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Abstract

Trip Planning Queries are considered as one of the popular services offered by Location-

Based Services. We propose a new query type called an Alternative Group Trip Planning

Query (AGTPQ) which is an extended version of Sequenced Group Trip Planning Queries

(SGTPQs). Given a set of users’ source locations and destination locations and a sequence

of Categories of Interest (COIs) that the users want to visit, an AGTPQ generates a new COI

sequence order using one of the proposed techniques and finds an optimal trip starting from

the source locations, passing through the new sequenced COI order and ending at the desti-

nation locations. We propose three approaches: Permutation Strategy on Sequenced Group

Trip Planning Queries (PSGTPQs), Greedy Strategy on Sequenced Group Trip Planning

Queries (GSGTPQs) and Random Strategy on Sequenced Group Trip Planning Queries

(RSGTPQs). We compare the results of our proposed strategies with the PGNE strategy

through experimental evaluation.
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Chapter 1

Introduction

1.1 Introduction

The proliferation of Geographic Information System (GIS) has lead to an increased

interest in different types of Spatial Database Management Systems (SDBMSs) [26]. For

example, Geographic Information Systems (GIS) are spatial database management systems

that visualize and analyze geospatial data, which is spatial data about the objects that are

positioned in and on the earth’s surface [21]. Spatial data describes the size, location and

shape of objects like restaurants, gas stations, hospitals and police stations on the earth. In

general, simple types of spatial data include the point, line string, circular string, compound

curve, polygon, and curve polygon. Composite types of spatial data include multipoint,

multiline string, multi-polygon and geometry collection [26].

A spatial query is a unique database query which is supported by Spatial Databases.

Two types of spatial queries include the Range Query and the Nearest Neighbour (NN)

Query. Spatial relationships play an important role in spatial query processing by examining

spatial objects with respect to each other (e.g. find all the restaurants within 1km from a

particular retail store). In addition, spatial indexing which indexes spatial data by location in

multi-dimensional space, is an efficient approach to retrieve data from the spatial database

[26].

A spatial network is another type of spatial data [26]. It is represented in the form of

a graph which consists of nodes (i.e. data points) and edges, that are positioned in space.

Spatial networks are applied to various fields like power grids, transportation systems (i.e.
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1.2. MOTIVATION

road networks), social networks and mobile networks. The primary idea of the spatial

network is to establish connectivity between nodes, where objects and query movement

is restricted to a pre-defined route. The shortest network path is calculated based on the

connectivity of the network rather than the positions of the objects themselves.

Location-Based Services (LBS) have become more prevalent due to the proliferation of

position technology and wireless communication [14]. Location-based services, also called

location-dependent information services, provide services to users based upon their current

location and are widely used in applications like mobile and wireless computing services.

Spatial queries like Range Queries and Nearest Neighbour (NN) Queries are also processed

by Location-based services by obtaining information on the locations of the queries (i.e.

users) and objects.

In the rest of the chapter, we begin by discussing the motivation behind our research

area in Section 1.1. Section 1.2 presents the contributions of this thesis to the field of study.

Section 1.3 discusses the organization of the remaining chapters of this thesis.

1.2 Motivation

Initially, researchers only focused on Range Queries, Nearest Neighbour Queries and

their variants [15]. The increase in demand for new types of queries to support modern

spatial database systems and applications lead to the development of Trip Planning Queries

(TPQs) [15]. In a Trip Planning Query, a user specifies a source location S, a destination D

and a defined sequence C of Categories of Interest (COIs) (e.g. banks, libraries and parks)

that the user wants to travel. A TPQ processing strategy retrieves an optimal route starting

from S, passing through one Point of Interest (POI) from each Category of Interest in C and

ending at the destination D.

TPQs are recognized as an essential part of LBS [2]. TPQs are also considered as

a generalization of the Traveling Salesman Problem (TSP) which is an NP-hard problem

[15]. Subsequently, several types of TPQs were proposed like Group Trip Planning Queries

2



1.2. MOTIVATION

(GTPQs) [12], Sequenced Group Trip Planning Queries (SGTPQs) [2] and Dynamic Group

Trip Planning Queries (DGTPQs) [28].

In these new scenarios, we now have a group of users with their set of starting locations

S, their set of destination locations D and a sequence of Category of Interests (COIs) that the

users want to travel through together. A Sequenced Group Trip Planning Query (SGTPQ)

strategy (such as PGNE [2] summarized in section 3.4) will find an optimal path starting

from the each user’s source location in S, passing through only one Point of Interest (POI)

from the sequenced COI set and ending at their destinations in D. There are only a few

proposed approaches that have studied the SGTPQ problem, and those existing approaches

have one or more of the following limitations:

• Existing approaches randomly consider spatial networks where POI information is

only located at the nodes, and not along the edges. This is not realistic in the real

world and may lead to incorrect trip distances being generated, since the POIs being

chosen are not in the right locations.

• Existing approaches only use a subset of COIs, and not all of the COI information

contained in the spatial network. This is not realistic since many COIs could be

chosen for a trip.

• Previous approaches are very costly with respect to computation to process the SGT-

PQs.

• Some existing approaches are only considered in Euclidean space and do not take the

spatial network into consideration.

• Existing approaches do not consider other COI orderings for generating trips that

may be more optimal than the trip originally submitted.

Therefore, we propose a new form of a Sequenced Group Trip Planning Query called

the Alternative Group Trip Planning Query (AGTPQ) which generates a new and ideally

3



1.2. MOTIVATION

Figure 1.1: Example of AGTPQs

shorter trip by considering other COI orderings. We also propose three techniques with a

goal to generate a more optimal (i.e. shorter) trip. Those strategies are Permutation Strategy

on Sequenced Group Trip Planning Queries (PGTPQs), Greedy Strategy on Sequenced

Group Trip Planning Queries (GGTPQs) and Random Strategy on Sequenced Group Trip

Planning Queries (RGTPQs). From the results of our experiments, we observe that our

AGTPQ strategies produce a 20% shorter trip than the trip found with the original COI

sequence by the PGNE strategy.

Figure 1.1 illustrates the problem scenario with an example. Let us assume a group of

four friends are staying at four different locations (e.g. different offices) S={S1, S2, S3,

S4} and they are interested in travelling together to: first a Restaurant, second a Park, third

to a Bank and finally to a Movie before they travel to their different destination locations

D={D1, D2, D3, D4}. The type of places to visit like the Bank, Restaurant, Movie Theatre

and Park are called Categories of Interest (COI). A Point of Interest (POI) is a specific

instance of a COI. In Figure 1.1, POIs P1, P2, P3 belong to the Bank COI, POIs O1, O2,

O3 belong to the Park, POIs L1, L2, L3 belong to the Restaurant COI and POIs T1, T2, T3

belong to the Movie Theatre COI. Our AGTPQ strategies will retrieve a new visiting order

that ideally produces a shorter trip. For example, the new visiting order is to visit first a

4
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Bank, second a Restaurant, third a Movie and finally a Park. The corresponding sequence

of POIs (P2, L1, T3, O2) produces a shorter trip than the original one obtained by a SGPTQ

processing strategy like PGNE.

1.3 Contributions

Our work contributes to the Sequenced Group Trip Planning Queries (SGTPQs) re-

search field as follows:

• We present a new form of query called the Alternative Group Trip Planning Query

(AQTPQ) which is based on the SGTPQ.

• The existing California dataset does not contain POI co-ordinate information. There-

fore, we present an updated California data set. The new California dataset contains

co-ordinate information for each POI lying on the appropriate edge, for all POIs in

the dataset, not just for those that belong to a subset of COIs.

• We propose three strategies for answering the AGTPQs with the new data, which are

the Permutation Strategy, Greedy Stratergy and Random Strategy.

• We conducted a set of experiments on our proposed query and strategies using the

modified real-world California dataset to determine the effectiveness and efficiency

of our proposed strategies.

1.4 Organization

The structure of the rest of this thesis is as follows.

In Chapter 2, we present a background study of the existing strategies for processing

the various Nearest Neighbour, Trip Planning, and Sequenced Trip Planning Queries for

Location Based Services.

In Chapter 3, we present an overview of the Multiple Query Method for processing

a Group Nearest Neighbour and the PGNE approach for SGTPQs. Then, we present our

5



1.4. ORGANIZATION

proposed AGTP query and corresponding strategies in detail for processing the AGTPQs

for LBS.

In Chapter 4, we describe the parameters that we used in our experiments and the met-

rics to evaluate the performance of our strategies. Then, we present the evaluation results

for the three proposed approaches versus the PGNE approach.

Finally, in Chapter 5, we present the conclusion of the thesis and identify future works

of our research work.

6



Chapter 2

Background Study of Related Work

In this chapter, we present the summarized background study of our research work. This

chapter is organized as follows: Section 2.1 presents existing work of Nearest Neighbour

(NN and kNN) strategies, while Section 2.2 presents existing work of Aggregate Nearest

Neighbour (ANN) queries. Finally, Section 2.3 presents the existing work of Sequential

Group Trip Planning (SGTP) queries.

2.1 Nearest Neighbour Query Strategies

The Nearest Neighbour (NN) search is a proximity search that retrieves the closest point

or object to the query point in a point or object set. The K-Nearest Neighbour search (k-NN)

retrieves data objects which are closer to the query point. Here k is defined as the number

of NNs. Most of the previous works used the Euclidean distance measure to determine the

closest object(s).

Roussopoulos et al. [21] studied the problem of Nearest Neighbour queries in Geo-

graphic Information Systems. The authors proposed an efficient branch-and-bound R-tree

traversal algorithm to find the K-Nearest Neighbours.

The authors proposed an algorithm to find the first NN, and then proposed another gen-

eralized algorithm to find k-NN. The algorithm starts processing from the R-tree [10] root

node traversing down the tree using the depth-first traversal method. While traversing to

the descendent nodes, the algorithm uses two different metrics called MINDIST and MIN-

MAXDIST to sort the Minimum Bounding Rectangles (MBR) that are encountered, and

7



2.1. NEAREST NEIGHBOUR QUERY STRATEGIES

to prune to MBRs which contains objects that cannot be part of the k-NN result. Mini-

mum Bounding Rectangle is the smallest rectangle that contains a group of objects. The

MINDIST metric is based on the minimum distance from the query point to the objects

contained in the MBR. The MINMAXDIST is the minimum value of all the maximum dis-

tances between the objects and the query point. The authors’ MINMAXDIST metric avoids

visiting the unnecessary MBRs by setting an upper bound on distance.

The authors conducted a set of experiments on both distance metrics and the proposed

algorithm. The results show that the MINDIST metric is more effective than the MIN-

MAXDIST metric in terms of accessing the number of points.

Papadias et al. [19] studied the problem of query processing in Spatial Network Databases

(SNDBs), including NN and k-NN queries. According to the authors, the existing ap-

proaches only focus on Euclidean space for processing the spatial queries. So, they devel-

oped algorithms that combine Network and Euclidean information to overcome the existing

limitation.

The authors developed two algorithms called Incremental Euclidean Restriction (IER),

and Incremental Network Expansion (INE). The IER algorithm uses an incremental algo-

rithm to retrieve the k-NNs for the query. It first computes the first NN from the query

point using the Euclidean distance and then the Network distance is calculated from the

same query point to its first NN. Using the Network distance, a circle bound is formed

with the query as its centre and the length of its radius equal to the calculated Network

distance. Then, the points inside the circle are processed incrementally and the remaining

points outside the circle are pruned. For the points that are lying inside the circle, their

network distances are computed and compared against the other points. Then, all the kNNs

are sorted based on their network distances to the query.

One limitation of the IER algorithm is that it processes redundant network computa-

tions. So, the authors proposed the INE approach to overcome the IER algorithm limitation

by searching the nearest nodes. The INE algorithm first searches the query edge and locate

8



2.1. NEAREST NEIGHBOUR QUERY STRATEGIES

any points lying on that edge. The query edge is the edge where the query lies on it. If

no points are lying on the query edge, then the INE algorithm searches the nearest node to

find the points. The first NN distance to the query acts as a bound to limit the search space.

Then, the INE algorithm searches the other nearest nodes incrementally inside the search

space to find any points that can generate a lower distance than the first NN.

The authors conducted an experimental evaluation and comparison of the proposed al-

gorithms. The results indicate that the INE approach is better than the IER approach in

terms of reducing the I/O computations due to redundant network computations. The IER

approach is found to perform in denser networks.

