
RESOURCE ASSIGNMENT ALGORITHMS FOR VEHICULAR CLOUDS

MAHMUDUDN NABI
Bachelor of Science, Islamic University of Technology, 2011

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Mahmududn Nabi, 2016

RESOURCE ASSIGNMENT ALGORITHMS FOR VEHICULAR CLOUDS

MAHMUDUDN NABI

Date of Defense: December 16, 2016

Dr. Robert Benkoczi
Supervisor Associate Professor Ph.D.

Dr. Shahadat Hossain
Committee Member Professor Ph.D.

Dr. John Zhang
Committee Member Associate Professor Ph.D.

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

To my parents.

iii

Abstract

In this thesis, we study the task scheduling problem in vehicular clouds. It falls in the cate-

gory of unrelated parallel machine scheduling problems. Resource assignment in vehicular

clouds must deal with the transient nature of the cloud resources and a relaxed definition of

non-preemptive tasks. Despite a rich literature in machine scheduling and grid computing,

the resource assignment problem in vehicular clouds has not been examined yet. We show

that even the problem of finding a minimum cost schedule for a single task over unrelated

machines is NP-hard. We then provide a fully polynomial time approximation scheme and

a greedy approximation for scheduling a single task. We extend these algorithms to the case

of scheduling n tasks. We validate our algorithms through extensive simulations that use

synthetically generated data as well as real data extracted from vehicle mobility and grid

computing workload traces. Our contributions are, to the best of our knowledge, the first

quantitative analysis of the computational power of vehicular clouds.

iv

Acknowledgments

I owe my deepest gratitude to my supervisor Dr. Robert Benkoczi who has been providing

endless support over the duration of this program. He has guided me into the world of opti-

mization. Without his continuous enthusiasm, encouragement and optimism, this research

endeavor would hardly have been completed.

I also take great pleasure in acknowledging the support of one of my MSc. supervisory com-

mittee members Dr. Shahadat Hossain, who has been constantly providing me invaluable

insights, guidelines, and inspiration. I would like to thank my other committee member

Dr. John Zhang for his valuable feedbacks which were essential towards the end of this

work. In addition, I would also like to take the opportunity to thank Dr. Daya Gaur for his

constructive suggestions.

I was very lucky to have the “Dean’s scholarship and Tuition Award” from the School

of Graduate Studies and would like to give them big thanks. I am deeply grateful to my

supervisor for the financial assistance he has provided to me as his Research Assistant.

I am thankful to all the members of the Optimization Research Group of the University of

Lethbridge for their continuous support and encouragement throughout my thesis period.

Especially, I should mention Ram, Mark, and Umair for their help whenever needed. I

also express my gratitude to my friends Kawsar, Lazima, Marzia, Imtiaz, Jeeshan, Mamun,

Jubair, Masroor, Moin, Tafseer and many other friends from my Bangladeshi Community,

who have been the source of my motivation and moral support during my stay in Canada.

I am indebted to my parents and my sister, who have been supporting me for my whole

life. Their sacrifices and prayers are the main driving forces that enabled me achieving my

goals. Thank you.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 4
1.2 Contributions . 5
1.3 Thesis organization . 7

2 Background 8
2.1 Vehicular Networks . 8

2.1.1 Smart Vehicles . 9
2.2 Cloud Computing . 10

2.2.1 Pros and Cons . 11
2.3 Fog Computing . 12
2.4 Vehicular Clouds (VC) . 13

2.4.1 Definition . 14
2.4.2 Architectuers . 14
2.4.3 Services of VC . 16
2.4.4 Applications of VC . 19

2.5 Computational Complexity . 20
2.5.1 Approximation Algorithms . 21

2.6 Scheduling Problem . 22
2.7 Related Research . 24

2.7.1 Parallel Machine Scheduling . 24
2.7.2 Relationship with Knapsack Cover Problem 25
2.7.3 Approximation Algorithm for Knapsack Cover 26
2.7.4 Lower bound for Knapsack Cover 29

