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Abstract

We quantize the spherically symmetric sector of generic charged black holes. Thermal properties are incorporated by
imposing periodicity in Euclidean time, with period equal to the inverse Hawking temperature of the black hole. This leads to an
exact quantization of the ar¢d) and charge& Q) operators. For the Reissner—Nordstrdm black hale; 47w Gha(2n + p + 1)
and Q = me, for integers:, p, m. Consistency requires the fine structure constant to be quam?z,@d;: p/mz. Remarkably,
vacuum fluctuations exclude extremal black holes from the spectrum, while near extremal black holes are highly quantum
objects. We also prove that horizon area is an adiabatic invariant.

0 2001 Elsevier Science B.Wpen access under CC BY license.

Bekenstein and Hawking [1] showed almost thirty In this Letter we follow an argument originally pre-
years ago that black holes possess intriguing thermo-sented in [3] to quantize the spherically symmetric
dynamic properties which make them rich theoretical sector of generic charged black holes. Our starting
laboratories for testing theories of quantum gravity. point is the assumption that it is possible to incor-
Although candidate theories for quantum gravity exist porate the thermodynamic behaviour of black holes
(such as string theory and quantum geometry), the mi- into a quantum description by imposing periodicity in
croscopic origin of thermodynamic behaviour is still Euclideantime, with period equal to the inverse Hawk-
largely the subject of conjecture. It is therefore impor- ing temperature of the black hole. This single assump-
tant to learn as much as possible about the quantumtion allows us to (i) derive an exact quantized area
behaviour of black holes without assuming a specific spectrum; (ii) derive the spectrum of electric charge
underlying microscopic theory. One very natural ques- and (iii) show that black hole quantization places strin-
tion that arises in this context concerns the quantum gent restrictions on the fine structure constant; (iv)
mechanical spectrum of the observables associatedprove that horizon area is an adiabatic invariant. We
with charged black holes. Based on the conjecture that emphasize that our analysis is quite general and is not
horizon area is an adiabatic invariant, as well as from tied to a specific model or theory of gravity, in contrast
other considerations, it was postulated that for neu- with other derivations of qualitatively similar spec-
tral black holes, the area spectrum is discrete and uni- tra [4]. It applies, for example, to charged as well as
formly spaced;i.e.A o n, wheren is an integer [2]. neutral black holes in Einstein—Maxwell theory in any
dimension, and in fact, even to the 3-dimensional ro-
tating BTZ black hole (where the angular momentum
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Note that our goal here is not to explain the mi- An elegant way to extract thermodynamic informa-
croscopic source of the thermodynamic behaviour. We tion about black hole spacetimes is to euclideanize the
simply encode it into the boundary conditions and ob- solution and concentrate on the ‘near-horizon’ region.
serve the consequences. The formalism of EuclideanBy a suitable choice of Euclidean timg = —it and
guantum field theory, as is well known, can originate spatial coordinate
from two distinctively different physical situations —
from the description of thermodynamical ensemble .y _ | fx; M, Q) ’

(statistical, i.e., not pure, state) or from the descrip- S (xns M, Q)

tion of classically forbidden transitions between pure
states — quantum mechanical underbarrier tunneling
Quite amazingly, in quantum gravity these two func-

tions of the Euclidean formalism are not clearly sep- the horizon,a must have the period 2 imply-
arated. Indeed, the Euclidean section of the Schwarz—ing that 15 r’nust be periodic with range € rx <
X

schild solution can, on one hand, be regarded as a Sad'4n/f’(xh~ M, Q). It follows from finite temperature

QIe point .of the path integral for the statisticql parti- quantum field theory that the (Hawking) temperature
tion function and, on the other hand, can be viewed as associated with this black hole is the inverse of the

a classical configuration interpolating in the imaginary Euclidean period, i.e.Tu(M, Q) = A f'(xp: M, Q)/
time between the two causally disconnected spacetime4n' This will play a key role in what follows. The
domains: the righ.t and left wedges.o'f th.e Kruskal di- Bekenstein—Hawking entropySsn (M, 0), of the
agram. Our rngrement Qf per|0d|C|t'y I Imaginary - p|ack hole is defined generically by requiring it to obey
time can be viewed as a kind of consistency of quan- 4 first law of thermodynamics:

