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ABSTRACT 

 

Although immediate-early gene expression analyses using fluorescent in situ 

hybridization is an effective method to identify recently activated neurons; and non-

Boolean variations in transcription foci have been documented, it remains unclear 

whether there is a systematic relationship between magnitude of neural activation and 

corresponding RNA signal. Here, we quantified the Homer1a response of hippocampal 

neurons in rats that ran laps on a familiar track to induce consistent cell firing. A strong 

linear trend (r2 > 0.9) in INF intensity (brightness) was observed between 1 and 25 laps, 

after which INF signal dispersed within the nucleus. When the integrated intranuclear 

fluorescence was considered instead, the linear relationship extended to 50 laps. But there 

was only an approximate doubling of Homer1a RNA detected for this 50-fold variation in 

total spiking. Thus, this low-gain dynamic range likely precludes INF intensity as a 

precise quantitative readout of neural activation, albeit a useful qualitative tool.  

 

 

 

 

 

 



 v 

                                    ACKNOWLEDGEMENTS 

 

           I would like to thank my supervisor, Dr. Bruce McNaughton, for over 9 years of 

academic mentorship and scientific training. Dr. McNaughton’s consistently high 

standard of excellence has been valuable in propelling me to strive for quality and 

thoroughness in my scientific endeavours. I am deeply grateful and honoured to have 

received such prestigious guidance. Also, I am indebted to my supervisory committee 

members: Dr. Robert Sutherland, Dr. Robert McDonald, and Dr. Ute Wieden-Kothe for 

their time and energy in providing insightful evaluations of my thesis work. Thank you to 

Dr. Ben Clark who was an important source of encouragement and mentorship in our 

joint efforts on this project. I would also like to acknowledge Jeanne Xie and Sutherland 

Dubé for their valuable moral support and friendship through the years of rigour. Thank 

you to Valérie Lapointe and Aubrey Demchuk for their technical expertise with tissue 

processing, imaging, and seemingly endless trouble-shooting. In terms of logistics, this 

project would not have been possible without the conscientious and excellent 

administrative management provided by Amanda Mauthe-Kaddoura and Naomi Cramer 

who were consistently reliable and dependable. I have been influenced by and received 

assistance from many, many people at the University of Lethbridge and the Canadian 

Centre for Behavioural Neuroscience, and for this I will be eternally grateful. 

          On a personal level, I want to thank my husband, Dr. Dinesh Witharana, for 

constantly pushing me to pursue my goals even when it meant we had to make substantial 

sacrifices, or be apart for long stretches of time. I am forever grateful for my parents, 

Yuen Leung and Michael Li, for bringing me to Canada for a better life, and now helping 



 vi 

raise my children so I can still pursue education. Lastly, thank you to my friends and 

family who never understood what I was studying but still cared and supported me 

anyways. 

 

 



 vii 

TABLE OF CONTENTS 

1 INTRODUCTION .................................................................................................. 1 

1.1 Immediate-early gene expression analyses can identify recently activated 

neurons ................................................................................................................. 1 

1.2 Non-Boolean foci analysis as alternative for all-or-nothing quantification ......... 6 

1.3 IEGs encode proteins that contribute to long-lasting neuronal changes ............ 11 

1.4 Homer1a regulates synaptic plasticity in the nervous system ............................ 14 

1.5 Mechanisms of electro-transcriptional coupling of IEGs: the role of calcium .. 18 

1.6 Electro-transcriptional coupling may be linearly co-regulated .......................... 24 

1.7 Punctate transcription foci correspond to clusters of RNA ................................ 26 

1.8 Variable levels of RNA signal can be maintained during FISH amplification .. 30 

1.9 Systematic quantification of Homer1a RNA expression ................................... 31 

2 METHODS & MATERIALS .............................................................................. 35 

2.1 Subjects .............................................................................................................. 35 

2.2 Experimental design ........................................................................................... 35 

2.3 Sacrifice and brain extractions ........................................................................... 38 

2.4 Cryosectioning of brains .................................................................................... 38 

2.5 Fluorescent in situ hybridization (FISH) ............................................................ 39 

2.6 Image acquisition ............................................................................................... 43 

2.6.1 NanoZoomer whole slide scanning .............................................................. 43 

2.6.2 Laser confocal microscopy .......................................................................... 44 

2.7 Image analysis (Automated INF-boundary-dependent characterization) .......... 45 

2.7.1 NanoZoomer image analysis ........................................................................ 45 

2.7.2 Confocal image stack analysis ..................................................................... 47 

2.8 Image analysis with segmentation (Automated INF-boundary-independent 

characterization) ................................................................................................. 50 

3 RESULTS ............................................................................................................. 53 

3.1 Automated INF-boundary-dependent characterization ...................................... 53 

3.1.1 NanoZoomer images .................................................................................... 53 

3.1.2 Confocal image stacks ................................................................................. 60 

3.2 Automated INF-boundary-independent characterization (nuclear 

segmentation) ..................................................................................................... 65 

4 DISCUSSION & CONCLUSIONS .................................................................... 68 

4.1 Homer1a transcription foci increased with laps within a narrow dynamic 

range ................................................................................................................... 68 

4.2 Electro-transcriptional coupling captured by IEG fluorescence analysis .......... 71 

4.3 Possible explanations for the low dynamic range of H1a signal ....................... 72 

4.4 Is IEG fluorescence a reliable indicator of firing rates? ..................................... 75 

5 REFERENCES ..................................................................................................... 78 

6 APPENDIX A: Estimation of proportion of activated neurons in 

NanoZoomer images (pixel-based quantification) ............................................ 90 
7 APPENDIX B: Blue/green bleed-through correction for NanoZoomer images

 ................................................................................................................................ 92 



 viii 

 



 ix 

LIST OF TABLES 

 

Table 1.1 Examples of published studies that used IEG-RNA labeling to identify recently 

activated neuronal populations with a Boolean approach to INF quantification. 

(page 10). 

Table 3.1 Approximate activation proportions of neurons in CA1 and CA3 (NanoZoomer  

        data). (page 61) 

Table 3.2 Total neurons samples for INF-boundary-independent nuclear segmentation 

       analysis. (page 68) 

 

 

 

 

 



 x 

LIST OF FIGURES 

 

Figure 1.1 Sample fluorescent image depicting a single neuronal nucleus and two 

intranuclear Homer1a transcription foci as green puncta. (page 5) 

Figure 1.2 Post-MECS time-course showing persistence of Homer1a mRNA foci (blobs) 

up to 50 min after shock administration. (page 13) 

Figure 1.3 Schematic of several calcium-dependent signal-transduction pathways that can 

mediate the conversion of neuronal activation (spike trains or series of action 

potentials) into cascades that initiate rapid transcription of immediate-early genes in 

the neuronal nucleus. (page 23) 

Figure 1.4 Theoretical activation pattern of a set of place cells in the hippocampus during 

unidirectional lap running on a circle track. (page 34) 

Figure 2.1 Schematic of running track and time-course of events for each group on 

testing day. (page 37) 

Figure 2.2 Comparison of RNA transcript profiles of Homer1a and Homer1b/c. (page 42) 

Figure 2.3 Screenshot of output image generated by custom INF-boundary-dependent 

software designed for multi-layer z-stack analysis of confocal laser microscope 

acquired images of fluorescently-labeled Homer1a INFs. (page 49) 

Figure 2.4 Screenshot of neuronal segmentation software used for INF-independent 

integrated intensity analysis (FARSIGHT). (page 52) 

Figure 3.1 Un-pooled, per-animal comparisons; Linear regression statistics on average 

median INF integrated intensity (summed brightness values X 1000) of each subject 

within a lap group based on NanoZoomer image analysis with INF-boundary-

dependent characterization. (page 55) 

Figure 3.2 Pooled distributions of integrated intensity values of all detected Homer1a 

INFs within a lap group (all animals’ INFs within a test group pooled into a single 

distribution) derived from INF-boundary dependent analysis of NanoZoomer 

images. (page 57) 

Figure 3.3 Sample images of neuronal nuclei and intranuclear transcription foci of 

Homer1a mRNA tagged with fluorescent label. (page 58) 

Figure 3.4 Un-pooled, per-animal comparisons: Linear regression statistics on average 

median INF integrated intensity (summed brightness values X 1000) of each subject 

within a lap group based on confocal image analysis with INF-boundary-dependent 

characterization. (page 62) 

Figure 3.5 Pooled distributions of integrated intensity values of all detected Homer1a 

INFs within a lap group (all animals’ INFs within a test group pooled into a single 

distribution) derived INF-boundary-dependent analysis of confocal images. (page 

64) 

Figure 3.6 Linear regression performed on average median nuclear integrated intensity 

(X 10,000) distributions from confocal images across lap groups in (A) CA1 and 

(B) CA3 following INF-boundary-independent analysis (FARSIGHT). (page 66) 

Figure A1. Distributions of pixel intensities in neuronal versus glial nuclei in the blue 

channel (corresponding to the DAPI counterstain). (page 91) 



 xi 

Figure B1. Emission spectra of DAPI (blue) and FITC (green) overlap so the emitted 

light requires post-acquisition correction to eliminate as much signal bleed-through 

as possible. (page 92) 

Figure B2.  Scatterplot of green versus blue intensities of pixels from an acquired 

NanoZoomer image to compute linear regressions that are subtracted for bleed-

through correction of blue and green signal. (page 93) 

 



 xii 

LIST OF ABBREVIATIONS 

 

 

2D 2-dimensional 

3D 3-dimensional 

AC adenylyl cyclase 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

Arc Activity-regulated cytoskeleton-associated protein 

ATP adenosine triphosphate 

Bi minimum blue intensity 

C Celsius 

CA1 Cornu Ammonis 1  

CA3 Cornu Ammonis 2 

CaM  calmodulin, calcium-modulated protein 

CaMK-II calcium/calmodulin-dependent protein kinase type II 

CaMKIV calcium/calmodulin-dependent protein kinase type IV 

cAMP cyclic adenosine monophosphate 

catFISH compartment analysis of temporal activity for fluorescent in situ hybridization 

CC coiled-coil domain 

CCD charge-coupled device 

CDK9 cyclin-dependent kinase 9 

CRE  cAMP response element 

CREB cyclic AMP response element-binding protein 

DAPI 4',6-diamidino-2-phenylindole 

DNA deoxyribonucleic acid 

DRG dorsal root ganglion 

EGFP enhanced green fluorescent protein 

ERK extracellular-signal regulated kinase 

EVH1 Enabled/Vasp homology 

FISH fluorescent in situ hybridization 

FITC fluorescein isothiocyanate 

GPCR G-protein coupled receptor 

GKAP guanylate kinase-associated protein 

H1a Homer1a 

HRP horseradish peroxidase 

IEG immediate-early gene 

INF intranuclear foci 

IP3R inositol-1,4,5-triphosphate receptor 

JPEG joint photographic experts group 

kb kilobase 

kDa kilodalton 

LTP long-term potentiation 

MAPK mitogen-activated protein kinase 

MECS maximal electroconvulsive shock 

MEF2 myocyte enhancer factor-2 

MEK mitogen-activated protein kinase 



 xiii 

mGluR metabotropic glutamate receptor 

Ohms microOhms 

MSK mitogen and stress-activated kinase 

NDPI NanoZoomer Digital Pathology Image 

NMDA  N-methyl-D-aspartate  

Npas4 Neuronal PAS 4  

NR2 N-methyl-D-aspartate receptor 2 

PAS Per-Arnt-Sim 

PCR polymerase chain reaction 

PDZ post-synaptic density/Drosophila disc large tumor suppressor/ zonula occludens-1  

Pi peak intensity 

PKA protein kinase A 

PMT photomultiplier 

PSD95 post-synaptic density protein 95 

px pixels 

RGB red, green, blue  

RNA ribonucleic acid 

RNAP ribonucleic acid polymerase 

RNAPII ribonucleic acid polymerase II 

ROI region of interest 

RTK receptor tyrosine kinase 

SARE synaptic activity-responsive element 

SD standard deviation 

SEM standard error of the mean 

SRF serum response factor 

SSC saline sodium citrate 

TDI time-delayed integration 

Ti  minimum green intensity (threshold) 

TIFF Tagged Image Format File 

TSA tyramide signal amplification 

UTR untranslated region 

VASP vasodilator-stimulated phosphoprotein 

VGCC voltage-gated calcium channels 

  

 



 xiv 



 1 

IMMEDIATE-EARLY GENE HOMER1A INTRANUCLEAR TRANSCRIPTION 

FOCUS INTENSITY AS A MEASURE OF RELATIVE NEURAL ACTIVATION 

 

1 INTRODUCTION 

1.1 Immediate-early gene expression analyses can identify recently activated 

neurons 

 In the brain, immediate-early genes (IEGs) are characterized by their rapid and 

transient expression which can be induced almost instantaneously by neuronal activation 

(Link et al., 1995; Flavell & Greenberg, 2008). IEGs can be functionally classified as 

regulatory transcription factors or effector IEGs (Kubik, Miyashita, & Guzowski, 2007). 

Regulatory transcription factors such as c-fos, c-jun, and zif268 encode proteins that 

control transcription of other downstream genes (Clayton, 2000; Guzowski, 2002). 

Effector IEGs such as Arc (activity-regulated cytoskeleton-associated protein, also known 

as Arg 3.1), and Homer1a (also known as H1a or vesl-1s), encode proteins that directly 

regulate cellular functions and contribute to synaptic plasticity (Lyford et al., 1995; 

Brakeman et al., 1997).The IEGs Arc & Homer1a exhibit upregulated transcription in 

neurons in direct response to neuronal activation associated with behavioural tasks such 

as exploring a novel environment (Guzowski, McNaughton, Barnes, & Worley, 1999; 

Witharana et al., 2016; Chawla, Sutherland, Olson, McNaughton, & Barnes, 2018), 

contextual fear conditioning (Inoue et al., 2009; Minatohara, Akiyoshi, & Okuno, 2016), 

operant-response learning (Kelly & Deadwyler, 2003), or running laps around a track 

(Miyashita, Kubik, Hahighi, Steward, & Guzowski, 2009; Burke et al., 2005). This 

behaviourally-relevant IEG upregulation occurs in principal cells in many brain regions, 

including the cortex, amygdala and hippocampal subregions (Burke et al., 2005; 
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Imamura, Nonaka, Yamamoto, Matsuki, & Nomura, 2011). The proteins encoded by 

these effector IEGs may be implicated in establishing long-lasting cellular and synaptic 

changes that are associated with memory formation (Flavell & Greenberg, 2008; Adams 

& Dudek, 2005; Lanahan & Worley, 1998). IEG expression has also been shown to 

persist during post-experience reactivation of neuronal populations, suggestive of their 

role in consolidation of new memories (Marrone, Schaner, McNaughton, Worley, & 

Barnes, 2008). 

By analyzing the RNA transcription of these activity-regulated IEGs through 

fluorescent in situ hybridization (FISH), neuroscientists have developed a useful method 

to map behaviourally-relevant neuronal populations. Experiments can be designed such 

that animals are sacrificed at a specific time-point after behaviourally-associated IEG 

transcription. For example, brief and ongoing transcription of Arc RNA induced by the 

behaviour immediately preceding the animal’s death (about 2- 5 min) can be detected as 

bright probe-labeled foci within the neuronal nuclei (Arc-INF) of activated cells, while 

activation induced 20-25 min prior to sacrifice can be observed as diffuse labeling outside 

the nucleus, typically in the cytoplasm (Arc-cyto). This method of detecting activated 

neuronal populations by measuring anatomically distinct RNA signal is known as cellular 

compartment analysis of temporal activity by in situ hybridization, or catFISH, and was 

initially applied to monitor hippocampal populations in response to novel environmental 

exposures by John Guzowski and colleagues (Guzowski et al., 1999). In this original 

paradigm, rats were exposed to two behavioural epochs (duration of 5 min each), 

separated by a 20 min rest period. The population of neurons activated in the earlier 

epoch (activated 20 – 25 min prior to sacrifice) would be labeled with Arc-cyto and the 
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population of neurons activated in the second epoch (activated 2-5 min prior to sacrifice) 

would be labeled with Arc-INF (see also Chawla et al., 2005).  