3 Resource Assignment in Vehicular Clouds 31
3.1 System Model . 31

3.1.1 VC-preemption . 32
3.1.2 Scheduling Problem in VC . 32

3.2 Resource Assignment in Vehicular Clouds 33
3.2.1 Problem Formulation . 34

3.3 The Algorithms . 38

vi

CONTENTS

3.3.1 Greedy Algorithm for n/U/VC 38
3.3.2 PTAS for 1/U/VC problem . 39
3.3.3 Greedy Algorithm for 1/U/VC problem 43

3.4 Lower bound for n/U/VC . 44

4 Experimental Analysis 46
4.1 Experimental Scenarios and System Setup 46
4.2 Scenario A: fixed number of vehicles and varying number of tasks 48

4.2.1 Experimental settings . 48
4.2.2 Results . 49

4.3 Scenario B: Varying ratios with fixed constraint level 59
4.3.1 Configuration of test problems . 59
4.3.2 Computational results . 61

4.4 Scenario C: Performance with real life data 68
4.5 Concluding Remarks . 70

5 Conclusion and Future works 73
5.1 Conclusion . 73
5.2 Open Problems . 74

Bibliography 75

vii

List of Tables

3.1 Notation Table . 35

4.1 Performance ratio for small test problems 50
4.2 Time comparison for small test problems 52
4.3 Performance Ratio for large test problems 53
4.4 Time comparison for large test problems 54
4.5 Average running times with respect to the number of vehicles 57
4.6 Experimental setup for test problems . 62
4.7 Approximatio ratio for different constraint levels on m = 8 62
4.8 Approximatio ratio for different constraint levels on m = 10 64
4.9 Approximatio ratio for different constraint levels on m = 15 64
4.10 Approximatio ratio for different constraint levels on m = 20 64

viii

List of Figures

2.1 In-vehicle components of a smart vehicle. 10
2.2 Relation between cloud, fog and end-device. 13
2.3 The different architectures of vehicular clouds [7]. 17

3.1 Resource allocation problem formulation in VC - an example. 35
3.2 Construction of a single task scheduling problem instance V from a given

knapsack cover (KC) instance X . 37

4.1 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
in the scenario of fixed number of vehicles and varying number of tasks on
small test instances for m = {5,8,10}. 51

4.2 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
in the scenario of fixed number of vehicles and varying number of tasks on
large test instances for m = {20,30,50}. 55

4.3 Average running time comparison between GrGr and GrPTAS (for ε =
{0.1,0.5,1}) in the scenario of fixed number of vehicles and varying num-
ber of tasks on large test instances for m = {20,30,50}. 56

4.4 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
as a function of number of vehicles. 58

4.5 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
in the scenario of different constraint levels with fixed number of vehicles
for m = 8. 63

4.6 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
in the scenario of different constraint levels with fixed number of vehicles
for m = 10. 65

4.7 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
in the scenario of different constraint levels with fixed number of vehicles
for m = 15. 66

4.8 Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1})
in the scenario of different constraint levels with fixed number of vehicles
for m = 20. 67

4.9 100m radius around City Hall, San Francisco. 69
4.10 Performance of GrGr as a function of the system load on real life data. . . . 71

ix

Chapter 1

Introduction

In the past few years, Intelligent Transportation System (ITS) has received much attention

due to the wide scope of benefits offered by the vehicles. The Vehicular Ad-hoc Network

(VANET), an essential part of ITS, has emerged to connect vehicles on roads [31]. Con-

nected vehicles in a VANET are known as smart vehicles and are considered to be the next

frontiers for the Internet of Things (IoT) [12] [42].

Cloud computing is an emerging technology that provides cost-effective services to

users by allocating resources (e.g.-storage, CPU, etc) on demand for processing tasks. Cisco

introduced the concept of fog computing to deal with Big Data analytics and applications in

the IoT [13, 14]. Fog or edge computing attempts to improve the performance of systems

through computations that are closer to the customers requesting the service rather than

being located in far-off data centers [18, 19, 20]. The vehicular cloud (VC) is a particular

implementation of fog computing.

The concept of “vehicular clouds” (VCs) was introduced by Olariu et al. [45] about the

same time when Cisco was promoting the notion of fog computing. Their motivation was

to take the vehicular networks to the clouds.

