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Abstract

In this thesis, I design a Maximum Coverage problem with KnaPsack constraint (MCKP)

based model for extractive multi-document summarization. The model integrates three

measures to detect important sentences including Coverage, rewards sentences in regards

to their representative level of the whole document, Relevance, focuses to select sentences

that related to the given query, and Compression, rewards concise sentences. To generate

a summary, I apply an efficient and scalable greedy algorithm. The algorithm has a near

optimal solution when its scoring functions are monotone non-decreasing and submodular.

I use DUC 2007 dataset to evaluate our proposed method. Investigating the results using

ROUGE package shows improvement over two closely related works. The experimental

results illustrates that integrating compression in the MCKP-based model, applying seman-

tic similarity measures to detect Relevance measure and also defining all scoring functions

as a monotone submodular function result in having a better performance in generating a

summary.
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Chapter 1

Introduction

1.1 Introduction

As the World Wide Web (WWW) is getting bigger and people publish more informa-

tion on it, users of the WWW have access to, and are overwhekmed with. Considering

the volume of relevant information, document summarization has become a must. Doc-

ument summarization aims at filtering out less informative pieces of documents and only

presents the most relevant parts of document(s). Summarizing a vast amount of information

is very challenging and more importantly time-consuming, and thus automatic summariza-

tion comes as a pragmatic solution. Automatic text summarization is one of the oldest

problems which has been investigated in the past half-century by the Natural Language

Processing (NLP) and Information Retrieval (IR) communities. Text summarization is “the

process of distilling the most important information from the source (or sources) to produce

an abridged version for a particular user (or users) and task (or tasks)” (Mani and May-

bury, 1999). A summary can be generated by either selecting important sentences of the

original text(s) or understanding and rewriting the main idea of the original text(s). It can

also be either comprehensive or query specific. In general, the summarization techniques

are categorized into different classes based on different criteria as described below:

• Single-document vs. Multi-document summarization: In single-document summa-

rization, a summary is generated from a single document, while in multi-document

summarization, a summary is generated from multiple relevant documents.

• Extractive vs. Abstractive summarization: Extractive methods select important sen-

tences and paragraphs from the original document and concatenate them into a shorter

1



1.1. INTRODUCTION

form, while abstractive summarization methods understand the original text and rewrite

it in fewer words. In an extractive summary, sentences and words are a subset of the

original document, while in an abstractive summary, sentences and words may not

be in the original document (Mani and Maybury, 1999). Generating an abstract sum-

mary with all the features of a good summary is the ultimate goal of automatic text

summarization (Genest and Lapalme, 2012). However existing approaches have lim-

ited success.

• Query-based vs. Generic summarization: In query-based summarization, a summary

is generated with regards to a specific query, while in generic summarization, a sum-

mary is generated for general purposes.

According to Mcdonald (2007), three essential criteria are typically considered in se-

lecting a sentence in query-based, extractive, multi-document summarization including: 1)

relevance, 2) redundancy and 3) length. The relevance of each sentence is shown its relation

to the given query. Sentence redundancy depicts the degree of overlap between the candi-

date sentence and the generated summary. Finally, length is a constraint on the number

of words in the final summary. Coverage is another measure which is considered in some

other research (Filatova and Hatzivassiloglou, 2004; Yih et al., 2007; Takamura and Oku-

mura, 2009; Lin et al., 2009) that considers coverage level of a sentence by the document.

Sentence compression also has been considered in the process of document summariza-

tion (Jing, 2000). Sentence compression can be considered as a word deletion process. It

improves the summary quality by removing less relevant words (phrases) from a partly rel-

evant sentence, while keeping the sentence grammatically correct. Thus, the final summary

will contain mostly relevant information.

In my thesis, I focus on the query-based, multi-document approaches since any solution

for these categories can be easily generalized for generic and single document summariza-

tion. In addition, I focus on extractive approaches because: 1) grammatical correctness of

linguistic units are preserved at the local level in extractive approaches, 2) problem for-
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1.2. PROBLEM STATEMENT

mulation is quite straightforward (Lin and Bilmes, 2010), and 3) most of recent research

focus on extractive approaches. In addition, I employ compression besides commonly used

measures in the process of summary generation.

1.2 Problem Statement

The effective aspect of using sentence compression for document summarization has

been shown in recent research(Jing, 2000; Knight and Marcu, 2002). It can improve the

summary quality by reducing less informative or redundant concepts (words). However,

the majority of research concentrates on sentence compression for single-document sum-

marization or generic summarization. Due to the ever increasing volume of data on the web

and the necessity for the user to access relevant information based on their current need,

having a query-based multi-document summarization is more needed in comparison with

single-document or generic summarization.

Maximum Coverage problem with KnaPsack constraint (MCKP) (Filatova and Hatzi-

vassiloglou, 2004) is widely used to model the document summarization problem as it is a

good fit for the summarization problem and it is proven to have a great performance (Fila-

tova and Hatzivassiloglou, 2004; Yih et al., 2007; Takamura and Okumura, 2009; Gillick

and Favre, 2009; Morita et al., 2011). However, to the best of my knowledge, no research

exists that investigates the potential of applying sentence compression in a MCKP model for

the task of query-based multi-document summarization. In this thesis, I remodel MCKP by

integrating compression into it in the process of generating a summary. To solve the MCKP

based summarization problem, many greedy or optimal approaches have been introduced.

Optimal approaches are usually expensive or not be practical for a large scale problem (Li

et al., 2013). However, they consider the quality of the summary as a whole and mostly

generate a summary of higher quality compared to most greedy approaches. On the other

hand, greedy approaches do not take summary’s quality as a whole into consideration as

they generate a summary by applying a heuristic to determine the sentence that looks the

3



1.3. CONTRIBUTIONS

best at each step and it may result in generating a lower quality summary. On the other

hand, they are not as complex as optimal approaches and can be scaled for a large prob-

lem. The work of (Lin et al., 2009) employed a modified greedy approach for the document

summarization problem which has a higher quality and maximum scalability because of its

greedy nature. However, their approach lacks the compression which may result in gener-

ating a summary containing sentences with irrelevant parts. So, in this thesis I cover the

compression part by defining it as a monotone submodular function which is compatible

with the modified greedy approach.

1.3 Contributions

Although, there has been some research on modeling summarization using MCKP, in-

tegration of extraction and compression, or employment of submodulairty in document

summarization, my research differs from them in the following aspects:

• Introducing compression into MCKP modeling in the process of generating a sum-

mary. This is the first attempt to investigate the potential of applying sentence com-

pression in a MCKP model for the task of summarization to the best of my knowl-

edge.

• Integrating approximation techniques and compression to improve the quality of sum-

marization. The works in (Lin et al., 2009; Lin and Bilmes, 2010, 2011a) take ad-

vantage of approximation when their functions have some specific properties (sub-

modularity and monotonicity); However their approach lack the compression part. I

integrate compression in their approximation algorithm as another measure to select

important sentences to generate a more accurate summary.

• Considering a semantic similarity measure to calculate the relevance of a sentence

to a query to better detect the correlation of words. The majority of research uses

word-matching based measures, which lack the consideration of semantic relations

4



1.4. THESIS ORGANIZATION

between words. So, I employ a WordNet based measure to calculate the semantic

similarity between a sentence and a query.

• Considering multi-document summarization instead of single document summariza-

tion. The majority of research considers only the problem of single-document sum-

marization, while in reality there might be many relevant documents to summarize.

Thus, I deal with the more practical scenario of multi-document summarization in

my thesis.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2: I will define automatic document summarization and concepts and also

introduce different categorization on it. I will briefly discuss some necessary background,

such as WordNet and submodularity. An overview of previous works on automatic docu-

ment summarization will also be presented.

Chapter 3: I will introduce my semi-extractive document summarization model, which

I call it Comp-Rel-MCKP Summarizer. I will explain its preprocessing phase and problem

formulation, as well as how I solve the problem and generate a summary using different

algorithms.

Chapter 4: I will introduce the Dataset and the evaluation measure. In addition, I will

show the result of various experiments to evaluate the effectiveness and efficiency of the

proposed model and to compare the model to previous proposed approaches.

Chapter 5: I will conclude the thesis and suggest directions for future research in this

area.

5



Chapter 2

Background on Document Summarization

2.1 Introduction

This section presents some preliminary concepts and definitions for document sum-

marization. In addition, some necessary background for the proposed method including

WordNet and WordNet-based similarity measures, which are used to calculate the Rele-

vance measure (see Section 3.3.2) and the Submodular function which are used in the pro-

posed approach (see Section 3.3.3) are discussed. Finally, I summarize the existing related

approaches for automatic document summarization.

2.2 Background

2.2.1 Document Summarization

Document Summarization is the process of generating a summary from one or more

documents. A summary is a concise version of a document that contains important infor-

mation. This process can be done either manually or automatically, and has been considered

for many years to reduce the amount of text a user must read. In manual document sum-

marization, a human reads the document carefully and rewrites useful information in fewer

words. However, the increasing volume or number of documents makes this a difficult task.

To address the problem of manual summarization, Luhn (1958) and Baxendale (1958) intro-

duced automatic summarization in the late 1950s. Automatic summarization assists users

by providing a fast and scalable summarizer which can be applied in various domains. The

first application of automatic summarization was generating abstracts for literatures (Luhn,

1958) but it was eventually extended to other domains such as summarizing text to be suit-

able for displaying on hand-held devices (Nagwani and Verma, 2011), or summarizing

6



2.2. BACKGROUND

relevant documents in Search engines, Question Answering and Recommender systems

(Wang et al., 2013). Many automatic document summarizers have been introduced since

late 1950s. They can be categorized from different perspectives.

The first categorization is based on “How many documents should be considered in

the process of generating a summary?”. Based on the answer, summarization techniques

are categorized into Single-document and Multi-document. Single-document summarizers

consider information from a single document to generate a summary, while multi-document

summarizers consider information from multiple documents and generate a single concise

summary for all the given documents.

The second categorization is based on “Whether or not to consider user’s need in the

process of summarization” which results in having two categories of Query-oriented and

Generic summarization. Query-oriented summarization methods consider a user’s need as

a “query” and generate a summary that is related to the given query, while Generic sum-

marization methods generate a summary that has the same variety of topics as the original

document(s) and cover the important information of the document(s).

The third categorization is based on “What is the strategy to select important informa-

tion to generate a summary?” which results in having two categories of Abstractive and

Extractive summarization. Abstractive summarizers generate human-like summaries and

similar to manual summarization, they need a full understanding of the context and a good

ability of rewriting important information into a shorter form. Most abstractive summa-

rizers employ linguistic methods to interpret the document(s) besides advanced language

generation techniques (Das and Martins, 2007). Extractive summarizers select important

linguistic units of the document(s) and concatenate them to generate a summary. As the

proposed method in this thesis is Extractive, I focus my discussion on extractive methods

only.