One variant of catFISH only detects intranuclear RNA signal but differentiates 

populations based on the transcription of two different IEGs, Arc and Homer1a. It has 

been shown that both Arc & Homer1a are co-expressed in similar populations of 

activated cells in the hippocampus and neocortex, and their expression are both induced 

by similar stimuli, such as novel context experiences (Vazdarjanova, McNaughton, 

Barnes, Worley, & Guzowski, 2002). Homer1a (H1a) mRNA is generated from a 

relatively long transcript (~45 kb, Bottai et al., 2002), whereas the Arc transcript is much 

shorter (~3.5 kb, Lyford et al., 1995). This length discrepancy between the mRNA 

transcripts of these two genes permits the targeting of the 3’-untranslated region (UTR) of 

the H1a RNA to identify neuronal populations activated 25-40 min before sacrifice in 

conjunction with the targeting of Arc to identify neurons that were activated between 2-5 

min prior to sacrifice (Vazdarjanova et al., 2002; Vazdarjanova & Guzowski, 2004). 

Another adaptation of catFISH that permits the detection of cells activated in a third time-

point, about 60 min prior to sacrifice, adds the tracking of cytoplasmic H1a, the RNA of 

which takes about 60 min to be export out of the nucleus (Marrone et al., 2008; Bottai et 

al., 2002).  

Through these precisely timed protocols, IEG image analyses provide striking 

temporal and spatial resolution for the detection of activated neurons in large populations. 

Effectively, fluorescent labeling of RNA transcribed from induced IEGs can generate a 

whole-brain snapshot of time-stamped neural activation (for further reveiws: Guzowski, 
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McNaughton, Barnes, & Worley, 2001; Guzowski, Timlin, Roysam, McNaughton, 

Worley, & Barnes, 2005; Kubik et al., 2007). 

After fluorescent in situ hybridization (FISH), the labeled RNA can appear as two 

bright intranuclear transcription foci (INF), or as diffuse cytoplasmic staining (Guzowski 

et al., 1999). Notably, some cells express only one focus as a result of mono-allelic 

expression, although this stochastic process only occurs in as low as 0.5% of autosomal 

genes (Eckersley-Maskin & Spector, 2014) and bi-allelic expression is typically the 

default process for IEGs based on empirical observations. Transcription foci detected in 

the nucleus represent the first compartment in which ongoing rounds of RNA 

transcription are concentrated in a small cellular region, and can typically appear as 

compact and tightly bound puncta of fluorescent signal (Figure 1.1). INFs may 

correspond to 45-100 nm diameter “transcription factories” composed of RNA 

polymerases and transcription factors (Mitchell & Fraser, 2008). It has been proposed that 

these “factories” are maintained as stable compartments for long periods of time (Iborra, 

Pombo, Jackson, & Cook, 1996; Wansink, Schul, Van Der Kraan, Van Steensel, Van 

Driel, & De Jong, 1993; Ghamari et al., 2013), or these factories may correspond to 

temporary clusters of RNA polymerase in which transcription occurs (Cisse et al., 2013; 

Zhao et al., 2014). The current conflicting views regarding the intranuclear spatial 

distribution and clustering dynamics of RNA polymerase and associated transcription 

factors will be discussed further in section 1.7. However, in any of the proposed models 

of RNA polymerase distribution, it is reasonable to assume that while IEGs undergo 

repeated rounds of transcription, the RNA molecules produced on each round can 

accumulate as conglomerates of transcripts before exportation to the cytoplasm. The 
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number of RNA copies would therefore affect the intensity of the RNA-based fluorescent 

signal. Furthermore, the number of RNA copies generated may be regulated by the 

intensity of the transcription induction signal conveyed by the intensity of neural 

activation based on stoichiometric properties of electro-transcriptional coupling, which 

will be examined in detail in section 1.5. Therefore, it would be useful to examine the 

strength of the relationship between spiking and INF intensity, since this would determine 

whether IEG fluorescence can be used as a histological readout of relative magnitudes of 

activation within a neural population. 

 

 

 

 

 

 

Figure 1.1 Sample fluorescent image depicting a single neuronal nucleus and 

two intranuclear Homer1a transcription foci as green puncta. This is a DAPI-stained 

nucleus (blue circular object) in a neuron of the CA1 subregion of the rat hippocampus. 

DAPI binds to eukaryotic chromatin and as such the neuronal soma and other cell parts 

are not stained (see section 2.5). The two green puncta correspond to the RNA that has 

been labeled with a fluorescent probe interlaced with FITC (green) targeting the 3’-

untranslated region (UTR) of Homer1a transcript. There are two foci because there are 

two alleles of the Homer1a gene, one on either chromosome in the rat. 
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1.2 Non-Boolean foci analysis as alternative for all-or-nothing quantification 

Many archetypal IEG imaging studies adopted a Boolean assumption in their 

transcription foci quantification protocols. That is, quantification was typically based on 

whether neurons were IEG-RNA-positive (signal present + ) or IEG-RNA-negative 

(signal absent - ) (see Table 1.1 for a brief overview of these studies).  

Perhaps these previous studies implicitly assumed that either FISH amplification 

processes or the resolution limitations of optical imaging eliminated quantifiable 

variations in intranuclear transcription foci (which could be affected by relative copy 

numbers of transcribed RNA). As a result, previous Boolean approaches to IEG analyses, 

although effective for determining which cells fired when, considered transcription foci as 

all-or-nothing entities, without overt consideration of differences in foci characteristics 

such as foci intensity (brightness), size, or volume. The common use of laser confocal 

microscopy combined with stereological approaches in IEG detection also required the 

implementation of relatively high intensity thresholds or image adjustment for INF signal 

clarity, which would presumably alter INF characteristics to permit detection by the 

human eye (Guzowski et al., 1999; Vazdarjanova et al., 2002). If INF intensity and size 

truly did vary on a non-Boolean spectrum, then confocal thresholding would 

inadvertently eliminate the lower portions of these intensity/size distributions. 

In our own investigations, the serendipitous observation of non-Boolean variations 

of Homer1a INF intensity and size in neurons of rats exposed to either one or five 

consecutive environments led us to think at length about the implications of these variable 

INF characteristics. A comprehensive report of non-Boolean INF characteristics in four 

hippocampal subregions was provided in thesis form (Witharana, 2011) and then 
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published in a meta-analysis of seven IEG studies (Witharana et al., 2016). These studies 

showed that transcription foci intensities were log-normally distributed within the 

population of activated cells, and the average INF integrated intensities increased with 

cumulative environmental exposure, or extensive surface area exploration. Our 

interpretation suggested the following: if electro-transcriptional coupling could regulate 

the number of transcribed RNA copies transcribed from IEGs based on the magnitude of 

neural activation (encoded by rate of action potentials), it is plausible that not all IEG 

transcription foci are uniform in size and intensity if different neurons were activated with 

variable magnitudes. Therefore, Boolean quantification may preclude the possibility that 

IEG images could provide firing rate information (how much these cells fired) in relation 

to neural coding, precluding the ability to detect any possible relationships between 

electrical neural activation and the corresponding transcription response. Furthermore, 

perhaps a non-Boolean approach, wherein the intensity of intranuclear transcription foci 

was also quantified, could offer a new type of information previously overlooked by 

Boolean characterization. 

  After this discovery, we searched through the literature in depth and found that 

supplementary to their main Boolean foci quantification methods, several publications 

provided secondary notes about non-Boolean changes in Arc INF intensity. One such 

report was presented by Miyashita and associates (2009) when they demonstrated that the 

fluorescence intensities of Arc transcription foci in CA1 differed as a result of cumulative 

track-running. They trained rats to run laps within a rectangular box for one lap a day, 

four laps a day, one lap for four days in a row, or four laps a day for four days, and 

reported on the effects of extended experience on the extent of new neuronal recruitment. 



 8 

Despite relatively high confocal thresholding, Miyashita et al. (2009) clearly showed Arc-

INF pixel intensity variations increased with massed running trials. Later, Penner et al. 

(2011) also reported significant variations in integrated intensity levels in Arc 

transcription between groups of young versus aged rats that were tested on spatial 

exploration paradigms. Both Penner et al. (2011) and Miyashita et al. (2009) showed 

corroborating PCR quantification data of Arc mRNA levels declining as a result of 

natural aging or overtraining in the hippocampus. Penner’s group reported significant 

decline in behaviourally-induced Arc mRNA levels as a result of aging, which also 

corresponded to decreased average integrated intensities of Arc foci in CA1 and dentate 

gyrus. They suggested that this decline in mRNA expression paralleled the degradation of 

place cell expansion in aged rats, and therefore aged neurons fire fewer spikes (Shen, 

Barnes, McNaughton, Skaggs, & Weaver, 1997; Burke, Maurer, Yang, Navratilova, & 

Barnes, 2008). Miyashita’s group showed increased levels of Arc mRNA that correlated 

with increased Arc foci intensity as a result of running more laps, and presumably in 

neurons firing more rounds of spikes than lower lap groups. Both studies provide support 

for the proposal that binary IEG foci quantification alone can omit information regarding 

IEG expression levels and corresponding neural activation magnitudes; whereas non-

Boolean quantification might provide more insight into these other aspects of neuronal 

population activation.  

To reiterate, non-Boolean variations in transcription foci observed in these studies 

(Witharana et al., 2016; Miyashita et al., 2009; Penner et al., 2011) might arise from 

electro-transcriptional coupling, wherein the intensity or frequency of neural activity can 

directly increase or decrease expression levels of activity-dependent immediate-early 
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gene transcription, resulting in variable amounts of transcribed RNA. Before we can 

elaborate on this concept, it is important to examine the specific functional and 

biomolecular bases of activity-dependent IEG expression. 
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Table 1.1 Examples of published studies that used IEG-RNA labelling to 

identify recently activated neuronal populations with a Boolean approach to INF 

quantification. Although this is a non-comprehensive list of references, this list 

demonstrates the versatility of INF characterization in examining a diverse range of 

questions related to neural activation. Note the ability to differentiate two or three 

separate neural populations active in distinct behavioural epochs by using single or 

double-IEG catFISH with one or two IEGs. 

 

 

 

Authors Title Paradigm catFISH 

variant 

Guzowski et al. 

1999 

Environment-specific 

expression of the immediate-

early gene Arc in 

hippocampal neuronal 

ensembles 

A,immediate/ 

A,delay 

 

A/A 

A/B 

Arc-INF 

Arc-Cyto 

Vazdarjanova et 

al. 

2002 

Experience-coincident 

expression of the effector 

immediate-early genes Arc 

and Homer1a in 

hippocampal neocortical 

neuronal networks 

A, A delay at 

various time-

points 

Arc-INF 

Arc-Cyto 

Homer1a-INF 

Vazdarjanova & 

Guzowski, 2004 

Differences in hippocampal 

neuronal population 

responses to modifications of 

an environmental context: 

Evidence for distinct, yet 

complementary, functions of 

CA3 and CA1 ensembles 

A / A object / A 

configuration 

A/B 

B/B 

Arc-INF 

Homer1a-INF 

Burke et al., 

2005 

Differential encoding of 

behavior and spatial context 

in deep and superficial layers 

of neocortex 

Same room/ 

different turn; 

Different room/ 

same turn 

Arc-INF 

Arc-Cyto 

Marrone et al., 

2008 

Immediate-early gene 

expression at rest 

recapitulates recent 

experience 

Explore-rest-

explore / 

Rest-explore-

explore / 

Rest-rest-rest 

Homer1a-Cyto 

Arc-Cyto 

Homer1a-INF 

Arc-INF 
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1.3  IEGs encode proteins that contribute to long-lasting neuronal changes 

Several effector immediate-early genes regulate neuronal plasticity processes by 

encoding proteins that bind to downstream molecular complexes and cascades involved in 

the generation of new synapses, trafficking of receptors, calcium signaling, and receptor 

scaffold targeting (Tully, 1997; Lanahan & Worley, 1998). As such, the transient and 

immediate transcription of synaptic-plasticity related IEGs is an important component of 

long-lasting memory in the nervous system, especially in the regulation of long-term 

synaptic potentiation, or LTP (Bliss & Collingridge, 1993; Flavell & Greenberg, 2008; 

Kandel, 2001). For example, Arc (Arg 3.1) proteins are transported to dendritic targets 

and bind to cytoskeletal complexes for AMPA receptor induction (Lyford et al., 1995). 

Down-regulating or knocking out the Arc gene inhibits the sustenance of long-term 

potentiation in hippocampal networks and impairs spatial memory consolidation 

(Guzowski et al., 2000). Similarly, the IEG c-fos appears to play a key role in the 

facilitation of fear memory formation and retrieval (Garner et al., 2012; Ramirez et al., 

2013). Neurons that express c-fos in the dentate gyrus could be optogenetically re-

activated through the activation of channelrhodopsin-2 by shining light neurons that 

express this type of light-gated receptor. After the training and cell-identification phase, 

freezing behaviour in trained rats could be induced even in a neutral, unpaired context 

(Ramirez et al., 2013). Thus, c-fos likely plays an important role in the facilitation and 

maintenance of fear memory processes (Morgan, Cohen, Hempstead, & Curran, 1987).  

 Both Arc and c-fos transcription foci appear in neuronal nuclei after ~2-5 min 

post-activation, but their intranuclear RNA load sharply declines after about 10 – 12 min 
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from activation. However, Homer1a is a relatively long (~45 kb) isoform of the Homer 

family (Bottai et al., 2002) and its nuclear signal has been shown to persist beyond 25 min 

after activation (when the 3’ UTR of the Homer1a RNA strand is targeted with 

fluorescently-labeled antisense riboprobe) (Bottai et al., 2002). It is also possible to label 

Homer1a RNA persisting within the nucleus at substantially delayed time-points of 40 to 

50 min after initial expression, likely due to the stability of its long transcript (Dubé et al., 

2012; Dubé, 2016;). Figure 1.2 (adapted with permission from Figure 1.2 from Dubé’s 

Master’s thesis [2016]) depicts persisting INFs (labeled as “blobs” in y-axes) over the 

time course of 2 min to 50 min (x-axes) directly after the administration of maximal 

electroconvulsive shock (MECS). Briefly, MECS was administered to rats through ear-

clips which were connected to a current-generating machine. The electroconvulsive shock 

delivery robustly excited hippocampal neurons, induced a visible seizure, and induced 

Homer1a transcription (Brakeman et al., 1997). The number of identifiable INFs is 

maintained above a quantifiable range even up to 50 min post-shock. This persistence of 

Homer1a mRNA permits this IEG as a reliable marker of neural activity while animals 

are subjected to long durations of behavioural experimentation. 
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Figure 1.2 Post-maximal-electroconvulsive-shock (MECS) time-course showing 

persistence of Homer1a mRNA foci (blobs) up to 50 min after shock administration. 

The relative number of INFs (blobs) were quantified at 2 min intervals. Top panel shows 

laser confocal microscope image analysis of INF quantification in CA1 from 16 min to 50 

min post-MECS administration. Bottom panel shows NanoZoomer image analysis of INF 

quantification from 2 min to 50 min after MECS administration. Adapted with permission 

from Dubé (2016). 
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1.4 Homer1a regulates synaptic plasticity in the nervous system 

As previously mentioned, Homer1a is an effector IEG whose expression has been 

used extensively as a marker of recent neuronal activation (Vazdarjanova et al., 2002; 

Vazdarjanova & Guzowski, 2004; Marrone et al., 2008; Witharana, 2011; Witharana et 

al., 2016). Homer1a RNA transcript spans ~45kb (Bottai et al., 2002), and because of its 

sequence length, the transcription of its 3’UTR takes about 20-25 min, which affords a 

long time window for behavioural testing. In this section, the biological functionality of 

Homer1a will be discussed in the context of other members of the Homer1 family, 

particularly regarding its role in regulating synaptic plasticity in the nervous system. 