In vehicular clouds, smart vehicles are equipped with components that have sensing,

computing, and communication capabilities which can be harvested for data storage, com-

puting, infotainment, and sensing services [8, 43, 53]. The main motivation for coming

up with vehicular cloud paradigm was to utilize the underutilized vehicular resources in

computing tasks by allocating them to the authorized users instead of limiting them to ITS

1

1. INTRODUCTION

applications [43] [53]. As a result, the benefit of vehicular resource utilization would be

maximized when a pool of vehicular resources are dynamically coordinated for a comput-

ing task compilation. Sherin et al. [8] introduced the concept of Vehicle as a Resource

(VaaR) , where it is anticipated that a smart vehicle can be considered as a mobile resource

provider and will be a key enabler for the revolution of the Internet of Things technology.

However, the vehicles are not owned by the service providers and they are a transient

computation resource. Coordinating such computing resources requires solving schedul-

ing problems with specific constraints. Scheduling plays a crucial role in terms of proper

resource utilization. It is concerned with the allocation of limited resources to tasks over

time. In vehicular clouds, incentives are offered to the vehicle owners to encourage renting

their resources to the service providers, thus minimizing renting cost is one of the goals of

the scheduler.

In this thesis, we focus on the task scheduling problem in vehicular clouds. There is an

impressive amount of literature on scheduling tasks in domains such as machine scheduling

[39], distributed, and grid computing [21]. Most popular objectives for the task schedul-

ing problems are focused on quality of service parameters, such as makespan or lateness

subject to the constraints like arbitrary precedence constraints, preemption, deadline etc.

In the vast majority of the problems, the computation resources are always available. This

assumption works for some scenarios but cannot be applied in many real-life applications.

Because most of the real-life situations are dynamic in nature which means the input in-

formation is updated frequently. This assumption has been relaxed in machine scheduling

problems with availabilities [50] in which the processors are available to execute jobs only

during certain moments in time. The objectives most studied in problems of scheduling

with availabilities are minimizing maximum completion time, minimizing total completion

time, and minimizing maximum lateness [15]. Difficult instances of the scheduling prob-

lem with availabilities are usually for problems where preemption (see Section 2.6) is not

allowed.

2

1.1. MOTIVATION

In contrast, VCs do not have any control over the availability of the computational and

storage resources due to vehicle mobility. It makes the scheduling environment dynamic

and the task scheduling more challenging as the system must be able to respond in real

time to events triggered by resources becoming unavailable as vehicles move away from

the area that defines the VC. Hence, tasks scheduled on a particular resource in a vehicular

cloud can be paused, transferred to another resource, and resumed on that resource. This is

needed for example, when a particular vehicle leaves the cloud and all of the jobs assigned

to it need to be transferred to other vehicles. In addition, for VCs with no infrastructure

support to store the state of running processes, a task cannot be paused and resumed at a

later time because the resource (or the vehicle) storing its state may leave the cloud.

Therefore, we are interested in a task scheduling problem with availabilities subject to a

relaxed notion of non-preemption: once a task is started on a resource, it must be executed

to completion without interruption, except when execution is transferred to another resource

and is resumed immediately. We call this constraint VC-preemption.

Scheduling tasks in a vehicular system has two optimization goals, minimizing makespan

and minimizing cost. The makespan represents the total duration that a task takes from the

moment it begins execution until it completes execution. On the other hand, each vehicle in

VCs is associated with a rental cost based on its resource capabilities and features. Hence

the cost objective aims at minimizing the total cost paid for the rented vehicles. In this the-

sis, we have focused on the second objective. Therefore, the objective of our problem is to

minimize the cost of the schedule subject to the VC-preemption constraint with a common

task deadline.

Research on scheduling problems in vehicular clouds subject to availability constraint

has not been dealt with adequately in the literature and designing efficient algorithms for

this problem is of great interest.