tum states in these two domains, or the finiteness of
the semiclassical underbarrier transition amplitude be- §M = Ty(M, Q) §SH(M, Q) + @ (M, Q)§Q, (2)

tween them (remember that the Hawking periodicity \here ¢ (M, 0) is the electrostatic potential at the
requirement is based on the absence of conical singu-pi70n. Givenry and the electrostatic potential, this
larity Whlch_ls, |n_|ts tur_n, mot!vated by the r_egularlty determinesSgi(M, Q) up to an additive constant,
of t_he .sem|<.:la55|f:alldllstrlbun.on). So amplitudes not which is fixed by requiring the Bekenstein—Hawking
satisfying this periodicity requirement can be regarded entropy to vanish when the mass and charge both
as suppres_sed. ) . ) vanish. For spherically symmetric black holes in any
We restrict consideration to black hole spacetimes dimension, this yields the usual relationship between

that are static and can be parametrized by only two 4 entropy and the area of the outer horizg; =
coordinate invariant parameters, which we choose to A/4Gh. For example, in the case of the Reissner—

be the mas#/ and charged. This basically assumes
a Birkhoff-like theorem, and forbids the presence of
monopole gravitational or electromagnetic radiation. Tv =24V M2 — Q?/A, A= 47”_%
With this assumption, there exists a coordinate system 545 — 0/rs,
in which the metric takes form:

one can put the metric near the horizoR — 0)
“into the form,ds2 = dR? + R?da?, wherea :=
tg f'(xp; M, Q)/2. To avoid a conical singularity at

Nordstrom black hole,

where

ry=(GM+VG?M? - GQ?).

2 Since M and Q are assumed to be the only dif-

X
fx; M, Q) feomorphism invariant parameters, the reduced action
governing the dynamics of the spherically symmetric
sector of isolated, generic charged black holes in any
theory must be of the form [5,6]:

ds®=—f(x; M, Q)dt* +
+r2(x)dR2, (N

wherex is radial coordinate. The functiofi(x; M, Q)

is uniquely determined by the requirement thag;, ]red:/dt(pMM +PoQ—HM, Q)), (3)
and g, are inverse proportional to one another, and

the location of the horizon, = x,(M, Q) is given where Py and Py are the conjugates t#/ and Q,
implicitly by f(x5; M, Q) =0. respectively. The exact expression for the Hamiltonian
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is irrelevant: the fact that it is independent &j, change its form. Thus, euclideanization merely gen-
and Pg alone ensures thaf and Q are constants of  erates an overall factor af in front of the reduced
motion. Of course, one can also arrive at this reduced action and keeps the dynamics unaltered. Ultimately,
action via a rigorous Hamiltonian analysis of the the physical relevance of our derived spectra will rest
spherically symmetric charged black hole spacetimes. on the connection between the charge and mass eigen-
For details, see [5,6]. state wave functions that we construct in the Euclidean
For boundary conditions which preserve the so sector using Hamiltonian techniques, and their coun-
called Schwarzschild form (1) of the metric at either terparts in the Euclidean path integral formulation of
end of a spatial slicePy; can be shown to be pro- quantum gravity.
portional to the difference between the Schwarzschild  Periodic boundary conditions on phase space vari-
times at either end of the slice [7—9]. Moreover, the ables are familiar in classical mechanics. Akin to the

momentumpy, is related toPy, by means of the fol- action-angle formulation of the harmonic oscillator,
lowing relation: we can ‘unwrap’ our gravitational phase space, by

transforming to a set of unrestricted variables. Con-
§Pg=—P 3Py + 54, (4) sider the following transformationid, Q, Py, Pp)
wheres Pg ands Py refer to variations under achange — (X, Q, ITx, I1p), which directly encorporates the
in boundary conditions angh is the variation inU (1) correct periodicity ofPy:

gauge transformatioh at the horizon.
In order to quantize we need to know the boundary X =v1B(M, Q)/m cos2r PuTu(M, Q)/h),

conditions on the phase space variables. We require ;7 — /aB(M, 0)/x sin(2x PuTu(M., Q)/h).