Kolahdouzan and Shahabi [13] also studied the problem of k-NN search. According

to them, the existing approaches are computationally expensive for computing the distance

between objects. The authors proposed a method that uses the Voronoi diagram to overcome

this limitation. A Voronoi diagram [13] is a partition of a region into small regions close to

each of a given set of objects.

The authors’ approach divides a large spatial network into small Voronoi regions and

then the network distance is precomputated within each regions. The authors state that the

pre-computation within the regions will save on storage and computation costs. Also, the

authors proposed new properties of network Voronoi polygons (NVP) to prove that the k-

NNs of the query object are within the adjacent NVPs of the previously explored nearest

neighbours. The experimental results show that the authors’ approach outperforms the

existing approaches in terms of response time and generating low computation and space

complexities.

Du and Ji [33] proposed a road network model for processing k-NNs. The proposed

approach integrates mobile agent concepts with the INE algorithm [19]. The mobile agents

are controlled by a Central Control Center which is in charge of the whole operation model.

The authors’ network is divided into several local areas. The strategy first sends the user

queries to the Central Control Center by using mobile agents. Then the Central Contol Cen-

9



2.1. NEAREST NEIGHBOUR QUERY STRATEGIES

ter sends a local area agent to the corresponding local area. The local area agent executes

the query in the corresponding local area with the existing INE algorithm. The results are

sent to the Central Control Center and then to users via other mobile agents.

2.1.1 Continuous Nearest Neighbour Search

The continuous spatial query is utilized in Location-Based Services, which will contin-

uously find a result for a moving query and need continuous updates [35, 30]. For example,

a taxi driver may want to locate the customers’ position(s) as they move frequently, which

needs continuous updates for the query answer.

Tao et al. [30] study the problem of a Continuous k-Nearest Neighbour (CKNN) search

over a query line segment.

According to the authors, existing methods have the following limitations:

• Some strategies use a heap to store intermediate results, which will lead to buffer

thrashing if the heap becomes too large.

• Some strategies use a sampling method to obtain the outcome, which may lead to

missing some NNs.

• A few strategies only work well for smaller queries and datasets due to CPU over-

head.

The authors proposed an efficient solution to overcome the above problems of continuous

nearest neighbour query processing over a line segment. First, the algorithm finds all split

points. Each split point is formed by the intersection between the query line segment and

the perpendicular bisector (i.e., a line between two current nearest neighbour points). Then,

the nearest neighbour to the split point is identified. If any new data is updated in the

point set, and if the new point covers a split point, then it becomes the nearest neighbour

to the split point. If the point does not cover any of the split points, it cannot become

the nearest neighbour. The authors’ proposed approach uses an R-tree [10] to enhance the

10



2.1. NEAREST NEIGHBOUR QUERY STRATEGIES

performance by pruning the search space. The R-tree is traversed in the following manner.

For any intermediate node, only the subtrees are visited that contain any qualifying data

point. According to the authors, the proposed CNN query algorithms can be used for both

CKNN and trajectory nearest neighbour search. The CKNN query retrieves the k-NNs for

every split point on a query line segment. The trajectory NN applies the process to several

line segments and retrieves the NN for each split point on every segment.

The authors compare their strategy against the TP method [29] with both uniform and

real data sets. Experimental results show that when the query length increases then the

number of node accesses and CPU time also increases and as a result the performance of

CNN degrades.

Veeresha et al. [32] proposed a Hybrid Spatial Air Index (HSAI) for processing contin-

uous k-NN queries in road networks to enhance query performance. Existing approaches

do not handle a large number of points, links and cache management errors in the broad-

cast system. The proposed Hybrid Spatial Air Index (HSAI) use both XOR-based network

coding and Adaptive Cooperative Caching (ACC) benefits.

The authors divide the road network into grid cells by using a grid partition technique.

On the server-side, HSAI objects are integrated and broadcast-encoded into a Hybrid broad-

cast schedule, and combined with XOR-based network coding into the broadcast scheduling

program. Adaptive Cooperative Caching (ACC) predicts the movements of the client and

makes cache replacement decisions on the objects.

In the proposed method, when a user issues a query from their mobile device, the cache

is consulted first. If the query result is not found then the query request is sent to the region

query directory (QD). If the query result is not found here then the user tunes in to the

channel to retrieves the result. The authors executed Dijkstra’s algorithm [6] based on the

query result and process the shortest path between the query and nearest neighbour.

The authors compared their HSAI algorithm with an existing approach. Results show

that the HSAI approach gives better performance with respect to the tuning time, energy

11



2.1. NEAREST NEIGHBOUR QUERY STRATEGIES

efficiency and access latency.

Kyriakos et al. [18] study the problem of continuous monitoring of nearest neighbours

in highly dynamic environments, where both objects and queries move arbitrarily and fre-

quently. According to the authors, existing methods have one or more of the following

limitations:

• Previous methods only deal with snapshot queries over static data.

• Existing methods assume the use of the Euclidean distance metric.

• Previous approaches provides only approximate CKNN queries.

• Existing approaches cannot handle updates due to changes in the edge weights.

• Existing techniques are inapplicable to road networks.

The authors proposed an efficient solution to overcome this problem with an incremen-

tal monitoring algorithm and a group monitoring algorithm. When a query arrives at the

system, the incremental monitoring algorithm retrieves an initial NN and expands the net-

work around the query until all k-NNs are found. The initial query result is computed as

follows. First, the query is initialized as a root of an expansion tree. Second, NNs are in-

serted on the query edges according to their edge weights. Third, verified nodes (i.e. when

the distance between the node and the query is known) are removed from the heap. If a new

unverified adjacent node can be reachable through a verified node then its key distance (i.e.

sum of the distance between the node and query plus the adjacent node weight) is updated

and inserted into the heap. Otherwise, if an unverified node is already in the heap then an

adjacent node is made as a child of a verified node in the query tree. Then unverified nodes

are removed from the heap and the shortest distance from the query to each node is stored

back into the heap in the form of the expansion tree.

The authors’ group monitoring algorithm is based on a shared execution paradigm and

integration with the incremental monitoring algorithm. It groups the queries that reside

12



2.2. AGGREGATE NEAREST NEIGHBOUR QUERIES

along the same path between two consecutive intersections. The group monitoring algo-

rithm monitors the k-NNs of the intersections to produce efficient results of all the queries

along the path.

The authors provide an experimental evaluation of their algorithms. The group mon-

itoring algorithm outperforms existing methods in terms of running time and CPU time.

The group monitoring algorithm CPU time does not change based on object speed, but the

incremental monitoring algorithm running time changes slightly. The incremental monitor-

ing algorithm consumes more space than the group monitoring algorithm because it stores

the tree of every query.

Hicham et al. [9] proposed algorithms to process a Continuous Aggregate Nearest

Neighbour (CANN) query for moving objects in the spatiotemporal data systems. The

result of a CANN query is a set of k-nearest objects which have the shortest distance to

the set of fixed points or landmarks. The proposed method improves the group nearest

neighbour query (GNN) approach, which handles only snapshot queries.

The authors proposed two efficient algorithms for processing CANN queries. The

Holistic CANN (H-CANN) algorithm calculates the aggregate distance from the objects

to all landmarks and decides whether to remove any objects from being part of the query

result. The Progressive CANN algorithm (P-CANN) algorithm maintains and calculates the

result of the CANN method for a certain time. P-CANN sets the threshold for every land-

mark and decides whether to remove any moving objects from the answer. A few policies

are introduced in P-CANN to define the order of landmarks for calculating the aggregate

distance.

The experimental results of the proposed algorithms show that P-CANN outperforms

H-CANN and the conceptional partition algorithm [17] in terms of low memory overhead.
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2.2 Aggregate Nearest Neighbour Queries

Aggregate Nearest Neighbour (ANN) search is a generalized form of the Nearest Neigh-

bour search, and is also known as Group Nearest Neighbour (GNN) search. The ANN query

depends on the multiple query points rather than a single query point which is used in ex-

isting work. Given a set of query users, Q={q1, q2}, and data points, P={p1, p2, p3}, the

ANN query [8] retrieves the data point from P that minimizes the total travel distance to all

query points in Q.

Papadias et al. [8] proposed GNN query processing strategies that aim to reduce the

sum of the Euclidean distances from the users’ locations to a Point of Interest (POI). The

following three proposed algorithms process a GNN query by assuming the query points

can fit into the memory and can be indexed by an R-tree [10].

• Multiple Query Method (MQM),

• Single Point Method (SPM),

• Minimum Bounding Method (MBM).

The Multiple Query Method combines the results of each incremental nearest neighbour

search for every point in Q. It employs a threshold algorithm to find a better optimal point.

The Single Point Method uses a single traversal method to process the GNN queries and

to avoid the multiple accesses of the Multiple Query Method. The Minimum Bounding

Method performs a single query and it uses the R-tree [10] to reduce the search space of Q.

The authors also proposed disk-resident methods to handle queries with large results

that can not fit into memory and handles both non-indexed and indexed query points.

• Group Closest Pairs Method (GCP),

• File-Multiple Query method (F-MQM),

• File-Multiple Bounding method (F-MBM).

14



2.2. AGGREGATE NEAREST NEIGHBOUR QUERIES

The Group Closest Pairs Method assumes that Q is indexed by an R-tree and uses pruning

rules to process the GNN queries. The proposed F-MQM and F-MBM methods do not

require any indexing of Q. The F-MQM methods split the query Q into small sets. For each

set, the GNN is performed, and the final results are compared using MQM. The proposed

F-MBM method is an extension of SPM and MBM where Q does not fit into memory.

The authors conducted a set of experiments on their proposed methods. From the re-

sults, the authors observe that the GCP method is the worst performing method in all cases

and the F-MBM method is the best performing method among all the proposed algorithms

only when the data is partitioned into a small set of groups.

Yiu et al. [34] studied the problem of ANN queries in road networks. The authors state

that the existing work on ANN queries only apply to Euclidean distance. Therefore the

authors proposed three approaches for processing ANN queries to overcome this limitation:

• Incremental Euclidean Restriction (IER),

• Threshold Algorithm (TA), and

• Concurrent Expansion (CE).

In all algorithms the data points are indexed by the R-tree [10]. The IER algorithm

iteratively retrieves each nearest point and computes the Euclidean aggregate distance of

each NN. This process terminates when the result can not be improved. The TA approach

incrementally explores the network and terminates the search using the top-k aggregate

query processing technique. The CE algorithm works similarly to TA but it avoids shortest

path computations.

The authors conducted an experimental study to evaluate the efficiency of their methods

in a real road network by using the shortest path distances between network nodes. The

results show that the TA outperforms IER and CE in terms of different aggregate functions,

IER outperforms CE and TA in terms of page access and response time and CE is the worst

performance in terms of different aggregate functions, page access and response time.
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Sultana et al. [27] studied the problem of GNN queries in the presence of obstacles.

The authors proposed a generalized form of GNN queries called obstructed group nearest

neighbour (OGNN) queries. The existing approaches only focused on the Euclidean and

road network spaces by ignoring the impact of obstacles such as parks and buildings when

processing the aggregate distance. To overcome the limitations of the existing research,

the authors proposed a Multi-Point Aggregate Obstructed Distance (MPAOD) approach to

process OGNN queries.

The authors computed the aggregate obstructed distances using a visibility graph. The

visibility graph contains nodes and their associated POIs, obstacle vertices, and query

points. An edge has no obstacles if there is clear visibility between two nodes on that

edge. If there are any obstacles then that edge is not taken into account for the aggregate

group distance computation. The authors also introduced geometric pruning techniques to

reduce the search space and computational overhead.

The authors conducted an experimental evaluation using both real and synthetic data

sets against the proposed approach to demonstrate its efficiency in terms of CPU time and

IO access.

Safar [22] studied the problem of Group k-Nearest Neighbour (GKNN) queries in spa-

tial network databases. The authors state that existing approaches incur a high computa-

tional cost by accessing the same node(s) and point(s) multiple times. The author proposed

a new approach to overcome the limitations. The approach is based upon the network dis-

tances needed to retrieve the GKNN query. Also, the authors’ approach uses the Voronoi

diagram together with a progressive incremental network expansion method for the deter-

mination of the inner network distances.

The authors conducted experiments and noted that the GKNN query execution time

depends on the size of query objects and the density of the POIs.
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2.3 Trip Planning Queries

A Trip Planning Query (TPQ) is a more recent form of query proposed in Spatial

Databases, in particular for use in location-based services. Given a source location S, des-

tination location D and set of Categories of Interest (COI), a Trip Planning Query [15]

will retrieve an optimal path starting from the user’s source location S, travelling through a

sequence of Points of Interest (POI), where each POI is from a corresponding COI, to the

user’s destination D. The work in TPQs helped to motivate research in new forms of queries

like Group Trip Planning Queries (GTPQs) and Sequenced Group Trip Planning Queries

(SGTPQs).