3

1.1. MOTIVATION

1.1 Motivation

The main motivation of this thesis is to utilize the untapped on-board computing re-

sources of modern smart vehicles to perform different computing tasks. Present day ve-

hicles are equipped with an in-vehicle processing unit which is as powerful as personal

computers. Most of these vehicles are parked in a parking lot (or garage etc.) or spend

time in road intersections (or traffic jams/driveway/around a location of interest etc.) while

their vehicular resources remain underutilized. These resources can be rented out from

the vehicle owners with appropriate incentives and can be utilized to carry out computing

tasks offloaded by the service providers for providing various services (e.g.- navigation,

entertainment, traffic information, weather information etc) to the users.

The automotive industry is doing continuous research to bring a revolution of smart ve-

hicles on the road. Recently, Tesla Motors has released an autopilot software that enables

their Model S sedans with autonomous driving capabilities [1]. Ford is using a cloud com-

puting and in-car software to provide new services to the car owners and also working on

autonomous driving cars [3]. Futhermore, NVIDIA released a connected car technology

that has their Tegra X1 Visual Computing Module which integrates audio, video, and im-

age processors [4]. Audi A8 uses NVIDIA processor to power its 3D navigation system

display. Recent Volkswagen, Honda, and Mercedes cars are also equipped with processors,

GPS, video camera, sensors etc. [2]. The automotive companies have already brought the

dream of smart cars into reality and continuously working to make the future vehicles as the

most powerful computers by packing the power of a supercomputer inside a car. Therefore,

these smart vehicles are beyond transportation machines.

Nowadays the cloud computing paradigm has emerged with its advanced capabilities

that have encouraged users to move their services such as computations, IT services etc.

into the cloud infrastructure. Concurrently, the smart vehicles are the machines with com-

puting power. The vehicular cloud computing technology can provide greater benefits to

the users by forming a vehicular cloud by combining the resources from multiple vehicles.

4

1.2. CONTRIBUTIONS

The available processing powers of the vehicles in the VC can be utilized as computing

engines to carry out different computing tasks offloaded to them by the users. Thus the VC

can be used as the traditional cloud system. However, to be able to utilize the in-vehicle

computing resources, the vehicles need to be powered while parked if they are to participate

in the cloud.

One challenge for the user (or service provider) is the assignment of the computational

tasks among the resources based on their availability span and within a limited budget. It

is, therefore, necessary to explore a cost-effective dynamic resource allocation strategy for

the VC system with the interval availability constraint.

1.2 Contributions

To the best of our knowledge, no previous study of a machine scheduling problem

with the VC-preemption constraint has been carried out in the literature we surveyed. The

following are our contributions in this thesis.

• We show that the single task scheduling problem on a set of unrelated machines to

minimize scheduling cost subject to a task deadline and VC-preemption is NP-hard,

by exploiting the connection of the problem with knapsack cover (KC) [37, 24].

• We provide a fully polynomial time approximation scheme (FPTAS) (see Section

2.5.1) for the single task scheduling problem by extending the idea used in an FPTAS

for knapsack cover [34] to our problem with VC-preemption with a performance ratio

of (1+ ε).

• We describe a natural greedy algorithm for the single task scheduling problem on

unrelated machines. We note that our greedy algorithm is trivially optimal for the

version with identical machines.

• We provide a natural greedy algorithm to schedule n tasks on unrelated machines

with VC-preemption that schedules one task at a time by repeatedly calling a single

5

1.2. CONTRIBUTIONS

task scheduling procedure for vehicular cloud.

• We give a simple and powerful lower bound on the cost of the optimal solution for

scheduling n tasks by solving a knapsack cover problem fractionally [25]. We use this

bound to calculate approximation ratios of our algorithm for the n tasks scheduling

problem on an extensive set of problem instances.

