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DEDICATION 

In memory of Helen Juhas (1915-1991), my grandma, who turned her kitchen into a 
chemistry set, and made her backyard an excursion into biological science. 



THESIS ABSTRACT 

The current work explores the behavioural and anatomical consequences of 

unilateral neonatal bulbectomy (OBX) in male and female rats at postnatal day 1 (PI) and 

P10. In adulthood the animals underwent a battery of motor and cognitive tests, and 

diffuse effects of early brain injury on the development of behavior were found. 

Disturbing olfactory sense input during development affected motor output. Rats 

normally display an equal distribution of right or left paw preference. In this study, both 

OBX sexes showed a shifted paw preference to the ipsilesional side, and forelimb deficits 

were found in a skilled reaching task. Lesion animals also showed enhanced 

performance on a visually driven spatial cognitive test. Cross-modal compensatory 

changes may be responsible. Morphological changes within the cerebral cortex are 

described, including bulbar changes, enlarged but fewer glomeruli, smaller accessory 

olfactory bulb, decreased downstream connectivity, and a rostral shift of the forebrain 

toward the olfactory bulb. Changes to the lateral cortex were found in both intact and 

lesion hemispheres, along with dendritic changes in the forelimb reaching area. Cellular 

regeneration within the lesion bulb was indicated. Changed shape and relative size 

increases compared to the intact bulb were found. BrdU labeling showed increased 

mitotic activity in P10 lesion animals. These findings demonstrate that the impact of 

olfactory injury during early development goes well beyond odor perception and 

discrimination, and that olfactory inputs during development significantly contribute to 

the development of the neocortex. 
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Chapter 1 

General Introduction 



Olfaction, the perception of odour, is the first sensory ability to develop. Unlike 

taste, the other chemical sense that requires direct physical interaction with the tongue, 

olfaction serves as an early detection device for ambient chemicals emitted from a distant 

source. Olfaction facilitates communication among members of a species; provides 

information from the environment; and prompts responsive behaviors. The importance of 

olfaction in functional behavior and development is often understated and overlooked. 

The current study was designed to 1) Investigate the functional effects of early olfactory 

injury on behavior beyond the sensory capacity of odor detection and classification in 

rats; 2) Examine the anatomical morphology of early unilateral olfactory lesion; 3) 

Investigate the regenerative capability in the olfactory bulb during rat development. The 

thesis begins with a review the functions of olfaction, anatomy, and connectivity within 

the olfactory system, and developmental aspects relevant to olfaction; followed by a 

rationale for techniques employed, methods, and the main results. The results of three 

additional follow-up experiments follow, and the overall discussion concludes the thesis. 

1.1 THE FUNCTIONS OF OLFACTION 

1.1.1 Recognition 

Are you friend of foe? In macrosomatic animals like rats, the difference between 

familiar (from one's colony) or unfamiliar conspecifics (a stranger) is apparent from 

smell. Rats determine social status (dominant or subordinate), recognize individuals and 

territories based on odours secreted (i.e. through urine). 
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1.1.2 Mate choice 

Olfaction operates in mate choice. Not only can rodents tell the sex of the animal 

producing an odour, but also the reproductive status (mating receptive, pregnant, 

lactating) and maturity (juvenile or sexually mature). Human females tend to prefer the 

odours from men who have immune systems different from their own (Spehr, Kelliher, 

Boehm, Leinders-Zufall and Zufall, 2006). 

1.1.3 Mother/Infant Connection 

Smell facilitates recognition of one's mother or one's child, even in humans. 

After only one hour of exposure human mothers were able to recognize their baby's odor 

(Kaitz, Good, Rokem & Eidelman, 1987). Babies differentiate between the odour of their 

breast-feeding mother and another lactating mother by as early as three days 

(MacFarlane, 1975). Impair a mother rat's sense of smell and perinatal care declines 

dramatically resulting in poor growth and survival of the litter (Kolunie & Stern, 1995). 

1.1.4 Emotion 

Emotional states are communicated through body odour. Rats recognize the level 

of stress in the odour left by another of their species. Contentment, sexuality, frustration 

and other emotions can be communicated by smell. Human women are able to 

distinguish between the armpit odours from people watching scary or neutral films (Chen 

& Haviland-Jones, 1999; Ackerl, Atzmueller & Grammer, 2002). Fear produces a smell 

recognized by horses and dogs. Innate fear responses can be triggered by predator odours. 

1.1.5 Aggression 

Impaired odour reception alters aggressive behavior. Male rats with impaired 

olfaction are less aggressive toward each other in the presence of the odour from a 
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sexually receptive female, when, normally, aggression would increase in this situation 

(Bergvall, Matuszczyk, Dahlof & Hansen, 1991). 

1.1.6 Sustenance & Survival 

Much of our odour detecting capability arises from the foods we are exposed to, 

and whether or not these foods are safe or spoiled. Human postnatal preferences are 

affected by prenatal chemical exposure in utero (via the mother's diet) (Schaal, Orgeur, 

Lecanuet, Locatelli, Granier-Deferre & Poindron, 2000). 

1.1.7 Pathology 

Olfactory disorders affect eating and nutritional intake, quality of life, have safety 

implications, and affect interpersonal relations (Hummel & Nordin, 2005). People who 

suffer from hyposmia (decrease in intensity or number of perceived odorants) or anosmia 

(inability to perceive odorant regardless of concentration) find that food has lost much of 

its appeal, mainly because flavour is a combination of taste (sweet, sour, bitter, salty) and 

smell sensory information. An estimated 80 percent of flavour is derived from smell. 

Dysosmia is a distorted sense of smell and includes troposmia, a condition in which 

odour is detected but doesn't smell like it is supposed to smell (most often the smell is 

unpleasant); and phantosmia, a condition in which an odour that is not detected by a 

normally working human olfactory system, is detected. Dysosmias often arise from 

impaired neuronal function due to olfactory receptor injury, whereas olfactory 

hallucinations found in schizophrenia or seizure activity, are related more to problems 

within the olfactory cortex (Leopold & Bartels, 2002). 

Olfactory dysfunction is often a symptom of neurological problems including 

disease such as Alzheimer's, Parkinson's, Korsakov's, epilepsy, and Huntington's 
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chorea; psychiatric disorders including schizophrenia and depression; traumatic head 

injury and cerebrovascular accident such as stroke; exposure to damaging chemicals, 

medications or a virus; medical illness including diabetes mellitus, renal failure, liver 

disease, and hypothyroidism; and aging (Leopold & Bartels, 2002; see Doty, 2001 for a 

more complete list of pathologies associated with olfactory dysfunction). The loss of 

smell in rats via bilateral bulbectomy is used as a model to parallel depression (Harkin, 

Kelly & Leonard, 2003). In humans the subtle effects of odour detection impairment on 

personal and emotional relationships can result in social isolation and deprivation, and 

can lead to severe depression (Leopold, 1995). Morbidly obese individuals often have 

olfactory dysfunction (Richardson, Vander Woude, Sudan, Thompson, & Leopold, 

2004). Hyposmia and anosmia are also symptoms of Kallmann's Syndrome, a congenital 

disorder resulting from hypothalamic function - gonadotropin releasing hormone which 

migrates from the nasal epithelium to the brain via olfactory receptor axons, does not 

synapse with mitral cells in the olfactory bulb. 

1.1.8 Memory 

Memory and smell are intrinsically linked. An olfactory memory is longer lasting 

than any other sensory memory (Miles & Jenkins, 2000). Memories associated with an 

odour cue are recalled more readily upon presentation of that odour, and, as a memory 

cue, smell is better than the other senses (Chu & Downes, 2000). The smell memory cue 

is known as the "Proust Effect" after the author, Marcel Proust and his description of a 

vivid childhood memory evoked from the smell of Madeleine cake (a rich pastry) dipped 

in lime-blossom tea, in the book Swan's Way. Damage to cortical memory areas does not 

affect smell detection ability, although smell identification ability is often compromised. 
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1.2 ANATOMY - FROM CHEMICALS TO ODOUR PERCEPTION 

Many recent insights regarding the olfactory system have resulted in a substantial 

update and new hypotheses regarding the function of various olfactory cortical areas. 

Traditionally the olfactory cortex, defined here as brain regions stretching from and 

directly innervated by the olfactory bulb including the piriform, entorhinal and 

periamygdala cortices, has been called the primary olfactory cortex, and assumed to 

subserve unimodal olfactory processing functions. The orbitofrontal cortex has long been 

considered secondary olfactory cortex. In other sensory areas, primary, secondary and 

association cortices associated with the sense are classified based on criteria including 

organization, architectural features, and function. In the olfactory system these cortical 

areas are now being identified (see Haberly, 2001). 

Uncontroversially, the nasal epithelium is the olfactory receptor field, containing 

receptor neurons organized into four zones, with individual receptor types projecting to 

specific zones and specific glomeruli on the olfactory bulb. 

In the olfactory bulb, now considered the primary sensory area by many, the 

nerve from each specific receptor neuron (there are thousands of receptors for each 

receptor type), converge on a dedicated glomerulus or a couple of glomeruli in a specific 

zone on the olfactory bulb. Thus, the olfactory bulb (OB) organizes and reduces the 

spatial component of the receptor field into glomeruli and topographically arranged 

glomerular groups with discrete modules likened to columns in the visual system. 

Output from the OB travels directly into the olfactory cortex, and is the only 

sensory system with immediate forebrain access. The lateral olfactory tract (LOT) 

heavily innervates the anterior olfactory nucleus (also referred to as the anterior olfactory 
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cortex) which projects to the opposite hemisphere via the anterior commissure. The LOT 

also projects to the ventral part of the anterior pyriform cortex which projects to the 

prefrontal, entorhinal, and perirhinal cortices as well as the mediodorsal nucleus of the 

thalamus. The LOT further projects to the olfactory tubercle, which projects to the 

posterior hypothalamus; the amygdala, which projects to the medial hypothalamus; and 

the transitional entorhinal cortex, which projects to the hippocampus (Smith & Shepherd, 

2003; Haberley, 2001). See Figure 1.1. 

Figure 1.1: Olfactory cortex. Amygdala, (Amg), anterior olfactory nucleus (AON), 

entorhinal cortex (EC), olfactory bulb, (OB) olfactory epithelium (OE), olfactory tubercle 

(OT), pyriform cortex (PC), OT, olfactory tubercle. After Buck (2004). 

Haberley (2001) provides evidence that the anterior olfactory nucleus (AON) 

operates in much the same manner as other secondary sensory areas - for detection, 

storage, correlation recognition and combinatorial representations of olfactory sensations. 

The pyriform cortex (PC) has been proposed as the association cortex where behavior-

level processing for the olfactory system occurs. The PC does not respond solely to 

olfactory input, and it shows similarities in morphology and physiology to other 

association areas. Schoenbaum and Eichenbaum (1995) showed that neurons in the PC 

fired during non-olfactory components of an odour discrimination task, and were 

influenced by the identity and reward contingencies associated with a presented odour, as 
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well as predictive associations, firing before the onset of an expected odour. Thus, the 

OB is comparable to a primary sensory cortex (i.e. VI in vision); the anterior olfactory 

nucleus to a secondary cortex (i.e. V2, V3, V4); and the pyriform cortex to an association 

cortex (i.e. infero-temporal cortex) (Haberley, 2001). See Figure 1.2. 
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Figurel.2: Sketch of olfactory connectivity compared to visual connectivity, modified 

from Haberley (2001). 

1.2.1 Perireceptor Events: Before the Odorant Receptors 

The experience of smell begins with a scent or odour cluster, and turbulent nasal 

airflow. Odour molecules are inhaled and land on the mucus of the epithelium, a rough 

wet membrane lining the nasal cavity. A scent such as an orange contains many volatile 

and non-volatile components. The small, volatile, hydrophobic odour molecules are 

8 



dissolved in the wet mucus before interaction with the receptors of the epithelium 

occurs.1 Chemicals sorbed by the nasal walls, before reaching the epithelium, have little 

or no odour. Sniffing, a universal behavior that often occurs with an olfactory stimulus, 

enhances the number of odour molecules available to the nasal cleft. The composition or 

thickness of mucus on the epithelium will affect smell, as anyone with a cold will testify 

- too much mucus and sense of smell is compromised. By changing diffusion time, the 

mucus influences how long odorant molecules take to reach receptor sites. 

In most mammals the Bowman's gland and sustentacular (Sus) cells of the nasal 

epithelium secrete and regulate mucus (Schwob 2002). (In humans the Sus cells do not 

secrete mucus.) Mucus contains mucopolysaccharides, immunoglobulins, proteins (e.g. 

lysozyme) and xenobiotic metabolizing enzymes (e.g. peptidases), which break down 

odour molecules to be received by odour receptors. Mucus in the nasal area is also 

believed to deactivate, remove and desorb odorants (Leopold, 1990). Coincidentally, in 

the liver Sus cells are known for their detoxifying functions including phagocytosis, cell 

eating. 

To increase odorant concentration, which improves odorant access to the 

olfactory receptors, odorant binding protein (OBP) in the mucus binds to hydrophobic 

odorant molecules, and solubilizes these molecules further. OBP action can increase 

odorant concentrations 1000-10,000 fold beyond the odorant's concentration in ambient 

air (Leopold, 1990). OBPs are proposed to form a complex with odorants, transport the 

odorants (lipophilic ligands) through the mucus to the receptors, accompany the odorant 

through across the epithelium, then move the odorants away for degradation, freeing up 

1 Recently non-volatile immune system molecules have been shown to function as olfactory cues in the 
mammalian main OE (Spehr et al., 2006). 
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the receptor for another interaction (Prestwich, Du & LaForest, 1995; Eisthen, 2002; 

Jacob, 2004). Multiple types of OBPs (olfactory-specific lipocalins) are distributed 

throughout the mucus in mammals, including humans, each with a fairly narrow odorant 

binding affinity (Eisthen, 2002). 

1.2.2 The Epithelium: The Receptor Field 

The epithelium consists of olfactory and respiratory tissue. This review concerns 

itself with the much thicker olfactory epithelium (OE) (see figure 1.3). Interestingly, in 

humans the area of respiratory epithelial tissue appears to increase with age suggesting a 

reason for decreased olfactory ability with aging. Further, damaged olfactory epithelium 

often becomes respiratory epithelium. Much of the literature estimates that humans are 

capable of detecting between 4000 - 20,000 different odour molecules (Reineke, 2000); 

with some estimates as high as 100,000 chemicals (Buck, 2004). However, because no 

two odours are exactly the same, the olfactory sense is sensitive to infinite odour 

combinations and intensities. 
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Figure 1.3: Illustration of structures within the nasal cavity (after Ma, Grosmaitre, 

Iwema, Baker, Greer & Shepherd, 2003). Main olfactory epithelium (MOE), 

nasopharynx (nph), olfactory bulb (OB), respiratory epithelium (RE), septal organ (SE), 

vomeronasal organ (VNO). 

Two other olfactory structures are found in the nasal cavity. According to the 

standard view, the vomeronasal (VNO) or Jacobson's organ, is dedicated primarily, but 

not exclusively, to detecting pheromones - chemicals secreted by conspecifics. The 

VNO projects exclusively to the accessory olfactory bulb, then onto the medial amygdala, 

and then to the hypothalamus, resulting in reproductive-based behaviors. The VNO is 

activated by non-volatile odors, and uses a pump mechanism. Each VNO receptor 

appears to be tuned to a specific pheromone molecule, and is able to detect the molecule 

at much lower levels than the chemical epitopes in MOB odorant molecules. In humans 

the VNO to AOB system is only identifiable during fetal development (Shipley et al., 

2004). In spite of no VNO, humans retain pheromone detection ability. 

Recent studies show that the main OE is also involved in sexual behavior (Spehr 

et al., 2006; Boehm, Zou & Buck, 2005); that modulation of reproductive and endocrine 

changes are synaptically connected with specific olfactory receptor neurons in the OE, 

not the VNO (Yoon, Enquist & Dulac, 2005); and that mice without an OE (VNO intact) 

don't mate (Yoon et al., 2005). 

The septal organ (SO), a small island of OE surrounded by respiratory epithelium 

is found at the entrance to the nasopharynx, and projects to glomeruli in the medial, 

ventral part of the posterior bulb. Based on location and enhanced sensitivity to some 
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odours (over the same in the main olfactory epithelium) the SO is believed to have an 

alerting function, sensing odours during quiet respiration when air intake is not reaching 

the main epithelium (Ma, Grosmaitre, Iwema, Baker, Greer & Shepherd, 2003). 

1.2.2.1 Olfactory Epithelium 

The olfactory epithelium is a patch of skin rich with smell receptors in the nasal 

cleft; approximately 5-6 million in each nasal cavity in humans and substantially more in 

rats - about 50 million (Jacob, 2004); The OE is organized into several layers (see 

Figure 1.6). Apical are a row of supporting sustentacular (Sus) cells. Under these are 

several layers of mature olfactory sensory neurons (OSNs, also called olfactory receptor 

neurons, ORNs), which project a unique ciliated dendrite between the Sus cells into the 

mucus in the olfactory cleft. From the epithelium ORN afferents project to the olfactory 

bulb glomeruli, which, in turn, send afferents to the olfactory cortex and higher cortical 

areas for odour discrimination, classification and identification; or to limbic areas 

involved in emotion and physiological outcomes. Immature ORNs are found below the 

mature ones, under which basal cells are found. Structurally the OE and the germinative 

neuroepithelia of the embryo (which gives rise to the central nervous system) are similar 

except the much simpler OE only generates one neuron type. In 1978, Graziadei and 

Monti Graizdei found that ORNs continue to generate throughout one's lifetime - from 

foetus through adulthood. 

1.2.2.2 Mature olfactory receptor neurons (ORNs) 

Mature ORNs are bipolar cells. The peripherally directed dendrites end in a knob 

(terminal enlargement) covered with approximately 8 to 20 cilia that extend into the 

mucus. These cilia contain a number of olfactory chemoreceptors or odorant receptors 
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(OR) - proteins to which odorant molecules bind and where sensory transduction 

(depolarization or hyperpolarization) occurs. Intracellular studies show action potentials 

(spike discharges) arise from potentials generated by the chemically stimulated ORs (see 

Figure 1.4). The OR snake through the cilia membrane on the ORN in a manner similar 

to rhodopsin, the receptor protein in eye rod cells. The many olfactory receptor types 

interact with G proteins to transmit signals to the cell, and belong to a receptor family 

known as 7-transmembrane domain G-protein coupled receptors (GPCRs). These 

receptors are believed to amplify small signals. A two-step transduction cascade, 

(explained in Eisthen, 2002; Ronnet & Moon, 2002) is believed to amplify and/or 

regulate amplification of small odorant signals. The olfactory GPCR format further 

provides flexibility to respond to different odours in different ways, and can transduce a 

diverse array of smells encountered (again, see Eisthen, 2002; Ronnet & Moon, 2002). 

An estimated 1000 - 1200 different types of olfactory GPCRs (olfactory receptors) exist 

in the mouse, derived from approximately 2 percent of mouse DNA (Buck & Axel, 

1991). In humans, approximately 350 olfactory receptors actively coding for receptors, 

have been identified. Almost half of the large amount of human genome devoted to 

olfactory receptors (about 1% in all), are inactive pseudogenes. Each OR gene provides 

the code for an OR that recognizes one or very few odorants (Zhao, Ivic, Otaki, 

Hashimoto, Mikoshiba & Firestein, 1998). In mammals it is believed that each OR 

neuron expresses only one OR type (Nef, Hermans-Borgmeyer, Artieres-Pin, Beasley, 

Dionne & Heinemann, 1992).2 

2 Goldfish ORNs have been shown to express two odorant receptor types (Speca, Lin, Sorensen, Isacoff, 
Ngai,&Dittman(1999). 
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Figure 1.4: An odorant receptor on the cilia of an olfactory sensory neuron (after Buck, 

2004). 

Assigning specific receptors to specific odour molecules results in an "odour 

code." Mori, Hiroshi & Yoshihara (1999) have suggested that the physiology of 

olfaction presents four classes of odours - fatty acids, aliphatic aldehydes, aliphatic 

alcohols, alkanes - mapped into four broad zones of olfactory receptors on the epithelium 

(arranged from dorsomedial to ventrolateral); zones that persist through the olfactory 

bulb, and are synthesized in the olfactory cortex (see Figure 1.5). Within a zone, specific 

ORNs are distributed randomly throughout the epithelium, displaying a wide and 

dispersed distribution. When Mori and his colleagues (1999) compared the structure of 

the different odorant receptors in each zone, they found "highly homologous amino acid 

sequences tended to be localized in the same zone of the OE." This works well with the 

findings of Nobel Laureates Axel and Buck who showed distinct zones within the OE 

express nonoverlapping sets of OR genes (Buck, 2004). 
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Figure 1.5: Illustration of the olfactory epithelium showing ORN zones (after Buck, 

2004). 

A non-myelinated axon from each mature ORN joins a bundle of 10 to 100 other 

ORN axons (a fascicle of olfactory nerve) that runs through the cribriform plate to the 

olfactory bulb (OB) where it converges on a glomerulus. Axons from olfactory sensory 

neurons that express the same olfactory receptor "converge" on only a few defined 

glomeruli in the OB. These glomeruli are organized into four zones in the olfactory bulb 

that correspond with the four zones in the olfactory epithelium (Mori et al. 1999). 

Glutamate is believed to be the neurotransmitter utilized at the synapse between the ORN 

axons and the mitral or tufted cell dendrites in various glomeruli. 
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Figure 1.6: A. Cartoon drawing of anatomical structures within the OE. B. Cartoon 

drawing showing the OE stem/progenitor cell process (after Beites et al, 2005.) 

Globose basal cells (GBC), horizontal basal cells (HBC), lamina propria (LP), nasal 

cavity (NC), olfactory epithelium (OE), olfactory ensheathing cells (OEC), olfactory 

receptor nerve (ON), olfactory receptor neuron (ORN), sustentacular cells (Sus). 
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1.2.2.3 Immature olfactory receptor neurons (ORNs) 

Immediately underlying the several layers of mature ORNs are several layers of 

immature ORNs. These developing receptor neurons have no cilia extended and do not 

express olfactory marker protein (OMP), but do express growth-associated protein GAP-

43. Immature ORNs are highly prevalent during development, immediately after 

epithelial damage, and in the absence of a synaptic target - i.e. an olfactory bulb lesion. 

Immature ORNs are post-mitotic cells. 

1.2.2.4 Basal Cells of the Epithelium 

Basal cells sit on a membrane at the base of the epithelium just above the lamina 

propria (LP), and are divided into two broad morphological groups. 

Globose basal cells (GBCs): GBCs are simple round cells with very little 

cytoplasm. One group of GBCs are multipotent stem cells, mitotically active when 

neurons are needed, replacing ORNs. Calof, Bonnin, Crocker, Kawauchi, Marray, Shou 

and Wu (2002) have identified three stages of neuronal progenitor cells arising from the 

GBCs: The neural stem cell, the MASH1 transit amplifying progenitor (TAP), and the 

immediate olfactory receptor neuronal precursor (INP). [For an in-depth overview see 

Calof et al. (2002); and Beites, Kawauchi, Crocker and Calof (2005).] Post-mortem, 

olfactory epithelial tissue from donors up to 95 years of age, has been removed, expanded 

and manipulated (in vitro) to form neurospheres (Roisen, Klueber, Hatcher, Dozier, 

Shields and Maguire, 2001). The implications of a minimally-invasive source of 

pluripotent stem cells may be profound. 

Horizontal basal cells (HBCs): HBCs are found at the base of the epithelium 

and, while morphologically different, have attributes similar to ependymal cells that line 
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the ventricles in the subventricular zone, and may contribute neurogenic regulators to the 

stem cell environment in the OE (Beites et al., 2005). These more specialized cells appear 

to overlie small bundles of exiting axons. 

Non-olfactory related cells: Remarkably, the OE generates a number of 

different neurons and glia that migrate along olfactory nerves into the forebrain, and this 

migration occurs in developing and adult mammals (Dryer & Graziadei, 1994) 

1.2.2.5 Supporting Cells of the Epithelium 

Bowman's Gland: The Bowman's gland is a primary source for the mucus on the 

epithelium. It extends from the lamina propria through the epithelium. Both Bowman's 

Gland and Sus cells express different enzymes depending on their location in the 

epithelium. (See perireceptor events for more information on supporting cells.) 

Sustentacular (Sus) cells: The microvilli capped Sus cells are comparable to glial 

cells in the CNS and a single layer line the apical side of the OE. Sus cell end feet 

project to the basilar side of the OE. Sus cells regulate mucus, play a role in the 

breakdown of odorant molecules, detoxify noxious chemicals on the OE, phagocytose 

dead receptor neurons, and provide structural support (Beites et al. 2005). 

Microvillar cells: These bell-shaped cells on the apical side of the epithelium are 

somewhat controversial. Some believe microvillar cells to be support cells; others 

suggest they are bipolar sensory neurons. The microvilli of these cells extend into the 

mucus layer and the basal end tapers into an axonal-like extension that projects through 

the cribriform plate to the olfactory bulb (Rowley, Maran & Jafek, 1989). 

Olfactory Ensheathing Cells (OEC): Along with generating ORNs, stem cells 

from the base of the epithelium appear to generate two types of olfactory ensheathing 
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(OE) cells which wrap around the axons and processes of the olfactory receptor neurons 

as they extend from the peripheral nervous system through the epithelium, lamina propria 

(cribriform plate) and into the central nervous system, specifically the olfactory bulb 

(Calof et al., 2002). These glial cells - a Schwann cell-astrocyte cross - permit and 

promote continuing axonal regrowth of new ORNs throughout life. Although OE cells 

do not produce a myelin sheath around ORN axons, they will myelinate larger diameter 

axons. When transplanted in nerve lesion studies, OECs encourage axonal outgrowth and 

promote recovery (Fairless and Barnett, 2005). 

1.2.3 Main Olfactory Bulb: Primary Olfactory Cortex 

1.2.3.1 Getting to the Bulb 

The scent of a single object, like coffee, is a derived from a cluster of different 

odour molecules or molecular species. Most natural odorants are multifaceted. The 

coffee complex, for example, contains more than 100 volatile molecular species. 

According to an excellent review by Haberley (2001), an odorant receptor is tuned to a 

specific molecular feature inherent on a molecular species. Thus a single odour molecule 

may be activating a number of receptors. Each detectible feature of each molecular 

species in a molecular cluster (such as coffee) activates an ORN. Consider a simple two 

molecule odorant cluster: The first molecule contains features S, M and the second E, L. 

Upon reaching the OE, odorant receptors for features S, M, E and L become activated. 

Like a letter in the alphabet, each OR becomes a component of a code for the odour 

cluster - SMEL (see Figure 1.7). 

Quality and quantity encoding is also apparent. Higher odorant concentrations 

with a specific molecular feature activate more ORs dedicated to that feature than lower 
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concentrations. Each odorant receptor then sends information via its ORN axon to the 

olfactory bulb and specific glomeruli dedicated to each type of odorant receptor. Like a 

word, the OR pattern activation for an odour becomes a unique configuration of 

glomerular module activation. The complexity of odour detection arises from a 

glomerular odour code. This spot code becomes salient for determining the odour 

stimulus. Glomerular activation pattern for an odour may be different depending on 

previous activation in the bulb arising from previous olfactory stimulus. Inhibitory 

interneurons and other cellular connections within the bulb can amplify or reduce action 

within a glomerulus (Freeman, 1991). 
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Figure 1.7: From odorant molecule to glomeruli. Sketch of how a two-molecule odorant 

is translated by ORNs and sent to dedicated glomeruli. 
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Buck (2004), and Mori et al. (1999) propose that two basic principles of olfactory 

axon projection have been demonstrated: "Zone to zone projection" and "glomerular 

convergence". 

