
A SOFTWARE SIZE ESTIMATION TOOL:

HELLERMAN'S COMPLEXITY MEASURE

TOBY LERMER

(B.A., University of Lethbridge, 1986)
(B.MGT., University of Lethbridge, 1987)

A Thesis
Submitted to the Council on Graduate Studies

of the University of Lethbridge
in Partial Fulfilment of the

Requirements for the Degree

MASTER OF SCIENCE

LETHBRIDGE, ALBERTA
April, 1995

Toby Lermer, 1995

1. Introduction

Table of Contents

1

2. Hellerman's Complexity Metric (HCM) 5
2.1 Adaptation of Hellerman's Computational Work 7
2.2 SELMA 9

2.2.1 State variables 9
2.2.2 State variable values 10
2.2.3 External event(s) 10
2.2.4 Sublaws - stability conditions 10
2.2.5 Sublaws - corrective actions 11

2.3 Calculation of Hellerman's Complexity Metric 13
2.4 Qualities of Hellerman's Complexity Metric 17

3. HCM and Function Point Analysis 18
3.1 Function Point Analysis (FPA) 18

3.1.1 Function Points and LOC 22
3.1.2 Function Point Analysis and Complexity 24

3.2 Software Production Research Functional Metric 26
3.3 HCM as a Complementary Tool 28

4. HCM as an Independent Metric 29
4.1 Research Model for Measuring Information System Size 29

5. HCM Research 35
5.1 Hypotheses 35
5.2 Research Subjects 35
5.3 Research Design 36

5.3.1 LOC calculation 39
5.3.2 McCabe Complexity Metric 40
5.3.3 Function Count Calculation 43

5.4 Results 43

6. Conclusion 52

References 55

li

Appendices 58

Appendix A
Three Car Insurance System Varieties: Description & Stable State Space 59

Appendix B
Three Car Insurance System Varieties : Selma Specifications 63

Appendix C
Data for Regression Analysis (FC) 69

Appendix D
"Backfiring" FP Worksheet 70

Appendix E
FP component definitions 71

Appendix F
FP to LOC ratios 71

Appendix G
Selma specification & Decomposition of Car Insurance Project 73

Appendix H
Selma Specification & Decomposition of Payroll Project 75

Appendix I
Selma Specification & Decomposition of Hotel Project 79

Appendix J
System Analysis for Student Systems 82

in

List of Tables

Table 1 Computational Work (W) [Hellerman, 1972, p. 441-442] 6

Table 2 Paulson Terminology of HCM [Paulson and Wand, 1992, p. 183-184] 7

Table 3 Sample Payroll System Decomposition 8

Table 4 Car Insurance Premium System: SELMA decomposition output 13

Table 5 Stable State Space for Car Insurance System 14

Table 6 Manual calculation of HCM for Car Insurance System 14

Table 7 Manual calculation of HCM for Car Insurance subsystems 16

Table 8 Function-point Worksheet [Albrecht and Gaffney, 1983, p. 647] 19

Table 9 Matrix to classify the complexity of External Inputs [Jones, 1991, p. 62] 21

Table 10 Guideline Scoring for the Data Communication Factor [Jones, 1991, p. 65]

21

Table 11 Function-point model 23

Table 12 SLOC estimation based on Function points [Albrecht and Gaffney, 1983,

p.642] 24

Table 13 SPR Function Point Method [Jones, 1991] 27

Table 14 SNAP system summary and tree diagram for Subject Four 38

Table 15 Line-Counting Methods [Jones, 1986, p. 15] 39

Table 16 Cyclomatic Complexity [McCabe and Butler, 1989, p. 1416] 41

Table 17 Decision Statement Counting Procedure 42

Table 18 Student System Data: LOC and Complexity Variables 47

iv

Table 19 Difference of Means between the Payroll and Car Systems for LOC variables

48

Table 20 Difference of Means between the Payroll and Car systems for Complexity

Variables 49

Table 21 Forecast Results for the Hotel System 50

Table 22 Regression Analysis with Independent Variable, Function Count (FC) 51

v

List of Figures

Figure 1 Planned vs. actual schedule duration from initiation to delivery [Jones, 1991, p.

151] 4

Figure 2 Research Model for Measuring Information System Size [Wrigley and Dexter,

1991, p. 247] 30

Figure 3 The Traditional Systems Development Life Cycle [Whitten et al., 1989, p. 82]

33

Figure 4 Context Diagram - Car insurance system 88

Figure 5 Diagram 0 - Car insurance system 89

Figure 6 Context Diagram - Payroll system 95

Figure 7 Diagram 0 - Payroll System 96

Figure 8 Context Diagram - Hotel reservation system 106

Figure 9 Diagram 0 - Hotel Reservation System 107

vi

A Software Size Estimation Tool:

Hellerman's Complexity Metric

1. Introduction

I present in this thesis an analysis in support of using Hellerman's Complexity Metric

(HCM) [Hellerman, 1972] as a software size estimation tool. In an information system

environment, Paulson and Wand previously applied HCM to identify the least complex

system decomposition derivable from a formal system analysis [Paulson and Wand, 1992].

This thesis proposes that HCM could have wider applications. Its advantage over functional

metrics' is that it is an objective measure and it can be calculated early in the system

development lifecycle. Because of these two important qualities, HCM could be useful as

a tool for estimating the software development size and forecasting development effort.2

Effort estimation is an input into project cost analysis and resource planning. It is

standard practice to predict software development effort hours from a prior estimate of

software project size. The software project size is measured in lines of code or function

points. Clearly an inaccurate, late or nonexistent size estimate can have serious

consequences. It may lead to underestimating a project's costs and to poor resource

scheduling.

1 For example, the original Function Point Analysis [Albrecht and Gaffney, 1983] and one
variation, SPR Function Point Method [Jones, 1991].

2This thesis addresses only issues related to development costs and not maintenance costs.

2

HCM can be a useful software size estimation tool by performing two functions as

follows:

1) A metric complementary to the most well employed size estimation model,

Function Point Analysis (FPA) and,

2) An independent and raw size estimate of the essential system at the system

analysis stage.

An accurate and timely metric of program size is a useful tool for software

development firms and in-house development teams. Under or over estimating a project's

size can lead to poor resource allocations, invalid cost-benefit analyses and large budget

overruns :

Accurate measures of the complexity-adjusted (FPA) size of the deliverables

of a software project early in the lifecycle will permit the estimation of the

relationships between the deliverables and the cost and time required to

produce them. However, any error in the measurement of the deliverables

will add to the errors involved in estimating the required resources.

Therefore, a critical first step in software management is the use of a reliable

software size measures [Kemerer, 1993, p.87].

For example, software development projects often run 100 to 200 percent over budget

[Kemerer, 1993, p. 87]. Apart from the financial repercussions of unanticipated budget

overruns, poor resource allocation and scheduling can hurt the relationship between

developers and their clients:

This phenomenon (differences between desired schedules and actual

3

schedules) constitutes the most visible source of dissatisfaction between

software developers and their clients. Clients almost always wish to have

projects finished earlier than development is capable of doing [Jones, 1991,

p. 152].

Jones concluded that the major reason for schedule delays was "irrational schedule

targets":

For more than half of all projects, the desired schedule targets were

established by essentially irrational means. That is, the schedules were set

by decree without regard to the capabilities of the staff or the complexities of

the projects [Jones, 1991, p. 152].

Figure 1 (Planned vs. actual schedule duration from initiation to delivery) is from

a report based on "partial3" historical data derived from 4000 information system, military,

and system software projects developed between 1950 and 1990 [Jones, 1991, p. 124].

Almost all the projects were over schedule and the over scheduled time increased with the

size of the project.

Clearly, the management of an information system development project would be

enhanced by the availability of an accurate size estimation model. This project presents a

new size estimation tool, HCM.

3 "The word 'partial' is of great significance in this context: although thousands of projects
have been examined, it is not the case that each project had a consistent, accurate, and fully
detailed set of measurements associated with it. [Jones, 1991, p. 124]"

4

In the following chapter, I provide background information about HCM. In the third

chapter, I present the reasons for using HCM as a complementary metric to FPA. In the

fourth chapter, I present a theoretical argument for HCM as a potential estimator of essential

j !

• 1 t « • « a «

in CMmtv MMRM

Figure 1 Planned vs. actual schedule duration from initiation to delivery [Jones, 1991, p.
151]

size at the system analysis stage. In the fifth chapter, I describe a research investigation into

the relationship between HCM and the completed code. In the final chapter of this thesis,

I collect my conclusions and I suggest that the HCM approach is worth further development.

5

2. Hellerman's Complexity Metric (HCM)

Existing research about software metrics largely involves measuring existing

computer code. Cote et al. list the classic software metrics to be Halstead's software science

metrics, McCabe's Cyclomatic Complexity, Lines of Code, and FPA [Cote et al, 1988, p.

121]. Except for FPA, the classic software metrics evaluate existing computer code after the

system is developed.4

"Lines of Code" (LOC) methods include variations of counting the lines of code in

the program such as counting only executable lines and data definitions. Halstead's program

length and volume [Halstead, 1977] are calculated from counting operators such as (=, *)

and counting operands such as variables like (A, B, C). McCabe's Cyclomatic Complexity

[McCabe, 1989] is calculated from counting the number of decision statements in the code.

Unlike the classic software metrics, HCM provides a gauge of complexity at the

system analysis stage before the code is written. An analyst calculates HCM from the

skeletal structure of the proposed system rather than the completed code.

4On the other hand, Cyclomatic complexity has been extended to the analysis of program
module hierarchies [McCabe and Butler, 1989].

6

Table 1 Computational Work (W) [Hellerman, 1972, p. 441-442]

Notation:
If X is a set of elements, we will let IXI denote the number of elements in the

set. Throughout this paper log will mean the base 2 logarithm.

Definitions:
Let f:X->Y be a process defined on a finite number IXI of inputs. The domain

X may be partitioned into n domain classes Xj each comprising all the points in the
inverse image of some point in the range Y. The work of f is then

n
w(f) = I IX;I log (IXI/IXil)

i=l

Example: Let f: XxY —>Z by z = x + y, where x,y, and z are logical variables, and +
is the logic or function. The truth table {logic table} for f is the following:

x y z

0 0 0
0 1 1
1 0 1
1 1 1

Each point of the domain consists of a pair of logic values (x,y). There are two
domain classes. One class consists of those pairs values mapping into 0, {(0,0)}. The
second class consists of those pair values mapping into 1, {(0,1),(1,0),(1,1)}. Thus,
the four points of the domain are partitioned into a 1-part and a 3-part. This gives

w(f) = 1 log 4/1 + 3 log 4/3 =3.245

7

2.1 Adaptation of Hellerman's Computational Work

Paulson and Wand updated Hellerman's computational work measure to rank the

complexity of alternative system decompositions. Hellerman's original purpose for

developing a computational work measure was to "estimate the amount of work done by a

process independent of it's implementation" [Paulson and Wand, 1992, p.183]" Therefore,

the computational work measure is independent of the program language and the level of

programmer skill. Hellerman's definition of computational work is in

Table 1.

Table 2 Paulson Terminology of HCM [Paulson and Wand, 1992, p. 183-184]

Let / be the total number of input states. If there are N output states, then the input
states are partitioned into iV domain classes. Denote by /, the number of input states
leading to the /th output state. According to information theory, if all input states have
the same probability of occurrence, recognition of an input provide log(//J7) bits of
information. The total information which is associated with input recognition during
implementation or maintenance is

N

0 = 1 1 , * logd/I.)
i=l

Although Hellerman's measure was published in 1977, Paulson and Wand (Paulson &

Wand) reemployed the measure in an information system environment. Hellerman's

measure suited Paulson & Wand's requirement for a metric to gauge input recognition

complexity. Input recognition "reflects the work which must be done in order to select the

transformation that has to be applied to a given input"[Paulson and Wand, 1992, p. 183].

Paulson and Wand revised the terminology of Hellerman's computational work equation to

8

an information system framework (See Table 2).

One or many system decompositions are automatically generated from a formal

specification model, the States, Events, and Laws Modelling Approach (SELMA) [Paulson

and Wand, 1992]. In order to choose which system decomposition to implement further,

HCM is used to rank the total complexity for each decomposition. Paulson and Wand assert

the premise that "reducing input recognition complexity will reduce the overall work

associated with implementing and maintaining the system" [Paulson and Wand, 1992, p.

183]. In other words, HCM assists the analyst to identify the least complex decomposition

before designing and implementing a system. For example, in a sample payroll system over

100 decompositions were generated by computer software. Each decomposition has a

Table 3 Sample Payroll System Decomposition

Lowest-Complexity Decomposition for a Payroll System
(Full description of this payroll system is in Appendix J)

2: {base pay, commission, overtime, total pay} 3.9
1: {end, hours, pay rate, base pay} 7.8

{end, employee position, employee type, sales, commission} 5.4
{end, employee position, employee type, hours, overtime}23.0

Total HCM: 23.09 (Sum of the subsystem HCMs)

First calculate the results of the first level subsystems, base pay, commission, and
overtime. Then calculate the second level subsystem for the final total pay result.
Note the end variable is a flag indicating end of period.

corresponding HCM. The decomposition with the lowest HCM is the most likely candidate

to implement further. Table three shows a sample decomposition and how to interpret the

decomposition.

9

In the following section, I summarize the formal specification method from which

the decompositions are derived (SELMA), and how HCM is calculated for a whole system

and a system decomposition.

2.2 SELMA

SELMA is an operationalized formal specification. It is based on a model of systems

developed by Wand and Weber [Wand and Weber, 1990] who employ an ontological model

developed by Bunge [Bunge, 1977] [Bunge, 1979].

The specification consists of four parts:

1) state variables,

2) state variable values,

3) external events, and

4) sublaws including (4a) stability conditions and (4b) corrective actions.

The following demonstrates a SELMA specification of a car insurance system for processing

a premium based on a client's age and sex and a premium reduction based on a client's

accident record. The specification is written in Prolog, a logic based programming language

(shown in italics).

2.2.1 State variables.

Input, output and event variables required by the system are stated in the specification. The

following entries describe all the state variables required for the simple insurance system.

/* state variables */
State_variable(driver). Input variable, client's sex.
state_variable(age). Input variable, client's age.
state_variable(accident). Input variable, client had an accident
State_variable(reduction). Output variable, reduction of premium
state_variable(premium). Output variable, premium
state_variable(end). Event variable, batch entry complete

10

2.2.2 State variable values.

Each state variable must be assigned a limited number of values. For example, the driver

variable must have the value male or female.

/* state variable values */
value s(driver, [male female J).
values(age, [over, under]). Client over or under age 25
values(accident,[yes,no)]. Client had accident in last 5 years
values(premium,[high,low,blank)].
value s(reduction, [yes, no, blank)].
values(end, ["0 ", "1"]). Flag to initiate end of data entry

2.2.3 External evenr(s).

The external event in the car insurance system is that data entry is complete. This is a "batch"

approach.5 The 'end' flag at ' 1 ' indicates data entry is complete and initiates processing.

The 'end' flag at '0 ' informs the system that data entry is beginning and that output values

should be set to blank.

/* events */
event("Begin data entry",[v(end,"0")]).
event("End of data entry", [v(end, "1")]).

2.2.4 Snhlaws - stability conditions.

Stability conditions describe the state variable values or combinations of state variable values

that are stable. The system is in a stable state when the state variable values require no

corrective actions. For example, the system is unstable if the batch event is complete

(end="l") and the premium amount is blank (premium="blank"). The premium amount

must be corrected to high or low for the system to be stable.

5 A sample and comparison of the car insurance premium system "on-line" is in Appendix A.

11

/* stable states */

static("end or beginning",[v(end, "0")]).
static("end or beginning",[v(end, "1")]).

static("male or female",[v(driver,male)]).
static("male or female ", [vfdriverjemale)]).

static("age ", [v(age, over)]).
static("age ", [v(age, under)]).

static("accident",[v(accident,yes)]).
static("accident",[v(accident,no)]).

static("premium calc",[v(end, "1 "),v(driver,male),v(age,under),v(premium,high)]).
static("premium calc",[v(end, "1 "),v(driver,female),v(age,under),v(premium,low)]).
static("premium calc ", [v(end, "1"), v(age, over), v(premium, low)]).
static("premium calc ", [v(end, "0 "), v(premium, blank)]).

static("good-driver adjustment",[v(end, "1 "),v(accident,yes),v(adjustment,no)]).
static("good-driver adjustment",[v(end, "1 "),v(accident,no),v(adjustment,yes)]).
static("good-driver adjustment", [v(end, "0"), v(adjustment, blank)]).