Section 2.3.1 summarizes the related research work in Trip Planning Queries, while

Section 2.3.2 summarizes the related work in Group Trip Planning Queries and Section

2.3.3 summarizes the related work in Sequenced Group Trip Planning Queries.

2.3.1 Trip Planning Queries

Li et al. [15] were the first to introduce the Trip Planning Query (TPQ). The authors

proposed two approaches called the Nearest Neighbour Algorithm (ANN) and the Minimum

Distance Algorithm (AMD) to process the Trip Planning Query.

The Nearest Neighbour Algorithm (ANN) forms a trip by iteratively visiting to the NN

of the previous vertex that was added to the trip. The Minimum Distance Algorithm (AMD)

chooses a set of vertices from each COI in such a way that the cost of each vertex is mini-

mum among all vertices belonging to the respective category. Then the trip is generated by

travelling through the selected vertices in the NN order.

The authors also discussed the implementation of TPQs in both Euclidean space and

road networks. The authors explained about the adaption of ANN and AMD algorithms in

the Euclidean space where the POIs and nodes are indexed using the R-tree. Also, the

authors explained the adaption of ANN and AMD algorithms in the road network by using

the extended version of the Dijkstra’s algorithm [6].
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The authors conducted experiments using both real-world datasets and synthetic datasets.

The results show that AMD outperforms than the ANN in terms of generating less trip dis-

tance.

Sharifzadeh et al. [24] study the problem of Optimal Sequenced Route (OSR) query

in vector spaces. According to the authors, Dijkstra’s algorithm is impractical for the real

world due to the large network graph. So, the authors proposed approaches to overcome

this limitation. The first approach is called the Light Threshold-based Iterative algorithm

(LORD) which employs different threshold values to prune POIs that cannot be in the op-

timal route. The second proposed approach is an extension of LORD which uses an R-tree

[10] to refine the POIs that cannot be part of the optimal path and then builds an optimal

route from the end point to the starting point. Both proposed methods are not applicable in

the metric space, so the authors proposed another approach called the PNE approach that

processes NN queries on various point types to form an optimal route.

The authors conducted several experiments on the proposed approaches against existing

approaches. Form the results, the authors state that the proposed approach outperforms the

existing approaches in terms of required workspace and processing time.

Sharifzadeh et al. [25] studied the problem of the Optimal Sequenced Route (OSR)

query using Voronoi Diagrams in both vector and metric space. The existing approaches

only focused on vector space. The Voronoi-based Optimal Sequenced Route query (OSRV)

approach uses pre-computed Additively Weighted Voronoi (AW-V) diagrams to answer an

OSR query.

The authors conducted experiments using real-world datasets. From the experiments,

the authors found that the proposed approaches outperform the existing approaches in terms

of response time.

Chen et al. [5] studied the problem of trip planning search in Geographic Information

Systems (GIS). The existing approaches process TPQs by only allowing a user to visit in

sequence. The authors proposed the multi-rule partial sequenced route query to overcome
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this limitation of existing methods. The authors proposed two heuristics. In their first

heuristic, the authors proposed a nearest neighbour-based partial sequenced route (NNPSR)

query algorithm which uses a topological sort to combine multiple travel rules and executes

the nearest neighbour search for the complete trip.

The secondly proposed heuristic reduces the total trip distance by integrating NNPSR

with the Light Optimal Route Discovery (LORD) approach [24]. The third heuristic gen-

erates efficient trip plans by proposing an advanced A∗ algorithm. Also, it considers the

destination of the user in terms of generating a shorter trip.

The authors conducted experiments to evaluate the performance of their proposed ap-

proaches. From the results, the author state that the proposed approaches outperform the

LORD existing approach in terms of generating a shorter trip and achieving lower process-

ing time.

Costa et al. [7] studied the problem of processing optimal time-dependent route queries

in a road network. The existing approaches do not consider the time factor, and only focus

on finding an optimal route. The authors proposed an approach which consider the amount

of time spent by the user at each POI. They also use entry and exit nodes and A∗ algorithm to

find the shortest path and to reduce the search space. The authors evaluated their proposed

approach against an existing approach, and found that the proposed approach outperforms

the existing approach in generating faster trips.

Lu et al. [16] study the Multi Request Route Planning (MRRP) problem in urban en-

vironments. According to the authors, in route planning queries, the existing approaches

mainly focus on the geographic properties of the POIs, but not about the POIs that satisfy

the user needs. Therefore the authors’ goal is to produce an optimal route for a user where

the actual number of stops is less than the number of actual COIs. Their example is: a

user wants to travel to the nearest bank to withdraw money and then travel to a convenience

store. Since most convenience stores have an ATM, the user does not have to go to the bank

- they can just go to the nearest convenience store.
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The authors’ proposed framework consists of two modules: the Planning module and

the Refinement module. The Planning module consists of four proposed approaches:

• k-Nearest Neighbour with Most Services (kNNMS)

• k-Minimum Distance with Most Services (kMDMS)

• Embed-Based Approach (EMB)

• k-Request A∗ with Most Services (kRAMS)

The Refinement module consists of two approaches:

• Route Rearrangement

• Route Replacement

The Planning module approaches are used for planning a preliminary route. All approaches

use pruning and caching strategies. The Refinement module approaches improve on the

preliminary route.

The authors evaluated the performance of their framework by using the Oldenburg,

Tainan and NewYork datasets. The experimental results show that the kRAMS approach

significantly improved the planning of the route and efficiency in terms of total distance,

number of POIs visited and processing time than the other proposed approaches.

2.3.2 Group Trip Planning Queries

A Group Trip Planning Query [11] is a recent extension to trip planning queries. A

Group Trip Planning Query is a trip that minimizes the total travel distance for several

members in the group. For example, given a set of source locations S, destination locations

D and set of Categories of Interest (COIs), a Group Trip Planning Query finds a path that

minimizes the total travel distance for all members starting from their individual source

locations in S, visiting through a set of COIs as a group and ending at their individual

destinations in D.
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Hashem et al. [11] were the first to introduce this new query type in both Euclidean

space and road networks. According to them, the existing approaches process Trip Planning

Query for only a single user.

The authors propose two approaches that use geometric ellipse properties to refine the

search space of Points of Interest (POIs) and to reduce computations. The authors mention

that the search space size is proportional to the I/O and computational overhead because the

smaller space size has fewer POIs than a larger space.

Their first approach is based on a Three-Step Range-Based algorithm that retrieves POIs

within the elliptical search space and also finds an optimal route based on the retrieved POIs.

The approach first retrieves an initial set of POIs using the pruning rules and then refines this

set using the refined search space. Then, the final or optimal set of POIs from the refined set

are found using dynamic programming. The second approach uses an incremental strategy,

only accessing the required POIs that are needed to find the optimal result.

The authors conducted a set of experiments with both real and synthetic datasets. From

the results, the authors state that the proposed techniques outperform the existing approaches

in terms of I/O and computational overhead.

Rayhan et al. [20] study an improvement to their previously proposed GTP [11] strate-

gies. According to them, the GTP queries experience are computational overhead because

of unnecessary group trip distance calculations.

First, the authors calculated the group total travel distance by computing each user’s

distance in the group independently, but this process incurs high query processing time

because of the retrieval of the same points multiple times. Therefore the authors proposed

two approaches: Iterative Approach (IA) and Hierarchical Approach (HA).

The Iterative Approach uses a group nearest neighbour (GNN) query to retrieve the set

of points which has the smallest total distances for the group. IA first retrieves all first

GNNs of all COIs with respect to the users’ source locations until the last sequenced COI.

The GNN for the last COI is determined with respect to the group members’ destination
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locations.

Then with this information, IA calculates the initial total trip distance using the GNN

found so far. Afterwards, it backtracks to find any other trips (containing other GNNs)

which are shorter than the initial trip. However, the authors state that the IA method ac-

cesses the same POIs multiple times when finding other trips shorter than the initial trip.

Unlike the IA method, the HA method uses a single database traversal to reduce the multiple

retrievals of the same POIs.

For the experiments, the authors evaluated the performance of their approaches using

both real and synthetic datasets. The authors found that HA outperforms the IA in terms of

incurring less processing time.

2.3.3 Sequenced Group Trip Planning Queries

The Group Trip Planning Queries (GTPQs) do not consider the visiting COIs in se-

quence - rather they only focus on minimizing the group’s aggregate distance. The Se-

quenced Group Trip Planning Queries (SGTPQs) consider the COI visiting order along

with focusing on minimizing the group’s aggregate distance.

Ahmadi and Nascimento [2] were the first to study the processing of Sequenced Group

Trip Planning Queries in road networks. According to the authors, existing approaches

only focus on the generating group’s minimum distance but not on visiting sequence. The

existing Iterative Approach [20] are unable to produce optimal answers and yields high

computational overhead. The authors proposed efficient approaches to overcome the exist-

ing limitation.

The first approach is a correction to the existing Iterative Approach [20] called Revised

Iterative Approach (RIA) which uses the Single Point Method [34] to process GNNs. It

reduces computational overhead by considering the location of the previously retrieved

POI and group size to retrieve other points of interest for consideration.

The author’s main approach in this paper is the Progressive Group Neighbour Expansion
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(PGNE) approach, which also considers destinations of the users while retrieving POIs.

PGNE reduces the search space based on the mixed Breadth-Depth First Search technique.

It creates a set of partial group trips (PGTs) where each contains a potential portion of a trip

from the users’ source locations to a COI that is part way through the COI sequence. To

find an optimal trip using a PGT, each PGT is extracted from the top of a priority queue and

processed through replacement and progressive operations. In the replacement operation,

the POI of the last COI in the PGT will be replaced with another POI, which is the next

GNN from the same COI. The progressive operation will append the first GNN POI of the

next remaining COI defined for the trip to the extracted PGT. The authors also proposed

pruning strategies to prune the PGTs that can not be part of the optimal answer.

The authors evaluated their proposed strategies using both synthetic and real datasets.

The authors evaluated PGNE versus RIA, with various group sizes, query areas, and number

of COIs. The authors found that PGNE outperformed the RIA in terms of low response time

and retrievals of fewer POIs.

Samrose et al. [23] study the problem of group optimal sequenced routes in road net-

works using location-based social networks. According to the authors, the existing ap-

proaches only focus on a single user trip planning query in Euclidean space.

The proposed approach retrieves an initial set of POIs for the required COIs using the

users’ source and destination locations. Then, elliptical pruning strategies are applied to

the initial set of POIs. The authors calculate an ellipse for each group member from their

locations and retrieve only the POIs lying inside the intersection of all ellipses. The authors

also state that the POIs lying outside of the intersection of all the ellipses can not be part of

the optimal answer.

The authors conducted experiments on their approach versus the naive approach. The

results show that their approach outperforms the naive approach in terms of I/O and com-

putation.

Tsatsanifos et al. [31] studied the problem of minimizing the total travel distance of
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users by using a pre-defined mutual affinity factor. The proposed method calculates the

shortest path between all nodes using Dijkstra’s algorithm [6]. For example, a group of

four friends A, B, C, D wants to travel together. If the user A wants to travel alone and

B, C, D wants to travel together then the proposed method will retrieve a meeting point

from the starting points of the users and finds the shortest path to the destination connecting

the remaining users. In this proposed method, each user can specify with whom they want

to travel to the destination along with connecting POIs. The authors proposed a new type

of query called an Optimal Single Connecting Point (OSCP) query to process the above

stated problem. The authors use an OSCP cost function and graph search approaches (e.g.

branch-and-bound paradigm and Dijkstra algorithm [6]) to process the OSCP query.

The authors conducted experiments using real-world datasets. According to the authors,

their approach scales better with respect to the number of travellers, query coverage area,

self-affinity factor and answer size.

Barua et al. [4] proposed a new form of Sequenced Group Trip Planning Query called

a Weighted Optimal Sequenced Group Trip Planning (WSGTP) query, where POIs are

weighted based on popularity. The existing approaches only focus on retrieving the optimal

path but does not focus on the POI popularity for processing the SQTPQs. A POI’s popu-

larity is based on previous user ratings and user reviews, which is extracted from the Trip

Advisor and Google platforms. The authors defined that a POI which has a high popularity

is called a high weighted POI. The authors’ Weighted Optimal Sequenced Group Trip Plan-

ning Query processing strategy will retrieve the path from the source locations, through the

sequenced COIs and then to the destination locations while both minimizing the group total

travel distance and maximizing the weights (popularity) of the POIs.

