observed when focal animals 

played with unfamiliar SLOW partners. That is, the focal animals were less likely to use 

evasion and more likely to use the complete rotation tactic of defense. For probability of 

partial rotation, there was no significant partner effect (p > 0.05). 
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Table 3. Levels of play behavior for focal animals with unfamiliar play partners. 

Play Behavior FAST Partner SLOW Partner t- value 

Attack 69 ± 10 60 ± 4 NS 

Defense 97.7 ± 1.5% 96.6 ± 1.8% NS 

Evasion 53.8 ± 6 . 8 % 34.2 ± 7.0% 3.78* 

Complete rotation 41.3 ± 6 . 8 % 61.2 ± 6 . 5 % 3.67* 

Partial rotation 5.0 ± 2 . 1 % 4 . 4 ± 1.1% NS 

(Mean ± SE, *p<0.05) 
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DISCUSSION 

Previous studies of PF in FAST and SLOW rats have shown that each strain has a unique 

play profile (Reinhart et al., 2004), and that the genetically-typical pattern of each 

component of PF may be differentially modified in response to changes in partner 

identity (Reinhart et al., 2005). That is, FAST and SLOW rats appear to modify their play 

behaviors in a manner that is dependent on the age at testing and the strain of the partner 

with whom they are playing. When FAST rats were paired with an unfamiliar conspecific 

from the FAST and SLOW strains in the present study, again, the animals behaved in a 

partner-dependent manner, specifically for the components of PF that have been proposed 

to be relatively labile (e.g., frequency of playful attack and tactics of defense). 

There was no significant difference in the frequency of playful attacks directed at the 

unfamiliar partners. However, the absolute number of attacks directed toward unfamiliar 

partners of both strains was higher than has been observed previously for FAST rats with 

familiar partners (Table 3), and for studies of PF in Long Evans rats (Pellis et al., 1997). 

Reinhart and coworkers (2005) proposed that frequency of attack is a highly labile 

neurobehavioral trait that can vary markedly with the environment, and indeed, the 

present results seem to support this idea. One possible explanation for the atypically high 

levels of playful attack is that there is a novelty effect between unfamiliar play partners. 

Previous studies have reported higher levels of PF between unfamiliar vs. familiar play 

partners (Cirulli, Terranova, & Laviola, 1996), and that partner novelty increases social 

interactions between pairs of juvenile rats (Barefoot, Aspey, & Olson, 
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Table 4. Mean levels of play behavior for FAST rats with familiar and unfamiliar play 
partners. 

Familiar*/Unfamiliar Familiar**/Unfamiliar 

Play Behavior FAST + FAST FAST + SLOW 

Attack 4 0 / 6 9 4 8 / 6 0 

Defense 97% / 9 8 % 9 7 % / 94% 

Evasion 4 7 % / 54% 4 5 % / 34% 

Complete rotation 4 1 % / 4 1 % 4 4 % / 6 1 % 

Partial rotation 12% / 5 % 1 1 % / 4 % 

* juvenile females (Reinhart et al., 2004); ** juvenile males (Reinhart et al., 2005) 
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1975; Monroe & Milner, 1977). It should be noted however, that the suggested 

motivating role of partner novelty has not been supported in all studies (e.g., Kahana, 

Rozin, & Weller, 1997; Latane, Schneider, Waring, & Zweigenhaft, 1971; Terranova, 

Cirulli, & Laviola, 1999). What does appear to be consistent across most studies, 

including the present one, is that juvenile rats seem to be capable of identifying partners 

as being unfamiliar and that some of their social behaviors are subsequently altered. 

The probability of defending against playful attacks does not change as a function of age 

at testing (Pellis et al., 1997), or the level of social isolation prior to testing (Siviy et al., 

2003). In FAST and S L O W rats, the probability of defending against playful attacks 

remains stable irrespective of the strains of the play partners (Reinhart et al., 2005) (Table 

3). In the present study, the level of playful defense for focal animals remained high 

when they were paired with either an unfamiliar FAST or SLOW partner, further 

supporting the idea that playful defense is a relatively stable neurobehavioral component 

of PF. Because the probability of defense did not change, we can further conclude that 

only some aspects of PF are subject to environmentally-based modification of the 

genetically-typical pattern, as was proposed previously by Reinhart and coworkers 

(2005). 

In the present study, focal animals used different tactics of defense when playing with 

partners from each strain. The use of evasive and complete rotation tactics of defense 

differed for focal animals in a partner-dependent manner (Table 2). Furthermore, the 

focal animals ' mean probability of evasion with unfamiliar FAST partners, and mean 
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probability of complete rotation with unfamiliar S L O W partners, exceeds the mean levels 

observed previously in FAST rats PF with familiar FAST and SLOW partners (Table 3). 

Coincident with the relatively high level of complete rotation observed in focal animals 

during PF with unfamiliar SLOW partners, was a relatively low level of evasion (Table 

3). 

Indeed, the FAST females behaved differently with unfamiliar partners of each strain, 

suggesting that they may be responding to some subtle behavioral cue(s) from the play 

partner at the time of testing. One way of interpreting the partner-specific defensive 

responses that were observed (i.e., high levels of evasion and complete rotation with 

unfamiliar FAST and SLOW partners respectively), is that they were an exaggeration of 

the FAST rats' typical pattern of defense, in response to unfamiliarity. That being said, 

Reinhart and coworkers (2004) reported an atypically high level of evasion during play 

fights between familiar FAST adult rats. Similarly, as juveniles and in adulthood, FAST 

rats have been shown to use complete rotation more frequently with familiar SLOW 

partners than would have been predicted based on their behavior with familiar partners of 

the same strain. Perhaps, familiarity with a conspecific may allow for some behavioral 

flexibility between partners during social interactions (i.e., you know how far you can 

"push your limits" with a known partner). However, in the absence of familiarity, as in 

the present study, to behave in a manner that is typical of the strain during a complex 

social interaction such as PF, may be a default response. 
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NOTES 
1. This chapter is modified from a paper that has been submitted for publication. 
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CHAPTER FIVE 

General Discussion 

Social play has long been recognized in a variety of species (Groos, 1898), being 

especially prevalent among the juveniles of most mammalian species (Fagen, 1981). 

Furthermore, descriptive studies have shown that in rats, social play occurs mostly as 

play fighting (e.g., Meaney & Stewart, 1981; Poole & Fish, 1976), the frequency of 

which peaks during the juvenile phase of development (Thor & Holloway, 1984). While 

it has been suggested that there is an association between juvenility and play complexity 

in muroid rodents (Pellis & Iwaniuk, 2000), and that components of play fighting are 

behaviorally and motivationally dissociable (e.g., Pellis & Pellis 1987, 1990, 1991a; 

Siviy, Love, DeCicco, Giordano, & Seifert, 2003), it has been unclear as to whether all 

components of play fighting are equally modified in response to changes in juvenility 

within a single species (e.g., rats). That is, do all components of play fighting become 

more complex when the period of juvenile development has been prolonged? Moreover, 

if there are genetic controls over the components of play that may be differentially 

expressed with changes in the retention of juvenility, then is it possible that the potential 

for modification of each component of play may also be differentially regulated? Stated 

otherwise, could components of play behavior be differentially labile? 