 In the mammalian genome, three Homer genes (Homer1, Homer2, and Homer3) 

have been identified to date, and each gene seems to be expressed in different tissue 

groups (Xiao et al., 1998). Homer genes encode 47-48 kDa proteins which possess: 1) an 

amino (N)-terminal Drosophila Enabled/Vasp homology (EVH1) domain (Gertler, 

Niebuhr, Reinhard, Wehland, & Soriano, 1996) belonging to the Ena/VASP (vasodilator-

stimulated phosphoprotein) group (Ponting & Phillips, 1997); and 2) a carboxy (C)-

terminal coiled-coil (CC) domain and leucine zipper which enable oligomerization (Kato 

et al., 1998). The Homer1 gene is mainly expressed in the brain, spans ~100kb, consists 

of 10 exons, and is the only Homer gene to have evolved bimodal expression of both IEG 

and constitutive isoforms (Bottai et al., 2002). Homer1 proteins are abundantly localized 

at the post-synaptic density, which is a protein-rich specialization region attached to the 

postsynaptic membrane of excitatory neurons consisting of a dense concentration of 

membrane receptors (Sheng & Hoogenraad, 2007). Homer1a (186 amino acids) was the 
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first isoform of the Homer1 family to be identified based on its significant mRNA 

upregulation in neurons of seizure-induced rat hippocampi (Brakeman et al., 1997; Kato 

et al., 1998). It was originally named just Homer, or vesl-1S (for VASP/Ena-related gene 

up-regulated during seizure and LTP), until the other members of the extended Homer 

family were also identified (Kato et al., 1998; Xiao et al., 2000). Homer1b/c are derived 

from alternatively spliced primary transcripts of Homer1 that are constitutively expressed, 

which means they are continuously expressed at a low rate that does not seem to increase 

substantially with neuronal activation (Wang, Chikina, Pincas, & Sealfon, 2014; Bottai et 

al., 2002). Ania3 is the other IEG short-length variant of Homer1. Both Homer1b and 

Homer1c transcripts contain exons 1-10 of the parent Homer1 gene, but Homer1a and 

Ania3 mRNA only contain exons 1-5 as a result of synaptic-activity induced premature 

termination of transcription in the large central intron 5 of Homer1 (Bottai et al., 2002). 

Although both Homer1a and Ania3 expression are upregulated by synaptic activity 

(Brakeman et al., 1997; Bottai et al., 2002; Kato et al, 1998), they differ from each other 

by several C-terminal amino acids, and their RNA transcripts contain unique 3’UTRs 

(Brakeman et al., 1997; Kato et al., 1997). Homer1a and Ania3 proteins are about half the 

size of the constitutive proteins, both contain the EVH1 domain but lack the C-terminal 

oligomerization component (Bottai et al., 2002). Homer1a is rapidly and transiently 

expressed in response to neuronal activation in excitatory neurons in the hippocampus, 

neocortex, and the basolateral amygdala, and in inhibitory neurons in the dorsal striatum 

and central amygdala (Imamura, Nonaka, Yamamoto, Matsuki, & Nomura, 2011).  

The absence of the C-terminal coiled-coil (CC) domain in Homer1a proteins has 

been proposed as an important property that permits their endogenous negative inhibition 
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of their constitutive Homer1 counterparts, which, by contrast, all possess the CC domain. 

The constitutively expressed Homer1b/c will be denoted as a group by the term “CC-

Homer1” from this point forward as we discuss the antagonistic interactions between the 

constitutive versus activity-driven Homer1 isoforms (Naisbitt et al., 1999, Xiao et al., 

2000).  

The PDZ domain is an important part of the conserved EVH1 homologous region 

in Homer1 proteins (Kato et al., 1998). A common structural component made up of 

approximately 80 to 90 amino acids, the PDZ domain contributes to protein-protein 

interactions, especially for anchoring to membrane receptors (Cho, Hunt, & Kennedy, 

1992; Lee & Zheng, 2010). The acronym PDZ is derived from the first letters of the 

original three proteins found to share this domain: post-synaptic density protein (PSD95), 

Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1) 

(Kennedy, 1995). In Homer1 proteins, the PDZ region interacts with group 1 

metabotropic receptors: mGluR1 and mGluR5. Homer1a was one of the first PDZ-

domain containing proteins that was also up-regulated by LTP, implicating H1a as a 

modulator of mGluR signaling and trafficking (Brakeman et al., 1997). The identification 

of a Homer-binding site on inositol-1,4,5-triphosphate receptors (IP3R) and ryanodine 

receptors, corroborated with evidence of their co-immunoprecipitation, suggested that 

CC-Homer1 couples mGluRs and IP3Rs. In contrast, H1a likely uncouples the mGluR-

CC-Homer1-IP3R scaffold since it lacks the CC domain needed for self-association and 

cross-linkage. In support of this decoupling mechanism, the expression of a Homer1a 

transgene in Purkinje neurons decreased mGluR-induced calcium release, but Homer1b 

transgene did not (Tu et al., 1998). CC-Homer1 proteins have also been implicated in the 
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linkage of NMDA receptors (an ionotropic glutamate receptor) with mGluRs at the post-

synaptic density via another family of scaffold proteins called the Shank family. The 

Shank group consists of proteins that interact with guanylate kinase-associated protein 

(GKAP) and PSD-95. PSD-95 possesses the PDZ domain, and anchors NMDARs to the 

postsynaptic membrane by interacting with the cytoplasmic C-termini of these receptors’ 

NR2 subunits (Sheng, 2001). Shank proteins also interact with the EVH1 region of 

Homer, and are crucial in contributing to the quaternary structure of the Homer-Shank-

GKAP-PSD-95 assembly. The Shank-CC-Homer1 interaction also causes mGluR 

clustering by linking mGluRs with the NMDAR assembly (Sheng and Kim, 2000). It has 

been proposed that the monovalent Homer1a protein uncouples proteins by targeting 

Shank and competing for the linkage positions, thereby disassembling the signaling 

complex, and reducing glutamate-dependent release of Ca2+  (Xiao et al., 2000).  

Although the evidence suggest that Homer1a regulates synaptic plasticity by 

down-regulating neural excitability by competing with long-form CC-Homer1 proteins’ 

interactions with membrane receptors, H1a has several other modulatory roles. H1a has 

also been shown to facilitate calcium spikes via L-type voltage-dependent calcium 

channels, which can be interpreted as a mechanism of bi-directional (either enhancement 

or down-regulation of) synaptic plasticity (Yamamoto et al., 2005). When H1a was 

infused by patched pipette into brain slices of rat neocortical pyramidal cells, Yamamoto 

and colleagues observed that spike-induced calcium release actually increased and this 

influx required concurrent mGluR-IP3 signalling. Furthermore, H1a can also act as an 

endogenous agonist of mGluRs, such that H1a can stimulate group 1 mGluRs in the 

absence of its natural ligand glutamate (Ango, Prezeau, Muller, Tu, Xiao, & Worley, 
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2001; Chung & Kim, 2017). Together, these results suggest that H1a can both negatively 

and positively affect neural excitability and its diverse functions likely contribute to a 

tightly controlled feedback loop for optimizing or downregulating specific neuronal 

responses. 

The behavioural impacts of Homer1a expression parallel this protein’s bi-

directional regulation of neural plasticity. Overexpression of H1a in the lateral and basal 

regions of the amygdala impairs auditory fear conditioning and interferes with normal 

social cognition (Banerjee, Luong, Ho, Saib, & Ploski, 2016). In rats that experienced 

amygdala kindling (the gradual intensification of brain excitation via repetitive 

administration of electrical stimulation until a seizure is induced), H1a was the most 

strongly-induced gene in the kindled hippocampus (Potschka et al., 2002). Transgenic 

mice that permanently overexpressed H1a showed a decreased seizure susceptibility after 

kindling when compared to wild-type mice, suggesting that H1a may act as an 

endogenous antiepileptogenic or anticonvulsant agent (Potschka et al., 2002) by 

downregulating NMDAR and mGluR interactions. Based on these findings, H1a likely 

participates in a feedback loop, induced by intense neural activation followed by 

subsequent downregulation to modulate synaptic strength.   

1.5 Mechanisms of electro-transcriptional coupling of IEGs: the role of calcium 

Next, we will return to a more general discussion of how most immediate-early 

gene transcription can be induced by electrical neural activation through the process of 

“electro-transcriptional coupling.” 
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High frequency neuronal activation can induce long-lasting potentiation (LTP) or 

enhancement, which is an enduring increase in the strength of the synaptic response of a 

neuron (Bliss & Lomo, 1973). A neuron that displays LTP has a higher probability of 

firing again when activated by the same pre-synaptic neuron that triggered this LTP 

(Barnes, Jung, McNaughton, Korol, Andreasson, & Worley; McNaughton, 1982). As 

such, LTP is the primary model of the cellular basis of memory in the mammalian brain. 

LTP can be divided into distinct stages based on the longevity of the potentiation (Teyler 

& DiScenn, 1987). The brief initial stage can last minutes, while early phase LTP lasts 

multiple hours, and late-phase LTP can be sustained between several hours to weeks. 

Only the maintenance of late-phase LTP requires gene transcription and subsequent 

protein synthesis (Kandel, 2001). Synaptic activity-driven immediate-early gene (IEG) 

expression can occur rapidly, transiently, and in the absence of de novo protein synthesis, 

and therefore IEGs play an important role in encoding proteins that regulate long-lasting 

synaptic plasticity (Flavell & Greenberg, 2008). Electro-transcriptional coupling (ETC) is 

the process in which neuronal activation (membrane depolarization) signals a rapid 

molecular cascade triggering transcription of IEGs (Figure 1.3). One model of ETC 

suggests that action potentials can induce gene transcription without direct transport of 

molecules from the synapses, which are typically located far from the nucleus. Instead, 

action potentials can signal the translocation of molecules already in the cell body into the 

nucleus or by direct activation of nuclear transcription through the use of calcium ions 

(Ca2+), which can enter the cell through voltage-gated membrane channels or released 

from intracellular stores (Adams & Dudek, 2005). 
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Although there are several signal transduction pathways through which action 

potentials can signal gene expression in the nucleus, Ca2+ seems to be a common essential 

messenger among these diverse pathways. During neuronal membrane depolarization, 

there are several types of membrane receptors that can be triggered to permit the 

subsequent influx of Ca2+. The pre-synaptic release of glutamate can activate post-

synaptic NMDA receptors (NMDAR) which opens a Ca2+ channel, allowing the flow of 

Ca2+ into the cell. This NMDAR activation has been shown to directly upregulate the 

transcription of Homer1a (Sato, Suzuki, & Nakanishi, 2001), Arc (Lyford et al., 1995), 

and other IEGs such as zif268 (Cole, Saffen, Baraban, & Worley, 1989). Calcium can also 

enter the cell via L-type voltage-gated calcium channels (VGCCs), which are opened 

when the membrane is depolarized (Yamamoto et al., 2005).   

Activity-dependent increases of Ca2+ in the cell can have widespread convergent 

interactions on downstream pathways triggered by the activation of other membrane 

proteins. For example, Ca2+ can bind to calmodulin (CaM), also known as calcium 

binding protein or calcium-modulated protein, which has interactions with divergent 

pathways as well. In relation to gene expression, CaM can activate calcium/calmodulin-

dependent kinase type IV (CAMKIV), or indirectly activate protein kinase A (PKA), both 

of which phosphorylate transcription factors in the nucleus, which then bind to gene 

sequences to initiate transcription (Adams & Dudek, 2005). In the indirect transcriptional 

signal pathway of CaM, adenylyl cyclase (AC) activation also requires the concurrent 

binding of an activated subunit of G-protein coupled receptor (GPCR). Then, adenylyl 

cyclase catalyzes the conversion of adenosine triphosphate (ATP) into cyclic adenosine 

monophosphate (cAMP) (Van Nguyen, Kobierski, Comb, & Hyman, 1990) which then 



 21 

goes on to activate PKA. In both the direct and indirect pathways, Ca2+ and cAMP 

function as second messengers that mediate action potential-induced gene transcription by 

directly or indirectly activating kinases that phosphorylate transcription factors. Calcium 

can also regulate kinases in a third pathway, the extracellular-signal regulated 

kinase/mitogen-activated protein kinase (ERK/MAPK) system (Chuderland & Seger, 

2008), which is triggered when receptor tyrosine kinases (RTKs) at the membrane are 

bound by extracellular proteins such as growth factors or hormones. The Ras protein 

family and mitogen-activated protein kinase kinase (MEK) are intermediary enzymes 

that, along with Ca2+, contribute to the activation of ERK/MAPKs (Figure 1.3). The 

ERK/MAPK pathway serves as a secondary route for the activity-dependent 

phosphorylation of transcription factors in the nucleus, and also contributes to the 

regulation of IEG transcription (Xia, Dudek, Miranti, & Greenberg, 1996; Wiegert & 

Bading, 2011). For example, Arc mRNA is upregulated by mGluR1/5 activation as a 

result of concurrent Ca2+ activity on both CaM and ERK1/2 (Wang, Zheng, Zhou, Sun, & 

Wang, 2009). In addition, glutamate stimulation of NMDARs increased Homer1a mRNA 

levels in cerebellar granule cells, but the induction of transcription also required the 

presence of MAPK as a downstream mediator, most likely in its role of activating H1a-

related transcription factors (Sato et al., 2001). 

In the nucleus, several transcription factors are required for the successful and 

rapid recruitment of RNA polymerase for transcribing RNA from the DNA sequence. 

Originally, the primary candidate for mediating IEG transcription was Ca2+/cAMP 

response element binding protein (CREB) (Kandel, 2001). The simple CREB-dependent 

transcription model suggested that neuronal membrane depolarization led to subsequent 



 22 

increases in calcium influx through the opening of voltage-gated calcium channels 

(Hardingham, Chawla, Johnson, & Bading, 1997). Calcium cAMP activate protein 

kinases, either directly or through intermediary molecules, which in turn phosphorylate 

CREB, which then binds to the cAMP response element (CRE) in the promoter or 

enhancer regions upstream of IEGs, and thereby initiates the transcription of IEGs 

(Sheng, McFadden, & Greenberg, 1990; Sheng & Greenberg, 1990) (Figure 1.3). In cell 

cultures, Greenberg, Thompson and Sheng (1992) delineated a model in which voltage-

gated calcium channels were activated by membrane depolarization, which led to the 

activation of CaM kinase, followed by CREB phosphorylation, which then activated c-fos 

transcription. 

However, it has since been shown that CREB is not the only transcription factor 

that is required for IEG transcription. Furthermore, the CRE gene element only 

constitutes one part of a longer, unique enhancer region, called the synaptic activity-

responsive element (SARE) that is located upstream of several IEGs such as Arc and 

Homer1a (Rodriguez-Tornos, Aniceto, Cubelos, & Nieto, 2013). Other transcription 

factors include serum response factor (SRF) (Ramanan et al., 2005), myocyte 

enhancement factor (MEF2) (Flavell et al., 2006), and neuronal PAS (Per-Arnt-Sim) 

domain binding protein (NPas4) (Lin et al., 2008), which, along with CREB, can all bind 

to SARE to initiate transcription in a conjunctive manner. More importantly, all these 

transcription factors implicated in IEG expression require calcium-dependent activation 

(Miranti, Ginty, Huang, Chatila, & Greenberg, 1995; Flavell et al., 2006; Sun & Lin, 

2016). 
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Figure 1.3 Schematic of several calcium-dependent signal-transduction 

pathways that can mediate the conversion of neuronal activation (spike trains or 

series of action potentials) into cascades that initiate rapid transcription of 

immediate-early genes in the neuronal nucleus. Several convergent calcium (Ca2+)-

dependent pathways can lead to the phosphorylation of transcription factors (TFs), which 

binds to upstream synaptic-activity response elements (SARE) on mammalian DNA, 

signalling transcription of immediate-early genes (IEGs). The binding of glutamate to 

NMDA receptors (NMDAR) in the cellular membrane opens the ion channel which 

permits the influx of Ca2+ into the cell. Membrane depolarization can also lead to the 

opening of voltage-gated Ca2+ channels (VGCC), another source of extracellular Ca2+. In 

another pathway, G-protein coupled receptors (GPCR) activate adenylyl cyclase (AC) 

with the concurrent binding of calcium-modulated protein, or calmodulin (CaM). This 

synergistic interaction generates cyclic adenosine monophosphate (cAMP) which 

phosphorylates protein kinase A (PKA). CaM itself can directly activate 

calcium/calmodulin-dependent kinase IV (CaMKIV) which also phosphorylates 

transcription factors. Lastly, CaM can interact with kinases in the ERK/MAPK 

(extracellular signal-regulated kinase/mitogen activated kinase) pathway, which is 

triggered by the binding of endogenous growth factors or hormones to receptor tyrosine 

kinases (RTKs) at the membrane. The intermediary proteins Ras and mitogen-activated 

protein kinase kinase (MEK) contribute to the activation of ERK/MAPKs which then 

phosphorylate transcription factors. Some transcription factors that have been linked to 

IEG-specific transcription include CREB (cAMP responsive element binding protein), 

serum response factor (SRF), Npas4, and myelin elongation factor (MEF2). The 

identification of CREB’s affinity for the cAMP response element (CRE) upstream of 

IEGs was the original primary model for electro-transcriptional coupling, but has since 

been modified to include the other important transcription factors that bind to other parts 

of the longer synaptic activity-responsive element (SARE). Therefore, the transcription of 

mRNA of immediate-early genes relies on widespread calcium signalling. Finally, 

transcription and accumulation of mRNA at transcription sites generate intranuclear 

transcription foci which are the target of probes used in fluorescent in situ hybridization. 
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1.6 Electro-transcriptional coupling may be linearly co-regulated 

In light of the above discussion highlighting the importance of calcium ions as a 

second messenger in signalling IEG transcription, it has been proposed that the intensity 

of neural activation can affect the level of calcium increases, and subsequently influence 

the level of gene expression. The stoichiometric property of Ca2+ influx suggests the 

possibility of a direct proportionality between firing rates and transcription cycles, 

particularly for IEGs like Homer1a and Arc. For example, it is likely that spiking 

frequency or intensity can affect the amount of available calcium ions, which in turn 

signal and amplify the level of recruitment of transcription factors within the nuclear 

transcription sites. In this regard, the magnitude of the electrical activated is converted 

into a chemical signal (based on level of calcium increase) that translates into a 

continuous transcriptional signal. The number of cycles of IEG transcription may be 

controlled by the rate of recruitment of transcription factors (how many are 

phosphorylated or stay phosphorylated); thereby affecting how many RNA transcripts are 

produced based on the magnitude of the initial neuronal activation.   