Their strategy uses elliptical pruning strategies to limit the search area of POIs. It also

uses a dynamic programming procedure to calculate the optimal path, and an R-tree[10] to

index the POIs. The authors also proved that POIs outside the computed elliptical search

area will not generate optimal results.

24



Group Trip Planning Queries

The authors carried out a set of experiments on the proposed approach. From the results,

they show that their approach is efficient in reducing the computational time of the dynamic

programming algorithm.

Ahmadi and Nascimento [3] also continue to study the problem of processing Se-

quenced Group Trip Planning Queries. The existing approaches process SGTPQs by ac-

cessing the same POIs multiple times which leads to the high computational cost. The

authors proposed the Iterative Backward Search (IBS) approach to overcome the existing

work limitation.

The IBS approach is based on a suffix optimality principle which is also proposed by the

authors. The proposed suffix optimality principle makes re-use of the previously processed

POIs. IBS first retrieves each all of the first nearest POIs based on the predefined sequence

of COIs and then calculates the initial trip distance. Then it backtracks by finding the next

nearest POIs of sequenced COIs to find other trips that are shorter than the current trip.

In addition to considering the source and destination locations of the users, IBS also uses

pruning techniques to reduce the query search space.

The authors conducted several experiments for the proposed approach against the exist-

ing techniques. From the results, the authors state that the proposed IBS approach outper-

forms the existing approaches with respect to the POI density, query area, group size, the

number of COIs and the COI density.

Tabassum et al. [28] study the problem of Dynamic Group Trip Planning (DGTP)

Queries in Spatial Databases. The existing approaches process GTP queries by assuming

the group size is fixed or static. To overcome the limitation, the authors proposed a new

type of GTP query called a Dynamic Group Trip Planning query where any group member

can leave or join the group at any POI along the trip.

The authors proposed an approach called NAIVEDGTP, which uses dynamic program-

ming for processing the DGTP queries in the Euclidean space. Their algorithm has two

phases. The first phase retrieves all the POIs from the database for the initial trip. The
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second phase has an update operation which updates the remainder of the trip according to

the change in the group size in real-time. The authors also developed refinement techniques

to reduce the search space of POIs which helps in reducing the computational overhead.

Also, the authors used a cache to store the POI information instead of retrieving the same

POIs multiple times from the database.

The authors conducted a set of experiments using both real and synthetic datasets. The

NAIVEDGTP approach outperforms the naive approach by 99.74% times faster and re-

quires less I/O time.

2.4 Summary

This chapter summarized the existing work of Nearest Neighbour search, Continous

Nearest Neighbour search, Aggregate Nearest Neighbour search, Trip Planning Queries,

Group Trip Planning Queries and Sequenced Group Trip Planning Queries. In the next

chapter, we present our proposed strategies for Alternative Group Trip Planning Queries.
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Chapter 3

Alternative Group Trip Planning
Queries

In this section, three strategies are proposed for processing the Alternative Group Trip Plan-

ning Queries. The first strategy is called the Permutation Strategy. The second strategy is

called the Greedy Strategy. The last strategy is called the Random Strategy. In the follow-

ing sections, we discuss in more details the problem definition, sample network, generation

of new data, methodologies we used and the proposed strategies.

The rest of this chapter is organized as follows. In Section 3.1, we describe the sym-

bols that we used in our strategies and problem definition. In Section 3.2, we present a

brief description of processing the Nearest Neighbour (NN) and Group Nearest Neighbour

Strategies. In Section 3.3, we describe the sample network and present the generation of

new data that we used in all three proposed strategies. In section 3.4, we present a brief

description and running example of the PGNE approach that we used for processing the

Alternative Group Trip Planning Queries. In Section 3.5, we describe our three proposed

approaches: Permutation Strategy on Sequenced Group Trip Planning Queries (PSGTPQs),

Greedy Strategy on Sequenced Group Trip Planning Queries (GSGTPQs) and Random

Strategy on Sequenced Group Trip Planning Queries (RSGTPQs).

3.1 Preliminaries

In this section, we describe the terminologies, symbols and the definition of the problem

that we are using in the remaining sections and chapters. We present the definitions for the
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group total travel distance, Sequenced Group Trip Planning Query and Alternative Group

Trip Planning Query below. Table 3.1 presents the symbols used in our definitions and

algorithms.

Table 3.1: Definitions of symbols used in SGTPQs and AGTPQs.

n Number of users
S=

{
S1, S2, S3,..,Sn} Starting locations of the users

D=
{

D1, D2, D3,.., Dn } Destination locations the users
m Number of Category of interests

C=
{

C1, C2, C3,...,Cm} Sequenced of COIs to visit
P=

{
P1,P2,P3, .,Pm} Sequence of POIs for corresponding COIs

Pi Instance of Ci
Cens Centroid of source locations of users
Cend Centroid of destination locations of users
de Euclidean distance between objects
dn Network distance between objects

MinDist The current minimum distance calculated so far
k Number of Nearest Neighbours

Definition 3.1. Given a set of n users, a set of source locations S = {S1, S2, S3,..,Sn} and

destination locations D = {D1, D2, D3,.., Dn} and a sequence of m COIs C= {C1, C2,

C3,...,Cm} that the users want to visit, the group total travel distance for visiting a trip

sequence P= {P1,P2,P3, .,Pm} where Pi ∈ Ci is defined as:

T D(P) = ∑
n
i=1 dn(Si,P1)+n∑

m−1
i=1 dn(Pi,Pi+1)+∑

n
i=1 dn(Pm,Di)

where dn(u,v) is the spatial network distance between locations u and v.

Definition 3.2. Given a set of n users, their starting locations S, a sequence of COIs C that

they want to visit, and their destination locations D, the Sequenced Group Trip Planning

Query will retrieve the Pi ∈ Ci so that the total travel distance by all the users is minimal.

Definition 3.3. Given a set of n users, their starting locations S, a sequence of COIs C that

they want to visit, and their destination locations D, the Alternative Group Trip Planning

Query will retrieve the Pi ∈ Ci from an alternative order of COIs. The alternative COI
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sequence is determined by one of three proposed strategies (i.e Permutation, Greedy and

Random strategies) so that the visiting order of total travel distance by all the users is

minimal.

3.2 Nearest Neighbour and Group Nearest Neighbour Strategies

The Nearest Neighbour (NN) query is a query that will retrieve one or more data objects

from the given set which are nearest to the query. Many proposed NN algorithms assume

the use of the Euclidean distance metric to measure the distance between the objects and

the query. However, other distance measures such as spatial network distance can be used

depending on the application.

Figure 3.1: Nearest Neighbour example.

In Figure 3.1, we see several points P1 to P7 and the query point Q. Based on distances

we see that P2 has the lowest distance to query point Q among all the points. So, it is termed

as the first Nearest Neighbour (1NN). In addition, point P1 is termed as the second Nearest
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Neighbour (2NN) of Q because it is the point which is the second closest point to Q. The

remaining points are ordered similarly based on their distances to the query point.

3.2.1 Group Nearest Neighbour

Given a set of queries, Q= {q1, ...,qn}, and data points, P={p1, ..., pm}, a Group Nearest

Neighbour (GNN) query retrieves the data point from P that minimizes the total distance to

all query points in Q.

In our work, we process the Group Nearest Neighbour query using the Multiple Query

Method (MQM) which is based on the Threshold algorithm [8]. In MQM, an incremental

Nearest Neighbour search is performed. We demonstrate MQM with the query set Q ={

Cens, Cend }, which represent the centroids of the source and destination locations of a group

of users.

Figure 3.2: Group Nearest Neighbour example: GNN = P2.

Figure 3.2 shows an example of a GNN query. We can see that Cens, Cend which are the

two query points in Q={Cens, Cend}. MQM begins by finding an initial GNN. First, MQM

finds the first NN of Cens which is P2 (d(Cens, P2) = 3). Then, the distance from P2 to the

both query points in Q is calculated, (d(Q, P2) = d(Cens, P2) + d(P2, Cend) = 3 + 5 = 8).
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Next, MQM retrieves the first NN of Cend which is P3 (d(Cend ,P3) = 3) and then calculates

the distance from P3 to the both query points in Q, (d(Q, P3) = d(Cens, P3) + d(P3, Cend) = 6

+ 3 = 9). P2 has the minimum sum of distances to all the query points in Q and becomes the

current GNN with the best distance found so far. MQM then uses the threshold algorithm to

test for other possible points that may generate a shorter distance than the current distance.

MQM calculates a condition T≤ d(bestdistance) to find any possible point which has a

shorter distance to all query points in Q than the point with the current best distance (i.e.

P2). We calculate T by summing the distances from each query point to its current nearest

neighbour. From Figure 3.2, the distance from Cens to its first NN (P2) is called the current

threshold of Cens, tCens = 3 and the distance from Cend to its current NN (P3) is called

the current threshold of Cend , tCend = 3. The current total threshold is T = tCens + tCend =

3+ 3 = 6. Since T≤d(bestdistance) (i.e. 6 <= 8), we find the next NN of Cens which is

P1 and we compute its distance to both query points in Q (d(Q, P1) = 9). The current total

threshold will be updated as follows T = tCens+tCend = 4+3= 7. Since T < (bestdistance)

(i.e. 7 <= 8), we compute the next NN of Cend which is P2 and we compute the distance

between P2 and both query points in Q (d(Q, P2) = 8). The current threshold is updated

as T = tCens + tCend = 4+ 5 = 9. Since T> d(bestdistance) (i.e. 9 => 8), the algorithm

terminates with P2 as the best GNN result found for both the query points in Q. According

to Papadias. et al. [8], all remaining non-encountered points have a distance greater than T

and therefore those points can not generate the optimal GNN.

3.3 California Road Network

Our work uses a modification of the original California dataset [1]. A road network con-

tains information about nodes, edges and Points of Interest (POIs). In the road network, all

nodes are connected by edges with one or more other nodes. Each node contains informa-

tion about its Node ID and its co-ordinates. Each edge contains information about its Edge

ID, Start Node ID, End Node ID and Edge Length between the start node and the end node.
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Figure 3.3: A sample road network.

A Category of Interest (COI) is a collection of Points of Interest (POIs) which provides

the same service. An instance of a Category of Interest is then called a Point of Interest.

For example, a bank is a Category of Interest, where instances of different banks such as

Scotia Bank and RBC are called Points of Interest. The related map-format data contains

information about nodes, edges, how many COIs lie on each edge and the distance(s) from

the start node to each particular COI on its edge.

The following Figure 3.3 is a sample representative road network containing nodes,

edges and POI information. The circles represent nodes with their associated Node ID. The

straight lines represent edges that connect various nodes. The star, hexagon, square and

triangle symbols that lie on the edges represent POIs. Each symbol represents an instance

of a specific COI.

The edge length between two adjacent nodes is known as the network distance between

these nodes. For example, from Figure 3.3, the network distance (i.e. spatial network
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distance) from node 1 to node 2 is 3. The network distance between any two nodes is

the sum of the network distances of the edges connecting them. For example, suppose we

need to calculate the network distance between node 1 to node 5. The network distance

is calculated by adding all edges lengths between node 1, 2, 3 and 5. The total network

distance is 10. Similarly, we can calculate the network distance between a node and a POI.

For example, to calculate the network distance from node 1 to the nearest star symbol COI

which lies on the edge between nodes 2 and 3, first we calculate the network distance from

node 1 to node 2 and then we add the distance to the POI, which is 2 to the total network

distance. Therefore, the total network distance is 5.

We use Dijkstra’s algorithm [6] in this thesis work to find the shortest path between a

pair of nodes.

3.3.1 Data Generation

The current California road network data has a limitation. The related map-format data

only states the COI IDs of the POIs that lie on that edge, but does not give the associated

co-ordinates for the POIs. The pruning strategies that are used in the PGNE approach are

based on the Euclidean distance, which requires co-ordinate information. Also, we use the

POI co-ordinate information in the processing of the Group Nearest Neighbour queries.

To handle this limitation in the existing data, Ahmadi and Nascimento [2] processed Se-

quenced Group Trip Planning Queries (SGTPQs) with their PGNE algorithm by only using

a small subset of the COIs in the California dataset. Although this will produce accurate

results, their results are only shown for these chosen COIs. Although not specifically men-

tioned by the authors, we assume they encountered the same difficulties with the California

dataset. However, having an accurate representation of the entire real-world spatial network

is required for accurate results.