Zone to Zone Projection: Until recently researchers did not believe the olfactory 

bulb was arrayed along a small number of linear dimensions by afferent input. However, 

like other primary sensory brain areas, topographical organization is apparent when 

viewing the axonal connectivity between each of the four zones of the epithelium which 

correspond with four zones in the olfactory bulb. Genetically similar odorant receptors 

(homologous amino acid sequences) tend to be localized in the same zone (see Figure 

1.8). 

Figure 1.8: Zone to zone projection from the olfactory epithelium to glomeruli on the 

olfactory bulb (after Buck, 2004). 

Each zone can be broken down into localized regions where a number of neurons 

from various glomeruli intermingle. Receiving neurons (mitral & tufted cells) interact 

with different groups of interneurons (granule and periglomerular cells) within a zone. 

Such associations are believed to sharpen and contrast odorants, as well as amplify 

odorant signals. These bulbar regions appear to focus on an odorant type (fatty acids, 
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aliphatic aldehydes, aliphatic alcohols or alkanes) with areas of overlapping specificities 

(see Mori et al. 1999). 

Glomerular Convergence: In mammals, the axon from a single ORN synapses 

on only one glomerulus, with some axons taking "tortuous trajectories" - snaking around 

or through adjacent glomeruli before reaching their target glomerulus (Treloar, Feinstein, 

Mombaerts & Greer, 2002). The axons from identical olfactory receptor neurons 

converge on only 2 (sometimes 4) dedicated glomeruli located on each side of the bulb -

one medial, the other lateral. The convergence of ORN input results in an increased 

sensitivity to an odour chemical due to the summation of the contributions from many 

identical sensory receptors. Thus, the individual mitral and tufted cells with apical 

dendritic projections into the glomeruli upon which the ORNs synapse, have a molecular 

receptive range "tuned" to the specific molecular features/conformations of various odour 

molecules (see Mori et al., 1999). In the mouse OB, the axons from the millions of 

ORNs (each neuron containing one of 1000 odorant receptors) are sorted into 1800 to 

2000 glomeruli. Rats are believed to have between 3000-4200 glomeruli. 

1.2.3.2 Glomeruli 

Each glomerulus is a spherical bundle of neuropil; is large (50-160um in rats); is 

a discrete functional unit surrounded by a shell of glial (wedge-shaped astrocyte) cells; 

and is made up mainly of axonal collaterals from ORNs, as well as the principle apical 

dendrites of mitral and tufted cells - the output neurons for the olfactory bulb. Tufted cell 

dendrites can innervate several glomeruli whereas the larger mitral cells innervate one 

glomerulus. Several thousand olfactory nerve fibers from identical ORNs synapse 

directly with dendrites from mitral and tufted cells, making up 80 percent of the synaptic 
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action in each glomerulus - an excitatory action mediated by glutamate (Shipley, Ennis & 

Puche, 2004). The remaining 20 percent of glomeruli synaptic activity arises from 

interneuron activity which works to synchronize and amplify ORN input. Output cells 

(mitral/tufted) form electrical and/or chemical synapses with juxtaglomerular cells, which 

in turn feed back to the same and neighbouring output cells. 

1.2.3.3. Glomerular Interneurons 

Juxtaglomerular interneurons surrounding the glomeruli ramify each glomerulus. 

These include external tufted (ET) cells, periglomerular (PG) cells, and short axon (SA) 

cells. The primary dendrite of each ET cell extensively innervates a single glomerulus. 

ET cells also receive direct synaptic input from ORNs; generally PG and SA cells do not. 

Like mitral and tufted cells, ET cells also synapse with PG and SA interneurons. 

Two subregions are known to exist within each glomerulus: One rich in ORN 

axon collaterals, and the other poorly innervated by ORN input. PG cell dendrites are 

generally found in the ORN-axon-poor region. Unlike their name, short axon (SA) 

neurons extend across multiple glomeruli and mediate interglomerular action (see Hayar, 

Karnup, Ennis and Shipley, 2004). Santhakumar and Soltesz (2004) summarize the role 

olfactory bulb interneurons play: 

1. Control action potential discharge rate and timing. 

2. Modulate the number of cells that are active in population discharges. 

3. Provide feedforward or feedback inhibitory mechanisms. 

4. Generate and synchronize network rhythms at various frequencies associated with 

a variety of smells. Thus, following Hebbian rule, cells that fire together wire 

together. Mori et al. (1999) propose that synchronized oscillatory discharges of 

3 Some olfactory nerve fibers terminate on juxtaglomerular interneurons. 
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mitral and tufted cells "bind" glomerular regions/modules, combining signals 

from different glomerular modules at the level of olfactory cortex. Olfactory 

memory traces may arise from lasting dendrodendritic reciprocal synapses. 

In an altered state OB intemeurons commonly contribute to neurological and psychiatric 

disorders. 

1.2.3.4 Glomeruli: Regulating Odorant Detection 

In the OB fine tuning of odorant detection occurs on a number of different levels: 

Intraglomerular processing where dendrites from output cells and juxtaglomerular cells 

synapse on each other within the glomerulus; interglomerular connections between 

juxtaglomerular cells; dendrodendritic interaction between output cells; and connection 

between output neurons and granule cells (see Laurent, Stopfer, Friedrich, Rabinovich, 

Volkovskii & Abarbanel, 2001, for an excellent system analysis). 

Output (mitral/tufted) and ET cell to PG/SA (juxtaglomerular) cell synapses are 

generally excitatory dendro-dendritic connections mediated mainly by glutamate. PG/SA 

back to mitral/tufted dendro-dendritic synapses are inhibitory, mediated by GABA or 

dopamine, creating a feedback inhibition on the receiving cell. Because intemeurons are 

connected to other mitral and tufted cells, inhibition is also imposed on these second 

order cells as well. The result is a fine tuning and sharpening of odorant molecule 

detection. (See Aungst, Heyward, Puche, Kamup, Hayar, Szabo & Shipley, 2003 for a 

complete description of centre-surround inhibition between glomeruli in the OB). 

Inhibitory back-projections from the olfactory cortex to the OB also facilitate rapid 

habituation to specific odorant exposure that is sustained for longer than a couple of 

seconds. Feedback inhibition occurs when afferents from the olfactory cortex excite OB 
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granule cells which inhibit mitral cell action via dendro-dendritic synapses, allowing the 

OB to rapidly habituate to odour-evoked activity and select new odorant stimulus 

patterns. In a complex olfactory environment the ability to rapidly select for odorant 

changes aids in the learning and discrimination of odorants (Wilson, 2000). 

1.2.3.5 Bulbar Lamination 

The olfactory bulb allocortex is organized into several layers described in the 

following sections (from Shipley et al., 2004), (see figure 1.9). 

ONL 

ONL 

EPL 

Figure 1.9: Olfactory bulb lamination: External plexiform layer (EPL), glomerular layer 

(GL), internal plexiform layer (IPL), mitral cell layer (MCL), olfactory nerve layer 

(ONL), subependymal layer (SEL). 

1.2.3.6 Olfactory Nerve Layer (ONL) 

Olfactory nerve fibers move from the epithelium through the lamina propria and 

the cribriform plate to the most superficial layer of the OB called the olfactory nerve 

layer which contains the axons from the ORNs. Ensheathing glial cells incompletely 

wrap these axons, separating the nerve fibers from the next layer of the OB. 
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1.2.3.7 Glomerular Layer (GL) 

Directly below the ONL is the glomerular layer containing globe-like glomeruli 

structures and juxtaglomerular interneurons described above. 

1.2.3.8 External Plexiform Layer (EPL) 

Deeper is the external plexiform layer, mainly containing the dendrites of the 

output neurons (mitral and tufted cells), particularly neurons of the superficial, middle 

and deep tufted cells, which are progressively larger the deeper one goes. Dendrites 

from these cells enter a glomerulus (tufted cells may connect to several adjacent 

glomeruli); secondary tufted cell dendrites project peripherally through the EPL, 

synapsing on each other. Axons from the smaller and most peripheral superficial tufted 

cells, form an intrabulbar association system (IAS) that travels to the opposite side of the 

same bulb, and topographically organize, thus providing a "point-to-point reciprocal 

projection between the lateral and medial bulb" (Shipley et al., 2004). The function of 

two symmetrical olfactory maps, one in the lateral and the other in the medial hemisphere 

of the olfactory bulb, is unknown. 

1.2.3.9 Mitral Cell Layer (MCL) 

A monolayer of mitral cells, the biggest and principle neurons in the bulb, lies 

below the EPL. Developmentally similar to pyramidal neurons in the cortex, these cells 

are the primary output cells of the OB. In the rat, each OB has been reported to have 

around 45,000 mitral cells; humans have around 50,000. Fukushima, Oikawa, Yokouchi, 

Kawagishi and Moriizumi (2002) report a 20 percent threshold, where 9,000 to 15,000 

mitral cells are required to retain olfactory discrimination function. Mitral cells have one 

apical dendrite that ramifies a single glomerulus. In rats, about 25 (of 40,000) mitral cells 
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project into one glomerulus. Mitral cell secondary dendritic branches run parallel within 

the olfactory bulb, and synapse with granule cell dendrites that are abundant in this layer. 

Lack of olfactory stimulus (pure air) reduces mitral cell size, while prolonged odorant 

exposure increases mitral cell size (Laing, Panhuber, Pittman, Willcox & Eagleson, 

1985). 

1.2.3.10 Internal Plexiform Layer (IPL) 

The IPL is characterized by axons from OB output cells and dendrites of granule cells. A 

number of modulatory afferents originating from subcortical structures are also found in 

this layer, including serotonin (from raphe nuclei), norepinephrine (from the locus 

coeruleus) and acetycholine (from the nucleus of the diagonal band) projections. Cortical 

afferents from the anterior olfactory nucleus, piriform, entorhinal and transitional cortical 

areas also act on granule cells. 

1.2.3.11 Granule Cell Layer (GCL) 

Groups of tiny, tightly packed granule cells are found in this the deepest neuronal 

layer of the OB. These axonless neurons are interneurons that interact with secondary 

dendritic branches of mitral cells in the same kind of feedback manner as mitral to 

juxtaglomerular to mitral dendro-dendritic synaptic loops. The glutamate excitation of 

the mitral-to-granule cell triggers granule cell GABA release. Granule cells die in the 

absence of olfactory input, but undergo neurogenesis throughout life. 

1.2.3.12 Subependymal Layer (SEL) 

In development this layer presents the progenitors of most MOB cells. In baby 

rats these cells line the lateral ventricle - a ventricle present in the bulb during 

development, that receeds in adult rats. In adults, progenitor cells in the subependymal 
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layer originate in the more rostral subventricular forebrain regions, then migrate into the 

subependymal layer of the OB along the rostral migratory stream (Shipley, 2004). In 

adults, neuronal stem cells from the subependymal layer become intemeurons - primarily 

granule cells (Frazier & Brunjes, 1988), and secondarily, juxtaglomerular 

(periglomerular) neurons (Lois & Alvarez-Buylla, 1994). Neither granule nor PG 

neurons have afferents outside the OB. 

The rostal migratory stream (RMS) arises from the subventricular zone (SVZ), 

and extends to the olfactory bulb. Newly generated neuroblasts4 move into the stream, 

proliferate and migrate forward in a chain-like manner, in an astrocyte tunnel, at a speed 

of 30 um per hour, the same speed as migrating neurons during development (Lois & 

Alvarez-Buylla, 1994). The SVZ cells then move into the core of the OB. These cells 

are recruited to renew the constantly dying olfactory bulb intemeurons in the granule and 

periglomerular layers. Studies using adult bulbectomy (OBX) have shown that the bulb 

is not necessary for neuronal precursor proliferation and migration down the RMS 

(Kirschenbaum, Doetsch, Lois & Alvarez-Buylla, 1999).5 

1.2.4 Lateral Olfactory Tract (LOT) 

Horseradish peroxidase injected into mitral cells shows that axons and their 

collaterals project into the anterior, medial, and lateral olfactory cortex. The course of 

these projections is called the lateral olfactory tract. In the rat, the LOT is a nerve bundle 

4 Some controversy as to the origins of the neuroblasts exists. Some studies show the multipotent stem 
cells arising from ependymal cells lining the ventricle; others from SVZ astrocytes. As SVZ astrocytes are 
known to contact the ventricle surface, they may have been mislabelled as ependymal cells. See Conover 
& Allen, 2002 for a review. 
5 In the adult brain, the functional integration of newly generated neurons into existing circuitry is a 
logistical problem that has generated much interest. In the dentate gyrus, afferent connectivity of the new, 
adult GABAergic neurons is observed only after glutamatergic inputs have occurred. It is possible similar 
connectivity is the case in the olfactory bulb. See Song, Kempermann, Wadiche, Zhao, Schinder & 
Bischofberger, 2005, for an interesting review. 
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of approximately 48,000 fibers that runs ventrolateral^ from the OB to the piriform and 

entrorhinal areas with collaterals that project into cortical areas (Price and Sprich, 1975). 

The lateral olfactory tract (LOT), made up of myelinated axons mainly from mitral cells 

and middle and deep tufted cells in the bulb, projects axon collaterals to the anterior 

olfactory nucleus, piriform cortex, olfactory tubercle, transitional entorhinal cortex, the 

amygdala, septal nuclei, hippocampus and subiculum, and thalamus. 

The LOT is the only efferent pathway from the OB to other olfactory structures. 

Price and Sprich (1975) report an average 42,000 axons in the tract immediately caudal to 

the olfactory peduncle, which reduce about 25 percent by the end of the tract. Larger 

axons are found lateral in the LOT, smaller ones medial. A degree of point-to-point 

organization is found at the peduncle (AON) that is lost as the LOT progresses. Axons 

(collaterals) leaving the tract are much smaller than axons within the tract. 

1.2.5 Accessory Olfactory Bulb 

Receptor neurons from the vomeronasal organ (VNO) in the nasal cavity, project 

exclusively to the accessory olfactory bulb (AOB), a structure found on the caudal-dorsal 

olfactory bulb. Proportionally, males have a much larger AOB than females. A mini 

olfactory bulb of sorts, the AOB contains many of the same structures as the MOB. VNO 

projections innervate smaller glomeruli in the AOB. Unlike the MOB, receptors of the 

same type have been reported to project to a number of glomeruli (Belluscio, Koentges, 

Axel and Dulac, 1999). Periglomerular cells are found deeper within the AOB, thus the 

glomeruli are less distinct. An external plexiform layer (EPLA), mitral cell layer 

(MCLA), internal plexiform layer (IPLA) and granule cell layer (GCLA) are evident, and 

they are less distinct as well. VNO mitral cells are polymorphic compared to the same in 
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the OB, and often ramify a number of glomeruli (Takami & Graziadei, 1991). A report by 

Del Punta and colleagues (Del Punta, Puche, Adams, Rodriguez & Mombaerts, 2002) 

suggests that mitral cells dendrites are projecting to glomeruli that are innervated by the 

same VNO receptor type. Granule cells in the AOB are the same as granule cells in the 

MOB. Glutamate and aspartate are the main excitatory neurotransmitters, and GAB A is 

the main inhibitory transmitter. Dopaminergic interneurons are missing in the AOB. 

Projections from the AOB do not overlap with the MOB, and are directed to the 

medial and posterior nuclei in the amygdala, the bed nucleus of the stria terminalis in the 

hypothalamus, as well as the nucleus of the accessory olfactory tract. Shipley (2004) 

suggests that neurons in these AOB targets may be modulated by circulating hormones as 

gonadal steroid receptors are evident on target neurons. The VNO, AOB and subsequent 

connects are believed to be important for reproductive behavior. 

1.2.6 Olfactory Cortex 

Structures within the olfactory cortex are described in the following sections 

(from Shipley et al., 2004), (see Figures 1.1 and 1.10). 
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Figure: Illustration of two olfactory receptor neuron (ORN) types on the olfactory 

epithelium (OE), exciting dedicated glomeruli in the olfactory bulb (OB). Output 

projections from the olfactory bulb (OB) travel down the LOT and activate regions that 

sometimes overlap, in the piriform cortex (PC), entorhinal cortex (EC) and olfactory 

tubercle (OT), (after Buck, 2004). 

1.2.6.1 Anterior Olfactory Nucleus/Cortex 

The anterior olfactory nucleus (AON) is the first stop of axon collaterals from the 

main OB. A laminated cortical structure, the AON is highly innervated by MOB output -

more so than any subsequent regions. Mitral and tufted axonal collaterals tend to 

organize on the AON in a topographical manner with dorsolateral MOB neurons 

projecting to the dorsal, external region of the AON, and ventral MOB neurons projecting 

to the lateral AON subdivision (Schoenfeld & Macrides, 1984). Such chemotopic, point 

to point mapping does not appear to occur in other MOB axonal targets, although 

regionalization (clustering) does occur (Buck, 2004, Nobel Lecture) (see figure). 

Many have proposed that the AON is a relay station due to its strong feedforward 

connectivity (OB to AON to piriform cortex) and feedback/return circuitry (piriform 

cortex to AON to OB). Recent studies suggest the AON is more complex than previously 

believed, however, and likely plays an essential role in processing olfactory information 

beyond that of a relay circuit - a role more in line with a secondary sensory cortex. 

Specifically, the AON "detects and stores correlations between olfactory features, 

creating representations (gestalts) for particular odorants and odorant mixes" (Haberley, 

2001). Pyramidal cells, similar to cortical pyramidal cells (one apical dendrite and 

several spine covered, basalar dendrites), and at least four interneuron types are found in 
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the laminated AON. These illustrate complexity in the AON. Such functioning and 

anatomy correspond to activities at other secondary sensory levels (Brunjes, Illig and 

Meyer, 2005). 

AON Subdivisions: The AON is divided into two subregions: the pars externa, a 

thin band of cells at the junction between the bulb and the AON; and, the pars 

principalis, consisting of two layers. The pars principalis is divided into a number of 

geographic subdivisions (pars dorsalis, pars ventralis, pars medialis, pars lateralis and 

pars posterioralis), but the boundaries for these divisions are not clearly delineated 

(Brunjes et al., 2005) (see Figure 1.11). Moving caudaully, the AON meets the piriform 

cortex on the lateral region {pars lateralis), the ventral tenia tecta on the medial side 

(pars medialis, dorsalis), and the larger olfactory tubercle in the ventral region (pars 

ventro-posterioralis). Two levels of lamination are present in the AON, an outer 

plexiform layer (layer I), and a thick ring of cells on the inside (layer II). Price proposes 

that layer II is merged layers II and III, which are distinct in the piriform cortex (Price, 

1973). Differences in cell size distribution and connectivity studies suggest that ventral 

and medial cells of the pars principalis project locally while dorsal and lateral regions 

project to further regions (Meyer, Illig and Brunjes, 2006; review in Brunjes et al, 2005). 
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Figure: Illustration of the anterior olfactory cortex/nucleus in lateral, medial and ventral 

views (after Brunjes et al., 2005). Corpus callosum (CC), dorsal peduncular cortex 

(DPC), lateral olfactory tract (LOT), olfactory tubercle (OT), piriform cortex (PC) 

AON Connectivity: Whereas most inputs to the AON are organized in a laminar 

fashion with OB inputs restricted to the lateral AON and olfactory cortex inputs restricted 

to a more medial position, the pars dorsalis shows intersecting rostral and caudal inputs 

(Schwob & Price, 1984). Intra-AON connections arise from inputs from other AON 

subdivisions. Inputs from outside the AON include the piriform and entorhinal cortex, 

amygdala, olfactory tubercle, nucleus of the lateral olfactory tract, and hippocampus; and 

modulatory inputs for norepinephrine (locus coeruleus), serotonin (raphe nuclei), and 

acetycholine (nucleus of the diagonal band). Dopamine receptors are also found in the 

AON. 
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The pars principalis projects back to the MOB. About 80 percent of the 

pyramidal cell projections from the AOB terminate on the MOB (Haberley, 2001). These 

pyramidal axons organize on the bulb with a degree of laminar topography (Shipley et al. 

2004). Other AON outputs include the AON (ipsi and contralateral), the piriform and 

entorhinal cortices, the amygdala, olfactory tubercle, tenia tecta, the nucleus of the lateral 

olfactory tract, CA1 division of the hippocampus, nucleus accumbens, and the lateral 

hypothalamus. The vast majority of AON efferents connect within the olfactory cortex. 

Bilateral Input: The AON is the first structure of the olfactory cortex to receive 

bilateral olfactory innervation - direct afferents from the ipsilateral OB and indirect inputs 

from the contralateral hemisphere. Specifically, the AON projects axons via the anterior 

commissure to the contralateral AON. The contralateral information is then forwarded to 

the MOB. The result is "extensive, bilateral representation of olfactory information at the 

level of the AON" (Shipley et al., 2004). 

1.2.6.2 Olfactory Peduncle 
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Figure 1.12: Layer I of the anterior olfactory nucleus (I), layer II of the anterior olfactory 

nucleus (II), accessory olfactory bulb, (AOB), anterior olfactory nucleus (AON), pars 

externa (AONe), dorsal penduncular cortex (DPC), lateral olfactory tract (LOT), main 

olfactory bulb (MOB), olfactory tubercle (OT), piriform cortex (PC), transition zone 

(TR), ventral tenia tecta (VTT). 

In zoology, peduncle means stem. Along with the AON, the olfactory peduncle 

also contains the tenia tecta, the olfactory tubercle, and the dorsal penduncular cortex. 

The anterior piriform cortex also extends into the olfactory peduncle (Shipley, 2004; 

Brunjes et al., 2005) (see Figure 1.12). 

Tenia Tecta (TT): The tenia tecta (TT), tenia meaning ribbon, is a caudomedial 

extension of the olfactory area, and the anterior end of the hippocampal extension known 

as the indusium griseum. Organized in a manner similar to the HPC, the TT is first found 

in the medial ventral area beside the AON. Moving caudal the TT is most noticeable 

under the dorsal penduncular cortex. The TT receives projections from the olfactory 

bulb, the entorhinal cortex, and the indusium griseum. Output from the TT goes to the 

diencephalon. 

Olfactory Tubercle (OT): The olfactory tubercle (OT) is a bulge at the base of 

the cerebral hemisphere that receives input from the OB, and outputs to the hypothalamus 
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and the mediodorsal nucleus of the thalamus. The OT is found in the medial and ventral 

region of the peduncle. Cellular architecture in the OT appears to be a cross between 

cortical and striatal. 

Dorsal Peduncular Cortex (DPC): The dorsal peduncular cortex lies at the top 

of the olfactory peduncle, and provides a bridge to the frontal neocortex. This allocortex 

is three-layered like the piriform cortex. 

1.2.6.3 Lateral Olfactory Cortex: The Association Cortex 

The lateral olfactory allocortex is found in the temporal cortical mantle below the 

rhinal fissure, and extends from the piriform cortex, through the periamygdaloid and 

transition cortices to the lateral entorhinal cortex. In many respects the features of the 

lateral olfactory cortex resemble and function more like association cortex in other 

sensory systems rather than primary sensory areas (Johnson, Illig, Behan and Haberly, 

2000; Haberley, 2001; Brunjes et al., 2005). Axonal collaterals in the piriform cortex 

have been found extending from the olfactory bulb to the entorhinal cortex; and 

projecting to areas "thought to play a role in mediating complex functions related to 

integrating sensory cues with behavior (prefrontal cortex), assessing the emotional or 

motivational significance of sensory cues (amygdala), and mutisensory association and 

memory (entorhinal and perirhinal cortex)" (Johnson et al. 2000). 

Along with branching extensively in the piriform cortex, superficial pyramidal 

(SP) cells of the piriform cortex branch to most other olfactory areas (olfactory bulb, 

anterior olfactory nucleus, olfactory tubercle), to amygdaloid cortex and nuclei, to 

prefrontal cortex (agranular insula and orbital cortex where odor discrimination is 

believed to take place), entorhinal cortex, and perirhinal cortex. In these areas, the 
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arborisation is extensive, and believed related to "diverse functional roles including those 

related to behavior, cognition, emotion and memory" (Johnson et al. 2000). Axons from 

the piriform cortex also send extensive input into adjacent (lateral) cortical regions 

including the somatosensory cortex and the temporal cortex (Haberley, 2001). 

Reciprocal projections are found from these target areas (except the olfactory tubercle) 

back to the piriform cortex. Numerous interneurons exist in the piriform cortical area 

including basket cells thought to form axosomatic or axodendritic synapses providing 

inhibitory feedback and feedforward circuits. 

From the piriform cortex the lateral olfactory tract continues through the 

transitional region called the periamygdaloid cortex, and onto the entorhinal cortex, all of 

which project heavily back to the MOB. Anderson and colleagues believe that smell 

operates down two pathways, a reward (i.e., pleasant/unpleasant) pathway, which lights 

up the oribital frontal cortex, and an intensity pathway, which lights up the amygdaloid 

areas (Anderson, Cristoff and Stappen, 2003). Most olfactory cortical feedback to the 

MOB works by exciting the GABAergic granule cells in the MOB, which subsequently 

suppress firing mitral cells. The piriform and entorhinal cortices, both substantially 

innervated by the MOB, project into the hippocampus which are likely important for 

memory, and smell-event associations. 
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1.3. DEVELOPMENT 

The mechanisms of olfaction are apparent early in development. Odorant 

receptors have even been found on human sperm to mediate chemotaxis, which indicates 

that sperm 'smell' their way to the egg (Spehr, Gisselmann, Poplawski, Riffle, Wetzel, 

Simmer, Hatt). 

1.3.1 Stages of Development 

The central nervous system goes through several stages during development: 

neurogenesis and cell identity specification; migration and differentiation; maturation 

including arbourization of the cell dendrites and the formation of synapses; myelination; 

and, refinement of synaptic connectivity by pruning. 

During neurogenesis, neurons from stem cells of the ventricular zone divide either 

symmetrically, producing two stem cells, or asymmetrically, producing a stem cell and a 

progenitor cell destined to become a specific cell type. The distinction between a 

progenitor cell (also called a precurser or undifferentiated cell) and a stem cell is a 

difference in gene expression and thus, the proteins that control cell development 

(Wolpert, Beddington, Jessell, Lawrence, Meyerowitz & Smith, 2002). No clear 

structural differences foretell the developed cell's fate. These undifferentiated cells are 

determined or committed with respect to their developmental potential by the proteins 

contained therein, and all of their progeny have the same limited developmental options. 

Progenitor cells migrate to locations in the brain. Stem cells remain mitotically active but 

stay in the subependymal zone. 

Differentiation of progenitor cells occurs gradually through a number of 

generations, each generation becoming more and more differentiated. External signals in 
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the local extracellular matrix including cell-surface proteins, which are secreted 

polypetide cytokines and other molecules (hormones, growth factors), affect or "select" 

from the limited developmental options. Late in the division cycle, commitment to a 

particular neuronal (or glial) fate occurs, and "the neuron becomes unresponsive to 

environmental influences on its fate" (Wolpert et al., 2002, p.388). Proliferation of 

precursor cells occurs most markedly just before the terminal stage of differentiation at 

which point cells no longer divide, but begin to mature. 

Progenitor cells migrate from the ventricular proliferative zone (subependymal/ 

subventricular zone) along radial glia cells, to various areas of the brain, building the 

cortex from the inside out. While migrating and once in position these neurons (and 

astrocytes) start maturing and developing dendritic arborisation and spines on the 

dendrites. During maturation, guided outgrowth of axons toward target cells also occurs, 

creating synaptic connections and neuronal circuits. The growth cone at the axon tip 

extends out from the soma of the neuron and senses its environment. Filopodia on the 

cone extend and retract, allowing the axon to explore and grow through the substratum. 