2.2.5 Suhlaws - corrective actions.

Corrective actions "specify actions to be taken if the system is not in a stable state space, and

are used to find all response paths of the system "[Paulson, 1989, p. 31]. For example, at the

initial stage of data entry (end=0) in the insurance case, adjustment and premium variables

should be adjusted to blank values. Another example at the completed batch entry stage

(end=l) is a premium must be calculated. If the driver is male and under aged, the premium

would be adjusted to the "high" value.

/* corrective actions */
/* beginning of data entry */
dynamic{ "begin ", [v(end, "0 ")], [v(adjustment, blank), v(premium, blank)]).

/* end of data entry */
/* calculate premium */
dynamic("premium ", [v(end, "1"), v(drive r,male), v(age, under)],

[v(premium, high)]).

12

dynamic("premium ", [v(end, "1"), v(driver,female), v(age, under)],
[v(premium, low)]).

dynamicC 'premium' ',[v(end, "1 "),v(age,over)],
[v(premium, low)]).

dynamic("premium ",[v(end, "0")],
[v(premium, blank)]).

/* end of data entry */
/* calculate good driver adjustment */
dynamicC 'good driver adjustment",[v(end, "1 "),v(accident,no)],

]v(adjustment,yes)]).

dynamic("good driver adjustment",[v(end, "1 "),v(accident,yes)],
[v(adjustment, no)]).

dynamic("good driver adjustment",[v(end, "0")],]v(adjustment,blank)]).

From a Prolog specification of state variables, state variable values, external events

and sublaws, a software program designed by Paulson is able to check for consistency6 and

completeness7. Once the specification is complete and consistent, the software program can

decompose the system into sets of subsystems . For example, the program generated a

decomposition for the car insurance system which contains two

5 Consistency Definition [Wing, 1990,p.ll]
In terms of programs, consistency is important because it means there is some implementation
that will satisfy the specification. If you view a specification as a set of facts, consistency
implies that you cannot derive anything contradictory from the specification.... An inconsistent
specification which negates on one occasion what it asserts on another, means you have no
knowledge at all.

7 A SELMA specification is internally incomplete if "an external event result(s) in an unstable
state that cannot be transformed to a stable state [Paulson and Wand, 1992b]." In other words,
there is missing information in the specification of the system.

13

systems. (See Table 4) The car insurance system is a small application and example of

SELMA. For a more in depth description of SELMA and the decomposition process see

[Paulson and Wand, 1992].

Table 4 Car Insurance Premium System: SELMA decomposition output

Adjustment=/(accident, end)

Premium=/(age,driver,end)

2.3 Calculation of Hellerman's Complexity Metric

HCM is calculated from the stable state space generated from the formal

specification. The stable state space is analogous to Hellerman's "truth table8". The stable

state space represents all the variations of inputs and corresponding outputs which are stable

in the system. It is a table of inputs and outputs. Table 5 shows the stable state space

generated for the car insurance system.

See Table One for sample of Hellerman's truth table.

Table 5 Stable State Space for Car Insurance System

14

Inputs
accident age driver end

1. yes over male 0
2. no over male 0
3. yes under male 0
4. no under male 0
5. yes over female 0
6. no over female 0
7. yes under female 0
8. no under female 0
9. yes over male 1
10. no over male 1
11. yes under male 1
12. no under male 1
13. yes over female 1
14. no over female 1
15. yes under female 1
16. no under female 1

premium

blank
blank
blank
blank
blank
blank
blank
blank
low
low
high
high
low
low
low
low

reduction

blank
blank
blank
blank
blank
blank
blank
blank
no
yes
no
yes
no
yes
no
yes

Table 6 shows the manual calculation of HCM from the stable state space. First, the domain

classes are identified. A domain class is a unique output. Second, the frequency of each

domain class is counted. From the resulting numbers, HCM is calculated.

Table 6 Manual calculation of HCM for Car Insurance System

Domain Classes
1. low premium, no adjust
2. low premium, yes adjust
3. high premium, no adjust
4. high premium, yes adjust
5. blank, blank

frequency
3
3
1
1
8

of Domain Classes=5
of Transition States=16

C = 3 * log(16/3) + 3 * log(16/3) + 1 * log(16/l) + 1 * log(16/l) + 8 * log(16/8) = 21

15

The HCM for the whole system is 21. The HCM for the decomposition is calculated

by adding the HCMs of each subsystem (6 and 11). The manual calculation of HCM for

each decomposed subsystem is in Table 7. Summing subsystem HCMs for each

decomposition is based on the following premise: "The complexity of a decomposition of

a system is the sum of complexities of the subsystems in its decomposition" [Paulson and

Wand, 1992, p. 183].

Table 7 Manual calculation of HCM for Car Insurance subsystems

16

Stable State Space
accident

1. yes
2. no
3. yes
4. yes

Domain Classes
1. yes
2. no
3. blank

end

1
1
0
0

freqi

adjustment

yes
no
blank
blank

lency
1
1
2

of Domain Classes=3 # of Input states=4

C=l * log(4/l) + 1 * log(4/l) + 2 * log(4/2) = 6.0

Functional Form of subsystem : Premium=/(age,driver,end)

1. low
2. high
3. blank

age

1. over
2. under
3. over
4. under
5. over
6. under
7. over
8. under

driver

male
male
female
female
male
male
female
female

Domain Classes

end

1
1
1
1
0
0
0
0

==> premium

low
high
low
low
blank
blank
blank
blank

freauencY
3
1
4

of Domain Classes=3 # of Input States=8

C = 3 * log(8/3) + 1 * log(8/l) + 4 * log(8/4)=l 1.2

17

2.4 Qualities of Hellerman's Complexity Metric

As shown in Tables 6 & 7, HCM is a mathematical calculation derived from a stable

state space generated from a SELMA specification. Therefore, it is objective. Another

feature of HCM is that it is calculated early in the system development lifecycle.

Specifically, a SELMA specification and the derived decompositions are created during the

system analysis stage, the first stage of a traditional system development lifecycle.

18

3. HCM and Function Point Analysis

Presently, Albrecht's FPA is the most popular software size estimation model among

practitioners and academics [Kemerer, 1993, p. 87]. With FPA, the complexity of the system

is incorporated into Function Points (FPs) and Function Counts (FCs) by subjective means

and by arbitrary scales. Although a proponent of the Function Point method, Jones, author

of Applied Software Management, admits that complexity in all functional metrics are

inadequately treated:

It has been pointed out many times that the possible Achilles heel of

functional metrics in general and function points in particular is the way

complexity is treated.... In the 1984 revision, the range of adjustments was

extended and the rigor of complexity analysis was improved, but much

subjectivity remains. This assertion is also true of the other flavours of

functional metrics, such as the SPR function... [Jones, 1991, p. 105].

Because of the theoretical weaknesses in the calculation of complexity, I propose in this

thesis that HCM be used by analysts as a complementary tool with functional metrics. In this

chapter, I describe two functional metrics, the original FPA by Albrecht and a variation on

FPA, the Jones SPR function. For both techniques, I summarize the problems in calculating

complexity. As well, I recommend using HCM as a tool to overcome the weaknesses of

functional metrics.

3.1 Function Point Analysis (FPA)

Albrecht was the first to develop a software size estimation model based on system design

components. Albrecht's design variables are external inputs, external outputs, logical

internal files, external interface files, and external inquiries. (See Appendix D for

descriptions of these concepts) The output of Albrecht's model is a number called FP. The

following pages include an example of a function point calculation worksheet and the steps

to calculate FP.

19

Table 8 Function-point Worksheet [Albrecht and Gaffney, 1983, p. 647]

Function Count:

type

ID

IT

QT

FT

EI

QT

FC

Description

External Input

External Output

Logical Internal File

Ext Interface File

External Inquiry

Total Unadjusted
Function Points

sungle

*3 =

*4 =

*7 =

*5 =

*3 =

complexity

averaee

*4 =

*5 =

* 10 =

*7 =

*4 =

complex

*6 =

*7 =

* 15 =

*10 =

*4 =

Total

Processing Complexity:

• DI Values:

Not present, or no influence = 0
Insignificant influence = 1
Moderate inlfuence = 2

Average influence = 3
Significant influence = 4
Strong influence, throughout = 5

PCA Processing Complexity Adjustment = 0.65 + (0.01 * PC)
FP Function Points Measure = FC * PCA

ID

CI

C2

C3

C4

C5

C6

C7

PC

Characteristic

Data Communications

Distributed Functions

Performance

Heavily Used
Configuration

Transaction Rate

Online Data Entry

End User Efficiency

DI

—

ID

C5

C9

CIO

C1I

C12

C13

C14

Characteristic

Online Update

Complex Processing

Reuseability

Installation Ease

Operational Ease

Multiple Sites

Facilitate Change

Total Degree of
Influence

DI

—

The steps to calculate FPs from Table 8 are as follows:

20

Step One: Calculate the FUNCTION COUNT (FC)

Count and classify functions based on complexity. The sum of the unadjusted FPs

is the function count (FC).

Step Two: Calculate the PROCESSING COMPLEXITY ADJUSTMENT

FORMULA (PCM

Estimate the degree of influence (DI) of fourteen processing complexity

characteristics. The total degree of influence (PC, processing complexity) is an input

for a Processing Complexity Adjustment formula {PCA = .65 + (.01 * PC)}.

Step Three.: Calculate FUNCTION POINTS

Calculate a Function Points measure (FP) by multiplying FC by the PCA.

21

As shown in the FPA worksheet above, functions are classified into low, medium,

and high complexity. In order to reduce user subjectivity, factors for determining complexity

and guidelines for interpretation are published {ie. [Albrecht, 1984]}. For example, Table

9 assists the analyst to determine the complexity of external inputs. In the calculation of the

PCA (Step 2), a user follows and interprets rules to determine the degree of influence of

fourteen "complexity characteristics" as not present (0), a strong influence (5) or in between

(1-4). For example, the interpretation rule for CI, data communications is in Table 10.

Table 9 Matrix to classify the complexity of External Inputs [Jones, 1991, p. 62]

File Types
Reference

0-1

2

=>3

Data Elements 1-4

Low

Low

Average

Data Elements 5-15

Low

Average

High

Data
Elements
=>16

Average

High

High

Table 10 Guideline Scoring for the Data Communication Factor [Jones, 1991, p. 65]

0 Batch applications
1 Remote printing or data entry
2 Remote printing and data entry
3 A teleprocessing front end to the application
4 Applications with significant teleprocessing
5 Applications that are dominantly teleprocessing

22

In a 1984 paper [Albrecht, 1984] Albrecht presents the basis of the "IBM function

point methodology [Jones, 1991, p. 60]." After 1984, others published variations on the

original FPA . To promote consistent practices a group called the International Function

Point Users Group (IFPUG) was established in 1986 [Jones, 1991, p. 99]. Within the

IFPUG, a counting practices committee published the first counting practices manual in

April 1990 [Garmus, 1990]. According to Jones, the 1990 manual "generally follow the

IBM 1984 standards, although a number of variations and extensions have occurred" [Jones,

1991, p. 99].

3.1.1 Function Points and LQC

Linear regression is frequently used to translate FPs into a LOC estimate. Albrecht

and Gaffney (A&G) used a simplified version of their model for empirical testing. Their

simplification involved using applied average weights instead of the low, medium and high

complexity weights shown in their worksheet (See Table 8). They also ignored the

processing complexity adjustment, "PCA", factor. A&G generated estimating formulas from

regression analysis data of twenty-four IBM applications. The resulting formulas were tested

on seventeen other IBM applications. For example, the estimation results of one equation,

SLOCestimated = 12773 + 53.2 FC, was tested on seventeen other applications. The results

showed a correlation between estimated and actual SLOC of greater than ninety percent (see

Table 11). Kemerer was the first to test the FP method outside of IBM. Table 11 presents

results from Kemerer's study. He used fifteen applications developed at a national

consulting and services firm specializing in design and development of business data

processing software [Kemerer, 1987, p.419]. Kemerer found a better correlation of LOC to

function counts rather than LOC to FPs. Function counts are calculated before Function

points in Step One shown in Table 8.

Table 11 Function-point model

23

Albrecht & Gaffney: Example - SLOC estimating formula based on twenty-four cases
- combination of PT71 and Cobol applications
[Albrecht and Gaffney, 1983]
SLOCestimate= 12773 + 53.2FC (based on all 24 cases)
Sample correlation between SLOCestimate and SLOCactual: .9367
Relative error Standard deviation: .5174
Relative error average: .2406

Albrecht & Gaffney: Results of above formula tested on seventeen applications
[Albrecht and Gaffney, 1983]
Sample correlation between SLOCestimatc and SLOCactual: .938
Relative error Standard deviation: .480
Relative error average: . 186

Prediction results of estimated SLOC from FP and FC [Kemerer, 1987]
ABC Cobol KSLOC= -5 + .20 Function points (FP) R2=65.6%
ABC Cobol KSLOC=-13.2 + .207 Function count (FC) R2=75.1%
KSLOC = thousands of source lines of code

In 1983, Albrecht & Gaffney concluded:

The observations suggest a two-step estimate validation process, which uses

"function pionts" or "I/O count" (unweighed function points) to estimate,

early in the development lifecycle, the "SLOC" to be produced. The work-

effort would then be estimated from the estimated "SLOC" [Albrecht &

Gaffney, 1983, p.644].

Albrecht & Gaffney, although they calibrated their model to IBM data, did not

explicitly recommend calibrating FPs to a site's historical data: "... the excellent degree of

fit obtained would tend to support the view that these (and the other) formulas not validated

here have some degree of universality"[Albrecht & Gaffney, 1983, p.643].

On the other hand, Albrecht & Gaffney acknowledged that different models should be used

24

Table 12 SLOC estimation based on Function points [Albrecht and Gaffney, 1983,
p.642]

SLOCCobolestimatc= 118.7 (FP)-6,490
SLOCPUIestimatc= 73.1 (FP)-4,600

for different programming languages: "Significantly more Cobol 'SLOC are required to

deliver the same amount of 'function points' than are required with PL/1 'SLOC'"[Albrecht

and Gaffney, 1983, p.642].

Albrecht & Gaffney believed the formulas to have "universal" application, a

proposition later rebuked by researchers. Research has shown that it is necessary to calibrate

the FP and LOC relationship to site historical data. For example, Jeffrey and Low collected

data from 112 projects developed in six large Australian MIS departments [Jeffery and Low,

1990, p.220]. They concluded that SLOC/fp ratios are significantly different between

organizations: "The variance using either size measure investigated here is such that

organizational calibration appears mandatory "[Jeffrey and Low, 1990, p. 221]. Jones has

published a table of LOC per FP for several computer languages (See Appendix E). For

example, the database language default is 40 LOC per FP [Jones, 1991, p. 76]. Jones warns

about the ratios' likely inaccuracy:

Because of the individual programming styles and variations in the dialects

of many languages, the relationship between function points and source code

size often fluctuates widely, sometimes for reasons that are not currently

understood [Jones, 1991, p. 75].

Because generic ratios may exhibit wide fluctuations, collection of site project data is

recommended for calibration of the FP-LOC relationship for the purposes of estimating LOC

from FPs.

3.1.2 Function Point Analysis and Complexity.

In the Function Point literature, the form of the complexity captured by the model is not

specified. Complexity is simply incorporated into the FPA model by classifying each

function in Step One (see Table 8) into low, medium, or high complex categories. There is

no underlying theory explaining why one should divide the functions into three categories

and why each category should have a different weight. Moreover, in Step Two, fourteen

25

"influential complexity factors" are evaluated on a scale of 1 to 5. Again, there is no

underlying theory to explain why one should scale the influence of the particular fourteen

complexity factors. Symons has written about the weaknesses of FPA [Symons, 1988]. He

criticised Step One, calculation of Function Counts, for using the arbitrary weights:

The choice of "weights" {ie. points per component type} has been justified

by Albrecht as reflecting "the relative value of the function to the

user/customer" and "was determined by debate and trial." It seems a

reasonable question to ask if the weights obtained by Albrecht from his users

in IBM will be valid in all circumstances [Symons, 1988, p.3].

In addition, Symons criticized Step Two, the method of calculating the Processing

Complexity Factor, for the selection of factors and the weights for each factor:

The restriction of 14 factors seems unlikely to be satisfactory for all time.

Other factors may be suggested now, and others will surely arise in the

future. A more open-ended approach seems desirable. ... The weights

("degree of influence") of each of the 14 factors are restricted to the 0-5

range, which is simple, but unlikely to be always valid. ... A re-examination

of the TCF weights is therefore also desirable [Symons, 1988, p.4].