• We perform a comprehensive empirical evaluation of our task scheduling algorithm

for the n tasks scheduling problem with both the greedy and PTAS (see Section 2.5.1)

procedures for solving the single task scheduling problem, using both synthetically

generated data and real data extracted from vehicle mobility traces and grid workload

traces. We note that the scheduling problems studied here are off-line, i.e. the set of

tasks and the availability of the resources are known at the start of the simulation. We

observed that the result of the greedy procedure for scheduling n tasks is very close

to the lower bound proposed. On the synthetic problem instances, the average gap

between the lower bound of the schedule cost and the solution returned was less than

2.5%. Moreover, on the real data instances, the approximation ratio was larger but not

larger than 25%. These findings are pivotal for the evaluation of a vehicular cloud

task scheduler in an on-line setting where tasks and resource availabilities become

known with time. A competitive analysis of the scheduling algorithm with real data

involves instances with millions of tasks and the bounds on the cost of the optimal

solution in the off-line setting must be powerful and extremely fast to compute.

• We provide the first, as far as we know, quantitative evidence on the processing ca-

pability of a vehicular cloud using real life grid workload traces and considering the

transient nature of the cloud resources and the specifics of task VC-preemption con-

straints. We observe that more than 92% on average of the grid processes were sched-

uled successfully on the vehicular cloud in the most constrained of the instances, and,

when given some slack, a vehicular cloud can serve all but a handful of the most com-

6

1.3. THESIS ORGANIZATION

pute intensive jobs which need to be offloaded to the classical cloud.

1.3 Thesis organization

The rest of this thesis is organized in the following order. Chapter 2 provides the back-

ground information related to the vehicular paradigm, smart vehicles, cloud computing,

vehicular cloud and task allocation and scheduling. Chapter 3 presents our main contri-

bution. The problem definition, proposed algorithms for the resource assignment problem

in vehicular clouds are described in this chapter. In Chapter 4, we presented the imple-

mentation details and the experimental results of our algorithms. Finally, in Chapter 5, the

concluding remarks and the future research directions are mentioned.

7

Chapter 2

Background

Vehicular Cloud (VC) is a hybrid technology that has emerged by the integration of vehicu-

lar networks and cloud computing paradigms. The research areas that are directly related to

this VC system are vehicular ad-hoc networks, smart vehicles, cloud computing, machine

scheduling. The main problem that is focused in this thesis is the resource assignment prob-

lem in vehicular cloud paradigm which falls in the category of unrelated parallel machine

scheduling problem. In this chapter, at first, we discuss the research areas related to the ve-

hicular cloud. Then we discuss the concepts of the run time complexity, the approximation

algorithms and scheduling problems. Finally, we describe some previous works which are

related to solving the task allocation problem in vehicular clouds.

2.1 Vehicular Networks

For the past few years, the research efforts on Vehicular Ad-hoc Networks (VANETs)

have increased due to an attractive range of applications such as traffic safety and con-

trol [10, 31, 35]. VANET provides the state-of-the-art services for traffic management

and transportation by means of vehicular communication where safety, navigation, road

condition etc. information are exchanged between the vehicles on the road. A VANET is

a kind of the wireless multi-hop networks that depend on multi-hop communication over

intermediate nodes working as relays to connect a source node to a destination node. The

emerging capability of connecting vehicles on roads has led VANET to converge with ITS

and enhance the transportation efficiency and safety. Connected vehicles in a VANET are

8

2.1. VEHICULAR NETWORKS

known as “smart vehicles”.

2.1.1 Smart Vehicles

A vehicle is called “smart” when it is equipped with components such as GPS, different

types of sensors for monitoring the surroundings of the vehicle for road safety etc. The

main component of a smart vehicle is the on-board unit (OBU), which is as powerful as a

personal computer and also known as the in-vehicle PC. The OBUs of smart vehicles have

processing and storage capabilities [51]. An OBU works as the interface that provides the

driver with information/alerts about events that are either detected by the in-vehicle sensors

or received through the communication module. It is also the means of receiving input

from the driver when needed. In addition, it has an on-board wireless communication unit

to communicate with nearby vehicles and road side units (RSUs).

A smart vehicle with these components available on-board has become more sophis-

ticated and capable of offering more diverse services such as sensing, storage, comput-

ing, relaying, infotainment, and localization [8]. Infotainment is a service that delivers a

combination of information and entertainment. Typical contents of infotainment include

managing and playing audio content, utilizing navigation for driving, making phone calls,

accessing traffic information through the Internet etc. The plethora of vehicular resources

has made smart vehicles as the key enablers in service provisioning, compared to other

mobile resource providers, such as smart-phones.