Contact by the filopodia with other cells and the extracellular matrix, determine the 

direction of axonal growth. These external cues either attract or repulse axon growth. 

The filopodia make contact with guide post cells, which are neurons along a pathway to 

which filopodia make contact. "Arrival at the ultimate target is achieved through a 

sequence of stages, characterized by arrival at consecutive guide posts" (Wolpert et al, 

2002, p.398). Even without these stepping stones axon growth cones eventually reach 

their target destination, albeit with increased axonal branching and at a slower pace. 
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Guide post cues are involved in axonal outgrowth that crosses the midline in the CNS. 

Once an axon has crossed the midline it does not return. 

Axonal cone growth results in highly organized axonal projections. This is 

particularly noticeable when looking at the topographical maps that are formed by the 

projection of sensory receptor cells to primary cortical regions, in a point-to-point 

correspondence. Initially these projections are only "reasonably precise" (Wolpert et al, 

2002, p. 401). The target is found when the axonal growth cone projects to a 

neighborhood of cells sending an active attractant signal. Cells are programmed to die 

during development (apoptosis), unless the axon connects with a target, and positive 

acting control signals (neurotrophins like nerve growth factor) are received. Both pre and 

post synaptic cells appear to "exchange signals that stimulate and coordinate their mutual 

differentiation" (Wolpert et al., 2002, p. 404). Because the nervous system produces too 

many neurons, axons compete for the neurotrophic signals produced in the target tissue. 

Thus, neuron survival depends on establishing a functioning synapse with an appropriate 

target cell. This connection and its neurotrophic elements prevent apoptosis and allow 

cell survival. 

The development of a synaptic junction is often progressive and may take weeks 

to form. The following example of formation of a synapse in a muscle cell can be 

generalized throughout the CNS: 

The axon terminals that make contact with the muscle cell are initially 
unspecialized, but they soon begin to accumulate synaptic vesicles. Initially 
several synapses from different axons are made on the same immature muscle cell 
but, with time, all but one are eliminated (Wolpert et al., 2002, p. 408). 

The type of neurotrophic factor involved and the type of neurotransmitter present 

influence the survival of the presynaptic neuron. Neural activity, use by the connected 
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neuron, is also essential to development and maintenance of the connection. According 

to Wolpert et al. (2002, p. 411), "Stimulation of electrical activity in the target cell tends 

to strengthen the active synapses and suppress those that are not active at the time - cells 

that fire together, wire together." Competition between neurons for synaptic targets may 

"generate discrete regions of cortical cells" that respond to one stimulus or another, and 

thus form a topographical map. 

1.3.2 Behavioral and Morphological Stages in Rat Development 

"The developing brain is very different in structure and organization at different 

ages" (Kolb & Gibb, 2001). Structural changes in the brain underlie behavior. As such, 

each stage of neuronal development, both pre and postnatal, corresponds with new or 

different function and behavior. Following is a look at behavioral activities and functions 

along with morphology for various stages in the developing laboratory rat (see Figure 

1.13): 
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Figurel.13: Major stages of cortical development in the rat (after Kolb, Gibb & 

Gonzalez, 2001). Bars indicate the approximate beginning and end for different 

developmental stages, and the dark area reflects a higher intensity for the stage. 

1.3.2.1 Prenatal (Embryonic) Development 

(Unless otherwise stated, from Robinson & Brumley, 2006.) 

Throughout embryonic days (E) 12-21 the neurons in the rat brain are generated 

by the neural tube (ventricular zone). Production of cortical cells begins around El 2, and 

generation is completed at birth (E22). Cortical injuries during neurogenesis tend to have 

the best outcome, as additional neurons are manufactured taking the place of those 

damaged. Mitral cells develop first, between E14 and El6, followed by tufted cells 

between El6 and E22 (Bayer and Altman, 2004). The lateral ventricle is extended into 

the bulb during development, and is the source for the progenitors of most MOB cells. In 
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the embryo, the olfactory organ is present and believed to exert a global influence on 

brain development. 

Input from ORN axons reach the brain before any other peripheral input; 

influencing the development of the telencephalon, and playing a key role in the 

organization of the brain (Dryer and Graziadei, 1994). Neurons unrelated to the sense of 

smell are also generated by the epithelium, and migrate to the forebrain during the 

embryonic period (Schwanzel-Fukuda and Pfaff, 1989). 

Embryonic rats begin small movements of forelimbs, head and trunk on El6. 

Activity levels increase until El 8, and are stable from El 8 until birth. Both organization 

(movement patterning) and synchrony (harmonized movements) of this spontaneous 

movement are more evident as gestation advances. At this same time sensory 

responsiveness is apparent in tactile, chemical and proprioceptive modalities. Gustatory 

and olfactory systems are believed to be functional by this time. By E20 strong odours 

(lemon extract, mint, citral) result in a face wiping response (an aversion response in 

adult rats), and increased heart rate (bradycardia), which decrease with habituation. 

Introduction of a novel odour results in dehabituation to the first odour, which indicates 

that central processes are responding and not peripheral actions. In utero taste aversions 

can be learned through association by E17. 

1.3.2.2. Newborn, Week One, PI to P7 

(Unless otherwise stated from Alberts, 2006) 

At birth, rats weigh approximately 7 grams, and are immature in comparison to 

other mammals. With neurogenesis complete, cell differentiation occurs and neuroblasts 

transform into specific types of neurons. Cell migration has already begun, shortly after 
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neurogenesis started, and continues throughout development, although the bulk of 

migration is completed by the end of the first week. The RMS shows a progressive 

reduction in thickness over the first three weeks postnatal (Altman, 1969). The OB is a 

late maturing structure, and most OB interneurons are generated postnatally (Luskin, 

1993). Intemeuron neurogenesis is generally complete by the first week. Postnatal day 4 

(researchers reported P3 using birth day as PO) is associated with a dramatic increase in 

type 2 synaptic profiles (i.e. inhibitory synapses) (Westrum & Bakay, 1986). Mitral and 

tufted cells, the output neurons of the OB, are postmitotic at birth, but still able to show 

significant morphological change in dendritic arbourization and synaptogenesis (Monti-

Graziadei & Graziadei, 1992). Granule cells continue to be generated beyond PI9 and 

into adulthood (see Figure 1.14). 

Rats are born with odour sensitivity that increases until at least PI7. Both the 

level of stimulation and experience appear to be involved in the timing of olfactory 

developments. Anosmic pups do not suckle as the olfactory cues that attract the pups to 

the dam's nipples are not sensed. Normal pups increase their activity in response to the 

dam's odour, bringing them in contact with the nipple. It is believed that the olfactory 

cues for suckling are learned. 

Sullivan (2005) reports that infant rats have the ability to acquire odour 

preferences. This ability is learned activity most evident in olfactory-based imprinting 

(maternal attachment). As adult structures for learning are not yet developed, a simple, 

norepinephrine-modulated circuit between the OB and the locus ceruleus, facilitates 

odour preference learning (Moriceau & Sullivan, 2004). Baby rats have a decreased 

ability to learn odour aversions until P10. The inability of neonates to learn aversion is 
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related to a stress hyporesponsive period in neonates, characterized by low basal levels of 

the stress-related hormone CORT. 

Huddling, suckling, and reorienting or righting activity are prevalent at birth. 

Scanning movements, likely linked to olfactory or thermal sampling, are evident at birth 

and start recruiting additional body parts (spinal segments and forearms) by P4. 

Huddling is induced by thermal/tactile stimuli, but is followed by learned olfactory 

associations. By PI5 olfaction cues becomes the main sense used for huddling. 

1.3.2.3 Infant, Week Two, P8 to P14 

(Unless otherwise stated, from Alberts, 2006.) 

Rats almost triple their birth weight to 20 grams by P10. The second week of life 

is a period of significant neural network development and neuron maturation. Cell 

differentiation continues until about PI5, and neuron maturation, the outgrowth of 

processes and resultant synapses, is most intense (Kolb & Gibb, 2001). At P8 a doubling 

of synaptic profiles has occurred that is further doubled by P14 (Kolb, Brown, Witt-

Lajeuness and Gibb, 2001). Myelination begins in the lateral olfactory tract (Westrum & 

Bakay, 1986). According to Frazier and Brunjes (1988), the bulb's postnatal proliferative 

zone, the subependymal layer, exhibits peak cell density, number and volume at day 10 

(see Figure 1.14). 

During week two, output from the AON projects to both brain hemispheres 

(Shipley, Ennis & Puche, 2004) via the anterior commissure (AC). After commissural 

fibres have grown and developed, olfactory memories from the trained side can be 

accessed by the untrained side (Kucharski and Hall, 1987). Contralateral olfactory 
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memories cannot be retrieved prior to the second week of development; however, 

commissural fibres can access memories that occurred prior to commissural formation. 

The emergence of auditory sensation begins at P8-10 with the pinna of the 

external ear separating from the head. Between P10 and P12 the external auditory 

meatus opens and drains, which means that the babies are now fully exposed to auditory 

sensation. Although rats respond to auditory stimulation before P10, sensitivity to 

auditory stimulation increases dramatically at this time. 

Another significant milestone occurs in terms of motor activity. Between P8 and 

PI 1 the infant rats begin to crawl, albeit without using the hindlimbs. Motor activity 

follows a rostrocaudal developmental gradient, where head/mouth and forelimb activity 

develops before the hindlimbs. A medial-distal gradient, inside to out, is followed as 

well. By around P12 the animal is capable of a quadraped stance. Huddling activity at 

P7 is not affected by movement and activity states of littermates. However by P12 to P13 

the activities of littermates play a big role in huddling. 

Fear arising from predator odours is evident by P10. Adult male rats eat pups. 

By P10 baby rats freeze when exposed to an adult male odour (Takahashi and Rubin, 

1993). This is coincident with amygdala involvement and increased corticosteroid levels 

(Wiedenmayer and Barr, 2001). Norepinephrine levels used for neonatal learning drop, 

likely due to emerging inhibitory noradrenergic autoreceptors (Moriceau and Sullivan, 

2004). 
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1.3.2.4 Juvenile, P14 to Weanling 

(Unless otherwise stated, from Brown, 2006; Alberts, 2006.) 

By P15 baby rats weigh about 30 grams. At P15 synaptic profiles have doubled 

again. Layer 1 of the piriform cortex thickens dramatically during this time (Westrum & 

Bakay, 1986). 

Eyelids open, and although rat pups are sensitive to light before this, they now 

receive full visual stimulation. Olfactory cues, not thermo-tactile stimuli, now dominate 

huddling behavior. Baby rats are beginning to sample other food around this time. By 

this PI 5 to P16 rats are capable of swimming. Swimming ability accompanies walking 

ability. With walking ability, at PI6 to P19, the rats complete their first departures from 

the natal nest, usually in response to visual, acoustic or olfactory stimulation. At PI7, 

robbing behavior commences, and by PI 8, the babies are rearing and sitting on their 

haunches when eating food pellets. 

By PI9 rats attempt to reach for food, and dodging to protect food from 

conspecifics begins to occur. Spatial ability, proximal and distal cue navigation begins, 

with the maturation of the hippocampal mossy fibre system. By P21 most ambulatory 

skills are developed. Males have assumed the adult eating posture, and females achieve 

this three days later. By P25-26 precise dodging and precise reaching occur. 
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Figure 1.14: Development timeline for cells of the olfactory bulb and anterior olfactory 

nucleus (after Bayer and Altaian, 2004). 

1.3.2.5 Cell Migration from the OE 

During development, pluripotent cells from the OE are believed to migrate along 

the olfactory nerve fibre path to a number of forebrain locations (Dyer and Graziadei 

(2004). The developing olfactory epithelium is full of protein molecules associated with 

development and change. For example, ensheathing cells express neurotrophins and 

neurotrophic factors including NGF, GDN, and N-CAM. In tadpoles, a failed olfactory 

epithelium results in telencephalon development failure and formation failure of more 

posterior brain structures. These investigators conclude: 

This suggests a direct relationship between the olfactory organ and brain 
development, perhaps a morphogenetic or even an inductive influence of the 
olfactory placode on the forebrain... The olfactory organ is present in embryos 
and might therefore have a critical role in early brain development... The 

48 



importance of the periphery in development is clear... It is reasonable to think 
that the olfactory organ could influence brain formation from a distance. 

1.3.2.6 Glomeruli Development 

In the OB during normal development, protoglomeruli are formed by the in­

growing axons of ORNs, into the mitral and tufted cell dendritic zone (the external 

plexiform layer) in the bulb. The ORN axons are without a specific synaptic target. 

Glomerular boundaries around the protoglomeruli are subsequently formed by glial 

interactions, followed by interactions with output neurons and interneurons (Treloar, 

Purcell and Greer, 1999). A unique feature of mature ORNs is the expression of 

olfactory marker protein (OMP). OMP appears to serve a role in olfactory receptor axon 

guidance toward a glomerular target. Until about PI2, developing olfactory systems 

often overshoot the glomerular layer, projecting into the plexiform layer of the OB (St. 

John & Key, 2005). As OMP levels rise, targeting errors diminish. OMP-null mice 

require 50 to 100 times higher odorant concentrations for standard detection responses 

(Youngentob & Margolis, 1999). Introducing OMP to OMP knockout mice improves 

olfactory signal transduction (Ivic, Pyrski, Margolis, Richards, Firestein & Margolis, 

2000). Carr, Margolis and Farbman (1998) suggest OMP may be part of mitogenesis -

related to increased neurogenesis in the OE. 

Unique amino acid sequences for each odorant receptor type have been shown to 

provide a distinct identity that allows for afferent targeting of a specific glomerulus 

(Feinstein & Mombaerts, 2004). Methyl-CpG binding protein (MeCP2) correlates with 

ORN maturity and MeCP2 expression in ORNs appears to be necessary for 

synaptogenesis to occur in the bulbar glomeruli (Cohen, Matarazzo, Palmer, Tu, Jeon, 

Pevsner & Ronnett, 2003). Semaphorins are proteins that regulate axonal guidance. 
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Sema 3A and other semaphorins also play a role directing ORNs in the epithelium to the 

bulb during development and regeneration (Williams-Hogarth, Puche, Torrey, Cai, Song, 

Kolodkin, Shipley & Ronnett, 2000). 

1.3.3. Cortical Injury and Development 

Plastic changes in the brain that result from cortical injury during development are 

affected by the stage of neuronal development in which the injury is incurred. At 

different stages in development, qualitative changes in response to injury are evident (see 

Kolb, Gibb & Gonzalez, 2001, for a review). According to Kolb and Gibb (2001), there 

are three ways in which plastic recovery works in the injured brain: 

1) Changes in organization of remaining, intact brain circuits (re-organize). 

2) Development of new circuitry novel to the injured brain (rewire). 

3) Replacement of some of the lost neurons and glia (replace/regenerate). 

Experience, neuromodulators and gonadal hormones can modulate all three of these 

recovery means, and each strategy does not necessarily work alone. 

For many years researchers believed that the consequences of brain injury during 

development resulted in milder impairments than the impairments displayed by the same 

injury occurring in adulthood. This became known as the Kennard principle, after 

Margaret Kennard, who experimented with infant monkeys during the 1930s and 40s. 

She postulated that "recovery from early brain damage was associated with a 

reorganization into novel neural networks" (from Kolb & Gibb, 2001). 

Donald Hebb, in the late 1940s, showed that early brain damage may produce 

even more severe deficits than the same damage incurred in a mature brain when he 
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examined frontal lobe injuries in children. Hebb hypothesized that "this outcome 

resulted from a failure of initial organization of the brain, thus making it difficult for the 

child to develop many behaviors" (from Kolb & Gibb, 2001). 

Kolb and his colleagues showed that injury in rats at different stages of brain 

development activity (the precise age at injury) alters functional outcome. A cortical 

injury at embryonic day 18 (El 8) in the rat occurs during neurogenesis, and shows no 

functional deficits (although some structural cortical changes occur). This may be due to 

neurogenesis that occurs during embryonic days 12 through 21 in the rat (the equivalent 

to second trimester in humans). Neurons that are being generated appear to replace the 

damaged tissue. 

On the other hand, a cortical injury immediately following neurogenesis, at birth 

in rats (roughly equivalent to third trimester in humans), results in dismal functional 

recovery, in spite of massive changes in cortical connectivity. This novel circuitry has 

been associated with pruning failures and "crowding". The brains of these rats are much 

smaller with a much thinner cortical mantle. Interestingly, animals incurring an injury 

during this stage respond better to environmental manipulation like tactile stimulation 

and complex housing, than animals with lesions after P7. 

A cortical injury during peak synapse formation, spine growth and astrocyte 

proliferation, which is around postnatal day 10 in rats (8 months in humans), results in 

particularly good recovery, in spite of a smaller brain size in adulthood compared to 

control animals (Kolb, Gibb, Gorny and Whishaw, 1998). Kolb & Gibb (2001) suggest 

that this improved recovery results mainly from brain reorganization that occurs during 

this time; specifically, increased dendritic arbour and spine density (more synapses) 
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relative to normal control littermates. At P8 a doubling of synaptic profiles occurs that is 

further doubled by PI4. The developmental period of synaptogenesis and cellular 

maturation appears to allow for greater plasticity. 

Interestingly, the medial frontal cortex further supports recovery by generating 

new neurons that make appropriate connections, replacing many of those neurons lost by 

the injury. Thus, reorganization and regeneration of nerve cells occur together. Kolb 

indicates that damage in the second week of a rat's life stimulates neuro and gliogenesis, 

dendritic hypertrophy and increased expression of basic fibroblast growth factor (FGF-2). 

Brain insult during the first week results in dendritic atrophy, little neuro or gliogenesis, 

and no increases in FGF-2 (Kolb, 2006 A) (see Figure 1.15). 
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Figure 1.15: Graph depicting age-dependent differences in cortical plasticity in the 

laboratory rat (after Kolb, Gibb and Gonzalez, 2001). The relative plasticity bottoms out 

the first week after birth, and becomes highly plastic during the second week. Birth (B). 

Villablanca and colleagues (Villablanca, Carlson Kuhta, Schmanke and Hoyda, 

1998) reports similar critical maturational periods for lesion effects in kittens, tying 
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recovery with central nervous system maturational events. Behavioral outcome is related 

to the specific stage of cortical-area development when injury occurs. The age of the 

animal at the time of the lesion, which reflects the developmental status of the brain, 

makes a difference. For rats this critical maturational period is between P7 and PI5 

(Kolb & Gibb, 2001). For cats the critical maturational period is between E55 and P30-

60 (Villablanca et al., 1998). For humans the critical maturational period appears to be 

between 8 months and 2 years, although Villablanca puts it at third trimester through 2-3 

years. Further, different regions of the cortex may, to some extent, have varying critical 

periods, within the overall estimated critical maturational period, corresponding with the 

period of maximal dendritic growth and synaptogenesis. 

Thus, an exceptional example of markedly different behavioral and anatomic 

outcomes occurs when comparing week one neonatal rat brain injury to week two brain 

injury. Further, the regeneration and compensation seen in the second week is not 

restricted to the late maturing medial frontal region where functional activity is restored 

to virtually normal (Kolb, Brown, Witt-Lajeuness, Gibb, 2001). Week two injury-related 

recovery is found after injury to the orbital frontal cortex, motor cortex, posterior 

cingulate cortex, posterior parietal cortex, temporal cortex and occipital cortex (Kolb, 

2006B). 

1.3.4 The Effects of Unilateral Bulbectomy 

Upon removal of an olfactory bulb in the neonatal rat (during the first postnatal 

week) most studies find that the forebrain grows onto the cribriform plate, and fills the 

remaining cavity. In 1994, Hendricks reported that recovery after an olfactory bulb 
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lesion is correlated with the pattern of penetration from the olfactory nerve (Hendricks, 

Knott, Lee, Gooden, Evers & Westrum, 1994). There is some controversy, however, 

over the functionality of ORN connections in bulbectomized areas, which is discussed in 

the following section. In most of these studies, once mature, neonatally bulbectomized 

rats undergo another surgery where the olfactory bulb contralateral to the first is removed 

(adult-stage surgery). Sensory receptor axonal growth does not occur in adult 

bulbectomies mainly due to scar tissue that blocks axonal growth. This scarring does not 

occur during the neonatal period (Butler et al., 1984). Following the effects of neonatal 

unilateral bulbectomy are considered, including changes to the epithelium and glomeruli. 

1.3.4.1 Effects on the Olfactory Bulb Input 

Mature olfactory receptor neurons (ORNs) on the epithelium ipsilateral to the 

bulbectomy, die quickly as a result of the insult. Cell death is followed by a period of 

increased neurogenesis in the olfactory epithelium, which peaks at about 5-6 days post-

bulbectomy - a time that corresponds with the thinnest epithelial thickness after the OBX, 

and the smallest number of ORNs in the epithelium (Calof, Bonnin, Crocker, Kawauchi, 

Murray, Shou & Wu (2002). This suggests that neuronal progenitors are able to "read the 

number of differentiated neurons in their immediate environment and regulate the 

production of new neurons accordingly" (Calof et al., 2002), a process called feedback 

inhibition of neurogenesis. BMP (bone morphogenetic protein) produced by ORNs may 

play a role in this feedback regulation of neurogenesis. 

Epithelial progenitor cells differentiate into new sensory neurons (Monti-

Graziadei & Graziadei, 1992; Butler et al., 1984), and four weeks after neonatal olfactory 

bulbectomy axons from these newly differentiated neurons have extended through the 
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cribriform plate and made synaptic connections with tissue in the forebrain (Graziadei, 

Levine & Monti-Graziadei, 1978; 1979). Maintained olfactory receptor connectivity to a 

target appears to be essential for prolonged survival of the olfactory receptor neuron 

(Schwob & Szumowski, 1989; Monti Graziadei, 1983). 

1.3.4.2 Effects on Glomeruli Formation 

After a bulbectomy during development, olfactory receptor neurons will randomly 

innervate bulbar tissue, and develop unique glomerular-like structures on foreign targets 

including cerebellar transplants (Monti-Graziadei and Graziadei, 1984). Reciprocal 

synapses are found between the glomeruli-like structure and the sensory input. These 

reconstituted glomerular structures, found on the neonatally injured side, terminate in 

several forebrain structures, and often support olfaction recovery. They also appear to 

increase in complexity and organization with age (Graziadei et al., 1979). 

1.3.5 Recent Studies of the Effects of Perinatal Olfactory Bulbectomy 

Three sets of researchers recently have come to somewhat different conclusions 

regarding the nature of the effects of perinatal olfactory bulbectomy. I consider each 

separately 

1.3.5.1 Case Study 1: Monti-Graziadei and Graziadei (1992) 

Monti-Graziadei and Graziadei (1992) report small olfactory bulb lesions, less 

than 50 percent, result in maintained shape and connectivity of the remaining tissue. 

Sensory innervation to the remaining tissue is randomly reconstituted into glomeruli-like 

structures on the bulbar surface. Some mitral cell dendrites reorient to reach these targets 
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and form profuse branching within them. Periglomerular cells do not form around these 

ectopic glomeruli. 

With large olfactory bulb lesions involving more than 50% of the bulb, large 

portions of the remaining bulb restructure to connect with the random sensory nerves 

reaching the bulb. Mitral cells reorient, and profuse branching of these remnant neurons 

is found. In lesions with less than 10% of the bulb remaining, disorganization reigns, and 

bulbar lamination is not observed. Vomeronasal axons are found projecting into the main 

olfactory bulb when their regrowth is interrupted. Some receptor nerves reach into the 

forebrain forming glomerular structures close to the lateral olfactory tract. 

In a full bulbectomy, some olfactory axons reach into the forebrain. Epithelial 

morphology changes on the side ipsilateral to the lesion. More subtle epithelial changes 

are found with smaller lesions, and more noticeable changes with larger lesions. Changes 

included reduced epithelial thickness, and increased number of globose basal cells. 

Similarities can be drawn between partial and full bulbectomies in the first 

postnatal week. In both cases the target of the axonal cells shows exceptional plasticity, 

while the receptor axons show "independence and inducing ability" (Monti-Graziadei & 

Graziadei, 1992). Olfactory ability is maintained to some degree in both partial and full 

neonatal bulbectomies. Partial bulbectomy results in maintained olfactory discrimination 

and detection thresholds, whereas full bulbectomy results in maintaining at least some of 

these sensory abilities. 

Monti-Graziadei & Graziadei propose that OB topography may be epiphenomenal 

to developmental sequence, and likely has much redundancy built into the structure. Of 

interest may be the point that the olfactory bulb and the AON are both topographically 
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organized for molecular mapping of features from odour molecules, with point to point 

projects from the OB to the AON. Further, pyramidal cells of the AON are the largest 

source of projections back to the MOB. With the AON intact, the possibility exists that it 

is exercising organizational function. 

1.3.5.2 Case Study II: Slotnick, Cockerham and Picket (2004) 

Slotnick et al. (2004) present a thorough study of anatomical and functional 

outcomes from P2-3 neonatal bulbectomy, followed by contralateral bulb removal in 

adulthood. Like previous studies, they show that ORN axons in most neonatal (P2-3) 

bulbectomized rats extend into the forebrain, "terminating in glomerular-like clusters 

within the frontal neocortex or anterior olfactory nucleus with some axons extending into 

the subventricular epithelium." They distinguish between four types of lesion, and 

classify a complete bulbectomy as one where "no tissue characteristic of the olfactory 

bulb was observed in (adult) tissue section." Lesion types include: 

1. Lesions that invade the rostral third of the AON without damaging the frontal pole 

cortex. These result in frontal neocortex that extend into the bulbar cavity, and 

ORN connections made above the rhinal fissure. These rats are anosmic. 

2. Lesions that extend into the frontal neocortex and medial aspects of the AON. 

These result in the olfactory peduncle extending into the bulbar cavity, and most 

had sensory axons directed toward the subventricular/epithelial zone, with some 

nerves penetrating the zone. These rats are able to detect and discriminate 

between odors, although ability varies widely. Glomeruli in the AON of rats where 

the forebrain entered the bulbar cavity, are mostly small (47.2 um; range 10-

150um) when compared to glomeruli in the control rats (81.6 um; range, 40-
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155um). The abnormal glomeruli contain no lamination, with no surrounding 

periglomerular-like cells. Dendrites from surrounding cortical neurons penetrate 

these glomeruli. 

3. Lesions with olfactory bulb remnants after surgery. Remaining bulb tissue is rich 

with ORN axonal projections that invade the external plexiform layer (below the 

glomerular layer in the olfactory bulb). These rats have the best olfactory 

detection and discrimination performance, performing almost as well as controls. 

4. Lesions where the frontal pole of the PFC is removed. In these animals 3-4 mm 

of frontal cortex is removed as well as the entire olfactory peduncle. These have 

no olfactory input to the forebrain, and are anosmic. 

Slotnick's study tells us that better ORN synaptic connectivity to neurons in the AON 

allows for better olfactory function, and that dendrites of multipolar cells in the AON 

reorganize to connect/synapse with olfactory sensory axons to support olfaction. His 

study does not consider bulbar regeneration. 

1.3.5.3 Case Study III: Racekova et al. (2002) 

Racekova and colleagues also studied development of forebrain anatomical 

characteristics after postnatal unilateral bulbectomy, and noted both ipsi and 

contralesional changes. (Racekova, Orendacova, Martoncikova, Zigova, Sekerkova, 

Marsala, 2002). In the adult rats with neonatal bulbectomies they describe displacement 

of prominent landmarks in the anterior direction, including the lateral ventricle and 

caudate putamen. Olfactory ventricles occur in both the intact and lesion side of the bulb, 

and cavities found along the RMS are similar to those seen in postnatal animals. In 

normal adults, RMS thickness is reduced and extended, and the passage cavity (lumen) 
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and ventricular cavity are no longer visible. They conclude that early developmental 

patterns are sustained into adulthood with OBX, and that the contralateral side is also 

affected by OBX and does not provide an adequate control. 