In both steps, although there are rules and guidelines, too much space remains for

subjectivity. Jones recommends training analysts in function points to control the

subjectivity factor:

Counting function points by using the current IBM (1984 Albrecht FPA)

method ...requires trained function point specialists to ensure consistency of

the counts. Both IBM and consulting companies ... are now providing both

function point training and assistance in getting started with function points.

[Jones, 1991, p. 69].

Jones speculates that it is possible to automate the counts of the functional

components but the complexity adjustments "may still require some form of human

intervention" [Jones, 1991, p. 104].

3.2 Software Production Research Functional Metric

26

In 1985, in order to simplify the treatment of complexity and make it easier to

calculate FPs , Software Productivity Research (SPR) introduced a variation on FPA. The

SPR variation as shown in Table 13 does not classify each component into complexity levels.

There is instead only one set of weights and the calculation of the Complexity Adjustment

uses two scales, one for problem complexity and another for data complexity. If one is

retrofitting FPs to existing software, one adds a third complexity scale to code complexity

(See Appendix C). Problem or algorithmic complexity is defined as:

This form of complexity is one of the classic topics of software engineering.

The basic concept is the length and structure of algorithms intended to solve

various computable problems. Some algorithms are quite simple, such as one

that finds the circumference of a circle, C= pi * diameter. Other problems,

such as those involving random or nonlinear phenomena, may require

extremely long algorithms. Problems with high complexity tend to be

perceived as difficult by the humans engaged in trying to solve them.

Examples of problems with high algorithmic complexity include radar

tracking and target acquisitions [Jones, 1991, p. 238].

Data complexity is defined as:

This form of complexity, similar in concept to informational complexity,

deals with the number of attributes that a single entity might have. For

example, some of the attributes that might be used to describe a human being

include sex, weight, height, date of birth, occupation, and marital status

[Jones, 1991, p. 238].

27

Table 13 SPR Function Point Method [Jones, 1991]

SPR Function Point Method
Significant parameter Fmpiricil Weight
Number of inputs? * 4 =
Number of outputs? * 5 =
Number of inquiries? * 4 =
Number of data files? * 10 =
Number of interfaces? * 7 =
Unadjusted Total _____
Complexity Adjustment
Adjusted function point total

Calculation of SPR Complexity Adjustment Factor

Problem complexity?
1. Simple algorithms and simple calculations
2. Majority of simple algorithms and calculations.
3. Algorithms and calculations of average complexity.
4. Some difficult or complex calculations.
5. Many difficult algorithms and complex calculations.

Data complexity?
1. Simple data with few variables and low complexity
2. Numerous variables, but simple data relationship.
3. Multiple files, fields, and data interactions.
4. Complex file structures and data interactions.
5. Very complex file structures and data interactions.

Sum of Problem complexity and Data complexity

The SPR Complexity Adjustment Factors

Complexity sum Adjustment multiplier
1
2
3
4
5
6
7
8
9
10
11

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

28

Although a proponent of the Function Point method, Jones admits that functional

metrics treat complexity inadequately.

3.3 HCM as a Complementary Tool

Function Point Analysis is a popular method for estimating the size of a system but

the major flaw, it's "Achilles heel", is the arbitrary and subjective manner complexity is

handled by the model. In contrast, HCM is an automated, mathematical calculation based

on Hellerman's theory of computational work. Not only does HCM facilitate the

decomposition of the system into elementary subsystems, it quantifies the input recognition

complexity of the decomposed elementary subsystems.

In practical terms, the system developer or manager would be able to take into

consideration both functional metric results as well as the HCM of the selected

decomposition. For example, imagine that a fictitious firm, XYZ, maintains data on

function counts, function points, predictive LOC, actual LOC, and development effort (time)

for it's information systems written in one language. From this data, XYZ currently

calibrates the FP:LOC and LOC:Effort linear relationships. XYZ decides to maintain data

on the HCM of the developed decompositions. With sufficient historic data on each

system's HCM, completed LOC, and work hours, XYZ could calibrate the HCM:LOC and

HCM:Effort relationships. With this complementary data, an organization may predict more

accurately the development effort and/or system size.

29

4. HCM as an Independent Metric

During the past decade, researchers have addressed software size estimation {for

listing see [Cote et al, 1988, p. 122]}. Although many authors propose one or another model,

few authors provide an underlying theoretical foundation for their choice. By contrast,

Wrigley and Dexter [Wrigley and Dexter, 1991] relate their size estimation models'

applications to a "theoretical research model for measuring information size" (Research

Model). This next chapter describes the Research Model and then compares HCM to

Wrigley and Dexter's Research Model.

4.1 Research Model for Measuring Information System Size

In Wrigley and Dexter's Research Model (illustrated in Figure 2), Wrigley and

Dexter first show a conceptual relationship between a real system and it's software size, and

then show an empirical relationship between a real system and it's eventual Source Lines

of Code (the LOC excluding comments). Wrigley and Dexter write the following about the

Research Model:

30

r " A . , I
^ , Analysis

~ 1 , Process
^ "Design"'

- l Process.'

Real
System*

M V J Coding '
1 Process'

System
Requirements
Size

Conceptual

Empirical

Design Software
Size

Entities
Relationships
Input Events
Output Events

Files
Relds
Projections
Joins
Reports
Screens
I/O Da ta

work
I hours +-
L J

, work 1 — i
I hours I
L j

Source
Lines of Code

MV
MV

» work -p
I hours I
u J

MV

MV=Moderating Variables=Personnel skil+Methods+Tools

Figure 2 Research Model for Measuring Information System Size [Wrigley and Dexter,
1991, p. 247]

31

Each stage of development is achieved through the various processes:

analysis, design, and coding. System specifications at each stage are

transformed into the next stage through these processes, which are moderated

by two factors: kinds of methods and tools used and the skill level of system

builders [Wrigley and Dexter, 1991, p.248].

Wrigley and Dexter" s empirical study of their Research model focuses on the

relationship of the Design Size variables (ie. Files, fields, projections, joins, reports, screen

& I/O data) to a system's completed LOC. The study uses data "reverse engineered" from

twenty-six small business systems coded in a fourth generation language (4GL) [Wrigley and

Dexter, 1991, p. 55]. The code analyzer "reverse engineers" the code back to the design

metrics: "(the code analyzer) takes as input the source code of completed working systems

and generates a number of software metrics." [Wrigley and Dexter, 1991, p. 251] Wrigley

and Dexter's best result used regression analysis to show that the number of preliminary

design variables (screens, reports, and files) explained 94 percent of the variance in code size

[Wrigley and Dexter, 1991, p. 254].

4.2 HCM and the Research Model

The inputs into HCM correspond well to Wrigley and Dexter's Research Model (See

Figure 2). The Research Model represents system requirement size with empirical elements

consisting of Entities & Relationships, Input events, and Output events. SELMA represents

both Input and Output events and the relations between them with state variables, external

events, and sublaws. HCM calculated from a SELMA specification is a metric which

quantifies the system dynamics.

32

Wrigley and Dexter believe that one limitation of their study is "that only the design

to code transformation has been fully operationalized" [Wrigley and Dexter, 1991, p. 255].

Wrigley and Dexter write: "Future studies should focus on properties of information systems

that are measurable during analysis and can be empirically correlated to the amount of effort

and code required for development" [Wrigley and Dexter, 1991, p. 253].

In contrast, HCM can be calculated from a system analysis specification instead of

a system design specification. Because it is calculated prior to system design, an estimation

of information system size and required effort may be possible early in the system

development life cycle (SDLC). (See Figure 3)

He l l e rman ' s
C o m p l e x i t y
Me t r i c c a n b e
c a l c u l a t e d

Request for
new system System

Analysis^

System
Requirements

System
Maintenance.

Syst(
Supi

A

Soft
•em

3ms
DOIT

*/are

Post-
Implementation
Review

<i

Systems
Impleme

r

>ntation

Systems
Design

_J
Design
Specifications

Func t i on
Point
m e t r i c c a n b e
c a l c u l a t e d

Figure 3 The Traditional Systems Development Life Cycle [Whitten et al, 1989, p. 82]

34

Although, HCM is theoretically a useful metric to measure the system's size, there

are several weaknesses to be considered. First, there is no empirical evidence that the system

requirements size is related to the design size or more radically, whether the system

requirement's size is related to the software size. HCM inputs (state variables, external

events, and sublaws) and the Research Models' variables (Entities, relationships, input

events, output events) present two rough sketches of the proposed system. The HCM rough

sketch is a representation of the "essential" system. For example, in the car insurance

specification in Chapter 2, the drivers' sex was included but not the driver's last name, first

name, address, and so on. The relationship between the essential system and the detailed

system may be too unstable and the gap may be too large to allow use of a metric calculated

from the system requirements size to predict work effort or project size. On the other hand,

empirical study may show that a relationship exists between HCM, effort and software size.

As shown in Figure 3, both Function Points or Wrigley and Dexter's regression

equation(s) are calculated after the System Design stage is completed. However, HCM is

calculated after the System Analysis stage. Function Points and Wrigley and Dexter's

regression equations(s) would likely be much more accurate than HCM in calculating the

LOC because the information about the system is more complete at their stage of calculation.

I suggest the analyst calculate a size estimate both before and after system design. There

are advantages to estimating project size early. One advantage is it makes possible an early

cost-benefit analysis about whether the project is worth pursuing to completion. If the

project is not economically viable, it can be halted. It is easier psychologically to halt a

project after system analysis than after system design. After system design, the time and

money sunk in the project could be considerable and decision makers may be over

committed to the project. Another advantage is that if the project is found to be feasible, the

project budget planning and personnel scheduling can be determined earlier in the SDLC.

35

5. HCM Research

Although a reasonable theoretical argument supports using HCM as an estimator of

complexity and/or size, no empirical evidence exists that HCM identifies the completed

system's complexity and/or size. In this chapter, I report results from an investigation of

three small information systems, each with a different HCM decomposition, to examine if

HCM forecasts the corresponding size and complexity of the completed code.

5.1 Hypotheses

In this preliminary investigation, I study the relation between HCM computed at the

systems analysis stage and the corresponding LOC of the completed code. The following

null hypotheses was tested:

Ho: No significant relationship exists between HCM and actual LOC.

Also in the preliminary investigation, I look at the relationship between HCM and the

McCabe complexity of the completed code. The following null hypotheses was tested:

Ho: No significant relationship exists between HCM and McCabe Complexity

metric v(G).

5.2 Research Subjects

University students in a fourth year system design class and majoring in

Management Information Systems, were supplied three cases and asked to program an

information system for each case. I used the students' output as data for testing the two

hypotheses stated in Section 5.1.

According to Wrigley and Dexter's Research Model for Measuring Information

System Size, the size of a system is influenced by "moderating factors" [Wrigley and Dexter,

1991, p. 248]. Their three moderating variables are personnel skill, methods, and tools. It

is easy to equalize methods and tools in the study but it is impossible for a large group of

people to program at the same skill level. Wrigley identifies the following personnel skill

factors: programming experience, experience with the programming language, experience

with the hardware to be used, application experience, and the existence of similar systems

36

[Wrigley, 1988]. Benbasat and Vessey describe programmer characteristics as a combination

of innate ability, programming experience, and source language experience [Benbasat and

Vessey, 1980, p.32]. In this research study, I attempt to mitigate the personnel skill factors

by having several students program the same systems. Therefore, I studied average variable

data from all the students rather than data from one individual's system. There were

twenty-two students in the System Design class. The students were assigned to design and

program three systems: a car insurance system, a payroll system and a hotel registration

systems (Appendix J)9.

.5.3 Research Design

Each student was provided with a basic system analysis documentation for each

system including the following:

1. a short description,

2. a context diagram and level 0 data flow diagram, and

3. a data dictionary. (Documentation of data stores, data structures, processes,

and data elements. Decompositions from SELMA were included in the

process descriptions.)

In addition, I provided students with databases, test data, and library program files for

downloading. The library files (See Appendix J for descriptions.) helped to structure the

assignment and to better replicate the approach used in a typical software development office

or department. A software development office would likely require a programmer to use

a consistent style and promote the use of reusable files. The students wrote the programs in

dBASE IV for DOS, a relational database. I wrote the SELMA specification and calculated

the HCM before tlie students began to program. The SELMA specification, decomposition

91 adapted the car insurance system, the payroll system and the hotel system from cases in
system analysis texts. The car insurance system databases and data flow diagram are largely
based on the "Open Road Insurance System" in System Analysis and Design Methods [Whitten
et al., 1989]. The process decision rules are based on an example in Auditing EDP Systems
[Watne et al., 1990]. The payroll process decision rules are based on an example in Paulson's
doctoral dissertation [Paulson, 1989]. The payroll databases are revised from the book,
Accounting Information Systems [Nash and Heagy, 1993]. The hotel system is a simplified
version of a "Luxury Inns" system in System Analysis and Design Methods [Whitten et al.,
1989].

37

and corresponding HCM are reproduced in Appendix G, H and I. The students were not told

the HCM of the systems.

The students designed and programmed the assigned systems. From the completed

code, I calculated three classes of variables for each system as follows: line of code

measures, McCabe complexity metrics, and function count. Specifically, eight variables

were calculated for each system:

I.T.OC

1. Total LOC,

2. Generated LOC - Lines of code generated by a report and/or screen generator.

3. Programmed LOC - Lines of code not generated but programmed.

IT. McCabe Complexity Metric

4. System Complexity - Modified McCabe Complexity metric of the entire

Programmed LOC,

5. Process Complexity - Modified McCabe Complexity metric of the "essential

process(es)" code. The "essential process(es)" are the process(es) documented

in the SELMA specification on which the HCM is calculated for each

system.

TTT. Function Count

5. Function Count

6. Number of Screens, and the

7. Number of Reports

SNAP [Kennamer, 1991] is a software shareware program to assist in the

documentation and development of X-Based Systems. I used SNAP to compile the above

data for each system. Data for each system about the total lines of code, the number of

reports/label forms, and the number of format files was taken from two SNAP output files,

the tree diagram and the system summary report (See Table 14.) As well, SNAP regenerated

all files in the system without blank lines and comments. These newly regenerated files were

used for LOC counting. Finally, SNAP generated action diagrams. (See Table 16.) The

action diagrams allowed me to objectively calculate a modified McCabe complexity metric.

38

Table 14 SNAP system summary and tree diagram for Subject Four

System: Car Program
Author: Subject Four - Lalonde
System Summary

This system has:
710 lines of code

7 program files
3 procedure files
10 procedures and functions
2 databases
2 multiple index files
0 index files
2 report forms
2 format files
0 label forms
0 binary files
0 memory variable files
0 menu files
0 screen files
0 other files
0 cross-referenced tokens

See the tree diagram for programs, procedures, functions and format files

Index Report Label Memory
Databases Files Forms Forms Files

INSUREE.DBF COVERAGE.FRG
POLICY.DBF ACCIDENT.FRG

System: Car Program
Author: Subject Four - Lalonde
Tree Diagram

CONTROL.PRG
I CENTRAL.PRG

COLOUR (procedure in CENTRAL.PRG)
I DEFPOP.PRG

MODULE 1 .PRG
INSUREE.DBF (database)
POLICY.DBF (database)

INSUREE.FMT
I POLICY.FMT

MODULE2.PRG
INSUREE.DBF (database)
POLICY.DBF (database)

1 MODULE5.PRG

39

5.3.1 T.PC calculation.

Table 15 Line-Counting Methods [Jones, 1986, p. 15]

Method 1. Count only executable lines
Method 2. Count executable lines plus data definitions.
Method 3. Count executable lines, data definitions, and comments.
Method 4. Count executable lines, data definitions, comments, and Job Control

Language.
Method 5. Count lines as physical lines on an input screen.
Method 6. Count lines as terminated by logical delimiters.

Generated LOC and programmed LOC (non generated code) are measured separately

since the required effort in design, programming, debugging and maintenance of

programmed LOC is considerably more than generated code. Generated code is

automatically generated from "WYSIWYG (What you see is what you get)" screen and

report forms. LOC calculation can vary considerably. Jones lists several line counting

methods. See Table 15. According to Jones, Method Two was used in productivity studies

by IBM and is common among IBM customers [Jones, 1986, p. 16]. The detailed rules for

counting LOC by Method 2 are the following:

1. Lines are terminated by delimiters.
2. Verbs or operational statements are included.
3. Data definitions are included.
4. The code delivered to the user is the basis for the count.
5. Job control language is excluded.
6. Comments are excluded.
7. Temporary code developed to aid testing is
excluded. [Jones, 1986, p. 90]

SNAP reports the total LOC (excluding blank lines & comments) in the system summary.

As well, SNAP generated new files which excluded blank lines and comments. From these

new files, I was able to document the LOC in each generated and programmed file.