Therefore, to process SGTPQs in a real-world scenario and to overcome the limitations

of the existing data, we created a new dataset using the Nearest Neighbour strategy. The
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new data not only supports all the existing COIs in the California road network, but also in

their actual locations.

Figure 3.4: Map Format data.

We first discuss the existing data in more detail before we explain the generation of the

new data using the Nearest Neighbour strategy. Figure 3.4 presents a subset of data from

the California data set. The first line of Figure 3.4 states that there is a start node with an

ID of 0, an end node with an ID of 1, an edge length of 0.002025 and 0 which represents

that there are no COI instances on this edge. However, for the third line, we see that there

is a start node with an ID of 1, an end node with an ID of 2, an edge length of 0.01435 and

the number 2, which represents that there are two COI instances along this edge. One is a

COI ID of 25, with a distance 0.005371 from the start node. The other COI ID is 55, with

a distance of 0.00400 from the start node. From the data, we can clearly see that there is

no other specific POI information such as co-ordinate information that we require to prune

the search space when processing SGTPQs and AGTPQs. Rather, it only states which COI

instance(s) lies on that edge.
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Figure 3.5: Node co-ordinates.

Figure 3.6: POI coordinates with COI ID.
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Figure 3.7: A modified california dataset.

We used a Nearest Neighbour algorithm to overcome the limitations of the existing

dataset. To do so, we use the following information. Figures 3.5 shows data about the node

co-ordinates along with each node ID, while Figure 3.6 shows some POI coordinates along

with the COI ID. We present a sample of newly formed data in Figure 3.7.

Referring back to Figure 3.4, we process the third line in the following manner. First,

we take the co-ordinates for start node 1 and all the POI Co-ordinates for the 25th Category

of Interest. Then we compute the Nearest Neighbour distances from each POI to start node

1. The POI which has the minimum distance to start node 1 is considered as the POI that

lies on this edge. Likewise, we process the remaining COIs of the remaining data.

3.4 PGNE Approach and Running Example

We use the PGNE approach [2] to process the alternate sequenced group trip plans that

are determined by our three strategies. PGNE creates a set of partial group trips (PGT)

incrementally and all partial group trips are inserted into a priority queue based on the
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lower bound of the group total travel distance. For example, each PGT can be in the forms

of PGT(P1), PGT(P1, P2), PGT(P2), PGT(P3), PGT(P2, P4), etc., when they are inserted

into the queue. The lower bound group travel distance of each PGT is defined as the sum

of the length of the PGT plus the total Euclidean distances from the last POI in the PGT

to the users’ destinations. The authors defined the length of each PGT as the group’s total

spatial network distance from the users’ starting locations to the last POI in the PGT. Each

PGT is extracted from the top of the priority queue and processed through replacement

and progressive operations. In the replacement operation, the POI of the last COI in the

PGT will be replaced with another POI, which is the next group nearest neighbour from the

same COI. The progressive operation will append the first group nearest neighbour POI of

the next remaining COI defined for the trip to the extracted PGT.

In addition, pruning strategies are used in finding the optimal path by not inserting the

updated PGTs into the priority queue if it satisfies the pruning conditions. The authors

proposed three pruning strategies to prune the PGTs that can not generate a shorter network

distance than the current minimum distance. One pruning strategy is for the progressive

operation and the other two are for the replacement operation. The PGTs which satisfies

the following pruning conditions are pruned.

For a PGT created from a replacement operation, the authors first check the number of

POIs in the updated PGT,

If the updated PGT contains only one POI then the following pruning strategy 1 is

applied:

de(P1h,Cens)+de(P1h,Cend)> (MinDist +de(Cens +de(Cens,D))/n.

Here P1h is the next GNN of the corresponding COI, MinDist is the minimum dis-

tance found so far, Cens is the centroid of the source locations, Cend is the centroid of the

destination locations and n is the number of users.

If the PGT contains more than one POI then the following pruning strategy 2 is applied:

de(Ph−1,P1h)+de(P1h,Cend)> (MinDist− len(PGT )+de(Cens,D))/n
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Here P1h is the next GNN of the corresponding COI, Ph-1 is the POI of the previous

COI contained in the PGT, MinDist is the minimum distance found so far, Cens is the cen-

troid of the source locations, Cend is the centroid of the destination locations and n is the

number of users.

For a PGT created from a progressive operation the following pruning strategy 3 is

applied:

de(Ph, ph+1)+de(Ph+1,Cend)> (MinDist− len(PGT )+de(Cens,D))/n

Here Ph is the GNN of the corresponding COI, Ph+1 is the POI of the next COI in the

visiting sequence, MinDist is the minimum distance found so far, Cens is the centroid of

the source locations, Cend is the centroid of the destination locations and n is the number of

users.

3.4.1 Running Example of PGNE Strategy

We present the following example to illustrate the PGNE approach. A group of friends

wants to visit a sequenced order of COIs while travelling from their start locations to their

destinations. The Euclidean distances are assumed for the following example. Figure 3.8

shows the sample road networks used for this example. We assume the following trip

information:

• Number of members in group, n = 4

• Set of source locations, S= {S1, S2, S3, S4} = {2, 8, 10, 42}

• Set of destination locations, D={D1, D2, D3, D4} = {7, 11, 4, 170}

• Number of COIs, m=3

• Sequenced order of COIs, C={C1, C2, C3} = {Movie theater (P), Bank (R), Park

(T)}

We have explained about the replacement and progressive operations in the Section 3.4 but

for the sake of our example demonstration, we restate them here:
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Figure 3.8: A Sample Road Network

• Replacement Operation: The POI of the last COI in the PGT will be replaced with

another POI which is the next GNN from the same COI.

• Progressive Operation: Based on the COI order and the current PGT, the first GNN

POI of the next remaining COI will be appended to the PGT.

First, we need to calculate Cens and Cend . Cens is S = (S1+S2+S3+S4)/4 = ((-121.89679,

41.988075) + (-121.903198, 41.968456) + (-122.542992, 41.903084) +

(-121.902153, 41.974766))/4 = (-122.06128, 41.962621).

Cend is D = (D1+D2+D3+D4)/4 = ((-121.916199, 41.969482) + (-122.546921, 41.915726)+

(-121.886681, 42.008739) + (-122.92588, 41.912991))/4 = (-122.318920, 419517345).

Then, we need to calculate the first group nearest neighbour (GNN) query based on the Cens

and Cend . The GNN strategy is presented in the section 3.2.1. Using the Multiple Query

Method (MQM), we find that P2 is the first GNN for the first COI C1 (Movie Theater).

Then, the first GNN, P2 is placed into a PGT as PGT(P2). Next, this PGT(P2) is inserted
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into priority queue (PQ). During the process, all PGTs are stored in the priority queue in

increasing order of their lower bound. PGT(P2) is the first to be inserted (and subsequently

removed) from the priority queue.

For each iteration, we perform first a replacement, then a progressive operation, which

produces two new PGTs. We also update the minimum distance if the current total distance

of the PGT is less than the current minimum distance and PGT is equal to m. Finally we

also check if the new PGTs satisfy the prunning strategies. The PGTs which do not satisfy

the strategies will be pruned.

3.4.2 First Iteration

Initially there is only one PGT in PQ, which is PGT(P2). So we extract it from the

queue. Then we perform replacement and progresssive operations on PGT(P2). We get

PGT 1
1 (P5) from the replacement operation. P5 is the second GNN for the movie theater

COI from Cens and Cend .

Since |PGT| < m, we also perform a progressive operation on the PGT(P2) and we get

PGT 1
2 (P2, R3). R3 is the first GNN of the bank COI from P2 and Cend . Since PGT 1

2 6=

m, we do not have to update the minimum distance and the final output. If a PGT contains

all the POIs from the COI order, only then we do need to calculate the total distance of

the PGT. Since the length of both PGT 1
1 and PGT 1

2 is not equal to m, we do not need to

update the minimum distance. We need to apply pruning strategies on each PGT coming

from those two operations.

The pruning strategy 1 is applied on PGT 1
1 (P5):

de(P5,Cens)+de(P5,Cend)> (MinDist+de(Cens,S)+de(Cend,D))/n = 15+20> (∞+

20+20)/n = 35 > ∞.

Since the above pruning condition is false, we need to put PGT 1
1 (P5) into PQ based on

its lower bound.

The length of the PGT(P2) is dn(S1,P2)+dn(S2,P2)+dn(S3,P2)+dn(S4,P2) = 8+
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5+2+7 = 21.

The pruning strategy 3 is applied on PGT 1
2 (P2, R3):

de(P2,R3)+ de(R3,Cend) > (MinDist − len(PGT )+ de(Cend,D))/n = 8+ 15 < (∞−

21+20)/n = 23 > ∞.

Since the above pruning condition is false, we need to put PGT 1
2 (P2, R3) into PQ based

on its lower bound.

We need to calculate the lower bound of each PGT in order to decide their position in

the queue. Lower Bound=(Sum of the length of the PGT)+(Euclidean distances from the

last POI in the PGT to the users’ destination locations).

The Lower Bound Calculation of PGT 1
1 is (dn(S1,P5) + dn(S2,P5) + dn(S3,P5) +

dn(S4,P5))+ (de(P5,D1)+ de(P5,D2)+ de(P5,D3)+ de(P5,D4)) = (7+ 7+ 7+ 15)+

(15+10+15+20) = 96.

The Lower Bound Calculation of PGT 1
2 is (dn(S1,P2) + dn(S2,P2) + dn(S3,P2) +

dn(S4,P2)) + (de(R3,D1) + de(R3,D2) + de(R3,D3) + de(R3,D4)) = (8 + 5 + 2 + 7) +

(10+5+5+15) = 57.

Based on the above lower-bound calculations, first PGT 1
1 and then PGT 1

2 are inserted.

The priority queue is, PQ={PGT 1
1 , PGT 1

2 }. As PQ is not empty, We repeat the same pro-

cess.

3.4.3 Second Iteration

We extract PGT 1
1 (P5) from the top of PQ, and perform replacement and progressive

operations on it. We create PGT 2
1 (P6) from the replacement operation and PGT 2

2 (P5, R3)

from the progressive operation. P6 is the next GNN of the movie theatre from Cens and Cend

and R3 is the first GNN of the bank from P5 and Cend .

The pruning strategy 1 is applied on PGT 2
1 (P6):

de(P6,Cens)+de(P6,Cend)> (MinDist+de(Cens,S)+de(Cend,D))/n= 20+25> (∞+

20+20)/n = 45 > ∞.
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Since the above pruning condition is false, we need to put PGT 2
1 (P6) into PQ based on

its lower bound.

The length of the PGT 1
1 (P5) is dn(S1,P5)+dn(S2,P5)+dn(S3,P5)+dn(S4,P5) = 7+

7+7+15 = 36.

The pruning strategy 3 applied on PGT 2
2 (P5, R3):

de(P5,R3)+ de(R3,Cend) > (MinDist− len(PGT 1
1 )+ de(Cend,D))/n = 5+ 12 > ∞−

36+20 = 17 > ∞.

Since the above pruning condition is false, we need to put PGT 2
2 (P5, R3) into PQ based

on its lower bound.

Lower Bound Calculation of PGT 2
1 is (dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+dn(S4,P6))+

(de(P6,D1)+ de(P6,D2)+ de(P6,D3)+ de(P6,D4)) = (21+ 17+ 13+ 15)+ (20+ 12+

8+10) = 116.

Lower Bound Calculation of PGT 2
2 is (dn(S1,P5)+dn(S2,P5)+dn(S3,P5)+dn(S4,P5))+

(de(R3,D1)+ de(R3,D2)+ de(R3,D3)+ de(R3,D4)) = (7+ 7+ 7+ 15)+ (10+ 5+ 5+

15) = 71.

PGT 2
1 are PGT 2

2 inserted into queue based on their lower bound calculations. Therefore,

PQ ={PGT 2
1 , PGT 2

2 , PGT 1
2 }.

3.4.4 Third Iteration

We extract PGT 2
1 from PQ and perform replacement and progressive operation on it.

We get PGT 3
2 =(P6, R6) from the progressive operation and we do not perform replacement

operation on PGT 2
1 since there are no more POIs of the Movie Theatre in the Figure 3.2.

R6 is the first GNN of the bank from P6 and Cend .