The main objective of this thesis was to use two strains of selectively-bred rats (FAST 

and SLOW) with known differences in their phenotypic expressions of juvenility (i.e., 

differences in behavior and patterns of neural organization), to gain a better 

understanding about potential genetic controls over the components of play fighting (i.e., 
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playful attack, playful defense). However, before discussing the implications of the 

findings regarding play fighting, one limitation of using selectively-bred animals must be 

considered. In any species, the alleles present in a population are co-adapted (i.e., linked) 

with each other because of past natural selection (Papini, 2002), implying that a 1:1, 

gene: behavior relationship is improbable. Consequently, because selectively-bred 

animals were at one time subject to artificial selection, they can differ for a relatively 

wide range of characteristics (i.e., they often differ for more than just the trait of interest) 

(Parmigiani, Palanza, Rodgers, & Ferrari, 1999). That being said, and given that FAST 

and S L O W rats have been shown to differ for a variety of behaviors (Mclntyre, Poulter, 

& Gilby, 2002), it was also relevant to examine various developmental and behavioral 

factors associated with play fighting (e.g., development of body weight, circadian 

activity, anxiety, social dominance, stress hormones), for FAST and S L O W rats. The 

implications for some of the "non-play" findings will be discussed in conjunction with 

the data for play fighting. 

Genetic controls over play fighting 

In terms of play fighting, the findings in chapter two supported previous suggestions that 

there are genetic contributions to the expression of play behaviors (Ferguson & Cada, 

2004; Siviy, Baliko, & Bowers, 1997; Siviy et a l , 2003). FAST rats were more playful 

than S L O W rats throughout development (i.e., FAST rats initiated more playful attacks 

and were more likely to respond to playful attacks), and SLOW rats behaved in an adult-

typical manner at all ages (e.g., low probability of defending against playful attacks, adult 

typical defensive tactics used as juveniles). Interestingly, the play profile for S L O W rats, 
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particularly during the juvenile stage, was similar to the play profile reported for Fischer-

344 (F-344) rats. Comparative studies of play behavior for F-344 rats with Buffalo and 

Lewis rats (Siviy et al., 1997; Siviy et al., 2003) have shown that like S L O W rats, F-344 

rats, when tested as juveniles, also exhibit fewer playful attacks, are less likely to use 

complete rotation, and are more likely to use evasive tactics of defense during play 

fighting (relative to Buffalo and Lewis rats). In addition, when tested in cross-strain pairs 

(i.e., F-344 and Buffalo), F-344 rats exhibited levels of playful defense that were well 

below the range reported for other strains (Siviy et al., 1997), suggesting a genetic 

predisposition for low levels of playfulness. It may be possible that both S L O W and F-

344 strains of rats possess certain neurobehavioral characteristics that make them unique 

in how they respond to playful solicitations from conspecifics. To strengthen the 

comparison between SLOW and F-344 rats, it would be of benefit to examine play 

fighting for F-344 rats in adulthood to see if the developmental trajectory for play 

fighting would be fully congruent with that observed in the SLOW strain. 

The play profiles for FAST and SLOW rats indicate that even though the overall level of 

playfulness differed between the two strains, the typical age-related decline in playfulness 

was present in both strains. More importantly, FAST and SLOW rats used different 

tactics of defense in adulthood to reduce the likelihood of prolonged social contact, which 

is a fundamental part of play fighting. Rather than exhibiting juvenile-like patterns of 

both playful attack and playful defense in adulthood (as was predicted), FAST rats 

exhibited an atypically high level of evasions to avoid physical contact. In contrast, 

SLOW rats blocked physical contact by using a combination of adult-typical defensive 
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tactics (i.e., evasion and partial rotation). Because the components of play changed for 

both strains of rats but in different ways, it can be suggested that components of play 

fighting do not change in a uniform manner with changes in the neurobehavioral 

underpinnings of juvenility. 

It appears that there are consistent, quantifiable, between-strain differences in levels of 

play, and the findings from chapter two emphasize the importance for future studies to 

evaluate individually the development of each component of play fighting. Subsequent to 

the establishment of play profiles for inbred or selectively-bred lines of rats, it becomes 

feasible to ask questions about play fighting that extend beyond the level of behavior. 

That is, the genetic homogeneity of these animal models makes them more amenable to 

comparative analyses at various levels. Between-strain differences in behavior can 

provide clues as to which neurotransmitter systems, brain circuits, or specific genes may 

modulate components of play fighting. For instance, between-strain comparisons of 

neurotransmitter levels in the amygdala have been made for FAST and S L O W rats (e.g., 

noradrenaline, dopamine, serotonin, glutamate, aspartate, GABA) , indicating differences 

between the strains for some systems and not others (Shin, Anisman, Merali, & Mclntyre, 

2004). Similarly, F-344 and Buffalo rats have been shown to differ in noradrenergic and 

dopaminergic receptors (Siviy et al., 1997). Knowing that there are strain differences in 

various transmitter systems can help us to understand the extent to which these 

neurotransmitters are involved in modulating or regulating play behavior - also bearing in 

mind that their respective influences may be specific for a particular component of play. 
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Differential influence of genetic controls 

While the observed differences between FAST and S L O W rats from chapter two 

supported the idea that genetic variation likely contributes to differences in play behavior, 

the strength of potential genetic influences on behavior was still unclear. In conjunction 

with the role that genes play in modulating the expression of behavioral phenotypes, 

environmental factors that influence behavior also need to be considered. Thus, in the 

second experiment (chapter three), the effects that gene-environment interactions had on 

the development of play fighting in FAST and SLOW rats were examined. 

It has been suggested that there are chronological periods throughout development during 

which specific types of stimulation have their most robust effects (i.e., critical period 

hypothesis) (Hoi, Van den Berg, Van Ree, & Spruijt, 1999). As such, some research has 

shown that rats are unusually susceptible to environmental influences during the juvenile 

phase of development (Hoi et al., 1999). If so, then one would predict that the changes in 

rearing and testing environments (chapter 3) would have a greater effect on play fighting 

between juvenile rats as opposed to adults. However, other studies have found that 

environmental effects on behavior are age-dependent (e.g., Arakawa, 2005). That is, 

some factors have differential effects on behavior when they are experienced during 

different periods of development, leaving open the possibility that adult behavior may be 

more readily altered in response to environmental modifications. 

Similar to the patterns of play observed between same-strain pairs of rats, when tested in 

cross- strain pairs. FAST rats were more likely than SLOW rats to defend against playful 
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attacks as juveniles and in adulthood. Previous work has shown that playful defense does 

not change as a function of age (Pellis, Field, Smith, & Pellis, 1997) or the amount of 

time spent in social isolation prior to testing (Siviy et al., 2003). Thus, the cross-strain 

experiment with FAST and S L O W rats support those data, in that the likelihood of 

defending against playful attacks remained stable for both strains irrespective of the 

partner involved. Considering that the within-strain proclivity for defending against 

playful attacks appeared to be relatively invariable, it could be suggested that the high 

stability of this component of play fighting may be attributed to the fact that is it subject 

to strong genetic control. 

In contrast, the between-strain variability for levels of playful attack would suggest that 

the attack component of play fighting may be more readily influenced by manipulations 

of the environment. That is, playful attack may be relatively labile, as compared to 

playful defense. Case in point: FAST and S L O W rats differed significantly for level of 

attack when tested in same-strain pairs, but did not differ when tested in cross-strain 

pairs. In fact, as juveniles and adults, both strains of rats attacked more frequently when 

in cross-strain pairs than would have been predicted based on their same-strain play 

profiles. Sprague-Dawley rats have also been shown to exhibit more playful solicitations 

when paired with a partner of different strain than with a play partner of the same strain 

(Ferguson & Cada, 2004). One explanation for these results is that more playful partners 

can stimulate more play in the other rat (i.e., a contagion effect) (e.g., Hole & Einon, 

1984; Pellis & McKenna, 1992; Pellis, Pellis, & Kolb, 1992; Varlinskaya, Spear, & 

Spear, 1999). Similarly, levels of playful attack have been shown to vary when the 
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motivation to play has been manipulated via social isolation prior to testing. That is, the 

frequency of playful attack increases as a function of the amount of social isolation 

(Panksepp & Beatty, 1980; Pellis & Pellis, 1990; Siviy et al., 2003). To reiterate, because 

levels of playful attack have been shown to vary indefinitely in response to changes in 

environmental factors (e.g., play partner, isolation), it could be suggested that the attack 

component of play fighting may be a neurobehavioral trait that is less genetically-

determined, and consequently, less resistant to context-dependent change than playful 

defense. 