1.3.6 Final Words on Development 

In olfactory bulb insult, preliminary studies in our lab show that partial 

spontaneous regeneration of the bulbectomized region occurs at P10 (Kolb & Gibb, 

unpublished). We hypothesize that this regeneration is a result of a developmental stage 

in which the bulbectomy occurred. In the literature, most studies focus on lesions in the 

first week of life. Little discussion about tissue regeneration in the bulb has occurred. 

The limited discussion on bulbar regeneration implicates olfactory nerve inputs, the 

formation of glomeruli by ORNs, or organizing properties of inputs from the olfactory 

cortex. Dyer and Graziadei (2004) refer to the olfactory epithelium as a "neurogenetic 

matrix from which other neurons are derived and subsequently migrate into the brain, 

perhaps using olfactory axons as guides." Slotnick et al, (2004) conclude that OE inputs 

connect with bulb remnants from incomplete bulbectomy, or connect to other frontal 

regions (frontal pole, the AON) when the bulb is missing. Monti-Graziadei and 

Graziadei (1992) suggest that feed-forward projections from the AON may be 

influencing bulbar organization No investigations suggest developmentally-related bulb 

regeneration. 
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1.4 RATIONALE FOR THE ANALYSIS OF BEHAVIOR 

The brain is designed to produce behavior. The goal of the behavioral analysis in 

the current study was to examine the effects of the unilateral olfactory bulb removal on 

motor and cognitive behaviors in adulthood. Because perinatal cerebral injuries often 

produce behavioral deficits in domains outside the effects of adult lesions, the choice of 

behavioral measures was therefore broad. Although the study of the effect olfactory bulb 

injury on behavior might be expected to include analysis of smell-related (sensory) 

behavior, this is difficult in animals with unilateral injuries as the effects can be expected 

to be subtle at best. We therefore decided to focus on the analysis of behaviors outside of 

olfactory perception. I note, however, that some motor behaviors such as skilled reaching 

are olfactorily controlled in the rat. 

1.4.1 Sensory-Motor Behavior: Forelimb Asymmetry (Cylinder or Rearing) Task 

Figure 1.16: Forelimb Asymmetry (Cylinder or Rearing) task looking from above and 

below. (Courtesy of O. Gharbawie.) 

Rats explore their environment horizontally and vertically. The cylinder task 

measures forelimb placement during vertical exploration, and assesses limb use 

asymmetry, if any, for each rat (see Figure 1.16). Animals are placed in a transparent 
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cylinder and filmed from below. The shape of the cylinder encourages the animal to rear 

onto its hind legs and to explore the wall with its forelimbs; yet the cylinder is tall enough 

that the animal cannot escape. Limb preference is observed while the animal is shifting 

its weight during vertical exploration. In normal rats, forelimb use is equally distributed 

between the left and right paw (Whishaw, Pellis and Gorny, 1992). Animals with 

cortically-related motor deficits will show asymmetrical limb use, and favor the limb 

ipsilateral to the damage - the limb controlled by the non-injured brain hemisphere. 

1.4.2 Skilled Motor Behavior 

1.4.2.1 Sunflower Seed Task 

Figure 1.17: Sunflower Seed Task. (Courtesy of C.L.R. Gonzalez.) 

For the rat, shelling sunflower seeds is a simple skilled motor task that involves limb and 

digit operation (see Figure 1.17). Rats grasp the seed, and then sit back on their haunches 

to eat. They manipulate the seed with digits from both paws so that the fat end of the 

seed is positioned into the mouth. The animals chew on the corner of the seed to breach 

the integrity of the seed and to split the shell into two lengthwise pieces. Rats remove the 

shell with their teeth and turn their heads to dispose of (spit out) the shell. The sunflower 
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seed task helps determine whether the animal is efficient at removing the seed from the 

shell or if there are motor impairments as a result of injury (Gonzalez, 2004). 

1.4.2.2 Single Pellet Reaching 

Figure 1.18: Photographs of rats reaching through the narrow slot of the plexiglas cage 

used for single pellet reaching. Handedness is distributed evenly across the population. 

(Courtesy of I.Q. Whishaw.) 

Skilled movement requires event sequencing and irregular motor patterning, 

which are controlled by neural components beyond those that support locomotion (Metz 

et. al, 2005). Reaching by the rat is homologous to human reaching. Unlike primates, rat 

reaching is guided by olfaction, not vision (Whishaw & Tomie, 1989). Whishaw and 

colleagues developed the single pellet reaching task to assess olfactory-guided, forelimb 

reaching ability in the rat (Whishaw and Pellis, 1990). In this skilled motor task animals 

are required to stretch their paw through a single, narrow slot in a plexiglas cage for a 

food pellet situated on an external shelf (see Figure 1.18). A sequence of motor activities 

is required to accomplish the task. 1. Locating the food - First, the animal sniffs through 

the slot to determine whether or not a pellet is available. 2. Forelimb advance and grasp 

- If a pellet is available, the animal reaches with a forepaw through the slot and grasps the 
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pellet using olfaction as its guide. 3. Bringing food to mouth - The rat retracts the 

forelimb, and, with both paws, takes the pellet to its mouth and eats it. 4. Return to start -

Once a pellet has been eaten or if no pellet is on the shelf, the animal is required to go to 

the back of the cage before returning to the front. Return to start after each pellet forces 

the animal to reposition itself before retrieving each pellet. Animals with a cortical injury 

show deficits at various sequence levels. 

1.4.2.3 Handedness, Limb Asymmetry 

In the 1930s Peterson showed that handedness in rats is evenly distributed across 

the population (in Whishaw et al., 1992). Peterson and McGiboney (1951) went on to 

show that limb preference is sensitive to cerebral insult. Their experiments documented a 

shift in handedness in naive adult rats following unilateral injury. Whishaw and 

colleagues (1986; 1992) confirmed that most rats display a strong preference for one limb 

over the other, but unlike humans, the ratio of left preferred to right preferred animals is 

almost equal. Approximately 13 percent of rats are ambidextrous (Whishaw, 2006). A 

strong limb preference results in greater reaching success with that limb - a finding which 

has been consistently replicated in the SPR task. This suggests an adaptive advantage of 

lateralization over ambidexterity. Animals with unilateral neonatal lesions in the medial 

frontal cortex, motor cortex and striatum, display abnormal reaching behavior with both 

paws (Whishaw, O'Conner and Dunnet, 1986; Whishaw, Pellis and Gorny, 1992B; 

Whishaw, 2000; Gonzalez, Gharbawie, Williams, Kleim, Kolb and Whishaw, 2004). 
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1.4.3 Locomotion: Open Field (Activity) Testing 

Figure 1.19: Versamax open field, activity monitoring system. (Courtesy of 

http://www.accuscan-usa.com/versamaxfeatures.htm). 

Open field activity testing allows insight into general activity levels, exploration 

strategies and levels of anxiety experienced by an animal. Specifically experimenters 

gather information on the distance traveled when ambulating, the amount of time spent 

resting, habituation to the novel environment, rearing activity, turning biases, and 

movement in response to contact with the walls. Information is collected by photocells in 

a plexiglas cage (see Figure 1.19). The automated collection of such a wide range of 

activity is sensitive to motor impairments and drug effects (Metz et al., 2006). 

Rats generally start exploration by moving around the edge of the chamber, next 

to the wall - a behavior called thigmotaxis. A less anxious animal will spend more time 

in the middle of the cage than an apprehensive animal. As normal animals habituate to 

the box they become less active. Early on a preferred place or home base within the open 

arena is established, where an animal lingers and revisits (Eilam and Golani, 1989). 

Often this base is where the animal first enters or is placed in the arena. The animal will 

move home base near a prominent object if it is available in the arena, or into a corner of 
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the chamber. Grooming is high at home base and reflects a degree of calm in the animal. 

Trips away from home base are slower, more circuitous and punctuated by many stops. 

Return to home base is more direct and much quicker (Golani, Benjamini, Dvorkin, 

Lipkind and Kafkafi, 2006). The limited size of Versamax activity cage is restrictive 

when determining trips away from home base. 

1.4.4 Anxiety: Elevated Plus Maze 

* 'M 
Figurel.20: Elevated plus maze. (Courtesy of R. Gibb.) 

Montgomery (1958) was the first to report the use of open and closed alleys as a 

way to measure anxiety in rodents. In his study normal rats that were given access to an 

enclosed alley explored much more than rats with access to an open alley. Montgomery 

described this behavior as an approach-avoidance conflict between a fear drive induced 

by novel stimulation and the drive to explore. In a novel environment an anxious rat will 

avoid open, lit and elevated places, preferring to move along walls and in enclosed 

spaces. The plus-shaped maze has four arms: two that are enclosed with walls, and two 

that are open (see Figure 1.20). The maze is elevated off the floor adding an additional 

dimension of fear to the open arm. Pellow, Chopin, File and Briley (1985) validated the 

use of open and closed arm entries in a plus-maze as a measure of anxiety in the rat with 
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drug studies. Since then the elevated plus maze has become a popular paradigm to 

evaluate anxiety, directed exploration, and locomotion. 

1.4.5 Learning: Morris Water Maze 

Figurel .21: Morris water maze illustrated. (Courtesy of B. Kolb.) 

Since the 1980s, the Morris water maze has been used to test navigational skills 

(spatial learning and memory) in rats (Morris, Garrud, Rawlings and O'Keefe, 1982). 

Rats are excellent swimmers and their natural ecology is often aquatic. Water-related 

tasks are thus often used to study rat behavior. The task in the water maze is for the rats 

to learn the location of a safe platform in a large pool of water (see Figure 1.21). The 

platform is not marked by any proximal cues, and the inside of the pool is painted white 

to match the opaque water. In the first trial the animal finds the platform by chance. 

Upon finding and crawling onto the platform, the animal is given ten seconds to look 

around at distal visual cues posted on the walls around the room, before being removed 

from the pool. Because the animals are motivated to escape the pool, normal rats learn 

the platform location rapidly from any starting position around the circumference of the 

pool. In subsequent placements into the pool the animal employs spatial localization 
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skills using the distal cues noted in the previous swim to the platform. This is called 

"place" navigation (Sutherland and Dyck, 1984). In this task rats are forced to explore 

using visual cues and visually guided behavior. Numerous studies have shown that 

animals with lesions in the cortex or hippocampus have difficulty locating the platform, 

even after repeated trials and much training (e.g. frontal cortex - Kolb & Gibb, 1991; 

hippocampus - Whishaw, Rod and Auer, 1994). 

1.4.6 Olfactory Based Behavior 

Olfaction is a principle source of stereo-sensory input for the rat. The sense of 

smell is clearly involved in the single pellet reaching task, and is inherent in the other 

behavioral tasks listed. Specific olfactory based behavioral tests are not included in this 

study as previous investigators have shown that the ability to smell is not severely 

affected in neonatal rats (P3-5) that receive a unilateral bulbectomy (Racekova, Cizkova 

and Sekerkova, 1997). Racekova and colleagues removed the right bulb at P3-P5. In 

adulthood the rats underwent a simple food finding task. The left, intact bulb was then 

removed, and the animals retested. All rats performed as they did previously on the food 

finding task, which indicates, minimally, that functional recovery of olfactory function 

occurred after neonatal bulbectomy. Regenerated connections from olfactory receptor 

neurons supporting olfaction were also reported by Hendricks, Kott, Lee, Gooden, Evers 

and Westrum (1994), but were not evident in an earlier study by Slotnick and colleagues 

(Butler, Graziadei, Monti-Graziadei and Slotnick, 1984). Twenty years after his first 

study, using precision olfactometry to assess behavior, Slotnick found that rats receiving 

a unilateral OBX at P2, followed by removal of the intact bulb at P90, were able to detect 

and discriminate between different odors (Slotnick, Cockerham and Pickett, 2004) -
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apparently by using the perinatally-injured olfactory system. Further, the reconstituted 

olfactory ability was related to the location and density of the ORN inputs. Animals with 

projections restricted to the prefrontal cortex, and those without inputs to the forebrain, 

were anosmic. 

In the bilaterally bulbectomized adult rat, odor detection and discrimination are 

severely compromised. Functional regeneration of the olfactory bulb in the adult rat is 

blocked by the formation of scar tissue that occurs following bulbectomy (Butler et al., 

1984). 
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1.5. RATIONALE FOR ANATOMICAL METHODS 

1.5.1 Cresyl Violet Stain 

Cresyl violet acetate (CV) stains cell bodies a bright violet color; specifically 

staining the endoplasmic reticulum in neurons and glia. Also known as a Nissl stain, CV 

may be used alone or in conjunction with a number of other stains. CV methodology 

involves regressive staining; a procedure that requires excessive staining of the tissue, 

then washing out the stain until the optimum level of stain is achieved. Cresyl violet 

staining provides excellent resolution for gathering both qualitative and quantitative 

information including cortical thickness measurements, specific measurements of 

numerous local areas within the brain, and quantifying cell numbers. 

1.5.2 Luxol Fast Blue 

Luxol fast blue is a copper phthalocyanin stain that adheres to fatty tissue, 

specifically myelin on nerve fibers and tracts. Luxol fast blue staining is used to 

highlight myelinated tissue, by staining bright blue areas of greater axonal componentry 

and connectivity. 

1.5.3 Image J 

Image J is a public domain image analysis program from the National Institutes of 

Health (NIH, American; http://rsbweb.nih.gov/ij/download.html). The program is used to 

measure the real world area, mean, length and perimeter of various regions within the 

brain. 

1.5.4 Golgi Cox and Dendritic Morphology 

Donald Hebb proposed, and later investigation has confirmed, that structural 

changes in synapses mediate function and learning (Kolb and Whishaw, 2001). 
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Synapses, found on neuronal arbour (among other places), are plastic, which means they 

change as a result of the experiences of the organism. Changed synapses alter synaptic 

transmission, which alters function. Altered dendrite length, dendrite branching and 

changes in the number of excitatory spines are strongly correlated with synaptic change 

(Greenough and Chang, 1985). When a treated animal is significantly worse or better at 

a behavioral task, the altered behavior is manifested in altered dendritic morphology. 

Camillo Golgi revolutionized the way the scientific world looked at brain 

organization when he published the first drawing of a silver nitrate stained neuron in 

1873 (Golgi, 1873 in Finger, 1994). Early investigators like Ramon y Cajal who shared 

the Nobel Prize with Golgi in 1906 , extensively used the Golgi technique to reveal 

morphological features and architecture of the brain. To this day the stain continues to be 

useful for delineating characteristics and changes in brain structure as they relate to 

changes in behavior. The Golgi-Cox staining method, a modification of the Golgi 

method that exposes tissue to ammonia which causes mercury salt to deposit on the cells, 

stains black against a background of yellow. For reason yet unknown, a small percent of 

cells (1 to 5%) are stained randomly. The staining provides consistent and good 

resolution of dendrites and spines - primary sites for excitatory synapses. 

6 The Nobel Prize was also shared with Sherrington who added the synapse to the mix. 
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Chapter 2 

MATERIALS AND METHODS 
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2.1 Subjects and Surgery 

Four litters totaling sixty-one Long-Evans rats, 22 female and 39 male, were bred 

and raised in the University of Lethbridge vivarium from U of L stock. On PI or PIO, a 

unilateral bulbectomy suction lesion was performed on 31 animals: 6 PI females, 10 PI 

males, 5 PIO females, and 10 PIO males (see Figure 2.1). All animals were anesthetized 

by induced hypothermia. Core body temperature was reduced in a chamber set at -1 to -

5°C. The remaining controls (5 PI females, 10 PI males, 6 PIO females, and 9 PIO 

males) received a sham surgery, where an incision was made through the skin above the 

skull, then sutured. Weaning occurred on P22 and the animals were housed in groups of 

two or three individuals in clear plexi-glass cages. Behavioral testing began once rats 

reached P90. The room housing the colony was regulated to a temperature of 22°C. A 

12 hour to 12 hour light/dark cycle (7:30 - 19:30 light hours) was in place. Housing and 

experiments were conducted to the standards of the Canadian Council on Animal Care, 

and approved by the University of Lethbridge Animal Care Committee. 

SKULL MIDLINE MIDLINE 
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Figure 2.1: Top: A. Photograph of removed olfactory bulb at time of surgery. B. 

Photograph of regenerated bulb in adulthood in the same animal. C. Dorsal and ventral 

views of bulbectomized and control brains extracted the day of surgery, PI or P10. 

2.2 Behavioral Assessment 

2.2.1 Forelimb Asymmetry (Cylinder or Rearing) Task 

Each rat was placed in a plexiglas cylinder (20 cm in diameter by 30 cm high). 

The apparatus was placed on a table with a transparent bottom, under which a mirror was 

angled to allow for filming of limb placement from all directions around the cylinder. 

Animals were observed in the cylinder for five minutes. Videotape for each trial was 

slowed to view and score. Data were collected for three minutes of rat activity. To 

quantify performance on the task, the first limb (right or left) to independently contact the 

cylinder wall for each rear (occurring at a time when the animal was regaining its center 
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of gravity after moving from a horizontal to a vertical posture) was recorded. When the 

animal contacted the wall with both paws, a "both" score was made. Forelimb use was 

determined by calculating the number of left and right forelimb contacts as a percentage 

of the total number of first touches after take-off. The number of overall, independent 

(right or left) forelimb touches on the cylinder wall during lateral exploration, were also 

calculated. Schallert and colleagues described the cylinder task (Schallert, Fleming, 

Leasure, Tillerson and Bland, 2000). 

2.2.2 Sunflower Seed Task 

Each animal was habituated to several sunflower seeds daily in their home cage 

during the week prior to testing. For training and testing, animals were placed in a clear 

plexiglas cylinder approximately 30 cm in diameter. The cylinder was placed on a 

transparent table, with a mirror angled beneath for filming from the ventral angle. Five 

sunflower seeds were placed in the cylinder. Timing began when the animal picked up 

the seed and was paused upon completed consumption of the seed, as animals often 

explored between seed consumption. Trails continued to a maximum of five minutes. 

One training period was performed, followed by two trails that were timed, filmed and 

number of shell pieces counted. Results were calculated on the mean latency to complete 

shucking each seed, and the number of shell pieces left following seed extraction. 

Whishaw, Sarna and Pellis (1998) described the sunflower seed task. 

2.2.3 Single Pellet Reaching (SPR) 

Rats were "food deprived" throughout the training and testing periods to provide 

motivation to perform the SPR task. Animals received only a measured amount of food 

each day - 15 g for females, 18 g for males (normal animals consume 18-25 g). Care was 
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taken to ensure weight levels remained within 90 percent of initial body weight. Training 

lasted for about 20 minutes per day per animal, and was performed over approximately 

18 days. Animals were placed in a plexiglas cage (45 cm deep, 14 cm wide, 35 cm high), 

and required to reach for a sugar pellet through a narrow slot (1 cm wide). For the first 

week, numerous pellets (45 mg Rodent Chow food pellets, Bioserve Inc.) were placed on 

the shelf to encourage reaching to obtain food, and to allow animals to establish their 

preferred limb for reaching. Once paw preference was established, one food pellet at a 

time was placed in the indentation on the shelf, contralateral to the preferred limb. 

Animals have difficulty reaching for pellets on the ipsilateral side. The rat was then 

trained to travel to the back of the cage after grasping or knocking the pellet off the shelf. 

Animals were presented 20 pellets per day. Once the animals reached their performance 

threshold (a consistent level of accuracy), testing began. Quantification of this task was 

calculated by evaluating end point performance - the number of successful hits performed 

by the rat as a percentage of overall reaches. The final trial was quantified for each 

animal. SPR was described by Whishaw and Pellis (1990). 

2.2.4 Open Field (Activity) Testing 

The VersaMax Animal Activity Monitoring System is a plexiglas cage (42cm 

long, 42 cm wide and 30 cm high) with photocell sensor bars connected to each wall. A 

grid of invisible infrared beams cross the cage: 16 beams in the left to right (x) axis, 16 

in the front to back (y) axis, and 16 on the vertical plane. When an animal is placed in 

the cage, the x and y light beams are broken, revealing the position of the animal. The 

animal's position is determined 50 times per second. In this study, spontaneous activity, 

including the distance traveled (an estimation of locomotor activity) and vertical activity 
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(rearing), was recorded in the Versamax activity monitoring apparatus (AccuScan, 

Columbus, OH). The animals were naive and had undergone no other behavioral testing 

before placement into the open field. Animals were left in the activity cage for ten 

minutes. Horizontal activity and vertical (rearing) activity was examined for the first two 

minutes in the apparatus, and the overall ten minute testing period. 

2.2.5 Elevated Plus Maze 

The elevated plus maze was used to determine if unilateral bulbectomy resulted in 

pathological changes in anxiety through a quantitative variation (heightened or reduced) 

in apprehension. Animals were placed into the maze facing one of the walled alleys, and 

left to explore for ten minutes. Anxiety was measured by counting the number of entries 

into the open and closed arms. An open arm entry involved the rat orienting all paws 

(fore and hindlimbs) into the open arm. To gain a better picture of interaction between 

the open and closed alleys, the number of open arm entries as a percentage of total entries 

was determined. The amount of time spent in each area was not recorded. Pellow et al. 

(1985) and Lister (1987) described the elevated plus maze. 

2.2.6 Morris Water Maze (MWM) 

To test spatial learning each animal was placed in a large circular swimming pool 

(1.55 m diameter; 46 cm high) filled with cool (23°C), opaque (milky) water. A trial 

involved placing a rat by hand into the water, facing the pool wall, next to the perimeter 

of the pool. Four trails from one of four starting points in the north, west, east and south 

quadrants of the pool, were tested daily for each rat. Upon finding the submerged 

platform the animals were allowed 10 seconds on the platform (11x12 cm) at the end of 

each trial. After 90 seconds, animals unable to find the platform were placed on the 
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platform and given the opportunity to look for the distal cues. On subsequent days 

memory of the platform location was tested. The platform remained in the same position 

for all trials over all five consecutive days of testing. Rats were placed in a holding cage 

between trials. On completion of daily testing rats were returned to their home cages. 

Quantification for this task involved recording the latency to the platform, and the 

distance the animal traveled to reach the platform. On the sixth day a probe challenge 

was conducted. Each rat was placed in the pool without a platform, for 60 seconds. The 

percent of time spent in each quadrant was recorded. Video tracking software, the HVS 

Image 2020 Plus Tracking System, recorded both measures by following the black heads 

of the Long-Evans rats against the white pool background. Procedure for the MWM was 

described by Morris et al., 1982. 

2.3 Anatomical Assessment 

After completion of the behavioral testing, each animal was weighed before 

perfusion. Animals were about 180 (Golgi-Cox) or 240 (CV) days old at time of 

sacrifice. Subjects were administered an overdose of sodium pentothal (Euthansol, 0.6 to 

0.8 ml for male adults; 0.5 to 0.6 ml for female adults), then perfused intracardially with a 

saline vascular rinse. For cresyl violet histology, animals were also perfused with four 

percent formaldehyde. The brains were extracted (see Appendix A for perfusion and 

extraction methodology), and weighed. For Golgi-Cox histology brains were immersed 

in Golgi-Cox fixative. The brain tissue for CV histology, 32 animals, was frozen to -

21°C and sectioned on the cryostat into 40 micron slices. Every fourth coronal section 

underwent staining with cresyl violet. A second series was stained with cresyl violet and 
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luxol fast blue combined (see Appendix A). The tissue from the remaining 30 animals 

was sectioned into 200 micron coronal sections on the vibrating microtome and prepared 

for Golgi-Cox impregnation (also see Appendix A). 

Four PI male animals were eliminated from statistical analysis due to ambiguous 

lesion or lesion marking (see Appendix B). 

2.3.1 Gross Measurements 

All brains were photographed from the dorsal and ventral angles prior to 

sectioning and slicing on the cryostat or Vibratome. Gross anatomical measurements, 

were calculated using Image J. The area (in mm ) was determined for each hemisphere, 

each half of the cerebellum, and each olfactory bulb. 

2.3.2 Olfactory-Related Morphology 

CV stained coronal sections were scanned and digitized (600 ppi) using the HP 

Scanjet 4650. Regions of interest were measured in nine female and nine male animals 

(3 PI lesion, 3 P10 lesion, 3 control per sex). The area (in mm2) was determined for the 

following, from the first two planes (see figure 2.2, A & B) within the olfactory bulb 

proper: 

1. Olfactory nerve layer inputs were measured to indirectly infer whether inputs 

from the olfactory receptor neurons were altered by the lesions. 

2. Area was measured around the outer glomerular layer, and around the mitral 

cell layer (or granule cell layer in lesion animals lacking a row of mitral cells), to 

determine the effect of lesion. 
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3. Five area measurements of glomeruli from each bulb for each plane were 

taken. When possible, two glomeruli were measured medially, two laterally, and 

one ventrally. Area for each of the five glomeruli was averaged in each brain. 

Area measurements for the accessory olfactory bulb were completed throughout 

all sections. The AOB is completely removed in bulbectomy. Total volume was 

calculated and percentage comparisons of AOB volume performed. Within the brain, 

measurements were made of the lateral olfactory tract from three separate planes (see 

Figure 2.2, F,G & H) tracing immediately under the dark-stained cells of the piriform 

cortex. The lateral ventricles were measured on two separate planes (see Figure 2.2, H & 

I). Because olfactory fibers cross to the opposite hemisphere via the anterior commissure 

(AC), it was decided to measure the size of the AC in order to make an indirect measure 

of olfactory connectivity. Measurement was made of the AC thickness at its widest 

point. 

In the lesion hemisphere, brain structures appeared to be thrust forward on the 

lesion side. To quantify this effect, observations were made of the first appearance of the 

frontal cortex, the last appearance of the granule cell layer of the olfactory bulb, the first 

appearance of the piriform cortex, and the first transitional zone (withdrawal of the rhinal 

fissure). The caudate putamen (see Figure 2.2, F & G) and hippocampus (see figure I) 

were also measured to determine if the rostral thrust of brain tissue observed on the lesion 

hemisphere continued throughout the brain. 
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Figure 2.2: Planes examined for olfactory-related morphology. Male control sections are 

pictured on the left, female on the right. See Appendix C for photographs of all sections. 
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2.3.3 Cortical Morphology 

Using a Zeiss DL2 POL petrographic projector, cortical thickness measurements 

were taken from the coronally-cut, CV stained sections. Five planes in each brain were 

examined and measures taken as outlined (Zilles and Wree, 1995; Paxinos and Watson, 

1998), and six measurements from each plane, three from each hemisphere, were taken 

for each rat (see Figure 2.3): 

Plane A: Bregma 1.70 mm, the first appearance of the caudate putamen; measuring the 

frontal premotor cortex (dorsal), frontal primary motor cortex (central), and the primary 

somatosensory (parietal) cortex (lateral). 

Plane B: -0.26 mm, anterior commissure; measuring frontal primary motor cortex 

(dorsal), the forelimb area of the cortex (central), and the secondary somatosensory 

(parietal) cortex (lateral). 

Plane C: -1.88 mm, first hippocampus; measuring hindlimb area of the cortex (dorsal), 

the primary somatosensory (parietal) cortex (central), and the secondary somatosensory 

(parietal) cortex (lateral). 

Plane D: -4.8 mm, posterior commissure; measuring visual (occipital) secondary areas 

(dorsal), primary auditory (temporal) cortex (central), and auditory (temporal) association 

cortex (lateral). 

Plane E: - 6.3 mm, final hippocampus; measuring primary visual (occipital) monocular 

area (dorsal), the lateral secondary visual (occipital) area (central), and primary and 

secondary auditory (temporal cortex) (lateral). 