An example of the in-vehicle components of smart vehicle is shown in Fig. 2.1 which

was provided in the thesis of Sherin [6].

9

2.2. CLOUD COMPUTING

Figure 2.1: In-vehicle components of a smart vehicle.

2.2 Cloud Computing (CC)

Cloud computing is a state-of-the-art technology that offers a wider scope of services to

the users over the Internet. It makes various computational resources available to the users

in a cost effective manner. The formal definition of cloud computing is given by Mell and

Grance from the National Institute of Standards and Technology (NIST) as follows [41]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”

The cloud computing service providers offer three types of services namely- infrastruc-

ture as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS).

IaaS In the case of IaaS, fundamental computing resources such as servers, network de-

vices, and storage disks are made available to the organizations as services on a need-to

basis. Many IaaS providers (e.g.- Amazon AWS, Windows Azure, Google Computer En-

10

2.2. CLOUD COMPUTING

gine, Rackspace, IBM SmartCloud etc.) with the help of virtual machines (VMs) offer their

computational resources in a “pay as you go” manner.

PaaS PaaS provides a platform for application development to the software developers.

More specifically, it offers a range of software development tools for developing mobile and

web applications to be deployed in the cloud. PaaS providers such as Engine Yard, Google

AppEngine, Red Hat OpenShift, AppFog etc. offers a variety of programming languages

and storage facilities to the developers.

SaaS SaaS allows customers to use the applications hosted by the SaaS providers in a

cloud. In general, with SaaS users only need to think about how they will use the appli-

cations and do not need to think about how it is maintained. The service providers are

responsible for the maintenance of their services as well as managing the underlying infras-

tructures. Some renowned SaaS providers are Oracle, Microsoft, Salesforce, Intuit etc.

2.2.1 Pros and Cons

Following are the key advantages of cloud computing.

• It reduces the investment cost by providing the hardware and software support to the

users.

• It offers computing power and IT services on demand with increased scalability.

• It is capable of supporting new and innovative applications that are not supported

in a traditional IT environment without investing large capital for the computational

infrastructure.

However, along with the above advantages, cloud computing suffers from the security and

privacy issues as the customers have little control on the physical devices that execute their

applications and store their data due to virtualization. Thus concerns regarding privacy

11

2.3. FOG COMPUTING

and compliance with local laws have been raised. As a result, the US Federal Govern-

ment, European Union Agency for Network and Information Security (ANISA), Canadian

government agencies etc. have taken appropriate cloud adoption strategies to evaluate and

monitor the security and suitability of cloud solutions [23, 22, 48]. Moreover, along with

the security concerns cloud users have limited control over the cloud functionalities and the

infrastructures which are entirely owned and managed by the service providers. Cloud com-

puting is fully dependent on Internet connection. That means without Internet users will not

be able to access the cloud services which is another disadvantage of cloud computing.

2.3 Fog Computing

Fog computing also is known as edge computing or fogging that extends the cloud

computing paradigm to the edge of the networks [14]. It brings the advantages and power

of the cloud to where data is created [18, 19, 20]. Fog computing facilitates the operation

of compute, storage and networking services between the data source and the cloud. The

term fog refers to a cloud which is closer to the ground, just as fog concentrates on the edge

of the network. The goal of fogging is to improve efficiency and reduce the amount of data

transported to the cloud for processing, analysis and storage. It is a perfect platform that

has been evolved to support the Internet of Things (IoT) applications such as connected

vehicles, smart grid, smart cities etc. Cisco introduced the concept of fog computing to

enable systemetic, secure and network-integrated computing and storage services between

the cloud and end-users [13, 14].

12

2.4. VEHICULAR CLOUDS (VC)

Figure 2.2: Relation between cloud, fog and end-device.

Figure 2.2 is presented in the Cisco white paper [5] that shows how the fog extends the

cloud closer to the devices that produce data. These devices are called the fog nodes. Any

device with computing, storage, and network connectivity can be a fog node. They can be

deployed anywhere with a network connection: on a factory floor, on top of a power pole,

alongside a railway track, in a vehicle, or on an oil rig. The edge devices and sensors those

produce data, do not have the compute or storage resources to perform advanced analytics.