40

5.3.2 McCabe Complexity Metric Calculation.

SNAP was also integral to calculating a modified McCabe Complexity metric for the

programmed files and the "essential process(es)" code. Cyclomatic complexity "is found by

determining the number of decision statements in a program and is calculated as:

v(G)=number of decision statements + 1 " [McCabe and Butler, 1989, p. 1416]. A simple

explanation of cyclomatic complexity is quoted from a paper by McCabe and Butler in Table

16. In this study, I calculated cyclomatic complexity by adding the decision statements

identified by SNAP action diagrams which depict the paths in the program. One exception

is that I did not count a DO CASE as a decision statement but I counted each following case

routine. In general, I followed the policy of counting a statement if it was equivalent to one

or more IF statements. This corresponds to McCabe's example where a compound statement

(ex. IFA=B and C+D then) was counted as two decision statements [McCabe and Butler,

1989, p. 1416]. I also counted indirect decisions statements statements which incorporate

the "for ..." phrase in the dBASE language. For example the following dBASE line:

Replace m->madjustment with m->adjustment+200 for maccident=.t.

is the same as the following three lines:

IF maccident=.t.

m->madjustment=m-> adjustment + 200

ENDIF

An example of the procedure I followed to sum the decision statements is in Table 17.

Table 16 Cyclomatic Complexity [McCabe and Butler, 1989, p. 1416]

The cyclomatic complexity approach is to measure of the number of paths
through a program. Cyclomatic complexity, v(G), is derived from a flowgraph
and is mathematically computed using graph theory. More simply stated, it is
found by determining the number of decision statements in a program and is
calculated as:
v(G)=number of decision statements + 1
By counting the decision statements, called predicates, the complexity
of a program can be calculated. However many decision statements
contain compound conditions. An example is a compound IF
statement:
IF A=B and C=D then
If the predicates are counted in this example, v(G) is equal to 2 (1 IF
statement +1). If compound conditions are counted, the statement
could be interpreted as:
IF A=B and IF C=D then
Therefore, v(G) would be 3. Cyclomatic complexity recognizes that
compound predicates increase program complexity and integrates
individual conditions in order to calculate v(G).

Table 17 Decision Statement Counting Procedure

42

decision

1

2

3

45

6

7
and

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

so on

Module2.prg code - Subject Four - excludes blank lines & comments
mod2exit="N"
IF=DO WHILE mod2exit="N"

ACTIVATE POPUP mod2
F=DO CASE
=CASE BAR() = 1

SELECT A
USE insuree ORDER insuree
SELECT B
USE policy ORDER insuree
SET RELATION TO insuree INTO insuree->insuree
SET FIELDS TO insuree, insuree->sex, insuree->birth, accident, adjustment, premium
m->minsuree=0
m->maccident=.T.
m->madjustment=0
m->mpremium=0
m->msex=SPACE(LEN(sex))
m->mbirth={ / / }
DEFINE WINDOW quest FROM 10,10 TO 18,70
ACTIVATE WINDOW quest
@1,5 SAY "Please enter the Insuree # : " GET m->minsuree PICTURE "9999"
READ
SEEK m->minsuree
m->maccident=accident

E
IF maccident=.T.
m->madjustment=m->madjustment + 200

ENDIF
m->msex=sex
m->mbirth=birth

r-IF (m->msex="F") .OR. (m->mbirth < {01/01/70})
m->mpremium=500

-ELSE
m->mpremium= 1000

-ENDIF
REPLACE adjustment WITH m->madjustment
REPLACE premium WITH m->mpremium
DEACTIVATE WINDOW quest
CLOSE ALL

=CASE BAR() = 2

Procedure to add decision statements: Counted all decision statements identified by the action diagram. Did not
count a DO CASE as a decision but each following case routine. In general, I followed the policy of counting a
statement if it was equivalent to one or more IF statements. This corresponds to McCabe's example [McCabe and
Butler, 1989, p. 1416] where a compound statement was counted as two decision statements (ie. IF A=B and C=D
then), an IF statement + 1 . 1 extended summing decision statements dBASEJioiL™ phrases where dBASE
language incorporates indirectly the IF statement.

43

5.3.3 Function Count Calculation.

The Function Count for each system was calculated employing the SPR Function

Point Method (Table 13). The FC calculation is the same as employing Albrecht and

Gaffney's Function-point Worksheet (Table 8) with average weights. There are five inputs

into the FC equation including the following:

1. the number of inputs (screens or forms),

2. the number of outputs (reports),

3. the number of inquiries,

4. the number of data files (tables within a relational database), and

5. the number of interfaces.

Definitions of these five components are in Appendix D. Only three components were

applicable to the student systems:

1. the number of inputs (format files),

2. the number of outputs (report forms), and

3. the number of data files (*.dbf files).

SNAP reported these three numbers for each student system in the Summary report. The

Function Count for each system was calculated from the following equation:

FC = (# of screens * 4) + (# of reports * 5) + (# of database files * 10)

5.4 Results

Thirteen students completed the programming for two systems, the car insurance

system with a HCM of 17.25 and the payroll system with a HCM of 23.09. Only three

students completed programming the hotel system with a HCM of 43.9.10

Five variables are reported in Table 18 for each of the thirteen students and for both

the car insurance (low HCM) and payroll (high HCM) systems. The significance of the

10 According to the students' written feedback, they were unable to complete all three cases
because of time constraints.

44

HCM measure as a prior indicator of system size or complexity is tested by applying a t-test

to the difference of means of the pairs of dependent variables matched for each student.

Table 18 reports the mean and standard deviation of each dependent variable. The t-test is

applied to different significance levels on a one-tailed test11 in Table 19 and 20.

The mean difference of the two systems is significant for the Total LOC variable and

Generated LOC variable only at a 25% significance level but for the Programmed LOC

variable is significant at a 5% level. It is not surprising that the mean difference of the

programmed LOC is more significant since it includes the "essential" processes code that

SELMA documents and HCM captures. On the other hand, the size of Generated Code is

highly influenced by the number of reports or screens the designer/programmer decides to

include in the system. The Total LOC in both the payroll and car insurance systems

comprises more of generated code (approximately 60%) than programmed code.

By contrast, at a 5% level of significance, the sample result is statistically significant

for the difference of means for the system complexity and at a 1% level of significance, the

result is statistically significant for the difference of means for the process complexity

variable. This is a strong result from a single test of two systems with relatively similar

HCM values. It was anticipated that the students would program three systems with a

broader range of HCM values but only three students were able to complete the

programming of the more complex system.

1' A one-tailed test was applied since the alternative hypothesis for all variables is that the
payroll mean is greater than the car insurance mean.

Ho: uA - nB < 0
Ha: nA - uB>0

45

Based on the mean difference testing between the car insurance system (HCM-17.25)

and the payroll system (HCM - 23.09), I conclude that HCM is a modestly significant

determinant of the lines of code variables and a highly significant determinant of system

complexity and "essential process(es)" complexity.

In order to make use of the information from the three students who programmed the

hotel system, I developed forecasting equations from the car and payroll systems. The

equation is found by running a line through the point of means of the two systems for each

of the dependent variables. The equations are shown in Table 21 with the forecast and actual

values for the hotel system. The forecasted values are surprisingly accurate. It would be

dangerous to draw any conclusion from an analysis based on the results of three student

programs. Though the accuracy of the forecast equation based on the first two student

systems is extraordinary, it should only be used as an indication that the HCM method has

promise.

HCM is calculated from a system analysis specification before the design and coding

of the system. On the other hand, FC is calculated from a detailed system design

specification when a lot more is known about the system. Because the system design was the

responsibility of each student, the calculated FC was different for each system. The results

of the regression analysis with FC as an independent are shown in Table 22. FC explains

88% of the variation in Total LOC.. The R-squared is 83% for the Generated LOC, 44%

for the programmed LOC, 10% for the system complexity, and 3% for the "essential

process(es)" complexity. When the linear equations were employed to forecast LOC and

complexity for the hotel system, the accuracy is better for the LOC variables than the system

complexity variable (See Table 21). In short, the FC variable is a reasonable measure of the

46

LOC but a poor measure of system complexity. In contrast, HCM appears to be an excellent

forecast measure both of system complexity and lines of code.

Table 18 Student System Data: LOC and Complexity Variables

Subject
ID*

1
2
3
4
5
6
7
8
9

10
11
12
13

MEAN
S.D.

H T 6 T A L L 6 C
Car
Total
LOC

750
541
710
747
622
720
807
708
548
674
811
759
711

700.6
82.2

Payroll
Total
LOC

790
575
568
751
965
546

1302
910
608
865
704
551
795

763.8
207.2

Difference
Total
LOC

40
34

-142
4

343
-174
495
202
60

191
-107
-208

84
63.2

197.4

#2 PR6GRAMMED L6C
Car
Programmed
LOC

269
240
242
223
332
244
369
225
223
228
304
214
315

263.7
48.0

Payroll
Programmed
LOC

317
244
253
282
332
240
478
276
236
243
250
225
330

285.1
65.8

Difference
Programmed
LOC

48
4

11
59
0

-4
109
51
13
15

-54
11
151

21.41
37.31

Subject
ID#

1
2
3
4
5
6
7
8

; 9
10
11
12
13

MEAN
S.D.

#3 GENERATED LOC
Car
Generated
LOC

465
295
460
467
283
468
433
473
319
435
499
537
390

424.9
76.7

Payroll
Generated
LOC

461
326
308
426
624
299
796
625
377
613
447
320
458

467.7
147.9

Difference
Generated
LOC

-4
31

-152
-41
341

-169
363
152
58

178
-52

-217
68

42.8
173.5

Subject
ID#

1
2
3
4
5
6
7
8
9

10
11
12
13

MEAN
S.D.

#4 SYSTEM Ci MPLEXI1
Car
System
Complexity

25
28
16
27
32
29
37
28
28
28
28
28
31

28.1
4.5

Payroll
System
Complexity

37
28
30
33
29
30
31
37
32
32
39
18
41

32.1
5.6

•Y

Difference
System
Complexity

12
0

14
6

-3
1

-6
9
4
4

11
-10
10

4.0
7.1

#5 PROCESS COMPLEXITY
Car
Process
Complexity

5
5
4
4
4
4
5
3
5
3
5
4
4

4.2
0.7

Payroll
Process
Complexity

7
5
8

10
4
6
7
9
9
5
9
4

10
7.2
2.1

Difference
Process
Complexity

2
0
4
6
0
2
2
6
4
2
4
0
6

2.9
2.2

48

Table 19 Difference of Means between the Payroll and Car Systems for LOC variables

Total LOC-Payroll is at most the same mean as Total LOC-Car
Ho: ua - ub <=0 Ha: ua - ub >0 Accept Ho if t <= critical value
Average Difference 63.23
Standard Deviation 197.40

Significance
Level

0.01
0.05
0.10
0.25

Confidence
Level

0.99
0.95
0.90
0.75

Critical Value
One-tailed Test
12 Degrees of Freedom

2.681
1.782
1.356
0.695

Test
Statistic

1.2
1.2
1.2
1.2

Matched Pair Sample
13-1 for DF

Reject Ho at 25% level of significance.

Formula

Programmed LOC-Payroll is at most the same mean as Programmed LOC-Car
Ho: ua - ub <=0 Ha: ua - ub >0 Accept Ho if t <-critical value
Average Difference 21.38
Standard Deviation 37.35

Significance
Level

0.01
0.05
0.10
0.25

Confidence
Level

0.99
0.95
0.90
0.75

Critical Value
One-tailed Test
12 Degrees of Freedom

2.681
1.782
1.356
0.695

Test
Statistic

2.1
2.1
2.1
2.1

Matched Pair Sample
13-1 for DF

Reject Ho at 5% level of significance.

Formula

Generated LOC-Payroll is at most the same mean as Generated LOC-Car
Ho: ua - ub <=0 Ha: ua - ub >0 Accept Ho if t <= critical value
Average Difference 467.69
Standard Deviation 147.92

Significance
Level

0.01
0.05
0.10
0.25

Confidence
Level

0.99
0.95
0.90
0.75

Critical Value
One-tailed Test
12 Degrees of Freedom

2.681
1.782
1.356
0.695

Test
Statistic

0.9
0.9
0.9
0.9

Matched Pair Sample
13-1 for DF

Reject Ho at a 25% level of significance.

Formula

Test statistic = t = D_

S5/v"n

49

Table 20 Difference of Means between the Payroll and Car systems for Complexity
Variables

Process Complexity-Payroll is at most the same mean as Process Complexity LOC-Car
Ho: ua - ub <=0
Average Difference
Standard Deviation

Ha: ua - ub >0 Accept Ho if t <= critical value
2.92
2.16

Critical Value
Significance Confidence One-tailed Test Test
Level Level 12 Degrees of Freedom Statistic

0.01
0.05
0.10
0.25

0.99 2.681 4.9
0.95 1.782 4.9
0.90 1.356 4.9
0.75 0.695 4.9

Matched Pair Sample
13-1 forDF

Reject Ho at a 1% level of significance.

System Complexity - Payroll is at most the same mean as System Complexity -Car
Ho: ua - ub <=0
Average Difference
Standard Deviation

Ha: ua - ub >0 Accept Ho if t <= critical value
4.00
7.06

Critical Value
Significance Confidence One-tailed Test Test
Level Level 12 Degrees of Freedom Statistic

0.01
0.05
0.10
0.25

0.99 2.681 2.0
0.95 1.782 2.0
0.90 1.356 2.0
0.75 0.695 2.0

Matched Pair Sample
13-1 forDF

Reject Ho at a 5% level of significance.
(notebk2.wb1(A):Differ)

Test st atistic = t = D

S 5 / / n

Table 21 Forecast Results for the Hotel System

Forecast Equations - HCM Independent Variable
Dependent Variable = A + B * HCM

Constants (1)

B

Forecast with
HCM=43.9

Actual
Student 1
Student 2
Student 3
MEAN
Error

Dependent Variables
Total Generated
LOC LOC

SI 3.8'
10.8

987.92

1128.0
1172.0
696.0
998.7

10.7

298.6
7.3

619.07

265.0
408.0
342.0
338.3

-280.7

Programmed
LOC

200.5
3.7

362.93

863.0
764.0
354.0
660.3
297.4

System
Complexity

16.3
0.7

47.03

35.0
54.0
48.0
45.7
-1.4

Process
Complexity

44
0.5

17.55

14
17

15.5
-2.0

Forecast Equations - FC Independent Variable
Dependent Variable = A + B * FC

Constants (2)
A
B
FC Forecast
Student 1 - 47
Student 2 - 46
Student 3 - 33
Actual
Student 1
Student 2
Student 3
Error
Student 1
Student 2
Student 3
Calculation of 1
Student
Student 1
Student 2
Student 3

Dependent Variables
Total
LOC

-701.28
37.53

1062.6
1025.1
537.2

1128.0
1172.0
696.0

65.37
146.9

158.79
:unction Count

Screens
4.0
5.0
3.0

Generated
LOC

-589.54
27.12

685.1
658.0
305.4

265.0
408.0
342.0

-420.1
-249.98

36.58

Reports
3.0
2.0
1.0

Programmed
LOC

-95.11
9.7

359.8
350.1
224.0

863.0
764.0
354.0

503.21
413.91
130.01

dBASE tables
4.0
4.0
4.0

System
Complexity

13.82
0.43

34.0
33.6
28.0

35.0
54.0
48.0

0.97
20.4

19.99

Process
Complexity

2.48
0.08

6.2
6.2
5.1

FC
47.0
46.0
33.0

(test3.wb1 forecast)

Footnote (1):
Constants A & B are derived from running a line through the two point of means
of the Dependent variable. For example, for Total LOC there are two lines:
of LOC = a + b * HCM.
Car Insurance System: 700.6 = a + b * 17.2
Payroll System: 763.8 = a + b * 23.1
Solve for A and B: A= 513.8 and B=10.7.

Footnote (2):
Constants A & B are derived from regression analysis See Table 22.

51

Table 22 Regression Analysis with Independent Variable, Function Count (FC)

Dependent Variable = a + b * FC Analysis based on data from Appendix C.

Total LOC = a + b * FC
Regression Output:
Constant
Std Err of Y Est
R Squared
No. of Observations
Degrees of Freedom

X Coefficient(s)
Std Err of Coef.

Programmed LOC = a + b * FC
Regression Output:
Constant
Std Err of Y Est
R Squared
No. of Observations
Degrees of Freedom

X Coefficient(s)
Std Err of Coef.

Generated LOC = a + b * FC
Regression Output:
Constant
Std Err of Y Est
R Squared
No. of Observations
Degrees of Freedom

X Coefficient(s)
Std Err of Coef.