Extractive summarizers select important sentences of the document(s) to form a sum-

mary. So, one of the main questions is “How to identify a sentence’s importance?”, which

7



2.2. BACKGROUND

is called Sentence scoring. Different measures can be used for scoring a sentence. These

measures are as follows:

• Coverage evaluates “How much a sentence is representative of the document”. Cov-

erage considers the number of single words, concepts, or n-grams of the document(s),

which are covered in the sentence.

• Relevance evaluates “How much important content a sentence has (or How important

is a sentence)”, which is known as Importance-based Relevance and “How relevant

is a sentence to the given query in query-oriented summarizer”, which is known as

Query-oriented Relevance. For importance-based relevance, the position or length of

a sentence, or the presence of certain named entities and cue words are some of the

features which are considered in the literature. For query-related relevance, word,

concept or ngram overlap, longest common subsequence, co-occurrence, and seman-

tic similarity between the sentence and the query are considered in the literature.

• Redundancy evaluates “How much a sentence overlaps with the already selected sen-

tences in the summary”. Redundancy can be measured using cosine similarity, syn-

tactic similarity, or semantic similarity measures.

• Compression evaluates “How much a sentence is concise and does not contain in-

significant information”. Jing (2000) introduced sentence compression in the process

of document summarization for the first time as a step toward abstractive summariza-

tion. Sentence compression plays an important role in summarization since it allows

a summary to have more information by removing insignificant parts. It is usually

considered as the number of removed words, concepts, or n-grams. A compression

measure is considered at the sentence selection phase in the extractive document sum-

marization, since the chosen sentences may contain insignificant information. There

are two main models to employ compression in an extractive document summariza-

tion method including the Pipeline model and the Joint model. In the Pipeline model

8



2.2. BACKGROUND

(Jing, 2000; Knight and Marcu, 2002; Wang et al., 2013), the extraction process is

followed or preceeded by the compression process. So, extraction and compression

are done in two different phases. But, in the Joint model (Daume, 2006; Martins

and Smith, 2009; Gillick et al., 2009; Berg-Kirkpatrick et al., 2011; Chali and Hasan,

2012), both extraction and compression are done in a single phase.

• Diversity indicates “How much a sentence is different from the selected sentences in

the summary”. To calculate the diversity value of a sentence, all sentences within

the original document(s) are partitioned into different clusters. The diversity measure

assigns higher scores to the sentences of a cluster, from which no sentences is already

selected in the summary. Lin and Bilmes (2011a) used diversity as a measure for

sentence scoring in their proposed summarization approach.

Sentence scoring methods measure at least one of the aforementioned features. They

are mainly categorized into three different categories based on how they capture features

(Celikyilmaz and Hakkani-Tur, 2010) as follows:

1. Supervised methods: These methods need training data to learn the features of a

good summary. Then, they assign a score to sentences using the trained features.

Sentences are classified as summary or non-summary based on the trained features.

Some of the supervised approaches are Bayesian classifier, maximum entropy, condi-

tional random fields (CRF), and skip-chain conditional random fields. Some extrac-

tive summarizers that has a supervised sentence scoring are introduced in (Kupiec

et al., 1995; Osborne, 2002; Galley, 2006; Yih et al., 2007; Shen et al., 2007; Taka-

mura and Okumura, 2009).

2. Unsupervised methods: These methods use some statistical and linguistic features

of the document and the dataset to determine the score of each sentence. Some of

these features are the location and the statistical features of a term. Some extractive

summarizers that use unsupervised sentence scoring are introduced in (Luhn, 1958;

9



2.2. BACKGROUND

Baxendale, 1958; Marcu, 1997; Schiffman et al., 2002; Daume, 2006; Morita et al.,

2011; Lin and Bilmes, 2011a).

3. Hybrid methods: These methods combine features from both aforementioned meth-

ods to rank sentences. The first hybrid method is introduced in (Martins and Smith,

2009) with others introduced in (Celikyilmaz and Hakkani-Tur, 2010; Berg-Kirkpatrick

et al., 2011).

The next step after sentence scoring is, “How to select the best combination of sentences

to form a summary”. Nenkova and McKeown (2012) categorize different approaches into

three main categories: 1) Best n approaches, 2) Greedy-like approaches, and 3) Global se-

lection approaches. In Best n approaches, the top n sentences having the highest scores

while not exceeding the length constraint are chosen to form a summary. In Greedy ap-

proaches, sentences are selected using an iterative greedy procedure. During each iteration,

the scores of sentences are recalculated to reflect their similarity to the already selected sen-

tences in the summary. The sentence not have similar features like the already selected sen-

tences in the summary are dropped from further consideration. Then, a sentence is selected

to be added to the summary. In Global selection approaches, document summarization is

formulated as an optimization problem and tries to solve the problem globally.

As I focus on extractive document summarization in my thesis, I will review some of

the proposed extractive document summarizers in Section 2.3.

2.2.2 WordNet

WordNet1 (Miller et al., 1990) is a lexical database for the English language created

and maintained at the Cognitive Science Laboratory of Princeton University. Development

of WordNet began in 1985, and it was completed gradually over the years, with the lat-

est version was released in 2006. The purpose of WordNet is twofold: 1) to produce a

combination of dictionary and thesaurus and 2) support automatic text analysis. WordNet

1Available at https://wordnet.princeton.edu/
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2.2. BACKGROUND

Figure 2.1: A synopsis of noun taxonomy in WordNet (Pirró and Euzenat, 2010)

can also be considered as a lexical ontology. WordNet groups English words into different

sets of synonyms which are called synsets (synonym sets). Each synset provides a short

and general definition of words which are inside the synset. WordNet also captures the se-

mantic relation between different synsets. The latest version of WordNet contains 155,287

words, which are organized into 117,659 synsets. WordNet consists of four different parts

of nouns, verbs, adjectives, and adverbs since they each follow different grammatical rules.

Each part is organized in a taxonomy format, and the relations that exist in each part vary

from the other parts. As a case in point, for noun, synset Y can be holonym of synset X if X

is part of Y (e.g. window is part of building). However, the relation holonym does not exist

for the other parts (i.e. verbs, adjectives, and adverbs). Figure 2.1 shows a synopsis of the

noun taxonomy of WordNet.

As mentioned above, one of the principal goals of WordNet is to support text analysis

and find the semantic relation between different concepts and words. Since the development

of WordNet, different similarity measures have been proposed. These similarity measures

mainly fall into three different, but not necessarily disjoint, categories: Ontology-based

(Path-based) approaches, Information Theoretic approaches, and Hybrid approaches.

The first type of similarity measure is Ontology-based approach in which the length of

the path connecting two concepts which contain the words plays the most important role

11



2.2. BACKGROUND

in calculating the similarity. The first ontology-based approach was proposed by Rada et

al. (1989), which considers the distance between two words w1 and w2 as the number of

links that are needed to attain the Least Common Ancestor (LCA) of concepts c1 and c2

containing words w1 and w2, respectively. The other approach in this category is introduced

in (Pirró and Euzenat, 2010), which is similar to Rada et al.’s similarity measure, but it

includes some rules restricting the way concepts are traversed in the taxonomy.

The second similarity measure category is the Information Theoretic approach, in which

the notion of Information Content (IC) is utilized. This type of similarity measures requires

a corpus from which the information content of words is extracted. Resnik (1995) proposed

the first approach leveraging IC for the purpose of similarity measure. According to the

Resnik’s similarity measure, the more probable a concept is of appearing in a corpus, the

less informative it would be. In other words, infrequent words have more information to

convey. Resnik considers the similarity of two words w1 and w2 as the information content

of the LCA of concepts c1 and c2 (in the taxonomy), which include words w1 and w2,

respectively.

The last category of similarity measures are Hybrid approaches which usually combine

multiple information sources. Li et al. (2003) introduced a semantic similarity measure

which takes into account the shortest path length, depth, and local density concepts in

the taxonomy. The similarity measure used in this thesis to calculate the Query-oriented

Relevance in Section 3.3.2 is a Hybrid measure called FaITH (Feature and Information

THeoretic) proposed by Pirro (2010). This measure takes advantage of two main concepts:

ratio-based Tversky’s formulation and intrinsic information content. In Tversky’s formula-

tion of similarity, which is based on a representation of concepts according to their features,

the similarity of two concepts c1 and c2 can be calculated by taking into account both com-

mon and distinguishing features of c1 and c2. As an example, suppose we desire to find

the similarity of two concepts “car” and “bicycle” which are descendants of a more general

concept “wheeled vehicle”. Figure 2.2 illustrates the features of these three concepts.

12



2.2. BACKGROUND

Figure 2.2: Features of concepts car, bicycle, and wheeled vehicle (Pirró and Euzenat,
2010)

The ratio-based Tversky’s formulation of similarity of concepts c1 (car) and c2 (bicycle)

can be represented by the following formula:

simtvrratio(c1,c2) =
F(ψ(c1)∩ψ(c2))

F(ψ(c1)\ψ(c2))+F(ψ(c2)\ψ(c1))+F(ψ(c1)∩ψ(c2))
(2.1)

where F is a function reflecting the salience of a set of features, ψ(c) shows the set of

features relevant to concept c, and F(ψ(c1)\ψ(c2)) means features present in only c1, and

not c2.

According to the feature-based formulation of similarity in WordNet, F can be replaced

by IC in the information theoretic domain. Table 2.1 shows the mapping between feature-

based and information theoretic similarity models. Hence, the Formula 2.1 turns into

Formula 2.2.

Table 2.1: Mapping between feature-based and information theoretic similarity models
(Pirró and Euzenat, 2010)

Description Feature-based model Infromation-theoritic model

Common feature F(ψ(c1)∩ψ(c2)) IC(msca(c1,c2))

Features of c1 alone F(ψ(c1)\ψ(c2)) IC(c1)− IC(msca(c1,c2))

Features of c2 alone F(ψ(c2)\ψ(c1)) IC(c2)− IC(msca(c1,c2))

13
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sim(c1,c2) =
IC(msca(c1,c2))

IC(c1)+ IC(c2)− IC(msca(c1,c2))
(2.2)

where msca stands for Most Specific Common Abstraction and msca(c1,c2) reflects the

information shared by two concepts c1 and c2 in an ontology structure. FaITH replaces IC

of Equation 2.2 by Extended Information Content (eIC) which is defined as:

eIC(c) = iIC(c)+EIC(c) (2.3)

where iIC is the intrinsic Information Content which is proposed in (Seco et al., 2004) and

EIC is the Extended Information Content coefficient. iIC is defined as follows:

iIC(c) = 1− log(sub(c)+1)
log(maxcon)

(2.4)

where the function sub returns the number of sub-concepts of a given concept c, and max

is a constant indicating the total number of concepts in the considered taxonomy, which is

WordNet here. The coefficient EIC is defined for each concept as follows:

EIC(c) =
m

∑
j=1

∑n
k=1 iIC(ck ∈CR j)

|CR j |
(2.5)

where m is the number of all relations where concept c is connected to other concepts, n is

the number of all the concepts at the other end of a particular relation, and CR j is the set of

concepts that have relation to concept c j.