Conceivably, because there were known differences in the behavioral phenotypes for 

each strain (including their play profiles), it was predicted that playful interactions 

between FAST and SLOW pairmates would be qualitatively different in some way, 

relative to the interactions that took place between same strain pairmates. If so, then the 

resulting cross-strain play profiles for each strain would likely be different than those 

previously observed in same-strain pairs. As mentioned, playful defense remained stable 

and playful attack was highly labile irrespective of age, but how were more qualitative 

aspects of play fighting (i.e., tactics of defense) affected by gene-environment 

interactions? Additionally, were the effects age-dependent? 

Even though the overall playfulness for FAST and SLOW rats in cross-strain pairs 

differed from their respective same-strain levels of play, during the juvenile phase, the 

levels of play fighting and tactics of defense used by both strains were almost 

indistinguishable. That is, when tested in cross-strain pairs, the patterns of play fighting 
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for juvenile FAST and SLOW rats were highly similar. However, in adulthood, the 

particular tactics of defense used by each strain diverged. FAST rats evaded less and used 

complete rotations more frequently, whereas SLOW rats increased their use of partial 

rotations. Thus, it appears that the environmental manipulation made in the second 

experiment (chapter 3) had greater implications for adult behavior, as compared to 

juvenile behavior. 

The differences in tactics of defense used by FAST and SLOW rats in adulthood can be 

interpreted with two considerations in mind: (1) the significance of the age-dependent 

effect, and (2) the direction and magnitude of change observed in each strain, for each 

tactic. Notably, environmental context was manipulated not in a physical way (e.g., light 

intensity, ambient temperature, novel environment), but in a manner that was more 

socially-relevant. One possible explanation for the modulation of defensive tactics in the 

FAST and SLOW strains stems from the complexities associated with adult social 

interactions in rats. That is, adult social behavior is characterized by the ability of 

individuals to respond with appropriate, well-timed, context-dependent behaviors, and the 

development of such a repertoire of social behaviors can be influenced by factors such as 

genetic constitution, sex, and social rank (Hoi et al., 1999). As juveniles, rats do not yet 

have a fully developed set of social skills, making it plausible that cross-strain pairs of 

FAST and SLOW rats behaved similarly during play fighting at the juvenile stage. In 

contrast, adult rats have an acquired set of social behaviors; this perhaps explains why the 

change in play partner had a greater influence on play fighting in adulthood. Moreover, 

because juveniles are relatively "socially immature", the effects on juveni le behavior may 
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have been more detrimental had the social manipulation been more extreme (e.g., long-

term social isolation or deprivation). Socially relevant environmental manipulations that 

are relatively less extreme (e.g., interacting with a genetically-different conspecific) seem 

to hold greater salience in adulthood, having an effect on adult social exchanges. 

The importance that social variables have for adult interactions (e.g., play fighting) is 

further exemplified by the dominance-subordinance relationships that form between male 

rats in adulthood (Lore & Stipo-Flaherty, 1984). Previous studies have examined the 

nature of dominance relationships, and the respective effects that these relationships have 

on the patterns of play fighting in dominant and subordinate pairmates (e.g., Pellis & 

Pellis, 1991b, 1992; Pellis, Pellis, & McKenna, 1993). Dominance relationships are 

reflected in the play fighting of male pairmates as asymmetries in particular components 

of play. That is, subordinates initiate more playful contacts than dominants, and use 

juvenile-like defensive tactics (complete rotation) when playing with dominant males. 

Conversely, dominant males attack subordinates less frequently and they use adult-

typical (i.e., partial rotation) tactics of defense. Correspondingly, these exact patterns of 

play behavior were observed in cross-strain pairs of rats, with FAST rats adopting the 

behaviors associated with being subordinate, and SLOW rats adopting tactics that are 

typical of being dominant. 

The direction of change for the defensive behaviors can be explained, at least in part, by 

the establishment of dominance relationships between FAST and SLOW pairmates in 

adulthood. In terms of the magnitude of change for each tactic, it appears that the relative 
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potential for modification of defensive tactics lies somewhere in between the levels 

suggested for playful attack and probability of defending against playful attack. That is, 

the tactics of defense in play fighting may be contingently labile. The tactics seem to 

change in a context-dependent manner. However, the degree of change seems to be 

confined to a strain-typical range (e.g., changes in rotatory defense are exhibited in FAST 

and S L O W rats, but remain low compared to Long Evans hooded rats). Tactics of 

defense neither appear to be as stable as the quantitative measure of playful defense (i.e., 

probability of defending against playful attacks), nor does their capacity for modification 

appear to be as pliable as that observed for playful attack; this suggests that there may be 

some intermediate level of genetic control over this aspect of play fighting. 

Reverting to the issue of strain differences in social dominance, SLOW rats were not only 

behaviorally dominant during adult play fighting, but they also exhibited a 

physiologically relevant characteristic of dominant male mammals - greater body weight 

(Lore & Stipo-Flaherty, 1984). In chapter two, it was shown that FAST rats grew at a 

faster rate than SLOW rats, but when they were reared in cross-strain pairs (chapter 

three), S L O W rats were significantly heavier throughout adulthood. In contrast to these 

affirmative indices of social dominance in the SLOW strain, competitive measures of 

social dominance and measures of stress hormones revealed either an absence of strain 

differences, or differences in the opposite direction (i.e., FAST rats being dominant to 

SLOW rats). Putative explanations for the inconsistencies reflected in the battery of 

social dominance tests were provided in chapter three, some relating to between-strain 

physiological differences (e.g., body size, water requirements), and others to previously 
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documented behavioral idiosyncrasies associated with a particular strain (e.g., impulsivity 

of FAST rats). 

Additionally, it is possible that selective breeding has led to the presence of comorbities 

in FAST and SLOW rats that have relatively global (i.e., widespread) effects on social 

behavior; this would provide a more parsimonious explanation for not only the 

documented discrepancies in social dominance measures (chapter 3), but also for the 

between-strain differences that have been reported for various social behaviors. One 

possibility is that FAST and SLOW rats differ for neurobehavioral traits associated with 

coping style (i.e., the way individuals perceive and cope with challenges). It has been 

suggested that the consequences of social conflict are determined not by the intensity of 

social interactions between pairmates, but by the coping style of the individuals (Meerlo, 

Sgoifo, De Boer, & Koolhaas, 1999). For example, rats that have experienced repeated 

social defeat show changes in food intake, body weight, and social activities. Because 

these changes vary greatly between individuals, it is hypothesized that there are 

variations in coping style (Meerlo et al., 1999). Similarly, following repeated social 

defeat, idiosyncratic patterns of stress symptoms have been observed in mice that were 

selectively bred for an active coping style vs. a passive coping style (Veenema, Meijer, 

de Kloet, & Koolhaas, 2003), indicating between-strain differences in coping style. We 

know that FAST and SLOW rats respond differently behaviorally and physiologically in 

social, and stress-related situations (e.g., Anisman et al., 1997; Mclntyre, Poulter, et al., 

2002; Mohapel & Mclntyre, 1998; Reinhart, Pellis, & Mclntyre, 2004). Thus, it is 

possible that differences between FAST and SLOW rats for coping style may explain, in 
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part, the often contrasting responses that FAST and SLOW rats exhibit while engaged in 

different social experiences (e.g., play fighting, social dominance competitions, sexual 

contexts). 