-701.28
56.76
0.88

26.00
24.00

37.53
2.76

-96.11
45.45

0.44
26.00
24.00

9.70
2.21

-589.54
50.97

0.83
26.00
24.00

27.12
2.48

Process(es) Complexity =
Regression Output:
Constant
Std Err of Y Est
R Squared
No. of Observations
Degrees of Freedom

X Coefficient(s)
Std Err of Coef.

a + b * FC

2.48
2.20
0.03

26.00
24.00

0.08
0.11

(tntdat2.sb1{c):anareg)

52

6. Conclusion

HCM quantifies the input recognition complexity of a system from a formal system

analysis specification. Paulson and Wand employed Hellerman's Computational Work

metric to rank the input complexities of different system decompositions in an information

system context. My research reported in this thesis suggests that HCM might have broader

applications. First, HCM could be a complementary metric to Function Points, a software

size estimation model. Second, HCM could be an independent metric for an early raw

size/effort estimation. In this thesis, I show that there is a theoretical foundation for these

wider applications. As well, the empirical investigation of the relationship between HCM

and completed code size and complexity, supports the theoretical argument.

Function Points has been criticized for it's treatment of complexity. Kemerer, a

researcher who tested the FP method, found a better correlation of LOC to function counts

which excludes the processing adjustment formula (PCA) rather than LOC to function points

[Kemerer, 1987, p. 419]. In order to improve FP's weak treatment of complexity, Jones SPR

variation on FPA, excludes the PCA and employs only input average weights. Alternatively,

HCM objectively quantifies input recognition complexity and therefore, HCM could

compensate for FPA's ineffectual treatment of complexity. The regression analysis on the

student system's completed code indicates a high correlation of FC (R2=88%) to total system

LOC, and a low correlation of FC to system complexity (R2=10%).

53

FPA is an often used model for size/effort estimation. On the other hand, Function

points or function counts can only be estimated after a detailed system design specification.

In the system development lifecycle, a system design specification typically may not be

completed until after half way through the total effort (man hours) toward a working system.

Although budgets and planning can be modified after a FP:LOC or FP:Effort estimation, the

original budget, scheduling and cost-benefit decisions are made typically at the beginning

of the system life cycle. This thesis suggests that HCM could be used effectively as an early

and independent estimate of a raw size/effort. HCM can be calculated after a specification

of the essential processes of the proposed system are documented. Wrigley and Dexter

developed a model which theoretically indicates that properties (Entities & relationships,

Input events, and Output events) at the system analysis stage have a link to the final

completed code size and amount of effort variables. The results from an investigation of

student systems indicates modest empirical support for Wrigley and Dexter's theory. The

difference of means of the programmed LOC (a=5%), the difference of means of the system

complexity (a=5%), and difference of means of the process complexity (a=l%) between the

payroll system (high HCM) and the car system (low HCM) are significant. When the results

of the car and payroll system were used to forecast the three hotel systems, the prediction

numbers of both LOC and complexity levels were surprisingly accurate.

This thesis suggests the use of HCM as a new software effort and size estimation tool.

HCM has several outstanding qualities. HCM is an objective, mathematical calculation that

can be computer generated from a Prolog SELMA specification early in the SDLC. The

preliminary investigation with student data suggests that there is a relationship of HCM to

54

final LOC and complexity. Future studies should focus on gathering empirical data on "real"

systems. Because the benefits of a reliable model for software effort and size prediction for

budget and scheduling resources are numerous, HCM could be a valuable tool.

55

References

Albrecht, A. J. (1984, May) . AD/M Productivity Measurement and Estimate Validation.
Purchase, N. Y.: IBM Corp.

Albrecht, A. J., & Herron, D. A. (1990). A Functional Metric Course. Burlington, Mass.:
Software Productivity Research, Inc.

Albrecht, A. J., & Gaffney, J. (1983). Software function, source lines of code, and
development effort prediction. IEF.E Transactions on software Engineering, 9(6),
639-648.

Benbasat, I., & Vessey, I. (1980, June). Programmer and Analyst Time/Cost Estimation.
MIS Quarterly, 4(2), 31-42.

Boehm, B. W. (1987, September). Improving Software Productivity. TF.F.F Computer, 20(1),
43-57.

Bunge, M. (1977). Treatise on Basic Philosophy: Volume 3: Ontology T: The Furniture of
the World. Boston, Mass.: Reidel Publishing Co..

Bunge, M. (1979). Treatise on Basic Philosophy: Volume 4: Ontology II: The World of
Systems. Boston, Mass.: Reidel Publishing Co..

Cote, V., Bourque, P., Oligny, S., & Rivard, N. (1988, March). Software metrics: An
overview of recent results. The Journal of Systems and Software, &(2), 121-131.

Dreger, J. B. (1989). Function Point Analysis. Englewood Cliffs, N. J.: Prentice-Hall.

Garmus, D. ed. (1990, April). IFPUG Counting Practices Manual, Release 3 0. Westerville,
Ohio: International Function Point User's Group.

Halstead, M. H. (1977). Flements of Software Science. New York: Elsevier.

Hellerman, L. (1972, May). A measure of computational work. IEEE Transactions on
Computers, C-21(5), 439-446.

Jeffery, D. R., & Low, G. (1990, July). Calibrating estimation tools for software
development. Software Engineering Journal, 215-221.

Jones, C. (1986). Programming Productivity. New York, NY: McGrawHill.

Jones, C. (1991). Applied Software Measurement. McGraw-Hill, Inc.: New York.

56

Kemerer, C. F. (1987, May). An empirical validation of software cost estimation models.
Communications of the ACM, 30(5), 416-429.

Kemerer, C. F. (1993, February). Reliability of Function Points Measurement.
Communications of the ACM, 36(2), 85-97.

Kennamer, Walter J. (1991). SNAP! [Computer program]. Version 5.0. Documentation and
Development System for FoxPro, dBASE, Clipper, and Other X-Base Systems.

McCabe, T. J., & Butler, C. W. (1989, December). Design complexity measurement and
testing. Communications of the ACM, 32(12), 1415-1425.

Nash, J. F., & Heagy, C. D. (1993). Accounting Information Systems (3rd),Cincinnati, Ohio:
South-Western Publishing.

Paulson, D. (1989, February). Reasoning Tools to support System Analysis and Design.
Unpublished doctoral dissertation, University of British Columbia.

Paulson, D., & Wand, Y. (June 1992b). Analyzing the Completeness and Consistency of
Information System Specifications. Working Paper. Faculty of Commerce and
Business Administration, U.B.C.

Paulson, D., & Wand, Y. (1992, March). An automated approach to information systems
decomposition. TERR Transactions on software engineering, 1S_(3), 174-189.

Simon, H. A. (1969). The Sciences of the Artificial, 2nd ed. Cambridge, Massachusetts: The
MIT Press.

Symons, C. R. (1988, January). Function point analysis: Difficulties and improvements.
IRRR Transactions on Software Engineering, 14(1), 2-11.

Wand, Y., & Weber, R. (1987, May). Formalization of Information Systems Design.

Watne, D. A., & Tumey, P. B. (1990). Auditing EDP Systems, 2nd Ed. Englewood Cliffs,
New Jersey: Prentice Hall.

Whitten, J. L., Bentley, L. D., & Barlow, V. M. (1989). Systems Analysis and Design
Methods, 2nd ed. Homewood, IL: Irwin.

Wing, J. M. (1990, September). A Specifier's Introduction to Formal Methods. IEEE
Computer, 23(9), 8-24.

Wrigley, C. D., & Dexter, A. S. (1991, June). A model for measuring information system
size. MTS Quarterly. 15(2), 245-257.

57

Wrigley, C. D. (1988, December). A model and method for measuring information system
size. Unpublished doctoral dissertation, University of British Columbia.

58

^Appendices
Appendix A
Three Car Insurance System Varieties: Description & Stable State Space 59

Appendix B
Three Car Insurance System Varieties : Selma Specifications 63

Appendix C
Data for Regression Analysis (FC) 69

Appendix D
"Backfiring" FP Worksheet 70

Appendix E
FP component definitions 71

Appendix F
FP to LOC ratios 71

Appendix G
Selma specification & Decomposition of Car Insurance Project 73

Appendix H
Selma Specification & Decomposition of Payroll Project 75

Appendix I
Selma Specification & Decomposition of Hotel Project 79

Appendix J
System Analysis for Student Systems 82

59

Appendix A
Three Car Insurance System Varieties: Description & Stable State Space

I. Functional Form of Batch and On-Line systems

SYSTEM A) Insurance Car System: Append or Edit Client "Batch"
This Car system is a "batch entry" system in which all data on age, driver and accident of a
new insurance client(s) or current client(s) are entered before the data is processed to
determine output(s). The processing could occur after one record is entered or many records
are entered. The flag to indicate entry is complete is 'end' flag=l.

Stable State Space for system: CAR Complexity: 21
accident adjustment age driver end premium

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

yes
no

yes
no

yes
no

yes
no
yes

no
yes
no

yes
no

yes
no

blank over male 0
blank over male 0
blank under male 0
blank under male 0
blank over female 0
blank over female 0
blank under female 0
blank under female 0

no over male 1
yes over male 1
no under male 1

yes under male 1
no over female 1

yes over female 1
no under female 1

yes under female 1

blank
blank
blank
blank
blank
blank
blank
blank

low
low
high
high
low
low
low
low

60

SYSTEM m Insurance Car .System: Fdit a Client "On-T.ine"
This system differs from the above because it is only for editing a current client and not for
appending a new client. The data on the customer (age,driver and accident) already exist and
the user is changing one or more fields of data. This system is titled "on-line" because
processing occurs after each change in a field ie. the age is changed from under to over. It
has a smaller complexity than System A because the output fields, adjustment and premium
can not be blank (a state before appending new client).

Stable State Space for system: NEWCAR

accident adjustment age driver premium

1.
2.
3.
4.
5.
6.
7.
8.

yes
no

yes
no

yes
no
yes
no

no over male
yes over male
no under male

yes under male
no over female

yes over female
no under female

yes under female

low
low
high
high
low
low
low
low

61

SYSTEM C) Insurance Car System: Edit/Append a Client "On-T ,ine"
This system is an 'on-line'example of editing or appending a new client. After each change
in field, processing occurs. For example, if it is a new client, the user changes the 'driver'
field from blank to female or if it is a current client, the user changes the 'accident' fields
from no to yes. It has a higher complexity than System A because it has extra stable states.
Extra stable states such as when only one field is entered (ie. age) and the other field is still
blank (ie. driver's sex), the output field is still blank (ie, premium). Unlike System A, the
input fields (driver, age, and accident) all can have blank values.

Stable State Space for system: NEWCAR3

accident adjustment age driver premium

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

no over male
yes over male
no under male

yes under male
no blank male

yes blank male
no over female

yes over female
no under female
yes under female
no blank female

yes blank female
no over blank

yes over blank
no under blank

yes under blank
no blank blank

yes blank blank

low
low
high
high

blank
blank

low
low
low
low

blank
blank

blank
blank
blank
blank
blank
blank

62

Summary of Insurance Systems
System C where the input fields can have blank values can get very complicated. In "real
practise" when appending a new record, a programmer would not have processing until all
required fields are filled and the user has verified the data correct (such as System A). For
editing a record, System B, processing after each data field change, or System A, processing
after all field changes, are realistic systems. It is a judgement call whether the programmer
chooses a system like A or B. In conclusion, as shown from the above examples, the timing
of processing can affect complexity.

63

Appendix B
Three Car Insurance System Varieties : Selma Specifications

I I . SELMA s p e c i f i c a t i o n of Ba tch and On-Line s y s t e m s

SYSTEM A) I n s u r a n c e Car Sys tem: Append o r E d i t C l i e n t "Batch"

/ * car insurance program */
/* append or edit "batch" data entry of new or current cl ient data*/

/ * s ta te variables */
state_variable(driver).
state_variable(age).
state_variable(accldent).
state_variable(adjustment).
state_variable(premium).
state_variable(end).

/* variable values */
values(driver, [male.female]).
values(age,[over,under]). /* over or unde r age 25 */
values(accident,[yes,no]). /* accident In last five years */
values(premium,[high,low,blank]).
values(adjustment,[yes,no,blank]).
values(end,["0","l"]). /* flag to initiate end of da ta entry */

/ * e v e n t s */
event("Begin da ta entry",[v(end,"0")l).
event("End of da t a entry",[v(end,"l")]).

/* stable s t a t e s */
staticC'end or beginning",[v(end,"0")]).
static("end or beginning",[v(end,"l")]}.

staticC'male or female",[v(driver,male)]).
staticC'male or female",[v(driver,female)l).

static("age", [v(age.over)]).
static("age",[v(age,under)]).

static("accident",[v(accident,yes)]).
static("accident",[v(accident,no)]).

staticC'premium calc",[v(end," 1"),v(driver,male),v(age,under),v(premium,high)]).
static("premium calc",[v(end,"l"),v(driver,female),v(age,under),v(premium,low)]).
staUcC'premium calc",]v(end,"l"),v(age,over),v(premium,low)]).
staUcC'premlum calc",[v(end,"0"),v(premlum,blank)]).

staUc("good-driver adjustment",[v(end,"l"),v(accldent,yes),v(adjustment,no)]).
staUc("good-driver adjustment",[v(end,"l"),v(accident,no),v(adjustment,yes)]).

staticf'good-driver adjustment", [v(end,"Oj,v(adjustment,blank)]).

/* corrective actions */

/* beginning of data entry */
dynamic ("begin" ,[v(end, "0")], [v(adjustment.blank) ,v(premium,blank)]).

/* end of data entry */
/* calculate premium */
dynamic("premium">[v(end,"l"),v(driver,male),v(age,under)],

[v(premium,high)]).
dynamic("premium", [v(end," 1") ,v(driver,female) ,v(age,under)],

[v(premium,low)]).
dynamic("premium", [v(end," 1"), v(age.over)],

(vfpremium.low)]).
dynamic("premium", [v(end, "0")],

[v(premium,blank)J).

/* calculate good driver adjustment */
dynamicC'good driver adjustment",[v(end,"l"),v(accident,no)],

[v(adjustment,yes)J).
dynamicC'good driver adjustment",[v(end,"l"),v(accident,yes)],

[v(adjustment,no)]).

dynamicC'good driver adjustment",[v(end,"0")],[v(adjustment,blank)]).

SYSTEM B) Insurance Car System: Edit a Client "On-Line"

/* car insurance program */
/* edit (no append) of current client data */

/* state variables */
state_variable(driver).
state_variable(age).
state_variable(accident).
state_variable(adjustment).
state_variable(premium).

/ • variable values */
valuesfdriver, [male, female]).
values(age,[over,under]). /* over or under age 25 */
valuesfaccident,[yes.no]). /* accident in last five years */
values (premium, [high, low]).
values (adj ustment, [yes, no]).

/ • events • /
event("Sex entry",[v(driver.male)]).
event("Sex entry",[v(driver,female)]).

event("Age entry",[v(age,over)]).
event("Age entry",[v(age,under)]).

event("Accident entry",[v(accident.yes)]).
event("Accident entry", [v(accident.no)]).

/* stable states */

static("male or female",[v(driver,male)]).
static("male or female",[v(driver.female)]).

static("age", [v(age.over)]).
static("age", [v(age,under)]).

static("accident", [v(accident.yes)]).
static("accident", [v(accident.no)]).

staticfpremium calc",[v(driver,male),v(age,under),v(premium,high)]).
static("premium calc",[v(driver,female),v(age,under),v(premium,low)]),
staticf'premium calc",[v(age,over),v(premium,low)]).

staticC'good-driver adjustment",[v(accident,yes),v(adjustment,no)]).
staticC'good-driver adjustment",[v(accident,no),v(adjustment,yes)]).

yes.no

/* corrective actions */

/* beginning of data entry */

/* calculate premium */
dynamic("premium",[v(driver,male) ,v(age,under)],

[v(premium,high)]).
dynamic("premium",[v(driver,fernale),v(age, under)],

[v(premium,low)]).
dynamic("premium",[v(age,over)],

[v(premium ,low)]).

/* calculate good driver adjustment */
dynamicC'good driver adjustment",[v(accident.no)],

[v(adjustment,yes)]).
dynamicC'good driver adjustment",[v(accident.yes)],

[v(adjustment,no)]).

SYSTEM CI Insurance Car System: Edit/Append a Client "On-Line"

/* car insurance program */
/* on-line edit or append client data */

/* state variables */
state_variable(driver).
state_variable(age).
state_variable(accident).
state_variable(adjustment).
state_variable(premium).

/* variable values */
values(driver, [male,female,blank]).
values(age,[over,under,blankJ). /* over or under age 25 */
values(accident,[yes,no,blank]). /* accident in last five years */
values(premium, [high,low,blank]).
values(adjustment, [yes, no, blank]).