M >0, Ty(M, Q) > 0 and Q to be real. Using the

expressions derived in [5], it can be shown that posi- 0=0,

tivity of the Hawking temperature leads genericallyto ITgp =TI1o(M, Py, Q, Pp), (6)

a condition of the form: .
where the functionsB(M, Q) and ITo(M, Py, Q,

SgH(M, Q) = So(0), (5) Pp) will be determined shortly. Direct calculation
where the equality is achieved in the limit of ex- shows that this transformation is canonical if and only

tremal black holes. The lower bourkh(Q) on the i:
Bekenstein—Hawking entropy is a uniquely deter- 9B 1
mined function of Q for each theory in the class ga — (M, Q)
under consideration. For example, for the Reissner—
Nordstrém black holeSo(Q) = 7 Q?/h.

Until this point our anlaysis has been more or less
standard. We now go to the Euclidean sectorwhere the g(ys ) = Sgi(M, Q) + F(Q), 8)
time differenceP,; becomes imaginary as well as pe-
riodic, with period given byTgl(M, 0). Although it where F(Q) is an arbitrary function of the charge.
is possible to derive a black hole spectrum by impos- Combining (8) and (6) we get:
ing periodicity of the Lorentzian time coordinate [4], on /1 1
the motivation for the periodicity is more problematic Sgn(M, Q) + F(Q) = — <—X2 + —H§>, (9)
than in the Euclidean sector. In the present case, the h\2 2
procedure is well defined and consistent. Essentially, which shows that the subspack, ITx) has a ‘hole’
we start with the reduced Hamiltonian and action as of radius[So(Q) + F(Q)]¥2, the interior of which is
given in the Lorentzian sector, which is of precisely inaccessible. To remove potential quantization ambi-
the same form as Eg. (3), and analytically continu- guities, we choosé& (Q) = —So(Q), thus removing
ing to Euclidean time before quantizing. As a direct the perforation and rendering the phase space com-
consequence the momenta conjugatéft@nd Q are plete. As a bonus, this automatically ensures that the
pure imaginary. However, since the Hamiltonian is in- inequality (5) is satisfied in a natural way. The ex-
dependent of these conjugate momenta, it does nottremal limit now gets mapped to the origin of the new

Po =g+ PuTvil. (7)

From the first law of black hole mechanics we know
thatdSgn/dM = T;; *(M, Q). Thus we conclude:
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phase space. With this choicH is uniquely deter-
mined to be:

h g
Z o(Q)Ol,
where’ =d/dQ , x = (e/h)(Pg + ®Py) anda =
27 Py Tu(M, Q) /h.

From (9) it follows that the operatdfgy — So(Q)
is precisely the Hamiltonian of a simple harmonic os-
cillator with the mass and frequency both equal to
unity. Since—oo < X, ITx < oo, standard quantiza-
tion yields the spectrum:

i
HQ=;X+ (10)

1
SBH=2n<n+§>+So(Q), n=0,1,2,..., (11)

where we have assumed the usual harmonic oscil-

lator factor ordering for the operatodé and Py in
constructing the quantum version of (9). A remarkable
feature of (11) above is that vacuum fluctuations
exclude extremal black hole&Sgy = Sp) from the
guantum spectrum. Another important result, that is
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for integerm, p. To see this, suppose that there exists
some values ofi1, np and Q for which (14) holds
for someng. If we increase the value af; by 1, the
value ofng increases by)/e, so it is necessary that
Q/e = m, for some integem in order that the shifted
n3 be an integer. Similarly, if we increase by one,
the second relation in (15) emerges as necessatry.

The first of the conditions (14) gives the expected
result thatQ must be an integer multiple of the fun-
damental charge. However, the second condition can
only be satisfied it satisfies a subsidiary, and totally
unexpected condition. The specific form of this con-
dition depends on the theory under consideration. For
Reissner—Nordstrém black holes in four dimensions,
So(Q) = Q?%/h and (11) and the second of equations
(14) translate to:

Sgn=2rn+m(p+1), 0% = ph. (15)

The integerp determines the charge of the quantum
black holes and hence its minimum entrofy =
7(p + 1), whereas: determines the excited level of

independent of the choice of factor ordering, is that ihe plack hole over the “vacuum, = 0. Finally, the
near-extremal states are highly quantum-mechanicalj gt of equations (14) requires

objects f ~ 0), even for large values @if and Q.