Indirect evidence supporting this proportional relationship was reported in vitro by 

Fields and associates (1997). Mouse dorsal root ganglion (DRG) cells were electrically 

stimulated with 540 action potentials administered in four variable patterns for 30 min. 

Transient intracellular calcium signals were measured via fluorescent imaging with Ca2+-

indicators while c-fos expression was measured with semiquantitative PCR (polymerase 

chain reaction). Immunocytochemical staining was also used to quantify CREB 

phosphorylation (based on quantifying intensities within cell nuclei). The authors 

observed that specific temporal features of action potentials (i.e. shorter inter-spike 
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duration) influenced Ca2+ transients, and correlated with increases in c-fos expression and 

CREB phosphorylation levels (Fields, Eshete, Stevens, & Itoh, 1997). These findings 

suggest that temporal dynamics of neuronal activation or membrane depolarization lead 

to changes in calcium ion influx, which can transiently coordinate the transcription rates 

of immediate-early genes via specific signal cascades with variable kinetics. 

As a starting point, it could be proposed that a discrete train of action potentials (i.e. 

variable magnitude of electrical signal) could be bio-mechanistically converted into 

variable repetitions of IEG transcription, which would lead to the synthesis of different 

quantities of RNA transcripts, therefore resulting in non-Boolean variations in riboprobe-

labeled transcription foci intensity. 

Optimistically, the electro-transcriptional relationship might be linear:  

 

M(n) = kn + M0 

 

where M is the number of RNA transcripts, n is the number of spikes (or possibly bursts 

of spikes), M0 is the pre-stimulation number (possibly resulting from previous activity), 

and k is a constant reflecting the probability of a new cycle of transcription following a 

spike (or burst).  Ideally, for use as a robust proxy for neural activation, there would be a 

high gain relationship between spikes and cycles of transcription. Of course, many 

factors, such as changes in transcription factor availability, saturation of available RNA 

polymerases, diffusion and post-transcriptional modification of primary transcripts, 

stearic hindrances within transcription complexes, the number of RNA polymerases and 
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state of polymerase readiness (more discussion in the next section) might affect both the 

gain and linearity of the spike vs. transcription function. Therefore, one cannot currently 

estimate a priori the extent to which IEG transcription vs. spiking rate stoichiometry 

might be limited but the overall linear relationship might be conserved until this 

biomolecular availability limit is reached.  

 Given that this proposal suggests a direct relationship between incoming signal 

strength (neural activation via calcium influx) which we have discussed at length, and 

corresponding transcription foci signal (amount of RNA); it would now be helpful to 

discuss the biological implications of the resulting variable RNA transcription foci. 

1.7 Punctate transcription foci correspond to clusters of RNA 

After fluorescent in situ hybridization, the bright punctate intranuclear foci labeled 

by fluorescent riboprobes correspond to the spatial location of tight clusters of nascent 

RNA transcripts. One spatial model of transcription suggests that RNA is synthesized 

within stable and self-contained “transcription factories” (Jackson, Hassan, Errington, & 

Cook, 1993) that are sustained as distinct domains throughout the nucleus (Wansink, 

Schul, van der Kraan, van Steensel, van Driel, & de Jong, 1993). A prevailing assumption 

is that the spatially compact feature of transcription foci is the result of synergistic 

labeling of tightly bound clusters of RNA copies contained within these “transcription 

factories.” Electron microscopy imaging suggested these discrete intranuclear factories 

are between 45-100 nm in diameter (Iborra et al., 1996; Martin & Pombo, 2003), and are 

present in consistent numbers within similar cell types (Iborra et al., 1996). Each factory 

houses between 4-30 RNA polymerases, multiple transcription factors, and many other 

molecules associated with transcriptional activation and mRNA processing (Carter, 
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Eskiw, & Cook, 2008; Martin & Pombo, 2003; Rieder, Trajanoski, & McNally, 2012; 

Grande, van der Kraan, de Jong, & van Driel, 1997). Also, these factories are maintained 

in the absence of transcription (Mitchell & Fraser, 2008) and even after removal of 

chromatin (Jackson et al., 1993). Associated with this model is the prediction of 

“immobilized polymerase” wherein DNA containing the target immediate-early gene 

sequences is mobilized and sequestered to stable transcription factories at the initiation of 

transcription (Osborne et al., 2007). During transcription, DNA is looped by the 

stationary polymerase enzymes and the subsequent elongation of nascent RNA strands 

from the same gene is restricted to small areas (about 50 nm in diameter) corresponding 

to the location of the transcription factories (Martin & Pombo, 2003). The “immobilized 

polymerase” theory is contrary to the model of free-polymerase moving down 

immobilized DNA during transcription (Osborne et al., 2007). Several studies also 

provide evidence for co-localization of genetic transcription activity (initiation and 

elongation) across multiple genes such that several activated genes have been shown to 

share the same transcription factories (Mitchell & Fraser, 2008; Osborne et al., 2004). 

The densely packed polymerase enzymes anchored within transcription factories may 

permit the concurrent activity of two or more RNA polymerases at a specific locus, 

providing a mechanism for rapid re-initiation of transcription and accumulation of 

multiple RNA copies in a short period of time (Jackson, Iborra, Manders, & Cook, 1998). 

Although much of the earlier evidence for transcription factories was observed in fixed 

cells, more recent live-image tracking of an RNAPII-associated factor, cyclin-dependent 

kinase 9 (CDK9), corroborated the presence of transcription factories as stable 

compartments in unfixed mouse erythroid leukemia cells (Ghamari et al., 2013). It is 

plausible that, because of this stable spatial concentration of RNA transcripts at discrete 
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sites of synthesis, fluorescent intranuclear transcription foci (INFs) may increase in 

intensity and size in response to increasing neuronal stimulation (cumulative action 

potentials) (Miyashita et al., 2009; Penner et al., 2011; Witharana, 2011; Witharana et al., 

2016). In effect, INFs may expand because of the accumulation of newly synthesized 

RNA in these factories, and signal dissipation may be the result of eventual post-

processing export to the cytoplasm or mRNA degradation.  

In contrast to the model of stable transcription factories, evidence has emerged 

suggesting that RNA polymerases do not stay in pre-assembled long-lasting factories. On 

the contrary, live imaging experiments reported that clusters of RNAPII are only 

transiently assembled, and these temporary RNAPII clusters were only maintained briefly 

for an average of 5.1 (+0.4) s in human osteosarcoma cells (Cisse et al., 2013). A new 

quantitative technique in giant human salivary glands has also shown the brief assembly 

and subsequent dissipation of “clusters” of only a minute fraction of all cellular 

transcription enzymes in real-time, and the majority of RNAPII do not form permanent 

clusters on a global scale (Zhao et al., 2014). However, a recent experiment showed that 

although the basal cluster duration of RNAPII in mouse embryonic fibroblasts only lasts 

~8 s, serum stimulation actually extended RNAPII cluster lifetime up to 20 min and the 

duration of clustering was predictive of corresponding levels of -actin mRNA (Cho et 

al., 2016). Therefore, to corroborate these three studies, although there may be a low rate 

of stochastic RNAPII clustering at basal, unstimulated levels (Cisse et al., 2013), it is 

possible that stimulation or neuronal activation substantially extends RNAPII cluster time 

to transcribe small population of IEGs (Cho et al., 2016), which would naturally 

constitute a small portion of all available RNAPII in the nucleus (Zhao et al., 2014). In 
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light of the “transient RNAPII cluster” model, the number of RNA copies that can be 

synthesized may be temporally regulated by stimulation-based extended duration 

clustering, providing an upper limit to the linearity of the electro-transcriptional 

relationship. However, despite this possible upper limit, the spatially-concentrated 

accumulation of nascent RNA transcripts in this limited time window could still be 

affected by the magnitude of neural activation if the activation-dependent polymerase 

cluster time was increased to accommodate variable rounds of transcription, still 

producing quantifiable changes in the amount of RNA in this short time frame (Cho et al., 

2016).  

 Another recent finding pertinent to RNA polymerase localization is the 

characterization of “poised” RNA polymerase near the transcription start sites in certain 

genes, especially in immediate-early genes (Saha et al., 2011). Also known as RNA 

polymerase “stalling,” this mechanism permits the near-instantaneous induction of 

transcription triggered by neuronal activation since the polymerase has already been 

recruited and targeted to the appropriate target gene, both processes that is typically 

considered rate-limiting steps in transcription initiation (Lis, 1998). Saha and colleagues 

(2011) discovered RNAPII substantially concentrated near the Arc transcription start site 

which showed classic traits of pre-initiation such as phosphorylation of serine 5 residues 

and histone enrichment of the promoter region. This evidence of pre-initiation by stalled 

polymerase can fit into either the stable “transcription factory” model, or the “transient 

polymerase cluster” model. In the case of the first model, the stalled and immobilized 

polymerase could already be poised on the gene locus, and this stalling is maintained 

within the transcription factory. In the case of the second model, the transient clustering 
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of the stalled polymerases on their specific gene loci could involve the translocation of 

the DNA-RNAPII complex into these RNAP groups and continue transcription within the 

RNAPII clustering period. Moreover, since stalled polymerase contributes to the retention 

of permissive epigenetic markers on promoter sequences, rapid and successive rounds of 

polymerase recruitment to the accessible domain of DNA could result in robust 

transcriptional output and increased RNA copy numbers of IEGs (Saha & Dudek, 2013). 

 

1.8 Variable levels of RNA signal can be maintained during FISH amplification  

Despite the proposed proportional relationship in electro-transcriptional coupling, 

another reason for continued Boolean quantification of IEG images might be the implicit 

assumption that FISH amplification steps are not sensitive enough to detect minute 

differences in the local density of target RNA molecules. In the FISH protocol that has 

been widely adopted for IEG processing, a hapten-labeled antisense, single-stranded 

oligonucleotide probe is hybridized to the primary RNA transcript of the target IEG 

(Guzowski et al., 1999). The hapten molecules, typically small ligand dye molecules (e.g. 

fluorescein or digoxigenin), usually benefit from signal amplification to generate a larger, 

quantifiable optical signal. An antibody that binds to the hapten is conjugated to an HRP 

(horseradish peroxidase) enzyme that catalyzes and forms bonds with a signal amplifying 

dye (such as tyramide). This amplification exponentially increases the detectable RNA 

signal by recruiting many fluorescent dye molecules to bond to single hapten molecules 

(see Figure 1 of Witharana, 2011), and it is this aggregate of fluorochromes that produces 

an enhanced fluorescent foci (reduced signal to noise ratio, higher resolution at lower 

magnifications). However, if the factor of amplification across behavioural conditions is 
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monotonic, then even this exponential amplification ratio may still produce detectable 

differences in the intensity and size of transcription foci, granted image acquisition 

parameters are consistent across behavioural conditions as in the Miyashita et al. (2009) 

study. Thus, if the current FISH protocol is carried out uniformly across behavioural 

conditions (such as combining test groups on a single microscope slide to prevent 

technical biases from tissue processing), then variable levels of RNA signal may still 

potentially be quantified on the resulting images, through non-Boolean INF intensities 

and sizes. This type of quantification can potentially be accomplished using populations 

of neurons whose physiological response function to given stimuli are already known, for 

example, visual cortical responses to variably repeated oriented bar stimuli, or, in the case 

of the hippocampus, repetitive place cell activation (O’Keefe & Dostrovsky, 1971) over 

repeated traversals of a fixed region of space. 

1.9 Systematic quantification of Homer1a RNA expression  

The possibility that static fluorescent IEG images could convey not only the 

identity of activated cells in a large population, but also the approximate magnitudes of 

neuronal activation (i.e. firing rates) has important implications for brain imaging 

applications. At this time, IEG images can provide a sufficient readout of which cells 

fired when. However, if there is a robust relationship between activation magnitude and 

RNA signal intensity, then it might be possible to use IEG images as a proxy for firing 

rate analysis. That is, we could potentially also identify how much those cells fired.  

Previous reports (Miyashita et al., 2009; Penner et al., 2011; Witharana et al., 

2016) have shown non-Boolean variations in the intensity and size of IEG transcription 

foci as a function of lap running, aging, or cumulative environmental exposure. However, 
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these studies did not explicitly investigate the transfer function (linear or nonlinear) 

between electro-transcriptional co-regulation. In the present study, animals were 

subjected to systematic track running in order to delineate changes in Homer1a 

transcription levels as lap numbers increased. The integrated fluorescence intensities of 

individual Homer1a transcription foci were characterized to determine whether repetitive 

epochs (such as place cell re-activation) would result in a linear increase in foci intensity. 

On a broader scope, this body of work focused on whether a linear relationship between 

foci fluorescence signal could be directly translated into a surrogate indication of that 

particular neuron’s firing rate. Previous experiments (Penner et al., 2011; Witharana et 

al., 2016) showed that INF intensities are variable and log-normally distributed within 

populations of hippocampal neurons, and INF intensities of a fraction of hippocampal 

neurons increased with cumulative environmental exposure, or extensive area 

exploration. Log-normality of INF intensity might reflect log-normal distributions of 

firing rates during spatial behaviour (Barnes et al., 1990; Mizuseki & Buzsaki, 2013). Our 

goal in this thesis was to quantify the stoichiometry of IEG RNA fluorescence and the 

total number of spikes within a brief time window.  

Place cells in the hippocampus fire when an animal occupies a specific region in 

space (O’Keefe & Dostrovsky, 1971; Wilson & McNaughton, 1993). Based on robust 

electrophysiological recordings of neurons, repetitive track running in a familiar 

environment elicits repeated and reasonably consistent activation of many of the same 

hippocampal place cells on each lap (explained in Figure 1.4) (Lee, Yoganarasimha, Rao, 

& Knierim, 2004; Maurer, Cowen, Burke, Barnes, & McNaughton, 2006). Moreover, 

there is a robust correspondence between place cell activity and H1a transcriptional 
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activity (Vazdarjanova et al., 2002), making this a reasonable behavioural paradigm to 

theoretically induce linearly increasing numbers of total spiking events to compare with 

the total IEG fluorescence. In addition to its strong relationship with place cell firing, we 

also chose to examine Homer1a expression because of its longer transcript length (Bottai 

et al., 2002), in conjunction with the persistence of intranuclear RNA signal up to 50 min 

(Dubé, 2016). Both properties permit delayed appearance of its 3’UTR, and latent signal 

decay, which would minimize loss of accumulated signal over the time (about 10 min) 

needed to run 50 laps. Portions of the experimental protocol and some of the results 

outlined in this thesis have been published as a peer-reviewed article (Witharana, Clark, 

Trivedi, Mesina, & McNaughton, 2018). 
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Figure 1.4 Theoretical activation pattern of a sequence of place cells in the 

hippocampus during unidirectional lap running on a circle track. 
Electrophysiological recordings show that many of the same place cells representing 

areas on a track are repeatedly activated when an animal runs through the same zone in 

the same direction over many laps. This diagram shows theoretical place cells that fire in 

the same sequence over six laps. These place cells would show a burst or packet of firing 

during each traversal of that position on the track. After 6 unidirectional continuous laps, 

cumulative firing for each cell would be the sum of all spikes fired over each consecutive 

lap. Furthermore, the six cumulative firing events would result in cumulative transcription 

of IEG RNA induced by each re-activation on each lap. 
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2 METHODS & MATERIALS 

2.1 Subjects 

Adult male Long-Evans rats (n=31) between the ages of 3-6 months, were handled 

daily and food-restricted to 85% of ad libitum body weight. Animal handling and care 

procedures were approved by the University of Lethbridge Animal Welfare Committee, 

as outlined by the Canadian Council on Animal Care. Subjects were housed in a shared 

colony with other rats with the lights on during the day, and lights off during the evening. 