The final FaITH measure is as follows2:
2For more information, read (Pirró and Euzenat, 2010)
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simFaIT H(c1,c2) =
eIC(msca(c1,c2))

eIC(c1)+ eIC(c2)− eIC(msca(c1,c2))
(2.6)

The FaITH similarity measure reveals a better accuracy in finding the similarity between

two concepts compared to other similarity measures, and that is why I have adopted it to

calculate the Relevance measure (See Section 3.3.2) in my thesis.

2.2.3 Submodularity

Submodularity is widely used in many research areas including game theory, eco-

nomics, combinatorial optimization, and operations research. Recently it is also considered

in NLP research (Lin and Bilmes, 2010, 2011a,b; Morita et al., 2013) since submodular

functions can help improving scalability. As I use Submodularity in Section 3.3.3, I explain

basic definitions of submodular functions in this section.

Definition

Submodularity is considered as a property of a set of functions (Morita et al., 2013).

Let V = {v1,v2, ...,vn} be a set of objects, a set function F : 2V → R maps subsets of the

ground set, S⊆V , into real values. There are many equivalent definitions of submodularity

and two of them are as follows.

Definition 2.1. For any R,S⊆V , function F : 2V → R, is Submodular if:

F (S∪R)+F (S∩R)≤ F (S)+F (R) (2.7)

Definition 2.2. For any R⊆ S⊆V , and v ∈V , function F : 2V → R, is Submodular if:

F (S∪{v})−F (S)≤ F (R∪{v})−F (R) (2.8)

Definition 2.2 is equivalent to the property of diminishing returns which is widely used

in economics. It means that a set function F is submodular if the incremental value of
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Figure 2.3: Example of submodular function (Lin, 2012)

the function for the superset S, is not greater than the incremental value for the subset R

by adding a new element v to both sets. Figure 2.3 shows an example of a submodular

function. In this example, function F counts the number of colors in a container. As it can

be seen, the left container has 4 balls with 3 different colors and the right container has 5

balls with 4 different colors. Let us add a new blue ball to both containers. The value of the

function F has an increment of 1 for the left container, however, there is no increment for

the right container since it already has a blue ball. So, function F which counts the number

of unique colors in a container is submodular.

Submodular functions can be categorized as Monotone and Non-monotone and are de-

fined as follows:

Definition 2.3. For any R⊆ S⊆V , function F : 2V → R, is Monotone Submodular if:

F (R)≤ F (S) (2.9)

Definition 2.4. Any submodular function F : 2V → R, which is not Monotone is Non-

monotone Submodular.

2.3 Related Works on Automatic Document Summarization

Automatic document summarization was introduced in the late 1950s (Luhn, 1958; Bax-

endale, 1958). The strategies only considered two measures term frequency (TF) and rel-
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ative position of words in a sentence to rank sentences and form a summary. However,

more automatic document summarizers have been introduced since then, which consider a

variety of more advanced features and algorithms in the process of generating a summary.

As the number of proposed automatic document summarizers for both Extractive and Ab-

stractive summarization is quite high, I confine the literature review to solely extractive

document summarization approaches, specially I focus on those which consider MCKP for

modeling, compression as another measure in generating a summary, or submodularity in

defining their scoring functions which are the main focus in this thesis.

Among three different strategies to select sentences to form a summary (discussed in

Section 2.2.1), greedy and global selection approaches are more popular in recent years.

So, I review some of their related research in this section.

2.3.1 Greedy-like approaches

One of the widely used greedy approaches is Maximum Marginal Relevance (MMR)

(Carbonell and Goldstein, 1998). This approach considers both the Relevance and the Re-

dundancy measures in selecting sentences. It gives a penalty to sentences that are similar

to the already-chosen sentences in the summary and selects sentences having the highest

value of relevance. Erkan et al. (2004) also use MMR to form a summary, but they ap-

ply a graph-based method to identify sentence importance. They represent sentences as a

graph and apply the concept of eigenvector centrality in the graph to determine sentence

centrality. More complicated summarization methods which also use MMR are introduced

in (Goldstein et al., 2000; Radev et al., 2004; Dang, 2005).

The summarization method of Schiffman (2002) is another example of a greedy ap-

proach. They rank sentences based on some corpus-based features, such as dominant con-

cepts and lead words which are determined using co-occurrence and lead sentences of doc-

uments respectively. They consider some features such as the location of a sentence in the

document which gives a higher score to the sentence near the beginning of the document.
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Then, their method produces a summary by sequentially selecting top-ranked sentences

until reaching the desired length.

Filatova and Hatzivassiloglou (2004) also used a greedy algorithm to select important

sentences. Their work was the first attempt in which document summarization is formulated

as a Maximum Coverage problem with KnaPsack constraint (MCKP). In the MCKP, we are

given a set of elements with associated costs and a capacity K. The goal is to find a subset

of elements such that the total cost of the subset does not exceed K, and the total weight of

elements covered by the selected subset is maximized (Khuller et al., 1999).

To generate a summary, the algorithm selects sentences with the greatest total Coverage

of words, while implicitly minimizing information overlap within the summary. They be-

lieve that the coverage measure simultaneously minimizes redundancy and there is no need

to have a seperate measure of redundancy. They show how the coverage measure encom-

passes redundancy using an example. Consider a case where a document has three concepts

A, B, and C and three sentences s1, s2, and s3 as: s1 : {A,B}, s2 : {A,C}, s3 : {B,C}. A good

summary should have all three concepts. Using the Coverage measure, selecting two sen-

tences is enough to cover all concepts, however, redundancy based measures tend to select

all three sentences since any pair of them are partly dissimilar.

Daume (2006) proposed a greedy algorithm called the SEARN algorithm (integrating

SEARch and lEARNing) to solve the document summarization problem in which summary

is formed incrementally. They concurrently consider a Relevance measure which uses some

lexical features and language model probabilities of words and sentences, as well as a Com-

pression measure that uses the syntactic structure of the sentences.

Yih et al. (2007) also use MCKP to model the summarization problem. However, they

consider position related information of a sentence in addition to the Coverage measure

for sentence scoring, and apply stack decoding to solve it. In their method, they employ

supervised learning to learn the probability that a given term in the document will be in the

summary.
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Takamura and Okumura (2009) also represents document summarization as a MCKP

problem, and try to solve the problem both globally and greedily. Their model, which is for

generic summarization is based on the two measures of Coverage and Importance. They

also believe that Redundancy is implicit in Coverage. The Importance measure evaluates

the relevance level of a sentence to the topic of the document cluster. They employ five

different decoding algorithms including 1) a greedy, 2) a greedy algorithm with an ap-

proximation factor of 1
2(1−

1
e ), 3) a stack decoding, 4) a linear relaxation problem with

randomized decoding, and 5) a branch-and bound method. As their result shows, their

greedy algorithm outperforms the algorithm proposed in (Filatova and Hatzivassiloglou,

2004). The proposed approach to model the document summarization problem is similar

to their approach. However, it differs from their approach since my approach is for query

oriented document summarization while their work was for generic summarization and I

consider both query-oriented and importance-based features to calculate relevance. In ad-

dition, I augment the proposed model with a compression measure which is missing in their

model.

Morita et al. (2011) also model the query-based extractive summarization problem

based on the MCKP problem and apply a greedy algorithm to solve it. They use an un-

supervised method to rank sentences. They enrich the given query using a co-occurrence

graph to have a better similarity detection between a query and a sentence.

Recently, submodularity has been used in document summarization (Lin et al., 2009;

Lin and Bilmes, 2010, 2011a; Sipos et al., 2012) which results in greedy algorithms with

performance guarantees for the summarization process.

Lin et al. (2009) introduce a graph-based document summarization which utilizes sub-

modularity. They build a graph for the document in which vertices indicate sentences of the

document and edges indicate a relationship between sentences. A weight, representative of

the similarity between sentences, is assigned to each edge. They use the two measures of

Coverage and Redundancy to select important sentences and apply a greedy algorithm to
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generate a summary in which a constant cost is considered for all sentences.

Lin and Bilmes (2010) also propose another document summarizer using a submodular

function which is a generalization of their previous work (Lin et al., 2009). They formulate

summarization as a submodular function consisting two measures of Redundancy and Cov-

erage. In their previous work, they consider an identical cost for all sentences. However in

(Lin and Bilmes, 2010) the cost of sentences varies based on their lengths. They propose a

greedy algorithm with a (1− 1√
e) performance guarantee which is inspired by the greedy al-

gorithm introduced in (Khuller et al., 1999) for the budgeted maximum coverage problem.

This greedy algorithm needs the scoring function that is monotone and submodular.

Lin and Bilmes (2011a) improve upon their previous works using two measures of Rel-

evance and Diversity to rank sentences. They apply their modified greedy algorithm pro-

posed in (Lin and Bilmes, 2010) to generate a summary. They believe that Diversity is a

good replacement for the widely used measure of Redundancy, since Redundancy violates

the monotonicity of the objective function. In their objective function, Diversity assigns

higher score to the sentences of a cluster, from which no sentences is already selected in the

summary. Employing submodular functions in the proposed model is inspired by Lin and

Bilmes’s work (2011a). However, the scoring functions are different. They use Diversity as

a replacement measure for Redundancy and a different Relevance measure, while my pro-

posed approach is based on MCKP and I use three measures of coverage which implicitly

contain redundancy, relevance and compression to score sentences.

Sipos et al. (2012) also proposed a supervised approach to learn submodular scoring

functions. They consider two submodular measures of Redundancy and Coverage in their

extractive document summarization. They use the same Redundancy measure as introduced

in (Lin and Bilmes, 2010) which considers inter-sentence similarity.

Dasgupta et al. (2013) also work on integration of submodular functions in document

summarization. Their work is a generalization of (Lin and Bilmes, 2011a) which considers

a combination of submodular and non-submodular functions. They employ a Redundancy
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measure which is non-submodular and apply a different greedy algorithm which has a 1/4-

approximation factor.

2.3.2 Global selection approaches

Global selection is another strategy to generate a summary. One of the first global selec-

tion approaches is introduced by McDonald (2007) which is an improvement to Goldstein’s

method (2000) by considering the MMR as a knapsack problem. They employ a dynamic

programming algorithm and Integer Linear Program (ILP) to maximize the optimality of

the generated summary. As their result shows, their approach improves the performance of

the summary.