The pruning strategy 3 is applied on PGT 3
2 (P6, R6):

de(P6,R6)+ de(R6,Cend) > (MinDist− len(PGT 2
1 )+ de(Cend,D))/n = 2+ 15 > ∞−

66+20.

Since the above pruning condition is false, we need to put PGT 3
2 (P6, R6) in PQ based
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on its lower bound.

Lower Bound Calculation of PGT 3
2 is (dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+dn(S4,P6))+

(de(R6,D1)+ de(R6,D2)+ de(R6,D3)+ de(R6,D4)) = (21+ 17+ 13+ 15)+ (20+ 12+

7+15) = 120.

However, PGT 3
2 with its calculated lower bound is inserted into PQ. So the priority

queue now contains, PQ= {PGT 3
2 , PGT 2

2 , PGT 1
2 }

3.4.5 Fourth Iteration

PGT 3
2 (P6, R6) is extracted and the two operations are performed on it. We obtain

PGT 3
1 (P6, R3) from the replacement operation and PGT 4

2 (P6, R6, T4) from the progressive

operation. R3 is the next GNN of the Movie Theatre COI from P6 and Cend and T4 is the

first GNN of the Park COI from R6 and Cend .

The pruning strategy 2 is used for PGT 3
1 (P6, R3):

de(R6,R3)+de(R3,Cend)> (MinDist− len(PGT 3
2 )+de(Cend,D))/n = 5+12 > (∞−

66+20)/n = 15 > ∞.

Since the above pruning condition is false, we need to put PGT 4
2 (P6, R3) into PQ based

on its lower bound.

The pruning strategy 3 is used for PGT 4
2 (P6, R6, T4):

de(R6,T 4)+de(T 4,Cend)> (MinDist− len(PGT 3
2 )+de(Cend,D))/n = 5+12 > (∞−

66+20)/4 = 17 > ∞.

Since the above pruning condition is false, we need to put PGT 4
2 (P6, R6, T5) into PQ

based on its lower bound.

Lower Bound Calculation of PGT 3
1 (P6, R3) is (dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+

dn(S4,P6)+(de(R3,D1)+de(R3,D2)+de(R3,D3)+de(R3,D4)) = (21+17+13+15)+

(10+5+5+15) = 101.

Lower Bound Calculation of PGT 4
2 (P6, R6, T4) is (dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+

dn(S4,P6)+(dn(P6,R6))n)+(de(T 4,D1)+de(T 4,D2)+de(T 4,D3)+de(T 4,D4))= (21+
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17+13+15)+(6)4+(20+10+7+15) = 142.

Since | PGT 4
2 | = m, we calculate the total distance of PGT 4

2 from the users’ source

locations through the order of POIs, and to their destinations.

The total travel distance of PGT 4
2 is dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+dn(S4,P6)+

(dn(P6,R6)+dn(R6,T 4))n+dn(T 4,D1)+dn(T 4,D2)+dn(T 4,D3)+dn(T 4,D4) is 127.

The total travel distance is updated to minimum distance found so far.

In addition, the partial group trips PGT 3
1 , PGT 4

2 are inserted into the queue based

upon satisfying the prunning condition. So the queue contains, PQ={ PGT 4
2 ,PGT 3

1 , PGT 2
2 ,

PGT 2
1 }.

3.4.6 Fifth Iteration

PGT 4
2 is extracted and we perform only replacement operation on it because it is equal

to m. We obtain PGT 5
1 (P6, R6, T8) from the replacement operation. T8 is the next GNN

of the park from R6 and Cend .

The pruning strategy 3 is applied on PGT 5
2 (P6, R6, T8):

de(R6,T 8)+de(T 8,Cend)> (MinDist−len(PGT 4
2 )+de(Cend,D))/n= 10+7> (127−

90+20)/4 = 17 > 14.25.

Since the above pruning condition is True, we do not need to put PGT 4
2 (P6, R6, T8)

into PQ.

Since | PGT 5
2 | = m, we calculate the total distance of PGT 5

2 from the users’ source

locations through the order of POIs, and to their destinations.

The total travel distance of PGT 5
2 is dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+dn(S4,P6)+

(dn(P6,R6)+dn(R6,T 8))n+dn(T 8,D1)+dn(T 8,D2)+dn(T 8,D3)+dn(T 8,D4) is 21+

17+13+15+(6+9)4+4+2+2+7 is 141.

Since the total travel distance of PGT 5
2 is not less than the MinDist. We do not need to

update the minimum distance. So the queue contains, PQ={,PGT 3
1 , PGT 2

2 , PGT 2
1 }.
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3.4.7 Sixth Iteration

PGT 3
1 (P6, R3) is extracted and the two operations are performed on it. We obtain

PGT 6
1 (P6, R1) from the replacement operation and PGT 5

2 (P6, R3, T5) from the progressive

operation. R1 is the next GNN of the movie theatre from P6 and Cend and T5 is the first

GNN of the park from R3 and Cend .

The pruning strategy 2 is applied on PGT 6
1 (P6, R1):

de(R3,R1) + de(R1,Cend) > (MinDist − len(PGT 3
1 ) + de(Cend,D))/n = (10 + 20) >

(127−66+20)/4 = 30 > 20.25.

Since the above pruning condition is True, we need not to put PGT 6
1 (P6, R1) into PQ.

The pruning strategy 3 is used for PGT 5
2 (P6, R3, T5):

de(R3,T 5) + de(T 5,Cend) > (MinDist − len(PGT 3
1 ) + de(Cend,D))/n = (10 + 11) >

(127−66+20)/4 = 21 > 20.25.

Since the above pruning condition is True, we need not to put PGT 5
2 (P6, R3, T5) into

PQ.

The minimum distance of PGT 5
2 is(dn(S1,P6)+dn(S2,P6)+dn(S3,P6)+dn(S4,P6)+

(dn(P6,R3)+dn(R3,T 5))n+dn(T 5,D1)+dn(T 5,D2)+dn(T 5,D3)+dn(T 5,D4)) is 21+

17+13+15+56+4+4+8+5 = 141.

Since TD>MinDist, the minimum distance is not updated. Therefore, PQ={PGT 2
2 ,

PGT 2
1 }.

3.4.8 Seventh Iteration

PGT 2
2 (P2, R3) is extracted and the two operations are performed on it. We obtain

PGT 7
1 (P2, R6) from the replacement operation and PGT 6

2 (P2, R3, T8) from the progressive

operation.

The pruning strategy 2 is used for PGT 7
1 (P2, R6):

de(R3,R6)+de(R6,Cend)> (MinDist−len(PGT 2
2 )+de(Cend,D))/n=(5+15)> (127−

22+20)/n = 20 > 31.25.
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Since the above pruning condition is false, we need to put the PGT 7
1 (P2, R6) into PQ

based on its lower bound.

The pruning condition 3 is used for PGT 6
2 (P2, R3, T8):

de(R3,T 8)+de(T 8,Cend)> (MinDist−len(PGT 2
2 )+de(Cend,D))/n=(5+5)> (127−

22+20)/4 = 10 > 31.25.

Since the above pruning condition is false, we need to put PGT 6
2 (P2, R3, T8) into PQ

based on its lower bound.

The total travel distance of PGT 6
2 is (dn(S1,P2)+dn(S2,P2)+dn(S3,P2)+dn(S4,P2)+

(dn(P2,R3)+dn(R3,T 8))n+dn(T 8,D1)+dn(T 8,D2)+dn(T 8,D3)+dn(T 8,D4)) is 8+

5+2+7+48+6+2+2+5 = 85.

Since TD<MinDist, the minimum distance is updated.

Lower Bound Calculation of PGT 7
1 (P2 R6) is (dn(S1,P2)+ dn(S2,P2)+ dn(S3,P2)+

dn(S4,P2)+(de(R6,D1)+de(R6,D2)+de(R6,D3)+de(R6,D4))= (8+5+2+7)+(15+

10+5+10) = 62.

Lower Bound Calculation of PGT 6
2 (P2, R3, T5) is (dn(S1,P2)+dn(S2,P2)+dn(S3,P2)+

dn(S4,P2)+(dn(P2,R3))n+(de(T 5,D1)+de(T 5,D2)+de(T 4,D3)+de(T 4,D4))= (21+

17+13+15)+(6)4+(20+10+7+15) = 142.

PGT 7
1 are PGT 6

2 inserted into queue based on their lower bound calculations. PQ =

{PGT 2
2 , PGT 71, PGT 1

2 }.

3.4.9 Eight Iteration

we extract PGT 2
2 is extracted and the two operations are performed on it. We obtain

PGT 8
1 (P5, R6) from the replacement operation and PGT 7

2 (P5, R3, T4) from the progressive

operation.

The pruning strategy 2 is used for PGT 8
1 (P5, R6):

de(R3,R6)+de(R6,Cend)> (MinDist−len(PGT 2
2 )+de(Cend,D))/n=(5+15)> (85−

36+20)/n = 20 > 17.25.
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Since the above pruning condition is True, we need not to put PGT 7
1 (P2, R6) into PQ.

The pruning strategy 3 is used for PGT 8
2 (P5, R3, T4):

de(R3,T 4)+de(T 4,Cend)> (MinDist−len(PGT 2
2 )+de(Cend,D))/n=(7+11)> (85−

36+20) = 18 > 17.25.

Since the above pruning condition is True, we need not to put PGT 8
1 (P2, R3,T4) in to

PQ.

The minimum distance of PGT 8
2 is(dn(S1,P5)+dn(S2,P5)+dn(S3,P5)+dn(S4,P5)+

(dn(P5,R3)+dn(R3,T 4))n+dn(T 4,D1)+dn(T 4,D2)+dn(T 4,D3)+dn(T 4,D4)) is (7+

7+7+15)+(11)4+(9+5+3+8)=105.

Since TD>mindist, the minimum distance is not updated.

PQ = { PGT 71, PGT 1
2 }.

3.4.10 Ninth Iteration

We extract PGT 7
1 from the priority queue and perform two operations on it. We get

PGT 9
1 (P2, R1) from replacement operation and PGT 8

2 (P2, R6, T5) from the progressive

operation.

The pruning strategy 2 is used for PGT 9
1 (P2, R1):

de(R6,R1) + de(R1,Cend) > (MinDist − len(PGT 7
2 ) + de(Cend,D))/n = (10 + 20) >

(85−22+20) = 30 > 20.75.

Since the above pruning condition is True, we need not to put PGT 9
1 (P6, R1) in to PQ.

The pruning strategy 3 is used for PGT 8
2 = (P2, R6, T5):

de(R6,T 5)+de(T 5,Cend)> (MinDist− len(PGT 7
1 )+de(Cend,D))/n= (5+5)> (85−

66+ 20)/4 = 10 > 9.75. Since the above pruning condition is True, we need not to put

PGT 6
1 (P6, R6, T5) in to PQ.

The minimum distance of PGT 8
2 is(dn(S1,P2)+dn(S2,P2)+dn(S3,P2)+dn(S4,P2)+

(dn(P2,R6)+dn(R6,T 5))n+dn(T 5,D1)+dn(T 5,D2)+dn(T 5,D3)+dn(T 5,D4)) is (7+

7+7+15)+(8+10)4+4+8+13 = 127 .
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Since TD>MinDist, the minimum distance is not updated.

3.4.11 Tenth Iteration

we extract PGT 1
2 from the PQ and we cannot perform both operations on it. Since there

are no more POIs of Bank and Park.

Finally, the algorithm terminates with an PGT(P2. R3, T8) as an optimal answer and

the minimum distance is 85.

3.5 Alternative Group Trip Planning Queries and Examples

In this section, we propose three strategies, all of which have the goal to find a more

cost-effective trip than the trip initially submitted by the users. The three proposed strategies

- Permutation, Greedy and Random - will attempt to find a shorter path by considering

different orderings of the COIs. We discuss the proposed approaches in detail below. All

the approaches will use modified California dataset which includes the POI co-ordinates,

and the PGNE approach for processing the alternate trip plans.

3.5.1 Permutation Strategy

The Permutation Strategy is the first strategy. We implemented the Permutation Strategy

to use alongside the PGNE approach. We use this strategy to find the different orderings

of the COI set. Given m, the number of COIs in the COI set, the number of possible

permutations of COIs is: P(m,k) = m!/(m− k)!. However, since k = m that makes the

number of permutations as: P(m,m) = m!.