/* events */
event("Sex entry male",[v(driver,male)]).
eventfSex entry female",[v(driver,female)]).

event("Age entry over",[v(age,over)]).
event("Age entry under",[v(age,under)]).

event("Accident entry yes",[v(accident,yes)]).
event(" Accident entry no",[v(accident,no)]).

/* stable states */
static("male or female",[v(driver,male)]).
static("male or female",[v(driver,female)]).
static("male or female",[v(driver,blank)]).

static("age", [v(age.over)]).
static("age", [v(age,under)]).
static("age",[v(age,blank)]).

static("accident", [v(accident,yes)]).
static("accident", [v(accident.no)]).
static("accident", [v(accident.blank)]).

staticC'premium calc",[v{driver,male),v(age,under),v(premium,high)]).
staticC'premium calc",(v(driver,male),v(age,blank),v(premium,blank)]).
staticC'premium calc",[v(driver,male),v(age,over),v(premium,low)]).

staticC'premium calc",[v(driver,female),v(age,under),v(premium,low)]).
staticC'premium calc",[v(driver,female),v(age,blank),v(premium,blank)]).
staticC'premium calc",[v(driver,female),v(age,over),v(premium,low)]).
staticC'premium calc",[v(driver.blank),v(premium,blank)]).

68

staticC'good-driver adjustment",[v(accident,yes),v(adjustment,no)J).
static("good-driver adjustment",[v(accident,no),v(adjustment,yes)]).

/* corrective actions */
/* beginning of data entry */
/* calculate premium */

dynamic("premium",[v(driver,male),v(age,under)],
[v(premium.high)J).

dynamicC'premium'', [v(driver,male),v(age,blank)],
[v(premium, blank)]).

dynamicC'premium", [v(driver,male),v(age, over)],
[v(premium,low)]).

dynamicC'premium ",[v(driver,female),v(age, under)],
[v(premium,low)D.

dynamicC'premium", [v(driver,female),v(age,blank)],
]v(premium, blank)]).

dynamicC'premium",[v(driver,female) ,v(age,over)],
Iv(premium.low)]).

/* calculate good driver adjustment */
dynamic("good driver adjustment ",[v(accident,no)],

[v(adjustment.yes)]).
dynamicC'good driver adjustment",[v(accident.yes)],

{v(adjustment,no)]).

Appendix C
Data for Regression Analysis (FC)

DATA - BASIS FOR REGRESSION ANALYSIS with Independent Variable : Function Count (FC)

System
and
Number

Car-1
Car-2
Car-3
Car-4
Car-5
Car-6
Car-7
Car -8
Car-9
Car-10
Car-11
Car-12
Car-13
Payroll-1
Payroll-2
Payroll-3
PayrolM
Payroll-5
Payroll-6
Payroll-7
Payroll-6
Payroll-9
Payroll-10
PayroiMI
Payroll-12
PayrolH3
Mean

Function
Count

FC
38
33
38
38
33
38
41
38
33
38
38
38
41
38
37
33
38
43
33
51
43
37
43
38
33
41
38

Actual
Total LOC

LOC - actual
750
541
710
747
622
720
807
708
548
674
811
759
711
790
575
568
751
965
546
1302
910
608
865
704
551
795
732

Programmed
LOC

LOC-prq
269
240
242
223
332
244
369
225
223
228
304
214
315
317
244
253
282
332
240
478
276
236
243
250
225
330
274

Generated System
LOC

LOC-gen
465
295
460
467
283
468
433
473
319
435
499
537
390
461
326
308
426
624
299
796
625
377
613
447
320
458
446

Complexity

DEC - prq
25
28
16
27
32
29
37
28
28
28
28
28
31
37
28
30
33
29
30
31
37
32
32
39
18
41
30

Process
Complexity

DEC - proc
5
5
4
4
4
4
5
3
5
3
5
4
4
7
5
8
10
4
6
7
9
9
5
9
4
10
6

Screens

SCR
2
2
2
2
2
2
4
2
2
2
2
2
4
2
3
2
2
2
2
4
2
3
2
2
2
4
2

Reports

REP
2
1
2
2
1
2
1
2
1
2
2
2
1
2
1
1
2
3
1
3
3
1
3
2
1
1
2

(tMtdat2.wt>1 (c»:reodtfa)

Appendix D
"Backfiring" FP Worksheet

Calculation of SPR Complexity Adjustment Factor for Retrofitting of
Function points to existing software — "Backfiring"

Problem complexity?
1. Simple algorithms and simple calculations
2. Majority of simple algorithms and calculations.
3. Algorithms and calculations of average complexity.
4. Some difficult or complex calculations.
5. Many difficult algorithms and complex calculations.

Data complexity?
1. Simple data with few variables and low complexity
2. Numerous variables, but simple data relationship.
3. Multiple files, fields, and data interactions.
4. Complex file structures and data interactions.
5. Very complex file structures and data interactions.

Code complexity?
1. Nonprocedural.
2. Well structured with reusable modules.
3. Well structures (small modules and simple paths).
4. Fair structure, but some complex modules and paths.
5. Poor structure, with large modules and complex paths.

Sum of Problem, Code and Data complexity

The SPR Complexity Adjustment Factors

Complexity sum Adjustment multiplier
3
4
5
6
7
8
9
10
11
12
13
14
15

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

71

Appendix E
FP component definitions

[Jones, 1991, p. 68-69]

Inputs Inputs are screens or forms through which human users of an application or other

programs add new data or update existing data. If an input screen is too large for a single

normal display (usually 80 columns by 25 lines) and flows over onto a second screen, the

set counts as 1 input. Inputs that require unique processing are what should be

considered.

Outputs: Outputs are screens or reports which the application produces for human

use or for other programs. Note that outputs requiring separate processing are the units

to count: In a payroll application, an output function that created, say, 100 checks would

still count as one output.

Inquiries: Inquiries are screens which allow users to interrogate an application and ask

for assistance or information, such as HELP screens.

Data files: Data files are logical collections of records which the application modifies or

updates. A file can be a flat file such as a tape file, one leg of a hierarchical database such

as IMS, on table within a relational database, or one path through a CODASYL network

database.

Interface: Interfaces are files shared with other applications, such as incoming or

outgoing tape files, shared databases, and parameter lists.

Appendix F
FP to LOC ratios
[Jones, 1991, p. 76]

Language

1. Low-level default
2. Machine language
3. First generation default
4. Basic assembly default
5. Macro assembly default

6. C default
7. Interpreted Basic default
8. Fortran II
9. Fortran 66

10. Second generation default

11. Procedural language default
12. Fortran 77
IS. Algol 68
14. Algol W
16. Chill

16. ANSI Cobol 74
17. Coral 66
18. Jovial
19. Strongly typed default
20. ANSI Cobol 85

21. Pascal default
23. Compiled Basic default
33. P U S
34. High-level default
25. Third generation default

St. Report generator default
37. PL/I
33. Modula 2
33. Problem-oriented default
30. Ada

31. Weakly typed default
33. Prolog
33. Lisp
34. Forth
33. ANSI/Quick/Turbo Basic

30. English-like default
37. AI shell default
33. Simulation default
30. Decision table default
40. Database default

41 . Nonprocedural default
43. Decision support default
43. Statistical language default
44. APL
45 Object-oriented default

40. Fourth generation default
47. Program generator default
43. Query language default
43. Spreadsheet default
50. Fifth generation detank (graphic ioona)

Laval

1.0
1.0
1.0
1.0
1.5

2.5
2.5
2.5
2.5
3.0

3.0
3.0
3.0
3.0
3.0

3.0
3.0
3.0
3.0
3.5

3.5
3.5
3.5
3.5
3.5

4.0
4.0
4.0
4.5
4.5

5.0
5.0
5.0
5.0
5.0

6.0
6.5
7.0
7.0
8.0

9.0
9.0

10.0
10.0
11.0

16.0
2O0~
25.0
50.0
75.0

Source statements
per function point

320
320
320
320
213

128
128
128
128
105

105
105
105
105
105

105
105
105
105
91

91
91
91
91
91

80
80
80
71
71

64
64
64
64
64

51
49
46
46
40

35
35
32
32
29

16
13
6
4

73

Appendix G
Selma specification & Decomposition of Car Insurance Project

DECOMPOSITION

Decomposition #1 Complexity = 17.25
1: {accident, end, adjustment) I age. driver. end. premium I

SELMA SPECIFICATION

/ • car insurance program */
/* append or edit "batch" data entry of new or current client data*/

/* state variables */
state_varlable{driver).
state_variable(age).
statejvariable(accident).
state_variable(adjustment).
state_varlable(premium).
state_variable(end).

/* variable values */
values(driver, [male,female]).
values(age,[over,under]). /* over or under age 25 */
values(accident,(yes.no]). /* accident in last five years */
values(premium, [high, low.blank]).
values(adjustment,[yes,no,blank]).
values(end,["0","l"]). /* flag to initiate end of data entry */

/* events */
event("Begin data entry",[v(end,"0')]).
event("End of data entry",[v(end,"l")]).

/* stable states */
statlc("end or beginning",[v(end,"0")l).
statlc("end or beginning",[v(end.T')]).

staticf'male or female",[v(driver,male)]).
statlc("male or female",[v(driver, female)]).

statlc("age", [v(age.over)]).
statlc("age", [v(age .under)]).

statlc("accldent", [v(accldent.yes)]).
statlc("accident",(v(accident,no)]).

statlcC'premlum calc",[v(end,"l"),v(driver,male),v(age,under),v(premium,high)]).
statlcC'premlum calc",[v(end,"l"),v(driver,female),v(age,under),v(premlum,low)]).
statlcC'premlum calc",[v(end,T'),v(age,over),v(premium,low)]).
statlcC'premlum calc",[v(end,"0").v(premium,blank)]).

yes.no

74

static("good-driver adjustment",[v(end,"l"),v(accident,yes),v(adjustment,no)]).
staticC'good-driver adjustment",[v(end,"l"),v(accident,no),v(adjustment,yes)]).
staticC'good-driver adjustment",[v(end,"0"),v(adjusunent,blank)]).

/* corrective actions */

/* beginning of data entry */
dynamic("begin",[v(end."0")],[v(adjustment, blank) ,v(premium, blank)]).

/* end of data entry */
/* calculate premium */
dynamic("premium", [v(end," 1") ,v(driver, male) ,v(age, under)],

[v(premium,high)]).
dynamic("premium",[v(end,"l"),v{driver,female),v(age,under)],

[v(premium,low)]).
dynamic("premium", [v(end," 1"), v(age, over)],

[v(premium,low)]).
dynamic("premium", [v(end, "0")],

[v(premium, blank)]).

/* calculate good driver adjustment */
dynamic("good driver adjustment",[v(end,"l"),v(accident,no)],

(v(adjustment.yes)]).
dynamic("good driver adjustment",[v(end,"l"),v(accident,yes)],

[v(adjustment,no)]).

dynamicC'good driver adjustment",[v(end,"0")],[v(adjustmentblank)]).

Appendix H
Selma Specification & Decomposition of Payroll Project

DECOMPOSITION
Decomposition # 1 Complexity = 23.09
2: Ibase.comm.overtime.total pay)
1: l e n d , h o u r s , p a y r a t e . b a s e !
lemp pos .emp type .end, hours , overtime 1

{ e m p _ p o s , e m p _ t y p e , e n

SELMA SPECIFICATION
/* Event Definitions */
event("End of Period".[v(end,"0")l).
eventf'End of Period",[v(end,"l")]).

State Variable Definitions
state_variable(end).
state_variable(emp_type).
state_variable(emp_pos).
state_variable(payrate).
state_variable(sales).
state_variable(hours).
state_variable(base).
state_variable(overtime).
state_variable(total_pay).
state_variable(comm).

V
/* end of period flag */

/* employee type */
/* employee position

/* pay rate */
/* sales */
/* hours worked */

/* base pay */
/* overtime pay */
/* total pay */
/* commission */

V

/ • State Variable */
values(end,["0"," 1"]).
values(emp_type, [off.sal]).
values(emp_pos, |reg,mgt]).
values(payrate, [zero.nz]).
values(sales, [zero.nz]).
values(hours,[zero,reg,ot]).

valuesfbase, [zero, nz]).
values(overtime, [zero.nz]).
values(total_pay, [zero.nz]).
values(comm, [zero, nz]).

/* Stability Conditions */

/* Base salary, overtime, commissions and benefits are not calculated
except at EOP. */

static("EOP requirements",[v(end,"0")]).
statlc("EOP requirements",[v(end.T')]).

/* An employee may be in a regular or management position */

static("regular or management",[v{emp_pos,reg)]).
static("regular or management",[v(emp_pos,mgt)]).

/* An employee may have either an office or sales job */

76

static("office or sales",[v(emp_type,off)]).
static("office or sales",[v(emp_type,sal)]).

/* Pay rate can be zero or nonzero */
static("pay rate", [vfpayrate, zero)]),
statlcfpay rate",[v(payrate,nz)]).

/* hours may be zero, regular or overtime */
statlc("hours",[v(hours,ot)]). /* overtime > 40 hours */
static("hours",[v(hours,reg)]). /* regular >0 .and. <=40 hours a week */
static("hours",[v(hours,zero)]).

/* Sales may be zero or nonzero */
s tatlc(" sales", [v(sales ,zero)]).
static("sales",[v(sales,nz)]).

/* Nonmanagement office staff are entitled to overtime if hours is overtime */
static("regular staff gets overtime",

[v(end,"l"),v(emp_pos,reg),v(emp_ type, off) ,v(hours,ot),v(overtlme,nz)]).
staticfregular staff gets overtime",

[v(end," 1") ,v(hours ,reg), v(overtime, zero)]).
static("regular staff gets overtime",

[v(end,"l"),vfhours,zero),v(overtime,zero)J).
statlc("regular staff gets overtime",

[v(end,"l"),v(emp_pos,mgt),v(overtime,zero)]).
static('regular staff gets overtime",

[v(end," 1") ,v(emp_ type,sal) ,v(overtime,zero)]).
static('regular staff gets overtime",

[v(end, "0"), v(overtime, zero)]).

/* Nonmanagement SALES staff are entitled to commission is sales are nonzero
static("nonmgt sales staff gets commissions",

[v(end," 1") ,v(emp_type, sal), v(emp_pos, reg), vfsales ,nz) ,v(comm,nz))).
static("nonmgt sales staff gets commissions",

[v(end," 1") ,v(emp_pos ,mgt) ,v(comm ,zero)]).
staticfnonmgt sales staff gets commissions",

[v(end,"l"),v(emp_type,off) ,v(comm,zero)]).
static("nonmgt sales staff gets commissions",

[v(end,"l"),v(sales,zero),v(comm,zero)]}.
static("nonmgt sales staff gets commissions",

[v(end, "0") ,v(comm,zero)]).

/* All employees are entitled to base pay if hours and pay rate are not zero */
staticC'everyone gets base pay",

[v(end,"l"),v(hours,ot),v(payrate,nz),v(base,nz)]).
staticC'everyone gets base pay",

[v(end," 1") ,v(hours,reg) ,v(payrate,nz) ,v(base,nz)J).
staticC'everyone gets base pay",

(v(end, "l"),v(hours,zero),v(base,zero)]).
staticC'everyone gets base pay",

[v(end," 1") ,v(payrate, zero) ,v(base, zero)]).
staticC'everyone gets base pay",

[v(end,"0"),v(base,zero)]).

/* Total pay must be calculated at EOP */
staticftotal pay",[v(end,"l"),v(base,nz),v(total_pay,nz)]).
static("total pay",[v(end,"l"),v(overtime,nz),v(total_pay,nz)]).
static("total pay",[v(end,"l"),v(comm,nz),v(total_pay,nz)]).
static("total pay",[v(end, T'),v(base,zero),v(overtime,zero),v(comm,zero),

v(total_pay .zero)]).
staticftotal pay",[v(end,"0"),v(total_pay.zero)]).

/* CORRECTIVE ACTIONS • /

/* At start of period all calculated values must be reset to zero. */
dynarnic("SOP",[v(end,"0")],

[v(overtime, zero) ,v(base, zero) ,v(comm, zero) ,v(total_pay, zero)]).

/* At end of period calculate base pay */
dynamicfcalculate base pay",

78

[v(end,"l"),v(hours,ot),v(payrate,nz)],
[v(base,nz)]).

dynamicC'calculate base pay",
[v(end," 1") ,v(hours,reg),v(payrate,nz) J,
|v(base,nz)]).

dynamicC'calculate base pay",
Iv(end,"l"),v(hours,zero)],
[vfbase.zero)]).

dynamicC'calculate base pay",
[v(end,"l"),v(payrate,zero)l,
[v(base,zero)]).