Gillick et al. (2008; 2009) also introduced a global selection approach using a concept-

based ILP approach to generate a summary. They consider three measures of Relevance,

Coverage, and Compression in their work. Their method generates a compressed version

of sentences and considers them besides original sentences during the sentence selection

process to form a summary. In (Gillick et al., 2009), they remove temporal and modifiers

expressions using semantic role labeling to generate a compressed sentence.

Martins and Smith (2009) proposed a joint model for integrating extractive document

summarization and compression as a global optimization problem using ILP. Their method

used a supervised tree-based model for sentence Compression, and Relevance and Redun-

dancy measures for extraction.

Berg-Kirkpatrick et al. (2011) proposed a supervised tree-based approach to compress

and extract sentences simultaneously. They model their joint approach as an ILP in which

objective function is based on Coverage and Compression which is based on subtree dele-

tion model (in terms of number of cut choices in the parse tree of a sentence). They used

an approximate solver for their compressive-extractive summarizer to generate a summary.

Firstly, they extract a subset of sentences with a total length of M or less. Then, they gen-

erate a summary for the selected subset of sentences using their joint model and ILP. Their
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work is another closely related work to the proposed approach, however, they do not employ

submodular functions and a greedy algorithm, but instead use Integer Linear Programming.

Their proposed method is for generic summarization in which they use supervised learn-

ing, while the proposed method is for query-based summarization and I use unsupervised

learning.

Chali and Hasan’s document summarization method (2012) is also a global selection

approach. They also used ILP to formulate query-based multi-document summarization,

but they considered three measures of Relevance, Redundancy, and Compression in their

work. They also investigated the result of three models of ComFirst, in which compres-

sion is performed on all sentences first, before compressed sentences are selected to form a

summary, 2) SumFirst, in which important sentences are selected first, before the selected

sentences are compressed, and 3) Combined, in which compression and extraction are per-

formed jointly. As their result shows, their Combined model outperforms the two other

models. They also investigate the result of three different compression models using lan-

guage models with lexical and syntactic constraints, topic signature modeling function, and

semantic role constraints.

Among the different measures of Coverage, Relevance, Redundancy, and Compression

discussed in Section 2.2.1, Compression has been considered by many strategies since it can

really affect the quality of generated summaries. Even though, some strategies solely con-

centrate on how to compress a sentence without considering it as a step in a summarization

framework. So, in the following I review some of the main researches on compression.

Grefenstette (1998) proposed the first attempt to employ sentence compression in auto-

matic summarization. They use a rule-base approach to summarize audio for the blind.

Sentence compression methods use different modeling paradigms such as the noisy-

channel model (Knight and Marcu, 2002; Turner and Charniak, 2005; Galley and McK-

eown, 2007; Zajic et al., 2007), decision-tree learning (Knight and Marcu, 2002), con-

stituency or dependency parse tree (Jing, 2000; McDonald, 2006; Berg-Kirkpatrick et al.,
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2011), margin-based learning (McDonald, 2006; Berg-Kirkpatrick et al., 2011), and lan-

guage model (Clarke and Lapata, 2008).

Jing (2000) was one of the first to apply sentence compression for automatic text sum-

marization. They propose a supervised method that uses syntactic information of the sen-

tence. They employ an English Slot Grammar (ESG) parser (McCord, 1989) to build

the sentence parse tree, apply some grammatical checking,context information, syntactic

knowledge, and statistics derived from a corpus to determine insignificant phrases of each

sentence.

Knight and Marcue (2002) proposed two models of compression using a noisy channel

and a decision tree to compress a sentence. The noisy channel model consists of three

models of source model, channel model, and decoder. In the source model, the grammatical

correctness probability of each string s in the sentence, P(s), is calculated. P(s) shows

how likely a string s can be considered in the compressed version of the sentence. The

channel model calculates the probability of P(S|s) which shows how likely the string s

can be converted/expanded to the sentence S by adding additional words. The decoder

component of their model, searches for the string s in the sentence S that maximizes P(s)∗

P(S|s). In their decision-tree model, they use a parse tree of the sentence and apply a shift-

reduce paradigm to compress the sentence. They show that a decision-tree model is more

flexible compared to noisy channel model.

Tuner and Charniak (2005) improve upon the work of (Knight and Marcu, 2002) by

proposing both an unsupervised and a semi-supervised modified noisy channel model. Gal-

ley and McKeown (2007) and Zajic et al. (2007) also propose sentence compression ap-

proaches based on the noisy channel model introduced in (Knight and Marcu, 2002).

McDonald (2006) proposed a discriminative approach to compress sentences. They

build a phrase-based, dependency parse tree for each sentence and use some soft syntactic

features of the parse trees to compress sentences.

Clarke and Lapata (2008) formulate sentence compression as an optimization problem
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and apply integer linear programming (ILP) to generate compressed sentences. They use a

language model to determine unimportant n-grams within the sentences and employ some

hand-crafted constraints to ensure the grammatical correctness of the compressed sentences.

2.4 Summary

In this chapter, I explain document summarization and the different categorizations on

it. Extractive summarization steps are discussed in detail as it is the focus in this thesis.

Some related works are then reviewed. Even though several approaches have been proposed

for extractive document summarization, there is no work on the integration of MCKP and

compression to the best of my knowledge. In addition, no research is done on employing

compression in submodular based models which has a good performance. The following

chapter describes the proposed approach to cope with the aforementioned shortcomings in

document summarization. More specifically, the approach provides an improvement over

the works discussed in Sections 2.3.

I employ compression in the proposed document summarization strategy using the Joint

model discussed in Section 2.2.1, since Pipeline model may fail to find an optimal solution,

regardless of which operation, compression or extraction, is performed first.

24



Chapter 3

Semi-Extractive Document Summarizations

3.1 Introduction

The problem of extractive document summarization has been studied extensively be-

cause of the ever increasing volume of relevant available information. Despite the popular-

ity of extractive approaches, they are still suffering from a fundamental problem which is

“whether or not to select a lengthy sentence with partly relevant information” (Wang et al.,

2013). Including a relevant but lengthy sentence in the summary may result in excluding

other relevant sentences due to the space limit. However, excluding a relevant sentence

from the summary may result in missing relevant information.

Sentence compression has been considered as a good remedy to the aforementioned

problem (Jing, 2000). It can improve the summary quality by reducing less informative

or redundant concepts or words. There exist two principle approaches to extract the most

important sentences, greedy approaches and optimal approaches3. Many approaches have

focused on using greedy algorithms to extract the important sentences due to their simplicity

and speed. However, the major limitation of the available approaches is that little attention

is given to integrating approximation techniques and compression to improve the quality

of summarization. This motivates us to propose a compression-based extractive (semi-

extractive) summarizer that integrates compression in the latest approximation algorithm

for document summarization.

To model document summarization, I use the Maximum Coverage KnaPsack (MCKP)

problem since the task is to select a subset of sentences in extractive document summa-

rization. In addition, based on the definition of summary, it should be of a specific length.

3These approaches were discussed in Section 2.2.1.
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Thus, it can be easily mapped to a knapsack problem.

In this chapter, I introduce the proposed semi-extractive document summarizer. The

proposed approach is not fully extractive, since fully extractive methods either include a

sentence in the summary entirely or completely exclude it from the summary. However, in

the proposed method, a sentence can be partially included in the summary.

3.2 Notations and Definitions

In this section, I first introduce the most important notations used in the automatic doc-

ument summarization (see Table 3.1).

Table 3.1: List of notations in automatic document summarization

notation explanation

D each document in the dataset

S summary

s linguistic unit

e conceptual unit

K summary length

c cost of a linguistic unit

t (sub)tree

p(s) parse tree

3.3 Proposed Summarizer

Based on the categorization explained in Section 2.2.1, I only focus on a query-based

and multi-document approach, in this thesis as any solution from this category can be easily

generalized for generic and single document summarization. In addition, I only consider

extractive approaches because 1) grammatical correctness of linguistic units are preserved
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at the local level in extractive approaches, 2) problem formulation is quite straightforward

(Lin and Bilmes, 2010), and 3) most of recent research focus on extractive approaches.

The proposed document summarization can be divided into the following steps: Pre-

processing, Problem formulation, and Solving the problem. Each step is further discussed

in the following sections.

3.3.1 Preprocessing

Preprocessing plays a key role in efficient summary generation. Preprocessing first de-

composes a document D into several linguistic units si. I consider sentences as linguistic

units of a document. Not only does it ensure the grammatical correctness, but also pre-

vents the impracticality in detecting other linguistic units (Takamura and Okumura, 2009).

Sentences which contain quotations are discarded in the process of decomposing each docu-

ment to its sentences to improve summary recall since they are not appropriate for summary

(Gillick et al., 2009). So, the documents are shown as D = {s1, ...,s|D|}. Next, each sen-

tence si is decomposed to some conceptual units ei j (i.e. si = {ei1, ...,ei|si|}). Conceptual

units of a sentence can be its words, named entities, syntactic subtrees or semantic relations.

Some research has been carried out on determining conceptual units (Hovy et al., 2006).

However, their usefulness has not been proven for document summarization. Most research

(including this thesis) use Words as the conceptual units due to its simplicity (Takamura

and Okumura, 2009). Besides, inappropriate concept extraction can be biased towards sen-

tence ranking and therefore results in a low quality summary (Gillick and Favre, 2009).

Next, I apply the Porter Stemmer (Porter, 1980) to represent each word by its stem 4 using

the Porter Stemmer (Porter, 1980). Stemming, which is a process to reduce all words with

the same root to a common form is widely used in NLP and the document summarization

fields. Stemming is useful because different forms of a word may be used in documents. It

finds a common form for all different forms of a word which helps us to better detect the

4Normally terms originating from a common root or stem have similar meaning. For instance, words
INTERSECT, INTERSECTING, INTERSECTED, INTERSECTION, and INTERSECTIONS all have root
INTERSECT, and the process of finding word’s roots is called Stemming.
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correleation between words. The next step is detecting stop words5. However, unlike most

research, the detected stop words are not removed from the documents in my proposed ap-

proach because removing stop words from a sentence affects its grammatical correctness.

I, however, detect the stop words in the proposed approach in order to bypass them in the

sentence scoring process.

3.3.2 Problem formulation

MCKP is a good fit for the document summarization problem since it is used to deter-

mine the word coverage easily (or the concept coverage in general). So, in this thesis, the

proposed document summarization method is based on MCKP. The goal of document sum-

marization as MCKP is to cover as many conceptual units as possible using only a small

number of sentences. However, in query-based summarization methods, the relevance of

the generated summary to a given query and the compression ratio of the summary are also

important. So, in the proposed summarization technique which I call Comp-Rel-MCKP

document summarization, three measures of Coverage, Relevance, and Compression are

considered. The goal of Comp-Rel-MCKP document summarization is to generate a sum-

mary while maximizing the value of all three measures. In the next sections, each measure

will be discussed in more detail.