For example, suppose there are three COIs, C ={Movie Theatre, Bank, Hospital}. We

find six permutations from the given example. The permutations are PMCOI = {Movie

Theatre, Bank, Hospital}, {Movie Theatre, Hospital, Bank}, {Bank, Movie Theatre, Hos-

pital}, {Bank, Hospital, Movie Theatre}, {Hospital, Movie Theatre, Bank}, and {Hospital,

Bank, Movie Theatre}.
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We then apply the PGNE approach to each generated permutation and compare the dis-

tances. The permutation with the lowest minimum distance(MinDist) among all the permu-

tations is chosen as the best AGTPQ.
Algorithm 1: Permutation Strategy

1 Input: S = {S1, S2,..., Sn}

2 D = {D1, D2,..., Dn}

3 COI = {C1, C2,.., Cn}

4 MinDist=∞

5 FinalResult={}

6 PMCOI=FindPermutations(COI)

7 for EACH P in PMCOI: do

8 TripDist=PGNE(P, S ,D)

9 if TripDist < Mindist then

10 Update(TripDist, Mindist, FinalResult, P)

11

In Algorithm 1: Permutation Strategy, Line 1-3 contains information about the users’

Source S, Destination D locations and COIs that they plan to visit. In Lines 4-5, initially,

FinalResult is set to Null and the minimum distance (MinDist) is set to Infinity. In Line 6,

all the permutations for PMCOI are calculated.

In Lines 7- 11, for each permutation from PMCOI its trip distance is computed using the

PGNE approach. Then the algorithm compares the computed trip distance with the current

minimum distance. If it is found to be shorter, than the current minimum distance, then the

algorithm updates the minimum distance and FinalResult. The algorithm terminates when

the PMCOI list is empty.
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3.5.2 Greedy Strategy

The Greedy strategy is our second strategy. This strategy finds one alternate order of

COIs from the original sequence order. The alternate order of COIs is based on the greedy

distance (denoted as dG), which is described in detail below:

Given Q=(Cens, Cend), where Cens is the centroid of the source locations and Cend is the

centroid of the destination locations, dG is the sum of the distances from both Cens and Cend

to the first GNN of COI Ci:

dG(Ci) = de(Cens,GNN(Ci))+de(Cend,GNN(Ci))

We used the Euclidean distance metric to calculate the Greedy distance because Cens

and Cend usually reside in the empty space of the road network and not on the edges. The

Greedy strategy takes each COI from the original trip sequence and finds the distance from

its first group nearest neighbour POI to the centroids of the users’ source and destination

locations. Once these distances have been calculated, the Greedy strategy orders the COIs

in ascending order of their greedy distances. Finally, we run the PGNE approach using the

newly generated COI order.

In Algorithm 2: Greedy Strategy, Line 1 -3 contains information about the users’ Source

S, Destination D locations and COIs that they plan to visit. Line 4 contains information

about the centroids of S and D, respectively. In Lines 5-7, the DistList (DistList is the list

that contains each COIs Greedy distance) is set to Null, the minimum distance (MinDist)

is set to infinity and Order is set to Null. In Lines 8-9, the algorithm calculates dG(Ci) for

each COI Ci. In Line 10-13, the algorithm searches for each COI with the next smallest

Greedy distance, and then appends to Order. It terminates once it appends all the COIs to

Order. In-Line 14, the algorithm computes the minimum distance using PGNE.
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Algorithm 2: Greedy Strategy

1 Input: S = {S1,S2, ...,Sn}

2 D = {D1,D2, ...,Dn}

3 COI = {C1, C2,.., Cn}

4 Q = {Cens, Cend}

5 DistList = {}

6 MinDist = ∞

7 Order = {}

8 for each Ci in COI: do

9 DistList.append(Ci, dG(Ci))

10 while DistList is not empty do

11 nextCi = Smallest(DistList)

12 Order.append(nextCi)

13 DistList = DistList - (nextCi, dG(nextCi));

14 MinDist=PGNE(Order, S, D)

3.5.3 Running Example of Greedy Strategy

We use the example from Figure 3.8 to demonstrate the Greedy strategy. The initial

sequence order of COIs C={C1, C2, C3} = {Movie theater (P), Bank (R), Park (T)}. Order

is set to null.

The Greedy approach takes the first COI C1 (Movie Theatre) and calculates the Greedy

distance from the group nearest theatre (P2) to the Cens and Cend which is dG(C1) =

de(Cens,P2)+ de(Cend,P2) = (3+ 7) = 10. Then it takes the second COI C2 (Bank) and

calculates the Greedy distance from the group nearest bank (R3) to Cens and Cend , which is

dG(C2) = de(Cens,R3)+de(Cend,R3) = (5+6) = 11. Then it takes the third COI C3 (Park)

and calculates the Greedy distance from the group nearest park (T4) to Cens and Cend , which

is dG(C3) = de(Cens,T 4)+de(Cend,T 4) = (6+3) = 9.
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Then the Greedy strategy retrieves each COI in increasing order of Greedy distance

and appends it to Order, until all the COIs are selected. Based on the calculations above,

the final sequence order of COIs is C={Park, Movie Theatre, Bank}. Finally, the PGNE

approach is applied to the new sequence order to find the total travel distance.

3.5.4 Random Strategy

The Random Strategy is the third proposed strategy. It obtains a new COI order by

selecting COIs randomly from the original order with no repetition of COIs. The goal is

to attempt to quickly find a more optimal trip than the original trip. Once a new trip is

selected, we run the PGNE approach on it to determine the distance.
Algorithm 3: Random Strategy

1 Input: S = {S1, S2,..., Sn}

2 D = {D1, D2,..., Dn}

3 COI = {C1, C2,.., Cn}

4 MinDist=∞

5 Random={}

6 while COI is not empty do

7 Ci=SelectRandom(COI)

8 append(Ci, Random);

9 COI=COI-Ci

10 end

11 MinDist=PGNE(Random, S, D)

In Algorithm 3: Random Strategy, Line 1-3 contains information about the users’

Source S, Destination D locations and COIs that they plan to visit. In Lines 4-5, the min-

imum distance (MinDist) is set to infinity and Random is set to Null. In Lines 6-9, the

algorithm randomly selects a COI and appends it to Random. This process continues until

the COI sequence is empty. In Line 11, the algorithm uses PGNE to compute the minimum

distance based on the randomly generated COI sequence.
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3.6 Summary

In this chapter, we presented our three proposed strategies. A running example for the

PGNE approach was also presented in this chapter. The next chapter presents the perfor-

mance evaluation of our proposed strategies.
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Chapter 4

Experiments and Evaluations

In this chapter, we discuss the methodology and results from our experiments. We con-

ducted several experiments by comparing all three proposed approaches with the PGNE

approach [2]. The PGNE approach is a standard and the first approach to focus on SGTPQs

so we choose the PGNE approach to compare against our proposed approaches. The modi-

fied version of the California road network dataset in (described in Section 3.3.1) is used in

all experiments.

The rest of the chapter is organized as follows. Section 4.2 presents the information

about the experimental setup and dataset used for our experiments. Section 4.3 presents the

information about performance metrics. Sections 4.4 presents the experimental results and

Section 4.5 presents a summary of this chapter.

4.1 Experimental Setup

For our experiments, we used the modified California road network data which we pre-

sented in Section 3.2.1. The original California dataset contains 62 categories and 103,882

POIs. Tables 4.1 and 4.2 illustrate the total information on the California road network data

and the subset data containing the COIs we used for our experiments.

The PGNE and all three proposed approaches are implemented using the Python pro-

gramming language. The set of experiments are carried out on an IntelR CoreTM2 Duo

CPU E8757 with 2.66GHz CPU and 1835 MB RAM which is powered by the CentOs

Linux 7 operating system. We evaluated and compared our proposed strategies against the
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Table 4.1: California Road Network information.

Title Information
Number of nodes 21,047
Number of edges 21,692
Number of COIs 62
Number of POIs 103,882

Table 4.2: COIs used in our experiments.

Categories POIs
Airport 995
Hospital 835
School 11,173
Bend 486
Crater 356
Island 178

Church 7680
Bar 273
Gap 673

Harbor 169
Lake 462

PGNE approach using a set of experiments as follows:

• Varying the dataset size.

• Varying the group size.

• Varying the number of COIs.

We ran each experiment ten times and took an average of the results. We randomly

selected the inputs for our experiments, such as the source and destination locations, and

the COIs. This information was predetermined before we ran the tests. The following table

4.3 contains information about the parameters that we chose for each set of experiments.

We set one parameter to a default value and another to varying according to the particular

experiment. For the dataset size (i.e number of nodes), we carried out the experiments using

20% to 100% of the dataset, with the default percentage of the data being 40%. The first
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20% of the data contains the first 4200 nodes of the dataset, its edges and POIs. Similarly,

the first 40% of the data contains 8400 nodes, while the first 60% of the data contains

12600 nodes and 80% of the data contains 16800 nodes. Finally, 100% of the data contains

21,047 nodes. The dataset size is set to 40% as default because it contains almost most

of the data to generate the results The number of COIs is set to 3 as default because it is

faster to generate results of PGNE and proposed approaches (i.e. especially for Permutation

strategy). The group size is set to 4 as default because it is an ideal group size used in many

previous approaches in calculating the group trip distance.

Table 4.3: Parameters used in our experiments.

Parameter Range Default
Dataset size 20%, 40%, 60%, 80%, 100% 40%

Number of COIs 2, 3, 5, 7 3
Groupsize 2, 4, 8, 16, 32 4

4.2 Performance Metrics

All proposed strategies are compared with the PGNE approach using the following

performance metrics:

• Total Travel Distance: Total Travel Distance is the sum of the distances of n users

starting from their source locations S = {S1,.., Sn} through the selected sequence of

m POIs from the given COI set P = {P1,.., Pm}, and to their particular destinations D

= {D1,..., Dm} .

T D(P) = ∑
n
i=1 dn(Si,P1)+n∑

m−1
i=1 dn(Pi,Pi+1)+∑

n
i=1 dn(Pm,Di)

where dn(u,v) is the spatial network distance between locations u and v.

• Running time: The running time is the time required to find and display the chosen

group trip result. The running time is calculated in seconds.
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4.3 Experimental Results

We evaluated our proposed approaches against the PGNE approach using the group

total travel distance and running time. Our experiments included varying the database size

in the data set, varying the number of COIs and varying the group size in order to evaluate

the performance. In Section 4.3.1, we discuss the results for varying the database size in

the data set. In Section 4.3.2, we discuss the results for varying the number of COIs. In

section 4.3.3, we discuss the results for varying the group size.

4.3.1 Effect of the Dataset Size

In this set of experiments, we vary the percentage of points in the data set from 20%

(4200 nodes), 40% (8400 nodes), 60% (12600 nodes), 80% (16800 nodes), up to 100%

(21,047 nodes). Figures 4.1 and 4.2 illustrate the results of the approaches in terms of

processing time and total travel distance.

Figure 4.1: Effect of database size on processing time.

First, we discuss varying the dataset size against the processing times of all the tech-

niques shown in Figure 4.1. We see that all the methods incur increasing processing time
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Figure 4.2: Effect of database size on total distance.

as the dataset size increases. This is because the increase in the dataset size leads to pro-

cess more points. The experiment results show that the Greedy strategy, Random strategy

and PGNE approach have almost the same processing time, where the Permutation strategy

takes significantly more time to process the group trip result - approximately 300% more

processing time than the other approaches. This is because the Permutation strategy pro-

cesses the PGNE approach P(m,k) = P(m,m) = m! number of times based on the number

of permutations of m. The Greedy strategy and Random strategies has almost the same pro-

cessing time as the PGNE approach because those approaches only run PGNE once. The

PGNE approach outperforms the Permutation strategy in terms of generating group total

travel distance in a shorter time. Therefore, the Greedy strategy, Random strategy and the

PGNE approach are significantly better than the Permutation strategy in terms of processing

time.

Second, we discuss varying the dataset size versus a group’s total travel distance for

all the strategies shown in Figure 4.2. We see that all the methods generate increasing

total travel distances as the dataset size increases. However, the results also show that the
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Permutation and Greedy strategies generate an average of a 15% lower total travel travel trip

distance than the PGNE and Random strategies. The results in Figure 4.1 illustrate that the

Permutation strategy takes significant time to process the AGTPQs, but the Greedy strategy

generates the same trip distance as the Permutation strategy but with approximately 600%

lower amount of time than the Permutation strategy. From Figure 4.2, both the Permutation

strategy and Greedy strategy generate higher total trip distances for the first 20% of data

than the first 40% of the data. This is because the newly generated COI sequence orders

have lengthy distances between the randomly selected source and destination locations.