Training and testing were performed during the lights on portion of the day. 

2.2 Experimental design 

Rats were trained to run in one direction (clockwise) for food reward (crushed Froot 

LoopsTM and CheetosTM) at a fixed location on a 90 cm-diameter circular track placed on 

the floor (Figure 2.1). The training room contained various distal cues including posters, 

an electrophysiology rig, and other visible cues that were not changed during training or 

testing. At the start of each training session, rats were transported from their colony 

housing rooms (in temporary housing cages identical to their colony home-cages) to a 

darkened room next to the experimental room, where they spent 2-3 h in quiet 

acclimatization. Each rat was trained with the lights on in the experimental room for 

about 10 min/day over consecutive days until their running speed reached a criterion of 

20 laps or more in under 5 min. On test day, rats were moved to the familiar darkened 

antechamber as was done during training, and again rested for 2-3 h prior to lap running, 

in order to minimize the residual H1a mRNA induced by prior behaviour and 

transportation in the home-cage. Rats were randomly pre-assigned a running condition 

between 1 to 25 laps. Four rats that demonstrated exceptionally faster running speeds 
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were pre-assigned to run 30 or 50 laps (two per group). Previous studies (Ekstrom et al., 

2001) show that variations in running speed do not markedly affect the total number of 

spikes emitted in the place field. Once the rat completed the designated number of laps [1 

lap (n =4 rats), 5 laps (n=4), 10 laps (n=3), 20 laps (n=3), 25 laps (n=5), 30 laps (n=2), 50 

laps (n=2)], they were returned to the darkened antechamber and rested for ~25 min, 

followed by immediate sacrifice. Caged controls (n=4) were sacrificed immediately after 

the 2-3 h period in the dark chamber, and positive controls (n=4) (maximal 

electroconvulsive shock, MECS) were given a single electroconvulsive shock treatment 

and sacrificed ~29 min later (Figure 2.1). MECS was administered via ear-clips attached 

to a current generator (UgoBasile, Italy), with the following parameters: frequency of 100 

pulses/s; pulse width of 0.5 ms; shock duration of 1.1 s; current at 85 mA. MECS-induced 

expression is typically assumed to reflect the maximal possible expression within the 

population since it robustly upregulates H1a mRNA transcription (Brakeman et al., 1997; 

Bottai et al., 2002) but this is currently an untested assumption. 

Following in situ hybridization, image acquisition, and image analysis of fluorescence 

signal of Homer1a mRNA transcripts (detailed below), transcription foci integrated 

intensity values were collected by automated quantification software. Automated analyses 

permitted blind collection of intensity values such that subjects could be pooled within a 

lap group, or analyzed as separate subjects. 
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Figure 2.1 Schematic of running track and time-course of events for each 

group on testing day. A) Circle track used for behavioural training and testing. 

Track measured 90 cm in diameter and a fixed reward site was replenished with a 

mixture of crushed Froot LoopsTM and CheetosTM after each visit to encourage 

continuous lap running. Distal room cues were visible throughout all trials, 

including test day. B) Timeline of experimental procedure on testing day. Each rat 

rested in a dark antechamber for a minimum of 2 h prior to first exposure to the 

familiar running track in a separate, well-lit room. Each rat ran a fixed number of 

laps (randomly assigned except for the 30 and 50 lap groups which were selected 

based on their higher speeds to ensure fast and consistent track running) and 

rested for a minimum of 27 min in the same dark antechamber before rapid 

sacrifice and brain extraction. Upper green line is the theoretical INF signal level 

of H1a-3’UTR in correspondence with timing of the experiment. Exploratory 

study of post-MECS signal time-course showed that H1a-3’UTR fluorescence is 

sustained between ~25-40 min from the start of induction (see Figure 1.2).  

Therefore the variation in total time due to differences in number of laps is 

expected to have minimal effect on the results. 

Figure also published in Witharana et al., 2018 (Figure 1). 
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2.3 Sacrifice and brain extractions 

After the post-running rest period, rats were transported to a wet lab for quick 

sacrifice. Rats were placed in a tightly-sealed chamber containing 5% isoflurane for a 

minimum of 40 s until fully anaesthetized. Between 0.4-0.8 mL of sodium pentobarbital 

(Euthansol) was injected intracardially to arrest cardiac activity and rats were then 

decapitated with a guillotine. Following rapid brain extraction and skull removal (the 

entire procedure occurred in less than 1 min for each subject), the brains were submerged 

for 2 min in a metal container of -50oC liquid 2-methylbutane surrounded by a slurry of 

dry ice in 70% ethanol. Frozen brains were then wrapped in aluminum foil, labeled and 

stored in Falcon tubes at -80oC until cryosectioning. 

2.4 Cryosectioning of brains 

Brains were removed from -80oC storage, and hemispheres were separated with a 

razor blade after removing the cerebellum. The hemi-brains were “blocked” with 

TissueTekTM Optimal Cutting Temperature medium (VWR, Radnor, PA) such that all 

experimental groups and controls from a cohort were represented on the same slide to 

minimize procedural variabilities that can arise during tissue handling or FISH. Blocking 

means that hemi-brains were placed vertically on their flat cerebellar ends, arranged in an 

array in a rectangular mold, and layers of OCT were gradually poured around the array to 

create a solid block of embedded brains. Cryosectioning was performed on a cryostat 

(LEICA Microsystems, model CM1900, Concord, Ontario, Canada). SuperFrostTM 

charged slides (ThermoFisher Scientific, Waltham, MA) were used to capture 20 m 

thick serial coronal sections of the brain blocks. Slides were dried at room temperature for 
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a maximum of 30 min to prevent ice crystal formation within the brain tissue, frozen at -

20oC for 2 h, and then stored at -80oC. 

2.5 Fluorescent in situ hybridization (FISH) 

Every tenth 20m thick coronal brain section representing about -2.64 mm to -4.68 

mm from bregma (based on the rat brain atlas, Paxinos & Watson, 2007) was thawed in 

preparation for fluorescent in situ hybridization to label Homer1a RNA. The main steps 

of the hybridization protocol are described below and additional information can also be 

found in previous publications (Montes-Rodriguez, Lapointe, Trivedi, Lu, Demchuk, & 

McNaughton, 2013; Witharana et al., 2016). 

Antisense riboprobes targeting the 3’UTR (untranslated region) of the Homer1a RNA 

transcript were synthesized from Homer1a DNA template with Maxscript RNA Synthesis 

Kit (Ambion, Austin, TX) and fluorescein-isothiocyanate-labeled UTP (Roche 

Diagnostics; Indianapolis, IN) to conjugate uracil bases on the probe with fluorescein 

isothiocyanate (FITC). FITC is a derivative of fluorescein dye molecule which has been 

chemically optimized for biological labeling. The 3’UTR of Homer1a was chosen as the 

probe target because it takes about 20 min to be transcribed in neuronal nuclei after the 

start of transcription by synaptic activity, and this sequence also differs from the 3’UTR 

of the other IEG form of Homer1, known as Ania3 (Bottai et al., 2002). H1a mRNA has 

been shown to persist in the nucleus up to about 40 – 50 min (Figure 1.2) and is not 

exported to the cytoplasm until 60 min after the first transcription event (Bottai et al., 

2002). It should also be noted that portions of intron 5 of Homer 1 is converted into the 

3’UTR of Homer1a (Bottai et al., 2002) but is maintained as an intron in Homer1b/c so it 

possible that the probe would also bind to constitutively low levels of Homer1b/c in the 
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nucleus prior to intron 5 being spliced out (Figure 2.2). However, our lab performed 

verification experiments to ensure that the amount of Homer1b/c that bound by the probe 

did not significantly contribute to the overall Homer1a signal. These experiments 

confirmed that the constitutive expression of H1b/c in CA3 and CA1 was extremely low, 

resulting in very few numbers of RNA transcripts, and the contamination of the total H1a 

signal by H1b/c was only about 0.5% + 0.19% (personal communication from Aubrey 

Demchuk, 2013).  

  

The sequence of the Homer1a 3’UTR probe was as follows: 

 
CATTGAAGGTTGTTTTTGTATGCCAACAGGAGGAAAGCTTGAGTTGCTGCTGATTCTTAAAAGAATTCTG 

TATTCTAAAAGATACACATCATGTTCTAAATGCATTTTAAACTAGTGACATTAGTTATTGGGCATACTGT 

GGTATTACTAGACTACAAAGAGGAATATGAAGTGGCACCATTGAAAGTATTTTTTTAAAAAGCCTGTCTA 

CCTTAACACTAATTTTTACCCTTATTTAAATGCTTTTTACTAAACAGTTTTAGGTAAAATTAAGAAAACA 

GTTTTGTTGACTGCACATCTTTTAGAAGGACCAACTTTTAGAGAATTACATTCTTTGACAGATTAAAAAT 

TGCAAAGTGAGATATTTCAAACTCTTAAGTGAGTTTTATTGCCGTTGGACTGCATTAATACGGACATACG 

ATTAAACTTAGTAGACCAACACTGAGGGATCTCCTTACCAGGCTGCAGAACAAGGAAATTAAGCAATAAA 

TGGGACTTGTGAATGGAAGGACACTCTACTGCTAGTGCTAGTAATTCTGCATAAGATGGTATACATTTTG 

AAGAAAGCTGCTTTTAATTACTTTTAATAATGATTTTAATTACTCT 

 

All solutions and buffers were prepared with distilled water filtered through a 

Nanopure water purification system (Barnstead, ThermoFisher Scientific, Waltham, MA) 

set at 18.2 hms to remove DNAses and RNAses. Slides were removed from -80oC 

storage, thawed for 30 min at room temperature (~21oC), and then fixed in 4% 

paraformaldehyde for 7 min at 4oC. Following a 2X saline sodium citrate buffer (SSC) 

wash, slides were then treated with acetic anhydride in triethanolamine buffer for 10 min 

to lower background signal by binding to polar groups that bind to the probe, followed by 

a 5 min 1:1 acetone-methanol treatment (to perforate nuclear envelope to enable probe 

penetration). Sections were then pre-hybridized with hybridization buffer for a minimum 

of 1 h to prevent background staining, and then incubated overnight (16 h) at 56oC in the 
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hybridization oven with the Homer1a 3’UTR labeled riboprobes. Slides were then cooled 

for 15 min, incubated with RNAse A for 30 min to digest free single-stranded RNA that 

did not bind to the probe and then washed in a succession of buffers in increasing 

stringency. To quench the endogenous peroxidases that would bind to the antibody, slides 

were washed in 2% hydrogen peroxide for 15 min, and washed in buffered solution. TSA 

blocking buffer with 5%  normal sheep serum was pipetted onto each slide to block all 

non-specific binding sites for anti-FITC to reduce the background and incubated for 40 

min at room temperature. The antibody anti-FITC (Jackson Immuno Research, Cedarlane, 

Burlington, NC) was added, then the slides were incubated at 4oC for 18 h. After three 

more washes in buffered solution, slides were then incubated with 1:100 FITC-tyramide 

(PerkinElmer, Waltham, MA) for 30 min, washed in buffer, and counter-stained with 

DAPI (Sigma-Aldrich, St. Louis, MI). DAPI, or 4’,6-diamidino-2-phenylindole, is a 

fluorescent dye that binds selectively to adenine-thymine rich regions in DNA 

(Kapuscinski, 1995). DAPI absorbs light maximally at 340nm and emits light maximally 

at 453nm, which is in the blue range of fluorescence emission (Peters, 1979), and it has 

been commonly applied in RNA expression analyses as a counterstain to identify 

neuronal nuclei (Guzowski et al., 1999; Guzowski et al., 2006; Montes-Rodriguez et al, 

2013; Witharana et al., 2016). It should be noted that DAPI has also been shown to bind 

to adenine-uracil regions of RNA, although with lower affinity than to DNA (Manzini, 

Xodo, Barcellona, & Quadrifoglio, 1985; Tanious, Veal, Buczak, Ratmeyer, & Wilson, 

1992). DAPI-RNA interactions show significantly lower fluorescence (20% of DAPI-

DNA signal), and emission of DAPI-RNA shifts to about 500 nm (Krishan & Dandekar, 

2005; Kapuscinski, 1995). Therefore, it is possible that the DAPI counterstain contributes 

slightly to the Homer1a-fluorescein emission signal, although this would be a minor 
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contribution and should the contamination should be uniform across test groups, likely 

cancelling out in the cross-group comparisons.  

Finally, slides were protected with glass coverslips after applying VectaShield® 

Antifade Mounting Media for Fluorescence (Vector Labs, Burlingame, CA) to preserve 

the slides, and then sealed on the sides with clear nail polish. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Comparison of RNA transcript profiles of Homer1a and Homer1b/c. 

Homer1a is a short-form transcript of the Homer1 parent gene and only contains exons 1 

through 5; while Homer1b/c are long-form transcripts and contain all exons 1-10. 

Homer1a is expressed in a synaptic-activity dependent manner; and is upregulated 

transiently but then its transcription subsequently declines. Homer1b/c are constitutively 

expressed and their RNA is expressed in a low basal rate in neurons at all times. Solid 

bars represent exonic sequences, and the thin connector lines represent introns. The 

3’UTR probe target is shown with an arrow on the Homer1a transcript. 
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2.6 Image acquisition  

2.6.1 NanoZoomer whole slide scanning 

To capture large brain areas, we first used a digital slide scanner, NanoZoomer 

Digital Pathology RS (Model C10730, Hamamatsu Photonics K.K., Japan), equipped 

with a specialized fluorescence illumination optics module to scan all processed slides. 

The NanoZoomer Digital Pathology scanner is a high-speed and high-resolution digital 

imaging system that captures whole-slide digital images by employing TDI (time-

delayed-integration) technology. This TDI technology permits the synchronization of the 

sensor signal with the movement of a microscopic that is being scanned, and uses a triple-

chip TDI camera that accurately reproduces sample colors to produce a single RGB (red, 

green and blue) formatted image. In addition, the NanoZoomer can scan in tri-color 

fluorescence using three CCD sensors with a full multiband filter system, that covers the 

emission spectra of green (FITC/530 nm), blue (DAPI/457 nm), and red (628 nm, not 

applicable here). This fluorescence imaging module uses a light source (halogen lamp) 

and automatic focus by dark field illumination to detect fluorescence sample locations. 

The NanoZoomer can also capture weak fluorescence signals, and reduces bleaching, 

since the excitation light is not targeted onto unwanted regions of the sample, which is an 

important advantage to prevent significant bleaching of the FITC dye.  

Every tenth coronal brain section representing about -2.64 mm to -4.68 mm from 

bregma (according to the rat brain atlas; Paxinos & Watson, 2007) was scanned to obtain 

fluorescent images of dorsal CA3 and CA1 of the hippocampus. Each slide consisted of 

multiple hemi-brains, each representing the different lap conditions within a cohort. 

Selection of ROIs for scanning was blind to condition as the slide orientations were 
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unmarked on the ROI review screen. Single median z-planes of 2 m depth were scanned 

at 40X magnification, with numerical aperture of 0.75, at a scan speed of ~6 min per slide 

(2 cm X 2 cm area) at a resolution of 0.23 m/pixel. Whole slide images were acquired at 

4X exposure for all three color channels (approximately 18 ms effective photon 

collection) and 40X magnification. 

Regions of interest (ROIs) from CA3 and CA1 were manually cropped into sub-

images by outlining with NDPToolkit image cropping software (Hamamatsu Photonics 

K.K., Japan), with reference to the Rat Brain Atlas (Paxinos & Watson, 2007). ROIs of 

CA1 were selected from about the proximal two-thirds of CA1 along the proximal-distal 

axis in relation to CA3. The entire CA3 present on each hemi-brain on each sampled slide 

was imaged. Uncompressed images were saved in the Hamamatsu proprietary format, 

NanoZoomer Digital Pathology Image (NDPI). 