Overall and individual (dorsal, central and lateral) statistics were generated for each 

plane. 
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Figure 2.3: Top: Cortical structure (after by Zilles and Wree, 1995). Bottom: 

Measurement locations marked by planes A through E. Measurements were taken 

medially, centrally and laterally in each brain hemisphere. 
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2.3.4 Dendritic Morphology 

Golgi-Cox stained neuronal arbour and characteristics were drawn using a light 

microscope and the camera lucida method. The procedure for Golgi-Cox staining has 

been described by Gibb and Kolb (1998), and Gaser and Van der Loos (1981) (also see 

Appendix A). In this study, male lesion animals displayed a reaching deficit in the single 

pellet reaching task. Therefore we determined to investigate whether synaptic changes 

occurred in the forelimb reaching area of the cortex. Dendritic branch analysis and Sholl 

analysis were performed on the basilar dendrites of the forelimb area of the cortex from 

three groups of male rats - PI lesion, P10 lesion and control. Neurons in the forelimb 

area of the cortex were found in the central region of the cortex from Bregma 1.00 to -

0.80 mm (Paxinos and Watson, 2007). Cells were chosen based on impregnation and full 

view of the dendritic tree. Incomplete or cells that were not intact, and cells obscured by 

blood vessels or astrocytes, were excluded. 

Two measurements were used to quantify dendritic arbor from camera lucida 

drawings of Golgi-Cox stained neurons. 1) Sholl concentric ring analysis; and 2) 

dendritic branch order analysis. The Sholl analysis estimated dendritic length by 

counting the number of ring intersections every 20 um, using an overlay of concentric 

rings (Sholl, 1953). Dendritic arbour was quantified by dendritic branch order analysis -

counting the number of dendritic bifurcations (branches) as described by Coleman and 

Riesen (1968). In both analyses, five pyramidal neurons from Layer V of the forelimb 

reaching area, per hemisphere were drawn, for a total often cells drawn per rat. Three 

rats (30 cells) were drawn for each category. The basilar dendrites were chosen as the 
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apical layer V dendrites are large, with processes that leave the section and are thus 

difficult to draw. The unit of measure for statistics was the average per hemisphere. 

2.4 Statistical Measures 

Unless otherwise indicated, the data were evaluated with student t-tests, and two 

or three-way analysis of variance (ANOVA). For three-way analysis the following were 

main factors: lesion (obx or control), age at lesion (PI or P10) and sex (male or female). 

Three-way analysis was used in behavioral measures. In two-way analyses the controls 

(aged PI and P10) were collapsed creating three groups: Control, PI lesion and P10 

lesion. The factor was called 'age at lesion'. Two-way analysis of variance included the 

following factors: age at lesion (PI lesion, P10 lesion or control) and sex (male or 

female), and were used for anatomical measures. When indicated, Fisher's probable least 

squares difference (PLSD) post hoc analysis followed interactive ANOVA results. When 

appropriate, hemispheric differences were calculated using the following formula: 

(Right - Left) 

Right 

To calculate proportion comparisons (percent) from the lesion hemisphere to the intact 

side the following formula was used: Left 

(Left + Right) 

Statistical significance was based on a p-value of less than or equal to 0.05. 
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Chapter 3 

RESULTS 
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3.1 Results from Behavior; 

3.1.1 Forelimb Asymmetrj 
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3.1.3 Handedness 

During training for the single pellet reaching task, handedness was established by 

allowing each rat to freely reach at multiple pellets laid out on the cage shelf. Most OBX 

rats (78%) showed a preference for their left paw - the paw ipsilateral to the lesion. The 

exception was the female rat group that received a bulbectomy on PI. Only two out of 

five (40%) PI females showed a left paw preference. Animals receiving a lesion on P10 

exhibited a more robust paw preference effect. Control rats showed a 57% preference for 

the left paw. 

HANDEDNESS 
All 

Sex 

Age 

Female 

Male 

OBX 
CONTROL 

FOBX 
MOBX 
P1 OBX 

P10OBX 
P1 OBX 
P10OBX 
P1 OBX 

P10OBX 

% 
78 
57 
60 
88 
67 
87 
40 
80 
86 
90 

(21 out of 27) 
(16 out of 28) 
(6 out of 10) 

(15 out of 17) 
(8 out of 12) 

(13 out of 15) 
(2 out of 5) 
(4 out of 5) 
(6 out of 7) 

(9 out of 10) 
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100 -, 
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AllControl AIIOBX FP1QBX FP10OBX MP1 OBX MP10OBX 

Figure 3.2: A. Table showing the percentage of animals with left paw preference. Two 

animals had no preference. B. Graph showing a comparison between all control and all 

lesion animals (yellow), and the breakdown of handedness per group. 
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3.1.4 Single Pellet Reaching 

Training lesion males in the single pellet reaching task was more difficult than 

training the control and female OBX animals. Three PI male animals did not learn to 

reach for the single pellet. When multiple pellets were available these animals used their 

tongue, and grasped frantically through the slot for the pellets. In later training, it 

appeared that their difficulty in successfully reaching the pellet combined with only one 

pellet available at a time (poor reward to effort association), led these animals to stop 

reaching altogether. Animals were subjected to 18 days of training. 

Overall, lesion rats appeared to be less proficient at single pellet reaching. 

Because three lesion animals could not learn the task, two statistical analyses were 

performed: analysis including the animals, and analysis excluding them. Inclusion of the 

non-performing PI male lesion rats showed a significant reduction in the number of hits 

on the last trial scored for lesion animals F(l,52)=6.29, p=.016 (see Figure 3.3A). 

Exclusion of the non-performing rats showed a trend toward reduction in the number of 

hits in all other lesion animals, but it was not significant F(l,49)=3.05, p=.087 (see Figure 

3.3B). Post hoc analysis of lesion to control was performed. In the "all rats included" 

analysis, control to lesion animals p=.007; in "the three rats excluded" analysis p=.058. 

A sex effect was evident in the included animals F(l,52)=5.57, p=.026, but was 

not evident when the non-performing (male) animals were excluded F(l,49)=2.27, 

p=.139 (see Figure 3.3C). No age effect was found in either group (included 

F(l,52)=1.12, p=. 296; excluded F(l,49)=01, p=922. No interactions were found in 

either group (included p>.38; excluded p>.21). 
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Figure 3.3: A. Single pellet reaching results showing percent of hits for each category, 

including three PI male OBX that did not learn the task. Overall males performed at a 

significantly worse level. B. Graph of the same, excluding the OBX animals that did not 

learn the task showing a trend toward inferior male performance C. Comparison of sex 

and lesion main effects, including and excluding the three non-performers. 
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3.1.5 Open Field Activity Test 

Although there was a sex difference in activity, there was no effect of lesion at 

either age. No main effects for lesion were found for horizontal locomotion 

[F(l,49)=095, p=76] nor vertical activity [F(l,49)=1.95, p=.1683]. Overall female 

animals engaged in more horizontal and less vertical activity than males [sex effect 

horizontal F(l,49)=6.36, p=015; vertical F(l,49)=7.1, p=. 01]. No age effects were found 

[horizontal F(l,49)=2.53, p=l 1.79; vertical F(l,49)=3.38, p=.072]. A sex and age 

interaction was indicated in horizontal activity (F(l,49)=5.47, p=.023), that appeared to 

be driven by low horizontal activity scores by the PI male control animals. No 

interactions were found in vertical activity (p>.096). 

Open Field (Activity) Test 

C-P1 F 
C-P1 M 

C-P10F 
C-P10M 

OBX - P1 F 
OBX - P1 M 

OBX-P10F 
OBX-P10M 

Total Horizontal 
2429 (190) 
1681 (151) 
2412 (198) 
2419 (216) 
2458 (120) 
2073 (112) 
2302 (38.0) 
2252 (168) 

Total Vertical 
217 (9.8) 

228 (20.0) 
163 (18.7) 
225 (23.2) 
233 (34.1) 
250 (19.4) 
183 (13.1) 
249 (10.1) 

Table 3.2: Total number of horizontal or vertical movements in the open field apparatus 

over the ten minute testing period. (Standard error in brackets.) 
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3.1.6 Elevated Plus Maze 

Testing for the elevated plus maze occurred during construction in the building, 

creating increased stress on the animals. As a result, variation in open arm entries was 

high. The percent of open arm entries was calculated (open) / (open + closed). No 

differences were found for lesion [F(l,49)=. 54, p=47] or sex [F(l,49)=79, p=. 38]. 

An age effect was found for percent of open arm entries [F(l,49)=4.51, p=.039]. 

Sex X Age interaction was also found [F(l,49)=5.51, p=.023]. The main effect of sex 

and the sex/age interaction appear to be driven by high open arm entries by PI lesion and 

control males (see Figure 3.4). Post hoc testing showed PI male lesion animals were 

more active in the open arm than PIO male lesion rats (p=.0106) and PIO male controls 

(p=.023). PI male controls were significantly more active than PIO male controls 

(p=.0023), but not significantly different from male PIO lesion animals (p=.069). No 

other interaction effects were found (p>.61). 

Elevated Plus Maze %Open Arm Entries 
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Figure 3.4: Percent of open arm entries (open) / (open + closed), in the elevated plus 

maze. 
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3.1.7 Morris Water Maze 

All animals learned the MWM quickly, but, surprisingly, the bulbectomized 

animals performed better than control animals (see Figure 3.5). ANOVA testing showed 

a significant lesion effect, F(l,49)=7.03, p=011. There was no effect of age 

(F(l,49)=. 10, p=..75) nor sex (F(l,49)=1.12, p=29), nor the interactions (p>.22). 

In the probe challenge the platform was removed from the pool. All animals 

spent more time in the quadrant where the platform was previously situated. ANOVA 

showed no main effect of lesion F(l,49)=65, p=42, sex F(l,49)=.17, p=68, nor age 

F(l,49)=2.47, p=.12). There were no significant interactions (p's>.074). 

MWM - Average Latency All Trials 
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25 
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15 
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Control OBX 

Figure 3.5: Average latency in seconds to the platform in the Morris water maze. 
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3.1.8 Behavior Summary 

Forelimb Asymmetry 

First touch on rear 

Bilateral touch on rear 

Overall touches 
Sunflower Seed 

Latency 

Number of pieces 
Single Pellet Reaching 

Including non-
performers 
Excluding non-
performers 

Open Field/Activity 

Horizontal activity 

Vertical activity 

Elevated Plus Maze 

% open arm entries 

Morris Water Maze 

Latency to Platform 

Probe test 

Main Factors 
Lesion 

Obx/Control 

Age 
P1/P10 

Sex 
Male/Female 

Interaction 

As Indicated 

• 
V 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

• 
• 

V 

s 
X 

X 

• 

trend 

X 

X 

• 

X 

X 

X 

X 

X 

X 

X 

• 
• 

sex/age* 
X 

"Low P1 horzontal activity 

* * \ x I sex/age* 
P1 males (lesion & control) more entries 

• 
X 

X 

X 

X 

X 

X 

X 

Table 3.3: Summary of behavioral findings. Lesion effects have been highlighted. 

Lesion effects were found in the forelimb asymmetry task, single pellet reaching and 

Morris water maze. No lesion/age interactions were found, indicating that no significant 

differences were apparent between PI and P10 lesion animals. 
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3.2 Results from Anatomical Measures (see Appendix D for summary) 

3.2.1 Gross Anatomy 

3.2.1.1 Brain and Body Weight 

As expected, male body weight was almost twice that of female animals, 

F(l,50)=137.4, p<.0001. No lesion effect was found, F(2,50)=. 689, p=.51, and no 

interaction between age at lesion and sex F(2,50)=1.24, p=.296 (see Table 3.4). 

Male brain weight was greater than that of female animals F(l,50)=29.9, p<.0001. 

No lesion effect was evident [F(2,50)=2.1, p=.14], nor was there an interaction between 

age of lesion and sex [F(2,50)=.5, p=.61] (see Table 3.4). One animal was not included 

in the dataset, as brain and body weight were omitted at time of perfusion. 

in grams 
Female Control 

Male Control 
Female - OBX - P1 

Male - OBX - P1 
Female - OBX - P10 

Male - OBX - P10 

Mean Body Weight 
335.8 (13.0) 
605.4 (23.7) 
346.9 (14.4) 
551.8 (18.9) 
337.1 (10.6) 
628.8 (34.2) 

Mean Brain Weight 
1.97 (0.03) 
2.23 (0.04) 
2.02 (0.04) 
2.19 (0.04) 
1.90 (0.03) 
2.12 (0.05) 

Table 3.4: Mean body weight and brain weight in grams for each category. (Standard 

error in brackets.) 

3.2.1.2 Olfactory Bulbs 

In this experiment, a discrete bulb appeared to have regenerated after both PI and 

P10 unilateral bulbectomy. In the preliminary studies leading to the current study we 

found that a discrete bulb was generated only for PI0 lesion animals, and that in PI 

lesion animals the ipsilesional cortex grew into the empty bulbar cavity (see Figure 3.6). 

Both made connections with olfactory receptors. The elongating of the cerebral 

hemisphere into the empty bulb area has been verified in numerous experiments done in 

the first week of a rat's life (see development section for detailed description). 
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Figure 3.6: A. Photograph of the outcome of preliminary studies showing an elongated 

cerebral hemisphere extending into the OB cavity after a PI bulbectomy. B. Photograph 

of P10 lesion animal with regenerated olfactory bulb from the same studies. 

Left OB (see Figure 3.7B): When the left olfactory bulb was removed at PI or 

P10, regeneration of the olfactory bulb was apparent, albeit incomplete (see figure). 

ANOVA on the size of left OB showed a significant effect of lesion [F(2,51)=49.8, 

p<.0001], no sex effect [F(l,51)=3.45, p=.069], and no age of Lesion X Sex interaction 

[F(2,51)=l .33, p=.27]. Control males had larger bulbs than control females (p=005); yet, 

in the lesion animals, no bulb area sex differences were found (p>.19 for all PI lesion and 

P10 lesion male and female comparisons). 

Right OB (see Figure 3.7C): A lesion effect was also found in the right, intact 

OB [F(2,51)=3.8, p=029]. Posthoc (Fisher's PLSD) analysis showed that the PI lesion 

animals had a larger intact bulb than controls (p=.024). As expected, male animals had a 

larger intact bulb than the females [sex effect, F(l,51)=14.7, p=0003]. No interaction 

between age of lesion and sex was found [F(2,51)=1.15, p=.32]. 

Left/Right comparisons (see Figure 3.7A): Proportion comparisons of left to 

right bulb [(left) / (left + right)] found the left bulb for controls at 50.3% and lesion bulbs 
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ranging from 35.5 to 37.6 percent of total combined bulb area. ANOVA for proportion 

comparisons confirmed the lesion effect F(2,51)=49.8, p=<.0001, no sex differences 

[F=l,51=.05; p=.83], and no interaction between the two (p=.75). 
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Figure 3.7: A. Photographs of the adult brains of rats that received a unilateral 

bulbectomy to the left hemisphere at postnatal day 1 (PI) and P10. B. Graph of left 

olfactory bulb area measurements in mm2 showing the lesion animals with small bulbs. 

C. Graph of right olfactory area measurements in mm2 showing no significant 

differences. 

3.2.1.3 Cerebral Hemispheres 

There was no effect of lesion in either hemisphere but there was a sex difference 

as males had larger hemispheres. ANOVA thus found a significant main effect of sex 

[left hemisphere, F(l,51)=18.3, p<.0001; right F(l,51)=10.1, p=003], but not of lesion 

[left, F(2,51)=1.01, p=37; right, F(2,51)=75, p=.47], nor the interaction (p>.92). 
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CEREBRAL HEMISPHERES - AREA 

in mm 
Female Control 

Male Control 
Female - OBX - P1 

Male - OBX - P1 
Female- OBX -P10 

Male-OBX-P10 

Left Hemisphere 
113.8 (2.11) 
125.1 (2.07) 
117.5 (4.12) 
126.6 (3.79) 
112.0 (1.85) 
122.8 (2.70) 

Right Hemisphere 
111.2 (2.89) 
120.5 (2.83) 
115.0 (3.89) 
124.0 (3.92) 
110.4 (3.08) 
120.0 (2.73) 

Proportion 
Comparison (left) 

0.506 (0.004) 
0.510 (0.003) 
0.505 (0.005) 
0.505 (0.003) 
0.504 (0.004) 
0.506 (0.002) 

•J 

Table 3.5: Area, measured in mm , of each cerebral hemisphere, and a percentage 

comparison of left to right hemisphere [(left) / (left + right)]. No area differences were 

found in proportion comparisons between the left to right hemisphere [lesion, 

F(2,51)=.477, p=.62; sex F(l,51)=.42, p=.52; interaction, p=.86]. (Standard error in 

brackets.) 

3.2.1.4 Cerebellar Area 

Again, there was no lesion effect but there was a sex difference. ANOVA 

revealed a significant sex effect (sex effect F(l,51)=32.6, p<.0001) but no main effect of 

lesion [F(2,51)=.62, p=.54], nor the interaction (p=.85). 

CEREBELLAR AREA 

in mm 
F-C 
M-C 

F-OBX-P1 
M-OBX-P1 

F-OBX-P10 
M-OBX-P10 

Left Cerebellum 
34.0 (0.45) 
36.8 (0.47) 
34.3 (0.60) 
36.9 (0.44) 
33.3 (0.86) 
36.6 (0.66) 

Right Cerebellum 
33.2 (0.47) 
36.7 (0.60) 
34.0 0.83) 
37.6 (0.65) 
34.1 (0.79) 
37.4 (0.73) 

Proportion 
Comparison (left) 

0.506 (0.003) 
0.501 (0.003) 
0.503 (0.005) 
0.496 (0.006) 
0.494 (0.008) 
0.494 (0.004) 

Table 3.6: Area, measured in mm , of the cerebellar area, and a proportion comparison 

of left to right cerebellum. No area differences were found in proportion comparisons of 

the left to the right cerebellum [lesion, F(2,51)=2.3, p=.l 1; sex, F(l,51)=l.l, p=.30; 

interaction, p=.73]. (Standard error in brackets.) 
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3.2.2 Olfactory Bulb Observations 

Visualizing the reconstituted bulb at a structural level found the putatively 

regrown area to be altered from normal. In the anterior region of a normal olfactory bulb, 

the lamination was clear: incoming olfactory nerve inputs met with an outer ring of 

glomeruli (GL); a distinct external plexiform layer was evident (EPL - light area between 

the mitral cells and glomeruli); a ring of mitral cells was clear (MCL); along with a 

distinct internal plexiform layer (IPL - light area between the mitral cells and granular 

cells); and a clear granular cell layer (GCL) (see A in Figure 3.8). No subependymal 

layer (SEL) was present this anterior in the bulb. The lesion side (see B, Figure 3.8) was 

disorganized, but OB elements were evident, and these elements were vaguely in place. 

Without a distinct glomerular layer, olfactory nerve inputs to the bulb penetrated 

deep into the bulb area. Some disordered glomeruli were visible, particularly in the more 

ventral and lateral regions. These large glomeruli penetrated as deeply as the granule 

cells. Some scattered mitral cells appeared outside the deeper granule cells, often directly 

under the glomeruli. Granule cells were scattered in the centre of the bulb. The internal 

and external plexiform layers, generally filled with dendritic arbour and axons, were not 

apparent, although dendrites and axons from various OB neurons were evident. 
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Figure 3.8: A. Photograph of nissl stained tissue from the anterior area of the left 

olfactory bulb from a male control animal. B. Photograph of the anterior area of the left 

olfactory bulb from a male animal with lesion on P10. External plexiform layer (EPL), 

granule cell layer (GCL), glomerular layer (GL), glomeruli (GLO), internal plexiform 

layer (IPL), mitral cell layer (MCL), olfactory nerve layer (ONL). 

More caudal in the regrown bulb, distinct organization occurred in the lesion area 

(see Figure 3.9). The bulb was more normal in appearance in the ventral and lateral 

regions. The dorsal bulb remained open and did not fuse throughout the length of the 

bulb. In most lesion animals, disorganized bulbar elements were found at the dorsal, and 

dorsal-medial area of the bulb. Thus a distinct (but smaller), organized bulb region was 

evident, and at the top, OB elements were mixed together more randomly. 

Within the organized bulbar region, ONL inputs were directed toward glomeruli. 

When the glomeruli were not present olfactory nerves penetrated the bulb. Large 

glomeruli organized into an outer layer, although the glomerular layer was often several 

glomeruli thick, and not the neat layer found in normal animals (see Figure 3.9). The 
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internal plexiform layer and the mitral cell layer appeared to be missing in most animals. 

When the IPL and MCL did appear they were found in the ventral and lateral regions. 

Figure 3.9: Photographs of left main olfactory bulbs. A. Control male (rat 39). B. 

Female with PI0 lesion (rat 30). C. Male with a PI0 lesion (rat 46). D. Female with a 

PI lesion (rat 50). E. Male with a PI lesion (rat 57). 

Moving closer to the frontal cortex, the lesion bulbs began to look even more like 

normal (see Figure 3.10). The dorsal bulb did not fuse; however, the extent of closure 

and correct definition in the dorsal region was varied. The unfused dorsal area tended to 

open into the accessory olfactory bulb (AOB), which was always prematurely present in 

the lesion hemisphere. A glomerular layer was present around most parts of the bulb, and 

appeared to be innervated by the ONL. The MCL and IPL were more evident, 

particularly in the ventral and lateral region. The subependymal layer and ventricles were 

present in all animals. 
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Figure 3.10: Photographs of left main olfactory bulbs. A. Control female (rat 48). B. 

Female with PI0 lesion (rat 30). C. Male with a PI0 lesion (rat 46). D. Female with a 

PI lesion (rat 50). E. Male with a PI lesion (rat 57). Accessory olfactory bulb (AOB). 

3.2.3 Bulbar Measurements 

3.2.3.1 Olfactory Nerve Layer: Inputs from the olfactory bulb appeared to remain 

consistent for both the lesion and intact hemisphere (see Table 3.7, Figure 3.11). 

Measurements were taken from two sections of tissue within each bulb. No significant 

lesion differences were found in either bulb [left, F(2,20)=.06, p=.94; right F(2,21)=4, 

p=.70]. The proportion of the ONL in the left bulb (compared to the total from both 

bulbs) was calculated, and no significant lesion effect was found [F(2,20)=.7, p=.5]. Sex 

was not tested as ONL tissue was obscured in a number of female animals. 

in mm 
C 

P1 OBX 
P10OBX 

Olfactory Nerve 
Proportion 

Comparison (left) 
0.530 (0.02) 
0.496 (0.03) 
0.489 (0.03) 

Layer - Area 
Left ONL in 

m m 
2.800 (0.30) 
2.690 (0.55) 
2.650 (0.32) 

Right ONL in 
m m 

2.560 (0.28) 
3.070 (0.63) 
2.780 (0.33) 

Table 3.7: Proportion comparison for the ONL inputs to the OB, and mean 

measurements for the left and right ONL. (Standard error in brackets.) 
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3.2.3.2 Glomerular Layer (GL) 

To gain insight into overall bulb size, measurement around the outside of the 

glomerular layer in two sections of tissue, was attempted. The absence of glomeruli, and 

obscured tissue made the task difficult. Where glomeruli were not present, measurements 

excluded the ONL. Predictably, a one-way test of variance showed that lesion rats had a 

smaller bulb size than control rats [left, F(2,23)=T2.8, p=.0002] (see Table 3.8, Figure 

3.11). The left GL in PI animals made up 39 percent of combined right and left GL, 

whereas PIO left GL area was 34 percent. Controls were at 53 percent [lesion effect, 

F(2,19)=27.1, p=<.0001]. Posthoc testing (Fisher's PLSD) showed a difference between 

control to PI lesion (p=.001), control to PIO lesion (p<.0001), and no difference between 

PI to PIO lesion, p=.06. Again, sex was not tested due to obscured tissue in several 

female animals. No difference was found in the intact side [right, F(2,25)=.691, p=.51]. 

Glomerular Layer - Area 

in mm 
C 

P1 OBX 
P10OBX 

Proportion 
Comparison (left) 

0.498 (0.005) 
0.393 (0.021) 
0.337 (0.025) 

LeftGL 
9.100 (0.59) 
5.570 (0.71) 
5.470 (0.47) 

Right GL 
9.150 (0.53) 
9.530 (0.35) 
11.620 (0.80) 

Table 3.8: Proportion comparison for the glomerular layer, and mean measurements for 

the left and right GL. (Standard error in brackets.) 

3.2.3.3 Mitral Cell Layer (MCL) 

Area measurements around the MCL in both hemispheres were made in two sections of 

olfactory bulb. When the MCL was not present, the area around the granule cell layer 

(GCL) was measured. In the lesion bulb, a two-way ANOVA showed an effect of lesion 

[F(2,24)=8.0, p=.002) (see Table 3.9, Figure 3.11). Posthoc analysis showed a difference 

between control and PI lesion (p=.002) and P10 lesion animals (p=.001). There was no 
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effect for sex [F(2,24)=.4, p=.58), nor was there an interaction between the two (p=.95). 

The left bulb for controls ranged between 49 and 50 percent of combined MCL area 

(right plus left). The percent dropped to 33 to 35 percent for lesion animals [a lesion 

effect, F(2,24)=17.9, p<.0001], no sex effect [F(2,24)=003, p=.95], and no interaction 

(p=95)]. 

In the right bulb, no difference was found for lesion [F(2,27)=.07, p=.93] or sex 

[F(2,27)=1.13, p=30], and no interaction was found between the two (p=.60). 

in mm 
C-F 
C-M 
P1 OBX F 
P1 OBX M 
P10OBXF 
P10OBXM 

Mitral Cell Laj 
Proportion 

Comparison (left) 
0.499 (0.006) 
0.487 (0.008) 
0.333 (0.040) 
0.339 (0.046) 
0.348 (0.013) 
0.349 (0.019) 

/er - Area 

Left MCL 
4.630 (0.39) 
4.560 (0.56) 
2.920 (0.74) 
2.690 (0.69) 
2.920 (0.30) 
2.500 (0.26) 

Right MCL 
4.690 (0.47) 
4.800 (0.59) 
5.340 (0.42) 
4.490 (0.45) 
5.120 (0.50) 
4.650 (0.39) 

Table 3.9: Proportion comparison for the mitral cell layer, and mean measurements for 

the left and right MCL. (Standard error in brackets.) 

3.2.3.4 Glomeruli 

The area from ten glomeruli on two sections of tissue were measured in each 

bulb, and the mean glomeruli size generated for each section. Interestingly, on the lesion 

side glomerular area was .12 (P10) to .22 (PI) mm larger than glomerular area in control 

animals (see Table 3.10, Figure 3.11). In a two-way analysis of variance, a difference 

was found for lesion, [F(2,25)=5.222, p=01], but not for sex [F(l,25)=8, p=.37]. No 

interaction was found for lesion and sex (p=.32). Posthoc testing showed a difference 

between PI lesion and control (p=.005), but not for P10 (p=.096). No difference was 

found between PI lesion and P10 lesion animals (p=265). Proportion comparison 

104 



confirmed these findings (lesion, F (2,25)=3.9, p=.03; sex F(l,25)=.2, p=.7; interaction 

p=75]. 