To quantize the electromagnetic sector, we note f _ P

from (4) that for compact gauge group(l), x :=
e,/ = e(Pg + @ Py)/h has period 2, wheree is
the electromagnetic coupling. Thus from (10)g is
a function of two angular coordinatgsanda which,

according to arguments given above are both periodic

with period 2z We must therefore identify the phase
space points

(Q. M)~ (Q. Mg+ 2wnih/e +n2hSH(Q))  (12)

for arbitrary integera1 andny. In the coordinate rep-
resentationQ = —ifd/dI1y, the wave functions for
charge eigenstates take the fofn (I7Tg) = (consj x
expi QIp/h). The spectrum oD is restricted by the
requirement that the wave function be single valued
under the identification (12): for each admissable
for all integersz; andn, there must exist a third inte-
gerns such that:

mo | n0SHQ) _

13
e 2 (13)
This in turn requires that

Q_ © s =». (14)

e ’ 27

o m?
Thus, the fine structure constamt/i must be a
rational number. For thé-dimensional generalization

of these results see [10].

For one dimensional periodic systems, it is well
known that the integral7y = § [Tx dX is an adia-
batic invariant. Thus, in the present case, if we treat
Q as a slowly varying parameter, it follows thd@; =
(A —4GhSo(Q))/4G is an adiabatic invariant. Con-
sequently, away from extremalityd(>> 4GhSo(Q)),
this is consistent with Bekenstein’s conjecture [2] that
the horizon area of a charged black hole is an adiabatic
invariant.

The expression (11) has fascinating consequences.
First of all, it implies that extremal black holes, for
which Sgy = So(Q), are not in the physical spectrum.
Secondly, if we interpret the entropy in terms of sta-
tistical mechanics (11) tells us that the degeneracy of
the nth level is: g(n) = exp2r (n + 1/2) + So(Q)].
Thus, the ground state is degenerag€0f #= 1). It
is tempting to conjecture that this Planck size rem-
nant provides clues about the information loss prob-
lem associated with the endpoint of Hawking radi-

(16)
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ation. Finally, (11) allows Hawking radiation to be Noteadded
emitted when a black hole jumps from one quantum
entropy level to another. For a Reissner—Nordstrém  While this Letter was being completed, we became

black hole, the fundamental frequency of emission of
a neutral quantumgg satisfies:S(M + Awo, Q) —
SM, Q)= Sn+1) — S(n) ==, from which it fol-

aware of two papers where the spectra of charged
black holes was investigated [12,13]. Although their
results bear qualitative resemblance to ours, their

lows thatwo = (r+ — r_)x/A. In the Schwarzschild
limit Q — 0, wp ~ 1/M, agreeing with that found
in [2]. Since the mean frequency of the Planck dis-
tribution of Hawking radiation lies afy ~ 1/M, the
radiation spectrum consists of widely separated spec- Acknowledgements
tral lines, and deviates considerably from the contin-
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guently, despite possible factor ordering ambiguities
in our analysis, the following predictions are expected
to be valid at least at the semi-classical level: (1) black
hole area is an adiabatic invariant, hence its quantum
spectrum is equally spaced, (2) near extremal black
holes are highly quantum objects, and (3) the radia-
tion spectrum of black holes is discrete, irrespective of
the temperature. Finally, (11) and (14) imply that black

holes emit and absorb quanta whose charges are mul-

tiples of e, which itself is not arbitrary, but quantized
in terms of integers: and p. Thus, in analogy with
the Dirac charge quantization condition in the pres-

ence of a magnetic monopole, the presence of charged

black holes puts constraints on the fine structure con-
stant. This is also reminiscent of the ‘big-fix mecha-
nism’ advocated by Coleman, wherein the fundamen-
tal constants of nature are supposed to be fixed by the
presence of wormholes and baby universes [11]. Al-
though, a priori, it is not clear how the experimen-
tally measured value of the fine structure constant
4rh/e? = 13703608. .. can be reproduced accurately
as the ratio of integers that are not too large, as re-
quired by (16), we believe that our results reveal some
intriguing features of the quantum mechanics of black
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