It is clear that FAST and SLOW rats differ fundamentally not only in behavior, but also 

in the brain as well. Physiological and anatomical studies have shown that selective 

breeding for amygdala excitability affects not only the amygdala, but also the activity and 

morphology of cells in various brain regions (e.g., Flynn et al., 2004; Mclntyre, 

Hutcheon, Schwabe, & Poulter, 2002; Poulter et al., 1999; Reinhart, Mclntyre, Pellis, & 

Kolb, 2004; Xu, Mclntyre, Fahnestock, & Racine, 2004). Interestingly, the morphology 

of cells found in cortical regions of the brain that are connected to the amygdala, and that 

are thought to be important for social interactions (i.e., prefrontal cortex, parietal cortex), 

have been shown to differ between the strains (Reinhart, Mclntyre, et al., 2004). As yet, it 

is unclear as to what the specific implications of the anatomical findings may be for 

social behaviors in general. However, it should be acknowledged: (1) that selective 

breeding appears to have widespread effects throughout the brain, and (2) that the 

tendency to be more juvenile-like (i.e., FAST) or adult-like (i.e., SLOW) because of 

selective breeding may cause changes in the brain systems that influence an assortment of 

social behaviors. 

The role of familiarity? 

When considered in combination, the findings from chapters two and three support the 

existing argument for potential genetic contributions to the expression of play behaviors, 
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and suggest that components of play fighting may be subject to varying levels of genetic 

influence, making each component differentially labile. To strengthen the potential 

validity of the previous interpretations, it was necessary to address an important 

limitation that existed for the experimental design employed in chapters two and three. 

During the developmental studies of play fighting in the FAST and SLOW strains, rats 

were housed as pairs immediately after weaning, and were then tested as juveniles and 

adults with their respective cage mate. However, the potential cause for differences in 

play behavior that were observed in same vs. cross strain pairs was questionable. It was 

unclear as to whether changes in play behavior in one partner were due to the 

peculiarities in behavior of the other partner during play-testing, or if the changes in play 

behavior were representative of more general behavioral modifications that developed 

from having been reared with a genetically similar or different cage mate. 

To address this uncertainty, juvenile FAST rats were tested on subsequent occasions with 

unfamiliar FAST and SLOW partners. By pairing unfamiliar juveniles that had neither 

previous histories together, nor the burden of social complexities that are associated with 

adult social interactions, it was possible to eliminate some of the confounding factors that 

hindered the previous experiments, and examine the immediate behaviors of the 

unfamiliar focal animals. More importantly, it could be determined whether the 

unfamiliar focal animals exhibited partner-specific play behaviors, as would be predicted 

if there are indeed qualitative differences between FAST and SLOW rats for the 

components of play fighting. As shown in chapter four, focal animals behaved differently 

with partners from each strain, specifically for those components of play fighting that 
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were proposed in chapter three, to be potentially modifiable (i.e., playful attack, tactics of 

defense). Given that the focal animals appeared to behave in a partner-specific (and strain 

specific) manner, it could be suggested that they may have been able to identify 

differences between unfamiliar conspecifics, and that they were subsequently capable of 

modifying their own behaviors while in the respective play situations. That is not to say 

that focal animals were able to identify specific individuals, but rather, that they may 

have perceived differences in some qualitative feature(s) of play behavior when 

interacting with a same vs. different strain partner. If this is so, then to what cues were 

they responding? 

It has been shown that during social interactions, rats rely heavily on olfactory and tactile 

cues to guide their behaviors, which makes it difficult to identify behaviorally the ways in 

which play fighting may differ between FAST and SLOW rats. Conceivably, focal 

animals may have modified their own behaviors in response to pheromonal differences 

that were detected between strains, or perhaps there were between-strain differences in 

terms of how playful behaviors were executed. For example, previous work has shown 

that qualitative differences in the performance of playful attack by one partner can affect 

the corresponding defense of the other partner. Nape contacts that are more vigorous or 

that occur in rapid succession may be more likely to result in rotatory defensive tactics by 

the defending partner, whereas less vigorous nape contacts may be less likely to result in 

a facing style of defense (Pellis et al., 1997; Siviy et al., 2003). Although it was not 

reported in chapter four, there was no difference in the mean frequency of playful attacks 

launched by the unfamiliar FAST and SLOW partners towards the focal animals. In 
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addition, when a subset of FAST and SLOW rats was examined to determine whether 

there may be strain differences for "style of attack" (i.e., angle of approach for the 

attacker, speed of attack), no significant differences (p > 0.05) were detected between 

FAST and S L O W rats. For example, for both strains, a perpendicular angle of approach 

was the most common angle of attack observed (70-80% of all attacks), and 

approximately 80% of the attacks involved a combination of either walking toward the 

potential defender or bending down from a rearing position to attack the defender. It is 

possible that there are other, more subtle qualitative differences in how FAST and S L O W 

rats execute their respective attacks. However, there do not seem to be any distinct strain 

differences in attack style that can account for the focal animals ' use of partner-specific 

tactics of defense. 

It would also be of interest to examine the behavior of the unfamiliar partners in greater 

detail, so as to determine how differential experiences and partner novelty may affect 

behavior. Prior to being tested with the unfamiliar partners, focal animals had more play 

fighting experiences (i.e., with their cage mates), and, consequently, greater exposure to 

the play-testing environment than their unfamiliar partners. It may be possible that 

because of the focal animals ' relatively extensive experience with play fighting in the 

testing environment, the novelty effect of a new partner played a facilitating role in the 

expression of play behaviors (e.g., unusually high level of playful attacks). But how did 

partner novelty affect the behavior of the unfamiliar animals? Knowing that fear and 

curiosity about novel environments can compete with social attraction (Terranova, 

Cirulli, & Laviola, 1999), the presence of a new partner in an environment with which the 
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unfamiliar animals had relatively little experience (i.e., compared to the focal animals) 

may have been overwhelmingly novel. If this is so, then one would predict that play 

fighting behaviors in the unfamiliar partners may have been somewhat repressed or 

inhibited. 

Furthermore, the tactics of defense in the unfamiliar partners of each strain would 

presumably differ, particularly because of the known behavioral and anxiety differences 

that that have been observed in the selected-lines (e.g. Mohapel & Mclntyre, 1998; 

Reinhart, Pellis, et al., 2004; Reinhart, Mclntyre, Metz, & Pellis, 2005). Would the 

impulsive, juvenile-like FAST rats behave in a manner that encourages playful contact 

(e.g., high level of complete rotations), irrespective of the situational uncertainty? 

Conversely, would the highly anxious, adult-typical SLOW rats behave in a way that is 

not conducive to play (e.g., high level of evasions)? A closer look at the data collected in 

chapter four could test these hypotheses. 

Is there more to learn from FAST and SLOW rats? 

It has been suggested that social play is important for behavioral development in 

mammals (Vanderschuren, Niesink, & Van Ree, 1997), and more specifically, for the 

development of social skills (Panksepp, Siviy, & Normansell, 1984; Thor & Holloway, 

1984). Bearing that in mind, if social play behaviors were to share similar characteristics 

in all mammalian species, then it is possible that information relevant to human play may 

be derived from studying social play in a rat model. Play fighting is the most common 

form of social play for the rat, and even though most of what is known about the 
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neurobiology of play fighting has come from studying the laboratory rat, there are still 

many outstanding questions regarding the neurobehavioral mechanisms underlying 

playful behaviors. As mentioned in chapter one, previous analyses of play fighting in the 

rat have been limited or lacking in a variety of ways. Consequently, we have yet to 

discover and fully understand which brain system(s), neurotransmitters, or specific 

proteins may play a role in modulating playful behaviors. 