2.6.2 Laser confocal microscopy 

After acquisition of digital images by NanoZoomer scanning, a sample of z-stacks 

of the same slides were acquired using a laser scanning confocal microscope (Fluoview 

FV1000, Olympus America Inc.) with 40X oil immersion objective lens (numerical 

aperture 1.30) equipped with diode lasers for fluorescence detection of DAPI (blue, 458 

nm) and FITC (green, 515 nm). Each image in the stack represented 1m depth of tissue, 

so each image stack consisted of between 15 to 18 images. Although the brain sections 

started as 20 m thick before FISH, slight tissue shrinkage is common especially during 

the fixation and dehydration steps. The confocal acquisition method permitted more 

reliable INF size and intensity measurements by substantially eliminating out-of-focus 

fluorescent noise (Pawley, 2006). Despite the high scanning speed and resolution, and 
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larger scanned areas, NanoZoomer images showed a high amount of such noise in the 

form of blurry FISH signal and out-of-plane fluorescent rings. Confocal z-stacks also 

permitted accurate nuclear segmentation, which was necessary for some of the analysis 

(section 2.8). Accurate automated nuclear segmentation was not achievable from the 

NanoZoomer images because they were only single plane images. For confocal images, 

the imaging software provided an intensity histogram so that the experimenter could 

adjust the laser intensity in the appropriate channel to give about 5% saturation of 

intranuclear foci in the MECS sample, thus covering as much of the dynamic range as 

possible. The DAPI (blue) laser power was maintained at 5.1%, with photomultiplier 

(PMT) gain of 460-475. The FITC (green) laser power ranged from 4.7% - 5%, with the 

PMT gain of 460-520. After laser power and PMT gain were determined, all acquisition 

parameters were kept constant for all lap groups represented on the slide. Each 24-bit 

TIFF image in a stack measured 1024 X 1024 pixels, with both horizontal and vertical 

resolutions of 0.23 m/pixel. 

2.7 Image analysis (Automated INF-boundary-dependent characterization) 

2.7.1 NanoZoomer image analysis 

Single-plane NDPI images (digital images acquired from the NanoZoomer Digital 

Pathology scanner) were processed through automated 2D transcription foci intensity 

analyses using custom Java codes for the open source program ImageJ (NIH, Bethesda, 

MD). This program first converted the uncompressed NDPI images into TIFF format 

compatible with ImageJ. These TIFF images were then pre-processed to correct 

blue/green channel bleed-through since the emission spectra of fluorescein (green, peak at 

520 nm, PerkinElmer, Waltham, MA) and DAPI (blue, peak at 461 nm, Sigma-Aldrich, 
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St. Louis, MI) overlap (see Appendix B for details on bleed-through correction 

algorithm). Finally, for INF characterization, the automated quantification program 

assumed that each fluorescein-tagged FISH signal (intranuclear focus labelling for 

Homer1a RNA) possessed a central, bright peak of intensity (Pi) as a single pixel or 

group of adjacent pixels. Since all digital pixels possess a brightness value (intensity) 

between 0 – 255, this Pi value cannot exceed 255 intensity units. Also, this local intensity 

maximum and its adjacently connected pixels in 2D space must meet or exceed two 

intensity threshold criteria: minimum green intensity (Ti) and the minimum blue (DAPI) 

background intensity (Bi) (Du & Zhang, 2011). Ti was set at a low value (35) to capture 

as many INFs as possible, even the faint objects, and were verified to be consistent with 

human evaluations during prior threshold testing. If the local maximum or adjacently 

connected pixels fell below Ti, then this object was considered noise. The Bi threshold 

ensured that the putative INF signal was co-localized with DAPI staining, and thus was 

actually located within a neuronal nucleus. For each processed image, a corresponding 

Excel (Microsoft) file was generated, which listed the location of each detected 

intranuclear focus according to the x- and y- coordinates of the local maximum (intensity 

peak). For each INF, corresponding maximum intensity values (Pi), total INF size (sum of 

pixels included in the INF area), and integrated intensities (sum of all pixel intensities 

within that INF) were also computed.  

For NanoZoomer images, the following thresholds were used and held constant 

across all images: minimum size = 25 pixels at 0.23 m/pixel, minimum green intensity 

(Ti) = 35, minimum blue intensity (Bi) = 20. The same parameters were maintained in 

both CA1 and CA3 stacks. 
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 INF statistics from each image were sorted based on region and lap group, and 

then either pooled or separated by individual animal. Distributions of intensity values 

were generated as frequency histograms after uniform binning of intensity ranges. Group 

medians were calculated from each distribution. Linear regression statistical testing was 

performed to examine whether there was a relationship between INF intensity values with 

number of laps. 

2.7.2 Confocal image stack analysis  

Optical z-stacks of confocal microscope acquired images were saved as 24-bit 

TIFF stacks using ImageJ software (NIH, Bethesda, MD). Image stacks were then 

processed through automated 3D INF quantification software written in Java for ImageJ. 

The automated quantification program assumed that each intranuclear FISH signal 

(intranuclear focus) possessed a central, bright peak of intensity (Pi) as a single pixel or 

group of adjacent pixels. This local maximum and its adjacently connected pixels in 3D 

space must meet or exceed two intensity threshold criteria: minimum green intensity (Ti) 

and the minimum blue (DAPI) background intensity (Bi) (Du and Zhang, 2011). Ti set to 

a low value (35) to capture many INFs as possible, even the faint objects, and were 

verified to be consistent with human evaluations during prior threshold testing. If the 

local maximum and adjacently connected pixels were below Ti, then this object was 

discarded as noise. The Bi value ensured that the putative INF signal was co-localized 

with DAPI staining, and was indeed within a neuronal nucleus. For each z-stack, a 

corresponding Excel file was generated, which listed the location of each detected 

intranuclear focus according to the x-, y-, and z- coordinates of the local maximum 

(intensity peak). For each INF, corresponding maximum intensity values (Pi), total INF 
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size (sum of pixels included in the INF volume), and integrated intensities (sum of all 

pixel intensities within that INF) were also computed.  

For confocal images, the following thresholds were used and held constant across 

all z-stacks analyzed: minimum volume = 15 px at 0.32 m/pixel, minimum green 

intensity (Ti) = 35, minimum blue intensity (Bi) = 15. The same thresholds were 

maintained for both CA1 and CA3 stacks. 

As with NanoZoomer images, INF statistics from each image were sorted based 

on region and lap group, and then either pooled or separated by individual animal. 

Distributions of intensity values were generated as frequency histograms after uniform 

binning of intensity ranges. Group medians were calculated from each distribution. Linear 

regression statistical testing was performed to examine whether there was a relationship 

between INF intensity values with number of laps. 
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Figure 2.3 Screenshot of custom INF-boundary-dependent software designed 

for multi-layer z-stack analysis of confocal laser microscope acquired images 

of fluorescently-labeled Homer1a INFs. Green (FITC-labeled) foci were 

detected by the program based on user-defined thresholds set for pixel intensity, 

shape, and pixel adjacencies. Red boxes at the bottom of the screen indicate 

origins of foci detected on a different layer that is either above or below current 

layer in view. 
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2.8 Image analysis with segmentation (Automated INF-boundary-independent 

characterization) 

Secondary pixel intensity analysis was performed on the confocal images to 

compare INF characterization with within-nuclear-boundary (INF-independent) intensity 

values. INF-independent analysis required the demarcation of DAPI-stained neuronal 

nuclear boundaries, and total green pixel (H1a) intensity within this boundary was 

cumulatively measured. At the time this study was performed, our software required z-

stack (multi-plane) data for accurate segmentation, so only confocal images were 

included in the INF-independent analyses since our NanoZoomer images were single-

plane images. As outlined the previous section, putative INFs had to consist of adjacent 

pixels and the connected pixels had to adhere to strict shape requirements (i.e. the entire 

pixel group’s outer boundary had to form a near-circular shape). Also, all pixels 

considered as part of the INF must exceed both Ti and Bi. However, we observed that for 

higher lap groups, the INFs seemed to diffuse from the peak intensity origin and no 

longer met the threshold or pixel connectivity requirements of the INF-boundary-

dependent algorithm.  

The first step of the INF-boundary-independent approach was the application of 

object segmentation to delineate nuclear (DAPI-stained) boundaries (Figure 2.4). Color 

TIFF images were separated into blue and green channels. The blue channel image was 

used for nuclear segmentation via FARSIGHT (Al-Kofahi et al., 2011; Bjornsson et al., 

2008; Mesina et al., 2016; Roysam et al., 2008) to segregate all individual neurons in 

CA1 and CA3. After segmentation, integrated intensity of Homer1a signal within 

segmented nuclear boundaries was quantified by cross-referencing the marked nuclear 
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boundaries to the corresponding green channel image. The cumulative intensity values 

were calculated and collated with Matlab (Mathworks, Natick, MA). After image 

acquisition, fluorescent image files were compiled by referencing from their blind 

numerical files back to their original image file names that indicated region (CA3 or 

CA1) and lap group. Image statistics were sorted based on region and lap group and then 

either pooled, or separated by individual animal. Distributions of intensity values were 

generated with frequency histograms after equal binning of intensity ranges. Group 

means, medians and modes were calculated. Linear regression statistics were performed 

to determine the relationship of intensity values with increasing laps. 
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Figure 2.4 Screenshot of an output image generated by neuronal 

segmentation software used for INF-boundary-independent integrated 

intensity analysis (FARSIGHT). This ImageJ-based software was customized to 

identify all individual neurons in CA1 and CA3. After segmentation of nuclear 

boundaries, integrated intensity of Homer1a transcription foci (green) within 

segmented boundaries was quantified. Over longer time lapses, INFs become 

diffuse within the nuclear space so INF-boundary-dependent analysis could not 

accurately quantify mRNA signal in higher lap groups. 
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3 RESULTS 

3.1 Automated INF-boundary-dependent characterization 

“Integrated intensity” refers to the sum of the brightness values of all pixels 

included in a detected intranuclear transcription focus (INF; total signal within a single 

FITC-labeled RNA focus). Each pixel holds a value between 0 – 255. After intensity data 

were collected with the INF-boundary-dependent characterization software written for 

ImageJ (output screen shown in Figure 2.3, described in section 2.7.1), the median 

integrated intensity for each animal was calculated (“un-pooled”), and also the group 

median integrated intensity for all INFs belonging to a lap condition regardless of animal 

(“pooled”) was calculated. Both the un-pooled and pooled medians were calculated for 

comparison since the between-animal variation was high. Then, linear regression tests 

were performed on both the average un-pooled and pooled median values for CA1 and 

CA3. The integrated intensity analyses were performed independently on NanoZoomer 

images and then on confocal images. It should be noted that the sample size for confocal 

images is substantially smaller than the NanoZoomer analysis due to the comparatively 

longer time required for confocal scanning. As a result of visually observed INF diffusion 

(Figure 3.3, I and J), the 30 and 50 lap groups were not included in the linear regression 

tests, but their un-pooled group average medians are shown for comparison in Figures 3.1 

and Figure 3.4.  

3.1.1 NanoZoomer images 

 NanoZoomer image files consisted of single focal plane sub-images cropped from 

uncompressed NDPI files, which were then converted to TIFF format, and then processed 

through a custom ImageJ software which identified putative INFs based on user-defined 
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thresholds and other criteria such as INF area in pixels, as described in 2.7.1. These 

putative INFs and corresponding pixel intensity and size data were then compiled and re-

assigned back to their original lap groups and subregions on a running database.  

Un-pooled INF data (Figure 3.1): For each animal, the INF data from all its CA1 

images were combined to generate a single distribution, and a single median integrated 

intensity value was calculated from this distribution. This was also done for the animal’s 

CA3 images, generating another median integrated intensity value. Within a lap group 

and subregion, each animal’s median values was averaged to generate a within-lap group 

average, and these averages were used to perform linear regression statistics across laps 1 

through 25. The un-pooled average median regressions are shown in Figure 3.1. Average 

group medians for home-cage and MECS were not included in the regression analyses. 

Significant linear trends were observed in the un-pooled group comparisons for only CA1 

(r2=0.9125, p<0.05), but not significant for CA3 (r2=0.421, p=0.236). 

Regression statistical testing for the un-pooled NanoZoomer average lap group 

medians (divided by 1000 for concise graphing) yielded the following parameters:  

CA1: y=0.078x + 4.1, r2=0.9125; F(1,3)=31.266; p=0.0113; 95% confidence interval (CI) 

of intercept: 4.1+0.068; 95% CI slope: 0.08+0.045. Home-cage average = 2.596 and 

MECS average = 8.284. 

CA3: y=0.011x+3.57, r2=0.421; F(1,3)=2.188; p=0.236; 95% CI intercept: 3.57 +0.372; 

95% CI slope: 0.011+0.025. Home-cage average = 2.830, MECS average = 7.141. 
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Figure 3.1 Un-pooled, per-animal comparisons; Linear regression statistics 

on average median INF integrated intensity (summed brightness values X 

1000) of each subject within a lap group based on NanoZoomer image 

analysis with INF-boundary-dependent characterization. Dots represent the 

group average of all median INF intensities per lap group. Triangles represent 

averages from 30 and 50 lap groups, neither of which were included in the 

regression calculations due to INF diffusion. Integrated intensity (y-axis) reported 

in brightness values (digital pixel brightness can measure 0 – 255 per pixel). Error 

bars indicate standard error of the group mean between rats within a lap group: 1 

lap (n =4 rats), 5 laps (n=4 rats), 10 laps (n=3 rats), 20 laps (n=3 rats), 25 laps 

(n=5 rats), 30 laps (n=2 rats), 50 laps (n=2 rats), caged controls (n=4 rats), MECS 

control (n=4 rats). (A): NanoZoomer CA1 average median INF intensity. 

Regression calculated on laps 1 – 25. y=0.078x + 4.1, r2=0.9125; F(1,3)=31.266; 

p=0.0113; 95% CI intercept: 4.1+0.068; 95% CI slope: 0.08+0.045. Home-cage 

average = 2.596 and MECS average = 8.284 (not pictured). (B): NanoZoomer 

CA3 average median INF intensity. Regression calculated on laps 1 – 25. 

y=0.011x+3.57, r2=0.421; F(1,3)=2.188; p=0.236; 95% CI intercept: 3.57 +0.372; 

95% CI slope: 0.011+0.025. Home-cage average = 2.830, MECS average = 7.141 

(not pictured). Figure also published in Witharana et al., 2018 (Figure 3a/b). 
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Pooled INF data (linear regression not displayed in figure form): Since the 

between-animal variation was relatively high (as observed by the standard error of the 

group means, especially in CA1), all INFs of animals within a lap group were also pooled 

and regression statistics were performed on the entire distribution of pooled intensities for 

the NanoZoomer image data to compare with un-pooled animal medians (Figure 3.1). 

Integrated intensity values of all INFs within a lap group (all animals’ data collapsed) 

followed a log-normal distribution (Figure 3.2). Both raw and log-transformed data are 

shown in Figure 3.2 to demonstrate the lognormality and range of INF integrated 

intensities. The medians of the pooled log integrated intensities were also calculated for 

each group (shown as vertical red lines in Figure 3.2). Linear regression analyses were 

performed on the pooled medians for 1 to 25 lap groups. Medians for home-cage and 

MECS were not included in the regression analyses. Significant linear trends were 

observed in the pooled distributions for both CA1 (r2=0.907, p<0.05) and CA3 (r2=0.864, 

p<0.05).   

Regression statistical testing for the pooled NanoZoomer INF values (divided by 

1000 for concise graphing) yielded the following parameters:  

CA1: y=0.061x + 4.480; F(1,3)=29.29; r2=0.907; p=0.012; 95% confidence interval (CI) 

of intercept 4.48 + 0.548; 95% CI of slope 0.061+0.036. Home-cage median: 2.505, 

MECS median: 8.992. 

CA3: y=0.019x + 3.559; F(1,3)=19.02, r2=0.864, p=0.022, 95% CI of intercept 

3.559+0.217; 95% CI of slope 0.019+0.014. Home-cage median: 2.527, MECS median: 

8.277. 
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Figure 3.2 Pooled distributions of integrated intensity values of all detected 

Homer1a INFs within a lap group (all animals’ INFs within a test group 

pooled into a single distribution) derived from INF-boundary dependent 

analysis of NanoZoomer images. Raw distributions of Homer integrated 

intensities pooled within the different lap groups in blue. Log distributions shown 

in red (medians shown as vertical red lines). X-axes are integrated intensity values 

of INFs (x 104) and y-axes depict the % of the total INF population in that test 

group with the corresponding integrated intensity. Each pixel included in an INF 

can have an intensity (brightness) value between 0-255. The integrated intensity is 

the sum of all pixels included within that particular INF based on the shape and 

threshold boundaries outlined in section 2.7.1. 
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Figure 3.3 Sample images of neuronal nuclei and intranuclear transcription 

foci of Homer1a mRNA tagged with fluorescent label. Top panel: Single-plane 

NanoZoomer images of DAPI-stained single neuronal nuclei containing 

fluorescently-labeled Homer1a intranuclear transcription foci from CA1 and CA3 

in rats that ran 0 (A & E); 1 (B & F); 20 (C & G) laps, or were administered 

MECS (D & H). Some cells may only express one focus (stochastic phenomenon 

of mono-allelic expression) or the second focus may be present in another image 

plane above or below the z-plane in view. The second focus may be detected only 

in the z-axis in another image plane. Bottom Panel: I) A standard neuronal 

nucleus with two green punctate INFs with tight boundaries (from an image of a 

subject that ran 20 laps, CA1). These punctate INFs correspond to the fluorescent-

labeled transcription loci of the two Homer1a alleles on either chromosome. J) An 

example nucleus (subject ran 30 laps, CA1) with two smaller punctate INFs near 

the top, but also visible green signal throughout the nuclear area. This diffuse 

signal is still detectable through the automated algorithm above threshold but 

cannot contribute to accurate integrated intensity values through INF-boundary-

dependent characterization protocol as this signal does not reside within the 

boundaries of a clean INF packet. 