/* At end of period calculate overtime */
dynamicC'calculate overtime",

[v(end,"l"),v(emp_pos,reg),v(emp_type,offj,v(hours,ot}],
[v(overtime,nz)]).

dynamicC'calculate overtime",
[v(end,"l"),v(hours,reg)j,
[v(overtime, zero)]).

dynamicC'calculate overtime",
[v(end," l"),v(hours,zero)],
[v(overtime,zero)]).

dynamicC'calculate overtime",
[v(end," 1"), v(emp_pos, mgt)],
[v(overtime,zero)]).

dynamicC'calculate overtime",
[v(end," l"),v(emp_type,sal)],
[v(overtime,zero)J).

/* At end of period calculate commissions */
dynamicC'calculate commissions",

[v(end, "1") ,v(emp_type,sal),v(emp_pos,reg),v(sales,nz) 1,
[v(comm,nz)]).

dynamicC'calculate commissions",
[v(end," 1"), v(emp_pos, mgt)],
[v(comm.zero)]).

dynamicC'calculate commissions",
[v(end,"l"),v(emp_type,off)l,
[v(comm.zero)]).

dynamicC'calculate commissions",
[v(end,"l"),v(sales,zero)],
[v(comm,zero)]).

/* At end of period, calculate total pay */
dynamicC'calculate total pay",[v(end,"l"),v(base,nz)],

[v(total_pay, nz)]).
dynamicC'calculate total pay",[v(end,"1 "),v(overtime,nz)],

[v(total_pay,nz)J).
dynamicC'calculate total pay",[v(end,"l "),v(comm,nz)],

[v(total_pay, nz)]).
dynamicC'calculate total pay",[v(end," 1 "),v(base,zero),v(overtime,zero),v(comm,zero)],

[v(total_pay ,zero)]).

Appendix I
Selma Specification & Decomposition of Hotel Project

DECOMPOSITION
Decomposition #1 Complexity = 43.90
3: [discount, roomstatus. totalbllll
2: (guest,roomstatus.discount! (roomstatus,roomstyle,season.roomblll}
1: (check.roomstatusl

SELMA SPECIFICATION
/ • Events */

event("guest check in",[v(check,in)]).
eventC'guest check out",[v(check,out)]).

/* State Variable Definitions */
state_variable(check).
state_variable(roomstyle).
state_varlable(roomstatus).
state_varlable(season).
state_variable(guest).
state_varlable(roombill).
state_variable(discount).
state_variable(totalblll).

/* State Variable Value Definitions */
values (check, [in, ou t]).

values(roomstyle, [regular.suite.honeymoon]).
values(season, [high,low]).
values(guest,[norm al.buslness,employee,patient]).

values(roomstatus,[open,occupied]).
values(discount, [yes,no,all]).
values(roombill,[A,B,C,D,E,F,zero]).
values (totalblll, [nz.zero]).

/ • Stability Conditions */

/* (events) guest can either be checked-in or checked-out */
static("guest check",[v(check.ln)]).
static("guest check",[v(check.out)]).

/* roomstyle Is In three categories: regular, suite and special */
statlcC'regular, suite & special",[v(roomstyle.regular)]).
statlcC'regular, suite & special",[v(roomstyle.sulte)]).
statlcC'regular, suite & special",[v(roomstyle,honeymoon)]).

/* the hotel season is either high or low */
statlc("high or low season",[v(season.hlgh)]).
statlcC'high or low season",[v(season.low)]).

/* the guest can be a regular, business, employee or a "free-bee" patient */
static("guest type",[v(guest,normal)]).
static("guest type",[v(guest,business)]).
static("guest type",[v(guest,employee)]).
staticC'guest type",[v(guest,patient)]).

/* the guest's checked-in room gets an occupied status */
static("room status",[v(check,in),v(roomstatus,occupied)]).
static("room status",]v(check,out),v(roomstatus,open)]).

/* guest discount */
static("discount",[v(check,out),v(guest,normal),v(discount,no)]).
static("discount",[v(check,out),v(guest,patient),v(discount,all)]).
static("discount",[v(check,out),v(guest,business),v{discount,yes)]).
static("discount", [v(check.out) ,v(guest,employee) ,v(discount,yes)]).
static("discount", (v(check.in) ,v(discount,no)]).

/ • guest room bill */
staticC'guest room bill", [v(check,out) ,v(roomstyle,regular) ,v(season,high),

v(roombill,C)]).
staticC'guest room bill",[v(check,out),v(roomstyle,suite),v(season,high),

v(roombill.B)]).
staticC'guest room bill",[v(check,out),v(roomstyle,honeymoon),v{season,high),

v(roombill,A)]).
staticC'guest room bill",[v(check,out),v(roomstyle,regular),v(season,low),

v(roombill,F)]).
statlcC'guest room bill",[v(check,out),v(roomstyle,suite),v(season,low),

v(roombill.E)]).
staticC'guest room bill ",[v(check,out),v(roomstyle,honeymoon),v(season,low),

v(roombill,D)]).
staticC'guest room bill",[v(check,in),v(roombill,zero)]).

/* guest total bill */
staticC'total bill",[v(check,out),v(discount,yes),v(totalbill,nz)]).
staticC'total bill",[v(check.out),v(discount,no),v(totalbill,nz)]).
staticC'total bill",[v(check,out),v(discount,all),v(totalbill,zero)]).
staticC'total bill",[v(check.in),v(totalbill,zero)]).

/* corrective actions */

/* When the guest checks in all calculated values are set to zero
and the guest's room becomes occupied */

dynamic("checks in",[v(check,in)],
[v(roombill,zero),v(discount, no) ,v(totalbill, zero) ,v(roomstatus, occupied)]).

/* When a guest checks-out room becomes open */
dynamic("room becomes open ",[v(check,out)],[v(roomstatus,open)]).

/* When a guest checks-out — Calculate roombillcharge */
dynamicC'calc room bill",[v(check,out),v(roomstyle,regular),v(season,high)],

81

[v(roombill,C)JJ.
dynamicC'calc room bill",[v(check,out),v{roomstyle,suite),v(season,high)],

[v(roombill.B)]).
dynamicC'calc room bill",[v(check,out),v(roomstyle,honeymoon) ,v(season,high)],

(v(roombill,A)]).
dynamicC'calc room bill",[v(check,out),v(roomstyle,regular),v(season,low)],

[v(roombill,F)]).
dynamicC'calc room bill",[v(check,out),v(roomstyle,suite),v(season,low)],

[v(roombill,E)]).
dynamicC'calc room bill ",[v(check,out),v(roomstyle,honeymoon),v(season,low)],

[v(roombiU.D)]).

/* When a guest checks-out — Calculate appropriate discount */
dynamicC'calc discount ",[v(check,out),v(guest,normal)],

[v(discount.no)]).
dynamicC'calc discount",[v(check,out),v(guest,patient)],

[v(discount,all)]).
dynamicC'calc discount ",[v(check,out),v(guest,business)],

[v(discount.yes)]).
dynamicC'calc discount", [v(check.out) ,v(guest,employee)],

[v(discount.yes)]).

/* Calculate guest total bill */
dynamic("total bill",[v(check,out),v(discount,no)],[v(totalbill,nz)]).
dynamicC'total bill",[v(check,out),v(discount,yes)],[v(totalbill,nz)]).
dynamicC'total biH",[v(check,out),v(discount,all)],[v(totalbill,zero)]).

82

Appendix J
System Analysis for Student Systems

ASSIGNMENT #1
PROTOTYPING

Class : Management 4841 System Design
Date Thursday January 12, 1995
Due Date : Thursday January 26, 1995
Subject : Prototype three small information systems

1. Car Insurance System
2. Payroll System
3. Hotel Registration System

You are working for XYZ System Development Company. The system analysis has been completed on three
current projects. The XYZ Company wishes to prototype all three projects for their clients. You must follow
COMPANY POLICY for each prototype.

"A prototype is an actual working model of the system, including sufficient functionality to allow the model
to be used in a "live" setting. It is also built and revised fairly rapidly - in a matter of days or weeks, not
months or years. Models are certainly not built using conventional programming languages and file access
techniques. Prototype requires a set of interactive software development tools that allow the designer or even
the user to rather quickly define screens, create files and data entry/update routines, generate program modules
that handle processing logic, create basic query and reporting functions, and so on. These tools should be
integrated around a common data dictionary that maintains the definitions of such things as data elements, edit
rules, records, processing modules, screens, reports - in short, all the components of the prototype. ...[Powers,

83

XYZ SYSTEM DEVELOPMENT COMPANY POLICY

Language
dBASE IV in DOS
Employ the report generator and the screen generator. DO NOT use the program generator.

Modular Construction
Modular Construction is employed throughout the prototype system. In order to save prototype development
time, the company reuses library code. See Page 3 for a sample of the modular menu system. See Page 4 for
a description of the library program files.

• Download the files onto one HD disk. Access the network and choose the COPY FILES option.
Choose the PROTOTYPE option. Three directories will be created on your disk and the appropriate
files will be downloaded into each subdirectory.
a:\car a:\payroll a:\hotel

• Prototype the systems in the following order:
1. Car Insurance System
2. Payroll System
3. Hotel Registration System

Create necessary screens, reports and processing code. See Page 4 for more detailed instructions.

• Do NOT COPY other student's screen formats, report formats, or code. This is an individual project.
You will receive a mark of ZERO if any copying is identified.

• Carefully follow the system analysis documentation for each case.

• Run the test data provided. Make sure your prototype works!

• Hand-in one HD disk (2 if necessary). Hand-in Project questionnaire.

• No written documentation is required for this assignment. Please note the DESIGN PROJECT will
require written documentation. Insert brief internal documentation where appropriate.

file://a:/car
file://a:/payroll
file://a:/hotel

84

MODULAR STANDARD MENU CONSTRUCTION

Modular Design : The XYZ company employs the same standard menu for prototype designing. Label and
the Utilities menus are excluded for this assignment.

Updates Action/Reports Labels Utilities Exit
Database 1
Database2
Database3

Report 1
Report2
Exit

85

LIBRARY CODE

The reusable library code for each project consists of the below files. The necessary modifications for each case
are highlighted in italics.

CONTROL.PRG Initiates each prototype. Calls the environment setting program (central.prg). Activates main
menu.

CENTRAL.PRG Sets the environment settings and defines public variables. Calls the DEFPOP.PRG program
which defines the main bar menu and all related popup menus.

DEFPOP.PRG Includes the code for the main bar menu and corresponding popup menus. You are
responsible for the design and code of the popup menu for ACTIONS/REPORTS since this
is unique for each prototype. Modify the MODI popup menu and add appropriate submenus
if necessary.

MODULEl.PRG Includes the standard update menus and corresponding actions for each database.
Modify the code to include your screen formats for each edit, and append option.
The screen formats should include editing/append requirements such as all capital
letters, only Y or N, and so on.

MODULE2.PRG This program contains the outline code for the menu (Mod2) you shall define in
DEFPOP.prg. All ACTIONS/REPORTS should be called from the module2.prg.
Call your generated reports and your processing programs within modulel.prg.
ALL WRITTEN PROCESSING CODE should be written in procedure files in
modulel.prg.

MODULE5.PRG This program runs the library exit program. Modification is not necessary.

ASSIGNMENT #1 QUESTIONNAIRE Name:

Student I.D. Number: Major:_

Computer and M l S, courses:

1.Management 3820, Database Management

2.Management 4840, System Analysis

3.Management 3820, Business Data Processing

4. Management 2061, Microcomputers in Business

5.Comp Sci 1620(1600),Intro. to a Programming Lang

Please list other completed Computer Science or M.I.S, courses

Check if
Completed? Semester?

•
•
•
•
•

6. Have you completed a COOP experience semester related to MIS or Computer Science? Yes No

7. Have you had any programming experience other than in university or college courses? LJ Yes I—' No

If answered "Yes", please briefly describe your experience.

8.DURATION OF Project TIME BREAK-DOWN. Specify to nearest 1/2 hour.

Project

Car Insurance System

Payroll System

Hotel System

Learning dBASE
IV

Understanding
System
Requirements

Programming

The sequence you completed the projects.
Car Insurance System (1,2,or 3)
Payroll System (1,2, or 3)
Hotel System (1,2, or 3)

10. Comments about your experience with this assignment?

CAR INSURANCE PROTOTYPE SYSTEM

Description of a simple car insurance system

The customer makes an application request and provides personal
information (if a new customer or if the data has changed), when
they want to start a policy, and the length of the policy. Once the
insurance company employee has entered the necessary input data, a
policy is processed. The customer receives a coverage card.

Data Dictionary

Data Stores (Databases) *.dbf
(The databases are already created in the project directory.)

Structure for database : INSUREE.DBF

Field
1
2
3
4
5
6
7
8
9
10
11

Field name
INSUREE
LASTNAME
FIRSTNAME
BIRTH
STREET
CITY
PROVINCE
POSTALCODE
COUNTRY
TELEPHONE
SEX

Type
Numeric
Character
Character
Date
Character
Character
Character
Character
Character
Numeric
Character

Width
4

25
25
8

50
50
2
6
2
10
1

Structure for database : POLICY.DBF

Field
1
2
3
4
5
6
7
8

Field name
POLICYNO
INSUREE
WRITEUP
BEGINDATE
ENDDATE
ACCIDENT
PREMIUM
ADJUSTMENT

Type
Numeric
Numeric
Date
Date
Date
Numeric
Numeric
Numeric

Width
6
4
8
8
8
1
7
7

Dec

Dec

88

Figure 4 Context Diagram - Car insurance system

89

Figure 5 Diagram 0 - Car insurance system

90

Data Structures

ADDRESS = STREET + CITY + PROVINCE + POSTALCODE + COUNTRY.

PERSON = INSUREE + LASTNAME + FIRSTNAME + BIRTH + ADDRESS + TELEPHONE + SEX.

MOD_PERSON = INSUREE + (LASTNAME) + (FIRSTNAME) + (BIRTH) + (ADDRESS) + (TELEPHONE)
+ (SEX).

POLICY = POLICYNO + INSUREE + WRITEUP + BEGINDATE + ENDDATE + ACCIDENT +
PREMIUM + ADJUSTMENT.

Data Flows

OLD_CUSTOMER_DETAIL = MOD_PERSON + ACCIDENT + BEGINDATE + ENDDATE.

NEW_CUSTOMER_DETAIL = PERSON + ACCIDENT + BEGINDATE + ENDDATE.

ACCIDENT_REC = LASTNAME + FIRSTNAME + VERIFIED_ACCIDENT_REC.

VERIFIED_POLICY_REQUEST = INSUREE + BEGINDATE + ENDDATE +
VERIFIED_ACCIDENT_REC.

CUSTOMER_DETAIL = PERSON.

CUSTOMER_DATA = MOD_PERSON.

NEW_POLICY = POLICY.

COVERAGE_CARD = PERSON + POLICY.

91

Process Documentation

Process Two Process Coverage

Purpose: Calculate policy premium and adjustment.

Inputs: VERIFIED_POLICY_REQUEST Outputs: COVERAGE_CARD
NEW_POLICY

Process Definition:
After the employee has entered the data —>

Calculate:
ADJUSTMENT as a function of ACCIDENT RECORD.
If the client has an accident, their is a 200.00 adjustment.

PREMIUM as a function of SEX & AGE.
Premium is either high ($1000) a year or low ($500) a year.

- Sex is either (F)emale or (M)ale.
- Age is either (O)ver age of 25 and (U)nder age of 25 or age 25

Decision Table
Conditions
Sex
Age
Actions
High Premium
Low Premium

1
F
O

X

2
F
U

X

3
M
O

X

4
M
U

X

Process One Process Customer

Purpose: Process previous or new customer and the policy request.
Verify whether the customer has had an accident in the last 5 years.

Inputs: OLD_CUSTOMER_DETAIL Outputs: COVERAGE_CARD
NEW_CUSTOMER_DETAIL NEW_POLICY

02

Field Name
ACCIDENT
ADJUSTMENT
BEGINDATE
BIRTH
CITY
COUNTRY
ENDDATE
FIRSTNAME
INSUREE

LASTNAME
POSTALCODE
POLICYNO
PREMIUM
PROVINCE
SEX
STREET
TELEPHONE

Typed)
L
N
D
D
C

c
D
C
N

C
C
N
N
C
C

c
N

Len
1
5
8
8

50
2
8

25
4

25
6
8
5
2
1

50
10

Dec
0
2
0
0
0
0
0
0
0

0
0
0
2
0
0
0
0

VERIFIED ACCIDENT_REC L

Database Brief Description

POLICY.DBF Insuree had an accident inlast 5 years.
POLICY.DBF Insurance adjustment amount
POLICY.DBF Policy start date
INSUREE.DBF Insuree birthdate
INSUREE.DBF
INSUREE. DBF
POLICY.DBF Policy end date
INSUREE.DBF
INSUREE.DBF Insuree Number
POLICY.DBF
INSUREE.DBF
INSUREE. DBF
POLICY.DBF Policy identification number
POLICY.DBF Policy premium
INSUREE.DBF
INSUREE. DBF
INSUREE.DBF
INSUREE. DBF

POLICY.DBF

Whether the applicant had an accident in the
last 5 years.
Policy writeup date

(1) C=CHARACTER, N=NUMERIC, L=LOGICAL, D=DATE

93

Test Data

The below customers have all had car insurance policies at this company in the past. The customers are already in the insuree database.
The accident element (whether they had an accident in the last 5 years) has been verified by the traffic department. All these customers want
car insurance for 1995.