Because selectively-bred animals often exhibit little wituin-strain variation in gene 

expression (often for a number of genes) (Koch & Britton, 2005), they are particularly 

valuable for examining the genetic underpinnings of behavior. For example, in FAST and 

S L O W rats, 15 genes of interest have been isolated and show no within-strain variation in 

their expression, whereas relatively more variation in baseline gene expression has been 

found in control animals (Mclntyre, Poulter, et.al., 2002). Thus, FAST and S L O W rats 

serve as applicable tools for investigating molecular mechanisms underlying complex 

behaviors such as social play. 

Using FAST and SLOW rats to examine neurobiological aspects of social play may also 

be of interest for investigating human disorders involving disturbances in social (play) 

behavior (i.e., juvenile autism, ADHD) (Vanderschuren et al.. 1997). The causes of many 

neurological disorders involve multiple gene alterations that interact to create the disorder 

(Mclntyre, Poulter, et al., 2002). However, most animal models used to study genetic 

contributions to disorders use mice, the functional implications of which are drawn from 

changes in the expression of one gene (Mclntyre, Poulter., et al., 2002). The selective 
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breeding of FAST and SLOW rats is relatively more natural and representative of the 

human disorders. Therefore, it appears that the comorbidities that were initially 

considered a limitation in FAST and S L O W rats may be of some benefit. Interestingly, 

selective breeding of FAST and S L O W rats has produced a variety of physiological and 

behavioral differences between the strains that appear relevant to human disorders such 

as epilepsy and A D H D (Mclntyre, Poulter, et al., 2002); again emphasizing the value of 

these strains of rats to investigate molecular mechanisms underlying biological disorders 

and the genetic underpinnings of social behaviors. 

While it appears that there are genetic controls that differentially influence the 

components of play fighting, it remains to be understood why the neurobehavioral traits 

of play fighting may be more or less susceptible to context-dependent change. Why is 

playful defense so rigid? Conversely, why is the capacity for modification so great for 

playful attack? Future experiments using selectively-bred animals may provide insight 

into the proximate mechanisms controlling playful behaviors. 

109 



REFERENCES 

Aldis, O. (1975). Play fighting. New York: Academic Press. 

Anisman, H., Lu, Z.W., Song, C , Kent, P., Mclntyre, D.C., & Merali, Z. (1997). 

Influence of psychogenic and neurogenic stressors on endocrine and immune activity: 

Differential effects in Fast and Slow seizing rat strains. Brain, Behavior, & 

Immunity, 11, 63-74. 

Anisman, H., & Mclntyre, D.C. (2002). Conceptual, spatial, and cue learning in the 

Morris water maze in fast or slow kindling rats: Attention deficit comorbidity. The 

Journal of Neuroscience, 22 ,7809-7817. 

Arakawa, H. (2005). Age dependent effects of space limitation and social tension on 

open-field behavior in male rats. Physiology & Behavior, 84, 429-436. 

Baenninger, L.P. (1970). Social dominance orders in the rat: "Spontaneous," food, and 

water competition. Journal of Comparative & Physiological Psychology, 7 1 , 202-

209. 

Barefoot, J.C., Aspey, W.P., & Olson, J.M. (1975). Effects of partner novelty on 

affiliation in the rat. Bulletin of the Psychonomic Society, 6, 655-657. 

Barnett, S.A. (1975). The rat: A study in behavior. Chicago: The University of Chicago 

Press. 

Baron-Cohen, S., Ring, H.A., Bullmore, E.T., Wheelwright, S., Ashwin, C , & Williams, 

S.C.R. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral 

Reviews, 24, 355-364. 

Beach, F.A. (1976). Sexual attractivity, proceptivity, and receptivity in female mammals. 

Hormones and Behavior, 7, 105-138. 

110 



Bekoff, M , & Byers, J. (1981). A critical reanalysis of the ontogeny and phytogeny of 

mammalian social and locomotor play: An ethological hornet ' s nest. In K. 

Immelmann, G.W. Barlow, L. Petrinovich, & M. Main (Eds.), Behavioral 

development: The Bielefeld interdisciplinary project (pp. 296-337). Cambridge, U.K.: 

Cambridge University Press. 

Benton, D. (1982). Is the concept of dominance useful in understanding rodent 

behaviour? Aggressive Behavior, 8, 104-107. 

Benton, D., Dalrymple-Afford, J.C., & Brain, P.P. (1980). Comparisons of dominance 

measures in the laboratory mouse. Animal Behaviour, 28, 1274-1279. 

Blanchard, D.C., Sakai, R.R., McEwen, B., Weiss, S.M., & Blanchard, R.J. (1993). 

Subordination stress: Behavioral, brain, and neuroendocrine correlates. Behavioural 

Brain Research, 58, 113-121. 

Blizard, D.A., & Adams, N. (2002). The Maudsley Reactive and Nonreactive strains: A 

new perspective. Behavior Genetics, 32, 277-299. 

Bolles, R.C., & Woods, P.J. (1964). The ontogeny of behavior in the albino rat. Animal 

Behaviour, 12, 427-441. 

Burghardt, G.M. (1998). Play. In: G. Greenberg & M. Haraway (Eds.), Encyclopedia of 

Comparative Psychology. New York: Garland. 

Burghardt, G.M. (1999). Conceptions of play and the evolution of animal minds. 

Evolution & Cognition, 5, 115-123. 

Burghardt, G.M. (2004). The genesis of play: Testing the limits. Cambridge, MA: MIT 

Press. 

Cirulli, F., Terranova, M.L., & Laviola, G. (1996). Affiliation in periadolescent rats: 

111 



Behavioral and corticosterone response to social reunion with familiar and unfamiliar 

partners. Pharmacology, Biochemistry & Behavior, 54, 99-105. 

Diamond, J., & Bond, A.B. (2003). A comparative analysis of social play in birds. 

Behaviour, 140, 1091-1115. 

Drews, C. (1993). The concept and definition of dominance in animal behaviour. 

Behaviour, 125, 283-313. 

Drews, D.R., & Dickey, C.L. (1977). Observational and competitive measures of 

dominance in rats. The Psychological Record, 2, 331-338. 

Drews, D.R., & Wulczyn, F.H. (1975). Measuring dominance in rats. The Psychological 

Record, 25, 573-581. 

Ellenbroek, B.A., & Cools, A.R. (2002). Apomorphine susceptibility and animal models 

for psychopathology: Genes and environment. Behavior Genetics, 32, 349-361. 

Emery, N.J., Capitanio, J.P., Mason, W.A., Machado, C.J., Mendoza, S.P., & Amaral, 

D.G. (2001). The effects of bilateral lesions of the amygdala on dyadic social 

interactions in rhesus monkeys (Macaca mulatto). Behavioral Neuroscience, 115, 515-

544. 

Fagen, R.M. (1981). Animal play behavior. New York: Oxford University Press. 

Fendt, M., & Fanselow, M.S. (1999). The neuroanatomical and neurochemical basis of 

conditioned fear. Neuroscience and Biobehavioral Reviews, 23 , 743-760. 

Ferguson, S.A., & Cada, A.M. (2004). Spatial learning/memory and social and nonsocial 

behaviors in the Spontaneously Hypertensive, Wistar-Kyoto and Sprague-Dawley rat 

strains. Pharmacology, Biochemistry & Behavior, 77, 583-594. 

Field, E.F., & Pellis, S.M. (1994). Differential effects of amphetamine on the attack and 

112 



defense components of play fighting in rats. Physiology & Behavior, 56, 325-330. 

Field, E.F., Whishaw, I.Q., Forgie, M.L. & Pellis, S.M. (2004). Neonatal and pubertal, 

but not adult, ovarian steroids are necessary for the development of female-typical 

patterns of dodging to protect a food item. Behavioral Neuroscience, 118, 1293-1304. 

Field, E.F., Whishaw, I.Q., & Pellis, S.M. (1997). Organization of sex-typical patterns of 

defense during food protection in the rat: The role of the opponent 's sex. Aggressive 

Behavior, 23, 197-214. 