Figure also published in Witharana et al., 2018 (Figure 3). 
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Estimation of activation proportions: For the un-pooled NanoZoomer data set, 

total INFs detected were summed and then divided by an estimate of the total neurons 

sampled for each animal and for both CA1 and CA3 (data shown in Table 3.1). The total 

neuronal count was estimated by summing all blue pixels within a specific intensity range 

that should eliminate glial or background DAPI stain (see Chapter 6: Appendix A for 

details on this pixel-based neuronal count estimation). Presumably, most neurons 

expressed two transcription puncta, one for each chromosome, so the total INF counts 

were divided by two to determine the approximate neuron count. It should be noted that 

although most hippocampal neurons express bi-allelic transcription of Homer1a, 

stochastic mono-allelic expression has been documented in some cells (personal 

communication from Aubrey Demchuk, 2016). However, we also presume this random 

mono-allelic expression occurs at an equal rate across all lap groups, so the under-

estimation error in dividing the total INF counts by two should cancel out in the cross-

group comparison. In any event, this estimated activation proportion should not change 

dramatically with increasing laps since this measure should reflect that the same place 

cells were activated on each traversal, leading to accumulation of transcribed RNA. To 

analyze whether the average activation proportions changed across laps or stayed the 

same, a linear regression test was applied to values in CA1 across laps; and also in CA3. 

In CA1, regression statistics yielded these parameters: y=0.09x + 26.85. r2=0.06, F(1,3) = 

0.1989, p=0.686. In CA3, regression statistics yielded these parameters: y=-0.15x +20.43, 

r2=0.17, F(1,3)=0.608, p=0.493. In both CA1 and CA3, changes in average activation 

proportions were not significant, confirming that the number of place cells activated 

stayed relatively consistent across laps. 
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Table 3.1 Estimated percent activation in CA1 and CA3 across laps from 

NanoZoomer image sets. MECS estimation in CA1 is over 100% due to minor error in 

the gross estimation method by simply counting blue pixels within neuronal intensity 

range and dividing total INFs by two. Presumably, this error transfers across all lap 

groups and both regions, to serve as a gross estimate that cells were not substantially 

recruited across laps (same place cells activated on each traversal). Regression statistics 

did not show a significant effect of laps on percent of cells activated (statistics in text) and 

thus, approximately the same number of cells were activated per lap. Table also published 

in Witharana et al., 2018 (Table 1). 
 

Number of laps CA1  

raw % 

CA3  

raw % 

Home-cage 8.50 8.77 

1 30.48 20.00 

5 23.60 18.78 

10 28.18 18.68 

20 25.16 22.82 

25 32.29 12.47 

MECS 118.11 71.77 

 

 

 

3.1.2 Confocal image stacks 

 Confocal image stacks consisted of multi-plane TIFF files with z-axis data. Image 

stacks were analyzed with custom ImageJ software which identified putative INFs based 

on user-defined thresholds and other criteria, including minimum INF volume in pixels as 
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outlined in section. These putative INFs and corresponding pixel intensity and size data 

were then compiled and re-assigned back to their original lap groups and subregions on a 

running database.  

Un-pooled INF data (Figure 3.4): For each animal, the INF data from all its CA1 

image stacks were combined to generate a single distribution, and a single median 

integrated intensity value was calculated from this distribution. This was also done for the 

animal’s CA3 image stacks, generating another median integrated intensity value. Within 

a lap group and subregion, each animal’s median values was averaged to generate a 

within-lap group average, and these averages were used to perform linear regression 

statistics across laps 1 through 25. The un-pooled average median regressions are shown 

in Figure 3.4. Average group medians for home-cage and MECS were not included in the 

regression analyses. Significant linear relationships were observed across laps in both 

CA1 (r2= 0.90, p<0.05) and CA3 (r2=0.937, p<0.05).  

Linear regression testing on laps 1 to 25 yielded these parameters: 

CA1: y= 0.16x + 3.948; r2= 0.90; F(1,3)=27.78; p=0.013; 95% confidence interval (CI) of 

intercept: 3.948 + 1.503; 95% CI slope: 0.164 + 0.099. Home-cage average = 4.09, 

MECS average = 12.313. 

CA3: y=0.13x + 3.978; r2=0.937; F(1,3)=44.401; p=0.007; 95% CI intercept: 3.978 + 

0.937; 95% CI slope: 0.129 + 0.062. Home-cage average = 3.455, MECS average = 

10.600.  
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Figure 3.4 Un-pooled, per-animal comparisons: Linear regression statistics 

on average median INF integrated intensity (summed brightness values X 

1000) of each subject within a lap group based on confocal image analysis 

with INF-boundary-dependent characterization. Dots represent the group 

average of all median INF intensities per lap group. Triangles represent averages 

from 30 and 50 lap groups, neither of which were included in the regression 

calculations due to INF diffusion. Integrated intensity (y-axis) reported in 

brightness values (digital pixel brightness can measure 0 – 255 per pixel). 

Intensities divided by 1000 to highlight comparison of changes of transcription 

focus intensity across lap groups. Error bars indicate standard error of the group 

mean between rats within a lap group: 1 lap (n =4 rats), 5 laps (n=4 rats), 10 laps 

(n=3 rats), 20 laps (n=3 rats), 25 laps (n=5 rats), 30 laps (n=2 rats), 50 laps (n=2 

rats), caged controls (n=4 rats), MECS control (n=4 rats). (A): Confocal CA1 

average median INF intensity. Regression calculated on laps 1- 25.  y= 0.16x + 

3.948; r2= 0.90; F(1,3)=27.78; p=0.013; 95% CI intercept: 3.948 + 1.503; 95% CI 

slope: 0.164 + 0.099. Home-cage average = 4.09, MECS average = 12.313 (not 

pictured). (B): Confocal CA3 average median INF intensity. Regression 

calculated on laps 1- 25. y=0.13x + 3.978; r2=0.937; F(1,3)=44.401; p=0.007; 

95% CI intercept: 3.978 + 0.937; 95% CI slope: 0.129 + 0.062. Home-cage 

average = 3.455, MECS average = 10.600 (not pictured). 

Figure also published in Witharana et al., 2018 (Figure 3c/d). 
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Pooled INF data (linear regression not displayed in figure form): Between-animal 

variation was also high in the confocal imaging analysis (as observed by the standard 

error of the group means in both CA1 and CA3). In addition, the confocal image stack 

sample size was lower than compared to the large amount of images available in the 

NanoZoomer analysis, so again all INFs of animals within a lap group were pooled and 

regression statistics were performed on the entire distribution of pooled intensities for the 

confocal image data to compare with un-pooled animal medians. Integrated intensity 

values of all INFs within a lap group (all animals’ data collapsed) followed a log-normal 

distribution (Figure 3.5). Both raw and log-transformed data are shown in Figure 3.5 to 

demonstrate the lognormality and range of INF integrated intensities. The medians of the 

pooled log integrated intensities were also calculated for each group (shown as vertical 

red lines in Figure 3.5). Linear regression analyses were performed on the pooled 

medians for 1 to 25 lap groups. Medians for home-cage and MECS were not included in 

the regression analyses. Significant linear trends were observed in the pooled distributions 

for both CA1 (r2=0.961, p<0.005) and CA3 (r2=0.983.864, p<0.005).   

Linear regression statistical testing for the pooled confocal INF values (divided by 

1000 for concise graphing) yielded the following parameters:  

CA1: y= 0.118x + 4.57, r2=0.961; F(1,3)=74.72; p<0.005; 95% confidence interval (CI) 

of intercept: 4.57+0.662; 95% CI slope: 0.118+0.044. Home-cage median = 3.580, MECS 

median = 11.867. 

CA3:y=0.058x + 4.562; r2=0.983; F(1,3)=170.05; p< 0.005; 95% CI intercept: 

4.562+0.216; 95% CI slope: 0.058+0.015. Home-cage median = 3.481, MECS median = 

9.209. 
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Figure 3.5 Pooled distributions of integrated intensity values of all detected 

Homer1a INFs within a lap group (all animals’ INFs within a test group 

pooled into a single distribution) derived INF-boundary-dependent analysis 

of confocal images.  Raw distributions of Homer integrated intensities pooled 

within the different lap groups in blue. Log distributions shown in red (median 

shown in vertical lines on log scale). X-axes are integrated intensity values of 

INFs (x 104) and y-axes depict the % of the total INF population in that test group 

with the corresponding integrated intensity. Each pixel included in an INF can 

have an intensity (brightness) value between 0-255. The integrated intensity is the 

sum of all pixels included within that particular INF based on the shape and 

threshold boundaries (in the x-,y-, and z-axes) outlined in section 2.7.2. 
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3.2 Automated INF-boundary-independent characterization (nuclear 

segmentation) 

Although INF-boundary-dependent characterization was useful for analyzing the 

integrated intensity of transcription foci in lap groups 1 to 25, visual examination of both 

NanoZoomer and confocal images showed that the INF boundaries were not as well 

defined in animals that ran 30 or 50 laps when compared to the punctate foci from 

animals that ran fewer laps (Figure 3.3, I & J). These diffuse signals from the 30- and 50- 

lap subjects were not accurately characterized by the INF-boundary-dependent method, 

because of the nature of the boundary detection algorithm described in section 2.7.1 and 

2.7.2. Thus, samples of confocal images were analyzed using an INF-boundary-

independent analysis (FARSIGHT) which required the detection and segmentation of 

neuronal nuclear boundaries (marked by DAPI signal), and then the intensities of all 

green pixels within these nuclear zones (whether diffuse or bound to punctate INFs) were 

summed (described in detail in section 2.8). Each neuronal nucleus that could be 

delineated by the segmentation showed a corresponding integrated green value which 

represented the amount of detectable Homer1a RNA signal within that particular nuclear 

boundary regardless of whether it was contained in a distinct focus. Subjects were pooled 

within lap groups and the corresponding sums of green pixels were then analyzed and 

median nuclear signals were calculated. Linear regression tests were performed on the 

distribution medians (Figure 3.6), but now included 30 and 50 lap animals (whereas these 

two lap groups were excluded from regression tests in the INF-boundary-dependent 

analyses). In this INF-boundary-independent intensity analysis, both CA1 and CA3 

median integrated intensities increased linearly up to 50 laps. Linear regression test 
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results are reported in the legend of Figure 3.6. The total number of neurons sampled is 

listed in Table 3.2.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Linear regression performed on average median nuclear 

integrated intensity distributions from confocal images across lap groups in 

(A) CA1 and (B) CA3 following INF-boundary-independent analysis 

(FARSIGHT). Since this INF-boundary-independent (nuclear segmentation) 

analysis includes green signal from diffuse RNA signal outside of clear INF 

boundaries, the inclusion of 30 and 50 lap group values contributed to significant 

linear increases in transcription signal across laps. Integrated intensity (y-axis) 

measured in brightness values (digital pixel brightness can measure 0 – 255 per 

pixel). (A) CA1: Regression statistics: y= 0.087x + 5.336, r2=0.917, F(1,5)=55.09, 

p=0.0007, 95% CI intercept: 5.336 + 0.765, 95% CI slope: 0.087 + 0.023. Home-

cage median: 3.989, MECS median: 12.597 (not pictured). (B) CA3: Regression 

statistics:  y=0.057x + 4.680, r2=0.820, F(1,5)=22.814, p=0.005, 95% CI intercept: 

4.680 +0.777, 95% CI slope: 0.057 + 0.030. Home-cage median: 4.404, MECS 

median: 17.79 (not pictured). Figure also published in Witharana et al., 2018 

(Figure 5). 

 



 67 

Table 3.2 Total number of neurons analyzed for INF-boundary-independent 

integrated intensity based on nuclear segmentation. A cross-section of the available 

data was analyzed for intranuclear integrated intensity and due to low numbers per 

animal, median nuclear integrated intensities were pooled within a lap group. Table also 

published in Witharana et al., 2018 (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

laps 

CA1 

Total neurons sampled 

CA3 

Total neurons 

sampled 

Home-cage 1179 783 

1 550 1830 

5 1961 1045 

10 1593 1953 

20 861 1972 

25 1218 1589 

30 663 768 

50 663 768 

MECS 1718 2024 
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4 DISCUSSION & CONCLUSIONS 

4.1 Homer1a transcription foci increased with laps within a narrow dynamic 

range 

To estimate the relationship between neuronal spiking and expression of the 

synaptic plasticity-related immediate-early gene Homer1a (H1a), rats ran 0, 1, 5, 10, 20, 

25, 30 or 50 unidirectional laps on a circular track for food reward and then their brains 

were analyzed for H1a RNA expression. Automated fluorescent image analyses revealed 

systematic increases in integrated intensity of H1a intranuclear transcription foci as laps 

increased in both CA1 and CA3 subregions of the hippocampus, with no change in the 

percentage of cells passing the H1a+ threshold (estimated neuronal activation proportions 

remained relatively constant across laps). It should be emphasized that the methods for 

estimating total neuronal numbers are approximate. The intensity ranges of neurons and 

glia overlap to some degree, and it may be the case that some neurons exhibit only a 

single intranuclear transcription focus due to mono-allelic expression (Eckersley-Maslin 

& Spector, 2014); however, neither error would affect the overall conclusion concerning 

the observed increase in expression over laps, since these errors would apply equally to 

all groups.  

Therefore, the intensity data support the hypothesis that there is a linear, but low-

gain, relationship between number of spikes and, presumably, the average amount of 

transcribed H1a RNA signal as a result of direct electro-transcriptional coupling, over a 

50-fold range of spiking activity. The data also suggest dynamic properties of electro-

transcriptional regulation wherein the average number of IEG transcription cycles within 

the overall population increases monotonically with the number of times that the cells 
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have been activated within a fixed time window, at least over a certain range, in 

hippocampal subfields CA1 and CA3, even after two weeks of experience in a familiar 

environment. Since this direct proportionality appears to be preserved in both CA1 and 

CA3 (over a certain behavioural range), it is conceivable that at least some part of the 

complex biochemical cascade occurring during electro-transcriptional coupling (Fields et 

al., 1997; Flavell & Greenberg, 2008; Link et al., 1995) may manifest as visible and 

quantifiable variations in INF characteristics in certain behavioural paradigms. However, 

the data do not address how such changes might be manifested at the single neuron level 

since these results are based on averages over large populations of cells. 

This study used two optical image acquisition systems and several analytical 

methods to characterize and verify that, on average, the fluorescence intensity increased 

as subjects ran consecutive laps. Parallel analysis streams were applied for verification in 

image acquisition (NanoZoomer scanner versus laser confocal microscope); and also for 

fluorescence intensity detection (INF-boundary-dependent versus INF-boundary-

independent analyses). In the INF-boundary-dependent protocol using NanoZoomer 

images, only single focal plane z-stack analyses were performed, which would have led to 

a consistent degree of measurement error since the data only show INFs in the x-y plane. 

For example, the inclusion of partial INFs would underestimate certain data points, or the 

inclusion of out-of-focus INFs from below or above the focal plane would have inflated 

actual values. Presumably this error is constant across lap-groups. Furthermore, the same 

images were also sampled on a confocal laser microscope with z-stack information and 

similar trends of fluorescence intensity increase were confirmed; although the INF sample 

is much smaller because of the time involved in confocal z-stack acquisition. In the 
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future, if confocal acquisition times can be dramatically reduced from a technical 

standpoint, it would be advantageous to replicate this analysis with large-scale confocal 

imaging including the z-axis. 