Coverage

The coverage measure represents coverage level of conceptual units by any given set

of textual units (Filatova and Hatzivassiloglou, 2004). It evaluates how a sentence is rep-

resentative of a document. Two different coverage functions introduced in (Takamura and

Okumura, 2009) are used for measuring the coverage level of a summary and a sentence.

The Coverage function for summary, Cov(S), shows how the generated summary S covers

D and is defined as follows:
5Stop word detection means identifying words such as ”And” and ”Or” which do not convey any special

concept in a sentence. There is no predefined list of stop words in English, but the stop word list which I have
used in this thesis consists of 319 words which is shown in Appendix A.
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Cov(S) = ∑
j

z j

∀ j,e j ∈ S
(3.1)

where z j is 1 when word e j is covered in the summary S, and 0 otherwise and j is the

number of words in the summary S. Cov(S), considers the number of unique words in the

summary as the coverage score.

The coverage function for sentence si, Cov(si) is similar to Cov(S), but it considers

summary S in its measurement. That is, Cov(si) measures the number of unique words in

the sentence si which are not covered by the already selected sentences in the summary S.

Cov(si) is defined below:

Cov(si) = ∑
j

z j

∀ j,e j ∈ siande j /∈ S (3.2)

The aforementioned Coverage functions have the advantage of implicitly encompassing

the notion of redundancy because redundant sentences cover fewer words.

Relevance

The relevance measure represents the importance of a given set of textual units as well

as its correlation with a given query. The relevance function is considered as a combination

of a set of query-oriented and importance-oriented measures. The query-oriented mea-

sures consider the similarity between a sentence and the given query while the importance-

oriented measures calculate the importance of a sentence in a given document (Chali and

Hasan, 2012; Edmundson, 1969; Sekine and Nobata, 2001) regardless of the query. Rel-

evance function for a summary or a sentence is calculated in the same way and relevance

function at summary level is defined as follows:
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Rel(S) = ∑
i

sim(si,q)+ imp(si)

∀i,si ∈ S (3.3)

where sim(si,q) and imp(si) are the query-oriented and importance-oriented features re-

spectively, each reveal similarity of sentence si to the given query q and the importance of

the sentence si regardless of considering the query q respectively.

Relevance function at the sentence level is defined as follows:

Rel(si) = sim(si,q)+ imp(si)
(3.4)

Many works use vocabulary matching between the query q and the sentence si to calcu-

late sim(si,q). They consider the number of words that the sentence si overlaps with query q

as their similarity score (Lin and Bilmes, 2011a). Vocabulary matching similarity measure

is easy to calculate. However, it fails to detect any semantic similarity between words. For

example consider the following query and sentence:

Query: “Describe the state of teaching art and music in public schools around the world.

Indicate problems, progress and failures.”

Sentence: “The nonprofit foundation is dedicated to restoring music programs in schools

nationwide and raising public awareness about the importance of music education.”

Existing matching based similarity measures fail to detect a high similarity score be-

tween this query and sentence as semantic relations between vocabularies are ignored in

these measures. For example, they ignore the relation between “teaching” in the query

and “education” in the sentence. One remedy to this problem is to exploit WordNet-based

30



3.3. PROPOSED SUMMARIZER

measures which consider the semantic relations between words in order to calculate the

similarity between sentence si and query q. To calculate the semantic similarity between

sentence si and query q, sim(si,q), both sentence si and query q are represented as a vector

of words (bag of words) after tokenization and the stop word removal process. The way I

find the semantic similarity between two vectors of words, representing the sentence and

query is inspired by the maximum weighted matching problem in a bipartite graph.Then,

the semantic similarity is calculated as follows.

Figure 3.1 illustrates the vectors of words representing sentence si and query q. For

each word esi j, ( j = 1, ...,m) in the vector of words si, I find the semantic similarity of esi j

to all words eqk, (k = 1, ...,n) in the vector of words q using the FaITH similarity measure

of WordNet (discussed in Section 2.2.2). I then assign word eqk of the query to the word

es j of the sentence which has the highest similarity. As the word types of esi j and eqk are

unknown, I have to look them up in all four parts of WordNet (noun, verb, adjective, and

adverb parts), and assign the highest similarity among the four similarity values that I come

up with as the similarity of esi j and eqk. Therefore, I have 4mn semantic similarity look up

in total. There are cases in which one or both of esi j and eqk does not exist in WordNet. In

such cases, I assume that their similarity is zero. After assigning all of the words in the si to

a word in the q and calculating the pair similarities, the total semantic similarity of si and q

is the result of summing up all the pair similarities divided by the total number of words in

the vectors of words si and q, (m+n).

To calculate imp(si) which represents the importance of a sentence, I combine the TF-

IDF measure and the inverse position of the sentence. The TF-IDF measure is widely

used in the information retrieval and document summarization areas and presents a good

estimation of the importance of a textual unit. In addition, the position of a sentence is

also used as a good indicator of importance in document summarization, as early sentences

tend to be more important (Gillick and Favre, 2009; Chali and Hasan, 2012). Thus, the

importance of sentence si, imp(si), is defined as:
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Figure 3.1: Vectors of words representing si and q

imp(si) = α ∑
j∈si

T F− IDF(ek j)+β
1

Pos(si)

∀ j,e j ∈ siandsi ∈ S (3.5)

where T F and IDF is the Term Frequency and Inverse Document Frequency for word e j

respectively, within its original document dk and Pos(si) indicates the position of the sen-

tence si within its original document dk. For example, the first sentence in a document has

a position of 1, the second sentence has a position of 2, and so on. T F− IDF(ek j), weight

of the word e j in the document dk, is calculated as:

T F− IDF(ek j) = t f (ek j)∗ log10
N

d f (e j)
(3.6)

where t f (ek j) is the frequency of the word e j in the document dk, N is the number of

documents in the corpus6, and d f (e j) is the number of documents in the corpus which

contain word e j. This formula determines how relevant a given word is in a particular

document. Words that are used in a single or a small group of documents tend to have

higher T F− IDF value than common words that are used in most of the documents.

6Duc 2007 data set is considered as the corpus
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Compression

Sentence compression plays a key role in summary generation as it reduces wasted

space wasting and enhances the chance of including more relevant information. So, com-

pression is considered as another measure in the process of generating a summary in this

thesis. Ideally, it should detect redundant or insignificant parts of a sentence, while keeping

the important parts such that the readability and correctness of the sentence are preserved.

Sentence compression is considered as a challenging task which should deal with all of

these parameters. Consider the following sentence7 as a candidate to be added to a sum-

mary.

“Thousands of jobless demonstrated across France on Monday, to press the Socialist-

led government for a bigger increase in unemployment benefits and a Christmas bonus,

according to the official way of accounting unemployment.”

In this example, the insignificant parts are underlined. The compressed sentence is

“Thousands of jobless demonstrated across France, to press the Socialist-led government

for a bigger increase in unemployment benefits and a Christmas bonus.” As it can be seen,

removing the insignificant part of the original sentence preserve the significant informa-

tion, readability, and grammatical correctness of the sentence. In the process of sentence

compression which is viewed as a word deletion process, I remove deletable parts of a sen-

tence using Berg’s compression method (2011). I define the compression function at the

summary level as:

Comp(S) = ∑
i

di j

∀i,si ∈ S,∀di j ∈ DS(D) (3.7)

7This sentence is from DUC 2007, topic D0701A
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where di j denotes a constant which is 1 if word e j is deleted from sentence si, 0 otherwise,

and DS(D) contains insignificant parts of the entire document.

Compression function at the sentence level is defined as:

Comp(si) = ∑d j

∀d j ∈ DS(si) (3.8)

where DS(si) contains insignificant parts of the sentence si.

Considering all three described measures, the described goal and summary length con-

straints, the objective function is defined as:

MaximizeF(S) = αCov(S)+βRel(S)+ γComp(S)

= α∑
j

z j +β∑
i
(sim(si,q)+ imp(si))xi + γ∑

i
(di j)xi

subject to∑
i

cixi ≤ K,∑
i

ai jxi ≥ z j

∀i,xi ∈ {0,1},∀ j,z j ∈ {0,1}

∀di j ∈ DS(D)

(3.9)

where α, β, and γ are scaling factors for Coverage, Relevance, and Compression respec-

tively. The variable xi is set to 1 if sentence si is selected, and 0 otherwise. The summary

length, K, as introduced in 3.1, is measured as the number of words. In addition, let the

constant ai j is 1 if sentence si contains word e j , and 0 otherwise. The word e j is considered

as covered when at least one sentence containing e j is selected in the summary. The vari-

able ci is the cost of selecting si, which is measured as the number of words in si. DS(D)

contains insignificant parts of the entire document. In other words, for each sentence, it

contains some parts that I can remove while keeping its grammatical correctness and infor-

mative parts. As I discussed before, the constantdi j is 1 if word e j is deleted from sentence
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si, and 0 otherwise. So, the goal is to find a binary assignment on xi with the best value for

the measures such that the summary length is at most K.

To calculate DS(D), the first step is to generate a constituency parse tree8, p(s), for

each sentence using the Berkeley parser (Petrov and Klein, 2007). Figure3.2 illustrates a

constituency parse tree for a sample sentence.

The second step in order to find deletable parts of sentence si, is to detect subtrees in the

parse tree of p(si) as a set of T = {t1i, t2i, ..., tmi}, where m is number of possible subtrees

in p(si). Then, method of Berg-Kirkpatrick et al. (2011) is applied on each subtree in T ,

to detect deletable parts. Berg-Kirkpatrick et al.(2011) introduced thirteen features which

were trained on the TAC dataset using human annotated data sets of extracted and com-

pressed sentences. Table 3.2 explains their subtree deletion features9. Finding the features

on the generated parse tree of a sentence will result in determining deletable subtrees or

sometimes the entire parse tree.

8A constituency parse tree of constituency grammars (= phrase structure grammars) distinguish between
terminal and non-terminal nodes. The interior nodes are labeled by non-terminal categories of the grammar,
while the leaf nodes are labeled by terminal categories

9For more information, see (Berg-Kirkpatrick et al., 2011)
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Figure 3.2: Constituency parse tree for a sample sentence
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Table 3.2: Subtree deletion features (Berg-Kirkpatrick et al., 2011)

COORD: Indicates phrases involved in coordination. Four version of this

feature: NP, VP, S, SBAR.

S-Adjunct: Indicates a child of an S, adjunct to and left of the matrix verb.

Four version of this feature: CC, PP, ADVP, SBAR.

REL-C: Indicates a relative clause, SBAR modifying a noun.