Flynn, C , Monfils, M.-H., Kleim, J.A., Kolb, B., Mclntyre, D.C., & Teskey, G.C. (2004). 

Differential neuroplastic changes in neocortical movement representations and 

dendritic morphology in epilepsy-prone and epilepsy-resistant rat strains following 

high-frequency stimulation. European Journal of Neuroscience, 19, 2319-2328. 

Foroud, A., & Pellis S.M. (2002). Development of "anchoring" in the play fighting of 

rats: Evidence for an adaptive age-reversal in the juvenile phase. International Journal 

of Comparative Psychology, 15, 11-20. 

Foroud, A., & Pellis S.M. (2003). The development of "roughness" in the play fighting of 

rats: A Laban Movement Analysis perspective. Developmental Psychobiology, 42, 35-

43 . 

Gibb, R.L. (2001). Environmental stimulation as a treatment for early brain damage. 

Unpublished master 's thesis, University of Lethbridge, Lethbridge, Alberta, Canada. 

Groos, K. (1898). The play of animals. New York: Appleton. 

Hoi, T., Van den Berg, C.L., Van Ree, J.M., & Spruijt, B.M. (1999). Isolation during the 

play period in infancy deceases adult social interactions in rats. Behavioural Brain 

Research, 100, 91-97. 

113 



Hole, G.J., & Einon, D.F. (1984). Play in rodents. In P.K. Smith (Ed.), Play in animals 

and man (pp. 95-117). Oxford, England: Basil Blackwell. 

Ikemoto, S., & Panksepp, J. (1992). The effects of early social isolation on the motivation 

for social play in juvenile rats. Developmental Psychobiology, 25, 261-274. 

Iwaniuk, A.N., Nelson, J.E., & Pellis, S.M. (2001). Do big-brained animals play more?: 

Comparative analyses of play and relative brain size in mammals . Journal of 

Comparative Psychology, 115, 29-41 . 

Kahana, A., Rozin, A., & Weller, A. (1997). Social play with an unfamiliar group in 

weanling rats (Rattus norvegicus). Developmental Psychobiology, 30. 165-176. 

Koch, L.G., & Britton, S.L. (2005). Strains. In: I.Q. Whishaw & B. Kolb (Eds.), The 

behavior of the laboratory rat: A handbook with tests (pp. 25-36). New York: Oxford 

University Press. 

Kolb, B. , Pellis, S.M., & Robinson, T.E. (2004). Plasticity and functions of the orbital 

frontal cortex. Brain and Cognition, 55, 104-115. 

Landgraf, R., & Wigger, A. (2002). High vs Low Anxiety-related Behavior rats: An 

animal model of extremes in trait anxiety. Behavior Genetics, 32, 301-314. 

Latane, B . , Schneider, E., Waring, P., & Zweigenhaft, R. (1971). The specificity of social 

attraction in rats. Psychonomic Science, 23, 28-29. 

Laviola, G., & Alleva, E. (1995). Sibling effects on the behavior of infant mouse litters 

(Mus domesticus). Journal of Comparative Psychology, 109, 68-75. 

Lore, R.K., & Stipo-Flaherty, A. (1984). Post weaning social experience and adult 

aggression in rats. Physiology & Behavior, 33 , 571-574. 

Marshall, H.M., Pellis, S.M., Pellis, V.C., & Teitelbaum, P. (1989). Dopaminergic drugs 

114 



differentially affect attack vs. defense in play fighting by juvenile rats. Society for 

Neuroscience Abstracts, 15,460.10. 

Mclntyre, D.C., Hutcheon, B„ Schwabe, K., & Poulter, M.O. (2002). Divergent G A B A A 

receptor-mediated synaptic transmission in genetically seizure-prone and seizure-

resistant rats. The Journal of Neuroscience, 22, 9922-9931. 

Mclntyre, D.C., Kelly, M.E., & Dufresne, C. (1999). FAST and SLOW amygdala 

kindling rat strains: Comparison of amygdala, hippocampal, piriform and perirhinal 

cortex kindling. Epilepsy Research, 35, 197-209. 

Mclntyre, D.C., Kent, P., Hayley, S., Merali, Z., & Anisman, H. (1999). Influence of 

psychogenic and neurogenic stressors on neuroendocrine and central monoamine 

activity in fast and slow kindling rats. Brain Research, 840, 65-74. 

Mclntyre, D.C., McLeod, W.S., & Anisman, H. (2004). Working and reference memory 

in seizure-prone and seizure-resistant rats: Impact of amygdala kindling. Behavioral 

Neuroscience, 118, 314-323. 

Mclntyre, D.C., Poulter, M.O., & Gilby, K. (2002). Kindling: Some old and some new. 

Epilepsy Research, 50, 79-92. 

Meaney, M. J., Dodge, A.M., & Beatty, W.W. (1981). Sex-dependent effects of 

amygdaloid lesions on the social play of prepubertal rats. Physiology & Behavior, 26, 

467-472. 

Meaney, M.J., & McEwen, B.S. (1986). Testosterone implants into the amygdala during 

the neonatal period masculinize the social play of juvenile female rats. Brain 

Research, 398, 324-328. 

Meaney, M. J., & Stewart, J. (1979). Environmental factors influencing the affiliative 

115 



behavior of male and female rats (Rattus norvegicus). Animal Learning & Behavior, 

7, 397-405. 

Meaney, M. J., & Stewart, J. (1981). A descriptive study of social development in the rat 

{Rattus norvegicus). Animal Behaviour, 29, 34-45. 

Meerlo, P., Sgoifo, A., De Boer, S.F., & Koolhaas, J.M. (1999). Long-lasting 

consequences of a social conflict in rats: Behavior during the interaction predicts 

subsequent changes in daily rhythms of heart rate, temperature, and activity. 

Behavioral Neuroscience, 113, 1283-1290. 

Meunier, M., Bachevalier, J., Murray, E.A., Malkova, L., & Mishkin, M. (1999). Effects 

of aspiration versus neurotoxic lesions of the amygdala on emotional responses in 

monkeys. European Journal of Neuroscience, 11,4403-4418. 

Mohapel, P., & Mclntyre, D.C. (1998). Amygdala kindling-resistant (SLOW) o r - p r o n e 

(FAST) rat strains show differential fear responses. Behavioral Neuroscience, 112, 

1402-1413. 

Monroe, B.D., & Milner, J.S. (1977). Social deprivation and novelty effects on 

gregarious behavior in the rat. Bulletin of the Psychonomic Society, 9, 219-220. 

Murphy, J.M., Stewart, R.B., Bell, R.L., Badia-Elder, N.E., Carr, L.G., McBride, W.J., 

Lumeng, L., & Li, T.-K.. (2002). Phenotypic and genotypic characterization of the 

Indiana University rat lines selectively bred for high and low alcohol preference. 

Behavior Genetics, 32, 363-388. 

Ortega, J.C., & Bekoff, M. (1987). Avian play: Comparative, evolutionary, and 

developmental trends. Auk, 104, 338-341. 

Panksepp, J. (1981). The ontogeny of play in rats. Developmental Psychobiology, 14, 

116 



327-332. 

Panksepp, J. (1998). Affective Neuroscience. New York: Oxford University Press. 

Panksepp, J., & Beatty, W.W. (1980). Social deprivation in rats. Behavioral and Neural 

Biology, 30, 197-206. 

Panksepp, J., Burgdorf, J., Turner, C,, & Gordon, N. (2003). Modeling ADHD-type 

arousal with unilateral frontal cortex damage in rats and beneficial effects of play 

therapy. Brain and Cognition, 52, 97-105. 