In the intact hemisphere, no significant lesion or sex differences were found 

[lesion, F(2,32)=.7, p=.50); sex, F(l,32)=1.3, p=.25; interaction, p=.14]. 

in mm 
C-F 
C-M 
P1 OBX F 
P1 OBX M 
P10OBXF 
P10OBXM 

Glomeru 
Proportion 

Comparison (left) 
0.496 (0.014) 
0.504 (0.013) 
0.554 (0.029) 
0.542 (0.014) 
0.532 (0.025) 
0.516 (0.021) 

i - Area 

Left Glom 
0.027 (0.0013) 
0.022 (0.0013) 
0.028 (0.0010) 
0.027 (0.0019) 
0.027 (0.0030) 
0.023 (0.0024) 

Right Glom 
0.021 (0.0008) 
0.022 (0.0007) 
0.023 (0.0014) 
0.022 (0.0014) 
0.023 (0.0005) 
0.020 (0.0007) 

Table 3.10: Proportion comparison for OB glomeruli, and mean measurements for the 

left and right glomeruli. (Standard error in brackets.) 

mm 
0.7 

Difference in mm (Right to Left) 
of Olfactory Bulb Structures 

• c 
• P1 OBX 

DP10OBX 
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Figure 3.11: Differences in mm between the right and left bulbs for various OB 

structures. A. Shows no difference in the ONL. B. Shows the GL in the lesion 

hemisphere was smaller than the non-lesion hemisphere. C. Shows the MCL was 

smaller in the lesion hemisphere. D. Shows the area for individual glomeruli was larger 

in the lesion hemisphere. 

3.2.4 Accessory Olfactory Bulb Observations and Measurements 

The accessory olfactory bulb presented in a number of formats and sizes within 

the lesion bulb. In normal animals the AOB was first found as a cluster of granule cells, 

rising from the subependymal layer of the bulb, below the granule cell layer. In the 

lesion hemisphere, most often the AOB was first recognizable in the unfused fold of the 

dorsal bulb, above the subependymal layer (see Figure 3.12). Depending on the degree 

of dorsal disorganization, the AOB was found within the more structured section of the 

bulb or in the more randomly organized dorsal region. Only in one animal (female PI 

lesion) was the AOB enclosed under the granule cell layer (see Figure 3.12F). 
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Figure 3.12: Photographs of the accessory olfactory bulb. A. Control female (rat 48). B. 

Female with PIO lesion (rat 34). C and D. Males with PIO lesions (rat 37 and 44). E and 

F. Female rats with PI lesions (rat 50 and 51). G and H. Male rats with PI lesion. 

Overall in the lesion hemisphere, the AOB was smaller but spanned the same 

rostral-caudal distance throughout the bulb as control animals. The regrown AOB also 

occurred more rostrally in the bulb than in controls. Using Image J and CV stained 

slides, a series of AOB area measurements were taken from every section where the AOB 

was visible. In the event that the AOB was present but incomplete or obscured, an 

average of the previous and following AOB measurements were substituted. From these 

figures overall area of the AOB was calculated. 

Predictably, the AOB from the lesion bulb was smaller than the AOB in control 

animals. In the lesion AOB, a lesion effect was present when a two-way ANOVA was 
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performed on the overall score for the left hemisphere [F(2,12)=8.5, p=.005]. For the 

intact hemisphere a lesion effect was also present [F(2,12)=6.3, p=.013]. The larger 

intact AOB was a result of P10 animals (P=.012), mainly the females. Although there 

was no main effect of sex [left, F(l,12)=1.4, p=.26; right, F(l,12)=.5, p=.49], there was a 

Lesion X Sex interaction in both hemispheres [left interaction, F(2,12)=5.6, p=.019; right 

interaction, F(2,12)=5.3, p=.02], partly due to the P10 females. This was likely an 

artifact of tissue preparation because the P10 females were sectioned at 50um, and all 

others were sectioned at 40um. The difference was accounted for in area figures, but was 

likely distorted due to variance in mounting for different tissue thickness. The sex 

difference was ameliorated when a comparison between hemispheres was performed 

[(right - left) / (right)] (see Figure 3.13A). Two way ANOVA for left to right comparison 

showed a main effect of lesion, F(2,12)=17.1, p=.0003, but not for sex, F(1,12)=T.5, 

p=.25, nor for the sex and lesion interaction [F(2,12)=3.2, p=.073]. In females the AOB 

on the lesion side was smaller than the intact hemisphere by .47 mm (PI) and .26 mm 

(P10). In lesion males, the AOB was .36 mm2 (PI) and .59 mm2 (P10) smaller. Posthoc 

analysis showed a difference between control and lesion animals (p=.0003 for PI and 

P10). No difference was found between PI and P10 lesion animals (p=.92). Difference 

in mm2between the right and left AOB is presented in Figure 3.13B. 

In both hemispheres the AOB appeared to span an equal amount of rostral-caudal 

distance. The number of sections in which the left AOB occurred was calculated as a 

percent of the total number of left and right AOB sections [(left) / (left + right)] (see 

Figure 3.13B). No difference in AOB span was found. Lesion brains ranged between 
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52.6 and 55.2 percent; controls between 49 and 50 percent [lesion, F(2,12)=1.8, p=.20; 

sex, F(l,12)=.5, p=.51; interaction, p-.97]. 

The AOB in lesion animals was visible sooner than in controls. From the first 

appearance of the AOB in the lesion hemisphere, the number of sections was counted to 

the start of the AOB in the intact hemisphere. A main lesion effect was evident 

F(2,12)=13.5, p=.0009 (see Figure 3.13C). No main sex effect was found F(l,12)=. 4, 

p=.52. No interaction was evident F(2,12)=.6, p=59. Posthoc testing showed that the 

AOB from the P10 lesion animals started more rostrally than the PI lesion animals 

(p=.05), which were more rostral than the control animals (p=.01). 

A Accessory Olfactory Bulb Difference in mm 
between R & L 

mm 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

•J. 
O F C-M P1OBX P1OBX P10 P10 

F M OBXF OBXM 

AOB Rostral-Caudal Span 

F-C 
M-C 

F-OBX-P1 
M-OBX-P1 

F-OBX-P10 
M-OBX-P10 

Proportion 
Comparison (Left) 

0.490 (0.010) 
0.500 (0.000) 
0.526 (0.047) 
0.551 (0.032) 
0.535 (0.024) 
0.552 (0.027) 

Mean # of 
sections right 

9.4 (0.72) 
10.7 (0.33) 
9.7 (0.33) 
9.7 (0.33) 
13.6 (1.06) 
10.7 (1.20) 

Mean # of 
sections left 

9.0 (0.35) 
10.7 (0.33) 
11.0 (1.73) 
12.0 (1.16) 
16.0 (2.80) 
13.7 (3.18) 

Difference between 
right and left 
# of sections 
0.037 (0.037) 
0.000 (0.000) 
-0.152 (0.220) 
-0.252 (0.162) 
-0.162 (0.115) 
-0.250 (0.144) 
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Figure 3.13: A. Graph for AOB size, comparing the difference in size between the lesion 

hemisphere and the intact hemisphere. B. Table showing no difference in the span of the 

AOB. (Standard error in brackets.) C. Graph demonstrating that the AOB begins more 

rostrally (8 to 9 sections) in the P10 lesion animals. The Pis begin more caudally than 

the PlOs (about 5 to 6 sections), and controls are even more caudal. 

3.2.5 Other Olfactory Related Measures 

3.2.5.1 Anterior Commissure 

There was an overall reduction in the thickness (width) of the anterior 

commissure in lesion animals. ANOVA showed a main effect of lesion [F( 2,26)=14.4, 

p<.0001], but not sex [F(l,26)=1.9, p=.18], nor the interaction [F(2,26)=1.6, p=23]. 

Posthoc tests found all lesion groups to differ significantly from control (p<.0001 for all). 

No difference was found between PI and P10 lesion animals (p=.50) (see Figure 3.14). 
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Figure 3.14: A. Luxol fast blue and CV stained photo of the anterior commissure (AC) 

B. Mean width measurements of the AC in mm. 

3.2.5.2 Lateral Olfactory Tract 

The lateral olfactory tract (LOT) was smaller in the lesion hemisphere. Females 

appeared to be spared more than males, as sex differences apparent in the intact 

hemisphere, were not evident in the lesion side. Three measurements were taken of cross 

sectional area of the LOT at Bregma 3.00 (AC appearance), Bregma 2.16 (CC genu), and 

Bregma -0.12 (AC bridge). A lesion effect was found in the left (lesion) hemisphere 

[F(2,12)=16.2, p=0004], but not in the intact hemisphere [F(2,12)=1.9, p=.19]. There 

was, however, a sex difference in the right hemisphere, as males had a larger LOT 

[F(l,12)=l 1.2, p=.006]. A sex difference did not occur on the lesion side [F(l,12)=.04, 

p=.84]. No interaction of sex and lesion was found in either hemisphere (p>.75). On the 

ipsilesional side, posthoc analysis showed a difference from controls for both ages 

(p<.0006) (see Figure 3.15). 
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Figure 3.15: A. Graph depicting the diminished LOT in the left hemisphere - total area in 

mm from three measurements. B. Graph showing sex differences in the total area in 

mm from three measurements of the LOT in the intact hemisphere. 

3.2.5.3 Lateral Ventricles 

One PI male lesion animal had hydrocephalus, presenting with abnormally large 

ventricles (see Figure 3.16A). In comparison to other lesion animals, the hydrocephalic 

rat had a thinner cortex, a shrunken corpus callosum, and a detached septal hippocampal 

nucleus. 

No lesion effects were found in area measurements of the lateral ventricles made 

at -0.12 from the bregma (AC bridge) and -2.16 from the bregma (dentate gyrus of HPC 

appearance) on the lesion hemisphere [F(2,12)=07, p=. 94] and intact hemisphere 

[F(2,12)=02, p=98]. There was a main effect of sex, however, with males having larger 

ventricles than females [ left, F(l,12)= 7.0, p=.02; right, F(l,2)=7.6, p=.02]. No 

interaction was found in either hemisphere (p>.37) (see Figure 3.16B). 
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* 

,T 
# 

B 

in mm 
C-F 
C-M 

P1 OBX F 
P1 OBX M 

P10OBXF 
P10 OBX M 

Lateral Ventricles 

Right in m m 2 

1.493 (0.26) 
3.677 (0.80) 
2.21 (0.49) 

2.657 (0.30) 
1.25 (0.05) 

3.743 (1.55) 

Left in mm 
1.097 (0.28) 
4.517 (0.69) 
2.68 (0.68) 
3.403 (0.19) 
1.583 (0.30) 
4.857 (2.59) 

Proportion 
Comparison (left) 

0.414 (0.025) 
0.556 (0.042) 
0.540 (0.043) 
0.564 (0.020) 
0.551 (0.038) 
0.535 (0.036) 

Figure 3.16: A. Picture of lateral ventricles from rat with hydrocephalis. B. Total from 

two measurements, in mm , of the lateral ventricles, depicting no significant differences. 

Proportion comparisons, lesion F(2,12)=2.152, p=.16; sex, F(l,12)=3.0, p=.l 1; 

interaction p=. 11. (Standard error in brackets.) 

3.2.5.4 Rostral Thrust 

In lesion animals the cortical and subcortical structures were thrust forward into 

the olfactory bulb cavity (see Figure 3.17 A& B). To investigate the organization of this 

forward push, the distance between various landmarks, was measured by number of 

sections of tissue. Interestingly, in lesion animals some brain structures consistently 

occurred together, and this concurred with controls and the intact hemisphere. Meanwhile 

other structures were stretched longer, and did not concur with controls or the intact side. 

Measures of distance between structures, for each side, lesion and intact, were performed 
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and a one way analysis of variance performed for lesion and non-lesion. Structures that 

were not different in right and left sides of lesion brains included: 

1) The length of the AOB (see AOB section). 

2) The length from the first AON to the first frontal cortex appearance 

[F(l,16)=4,p=.53]. 

3) The length from the last OB appearance (granule cell layer) to the piriform 

cortex [F(l,16)=.3,p=.61]. 

4) The length from the last OB appearance (granule cell layer) to the transition 

zone [F(l,16)=.04, p=.85] (see Figure 3.17C). 

Structures that were different distances in the right and left side of the lesion brains 

included (see Figure 3.17C): 

1) Length of first AOB to the first AON [F(l,16)=4.9, p=04]. 

2). Length of last AOB to last OB appearance (granular cell layer) [F(l,16)=5.4, 

p=03]. 
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Rostral Thrust Difference between R& L Hemisphere 

#of 
sections 

1 
2 

1 

Of 

-1 

-2 

1stAOBT1stAON LastA( GCL Last GLC to Trans ~»^P10BX 

P10 OBX 

Figure 3.17: A. Photograph of P10 lesion male animal at P24, showing the rostral 

stretch into the frontal pole into the bulbar cavity. B. Photograph of a PI lesion male at 

P240, showing rostral thrust of the frontal pole into the bulbar cavity. C. Graph showing 

a gradual decrease in the rostral stretch into the frontal pole between various structures, 

by number of sections, when compared to the same measurements in the non-lesion 

hemisphere. The difference between hemispheres was calculated by: 

[(Total number of sections between structures (Right) - Total number of sections (Left)] 

Total number of sections (Right). 

Moving caudally toward the frontal pole the left bulb has more sections between the first 

AOB appearance and the first AON appearance; more sections between the last AOB 

appearance and the last olfactory bulb appearance; and no difference between the last OB 

(GCL) appearance and the transition zone. 

Thus, some of the rostral thrust was accounted for by stretched area containing the 

main olfactory bulb and the anterior olfactory nucleus (first AOB to AON to last OB). 

Structures caudal to the section containing the last olfactory bulb appeared to cover the 
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same distance as those in the intact hemisphere; however, all of these structures still 

remained rostral. 

The following results were found from counting the number of sections between 

landmarks on the left and right hemisphere (distance between the start of the landmark in 

left side and the start of the landmark in the right) (see Figure 3.18): 

1) The start of the left accessory OB was found well forward into the left 

olfactory bulb compared to the right. 

2) Moving caudally, the start of the left AON was forward, lying well ahead of 

the right AON. 

3) Structures at the last appearance of the granule cell layer of the olfactory bulb 

were still rostral, but less rostral than the AOB and AON. This shorter rostral 

shift was still apparent at the transition zone. 

#of 
sections 
12 

10 

Number of Sections between R& L 

J\ JG Jt J5 
l C 

• P1 OBX 

D P10 OBX 

AOB Start AON Start LastGCLof First PFC 
OB 

Transition 

Figure 3.18: Graph depicting the difference between the start of a structure in the left 

hemisphere to the start of that same structure in the right hemisphere. 

116 



In qualitative observations rostral thrust appeared to be resolved by the 

Bregmoidal junction. Two measurements of the caudate putamen were taken and found 

that, in the lesion side, the left caudate was smaller than the right side at +2.16 relative to 

the bregma (CC genu) [F(l,16)=4.87, p=.04], but was not different from the right side by 

-0.12 [F( 1,16)= 1.4, p=.25] (see Table 3.10). A measure of the hippocampus (HPC) was 

taken at -2.56, and no significant differences were found [F(l,16)=l.l, p=.31] (see Table 

3.11). 

C-F 
C-M 

P1 OBX F 
P1 OBX M 

P10 OBX F 
P10OBXM 

Caudate Putamen Hippocampus 
Proportion Comparison (left) 

Bregma 2.16 
0.479 (0.001) 
0.54 (0.030) 

0.547 (0.009) 
0.557 (0.014) 
0.549 (0.008) 
0.542 (0.021) 

Bregma-0.12 
0.495 (0.007) 
0.514 (0.004) 
0.491 (0.005) 
0.493 (0.005) 
0.492 (0.006) 
0.510 (0.010) 

Bregma -2.56 
0.492 (0.018) 
0.513 (0.035) 
0.504 (0.015) 
0.554 (0.025) 
0.521 (0.003) 
0.507 (0.008) 

Table 3.11: Proportion comparisons of the left side to the total left and right sides for the 

caudate putamen at two planes; and for the hippocampus. (Standard error in brackets.) 

3.2.6 Cortical Thickness 

Because the left hemisphere was thrust rostrally, we anticipated that changes in 

cortical thickness would be apparent. Male brains were larger than female brains, thus a 

sex difference throughout was expected. 

Overall the lateral cortical region was most affected throughout the brain. On the 

intact side, anterior cortical measurements showed PI lesion animals to have a thicker 

lateral hemisphere (planes A and C). On the lesion side, throughout the cortex, there was 

a reduction in the lateral cortex thickness in males. Specific breakdown by plane follows. 

Plane A. At Bregma 1.70mm (plane A), PI lesion animals had a thicker cortex 

on the intact side, and PI males had a thinner cortex on the lesion side. A two-way 
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analysis of variance showed proportional differences between the right and left 

hemisphere [lesion, F(2,26)=6.7, p=.005; sex F(l,26)=1.4, p=.24; interaction, p=.09]. 

Post hoc analysis showed that PI lesion animals were driving the proportion differences 

(p=.0009). Further analysis found that, compared to controls, female PI lesion rats had a 

thicker right cortex in the lateral region [right lateral region: lesion F(2,26)=.5, p=.62; sex 

F(l,26)=21.2, p<.0001; interaction, p=.005; post hoc, p=.009]. PI lesion males had a 

larger right lateral region (right lateral post hoc, p=.049), and a thinner left lateral cortex 

[left lateral region: lesion, F(2,26)=3.2, p=.057; sex, F(2,16)=4.3, p=.048; interaction, 

p<.0001; post hoc, p<.0001]. 

Plane B. At -0.26 mm from the bregma a lesion difference was found in the 

lateral region of the cortex in the left hemisphere [left lateral: lesion, F(2,26)=4.8, 

p=.017; sex, F(l,26)=19.0, p=.0002; interaction p=.31]. Post hoc analysis showed that 

P10 animals had a thinner left lateral cortex (p=.011). The sex difference reflected the 

larger effect in males. 

Plane C. The lateral region of the right hemisphere showed a difference at -1.88 

mm [right lateral: lesion, F(2,25)=3.8, p=.037; sex, F(l,25)<.0001; interaction, p=85]. 

Post hoc analysis showed that PI animals were thicker (p=.03), and again the effect was 

larger in the males (p=.0172). 

Plane D. At -4.8mm proportion differences were again found between the right 

and left hemisphere [lesion, F(2,26)=6.6, p=.005; sex, F(l,26)=.2, p=.69; interaction, 

p=.73]. Post hoc analysis showed differences from controls in both PI lesion (p=.019) 

and P10 lesion animals (p=.002). Two way test of variance again showed these 

differences occurred in the left lateral region [left lateral: lesion, F(2,26)=3.7, p=.039; 
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sex, F(l,26)=5.1, p=.033; interaction p=.83]. Post hoc testing revealed that PIO animals 

were smaller in this lateral region (p=.016). Changes for PI lesion animals were less 

obvious. 

Plane E. At - 6.3mm a two-way analysis of variance suggested an overall thinner 

cortex on the lesion side [left all measurements: lesion, F(l,22)=3.9, p=06; sex, 

F(l,22)=.6, p=.43; interaction p=.30]. Post hoc testing showed that lesion animals had a 

thinner cortex than control animals (p=.016). Further analysis found that the thinner 

cortex was in the left lateral region [left lateral: lesion, F(l,24)=5.2, p=031; sex, 

F(l,24)=.4, p=.525, interaction p=62]. Because of obscured or missing tissue, age at 

lesion was not calculated for this plane. 

A Cortical Thickness - Males, Lateral 

-•— C-M 

- •—PI C6XM 

P10OBXM 

Rare Plane Rare Rare Rare 
A B C D E 
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B Cortical Thickness - Females, Lateral 
mm 

5 , 

4.5 

4 

3 . 5 - J - ? V - • — P1CBXF 

P10CBXF 
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2.5 

2 
Plane A Plane B Rare Plane Plane E 

C D 

Figure 3.19: A. Graph showing cortical thickness (in mm) in the lateral regions for male 

animals. B. Graph showing cortical thickness (in mm) in the lateral regions for female 

animals. Some differences in the female P10 animals were not sufficient to show an 

overall lesion effect for the lesion category, or not significantly different from female 

control. For the plane E measurement, the lesion categories (PI, P10 lesion animals) 

were combined for each sex. 

3.2.7 Golgi Analysis 

Because male animals were deficient in the single pellet reaching task, we 

measured basilar dendritic morphology on layer V pyramidal cells from the forelimb 

motor area. Overall the neurons of male lesion animals had less arborization (branching) 

and length (Sholl) than controls. ANOVA testing showed that both PI and P10 lesion 

males had significantly fewer basilar dendritic branches [F(2,15)=34.5, p<0001] (see 

Figure 3.20A). In Sholl analysis concentric ring intersections by dendritic branches was 

also reduced, reflecting an overall decrease in dendritic length (see Figure 3.20B). 

120 



p 
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Figure 3.20: A. Graph showing reduced number of branches in male lesion animals. B. 

Graph showing reduced number of concentric ring intersections in male lesion animals. 
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Chapter 4 

EXPERIMENT 2 
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4.1 Analysis of Post-injury Evolution of Degenerative and Regenerative Events 

One way to evaluate the extent of lesion and lesion regeneration is to perform 

staged kills on randomly chosen animals (Kolb, Cioe and Muirhead, 1998). The method 

does not provide exact analysis of the tissue removal but the random selection of animals 

at various stages provides insight into the amount of tissue being removed and the 

degenerative and regenerative processes that follow the injuries. Thus, animals were 

given bulbectomies on PI or P10 and the brains were harvested after different 

postoperative recovery periods. 

4.2 Method 

Five litters totaling fifty Long Evans rats, 29 females and 21 males, received a 

unilateral bulbectomy: 15 at P10; 24 at PI; and 11 were controls. All animals were 

anesthetized with cold narcosis. The scalp was incised and the nasal bone over the left 

olfactory bulb was removed, leaving the left OB exposed. With a small glass pipette, 

aspiration lesions were performed on the left olfactory bulb. Control animals received a 

sham surgery, where an incision was made through the skin above the skull. The skin 

was sutured, and the animals warmed by hand. Animals recovered on a heating pad and 

were returned to the dam. Brains were harvested as per the following table (4.1): 

Ai 

PI 
P3 
P5 
P8 

P10 
P12 
P15 
P17 
P24 

P10 lesion F 

2obx 
1 obx, 1 c 
2obx 
1 obx, 1 c 
2 obx 

ge When Sacrificed 
P10 lesion M 

1 obx, 1 c 
2 obx 
1 obx, 1 c 
2 obx 
1 obx, 1 c 

P1 lesion F 
3 obx, 1 c 
1 obx, 1 c 
2 obx 
1 obx, 1 c 
2 obx 
2 obx 
1 obx 
2 obx, 1 c 
1 obx 

P1 lesion M 

1 c 
2 obx 
1 obx 
1 obx 
2 obx 
1 obx 
2 obx, 1 c 

Table 4.1: Schedule of the age when animals were sacrificed. 
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4.3 Results 

4.3.1 P10 lesion animals 

Inspection of brains the day following the bulbectomy showed that not all the 

bulbar tissue was removed. Nonetheless, comparison of the brains over time showed that 

there was an evolution in the observed post-injury bulbs. In particular, the bulbs changed 

morphology over the postoperative period as the bulbs grew in size and changed shape. 

The relative size of the lesion bulb to the intact bulb clearly changed by PI 7. The 

increase in bulb tissue area was sustained throughout the following weeks. A distinct bulb 

was evident from seven days following the surgery, and was sustained in later stage kills 

in all animals (see Figure 4.1). 

P10 (Post Surgery 0 days) 
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P24 (Post Surgery 14 days) 

Figure 4.1: Photographs of P10 lesion animals P10, PI7, P24 and P30 following a 

unilateral bulbectomy. Control (C), female (F), male (M), bulbectomized (X). 

Photographs of P30 animals are from Experiment 3. 

4.3.2 PI Lesion Animals. 

In PI lesion animals the entire bulb was removed. The frontal pole in one animal 

appeared to have been disturbed. Seven days following surgery a small amount of bulbar 

tissue was noted in the lesion animals. A distinct bulb occurred in two animals, and the 

frontal pole extended into the bulbar cavity in others (see Figure 4.2). By PI7, much 

more bulbar tissue was apparent, and change in tissue volume was considerable when 

compared to the previous week. The increase in bulb tissue area was maintained in 

subsequent weeks, in all but two animals. In the two exceptions the frontal pole grew 

into the bulbar cavity. Rostral thrust of the frontal pole was more visible in PI animals, 

and bulb sizes varied more than in the P10 lesion animals. In one P24 animal the 
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cribriform plate was also damaged. In this case the frontal pole grew into the nasal 

cavity. 

PI (Post surgery 0 days) 

IFXE IMC 
P8 (Post surgery 7 days) 

IFX 
PI5 (Post surgery 14 days) PI7 (Post surgery 16 days) 

FC 

MX 
P21 (Post surgery 20 days) (From Experiment 3) 

Xl MX 

Xl Xl X 
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P24 (Post surgery 24 days) 

P1 

IF X ^ H H ^ M M X 

Figure 4.2: Photographs of PI lesion animals PI, P8, P15, P17, P21 and P24, following a 

unilateral bulbectomy. Control (C), female (F), male (M), bulbectomized (X). 

Photographs of P21 animals are from Experiment 3. 

4.4 Discussion 

The most interesting result of this experiment was the substantial gain in bulbar 

tissue seen between ages PI 0 and PI 7, regardless of when the bulbectomy was performed 

(PI or P10). Comparisons of bulb tissue at PI 7 to bulb remnants (if any) immediately 

after surgery, showed that substantial tissue returned to the bulb cavity, and the bulk of 

this bulbar regeneration occurred during the second week of life. The second week of life 

has been identified as the time when the olfactory bulb's subependymal layer exhibits 

peak cell density, volume and number (Frazier & Brunjes, 1988). The subependymal 

layer occurs around the olfactory ventricle, and is the bulb's postnatal proliferative zone. 

The extensive availability of stem cells may be the impetus for the bulbar regeneration. 

Kolb and Gibb (2001) report that intense network development and neuron maturation 

also occurs during this period. Studies in their lab show remarkable tissue regrowth after 

lesion at PI0 in medial prefrontal cortex. Interestingly, PI lesion animals do not show 

this cortical regeneration. In the case of the olfactory bulb, PI lesion animals show bulb 

regrowth, but it is delayed until the second week of life. The critical developmental 
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period during the second week of life that allows for regeneration in the neocortex, 

appears to be longer after olfactory bulb lesions and includes the first week of life. 

P10 animals appear to have a more consistent recovery, but this may be due to 

surgical technique. The small size of the brain at PI confounds ability to produce a 

lesion that does not vary from animal to animal. Slotnick and colleagues (2004) report 

that variations in surgery result in variations in bulbar appearance and olfactory ability. 

In PI lesion animals, no bulbar regeneration is reported. Slotnick attributes variation in 

bulb morphology to bulb remnants, and incomplete bulb removal. The results from this 

experiment provide evidence that bulb remnants are not growing proportionally. Indeed, 

the amount of bulb tissue evident after PI 7 suggests that regeneration is occurring. 

Finally, we note that there is a difference in the lesion extent after PI and P10 

injury. The frontal pole expands considerably during the 10 days and much of the bulb is 

becomes hidden by the frontal pole. No attempt was made to remove tissue under the 

pole in the PI0 animals. 
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Chapter 5 

EXPERIMENT 3 
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5.1 Cutting the Frontal Pole 

The unexpected finding that the olfactory bulb was present in animals with 

removals either at PI or PI 0 led us to wonder if the inconsistency with the preliminary 

studies in which there was no bulb after PI lesions was because the surgeon was 

becoming more expert in removing the bulb without extra tissue damage. To test this 

idea, rats were either given a bulbectomy on PI or they were given a bulbectomy plus a 

small removal of the tip of the frontal pole. The intent was to sever the dura over the 

pole, thus removing the glia limitans and allowing tissue to move into the lesion cavity. 