INSUREE LASTNAME ACCIDENT BEGINDATE ENDDATE

1 DAVIDSON
2 DAWSON
3 DAWSON
4 DAY
5 DANGERFIELD
6 DANIELSON
7 MICHEL
8 MILES
9 MESSENGER
10 SCHEBEL

Y
N
Y
Y
N
N
N
N
N
Y

01/01/95
01/01/95
01/01/95
01/01/95
01/01/95
01/01/95
01/01/95
01/01/95
01/01/95
01/01/95

01/01/96
01/01/96
01/01/96
01/01/96
01/01/96
01/01/96
01/01/96
01/01/96
01/01/96
01/01/96

94

PAYROLL PROTOTYPE SYSTEM

1. Description of a payroll system for a company

(Quotation from Thesis: Reasoning Tools to Support Systems Analysis and Design, February 1989, Dan
Paulson)

"The company has two types of jobs: office and sales. An employee may be in either a
regular or in a managerial position. Salaries are comprised of base pay, overtime pay and
commissions. The way in which total salary is calculated depends on the job type and
employee position. Company policy is as follows:

the office staff is entitled to overtime pay but not to commissions.
the sales staff is entitled to commissions but not to overtime pay.
managers are not entitled to overtime pay nor commissions.
hours and sales are recorded for all employees. (This might happen if managers are required
to report hours and office workers may take a telephone order.)

Also assume that all payroll processing takes place at the end of some period"

2. General Description

At the end of a period (ie. end of the month) all personnel hand-in a time sheet. The time sheet data
is entered into the system by the accountant. Then the accountant initiates the pay check processing
for the period. The processing MUST be programmed according to the below documentation.

95

Figure 6 Context Diagram - Payroll system

96

Figure 7 Diagram 0 - Payroll System

Data Dictionary

97

Data Stores (Databases) *.rihf
(The databases are already created in the project directory.)

Structure for database : EMPLOYEE.DBF

Field
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

** Tot

Field name
EMPLOYEENO
LASTNAME
FIRSTNAME
HIRE
MARITAL
DEPENDENTS
STREET
CITY
PROVINCE
POSTALCODE
COUNTRY
TELEPHONE
PAYRATE
TYPE
POSITION

al **

Type
Numeric
Character
Character
Date
Character
Numeric
Character
Character
Character
Character
Character
Numeric
Numeric
Character
Character

Width
4

25
25
8
1
2

50
50
2
6
2
10
6
1
1

194

Dec

Structure for database
Field

1
2
3
4
5
6
7
8
9

Field name
PAYDATE
EMPLOYEENO
HOURS
SALES
CUR_RATE
TOTALPAY
COMMISSION
OVERTIME
BASEPAY

Type
Date
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

Total

PAYROLL.DBF
Width

4
4
8
6
8
8
8
8

36

Dec

98

Data Structures

ADDRESS = STREET + CITY + PROVINCE + POSTALCODE + COUNTRY.

Data Flows

TIMESHEET = EMPLOYEENO + LASTNAME + FIRSTNAME + SALES + HOURS.

PAYDATA = EMPLOYEENO + SALES + HOURS.

PAYOUT = EMPLOYEENO + TOTALPAY + OVERTIME + COMMISSION + PAYRATE.

PAY CHECK = EMPLOYEENO + LASTNAME + FIRSTNAME + ADDRESS + PAYRATE + HOURS
+ SALES + BASEPAY + OVERTIME + COMMISSION + TOTALPAY + PAYDATE.

PAYFACTOR = EMPLOYEENO + TYPE + POSITION + PAYRATE + LASTNAME + FIRSTNAME +
ADDRESS

NEW_EMPLOYEE_DATA = EMPLOYEENO + LASTNAME + FIRSTNAME + ADDRESS +
(TELEPHONE) + PAYRATE + TYPE + POSITION + HIRE +
(MARITAL) + (DEPENDENTS).

EMPLOYEE_DETAIL = EMPLOYEENO + (LASTNAME) + (FIRSTNAME) + (ADDRESS) +
(TELEPHONE) + (PAYRATE) + (TYPE) + (POSITION) + (HERE) + (MARITAL)
+ (DEPENDENTS) + (EMP_DEL).

99

Process Documentation

Process Two.
Process Name: Calculate Pay check

Purpose: Process end of the period paychecks..

Inputs: PAYFACTOR, PAYDATA Outputs: PAYCHECK

Process Definition:

1. First Calculate:

BASE PAY as a function of HOURS & PAY RATE
(Max. of 40 hours a week)

COMMISSION as a function of EMPLOYEE POSITION, EMPLOYEE TYPE, & SALES. (Note: -
Only non-management sales employees get a commission — 5% of sales)

OVFRTTMF. PAY as a function of EMPLOYEE POSITION, EMPLOYEE TYPE, & HOURS.
(Note: — Only non-management office employees can get overtime at regular pay rate if their hours
are above 40 hours a week.)

2. Second Calculate:

as a function of BASE PAY, COMMISSION, & OVERTIME PAY.

Process One
Process Name: Process timesheet

Purpose: Input employee data from timesheets

Inputs: TIMESHEET
Outputs: PAYDATA

Process Three
Process Name: Process employee personnel data

Purpose: Create a record and input data for a new employee.
Modify a record of an existing employee.
Delete a record of an employee leaving the company.

Inputs: NEW_EMPLOYEE_DATA, EMPLOYEE_CHG
Outputs: EMPLOYEE_DATA

Data Elements
Element Name
CITY
COUNTRY
CUR_RATE
COMMISSION
DEPENDENTS
EMPLOYEENO
EMP_DEL

FIRSTNAME
HIRE
HOURS
LASTNAME
MARITAL
OVERTIME
PAYDATE
PAYRATE
POSITION
POSTALCODE
PROVINCE
SALES
STREET
TELEPHONE
TOTALPAY
TYPE

Type(1)
C
C
N
N
N
N
1

C
D
N
C
C
N
D
N
C
C
C
N
C
N
N
C

(1) C = CHARACTER, N=

Len
50
2
5
8
2
2
0

25
8
4
25
1
8
8
6
1
6
2
8

50
10
8
1

=NUMERIC,

Dec
0
0
2
2
0
0

0
0
0
0
0
2
0
2
0
0
0
2
0
0
2
0

Database
EMPLOYEE.DBF
EMPLOYEE.DBF
PAYROLL.DBF
PAYROLL.DBF
EMPLOYEE.DBF
PAYROLL.DBF,

EMPLOYEE.DBF
EMPLOYEE.DBF
PAYROLL . DBF
EMPLOYEE.DBF
EMPLOYEE.DBF
PAYROLL.DBF
PAYROLL.DBF
EMPLOYEE.DBF
EMPLOYEE.DBF
EMPLOYEE.DBF
EMPLOYEE.DBF
PAYROLL.DBF
EMPLOYEE.DBF
EMPLOYEE.DBF
PAYROLL.DBF
EMPLOYEE.DBF

L=LOGICAL, D=DATE

Brief Description

Current pay rate

No. of dependents
EMPLOYEE.DBF

Deletion indicator

Hire date
Period work hours

Marital status
Period overtime
Payroll date
Dollar/hour pay
Mgt/Regular employee

Period sales $

Total period pay
Sales/Office employee

102

TEST DATA
The following is the data from employee time sheets. The Pay Date is January 30
1995.

EMPLOYEENO LASTNAME HOURS SALES

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DAVIDSON
DAWSON
DAWSON
DAY
DANGERFIELD
DANIELSON
MICHEL
MILES
MESSENGER
SCHEBEL
SCHELL
SCHENK
TRENHOLM
TRENT
TRENTINI
TRATCH
TROLLIP
TROT
TROUSIL
VAN DYK
VAN EDEN
VAILE
UPTON
URBAN
UYEDA
VACZY
VALENTINE
VALGARDSON
VALGARDSON
VANDENBERG
VANDENBERG

150
170
150
150
190
187
190
120
180
150
160
150
120
180
190
110
175
160
100
100
100
101
80
90
99
80
110
90
100
120
100

0.00
200.00

0.00

0.00
0.00

1000.00
0.00
0.00
0.00

1000.00
0.00
0.00
0.00
0.00
0.00

800.00
1000.00

0.00
1293.00
900.00
765.00
1000.00
1500.00
1000.00

999.00
100.00
1400.00
1450.00
50.00

2000.00
0.00

103

Hotel Registration Prototype System

Description of n simple hotel registration system

When the guests registers into this hotel, the system initially records the guest name
and registration data such as check-in date and time. It also changes the status of the
room to occupied. When the guest wants to check-out of the hotel, the system should
calculate the total charge which is based on the number of nights, the season (high
or low), the room style, and the appropriate discount (ie. business customers get a
20% discount). Finally, a bill is printed for the guest.

104

(The databases are
Data Stores diabases) *.dbf

: already created in

Structure for database : GUEST.DBF
Field

1
2
3
4
5
6
7
8
9

Field name
REGISTERNO
LASTNAME
FIRSTNAME
STREET
CITY
PROVINCE
POSTALCODE
COUNTRY
TELEPHONE

Type
Numeric
Character
Character
Character
Character
Character
Character
Character
Numeric

Structure for database : ROOM.
Field

1
2
3
4
5
6
7

Field name
ROOMNO
ROOM_STYLE
OCCUPIED
SINGLEBED
DOUBLEBED
QUEENBED
KINGBED

Type
Numeric
Character
Logical
Numeric
Numeric
Numeric
Numeric

Structure for database : RATE.
Field

1
2
3
4
5
6
7

Field name
YEAR
HIGH_HONEY
HIGH_SUITE
HIGH_REG
LOW_HONEY
LOW_SUITE
LOW_REG

Type
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

Width

.DBF

4
25
25
50
50
2
6
2
10

Width

DBF

3
1
1
1
1
1
1

Width

Structure for database : REGISTER.
Field

1
2
3
4
5
6
7
8
9

Field name
REGISTERNO
CHECK_DATE
CHECK_TIME
GUEST_TYPE
ROOMNO
OUT_DATE
OUT_TIME
TOTALDISC
TOTALBILL

Type
Numeric
Date
Numeric
Character
Numeric
Date
Numeric
Numeric
Numeric

4
6
6
6
6
6
6

DBF
Width

4
8
4
1
3
8
4
7
7

the proj

Dec

Dec

Dec

2
2
2
2
2
2

Dec

2
2

ect directory.)

Start
1
5

30
55

105
155
157
163
165

Start
1
4
5
6
7
8
9

Start
1
5
LI
17
23
29
35

Start
1
5
13
17
18
21
29

a
40

End
4

29
54

104
154
156
162
164
174

End
3
4
5
6
7
8
9

End
4
10
16
22
28
34
40

End
4
12
16
17
20
28
32
39
46

105

Data Structures

ADDRESS = STREET + CITY + PROVINCE + POSTALCODE + COUNTRY.
NAME = LASTNAME + FIRSTNAME

Data Flows

CHECKJN = NAME + ADDRESS + ROOM_STYLE_PREFERENCE + GUEST_TYPE.

GUEST_DETAIL = NAME + ADDRESS.

CHECK_IN INFO = NAME + ROOMNO + CHECK_DATE + CHECK_TIME +
GUESTJTYPE.

YEAR_RATES= YEAR + HIGH_HONEY + HIGH_SUITE + HIGH_REG +
LOW_HONEY + LOW_SUITE + LOW_REG .

ROOM_INFO = ROOMNO + ROOM_STYLE + OCCUPIED.

ROOM_STATUS = ROOMNO + OCCUPIED.

CHECK_OUT_INFO = REGISTERNO + OUT_DATE + OUT_TIME +
TOTALDISC + TOTALBILL.

CHECK_OUT = NAME.

BILL = REGISTERNO + NAME + ADDRESS + ROOMNO + ROOM_STYLE +
CHECK_DATE + CHECK_TIME + OUT_DATE + OUT_TIME +
GUEST_TYPE + TOTALDISC + TOTALBILL.

Figure 8 Context Diagram - Hotel reservation system

106

107

Figure 9 Diagram 0 - Hotel Reservation System

108

Process Documentation
Process One, Process Guest Registration

Purpose - Accept guest personal information and room preference
- Search for appropriate room
- Change room number status to occupied.
- Input guest information.
- Input registration information.

Inputs CHECK-IN, ROOMJNFO Outputs GUEST_DETAIL,CH
ECK-IN INFO,
ROOM STATUS

Process Two Process Guest Check-out

Purpose Calculate Guest Total Bill.

Process Definition **Important to do in the following order!!!!!
After the guest has requested to check-out -->

1. Change roomstatus to unoccupied.

2a). Calculate discount based on guest type.

Guest Type Percent Discount
BUSINESS (B) 25%
EMPLOYEE (E) 25%
REGULAR (R) 0
PATIENT (P) 100%

Note: The company has a policy of allowing relatives of patients to
temporary stay for free at the hotel. This is arranged through the hospital
administration.

2b). Calculate roomrate.

The roomrate is dependent on the hotel season and the room style. The hotel
season is high from the beginning of may to the end of august. The hotel
season is low from the beginning of September to the end of april. The rates
for each season depending of room style are stored each year in the rate file.
For example:
YEAR 1994
HIGH_HONEY (High season, honeymoon suite) $250
HIGH_SUrfE (High season, suite) $200
HIGH_REG (High season, regular room) $100

3. Calculate Total Bill
It is a function of the discount.
Other factors in calculation: days & roomrate

Data Elements

Field Name
CHECK_DATE
CHECKJTIME
CITY
COUNTRY
DOUBLEBED
FIRSTNAME
GUEST_TYPE
HIGH_HONEY
HIGH_REG
HIGH_SUITE
KINGBED
LASTNAME
LOW_HONEY
LOW_REG
LOW_SUITE
OCCUPIED
OUT_DATE
OUT_TIME
POSTALCODE
PROVINCE
QUEENBED
REGISTERNO
ROOMNO

ROOM_STYLE
ROOM_STYLE_PREFERENCE
SINGLEBED
STREET
TELEPHONE
TOTALBILL
TOTALDISC
YEAR

Type
D
N
C
C
N
C

c
N
N
N
N
C
N
N
M
L
D
N
C
C
N
N

N

C

N
C
N
N
N
N

Len
8
4
50
2
1

25
1
6
6
6
1

25
6
6
6
1
8
4
6
2
1
4

3

1
1
1

50
10
7
7
4

Dec
0
0
0
0
0
0
0
2
2
2
0
0
2
2
2
0
0
0
0
0
0
0

0

0

0
0
0
2
2
0

Database
REGISTER.DBF
REGISTER.DBF
GUEST.DBF
GUEST.DBF
ROOM.DBF
GUEST.DBF
REGISTER.DBF
RATE.DBF
RATE.DBF
RATE.DBF
ROOM.DBF
GUEST.DBF
RATE.DBF
RATE.DBF
RATE.DBF
ROOM.DBF
REGISTER.DBF
REGISTER.DBF
GUEST.DBF
GUEST.DBF
ROOM.DBF
GUEST.DBF
REGISTER.DBF
REGISTER.DBF
ROOM.DBF
ROOM.DBF

ROOM.DBF
GUEST.DBF
GUEST.DBF
REGISTER.DBF
REGISTER.DBF
RATE.DBF

Check-in date
Check-in time

Number of double beds

Guest type (B)usiness,(E)mployee,or(R)egul
Rate highseason - honeymoon suite
Rate for regular room in high season.

Rate for suite in high season.
Number of kingbeds.

Rate for honeymoon suite in low season.
Rate for regular room in low season.
Rate for suite in low season.
Whether room is occupied.
Date guest checks out.
Time guest checks out.

Number of queen beds.
Unique registration number.

Room style (H)oneymoon,(S)uite,(R)egular
The room style the guest requests.
Number of single beds

Guest total bill
Guest total discount
The year the roomrates apply.