ATTR-C: Indicates a sentence-final attribution clause, e.g. the senator an-

nounced Friday.

ATTR-PP: Indicates a PP attribution, e.g. according to the senator.

TEMP-PP: Indicates a temporal PP, e.g. on Friday.

ATTR-NP: Indicates a temporal NP, e.g. Friday.

BIAS: Bias feature, active on all subtree deletions.

In the proposed summarization model, I decide on whether or not to prune each subtree

in the constituency parse tree of a sentence. To represent the compressed summary S, let

psi be a constituency parse tree for sentence si and S = (e j : j ∈ psi ,si ∈ D) be a vector

of indicators of non-terminal nodes in each parse tree as a representative of the summary.

Word e j of sentence si will be in the summary, if and only if, its parent node in the parse

tree has been presented in the summary. It means that any node of e j may have e j = 1

only if its parent π( j) has eπ( j)=1. This constraint helps us to guarantee that only subtree

may be deleted and it speeds up the compression process since the proposed system stops

investigating all subtrees of a (sub) tree t j if the system decides not to include t j in the

summary. Figure 3.3 illustrates a sample compressed sentence using parse tree.

The overall architecture of Comp-Rel-MCKP document summarizer is shown in Fig-

ure 3.4.
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Figure 3.3: Subtree deletion for a sample sentence
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Figure 3.4: Architecture of Comp-Rel-MCKP document summarizer

3.3.3 Solving the problem

To solve the proposed Comp-Rel-MCKP document summarizer, I investigate the ef-

fectiveness of different algorithms including a greedy algorithm (Filatova and Hatzivas-

siloglou, 2004), a greedy algorithm with a performance guarantee (Takamura and Okumura,

2009), and a modified greedy algorithm for monotone and submodular function (Lin and

Bilmes, 2010).

Greedy algorithm

Filatova and Hatzivassiloglou (2004) used a greedy algorithm for document summariza-

tion, which is shown in Algorithm1. In this algorithm, f (sl) denotes the score of sentence

sl which is calculated by the three measures of Coverage, Relevance, and Compression dis-

cussed in section 3.3.2. The algorithm proceeds by selecting sentence si with the greatest

score in each iteration until it reaches the summary length.
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Algorithm 1 Greedy algorithm
1: U ← D, S←∅
2: while (U ̸=∅) do
3: si← arg maxsl∈U f (sl)
4: if ci +∑sl∈S cl ≤ K then S← S∪{si}
5: U ←U\{si}
6: end while
7: output S.

Greedy algorithm with performance guarantee

Khuller et al. (1999) introduced a greedy algorithm for maximum coverage problem. It

was first used for document summarization by Takamura and Okumura (2009), which has

a 1
2(1−

1
e ) performance guarantee. The algorithm proceeds by selecting a sentence having

the greatest ratio of score to its cost until it reaches the summary length. After the sequential

selection to generate the summary S, its score will be compared with the highest score of

all sentences and the largest will be the output.

Algorithm 2 Greedy algorithm with performance guarantee
1: U ← D, S←∅
2: while (U ̸=∅) do
3: si← arg maxsl∈U

f (sl)
cl

4: if ci +∑sl∈S cl ≤ K then S← S∪{si}
5: U ←U\{si}
6: end while
7: smax← arg maxsl f (sl)
8: if f (S)≥ f (smax), output S,
9: otherwise, output {smax}

Greedy algorithm for monotone and submodular function

This greedy algorithm which is illustrated in Algorithm 3 is based on the greedy algo-

rithm proposed by Khuller et al. (1999) and has been introduced by Lin and Bilmes (2010)

for the document summarization problem while having a submodular score function. Lin

and Bilmes proved theoretically and empirically that their modified greedy algorithm solves

the budgeted submodular maximization problem near-optimally. It has a constant factor ap-
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proximation of (1− 1
e ) ≃ 0.632 for the cardinality constrained version of the problem and

(1− 1√
e) when using a scaled cost in the problem. It shows that the worst case bound,

however, the quality of the generated summary in most cases will be much better than this

bound.

Algorithm 3 Greedy algorithm for monotone and submodular function
1: U ← D, S←∅
2: while (U ̸=∅) do
3: si← arg maxsl∈U

f (S∪{sl})− f (S)
(cl)r

4: if ci +∑sl∈S cl ≤ K and f (S∪{si})− f (s)≥ 0 then S← S∪{si}
5: U ←U\{si}
6: end while
7: smax← arg maxsl f (sl)
8: if f (S)≥ f (smax), output S,
9: otherwise, output {smax}

Similar to both Algorithm 1 and 2, it is based on sequential selection. In each step, it

selects sentence si with greatest ratio of score gain to scaled cost. In the algorithm, r ≥ 0

is a scaling factor to adjust the scale of the cost which results in having a (1− 1/
√

e)

approximation factor (see (Lin and Bilmes, 2010) for more details).

To get a near optimal solution using Algorithm 3, the scoring function F(S) should be

monotone and submodular10 (Lin and Bilmes, 2011a). Otherwise, this greedy algorithm

cannot guarantee a near optimal summary. In the next section, I show that the proposed

objective function which is discussed in Section 3.3.2 is monotone and submodular.

Coverage function

Since penalizing redundancy violates the monotonicity property (Lin and Bilmes, 2010),

I reward coverage instead, which implicitly has redundancy in its definition.

Cov(S) can be interpreted as a function representing the coverage level of document set

D by the summary S. The function Cov(S) penalizes redundancy implicitly as redundant

sentences cover fewer words and rewards coverage by selecting sentences with the greatest

number of uncovered words. As soon as a sentence si is chosen to be in the summary S, all

10See section 2.2.3.
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of the words forming the sentence si, will be ignored in calculating the coverage level of

other sentences if they include the same word.

The function Cov(S) has the monotonicity property as coverage is improved by adding

some sentences. It also has the submodularity property. Consider two summary sets S(A)

and S(B), where S(B)⊆ S(A). Adding a new sentence si to S(B) increases the value of the

function Cov(S) more than the increment resulting from adding si to S(A). This is because

the conceptual units (words) forming the new sentence might have already been covered by

those sentences that are in the larger summary S(A) but not in the smaller summary S(B).

Relevance function

Rel(S) combines a query-related function (sim(si,q)) and an importance-oriented one

(imp(si)). Both the query-related and importance-oriented functions are monotone as the

similarity of summary S to the given query q is not improved by adding a sentence to it.

This is because the selected sentence si is totally dissimilar to q and hence there is no added

value for the query-related part in the worst case. In addition, the value of imp(si), even for

last sentences in a document, would result an increment in the importance-based value of

a summary. It also has the submodularity property. Consider two summary sets S(A) and

S(B), where S(B)⊆ S(A). Adding a new sentence si to S(B) increases the value of the both

functions equal to the increment resulting of adding si to S(A) because the same sentence is

added to both summaries S(A) and S(B) which results in the same increase in both sim(si,q)

and imp(si).

Theorem 3.1. Given functions F : 2V → R and f : R→ R, the composition F ′ = f ◦F :

2V → R (i.e., F ′(S) = f (F(S))) is nondecreasing submodular, if f is non-decreasing con-

cave and F is nondecreasing submodular.

Submodular functions have some similar properties to convex and concave functions

(Lovász, 1983) such as their closure under some operations including mixtures, and trun-

cation. So, using Theorem 3.1 (Lin and Bilmes, 2011a) and the property that summation

preserves submodularity, it is easy to see that Rel(S) is submodular.
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Compression function

The Comp(S) function which is considered as the number of deleted words in the orig-

inal sentences of a summary is monotone as the compression level of the summary is not

worsen by adding a sentence. This is because some words might be deleted in the new sen-

tence. It also has the submodularity property because the same sentence is added to both

summary sets S(A) and S(B), where S(B) ⊆ S(A). So, the incremental value of Comp(S)

by adding the same new sentence is the same for both summaries.

3.4 Summary

In this chapter, I explained the Comp-Rel-MCKP model for query-based extractive doc-

ument summarization in detail. As its name implies, I consider three measures of Coverage,

Relevance, and Compression jointly to score sentences in the proposed model which are cal-

culated using unsupervised methods. Coverage considers the number of unique words in

a sentence, Relevance considers the semantic similarity between a sentence and the given

query and also importance of its words, and Compression considers the number of insignif-

icant words in a sentence when scoring sentences. I discussed three greedy algorithms

to select a combination of sentences to form a summary. The best performing algorithm

among them has (1− 1√
e) performance guarantee when its scoring function is monotone

and submodular. I also explained how the scoring functions for Coverage, Relevance,

and Compression are monotone and submodular. This chapter presents the first attempt

to model document summarization as a MCKP problem with the three measures of Cover-

age, Relevance, and Compression. It also presents how to define a Compression measure

as a submoular function which enables us to integrate compression in a good performance

greedy algorithm. In the next chapter, I show how I evaluate the results of the proposed

approach on the DUC 2007 dataset using the ROUGE measure.
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Chapter 4

Experimental Results

4.1 Introduction

I presented the proposed multi-document summarization method in the previous chap-

ter. It considers three measures of Coverage, Relevance, and Compression to rank sen-

tences, in addition it applies a greedy algorithm to generate a summary. In this chapter, I

present the experimental results of the proposed method and compare it with three different

methods of the-state-of-the-art. The following sections explain the dataset, the summariza-

tion approaches I implemented to compare the proposed summarization method with and

the experimental results.

4.2 Task Overview

The Comp-Rel-MCKP summarizer’s task is to generate a summary with a length of 250

words by selecting important sentences in a collection of relevant documents with regards

to a given query for a topic. Each topic has a title and a narrative which is considered as a

query in query-based document summarization. A sample topic is shown below:
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4.3 Dataset

I use the data from Document Understanding Conference (DUC11), which is one of the

main benchmarks for the document summarization field. I focus on the DUC 2007 dataset

which is the latest dataset for query-based summarization. It contains 45 different topics,

each with 25 relevant documents. The dataset also has multiple human written summaries

as “reference summaries”, which are used to evaluate the system-generated summaries.

4.4 Evaluation

I use the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004)

package12 to evaluate the results automatically. ROUGE is a well-know package for com-

paring the system generated summaries to a set of reference summaries written by hu-

mans. Lin (Lin, 2004) introduced four different ROUGE metrics, including ROUGE-N

which considers n-gram co-occurrence statistics, ROUGE-L which considers the longest

common subsequence, ROUGE-W which considers the weighted longest common subse-

quence, and ROUGE-S which considers skip-bigram co-occurrence statistics. ROUGE-N

is widely used in multi-document summarization research. Also Lin and Bilmes (2011a)

show that ROUGE-N is monotone and submodular. Thus, I use the ROUGE-N measure for

the evaluation since the proposed method is also submodular. In the following, I explain

ROUGE-N in more details.