All the proposed approaches generate equal or shorter group total travel distance than the

PGNE approach. Overall, the Permutation and Greedy strategies outperforms the Random

and PGNE approaches in all cases in terms of generating shorter distances.

4.3.2 Effect of Number of Categories

In this set of experiments, we use 40% data and four members of group to vary the num-

ber of COIs between 2, 3, 5 and 7. Figures 4.3 and 4.4 illustrate how much the approaches

are affected by changing the number of COIs in the group trip.

In Figure 4.3, we see that all the methods incur increasing processing cost as the number

of COIs increases. This is because of the increase in the number of COIs, which leads to

processing a large number of NN query calculations for the GNN queries. The experiment

results also show that the Greedy strategy, Random strategy and PGNE approach follow the

same trend as the results for varying the data set size because they have almost the same

processing time. Similarly, the Permutation strategy takes a significant amount of time to

process the group trip result because of having to process P(m,k) = P(m,m) = m! sets of

COI orderings. The processing time for 5 COIs is 354 seconds while the processing time

for 7 COIs is 26007 seconds. Therefore, the Greedy, Random and PGNE approaches are

significantly better than the Permutation strategy in terms of processing time.

We now discuss varying the number of COIs versus the group’s total travel distance
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Figure 4.3: Effect of number of COIs on processing time.

for all the strategies shown in Figure 4.4. We see that all the strategies generate increasing

total travel distances as the number of COIs increases. This is because the increase in the

number of COIs will lead to additional distance being added onto each trip. We also notice

that for a varying number of COIs different strategies follow different trends in generating

total travel distances.

For 2 COIs, the PGNE approach generates a longer total trip distance than the Per-

mutation, Greedy and Random strategies. However, this difference is not significant. For 3

COIs, the PGNE generates a 20% longer total trip distance than the Permutation and Greedy

strategies. The Random and PGNE approaches generate the same total trip distances. For 5

COIs, the Permutation and Greedy strategies generate a 20% shorter trip distance than the

PGNE approach. Also, the Permutation and Greedy strategies produce a 35% shorter trip

distance than the Random strategy. For 7 COIs, the Permutation strategy generates a 40%

shorter total travel trip distance than the PGNE, Random and Greedy approaches. From

Figure 4.4, we see that the Greedy approach generates a shorter total travel distance from

2 to 5 COIs but the trip becomes longer for 7 COIs. This is due to processing more GNN
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Figure 4.4: Effect of number of COIs on total distance.

calculations against the start and destination location centroids. Overall, the Permutation

strategy generates an average 20% shorter trip than the PGNE approach.

4.3.3 Effect of Group Size

In this set of experiments, we compared the performance of our proposed approaches

against the PGNE approach, when the group size increases between 2 and 32 users. Figures

4.5 and 4.6 presents the performance of all the approaches in terms of processing time and

total travel distance.

From Figure 4.5, we observe first that all the approaches incur increasing processing

cost as the number number of members in the group increases. This is because of the

significant increase of the trip distance with the increase in the number of users in the

group. The experiment results also show that the Greedy strategy, Random strategy and

PGNE approach have almost the same processing time, while the Permutation strategy

takes a significant amount of time to process the group trip result. Again, this is because

many more alternative trips need to be processed.
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Figure 4.5: Effect of group size on processing time.

Figure 4.6: Effect of group size on total distance.

We now discuss varying the number of members in the group against the group’s total

distance of all the techniques shown in Figure 4.6. We see that all the strategies incur

62



4.4. CHAPTER SUMMARY

increasing total travel distances as the group size increases. This is because of the increase

in group size will lead to more distance calculation from the users’ source and destination

locations through the POIs. The Permutation and Greedy strategies follow the same trend

as we have seen earlier. Both strategies produce shorter trips than the PGNE approach. In

addition, the Random strategy generates a 7% shorter trip distance than the PGNE approach

as the group size changes from 16 and 32.

4.4 Chapter Summary

In this Chapter, a set of experiments and comparisons were conducted for all the pro-

posed approaches versus the PGNE approach. The results show that the Permutation strat-

egy always finds an optimal trip but its processing time is high. From the results, the

Greedy approach always finds a trip of equal or shorter distance than other approaches with

a similar processing time to PGNE approach.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We propose three strategies to process the Alternative Group Trip Planning Queries

(AGTPQs) in Location-Based Services (LBS). The alternative sequence order is generated

by one of the proposed strategies with the goal to generate the shorter trip distance. In

addition, the existing California dataset does not contain POI information and the existing

approaches randomly added the POI information to the nodes which is not realistic in the

real world. Therefore, we also generated a modified California dataset using the Nearest

Neighbour strategy.

In our first strategy, we use the Permutation technique on the COI sequence to generate

a number of different COI orderings based on the P(m,k) = P(m,m) = m! formula. After

finding the different permutations, we find the minimum total travel distance of each permu-

tation using the PGNE approach. Then, we determine the minimum distance among all the

permutations. In our second strategy, called Greedy, we use a distance function to reorder

the predetermined sequence of the COI order. For each COI, it calculates the distance from

centroids of the source and destination locations to the first GNN of that particular COI.

Then, the COI order is sorted in increasing order based on the distance calculated for each

COI. Then, we apply the PGNE approach to this new order to determine the minimum total

travel distance. In our third strategy, called Random, we randomly select the COI order

from the original COI sequence with no repetition. Then, we apply the PGNE approach to

this new order to calculate the minimum total travel distance.
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We evaluated our proposed strategies with various performance parameters. We found

that the Permutation strategy produces a 30% lower trip distance than the remaining ap-

proaches but it takes a significant amount of time to process the AGTPQs. The Greedy

strategy generates an equal or lower trip distance than the Random Strategy and PGNE

approach. Also, the Random Strategy generates lower trip distances in some cases.

5.2 Future Work

In the future, we plan to retrieve the POIs based on the popularity generated from

Google and Trip Advisor platforms to process the SGTPQs and AGTPQs.

In our Permutation Strategy, the same COIs are processed multiple times and this leads

to a significant amount of processing time. So we plan to develop a technique which reduces

the accessing of the same COIs multiple times and still produce an optimal trip.

We also plan to work on applying elliptical properties to refine the POI search space

space, which are used by other strategies.

We also plan to work on processing Group Trip Planning Queries based on the user’s

affinity factor. Affinity factor [31] is the factor where the users in the group can decide with

whom they want to travel that sub-sequence of the trip and meet in between the trip.

We also plan to work on finding an optimal point to start the group trip which produces

the shortest path.

A Dynamic Group Trip Planning Query processes a Group Trip Planning Query in a

way that any user in the group can leave or join at any POI. So, we also plan to improve

AGTPQs where any user in the group can leave or join at any point of the trip.

We also plan to work on the Time-Dependent Group Trip Planning Query where we

plan to take into account of other factors, such as time, traffic and public transportation, for

processing AGTPQs.
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idis, Nikos Pelekis, and Javam Machado. Optimal time-dependent sequenced route
queries in road networks. In Proceedings of the 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL ’15, New
York, NY, USA, 2015. Association for Computing Machinery.

[8] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group near-
est neighbor queries. In Proceedings. 20th International Conference on Data Engi-
neering, pages 301–312, April 2004.

[9] Hicham G. Elmongui, Mohamed F. Mokbel, and Walid G. Aref. Continuous aggregate
nearest neighbor queries. GeoInformatica, 17:63–95, 2011.

[10] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’84, page 47–57, New York, NY, USA, 1984. Association for Com-
puting Machinery.

66



BIBLIOGRAPHY

[11] Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Lars Kulik, and Egemen
Tanin. Efficient computation of trips with friends and families. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management,
CIKM ’15, page 931–940, New York, NY, USA, 2015. Association for Computing
Machinery.

[12] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik. Group
trip planning queries in spatial databases. In Mario A. Nascimento, Timos Sellis,
Reynold Cheng, Jörg Sander, Yu Zheng, Hans-Peter Kriegel, Matthias Renz, and
Christian Sengstock, editors, Advances in Spatial and Temporal Databases, pages
259–276, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[13] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor
search for spatial network databases. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30, VLDB ’04, page 840–851. VLDB
Endowment, 2004.

[14] Chuanwen Li, Yu Gu, Jianzhong Qi, Ge Yu, Rui Zhang, and Wang Yi. Pro-
cessing moving knn queries using influential neighbor sets. Proc. VLDB Endow.,
8(2):113–124, October 2014.

[15] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua
Teng. On trip planning queries in spatial databases. In Proceedings of the 9th Interna-
tional Conference on Advances in Spatial and Temporal Databases, SSTD’05, page
273–290, Berlin, Heidelberg, 2005. Springer-Verlag.

[16] Eric Hsueh-Chan Lu, Huan-Sheng Chen, and Vincent S. Tseng. An efficient frame-
work for multirequest route planning in urban environments. IEEE Transactions on
Intelligent Transportation Systems, 18(4):869–879, April 2017.

[17] Kyriakos Mouratidis, Dimitris Papadias, and Marios Hadjieleftheriou. Conceptual
partitioning: An efficient method for continuous nearest neighbor monitoring. In
Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’05, page 634–645, New York, NY, USA, 2005. Association for
Computing Machinery.

[18] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis. Con-
tinuous nearest neighbor monitoring in road networks. In Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB ’06, page 43–54. VLDB
Endowment, 2006.

[19] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing in
spatial network databases. In Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, VLDB ’03, page 802–813. VLDB Endowment,
2003.

[20] Yeasir Rayhan, Tanzima Hashem, Roksana Jahan, and Muhammad Aamir Cheema.
Efficient scheduling of generalized group trips in road networks. ACM Trans. Spatial
Algorithms Syst., 5(2), July 2019.

67



BIBLIOGRAPHY

[21] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor queries.
In Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, page 71–79, New York, NY, USA, 1995. Association for Computing Ma-
chinery.

[22] Maytham Safar. Group k -nearest neighbors queries in spatial network databases. J
Geogr Syst, 10:407–416, 12 2008.

[23] Samiha Samrose, Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Moham-
mad Hafiz Uddin, and Md Iftekhar Mahmud. Efficient computation of group optimal
sequenced routes in road networks. In 2015 16th IEEE International Conference on
Mobile Data Management, volume 1, pages 122–127, June 2015.

[24] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. The optimal se-
quenced route query. The VLDB Journal, 17(4):765–787, July 2008.

[25] Mehdi Sharifzadeh and Cyrus Shahabi. Processing optimal sequenced route queries
using voronoi diagrams. Geoinformatica, 12(4):411–433, December 2008.

[26] Shashi Shekhar and Sanjay Chawla. Spatial databases - a tour. 2003.

[27] Nusrat Sultana, Tanzima Hashem, and Lars Kulik. Group nearest neighbor queries in
the presence of obstacles. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’14, page
481–484, New York, NY, USA, 2014. Association for Computing Machinery.

[28] Anika Tabassum, Sukarna Barua, Tanzima Hashem, and Tasmin Chowdhury. Dy-
namic group trip planning queries in spatial databases. In Proceedings of the 29th In-
ternational Conference on Scientific and Statistical Database Management, SSDBM
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[29] Yufei Tao and Dimitris Papadias. Time-parameterized queries in spatio-temporal
databases. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’02, page 334–345, New York, NY, USA, 2002. As-
sociation for Computing Machinery.

[30] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest neighbor
search. In Proceedings of the 28th International Conference on Very Large Data
Bases, VLDB ’02, page 287–298. VLDB Endowment, 2002.

[31] George Tsatsanifos, Alexandr Petcovici, and Mario A. Nascimento. Meet-and-go:
Finding optimal single connecting points considering companionship preferences. In
Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, SIGSPATIAL ’15, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

[32] Mala Veeresha and M. Sugumaran. Hybrid spatial air index for processing queries in
road networks. Cluster Computing, 21:1–13, 03 2018.

68



BIBLIOGRAPHY

[33] Xuedong Du and Jiangtao Ji. Research of knn query processing in road networks. In
2009 2nd International Conference on Power Electronics and Intelligent Transporta-
tion System (PEITS), volume 1, pages 72–76, Dec 2009.

[34] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate nearest neighbor
queries in road networks. IEEE Trans. on Knowl. and Data Eng., 17(6):820–833, June
2005.

[35] Geng Zhao, Kefeng Xuan, Wenny Rahayu, David Taniar, Maytham Safar, Marina L.
Gavrilova, and Bala Srinivasan. Voronoi-based continuous k nearest neighbor search
in mobile navigation. IEEE Transactions on Industrial Electronics, 58(6):2247–2257,
2011.

69