The eventual disbanding of transcription puncta into blurred and diffuse signal 

within the neuronal nucleus at the longest time-points after initiation of transcription (i.e. 

at 30 and 50 laps) necessitated the use of an alternate signal characterization protocol 

(INF-boundary-independent nuclear segmentation based approach). INF-boundary-

independent quantification of transcription foci intensity showed that electro-

transcriptional coupling is maintained within the specific behaviour up to 50 laps or 

approximately 10 minutes of consecutive lap-running. As such, while both methods are 

useful for intensity quantization, the INF-boundary-independent method may be generally 

preferable and computationally more efficient. Furthermore, the INF-boundary-

independent method is likely less biased since it employs less user-defined thresholding 

and criteria. Presumably, the initiation of transcription occurs at localized nuclear zones 

and as nascent RNA molecules are transcribed, these transcription puncta or factories 

gradually disband as individual RNA molecules separate from the conglomerate of newly 

synthesized transcripts and diffuse to other nuclear zones en route to exportation to the 

cytoplasm. While the diffusion of Homer1a RNA from the transcription origin seems to 

begin between 25 to 30 laps in this current experimental paradigm, it is conceivable that 

time-courses of diffusion patterns vary depending on the immediate-early gene (Arc, 

zif268) or behavioural requirements (running on a narrow track versus free exploration, 

for example).  
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4.2 Electro-transcriptional coupling captured by IEG fluorescence analysis 

Although a linear relationship exists in INF fluorescence across laps, is this 

empirical relationship a true representation of the amount of Homer1a RNA, or is the 

relationship merely a reflection of a stochastic fluorescence amplification process? 

Presumably, even if there is a stochastic process of random non-uniform process of 

fluorescent probe binding or dye amplification throughout the sample, we would assume 

this random process would cancel out across test groups since it would occur at similar 

rates in all test groups. Also, all test groups were represented on each processed slide, 

mainly to eliminate these technical biases. Therefore, the continuous variation in intensity 

and size of transcriptional foci most likely indicates variable numbers of RNA transcripts 

generated from repeated transcription cycles of RNA polymerase activity at the IEG loci. 

Furthermore, if the data is a true representation of Homer1a RNA quantities, does the 

absolute mRNA amount coincide in perfect relationship with exact spike rates, and if so, 

is there a minimal “spike number” threshold to trigger detectable transcription in the form 

of fluorescent transcription foci? For example, is a single action potential responsible for 

triggering a set number of transcription cycles (t), such that traversal of the same place 

field n times in a behavioural epoch, results in a number of IEG transcripts that coincides 

with n X t? This remains to be investigated systematically, for example, through the use 

of direct quantification of transcribed RNA during controlled place field firing similar to 

the PCR quantification performed by Miyashita et al. (2009) and Penner et al. (2011).   

In addition, biomolecular techniques (e.g. Northern blot quantification of 

transcription factors) could further characterize differential upregulation during electro-

transcriptional coupling. Ideally, this quantification would occur in tissue preserved 
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immediately following electrophysiological recordings to confirm the direct coupling 

between electrical activity and the onset of genetic transcription. Perhaps future 

experiments could also capitalize on single-molecule FISH procedures which provide 

accurate integer counts of mRNA copy numbers in individual activated neurons (Raj, Van 

Den Bogaard, Rifkin, Van Oudenaarden, & Tyagi, 2008). With recent technical advances 

in Ca2+ imaging in real-time, it could be possible to measure neuronal activity by proxy of 

calcium influxes and simultaneously visualize live mRNA transcription with the use of 

conjugate IEG-promoters and fluorescent markers to quantify the exact number of IEG 

transcripts directly transcribed by a set number of action potentials. Given the complex 

and dynamic quantitative molecular processes involved in the electro-transcriptional 

conversion action potentials into packets of RNA, an important follow-up study would be 

one that observed the real-time output of RNA in live cells when IEG expression is 

triggered by neuronal electrical activation. With the advent of complex genetic techniques 

and high-resolution optical imaging, the relationship between the intensity of neural 

activation and the corresponding magnitude of the IEG transcriptional response at the 

single neuron level could be investigated in real time with in vivo imaging through the use 

of transgenic animals expressing IEG-promoter driven fluorescent effectors such as Arc-

enhanced green fluorescent protein (EGFP), akin to the imaging done by Na and 

colleagues (2016) although they monitored the translation of Arc in dendrites caused by 

glutamate stimulation.  

4.3 Possible explanations for the low dynamic range of H1a signal 

Although there were increases in transcription foci intensity as the number of laps 

also increased, the largest rate of change in signal intensity was typically between the 
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home-cage condition and the first lap, which coincides with previous reports that one lap 

is sufficient to induce distinct IEG activation (Miyashita et al., 2009). We compared the 

slope between home-cage and 1 lap to the slope over all lap groups (without including the 

home-cage). On average, over all analysis methods and regions, the ratio of slopes was 54 

(+/- 43 SD). This may reflect a condition in which ongoing H1a transcription in the 

population is very low during rest, but, once initiated following the first lap, which is 

relatively novel, even on a familiar track as evidenced by plasticity effects in CA1 over 

multiple spatial learning epochs (Lee et al., 2004), there is very little remaining capacity 

for new initiation. Since ongoing place cell firing rates are consistent over multiple laps 

(Maurer et al., 2006; Ekstrom et al., 2001), the non-persistence of this initial burst in H1a 

expression (i.e. the rate of change in expression decreases after lap 1) suggests a 

mechanism of electro-transcriptional decoupling in which ongoing neural activation 

ceases to induce further immediate-early gene expression. 

According to the "transcription factory" model, each factory contains only a small 

number (4-30) of RNA polymerase complexes (Rieder et al., 2012), some of which will 

likely be occupied transcribing other genes. This would provide a signal-transduction 

based upper limit on the number of copies of H1a mRNA that could be produced. 

Therefore, whether a burst of spikes initiates a cycle of transcription depends entirely on 

the probability that there is an available RNA polymerase, and whether multiple cycles of 

transcription can be initiated simultaneously on the H1a gene. Apparently, in the case of 

H1a, this probability is about 2/50 = 0.04. In the case of the “transient RNAP cluster” 

paradigm (Cisse et al., 2013; Cho et al., 2016) the level of permissible transcriptional 

cycles might be limited by the cluster time of RNA polymerases. This assumes that 



 74 

transcription stops when RNAPII de-cluster, which would also lead to the ungrouping of 

RNA transcript copies. In either scenario, increase in median H1a transcriptional activity 

per lap might depend on the limited pool of available or stalled polymerases near the gene 

promoter (Saha et al., 2011), which might logistically limit the number of cycles of 

transcription and subsequent re-initiation. Thus, even the most simplified model of the 

dynamics of the transcriptional process in a population of neurons would predict an 

asymptotic response as the number of spikes within the relevant time window increases. 

Such a response could appear relatively linear over some range, but its first derivative 

would steadily decrease. Therefore, the biological limitations of enzyme availability and 

temporal requirements for enzymatic activation may control the responsive window of 

IEG transcription. These cellular constraints might have important implications for 

electro-transcriptional coupling wherein only the initial activity “burst” can be encoded. 

In regards to behavioural context and learning, perhaps Homer1a expression 

levels are regulated by motivation since the first lap at the beginning of the test sessions 

should be when animals are most hungry and most interested in the food reward. 

Behavioural studies implicate an important role for H1a in regulating motivated learning 

in rats (Aragona & Carelli, 2006), and since food deprivation is a highly motivating 

condition, perhaps the initial bursts of Homer1a expression are important for encoding 

the salience of the food reward based on starting motivational levels. However, as the 

animals become more satiated with each subsequent lap, their motivation could be 

decreasing and as such the need to encode the action/reward association of lap running in 

the same place over and over again also decreases. Continuous and repetitive lap running 

could also introduce as aspect of familiarity, in addition to the previous training on the 
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same track and room over many days. The redundancy or lack of novel salient features 

over many laps could cause electro-transcriptional decoupling since no new learning is 

occurring, and the unchanging context is already becoming a stable representation. In 

addition, on test day, rats were completing each lap within 30 – 40 s, and this speed 

stayed relatively constant over subsequent laps. Although speed does not affect the 

number of spikes within a place field (Ekstrom et al., 2001), it is possible that the 

consistent speed also decreased the salience of the running epochs since the behaviour 

became habitual after the first lap, thus also likely contributing to electro-transcriptional 

decoupling. It would be interesting to alter the test day paradigm so that the rats had to 

take a pause after a few laps, then resumed running, to see whether the initial burst could 

be reinstated by renewing the transcriptional response through reactivation of electro-

transcriptional coupling. This pause would be introduced only on test day so it served as a 

novel component of a familiar context, which should be encoded as new information in 

the presumably stable representation. 

4.4 Is IEG fluorescence a reliable indicator of firing rates? 

One application-related purpose of the present study was to determine whether 

IEG fluorescence can be used as a reliable proxy for individual neuronal spikes (or spike 

bursts) at the level of the individual neurons, which would make it an invaluable tool for 

the study of experience-dependent changes in neural coding dynamics on a large scale. 

We conclude that, at least for H1a, this is generally not the case when the spike-inducing 

stimulation or behaviour is repeated multiple times within a short time window. On 

average, there was only a 3-fold change in fluorescent signal between the home-cage and 

MECS conditions, and at best a twofold increase in median fluorescence signal (by any 
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method of analysis) over a 50-fold repetition of the spike inducing behaviour. Given the 

degree of error expected in the quantification process, this very low signal to noise ratio 

appears to preclude accurate estimates of spike rate differences within a given population 

of neurons or between experimental conditions, unless the sample size and/or the spike 

rate differences are very large.  

Also, it was apparent that there were high degrees of between-animal variation in 

the median integrated intensity in both CA1 and CA3. Qualitatively, the data suggested 

higher variance in CA1 specifically, based on the higher standard errors of the group 

averages of median INF intensities. There could be several possibilities for these 

variations: intrinsic biological variance in gene expression, or systematic bias in the FISH 

protocol and subsequent sampling. The second explanation could probably be ruled out 

since the different lap groups were blocked onto the same slides to ensure all brains 

underwent identical processing and therefore technical variations would apply to all 

subjects uniformly. During training, some rats seemed to show more motivation or 

inclination to reach criterion faster than others, so it seems there are natural underlying 

inter-subject variations in behaviour, which could also indicate intrinsic difference 

between each individual’s learning and memory processing. Indeed, Long-Evans rats 

show natural individual differences in motivation to stay in darkness or to seek food 

rewards, and these initial inclinations could reliably predict their level of success in 

subsequent goal-oriented task learning (Franks, Higgins, & Champagne, 2014). Extra-

species evidence supporting the possibility of natural differences in motivation can be 

seen in the African cichlid fish. Some fish could be trained easily on a spatial task 

(learners), while some fish would attempt the task but could not succeed (non-learners), 
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and some fish never attempted the training task at all (non-attempters) (Wood, Desjardins, 

& Fernald, 2012). In any event, as a result of these underlying inter-subject variations at 

least in Homer1a gene expression, it would be difficult to definitively use IEG images as 

an absolute readout for firing rates. 

In summary, the low gain of the transcriptional response in the present study may 

reflect a dramatic decrease in electro-transcriptional coupling as the number of exposures 

of the animal to a cell's place field increases. Such a decrease has been shown previously 

over a longer time scale (Guzowski  et al., 2006). The cause of this decrease is unknown. 

It could be intrinsic to the transcription induction process itself, or it might reflect rapid 

habituation of neuronal modulatory processes which might play a role in coupling 

transcription to spiking. If such a hypothetical fast habituation of permissive modulatory 

responses is the explanation, then it remains possible that the log-normal distribution of 

IEG integrated intensities may indeed reflect the log-normal distribution of spiking 

activity in the hippocampal population on a single trial. This question can only be 

addressed by directly correlating differential spiking rates in a population of neurons with 

the corresponding level of IEG expression, which would be technically challenging, but 

not impossible.  
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6 APPENDIX A: Estimation of proportion of activated neurons in NanoZoomer 

images (pixel-based quantification) 

 

Based on many neurophysiological studies, the estimated activation proportion 

was not expected to increase or decrease dramatically over laps and in our data there was 

indeed no systematic trend. Although many neurophysiological studies have shown that 

the number of active hippocampal pyramidal cells remains relatively constant across 

repeated laps on track mazes such as the one used here, we felt it necessary to confirm 

this result for the present experiment, since the dependent measure was IEG INF intensity 

and not spikes per se. Unfortunately, automated segmentation of neuronal nuclei was not 

possible from single plane NanoZoomer images. To assess stability of the active fraction 

of cells, it would have been sufficient to estimate the number of INFs per unit area of the 

pyramidal cell layer ROIs; however, to bring the results more into alignment with 

physiology, we adopted the following method for estimating neuronal numbers, which 

relies on a pixel-based cell count method. To determine the neuronal pixel intensity 

range, and also to reduce glial contamination, a sampling exercise was conducted. Blind 

counters (blind to animal or test group) manually segmented and classified 347 neuronal 

nuclei and 34 glial nuclei (i.e., the glial fraction from the stratum pyramidale ROIs was 

approximately 0.10) from randomly selected CA1 and CA3 sub-images.  We then 

computed the distributions of blue (DAPI-stained) pixel intensities within nuclei of either 

cell class (Figure A1).  We also estimated from these manually segmented nuclei the 

mean nuclear image area in pixels (3013.58).  Based on these sample distributions of 

pixel intensities, we then set upper and lower boundaries for included blue pixels within 

each ROI ( blue{15,85}).  This would eliminate ~57% of glial pixels and ~6% of 

neuronal pixels, resulting in a glial contamination of less than 5%.  No further correction 

was made.  We then estimated the number of neurons included by dividing the number of 

included pixels by the mean nuclear image area (in number of pixels).  The proportion of 

activated neurons was estimated by dividing the INF count by 2 (assuming 2 foci per 

activated neuron) and then dividing the result by the estimated number of neurons. The 

resulting percent of H1a+ neurons (Table 3.1) is somewhat lower than previously 

published neurophysiological and IEG activation data (e.g., Maurer et al. 2006; Guzowski 

et al., 1999), possibly as a consequence of assuming 2 foci per activated neuron (there 

may be mono-allelic expression and often only one of 2 foci appear in a given single 

plane image). 

This method of approximation, however, is subject to two sources of potential 

error (see methods). Presumably though, this error would apply to all groups analyzed. 

The purpose of the analysis was to determine whether the number of activated neurons 

changed across lap numbers.  Since it did not, it is of no consequence to the overall 

conclusion whether there was a relatively small error in the estimates of absolute numbers 

of neurons. 
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Figure A1. Distributions of pixel intensities in neuronal versus glial nuclei in the 

blue channel (corresponding to the DAPI counterstain). Based on the distributions, a 

threshold was set at minimum of 15 and maximum of 85, which accounted for 94% of the 

neuronal pixels, but eliminated 57% of glial pixels sampled, leaving a potential glia 

contamination of < 5%. Figure also published in Witharana et al., 2018 (Figure 2). 
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7 APPENDIX B: Blue/green bleed-through correction for NanoZoomer images 

As described in section 2.7.1, prior to INF detection and characterization, 

uncompressed NanoZoomer TIFF images were pre-processed to minimize blue/green 

channel bleed-through correction since the emission spectra of fluorescein (green, peak at 

520 nm, PerkinElmer, Waltham, MA) and DAPI (blue, peak at 461 nm, Sigma-Aldrich, 

St. Louis, MI) overlap (Figure B1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Emission spectra of DAPI (blue) and FITC (green) overlap so the 

emitted light requires post-acquisition correction to eliminate as much signal 

bleed-through as possible. 

 

The custom ImageJ software was written with a special bleed-through correction 

algorithm based on calculated subtraction of cross-over intensity values. First, the 

program plotted blue intensities versus green intensities for a single image. For each 

interval of blue intensities, the program plotted the green intensity versus the minimum 

blue intensity (brightness values of 0 to 255) in each interval (Figure B2). A linear 

regression was then performed on these values and the regression line was subtracted 

from the green intensity values. After this subtraction, a new filtered image was created 

and this image was then run through the INF-analysis step of the analysis. 
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Figure B2.  Scatterplot of green versus blue intensities of pixels from a 

NanoZoomer image used to compute linear regressions that were subtracted 

from each interval as bleed-through correction of blue and green signal. 

Custom software program generated intervals of blue intensities and plotted the 

green versus blue intensities for each pixel on the image. For each interval of blue, 

a linear regression was computed between the green and blue relationship. This 

linear regression line was then subtracted from the green intensity as a correction 

to eliminate blue signal of DAPI emission overlapping into the true FITC (green) 

signal. 

 

 

 

 

 