ROUGE-N considers an n-gram overlap between a system-generated summary and a

set of human generated summaries\reference summaries. It is defined as follows:

ROUGE−N =
∑S∈{Re f erenceSummaries}gramn∈S ∑Countmatch(gramn)

∑S∈{Re f erenceSummaries}gramn∈S ∑Count(gramn)
(4.1)

where n indicates the length of the n-gram, gramn, and Countmatch(gramn) shows the maxi-

mum number of n-grams co-occurring in a system generated summary and a set of reference

11http://duc.nist.gov/
12ROUGE package is available at http://www.berouge.com
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summaries, respectively. ROUGE-N is a recall-related measure since the denominator of

Equation 4.1 is the total sum of the number of n-grams occurring at the reference summary

side.

In this thesis, I focus on ROUGE-1 (unigram) and ROUGE-2 (bigram) scores, and re-

port precision, recall and F-measure for evaluation since these metrics are found to correlate

well with human judgment and widely used to evaluate an automatic summarizer (McDon-

ald, 2007; Lin and Bilmes, 2011a; Dasgupta et al., 2013). I adopt the definition of recall,

precision and F-measure from (Hasan, 2013). Recall for document summarization is inter-

preted is the ratio of the number of common words of the system generated and the human

generated summaries to the total number of words in the human generated summary. Pre-

cision as the ratio of the number of common words of the system generated and the human

generated summaries to the total number of words in the system generated summaries. F-

measure is a combination of precision and recall to evaluate the overall performance.

4.5 Comparison with the State-Of-The-Art

4.5.1 Baseline

I adopt the baseline from DUC 200713. It concatenates leading sentences of all relevant

documents up to the length limit.

4.5.2 Rel-MCKP

In this method, a summary is generated using the summarization method proposed by

Takamura and Okumura (2009). They consider MCKP to model summarization and con-

sider Relevance and Coverage measures in the sentence selection process. Two different

greedy algorithms introduced in Section 3.3.3 proposed by (Filatova and Hatzivassiloglou,

2004) and (Takamura and Okumura, 2009) are applied to generate a summary. These two

systems are shown by Rel-MCKP-Greedy and Rel-MCKP-Greedy-Per respectively in the

comparisons.

13http://duc.nist.gov/
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4.5.3 Comp-Rel-MCKP

In this method, a summary is generated using the proposed Comp-Rel-MCKP method in

which all scoring functions are submodular and monotone and the three measures of Cover-

age, Relevance, and Compression are considered. A modified greedy algorithm introduced

in (Lin and Bilmes, 2010) for submodular functions which has a performance guarantee of

(1− 1√
e) is used to generate the summary. This method is referred to as Comp-Rel-MCKP

in the comparisons.

4.6 Experiments

In this section, I present the experimental results of the proposed method and compare it

with the methods discussed in the previous section. The main goal of the experiments is to

show the effectiveness and efficiency of each method. I conduct a series of experiments on

the DUC dataset introduced in Section 4.3. In the experiments, I first investigate the effects

of different parameters on the performance of the proposed method. Then, I compare the

proposed method with some previous summarization methods.

4.6.1 Experiment 1

In this experiment, I investigate the effect of the cost scaling factor, r, which is used in

Algorithm 3 to adjust the scale of the cost. The result of the experiment for different cost

scaling factors are shown in Figure 4.1 and 4.2, based on ROUGE-1 and ROUGE-2. The

scaling factor ranges from 0.8 to 2. As the diagram shows the scaling factor to 1.2, r = 1.2

results in better performance with respect to recall, precision, and F-measure.

4.6.2 Experiment 2

In this experiment, I investigate the effect of employing the stemming algorithm which

is used in preprocessing step on the relevance of a sentence and a query which was discussed

in Section 3.3.2. Stemming was helpful in the proposed method, specially for finding the

similarity of a pair of words containing plural nouns. Stemming plural nouns allowed
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Figure 4.1: Values of Recall, Precision, and F-measure of ROUGE-1 for different scaling
factors

Figure 4.2: Values of Recall, Precision, and F-measure of ROUGE-2 for different scaling
factors
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Figure 4.3: Values of Recall, Precision, and F-measure of ROUGE-1 for different
stemming strategies

us find the words easily in WordNet, while non-stemmed words in plural form cannot be

found in WordNet. For example, words such as “schools” or “programs” cannot be found

in WordNet. So, the similarity measures consider no correlation between them as they are

not in WordNet. On the other side, stemming algorithms such as Porter (Porter, 1980) do

not find the stems of many words correctly. As an illustration, these algorithms eliminate

“e” which exists at the end of most words such as “article” or “revoke”, and result in a

word which does not have any corresponding concept in WordNet, while looking up most

non-stemmed words in WordNet such as “articles” leads to a matching concept in WordNet.

Therefore, I run an experiment in which I consider each word in both stemmed and original

form in the process of calculating the similarity between pairs of words of a sentence and

a query to have the advantageous of both stemming and not stemming. Figure 4.3 and 4.4

illustrate the result of this experiment in form of ROUGE-1 and ROUGE-2.

I consider three cases, including 1) Stemming in which I apply the Porter stemmer

(Porter, 1980) and consider the stemmed word to measure the similarity between a sen-

tence and a query, 2) No Stemming in which I consider words in the original form, and 3)
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Figure 4.4: Values of Recall, Precision, and F-measure of ROUGE-2 for different
stemming strategies

Both in which I consider both stemmed and not-stemmed words in similarity measurement

and consider the higher one as the similarity between them. In this experiment, the value

of the scaling factor is 1.2 for all three cases.

I find that considering both stemmed and not-stemmed words results in having a bet-

ter performance with respect to all three measures of Recall, Precision, and F-measure. In

spite of the above mentioned mistakes in stemming words, the performance of the pro-

posed summarizer outperforms with respect to Recall, and F-measure in the case of using

stemmed words compared to the case of using the original form of the words. Consider-

ing both stemmed and not-stemmed words increases the complexity of the calculation and

makes the system slow. Therefore, I consider just stemmed words to calculate the relevance

measure in the similarity measurement for future experiments.

4.6.3 Experiment 3

In this experiment, I investigate the effect of using the title or both the title and narrative

(query), which was introduced in Section 4.2, in measuring the relevance of a sentence to

the topic. In this experiment, the value of the scaling factor is 1.2 for all three cases. The
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value of Precision, Recall, and F-measure for ROUGE-1 and ROUGE-2 are illustrated in

Figure 4.5 and 4.6. It is evident that using both title and narrative to improve the value of

all three measures of Recall, Precision, and F-measure.

Figure 4.5: Values of Recall, Precision, and F-measure of ROUGE-1 considering title or
both title and narrative

4.6.4 Experiment 4

In this experiment, I investigate the effect of using the semantic similarity measure

which was introduced in Section 3.3.2 in measuring the relevance of a sentence to the

topic. The values of Precision, Recall, and F-measure for ROUGE-1 and ROUGE-2 are

illustrated in Figure 4.7 and 4.8.
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Figure 4.6: Values of Recall, Precision, and F-measure of ROUGE-2 considering title or
both title and narrative

Figure 4.7: Values of Recall, Precision, and F-measure of ROUGE-1 for WordNet and
Word Matching based similarity measures to calculate Relevance

As I predicted, using WordNet based measures improve the value of all three measures

of Recall, Precision, and F-measure compared to the word-matching based measure.
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Figure 4.8: Values of Recall, Precision, and F-measure of ROUGE-2 for WordNet and
Word Matching based similarity measures to calculate Relevance

4.6.5 Experiment 5

In this experiment, I investigate the performance of different summarization approaches

which were introduced in Section 4.5. The result is shown in Table 4.1 which compares the

values of ROUGE-1 and ROUGE-2 measures of the approaches. Precision, Recall, and

F-measure metrics are abbriviated to P, R, and F respectively in this table. The best scores

are bolded for each measure. As it is illustrated, the Comp-Rel-MCKP and Rel-MCKP-

Greedy-Per approaches outperform the two other approaches for all measures. The pro-

posed approach, Comp-Rel-MCKP, has a better performance for most measures compared

to Rel-MCKP-Greedy-Per approach.
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Table 4.1: ROUGE-1 and ROUGE-2 evaluation of different approaches on the DUC 2007
Dataset

Methods
Metrics Baseline Rel-MCKP-Greedy Rel-MCKP-Greedy-Per Comp-Rel-MCKP

Rouge-1

P 0.3737 0.3769 0.3808 0.3809

R 0.3334 0.3318 0.3661 0.3763

F 0.3522 0.3527 0.3731 0.3782

Rouge-2

P 0.0654 0.0827 0.0911 0.08821

R 0.0638 0.0739 0.0782 0.0904

F 0.0644 0.0780 0.0837 0.0892

Figure 4.9 and 4.10 also illustrate the result which provides a better view of the per-

formance. As it is illustrated, Comp-Rel-MCKP and Rel-MCKP-Greedy-Per approaches

outperform the two other approaches for all three metric of recall, precision and f-measure.

And also the proposed approach (Comp-Rel-MCKP), has a better performance for most

measures compared Rel-MCKP-Greedy-Per approach. The results demonstrate that our

Comp-Rel-MCKP summarizer which combine three submodular measures of compression,

coverage, and relevance achieves better performance compared to the other summarization

systems that use two non-submodular measures of relevance and coverage.

The results demonstrate that the Comp-Rel-MCKP summarizer and , which combine

three submodular measures of compression, coverage, and relevance achieves better per-

formance compared to the other summarization systems that use two non-submodular mea-

sures of relevance and coverage.
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Figure 4.9: Values of Recall, Precision, and F-measure of ROUGE-1 of different
approaches

Figure 4.10: Values of Recall, Precision, and F-measure of ROUGE-2 of different
approaches
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4.7 Summary

In this chapter, the evaluation procedure and results were discussed. First, I explained

the task of automatic document summarizer, DUC data sets and ROUGE measures which

evaluate the system generated summaries with regards to human generated summaries.

Then, I investigated how different cost scaling factors affect the performance of the pro-

posed summarizer in terms of Recall, Precision, and F-measure. In addition, I ran different

experiments to investigate whether or not to use stemming, or whether or not to consider

both title and narrative provided within each topic. Finally, I compared the results of the

Comp-Rel-MCKP summarizer with three methods introduced in literatures. As illustrated,

the proposed method provides improvements over the existing approaches.
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Chapter 5

Conclusion and Future Works

5.1 Introduction

This thesis studied the problem of multi-document summarization. In this last chapter, I

conclude by summarizing the proposed method and contributions made towards improving

the performance of existing document summarization models. I also suggest some future

directions that can enhance the efficiency of the proposed model.