5.2 Method 

Two litters totaling twenty-four Long Evans rats, 13 females and 11 males, 

received a unilateral bulbectomy, eight at P10 and sixteen at PI. Of these animals, 

twelve also received an extended lesion into the frontal pole. All animals were 

anesthetized with cold narcosis. The scalp was incised and the nasal bone over the left 

olfactory bulb was removed leaving the left OB and frontal pole exposed. Aspiration 

lesions were performed on one olfactory bulb for all animals, and, in addition, the tip of 

the frontal pole in twelve animals. In one male PI animal without a frontal pole nick, the 

right hemisphere received the lesion; in all others the left hemisphere received the lesion. 

The scalp was sutured, and the animals warmed by hand. The animals recovered on a 

heating pad and were returned to the dam. Twenty days post surgery, animals were 

sacrificed, age P29 for PI0 group, and age P22 for PI group. Subjects were weighed, 

then administered an overdose of sodium pentothal (Euthansol, 0.05 ml); then perfused 

intracardially. The brains were extracted and weighed. Photographs were taken of each 

brain. 
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5.3 Results 

5.3.1 PIO Animals 

In PIO animals that received a nick to the frontal pole a lesion scar was apparent. 

In all PIO animals, regeneration of a distinct OB was also apparent. The regenerated OB 

was of consistent size in bulbectomized animals that received and did not receive a 

frontal pole nick, and was larger than any OB tissue found in the PI animals. (See Figure 

5.1) 

Figure 5.1: PIO animals-A. PIO female with no FP nick. B. PIO female with FP nick. 

C. PIO male with no FP nick. D. PlOmale with FP nick. Regeneration of the FP and a 

distinct olfactory bulb were clear and consistent in all animals. 
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5.3.2 PI Animals 

In PI animals with a frontal pole nick, the frontal pole did not regenerate and thus 

an obvious lesion was visible, albeit with onsiderable variance in lesion size. The 

olfactory bulb also was quite variable, ranging from a distinct but very small bulb, an 

indistinct bulb, and no bulb. Whether or not the OB tissue was regenerated or a result of 

incomplete bulbectomy was not clear. In some control animals rostral displacement of 

the frontal pole was evident whereas in others it was not (see Figure 5.2). 

A (no) B(no) 

C (nick) D (nick) 

E (nick) F (nick) 
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Figure 5.2: PI female animals - A. PI female with no frontal pole nick. The frontal 

pole extended into the bulbar cavity. B. PI female with no frontal pole nick. The frontal 

pole barely extended into the bulbar cavity, and a distinct (small) bulb was visible. C, D, 

E & F. PI females with frontal pole nick. The frontal pole did not regenerate, and when 

present, varied presentations of OB tissue occurred. 

Figure 5.3: PI male animals - A. PI male with no frontal pole nick. The frontal pole 

extended into the bulbar cavity. B. PI male with no frontal pole nick. Arrow indicates 

lesion to the right hemisphere. There is some extention of the frontal pole into the bulbar 

cavity, although not as great as in A. and a distinct (small) bulb is evident. C. and D. PI 

males with a frontal pole nick. The frontal pole did not regenerate, and the bulbs were 

smaller than in animals with no frontal involvement. 
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5.3.3 Lateral Olfactory Tract 

After a unilateral bulbectomy, the LOT was examined. At age P22, rats that 

received an OBX at PI did not have a visible LOT. At age P29, animals that received an 

OBX at PIO had a faintly visible LOT in comparison to the contralateral side. In female 

PIO lesion animals, the LOT on the lesion hemisphere was more visible than in the males 

of the same age (see Figure 5.4). 

* * • • ' ^ • • • n i p m 
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Figure 5.4: Photos of the ventral side of animals that received a unilateral OBX only, at 

PI and PIO. Male and female animals are pictured post surgery 20 days. Final 

photograph shows diminished LOT in a male PI, post surgery 240 days (from main 

experiment). 

5.4 Discussion 

In this experiment we tested the hypothesis that nicking the glia limitans on the 

frontal pole would result in extension of the frontal pole into the bulbar cavity. The glia 

limitans is a barrier of astrocytes that instructs the developing brain to discontinue 

growing at that point. In PIO animals, interruption of the glia limitans did not result in an 

extended frontal pole. Instead, lesion of the frontal pole resulted in regeneration of 

frontal cortex tissue. The pole did not appear to have moved in a rostral direction to any 

great extent. Further, the olfactory bulb regenerated with a tremendous amount of 

consistency across the animals. In the Slotnick study, when the frontal cortex was 

damaged, the olfactory peduncle extended into the bulbar cavity. However, when bulb 

remnants remained, an olfactory bulb, of sorts, was present. For this study, further 
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analysis of the bulbar tissue is required to confirm his analysis. Preliminary evaluation 

suggested that tissue in the PI0 olfactory bulb cavity was primary olfactory tissue and not 

structures of the olfactory peduncle (MOB), which suggests that bulb remnants remained 

after surgery. 

In PI animals nicking the glia limitans did not appear to play a role, as no 

regeneration of the frontal pole occurred. Lesions were apparent in all PI animals that 

received a frontal pole invasion. Varied olfactory bulb morphology was present in the PI 

animals, including control animals. Variations suggest that inconsistent tissue removal 

resulted in different morphology. In this respect, the PI findings concur with the Slotnick 

study (2004). 

The post lesion morphology of the frontal pole in both PI and P10 animals, found 

in this study, agree with other studies. Regenesis of tissue occurs in the frontal cortex for 

P10 lesion. Mitosis and neurogenesis are evident in the regenerated tissue, functional 

connectivity occurs, and improved behavioral outcomes are apparent (Kolb et al., 

1998B). The developmental stage of maturation, which involves dendritic arbourization 

and axonal outgrowth and connection, occurs during the second week of life, and appears 

to allow for greater plasticity. Frontal cortex regeneration does not happen during the 

first week of life. The lack of regeneration and an evident lesion cavity was confirmed 

by the PI lesion animals in this study. 

Further photographs from Experiment 3 are displayed in Appendix E. 
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Chapter 6 

EXPERIMENT 4 
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6.1 Mitosis after P10 Bulbectomy 

Although we have seen a filling of the bulb cavity with new cells that form a bulb, 

we have not yet shown that the cells are new, nor have we identified the source of the 

cells. In order to determine if new cells were found in the apparently regenerated bulb 

rats were given a mitotic marker, Bromodeoxyuridine (BrdU), after the lesion. The 

presence of BrdU-labelled cells in the injured bulb can be taken as evidence of an injury-

induced generation of new cells. 

6.2 Method 

Eight male Long-Evans rats from two litters received either a unilateral 

bulbectomy (n=4) or sham surgery (n=4) at day 10. All animals were anesthetized with 

cold narcosis. The scalp was incised and the nasal bone over the left olfactory bulb was 

removed, leaving the left OB exposed. With a small glass pipette, aspiration lesions were 

performed on the left olfactory bulb. Control animals received a sham surgery, where an 

incision was made through the skin above the skull. The skin was sutured, and the 

animals warmed by hand. The animals recovered on a heating pad and were returned to 

the dam. 

All rats received an intraperitoneal injection of the mitotic marker 

Bromodeoxyuridine (BrdU) (Sigma B-5002), 60 mg/kg in 0.007 N NaOH 6 hours post 

lesion and five more times over the course of the next 2 days (day 1 post lesion 3 times 

spaced 3 hour apart, day 2 postlesion 2 times, spaced 6 hours apart). The animals were 

killed either on postnatal day 20 (half of each group) or 60 (the other half). The animals 

were overdosed with Euthansol and perfused intracardially with buffered 0.9% saline 

followed by 4% paraformaldehyde s and 14% saturated picric acid in 0.1 M P04 buffer 
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(pH 6.9). Brains were post-fixed in perfusate overnight and then cut at 15 urn on a 

Vibratome. 

In order to stain for BrdU, sections were digested in 1 N HC1 at 65°C for 30 min. 

Sections were washed and incubated for histofluorescence staining. The tissue was placed 

for 24 h in rat anti-BrdU (Sera-lab no. MAS 250p.), diluted 1:100 at 4°C. The washed 

tissue was placed in biotinylated sheep anti-mouse antibody for 24 h (Amersham no. 

RPN-1001). The washed tissue was placed in FITC-labeled donkey anti-Rat antibody 

(Jackson Immunochemicals no. 712-093-153) at room temperature. The tissue then spent 

1 h in Streptovidin-Texas Red (Amersham no. RPN-1233). The washed sections were 

mounted with tap water onto 0.5% gelatin, 0.05% chrome-alum subbed slides, dried, and 

then cover slipped with Slowfade™ (Molecular Probes S-2828). 

6.3 Results 

Few labeled cells were found in bulb tissue from the intact bulb but there were 

large numbers of labeled cells in the injured side (see Figure 6.1). Because the results of 

Experiment 2 suggested that the posterior part of the bulb may be spared in our surgical 

procedure, the focus of our analysis was in the more anterior portion of the bulb. The 

majority of the new cells were in the granular layer and glomerular layer of the bulb. 

Although no counterstain was performed to identify cell type, visual inspection of the 

tissue found very few glial cells and most labelled cells in the granular layer appeared to 

be neuronal although some were tiny and almost certainly glia. 

Although it would have been ideal to quantify cell numbers in the current study, 

the tissue was left sitting too long and the fluorescence was lost, thus making it 

impossible to quantify. 
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Control 

Figure 6.1: Top. Sections through the intact bulb showing very few labelled cells. Note 

that the large fuzzy cells on the left are showing autofluorescence. Bottom. Sections 

through a regrown bulb showing large numbers of labelled cells in the granular zone. 

The drawings on the left illustrate the relative density of labelled cells (black dots). No 

attempt was made to draw all labelled cells because there were too many to draw in the 

lesion bulb. 
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6.4 Discussion 

A large proportion of the cells found in the bulb on the injured side were BrdU-

labelled. The experiment does not demonstrate with certainty what the labelled-cells 

phenotype might be nor does it provide any insight into where the cells may have 

originated. Nonetheless, there was a marked difference between the intact and lesion 

side. Cytological analysis suggested that the majority of the cells were neuronal. At this 

point we have no evidence of the origin of the cells. We are tempted to conclude that 

they originated the subventricular zone and migrated along the rostral migratory stream 

but it is equally plausible to suggest that the cells may have originated from progenitor 

cells already in the posterior part of the olfactory bulb. These cells could have divided 

and migrated into the lesion area. 

One necessary study yet to be performed is to redo this experiment with both PI 

and PIO lesion animals and to use a specific neuronal marker, such as NeuN, and to use 

confocal microscopy to determine if new cells are indeed neurons. In this study there 

also should be a quantification of labelled cells. 
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General Discussion 

This study addresses three main areas: 1) A description of morphological changes 

following neonatal bulbectomy; 2) Regeneration of the olfactory bulb following neonatal 

insult; 3) Diffuse effects of early brain injury on the development of behavior. Each is 

considered in turn. 

7.1 Morphological Changes 

Morphological changes have been described in the results section of this thesis 

(see anatomy results). The implications of changed morphology resulting from neonatal 

bulbectomy are discussed in this section. 

Inside the lesion bulb a normal amount of olfactory nerve input was present. The 

presence of a normal sized ONL implies that the capacity for olfactory receptor neurons 

to regenerate sensory axons was not impaired. ORN axons are without a target during 

development. These axons often overshoot the glomerular layer, and project deeper into 

the bulb. Targeting errors usually diminish after P12 (John and Key, 2005). After 

neonatal bulbectomy the target is removed and random innervation by olfactory axons 

results in more random placement of glomeruli. In this study and as in other studies, the 

glomeruli in the bulb of lesion animals were disorganized; found in the plexiform layers; 

and embedded as deep as the granule cell layer. 

Disorganized glomerular placement suggests that careful chemotopic mapping, 

the zone to zone convergence from the epithelium to the glomerular layer (Mori et al., 

1999), is at least partly disrupted by neonatal bulbectomy. Interestingly, glomerular 

disorganization has limited effects on olfactory ability (e.g. Slotnick et. al., 2004) and has 

143 



led Graziadei and Monti-Graziadei (1992) to suggest that chemotopic organization of 

glomeruli is epiphenomenal. In defense of olfactory mapping and its importance, it is 

possible that neonatally bulbectomized rats have subtle olfactory deficits that have not yet 

been demonstrated. After all, rats are macrosomatic and smell is fundamental to their 

lives. Further, epiphenomenal conclusions preclude diffuse effects of bulbectomy on the 

rest of the brain, including the motor effects that were found in this study. 

In adult rats, after an olfactory nerve transsection, reconnection of olfactory 

receptor neurons to glomeruli takes about a month, and accommodates apoptosis, 

neuronal precursor upregulation, differentiation and maturation (Calof et al., 2002). It is 

possible that most of these time-consuming steps are overcome in prenatal bulbectomized 

rats, as the components for speedy innervation and glomerular development are already 

present. In the rat, many glomeruli develop after birth (observed in stage kills; at P7 

control rats had fewer and much smaller glomeruli than adult animals). Thus, there are 

fewer glomerular connections, and apoptosis (which takes up to a week in adults) is 

minimized. Further, upregulation and differentiation of sensory neuron precursors are 

already underway. With augmented development and maturation of ORN already set in 

place, expedited axonal outgrowth and glomeruli formation should restart shortly after 

neonatal bulbectomy. 

Overall, fewer glomeruli were found in the lesion bulb, but these glomeruli were 

larger. Of the countless olfactory receptor neurons on the epithelium, about 1000 receptor 

types are present, and sensory neurons for a single receptor type connect to two 

glomeruli, one on each side of the bulb. The inherent problem with fewer glomeruli is 

the connectivity of these generally dedicated receptor types. It is possible that instead of 
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projecting to two glomeruli, the axons of a single receptor type converge on one 

dedicated glomerulus. This may also explain the increased size of the glomeruli. 

Another possibility is that input from more than one receptor type is converging on fewer 

glomeruli. This occurs normally within the accessory olfactory bulb. A third possibility 

is that the nerves are perpetually growing to the OB, but dying without a target. 

Increased glomerular size may be due to innervation by more than one mitral cell, 

an event that does not occur in the main olfactory bulb but occurs normally in the 

accessory olfactory bulb. Monti-Graziadei and Graziadei (1992) report that 

"unconventionally shaped mitral cells branched their dendrites into several of the 

surrounding glomeruli" after neonatal insult between PI and P8. Another explanation is 

that greater input from bulbar cells (mitral, tufted, interneuron) is occurring. Monti-

Graziadei and Graziadei also report profuse mitral cell branching within the glomerulus 

of early bulbectomized animals. Further investigation into glomerular structure and 

connectivity after neonatal insult is required. Other studies of neonatal bulbectomy 

(Slotnick et al., 2004) report smaller glomeruli, and suggest that reduced interglomerular 

neurons may be to blame. Different lesion presentations may be facilitating the disparate 

glomeruli sizes between the studies. Whether or not OB tissue remains after a neonatal 

bulbectomy appears to produce highly differentiated results. 

In the right (intact) hemisphere, gross OB measurements showed that PI animals 

had a larger intact bulb than controls. Increased intact bulb size after neonatal 

bulbectomy concurs with other studies (Racekova et al., 2002). In this study an enlarged 

intact hemisphere was also evident in the frontal neocortex. PI animals had a thicker 

lateral cortex on the intact side. Numerous human children and neonatal animal studies 
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have shown that a unilateral lesion alters development in the intact hemisphere. For 

example, over 100 years ago Broca and Barlow showed that early lesion to the left 

hemisphere language zones resulted in a shift of language processing to the right 

hemisphere, and the effect on language ability was minimal (Kolb and Whishaw, 2003). 

This contrasts with adult lesions after which hemispheric shifts do not occur and 

functional recovery is limited. 

The robust regeneration of the AOB points to the importance of reproductive 

behavior in the rat. Clearly the area where the AOB is located was removed during 

surgical aspiration of the OB in both PI and P10 animals (see Experiment 2). Yet, even 

amid a disorganized bulb, a distinct AOB structure is present, albeit smaller, and more 

rostral in the bulb. The regenerated AOB stretches the same length as a normal AOB. 

The location and correct length of the regenerated AOB suggests that receptor projections 

from the vomeronasal organ are directed to the dorsal bulb, even when a bulbar target is 

not present. The anterior placement may be a result of inaccurate targeting of the axons 

in the bulb. However, the consistent nature of the anterior pattern in all lesion animals 

points to lesion-induced cortical reorganization as the cause. 

The AOB is not the only structure pushed forward into the bulbar cavity. 

Detailed analysis showed that the olfactory peduncle [anterior olfactory nucleus, caudal 

olfactory bulb (last granule cell appearance) and first piriform cortex appearance], frontal 

pole, transition zone and caudate putamen were stretched rostrally in all lesion animals. 

The anterior thrust appeared to be resolved by the bregmoidal junction. The anterior shift 

of the forebrain and olfactory peduncle in all animals suggests that there is a consistent 

reorganization following olfactory bulb removal. Slotnick et al. (2004) do not describe 
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this condition in animals with bulb remnants after lesion. The Racekova and Graziadei 

groups mention the rostral thrust of the forebrain in partial bulbectomy, but provide 

limited details. 

The current study found that the amount of direct olfactory sense input into other 

cortical regions was diminished. Reduced afferent projections were found in the anterior 

commissure. A major component of the commissure fibers is second order olfactory 

afferents from the AON. The resulting drop in olfactory communication to the 

contralateral hemisphere may be understated, as other cerebral structures (i.e. the nucleus 

accumbens) also use the AC to project information. It would be interesting to see the true 

interhemispheric relationship as it relates to olfaction, after neonatal injury. Specifically 

the contralateral olfactory system may have impact and organizing effects on the 

contralateral side that are not currently understood. 

On the lesion side afferent projections from the bulb were also markedly reduced 

in the lateral olfactory tract which projects to the secondary (AON) and association 

(piriform) olfactory cortices. In the current study, the results in all experiments show that 

development of the LOT is altered, and fibers along the tract dramatically reduced. 

Owing to the rostral thrust on the lesion side, differences were anticipated in 

anterior cortical measurements. Indeed, changes were found in the lateral measurement 

in the primary parietal (somatosensory) cortex. For PI animals the parietal area was 

thicker on the intact side, and for the males, thinner on the lesion side. Decreases were 

expected in the posterior regions as early anterior cortical lesions produce a generalized 

thinning of posterior cortex. Although cortical thinning was found in the current study, 

it was restricted to the lateral plane throughout most of the cortex on the lesion 
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hemisphere. The lateral region is comprised of primary and secondary somatosensory 

(parietal) and auditory (temporal) cortex. The parietal and temporal areas are directly 

adjacent to the piriform cortex (the olfactory association cortex). A salient feature of the 

piriform cortex is its direct connections to cortical association areas (multimodal) areas 

(Johnson et al., 2000). Tracing studies show axons from the rostral piriform cortex extend 

into adjacent cortical areas. These axons extend across almost the entire rostral-to-caudal 

extent of the cerebral hemisphere, and are proposed to support autoassociative processes 

(Haberley, 2001). Thus, the lateral parietal and temporal areas are receiving direct input 

from the olfactory cortex. 

The lateral olfactory tract carries olfactory information directly from the olfactory 

bulb to the piriform cortex. It is feasible that the reduced input from the olfactory system 

(reduced LOT) results in a reduction of output from the piriform cortex, which, in turn, 

results in a reduction in parietal and temporal cortical thickness. Olfaction is a primary 

sensory modality for a rat. The absence of olfactory input, is likely to have downstream 

ramifications and the results of this study suggest that this is the case. Strong evidence 

exists for topographic reorganization in the visual cortex depending on the "activity of an 

extensive network of long-range horizontal associational, intracortical connections via 

collaterals of pyramidal cells" (Dreher, 2006). The current study suggests that piriform 

cortex output is modifying morphology in other cortical areas. 

7.2 Regeneration of the Bulb After Neonatal Insult 

The combined results from this study indicate that new cells are being formed in 

both PI and P10 animals after a partial bulbectomy. Experiment 2 reported an evolution 
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in the post-injury bulbs. Specifically, the PIO lesion bulbs grew in size, changed shape, 

and the relative size of the lesion bulb to the intact bulb increased. Similar effects were 

seen in PI lesion animals, albeit with less consistency. The lack of consistency in the PI 

findings was likely due to surgical technique (Slotnick et al., 2004). One exception in a 

PI to PIO comparison was the increased time over which relative bulb size increases 

were seen in PI animals. Proportional increases were extended well after one week post 

lesion. 

A review of the limited literature on neonatal bulbectomy suggests that leaving a 

bulb remnant results in good connectivity with ORNs, and excellent functional recovery. 

To date no one has postulated that new excitatory neurons are being generated to fill the 

void. The prevalent view is that the tissue present in adult animals is mainly bulbar 

remnant, and the result of a disturbed, but growing olfactory bulb. This view is not 

unsupported. Interneurons are still forming during the first postnatal week; granule cell 

production continues throughout life; remaining tissue is maturing by growing processes 

and synapses; and glomerular formation from ORN input is occurring. Still, with BrdU 

labeling, our results show increased mitotic activity in PIO lesion animals. Although the 

exact nature of the cells being developed is not demonstrated, the exceptional functional 

recovery suggests that primary cortical neurons (mitral cells) are in the mix. Further 

study is necessary to quantify and identify these new cells. 

The forces driving increased mitotic activity are unknown, although the 

subventricular zone and rostral migratory stream are a plausible possibility. In 

bulbectomized animals the RMS does not mature, retaining the prosencephalic region 

developmental pattern into adulthood, and remaining competent for cell proliferation 
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(Racekova et al., 2002). Another possibility is the migration of pluripotent cells from the 

olfactory epithelium. The migration of epithelial progenitor cells along the ensheathing 

cells into the olfactory bulb during development is a fascinating finding (Dyer and 

Graziadei, 2004). Even into adulthood the olfactory epithelium seems to be able to read 

the need for neurons in their immediate environment and regulate production of new 

neurons. Calof and colleagues (2002) refer to this as feedback inhibition of neurogenesis. 

Whatever the cause, this study confirms that the developmental stage of maturation 

(process outgrowth and synaptogenesis) in the second week of a rat's life, allows for 

greater plasticity. 

7.3 Diffuse Effects of Early Brain Injury on Development of Behavior 

The overall behavioral consequences of a neonatal bulbectomy were mild, but 

compensatory function was detected. Most notably, motor function changed and was 

evident in several measures. Paw dominance shifted to the ipsilesional paw, which is 

controlled by the contralesional cortex. In the forelimb asymmetry task, when first 

rearing, lesion animals placed their "good" paw against the cylinder wall proportionately 

more times than their contralesional paw. Lesion animals also placed both paws on the 

wall more often than controls. When lateralization was evaluated in the single pellet 

reaching task, all lesion animal groups except PI females showed preference for the 

ipsilesional paw. Forelimb motor skill was tested in single pellet reaching. Females were 

spared motor function while male lesion rats performed at poorer levels than male 

controls. Interestingly, lesion animals performed better at the Morris water task, a 

visually guided spatial, cognitive task. 
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In humans, 'vision for action' is the use of vision to direct motor movements. 

Rats possess 'olfaction for action', and use olfactory cues to direct motor activity. 

Studies show olfaction directs skilled forelimb reaching in these macrosomatic animals 

(Whishaw & Tomie, 1989). The current study shows that disturbing olfactory sense 

input during development affected motor output. Even though partially bulbectomized 

rats possess olfactory perception and discrimination almost on par with controls (Slotnick 

et al., 2004), olfactory detection ability did not translate into unaffected motor skill. It is 

likely that the critical period that links olfaction with motor skill was somehow disrupted 

by neonatal bulbectomy. Sensory experience is required in order for related cerebral 

areas to develop correctly, and this window of development is restricted. Failure to gain 

sensory experience during the critical period results in less than optimal functional 

outcomes. A number of critical periods of brain development have been identified for 

most sensory systems including vision (e.g. Blakemore and Cooper, 1970), audition (e.g. 

Nakahara, Zhang and Merzenich, 2005), somatosensory development (e.g. Jiao, Zhang, 

Yanagawa and Sun, 2006), and even thermal regulation (e.g. Pis, 2002). Little is known 

about experience-dependent critical periods in the development of olfactory cortical 

circuitry. 

Motor activity increases dramatically during the first few weeks of life. For 

example, in week two rats are crawling, and in week three rats are handling and reaching 

for food. This study showed that disruption of the olfactory input used to guide these 

emerging motor skills resulted in lateralization (a shift to control to the other hemisphere) 

and less than optimal reaching ability. This finding was further supported anatomically. 

In all probability decreased LOT size (found in this study) resulted in reduced integration 
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of olfactory input in the olfactory association areas (piriform cortex). Franks and 

Isaacson (2006) show the importance of LOT synapses in the piriform cortex. According 

to their research, olfactory experience during the first month of life "raises the threshold 

for the induction of long term synaptic plasticity." We then showed that cortical areas 

that received afferents from the piriform cortex were decreased in size; in particular, the 

multimodal somatosensory cortex, along with the temporal cortex. Further, primary 

pyramidal cells in the forelimb reaching area were less complex. These anatomical 

changes added up to altered motor ability. Lateralization (shifted paw preference) and 

altered motor skill have been shown to occur after unilateral injury to brain areas used in 

motor function including the frontal cortex, motor cortex and striatum (Whishaw et al., 

1986; Whishaw et al, 1992B; Whishaw, 2000; Gonzalez et al., 2004). The current study 

confirms that olfaction is intrinsically involved in the motor system. Further, it 

demonstrates that olfactory disruption during an apparent critical developmental period in 

the motor system results in disrupted motor function. 

Interestingly, the behavioral changes resulting from neonatal bulbectomy were 

diffuse and not all negative. The lesion animals showed enhanced performance on a 

visually driven, spatial cognitive test. The better performance on the Morris water task 

was surprising. It is possible that control animals were more reliant on olfactory cues, 

and that the lesion animals were less distracted by conflicting olfactory markers during 

the task. Problematic to this hypothesis are numerous studies that show olfactory ability 

for the lesion animals is on par or very close to nonlesion rats. Another, better supported 

hypothesis proposes that cross-modal compensatory changes may be responsible for 

enhanced ability in the water maze. Whisker barrelfields have been shown to expand 
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after neonatal eye removal in kittens (Rauschecker, Tian, Korte and Egert, 1992) and in 

mice (Bronchti, Schonenberger, Welker and Van der Loos, 1992). Blind children have 

been shown to hear better (Niemeyer and Starlinger, 1981), and spine density has shown 

to increase in the auditory cortex after visual or somatic deafferentation (Ryugo, Ryugo, 

Globus and Killackey, 1975). In humans, PET studies show activation in the occipital 

cortex in subjects reading Braille (Amedi, Merebet, Bermpohl and Pascual-Leone, 2005). 

Tremendous plasticity is demonstrated when somatosensory regions capture visual 

processing areas. Thus, in this study, the enlisting of underutilized olfactory area for 

visual processing is not implausible. 

7.4 Differences between PI and P10 lesion 

PI lesion animals seemed to have greater anatomical recovery than their P10 

counterparts. Anatomical changes in PI animals were less apparent in the lesion 

hemisphere, and compensatory changes in the intact hemisphere were greater. PI 

animals possessed a larger lesioned olfactory bulb and had a greater growth of the 

glomerular and external plexiform layer. The anterior placement of other olfactory 

structures into the bulb was substantially reduced in PI animals. The AOB in PI animals 

was found more caudal (i.e., more normal) in the lesion bulb. P10 animals showed a 

more obvious thinning in the lateral cortical region on the lesion side; whereas PI 

animals showed increased cortical thickness on the intact hemisphere. 