Panksepp, J., Siviy, S., & Normansell, L. (1984). The psychobiology of play: Theoretical 

and methodological perspectives. Neuroscience and Biobehavioral Reviews, 8, 465-

492. 

Papini, M.R. (2002). Comparative psychology: Evolution and development of behavior. 

New Jersey: Prentice Hall. 

Parmigiani, S., Palanza, P., Rodgers, J., & Ferrari, P.F. (1999). Selection, evolution of 

behavior and animal models in behavioral neuroscience. Neuroscience and 

Biobehavioral Reviews, 23, 957-970. 

Pellis, S.M. (1988). Agonistic versus amicable targets of attack and defense: 

Consequences for the origin, function, and descriptive classification of play-fighting. 

Aggressive Behavior, 14, 85-104. 

Pellis, S.M. (2002). Sex differences in play fighting revisited: Traditional and 

nontraditional mechanisms of sexual differentiation in rats. Archives of Sexual 

Behavior, 31 , 17-26. 

Pellis, S.M., Field, E.F., Smith, L.K., & Pellis, V.C. (1997). Multiple differences in the 

play fighting of male and female rats: Implications for the causes and functions of 

117 



play. Neuroscience and Biobehavioral Reviews, 21 , 105-120. 

Pellis, S.M., & Iwaniuk, A.N. (1999). The roles of phylogeny and sociality in the 

evolution of social play in muroid rodents. Animal Behaviour, 58, 361-373. 

Pellis, S.M., & Iwaniuk, A.N. (2000). Comparative analyses of the role of postnatal 

development on the expression of play fighting. Developmental Psychobiology, 36, 

136-147. 

Pellis, S.M., & Iwaniuk, A.N. (2004). Evolving a playful brain: A levels of control 

approach. International Journal of Comparative Psychology, 17, 90-116. 

Pellis, S.M., & McKenna, M.M. (1992). Intrinsic and extrinsic influences on play 

fighting in rats: Effects of dominance, partner 's playfulness, temperament and 

neonatal exposure to testosterone propionate. Behavioural Brain Research, 50, 135-

145. 

Pellis, S.M., & Pasztor, T.J. (1999). The developmental onset of a rudimentary form of 

play fighting in C57 mice. Developmental Psychobiology, 34 ,175-182 . 

Pellis, S.M., & Pellis, V.C. (1983). Locomotor-rotational movements in the ontogeny and 

play of the laboratory rat Rattus norvegicus. Developmental Psychobiology, 16, 269-

286. 

Pellis, S.M., & Pellis, V.C. (1987). Play-fighting differs from serious fighting in both 

target of attack and tactics of fighting in the laboratory rat Rattus norvegicus. 

Aggressive Behavior, 13, 227-242. 

Pellis, S.M., & Pellis, V.C. (1990). Differential rates of attack, defense, and counterattack 

during the developmental decrease in play fighting by male and female rats. 

Developmental Psychobiology, 23 , 215-231. 

118 



Pellis, S.M., & Pellis, V.C. (1991a). Attack and defense during play fighting appear to be 

motivationally independent behaviors in muroid rodents. The Psychological Record, 

41 , 175-184. 

Pellis, S.M., & Pellis, V.C. (1991b). Role reversal changes during the ontogeny of play 

fighting in male rats: Attack vs. defense. Aggressive Behavior, 17, 179-189. 

Pellis, S.M., & Pellis, V.C. (1992). Juvenilized play fighting in subordinate male rats. 

Aggressive Behavior, 18,449-457. 

Pellis, S.M., & Pellis, V.C. (1997). The pre-juvenile onset of play fighting in rats (Rattus 

norvegicus). Developmental Psychobiology, 3 1 , 193-205. 

Pellis, S.M., & Pellis, V.C. (1998a). Play fighting of rats in comparative perspective: A 

schema for neurobehavioral analyses. Neuroscience and Biobehavioral Reviews, 23 , 

87-101. 

Pellis, S.M., & Pellis, V.C. (1998b). The structure-function interface in the analysis of 

play fighting. In M. Bekoff & J.A. Byers (Eds.), Animal play: Evolutionary, 

comparative, and ecological perspectives (pp. 115-140). Cambridge, U.K.: Cambridge 

University Press. 

Pellis, S. M., Pellis, V. C. & Dewsbury, D.A. (1989). Differential levels of complexity in 

the play fighting by muroid rodents appear to result from different levels of intensity 

of attack and defense. Aggressive Behavior, 15, 297-310. 

Pellis, S. M., Pellis, V. C. & Foroud, A. (2005). Play fighting: Aggression, affiliation 

and the development of nuanced social skills. In: R. Tremblay, W. W. Hartup & J. 

Archer (Eds.), Developmental origins of Aggression. New York: Guilford Press. 

Pellis, S.M., Pellis, V . C , & Kolb, B . (1992). Neonatal testosterone augmentation 

119 



increases juvenile play fighting but does not influence the adult dominance 

relationships of male rats. Aggressive Behavior, 18, 437-447. 

Pellis, S.M., Pellis, V . C , & McKenna, M.M. (1993). Some subordinates are more equal 

than others: Play fighting amongst adult subordinate male rats. Aggressive Behavior, 

19,385-393. 

Pellis, S.M., Pellis, V . C , & McKenna, M.M. (1994). Feminine dimension in the play 

fighting of rats (Rattus norvegicus) and its defeminization neonatally by androgens. 

Journal of Comparative Psychology, 108, 68-73. 

Pellis, S.M., Pellis, V . C , & Whishaw, I.Q. (1992). The role of the cortex in play fighting 

by rats: Developmental and evolutionary implications. Brain, Behaviour and 

Evolution, 39, 270-284. 

Pereira, M.E., & Altmann, J. (1985). Development of social behavior in free-living 

nonhuman primates. In E.S. Watts (Ed.), Nonhuman primate models for human 

growth and development (pp.217-309). New York: Alan R. Liss. 

Poole, T.B., & Fish, J. (1976). An investigation of individual, age and sex differences in 

the play of Rattus norvegicus (Mammalia: Rodentia). Journal of Zoology, London, 

179, 249-260. 

Poulter, M.O., Brown, L.A., Tynan, S., Willick, G., William, R., & Mclntyre, D . C 

(1999). Differential expression of a l , a 2 , a 3 , and a 5 G A B A A receptor subunits in 

seizure-prone and seizure-resistant rat models of temporal lobe epilepsy. The Journal 

of Neuroscience, 19,4654-4661. 

Prather, M.D., Lavenex, P., Mauldin-Jourdain, M.L., Mason, W.A., Capitanio, J.P., 

Mendoza, S.P., & Amaral, D.G. (2001). Increased social fear and decreased fear of 

120 



objects in monkeys with neonatal amygdala lesions. Neuroscience, 106, 653-658. 

Raab, A., Dantzer, R., Michaud, B. , Mormede, P., Taghzouti, K., Simon, H., & Le Moal, 

M. (1986). Behavioural, physiological, and immunological consequences of social 

status and aggression in chronically coexisting resident-intruder dyads of male rats. 

Physiology & Behavior, 36, 223-228. 

Racine, R.J. (1972). Modification of seizure activity by electrical stimulation: II. Motor 

seizure. Electroencephalography and Clinical Neurophysiology, 32, 281-294. 

Racine, R.J., Steingart, M., & Mclntyre, D.C. (1999). Development of kindling-prone and 

kindling-resistant rats: Selective breeding and electrophysiological studies. Epilepsy 

Research, 35, 183-195. 

Redmond, D.E., & Huang, Y.H. (1979). New evidence for a locus coeruleus-

norepinephrine connection with anxiety. Life Sciences, 25, 2149-2162. 

Reinhart, C.J., Mclntyre, D . C , Metz, G.A., & Pellis, S.M. (2005). Play fighting 

between kindling-prone (FAST) and kindling-resistant (SLOW) rats. Manuscript 

submitted for publication. 