5.2 Thesis Summary

The problem of document summarization has been studied extensively since the 1950s

because of its key role in reducing the volume of information a user has to read, and con-

sequently the amount of time which is required to read the relevant documents to find the

desired information. To this aim, numerous document summarization models have been

developed. Document summarization models broadly fall into two categories of Extractive

and Abstractive considering the strategy of generating a summary. In extractive document

summarization, the sentences from the documents are extracted to form a summary, while

in abstractive document summarization, important information of the documents is rewrit-

ten as a summary. On the other hand, in most cases users desire to find information about a

specific topic which results in another categorization of Query-based and Generic summa-

rization.

In the document summarization domain, improving existing summarization models and

the quality of generated summaries are always essential. So, my main goal in this the-

sis is to improve the quality of the system-generated summaries. In this thesis, I present

an automatic document summarizer which generates a summary for multiple relevant doc-
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uments. I proposed an extractive document summarization model and my focus was on

query based summarization. However, the proposed model can be generalized and also

applied for generic document summarization. I modeled the extractive document sum-

marization problem based on the Maximum Coverage with KnaPsack constraint (MCKP)

problem. The main motivation behind mapping the document summarization problem to

a MCKP problem was its great performance and natural fit for the summarization domain.

The effectiveness of extractive document summarizers deeply relies on how I identify the

importance of sentences. I use three metrics of Coverage, Relevance, and Compression to

estimate the scores of sentences. The coverage metric assign scores to sentences based on

how they represent the document. The Relevance metric considers the importance level of

information in a sentence in addition to the similarity level of the sentence and the given

query. The compression metric considers the number of deletable words of a sentence. The

proposed model, which is called Comp-Rel-MCKP, is an improvement of previous MCKP

based models in which I considers compression as an extra metric to decide on the impor-

tance of a sentence.

Query based summarization deeply relies on methods to identify the relevance of sen-

tences to the given query. A key aspect of the proposed approach to calculate the Relevance

score was the use of WordNet to discover the correlation between a sentence and a query

semantically. The reason to use WordNet based measures is their efficiency and effective-

ness in determining the semantic correlation between words and their advantageous over

word matching or co-occurrence based measures.

As I discussed earlier, I use three measures of Coverage, Relevance, and Compression

to assign a score to each sentence of the relevant documents. Then, I apply a modified

greedy algorithm which has a performance guarantee of (1− 1√
e) to generate a summary.

The scoring function should be monotone and submodular to guarantee the performance

which I considered in the definition of the scoring functions.

I evaluated the proposed summarization model on the DUC 2007 dataset which is for

58



5.3. FUTURE WORKS

a query-based summarization task. I investigated the effect of different parameters of the

proposed model such as using WordNet and stemming. The experiments and evaluations

illustrated that stemming words and using semantic similarity measures to calculate the

relevance of a sentence and a query increase the quality of the summaries. I compared

the Comp-Rel-MCKP summarization system with a baseline, and two recent MCKP based

summarization models. The results on the DUC 2007 data sets showed the effectiveness of

the proposed approach.

5.3 Future Works

Some extensions to the proposed model are summarized as follows:

• A better estimation of the relevance of a sentence to a query plays a key role in

quality of query based document summarization. In spite of the good performance of

WordNet based similarity measures, there might be a case in which a word is not in

WordNet due to the ever increasing number of new words. So, I plan to apply search

engine based and co-occurrence similarity measures beside WordNet based measures

to calculate the relevance of a sentence and a query. Search engine based similarity

measures usually use web page counts of words wa and wb, and combinations of

them together and also snippets retrieved from a web search engine to calculate the

similarity of word wa and word wb. Co-occurrence based measures estimate the

similarity between any pairs of words wa and wb by considering frequencies of co-

occurring words wa and wb in a document together.

• The proposed document summarizer does not detect the references of pronouns and

does not replace them with their corresponding names. This problem which is called

anaphora problem can really affect the readability and coherence of the generated

summary. Two different kinds of approaches have been introduced for anaphora

problem, including knowledge-rich and knowledge-poor approaches. Applying these

approaches can improve the quality of the system generated summaries.
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A. STOP WORDS

PRONOUNS FORMS

i me my myself
we us our ours
ourselves you your yours
yourself yourselves he him
his himself she her
hers herself it its
itself they them their
theirs themselves what which
who whom this that
these those

VERB FORMS

BE

am is are was
were be been being

HAVE

have has had having

DO

do does did doing

AUXILIARIES

will would shall should
can could may might
must ought

COMPOUND FORMS

i’m you’re he’s she’s
it’s we’re they’re i’ve
you’ve we’ve they’ve

i’d you’d he’d she’d
we’d they’d i’ll you’ll

67



A. STOP WORDS

he’ll she’ll we’ll they’ll

isn’t aren’t wasn’t weren’t
hasn’t haven’t hadn’t doesn’t
don’t didn’t

won’t wouldn’t shan’t shouldn’t
can’t cannot couldn’t mustn’t

let’s that’s who’s what’s
here’s there’s when’s where’s
why’s how’s

ARTICLES

a an the

THE REST

and but if or
because as until while
of at by for
with about against between
into through during before
after above below to
from up down in
out on off over
under
again further then once
here there when where
why how all any
both each few more
most other some such
no nor not only
own same so than
too very one every
least less many now
ever never say says
said also get go
goes just made make
put see seen whether
like well
back even still way
take since another however
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two three four five
first second new old
high long
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B. SAMPLE SUMMARIES

Sample Summaries for Topic-D0723F (DUC-2007)

Topic Title
Southern Poverty Law Center

Query
Describe the activities of Morris Dees and the Southern Poverty Law Center.

Human Generated Summary

Morris Dees was co-founder of the Southern Poverty Law Center (SPLC) in 1971 and
has served as its Chief Trial Counsel and Executive Director. The SPLC participates in
tracking down hate groups and publicizing their activities in its Intelligence Report, teach-
ing tolerance and bringing lawsuits against discriminatory practices and hate groups. As
early as 1973 the SPLC won a federal case which forced funeral homes throughout the
U.S. to provide equal services to blacks and whites. In 1991 it started a classroom program
”Teaching Tolerance” which features books, videos, posters and a magazine that goes to
more than 400,000 teachers. It also funded a civil rights litigation program in Georgia to
provide free legal assistance to poor people. The SPLC’s most outstanding successes, how-
ever, have been in its civil lawsuits against hate groups. Dees and the SPLC have fought
to break the organizations by legal action resulting in severe financial penalties. Described
as ”wielding the civil lawsuit like a Buck Knife, carving financial assets out of hate group
leaders,” the technique has been most impressive: 1987-$7 million against the United Klans
of America in Mobile, Alabama; 1989-$1 million against Klan groups in Forsyth County,
Georgia; 1990-$9 million against the White Aryan Resistance in Portland, Oregon; and
1998-$20 million against The Christian Knights of the Ku Klux Klan in Charleston, South
Carolina. But despite these judgments the Ku Klux Klan and White Aryan Resistance have
survived.

Baseline Summarizer

White supremacist arrested after buying hand grenades from an undercover agent said
he wanted to send mail bombs to Washington and Montgomery, authorities said. The city
council has declared the Ku Klux Klan a terrorist group and condemned other hate groups
as well in a resolution approved after an emotional debate. A lawyer who specializes in
bankrupting hate groups is going after the Aryan Nations, whose compound in the Idaho
woods has served as a clubhouse for some of America’s most violent racists. One of two
men convicted of assaulting a woman and her son outside the headquarters of the Aryan Na-
tions denied being a member of the white supremacist group Thursday during testimony in
a civil rights case filed against them, the Aryan Nations and the group ’s founder, Richard
Butler. A jury on Thursday awarded $ 6.3 million to a woman and her son who were
attacked by Aryan Nations guards outside the white supremacist group’s north Idaho head-
quarters. Northern Idaho, predominantly white and rural, has been home for nearly three
decades to the racist Aryan Nations. Aryan Nations leader Richard Butler vowed Satur-
day Richard Butler will not leave northern Idaho, despite a $ 6.3 million judgment against
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B. SAMPLE SUMMARIES

Richard Butler’s racist organization. Facing eviction from its compound in northern Idaho,
the Aryan Nations may move its annual white supremacist gathering to Pennsylvania next
year.

Rel-MCKP Summarizer Using Greedy Algorithm with Performance Guarantee

Aryan Nations leader Richard Butler declined to talk with reporters Friday. Dees has
publicly said Keenans hopes to bankrupt the Aryan Nations. Race is a religion with Butler.
Richard Girnt Butler hopes the rest of the world is too. Dees sought to destroy the cor-
porate Klan. And Richard Girnt Butler believes the lawsuit is part of that war. Inside the
compound, Shane Wright, an Aryan Nations security guard, thought Ku Klux Klan heard
a gunshot. Steele said Butler preaches nonviolence, except in self-defense. The Klan is
gone. Dees has always gotten props for dropping dimes on the hateful activities of such
groups as the Ku Klux Klan and Aryan Nation. Richard Butler said Richard Butler may
seek a new trial. The suit contends that not only the guards but also the Aryan Nations,
its 82-year-old founder, Richard Girnt Butler, and Dees Jr. Mouzon plans a church picnic
for Ku Klux Klan’s country community . People who study hate groups consider Butler a
godfather of the white supremacist movement. While Butler has never been convicted of
any crime, Ku Klux Klan’s group has attracted neo-Nazis, supremacists and separatists to
the region. Edgar Steele, who represents Butler and the Aryan Nations, said he will move
for a new trial.

Comp-Rel-MCKP Summarizer Using Modified Greedy Algorithm

Dees has publicly said Keenans hopes to bankrupt the Aryan Nations. Dees sought
to destroy the corporate Klan. Dees has always gotten props for dropping dimes on the
hateful activities of such groups as the Ku Klux Klan and Aryan Nation. The suit contends
that not only the guards but also the Aryan Nations, its 82-year-old founder, Richard Girnt
Butler, and Dees Jr.Morris S. Dees, of the Montgomery, Ala.But putting a hate group out
of business isn’t easy: While Dees has won significant civil judgments against the Ku Klux
Klan and the White Aryan Resistance, the groups have survived. Hate groups are paying
attention to Dees’ tactics. Dees Jr. went to court in Coeur d’Alene, Idaho. The Portland
case is similar to the Keenan lawsuit, in that Dees argued that White Aryan Resistance
founders Tom and John Metzger incited the skinheads to commit murder. Morris S.Morris
S.Butler himself and 12 other white supremacist leaders were arrested in 1987 on federal
sedition charges but were acquitted at trial in Dees Jr., Ark.The Keenans’ attorney, Morris
Dees, had asked the jury to award more than $ 11 million in punitive damages. Dees has
long used lawsuits to destroy the finances of hate groups.
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