Previous studies show that recovery from injury is affected by the stage of 

development in which the injury occurs, but the effects vary depending upon whether the 

lesion is bilateral or unilateral. Rats with bilateral lesions of any cortical region show the 
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best outcomes if the injury is in the second week. In contrast, rats with 

hemidecortications show the best outcome after injury in the first week. Little is known 

about the anatomical changes after small focal unilateral lesions in development although 

preliminary data suggest that there is far less difference between the two weeks than in 

the bilateral lesion or hemidecorticate groups (N. Sherren, unpublished observations). It 

would appear that small focal lesions, such as in the current studies, may follow a 

different pattern of recovery than larger bilateral lesions. 

7.5 Sex Differences 

Females tended to show better functional and anatomical recovery than males. 

For example, PI female lesion rats performed on par with female controls on the single 

pellet reaching task whereas male lesion animals performed worse than male controls. 

Sex differences were also evident by the lack of lateralization (shifted paw preference) in 

the PI female rats. 

One novel finding in the current study was that normal male olfactory bulbs are 

larger than those in females, a finding that would seem to parallel the differences in 

overall brain size. Within the bulb, there also were sex differences as males had a larger 

AOB than females. Rats with neonatal bulbectomy did not show a sex difference either 

in bulb size or in the AOB in the lesion hemisphere. The absence of a sex difference in 

the lesion animals may reflect a sex difference in the response to the lesion. This is 

further supported by the observation that the bulbar sex differences were still present in 

the intact bulbs. Finally, the thinning of the lateral cortex in the lesion hemisphere was 
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greater in the males than females, again suggesting a sex difference in response to the 

injury. 

A finding of a female advantage following neonatal bulbectomy is somewhat 

unexpected given that females show a functional and anatomical disadvantage following 

neonatal medial frontal lesions (e.g., Kolb & Stewart, 1995). Nonetheless, females 

appear to fare better after neonatal trauma (Beckett, Maughan, Rutter, Castle, Colvert, 

Groothues, Kreppner, Stevens, O'Conner and Sonuga, 2006); so there may be etiology-

dependent sex differences to different forms of neonatal perturbations. 

7.7 Conclusions 

The effects of early brain injury on development of behavior and anatomy is 

diffuse. The impact of olfactory injury during this time has been poorly studied to date 

but in view of the importance of olfaction in development in all mammals including 

humans, the need to understand the impact of this 'lower' modality is essential. In 1962 

Braitenberg proposed that olfaction may be "the first sense to impose a map of the 

environment on the brain, and to determine its orientation in further evolution for all 

other senses" (quoted in Graziadei and Monti-Graziadei, 1992). We have provided 

evidence that neonatal bulbectomy has implications downstream in the brain. Indeed, 

changes in motor behavior of the bulbectomized neonates in the current study shows that 

olfactory structures play a role well beyond that of simple odor perception and 

discrimination. Further, strong performance in a visually-dominant spatial cognition task 

(MWM) shows that the effects of perinatal olfactory manipulations may be quite subtle 

and unexpected. 
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The current study was also an attempt to understand anatomical changes after 

bulbectomy early in life. We have provided suggestive evidence of neuronal regeneration 

in the olfactory bulb (particularly for PI0 lesion animals). Further study is required to 

better understand the nature of the regenerated cells and their origin. 
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APPENDIX A: HISTOLOGY, RECIPES AND TECHNIQUES 

ANATOMICAL PROCEDURES 
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References from Dawn Danka, Robbin Gibb, Marie Monfils, Neal Melvin, Brigitte 
Byers and others as mentioned 

I. PERFUSION - PREPARING THE BRAIN 

1. Administer an overdose of sodium pentothal (Euthensol) to rats (.6 ml male adults; .5 
ml female adults; .05 to .1 for babies). Grasp the rat by the skin on the nape of his/her 
neck. Legs and arms should pull up. Inject the Euthensol i.p. (interperitoneal) into lower 
abdomen, just above left hip. If you hit the liver, the animal goes down immediately; 
otherwise sedation takes up to five minutes. Test for level of sedation before perfusing 
the animal. This is done by a toe pinch. If no leg jerk reaction or response occurs when 
the toe is pinched hard, then the animal is sedated and ready for perfusion. Watch how 
the animal is breathing. It will be greatly reduced and barely visible. Remember, the 
idea is to retain a good heart beat that will assist in flushing blood from the brain. Be 
sure to record the amount of Euthensol used. 

2. Weigh the animal. For babies Jack Turman (in conversation) recommends taking 
weight, length (snout to base of tail), and head circumference measurements to achieve a 
more accurate idea for growth comparisons. Use a string to measure. Then lay the string 
out against a ruler. 

3. To prepare the animal for perfusion, snip the skin away in the upper chest area. With 
a clamp (locking tweezers), grasp the septum (flap between the ribs), and cut across the 
base of the ribcage line with scissors. Then carefully snip along the top of the diaphragm 
to release the ribcage and allow access to the chest cavity. With the clamp still in place, 
cut up each side of the chest, through the ribcage, and expose the heart. Use the clamp to 
secure the cut flap away from the open chest cavity. 

4. To perfuse, ensure all air has been removed from the pump needle. Insert pump 
needle into the bottom left ventricle of the rat's heart (right to you) being careful not to 
penetrate the other chambers with the needle. For babies use a butterfly needle attached 
to a 30 ml syringe filled with 0.9% saline. Tap the syringe to help remove any air. The 
heart is still beating to help carry saline solution into the brain. Turn the pump on 
ensuring it is not going too fast. Once pumping, snip the descenting aorta. With babies, 
snip the descending aorta then slowly plunge saline solution into the left ventricle. The 
chambers in the baby heart are very delicate and rupture easily. Continue perfusion until 
the descending aorta is running clear. 
For immuno-histochemical staining (i.e. cresyl violet): 
Perfuse the animal with phosphate buffered saline (PBS) (see recipe below) using 
approximately 200 ml of PBS per adult animal; 15-20 ml for babies. 
Continue perfusing with a 4.0% solution of phosphate buffered paraformaldehyde (PFA) 
(see recipe below), using approximately 200 ml for adults; 15-20 ml for babies. Be sure 
to pump out any remaining PBS from the system before starting the next perfusion. 
For Golgi Cox Staining: 
Perfuse the animal with a generous amount of 0.9% saline solution (see recipe below). 
Adult animals will require about 200 ml per animal; 20 ml for babies. 
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5. Once perfusion is completed, sever the head from the rest of the body. Dispose of any 
waste tissue in a double lined plastic bag. Seal the bag and place it in freezer facilities. 

6. To extract the brain, cut the skin over the top of the skull to the snout of the animal. 
Peel the skin back. Note that extra care must be taken when removing the brain 
(particularly for Golgi) as the brains are very soft. 
For babies: At the base of the cerebellum, from the centre line, snip to the left and right. 
Another snip is required and up the middle line of the cerebellum. Pull away the skull 
around the cerebellum. Then snip down the middle between the 2 hemispheres to the 
snout. Be sure to cut the dura mater as well. With rongeurs or tweezers, pull (peel) the 
skull off each hemisphere and bulb. It will come off in big chunks. 
For adults: With rongeurs (rounded plier-like tool), pull up skull to 0 bregma. At this 
point, snip the dura - as it will cut into the soft brain tissue if it remains. Continue to pull 
off the skull to the cribriform plate. Watch for the piece of skull between each bulb, as it 
will damage the bulbar tissue. Some snip about 2 mm into the olfactory bulb if they are 
not being used in the experiment. Continue pulling off skull with the rongeurs. Expose 
the paraflocculi. 
For both: Invert the head, and gently pry underneath the brain. Snip the occular nerve 
and any other connective tissue. The brain should release. 

7. Place the brain on wax paper and weigh the brain. We generally weigh the brain with 
the flocculi removed. Care must also be taken to trim the brain stem in a consistent 
manner. 

8. Place the brains in 20 ml of solution in a 30 ml bottle. Note that the dark brown 
bottles are for Golgi. The clear bottles are for immunohistochemical staining that does 
not require dark conditions. 
For immunohistochemistry: 

1. After perfusion, place the brains in 20 ml of 4% buffered PFA for 24 hours. 
2. Then place the brains in 20 ml of 30% phosphate buffered sucrose (recipe below). 

When brains sink (approximately 3 days) they are ready for frozen sectioning. 
3. If brains are going to be in sucrose for an extended period of time, add 0.02% 

sodium azide (NaN3) (recipe below) which acts as a bacteriostatic biocide (a 
preservative). 

For Golgi Cox: 
1. After perfusion place the brains in 20 ml of Golgi-Cox solution (recipe below). 

Store the brains in the dark for 14 days for rats, 10 days for mice. 
2. Drain off the Golgi-Cox solution and replace it with 20 ml of 30% sucrose 

solution (recipe below). Store the brains in the dark for 2 days (up to one week) 
before sectioning. The sucrose step is not critical with Vibratome sectioning, but 
it does make the tissue more pliable (less brittle) and less likely to fracture, crack 
and break. Reference Person: Dawn Danka 

II. HISTOCHEMICAL RECIPES & PROCEDURES 

PHOSPHATE BUFFERED SALINE (PBS) 
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Vascular Rinse for perfusions destined for immunohistochemistry (cresyl violet, luxol 
fast blue). Stock 5X 
Sodium (Phosphate - dibasic (Na2HP04) 0.6 g 60 g 
Sodium (Phosphate - monobasic (NaH2PO4H20) 0.11 g 11 g 
Sodium Chloride (NaCl) 4.5 g 45 g 
Distilled water (dH20) Bring to a volume of: 500 ml 1000 ml 
Note: dH20 is added to achieve a total volume of 500 ml or 1000 ml. 
Check pH with tester strips. pH levels should be at 7.6. 

To take 5X solution to stock (20%), take 200 ml of 5X solution plus 800 ms of dH20. 
Store 5X solution in a dark container. 

PARAFORMELDEHYDE (PFA) - 5X Solution 
PFA is used to make the parafomaldehyde (PFA) phosphate buffer that follows the PBS 
in perfusion. Caution: Be very, very careful - wear mask and gloves. 
All work should be done under the fume hood. 

1. Heat approximately 700 ml of dH20 to 65°C. Do not exceed this temperature. 
2. Add 200 g of PFA paraformaldehyde granules (preferred) or powder. Do not use 

formalin. 
3. To clear the solution, add sodium hydroxide (NaOH - aka lye). For liquid NaOH, 

use a Pasteur pipette, and add in small increments until the solution clears: about 
3-4 Pasteur pipettes. For granular crystals, use approximately 6-7 crystals. 

4. Add dH20 to a total volume of 1000 ml. Store in the fridge. 

PARAFORMELDEHYDE (PFA) PHOSPHATE BUFFER - 4% Solution 
A 4.0% PFA phosphate buffer that follows the vascular rinse (PBS) during perfusion. It 
functions to fix the tissue. Be careful when using this solution as it is toxic. 

1. 200 ml of 5X PBS (Phosphate Buffered Saline) 
2. 200 ml of 20% PFA (Paraformeldehyde) 
3. 600mldH2O 
4. Mix together for 4% PFA Buffer Solution 

30% PHOSPHATE BUFFERED SUCROSE 
For 1000 ml of phosphate buffered (PB) sucrose mix together the following: 

5X PB Saline (recipe above) 200 ml 
Sucrose 300 g 
dH20 Bring to a volume of 1000 ml 

If brains are to be in sucrose for an extended period of time add sodium azide 0.02% 
solution, 1 ml of 20% stock solution per 1000 ml. 30% phosphate buffered sucrose is a 
cryoprotectant, as it pretexts brain tissue from forming ice crystals (and subsequently 
damage) when it is frozen. 

Reference Person: Marie Monfils - PBX, PFA, Buffered PFA, Buffered Sucrose 
SODIUM AZIDE 20% Stock Solution 
Use extreme caution: Sodium Azide is an electron chain transport inhibitor - extremely 
toxic. 
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Sodium azide (NaN3) powder 5 g 
dH20 25 ml 

Mix together. 
To obtain a 0.02%) solution, place 1 ml of the 20%) sodium azide stock per 1 liter of PB 
sucrose. 

Reference Person: Neal Melvin 

1% GELATIN-COATED SLIDES for IMMUNOHISTOCHEMISTRY 
Solution in which slides are dipped for mounting immunohistochemically treated tissue. 
Heat and mix. Do not allow to go over 60°C. 

Adult tissue Baby tissue 
1% gel, 0.2% 0.5% gel, 0.2% 

Gelatin (G8-500 Fisher) 2 g 1 g 
Chrome alum (0.2%) 0.4 g 0.2 g 
(Actually it's Chromium III potassium sulfate, dodecahydrate, CrK.O8S2.i2 H2O, 

from Acros, but the levels indicated work well. Chrome alum, proper, is at a 1 to 0.1 
ratio gelatin to chrome alum.) 

dH20 200 ml 200 ml 
Less gelatin is used on the slides for baby tissue as baby tissue is more fragile due to less 
myelination and connectivity. 

Reference Person: Dawn Danka and Nicole Sherren 

III. CRESYL VIOLET STAIN (A NISSL STAIN) 
Stains cell bodies a bright violet color. 
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1. Position slides in a slide tray and bathe the slides in the following solutions for the 
indicated time. 

Bath Duration 
2. The initial alcohol soaks and HemoDe remove fats (lipids) and any fixation chemicals 
from the tissue as well as dehydrates the tissue (drives out water). 

1) dH20 1 minute 
2) 70% alcohol 1 minute 
3) 95% alcohol 1 minute 
4) 100% alcohol 5 minutes 
5) HemoDe 20 minutes 

3. A series of decreasing alcohol baths hydrates the tissue before immersion in the water-
based stain. Because alcohol and water are not miscible, coming directly off an alcohol 
bath the stain would not be captured. 

6) 100% alcohol 5 minute 
7) 95% alcohol 1 minute 
8) 70% alcohol 1 minute 
9) dH20 0.5 minute 

4. Stain - The Cresyl Violet Stain solution is comprised of 1% Cresyl Violet Acetate 
(aqueous) in dH20. Adjust the pH to 3.5 with glacial acetic acid (CH3COOH). (Another 
method says 1.25 g cresyl violet acetate and 0.75 ml glacial acetic acid to 250 ml warm 
dH20, cool and filter) 

10) Cresyl Violet Stain 10 minutes 
11) dH20 0.5 minute (30 seconds) 
12) dH20 0.5 minute (30 seconds) 

5. Differentiation - the acetic acid-alcohol destain is comprised of 100 ml of 10% glacial 
acetic acid solution and 900 ml of 95%) alcohol. (2 ml glacial acetic acetic acid in 200 ml 
ETOH) 

13) Acetic acid-alcohol destain 0.8 minute (45 seconds) 
14) 100% alcohol (clean) 8 minutes 
15) HemoDe 5 minutes 

6. Leave the slides in the final HemoDe bath until you are ready to mount its coverslip. 
When ready, remove the slide carrier and let it drain on a paper towel. Remove slides 
from the carrier. Wipe off any excess clearing agent. Coverslip with Permount (SP15-
500 Fisher). 
In a good cresyl violet stain the cell bodies should be easy to differentiate under a 
microscope. If slides are over-stained repeat steps 11 through 15, varying the time in step 
13, acetic acid-alcohol destain, until desired stain level is achieved. If slides are under-
stained, go back to step 6, and vary the time in step 10, until desired stain level is 
achieved. 

The automatic stainer fits up to 40 slides into a stainless steel tray. Keep the frosted side 
up. 
Reference person: Brigitte Byers 

IV. LUXOL FAST BLUE (for frozen slides) 
Stains myelin (including phospholipids) a blue/green colour. 
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0.1% Luxol fast blue solution: Note - Make up the day prior 
Luxol fast blue, MBS 0.1 gm 
Ethyl Alcohol, 95% 100 ml 
Glacial acetic acid 0.5 ml 

0.05% Lithium carbonate solution: 
Lithium carbonate 0.05 gm 
dH20 100 ml 

0.1%) Cresyl echt violet solution: 
Cresyl echt violet (cresyl fast violet) 0.1 gm 
Distilled water 100 ml 
Glacial acetic acid Add 10 drops of glacial acetic acid just before use. 
Filter the solution. 

1. Make up Luxol fast blue solution. 
2. Put sections into a 1:1 alcohol (100%)/chloroform bath. 

Leave them overnight - 12 hours approximately. 
3. Hydrate the slides in the morning in 95%) alcohol for approximately 30 min. 
4. Put slides in Luxol fast blue solution in oven at 56°C for no longer than 16 hours. 
5. Rinse off excess stain with 95%) ethyl alcohol by dipping the slides repeatedly for 

30 to 60 seconds 
6. Rinse in distilled water by dipping repeatedly for 30 to 60 seconds. 
7. Differentiate the slide by placing each slide individually in lithium carbonate 

solution for up to 30 seconds. Watch each slide carefully 
8. Continue differentiation in 70%) ethyl alcohol until the gray matter is clear and the 

white matter is sharply defined. Dip a couple times, and check until right color. 
9. Check microscopically. Repeat differentiation if necessary (steps 5, 6 & 7) 
10. When differentiation complete, place the slides in distilled water. 
11. When all slides have been collected in distilled water, add fresh distilled water. 
12. Proceed with counterstain - cresyl violet solution for 30 to 40 seconds. 
13. Rinse in distilled water. Avoid 70% alcohol which will clear off the Luxol fast 

blue staining. 
14. Differentiate the slides in 95%> for five minutes (check microscopically) 
15. Go through 2 alcohol baths for five minutes each. 
16. 2 baths of Hemo-De for five minutes each. 
17. Coverslip with Permount. 

Note: Alcohol pulls out stain. Water doesn't. 

Referencee Person: Dawn Danka 

V. GOLGI-COX STAINING 
GOLGI COX RECIPES 
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SALINE SOLUTION - 0.9% 
Vascular rinse for perfusions destined for Golgi-Cox staining. 

Sodium chloride (NaCl - aka salt) 9 g 
Distilled water (dH20) 1 liter 

Mix together. 

GOLGI-COX STAIN RECIPE 
After: Glaser and van der Loos, 1981 
Exercise extreme caution - Fatal if inhaled, absorbed through the skin or swallowed. 
Solution A 

K2Cr207 (Fisher P-188) Potassium dichromate 37.5 g 
dH20 warmed 750 ml 
Mix, then warm mixture 

Solution B 
HgCl2 (Fisher Ml 561) Mercury (II) chloride 37.5 g 
dH20 warmed 750 ml 
Mix, then heat to almost boiling 

Solution C 
K2Cr04 (Fisher P-220) Potassium Chromate 30 g 
dH20 cold 600 ml 

1. Mix solutions A, B, and C independently. 
2. Combine solutions A, B, and C with 1500 ml of dH20. 
3. Store in a brown jug, out of light for five days. 
4. Filter 
5. In the Kolb lab the brain is stored in 20 ml of solution for 14 days. A small piece of 
paper towel upon which the rat's identification number is written, is inserted into to the 
bottle. After 14 days the brains are placed in 30% sucrose solution to increase pliability. 
Glaser and van der Loos changed the solution after 24 hours and waited 12 days before 
proceeding. They placed a small piece of gauze in with the staining solution. 
6. When tissue is completely stained, rapid dehydration and celloidon embedding is 
often used before cutting and processing. 

Reference Person: Robbin Gibb, after Glaser and van der Loos 

SUCROSE SOLUTION - 30% 
For storage after staining in Golgi-Cox solution. 

Sucrose 300 g 
dH20 Bring to a volume of 1 liter, 1000 ml 

Mix together until sucrose is dissolved and mixture is clear. 
Leave brains in the mixture for 2 days to decrease brittleness. Do not leave in sucrose for 
more than 4 to 6 weeks, as pliability becomes reduced. 
SUCROSE SOLUTION - 8% 
For use while cutting Golgi-Cox stained brains in the Vibratome into 200 um slices. 
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Sucrose 8 g 
dH20 100 ml 

Mix together until sucrose is dissolved. 

2% GELATIN-COATED SLIDES for GOLGI 
Solution in which slides are dipped for mounting Golgi-Cox stained tissue. 

Gelatin (G8-500 Fisher) 4 g 
dH20 200 ml 

Heat solution until gelatin dissolves. 
Filter the solution. 
Dip slides. 
Reference Person: Dawn Danka 

GOLGI-COX STAIN PROCEDURES 

1. Perfuse the animal with a generous amount of 0.9% saline solution (see recipe 
below). Adult animals will require about 200 ml per animal; 20 ml for babies. 

2. After perfusion place the brains in 20 ml of Golgi-Cox solution (recipe above). Store 
the brains in the dark for 14 days for rats, 10 days for mice. 

3. Drain off the Golgi-Cox solution and replace it with 20 ml of 30% sucrose solution 
(recipe below). Store the brains in the dark for 2 days (up to one week) before 
sectioning. The sucrose step is not critical with Vibratome sectioning, but it does make 
the tissue more pliable (less brittle) and less likely to fracture, crack and break. 

4. Prior to sectioning block the brain perpendicular to the midline at the approximate 
level of the anterior commissure and again through the caudal portion of the occipital 
cortices. 

5. Blot the tissue dry and mount on sectioning stages with cyanoacrylic (Super) glue. 
Ensure that the entire block of tissue is firmly secured to the stage in order to prevent 
cutting uneven sections or tearing chunks of tissue off the block. 

6. Prepare a Schick injector blade for sectioning by immersing it in HemoDe for 5 
minutes to remove any traces of oil. Carefully wipe dry with a tissue. Insert the blade 
into the vibratome blade holder. Fill the vibratome reservoir with 8% sucrose solution to 
a level that covers the sectioning blade. 

7. Cut sections on the vibratome at 200 um thick. Place on 2% gelatinized slides. Note: 
the sections must be kept wet during the course of sectioning. Once all sections of 
interest have been collected, press them onto the slides by applying pressure with 
moistened bibulous paper. Each brain will fit onto 10 slides if you are doing olfactory 
bulbs to the end; or 13 with the cerebellum. 
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8. Place slides in a glass staining tray. Keep blotted slides in a humidity chamber until 
they are ready to be stained. It is best to leave the sections on the slides at least overnight 
and for up to 3 days before processing. After a week the Golgi stain leaches out into the 
gelatin on the slide leaving artifacts. 

9. To process slides with Golgi stain proceed as follows: 
dH20 1 minute 
Ammonium Hydroxide 40 minutes (in the dark - dark chamber, wrapped in 

tin foil) 
dH20 1 minute 
V2 Kodak Fix for film / V* dH20; Mix Kodak fix with dH20 in a 1:1 ratio 

40 minutes (in the dark - dark chamber, wrapped in 
tin foil) 

dH20 1 minute 
dH20 1 minute 
50% alcohol 1 minute 
70% alcohol 1 minute 
95%o alcohol 1 minute 
100%o alcohol 5 minutes 
Note: Sections must be kept dry. Use VWR's molecular sieve (calcium alumino-

silicate, type 5 A, 1/16* inch pellets). Change out pellets when they lose their sieving 
ability. Leave them overnight in a shallow pan. 

100% alcohol 5 minutes 
100%) alcohol 5 minutes 
1/3rd 100% alcohol; l/3rd chloroform; l/3rd HemoDe 70 ml each 

10 minutes 
HemoDe 15 minutes 
Hemo De 15 minutes 

HemoDe is an environmentally friendly substitution for Xylene. Xylene can be used 
without fear of fading of the tissue. 

Note: to ensure preservation of the stain quality, it is critical to use fresh alcohol baths in 
the dehydration process. If this precaution is not taken, the sections tend to darken over 
time and the cell staining diminishes. 

10. Coverslip the slides with Permount. Because of the thickness of the sections, it is 
necessary to use a lot of Permount in order to prevent air bubbles from forming. 
Alternatively the slides can be covered in Canada Balsam and allowed to dry without a 
coverslip. 

11. Sections must be completely dry before storing them in closed slide boxes. Any 
sections that are not thoroughly dry will darken over time in the boxes. If slides are left 
on trays for approximately 6 months, they should be dry enough to store. 

Reference person: Robbin Gibb 
APPENDIX B: AMBIGUOUS GROUP AFFILIATION 
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Ambiguous group affiliation occurred in rat numbers 22, 25, 27 and 28. Two of 
these animals were recorded as control and two received lesions, but the surgeon 
neglected to identify the animals with toe clippings and the brains. A PI male control 
(24), and PI male (29) OBX are included in the figure for comparison purposes. Note: 
In rat 29, a known lesion animal, the bulb is disfigured, and the PFC is larger on the right, 
non-lesion hemisphere. 
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APPENDIX C: 

COMPLETE LISTING OF OLFACTORY SECTIONS MEASURED 
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APPENDIX D: SUMMARY OF ANATOMICAL STATISTICS 

Gross Measurements 
Brain & Body Weight 

Body 

Bilateral touch on rear 
Olfactory Bulbs 

Left (lesion) 

Right (intact) 

Left/Right comparison 
Cerebral Hemispheres 

Left (lesion) 

Right (intact) 

Left/Right comparison 
Cerebellar Area 

Left (lesion) 

Right (intact) 

Left/Right comparison 

Olfactory Bulbs 
Olfactory Nerve Layer 

Left (lesion) 

Right (intact) 

Left/Right comparison 
Glomarular Layer 

Left (lesion) 

Right (intact) 

Left/Right comparison 

Main Factors 
Age of Lesion 

Control, P1 OBX, P10 OBX 

Sex 
Male/Female 

Interaction 

As Indicated 
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Mitral Cell Layer 

Left (lesion) 

Right (intact) 

Left/Right comparison 
Glomeruli 

Left (lesion) 

Right (intact) 

Left/Right comparison 
Olfactory-Related 
Strucutres 
Accessory Olfactory Bulb 

Left (lesion) 

Right (intact) 

Difference Left to Right 

AOB Span in OB 

Rostral Thrust 

Anterior Commissure 

Width 
Lateral Olfactory Tract 

Left (lesion) 

Right (intact) 
Lateral Ventricles 

Left (lesion) 

Right (intact) 

Left/Right comparison 
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APPENDIX E: PHOTOGRAPHS FROM EXPERIMENT 3 
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Nicked, male, P10 (1) 

No nick, female, P10 (2) 

Nicked, male, P10 (3) 

No nick, male, P10 (4) 

Nicked, male, P10 (5) 

Nicked, female, P10 (6) 

No nick, female, P10(7) 

No nick, male, P10 (8) 

P10-You can seethe 
scar from the PFC nick, 
but both the bulb and the 
PFC regenerated. Bulb 
looks distinct. Possible 
elongation of PFC in 
nicked, and their bulbs 
may be smaller. 
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No nick, female, P1 (2) No nick, male, P1 (10) -RremovecNo nick, female, P1 (13) 

No nick, female, P1 (4) No nick, female, P1 

No nick, male, P1 (7) No nick, male, P1 (12) 

No nick, female, P1 (16) 

P1 - NO nick - Tend to see 
elongation of the PFC with 
some bulbar regeneration. 
Distinct bulb might be due to 
not removing entire bulb. 
Note: Some slurry at P22. 
Perhaps should have waited a 
bit before perfusions. 
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Nicked, male, P1 (3) 

Nicked, female, P1 (5) 

Nicked, male, P1 (6) 

Nicked, female, P1 (8) 

Nicked, female, P1 (9) 

Nicked, female, P1 (14) 
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Nicked, female, P1 (15) 

P1 - NICKED PFC-No 
frontal pole regeneration; 
limited, if any, bulbar 
regeneration. Appears that if 
some bulb was left after 
surgery the tissue tended to 
connect and grow (rat 15). 
Note: Animal 1 is missing due to 
degraded photograph. Dorsal view of 
P1 male, nicked FP below 



P1 Female OBX - Post Surgery Day 23 
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