Reinhart, C.J., Mclntyre, D . C , & Pellis, S.M. (2005). Play fighting between unfamiliar 

pairs of kindling-prone (FAST) and kindling-resistant (SLOW) juvenile rats. 

Manuscript submitted for publication. 

Reinhart, C.J., Mclntyre, D . C , Pellis, S.M., & Kolb, B. (2004). An examination of 

dendritic morphology in seizure-prone (fast-kindling) and seizure-resistant (slow-

kindling) rat strains. Program number 611.14 Abstract Viewer/Itinerary Planner. San 

Diego, CA: Society for Neuroscience, Online. 

Reinhart, C.J., Pellis, S.M., & Mclntyre, D.C. (2004). Development of play fighting in 

121 



kindling-prone (FAST) and kindling-resistant (SLOW) rats: How does the retention of 

phenotypic juvenility affect the complexity of play? Developmental Psychobiology, 

45, 83-92. 

Shin, R.S., Anisman, H., Merali, Z., & Mclntyre, D.C. (2004). Amygdala amino acid and 

monoamine levels in genetically Fast and Slow kindling rat strains during massed 

amygdala kindling: A microdialysis study. European Journal of Neuroscience, 20, 

185- 194. 

Siviy, S.M. (1998). Neurobiological substrates of play behavior: Glimpses into the 

structure and function of mammalian playfulness. In M. Bekoff & J.A. Byers (Eds.), 

Animal play: Evolutionary, comparative, and ecological perspectives (pp. 221-242). 

Cambridge, U.K.: Cambridge. University Press. 

Siviy, S.M., & Baliko, C.N. (2000). A further characterization of alpha-2 adrenoceptor 

involvement in the rough-and-tumble play of juvenile rats. Developmental 

Psychobiology, 37, 25-34. 

Siviy, S.M., Baliko, C.N., & Bowers, K.S. (1997). Rough-and-tumble play behavior in 

Fischer-344 and buffalo rats: Effects of social isolation. Physiology & Behavior, 6 1 , 

597-602. 

Siviy, S.M., Love, N.J., DeCicco, B.M., Giordano, S.B., & Seifert, T.L. (2003). The 

relative playfulness of juvenile Lewis and Fischer-344 rats. Physiology & Behavior, 

80, 385-394. 

Siviy, S.M., & Panksepp, J. (1987a). Juvenile play n the rat: Thalamic and brain stem 

involvement, Physiology & Behavior, 4 1 , 103-114. 

Siviy, S.M., & Panksepp, J. (1987b). Sensory modulation of juvenile play in rats. 

122 



Developmental Psychobiology, 20, 39-55. 

Smith, L.K., Fantella, S.-L.N., & Pellis, S.M. (1999). Playful defensive responses in adult 

male rats depend on the status of the unfamiliar opponent. Aggressive Behavior, 25, 

141-152, 

Smith, L.K., Forgie, M.L., & Pellis, S.M. (1998). Mechanisms underlying the absence of 

the pubertal shift in the playful defense of female rats. Developmental Psychobiology, 

33, 147-156. 

Spear, L.P. (2000). The adolescent brain and age-related behavioral manifestations. 

Neuroscience and Biobehavioral Reviews, 24 ,417 -463 . 

Syme, G.J. (1974). Competitive orders as measures of social dominance. Animal 

Behaviour, 22, 931-940. 

Terranova, M.L., Cirulli, F., & Laviola, G. (1999). Behavioral and hormonal effects of 

partner familiarity in periadolescent rat pairs upon novelty exposure. 

Psychoneuroendocrinology, 24, 639-656. 

Terranova, M.L., Laviola, G., & Alleva, E. (1993). Ontogeny of amicable social behavior 

in the mouse: Gender differences and ongoing isolation outcomes. Developmental 

Psychobiology, 26, 467-481. 

Thor, D.H., & Holloway, W.R., Jr. (1983). Play-solicitation behavior in juvenile male 

and female rats. Animal Learning & Behavior, 11, 173-178. 

Thor, D.H., & Holloway, W.R., Jr. (1984). Social play in juvenile rats: A decade of 

methodological and experimental research. Neuroscience and Biobehavioral Reviews, 

8, 455-464. 

Van den Berg, C.L., Hoi, T., Van Ree, J.M., Spruijt, B.M., Everts, H., & Koolhaas, J .M. 

123 



(1999). Play is indispensable for an adequate development of coping with social 

challenges in the rat. Developmental Psychobiology, 34, 129-138. 

van den Bos, R. (1998). Post-conflict stress-response in confined group-living cats (Felis 

silvestris catus). Applied Animal Behaviour Science, 59, 323-330. 

Vanderschuren, L.J.M.J., Niesink, R.J.M., Spruijt, B.M., & Van Ree, J.M. (1995). 

Influence of environmental factors on social play behavior of juvenile rats. Physiology 

& Behavior, 58, 119-123. 

Vanderschuren, L.J.M.J., Niesink, R.J.M., & Van Ree, J.M. (1997). The neurobiology of 

play behavior in rats. Neuroscience & Biobehavioral Reviews, 2 1 , 309-326. 

van Hooff, J. A. R. A. M., & Aureli, F. (1994). Social homeostasis and the regulation of 

emotion. In S. H. M. van Goozen, N. E. de Poll, & J.A. Sergeant (Eds.), Emotions: 

Essays on emotion theory (pp. 197-217). Hillsdale, New Jersey: Lawrence Erlbaum 

Associates Publishers. 

Varlinskaya, E.I., Spear, L.P., & Spear, N.E. (1999). Social behavior and social 

motivation in adolescent rats: Role of housing conditions and partner 's activity. 

Physiology & Behavior, 67, 475-482. 

Veenema, A.H., Meijer, O.C., de Kloet, E.R., & Koolhaas, J.M. (2003). Genetic selection 

for coping style predicts stressor susceptibility. Journal of Neuroendocrinology, 15, 

256-267. 

Viggiano, D „ Vallone, D., Welzl, H., & Sadile, A.G. (2002). The Naples High- and Low-

Excitability rats: Selective breeding, behavioral profile, morphometry, and molecular 

biology of the mesocortical dopamine system. Behavior Genetics, 32, 315-333. 

Von Frijtag, J.C., Schot, M., van den Bos, R., & Spruijt, B.M. (2002). Individual housing 

124 



during the play period results in changed responses to and consequences of a 

psychosocial stress situation in rats. Developmental Psychobiology, 4 1 , 58-69. 

Walker, C , & Byers, J.A. (1991). Heritability of locomotor play in house mice, Mus 

domesticus. Animal Behaviour, 42, 891-897. 

Whishaw, I.Q., Metz, G.A.S., Kolb, B., & Pellis, S.M. (2001). Accelerated nervous 

system development contributes to behavioral efficiency in the laboratory mouse: A 

behavioral review and theoretical proposal. Developmental Psychobiology, 39, 151-

170. 

Workel, J.O., Oitzl, M.S. , Fluttert, M., Lesscher, H., Karssen, A., & de Kloet, E.R. 

(2001). Differential and age-dependent effects of maternal deprivation on the 

hypothalamic-pituitary-adrenal axis of Brown Norway rats from youth to senescence. 

Journal of Neuroendocrinology, 13, 569-580. 

Xu, B. , Mclntyre, D.C., Fahnestock, M., & Racine, R.J. (2004). Strain differences affect 

the induction of status epilepticus and seizure-induced morphological changes. 

European Journal of Neuroscience, 20, 403-418. 

Ziporyn, T., & McClintock, M.K. (1991). Passing as an indicator of social dominance 

among female wild and domestic Norway rats. Behaviour, 118, 26-41. 

125 