Though cloud servers have the power to do these but they are often too far away to process

the data and respond in a timely manner. Therefore, analyzing data close to where they are

collected minimizes latency. It offloads gigabytes of network traffic from the core network.

And it keeps sensitive data inside the network [5]. The major differences between the

cloud and the fog are the proximity to end-users, geographical locations of the nodes and

support for mobility. Connected vehicles of VANET is a particular implementation of fog

computing infrastructure. It can support services like infotainment, traffic control, safety,

mobility, and location awareness etc [14].

2.4 Vehicular Clouds (VC)

The on-board computational resources of smart vehicles has motivated the researchers

to exploit these underutilized resources for providing a wider scope of services to the users

beyond just transportation. As a result, the “vehicular cloud” (VC) paradigm has emerged.

13

2.4. VEHICULAR CLOUDS (VC)

In this section, we define the vehicular cloud platform along with its different architectures

and potential applications of this paradigm.

2.4.1 Definition

Nowadays many emerging applications require high computational power as well as

large storage facilities. Vehicular resources from multiple vehicles can be shared or com-

bined together to fulfill the requirements of these applications. This has become the main

motivation for the study of cloud-based vehicular networks with the futuristic vision of

“taking vehicles to the cloud”. In essence, the vehicular cloud can be defined as follows

[44]:

“A vehicular cloud is a collection of smart vehicles whose vehicular resources are com-

bined dynamically and allocated to the authorized users to perform a computing task on

demand.”

VCs can provide the on-demand solutions for services like entertainment, road safety,

weather report analysis, real-time traffic information etc. Like the conventional cloud sys-

tems in VCs the computing resources are rented out to authorized users based on a rental

model. Besides the similarities, there are several advantages of a VC system compared to

the fixed cloud computing. Areas with limited Internet access as well as with inadequate

cloud facilities can be served by a VC because of the vehicular mobility. Additionally,

during the events of unexpected occurrences (e.g., the natural disasters or any emergency

situations) where the basic communication infrastructures may be broken down, VCs can

be formed and served as a communication medium. A detailed study on vehicular cloud

computing is presented in [53].

2.4.2 Architectuers

The architecture of a vehicular cloud system can be categorized into two different types:

i) centralized and ii) autonomous. These two types are discussed below with example sce-

narios for each of them.

14

2.4. VEHICULAR CLOUDS (VC)

Centralized Vehicular Clouds

A centralized VC architecture consists of a central cloud controller interacting with node

controllers. The cloud controller is the central entity of this VC that manages the comput-

ing resources. It performs the resource discovery, task allocation, and the data exchange

operations between the participating vehicles with the help of three major components - a

broker, a resource manager, and a task scheduler. This architecture follows a client / server

model where the clients request for accessing the computing resources to the cloud con-

troller. The broker deals with the client resource request on behalf of the VC. The resource

manager is mainly responsible for the resource availability check and resource allocation

to the tasks (i.e. - creating access schedule to the resources) in cooperation with the task

scheduler based on the resource availability span.

Each vehicle interested in participating in a VC interacts with the cloud controller with

the help of an on board interface called node controller. It works as a local resource manager

for that vehicle.

If a VC is large in size (defined by the number of participating vehicles), it can be

divided into clusters with each cluster being managed by a cluster controller. Each cluster

controller works between the cloud controller and the node controller, and monitors and

manages the resources of its own cluster that reduces the management load of the cloud

controller.

An example of centralized VC can be the VC formed at a parking lot (or parking

garage/driveway etc.). Everyday, many vehicles are parked in a parking lot for several hours

with each having different (or same) arrival and departure times, as vehicles do not stay in

the parking lot forever. These vehicles are parked idle with ample unexploited computing

resources where the resource capabilities of each vehicle are different (or same). Vehicles

with these amount of untapped resources are the perfect candidates for nodes for a cloud

system. These resources can be rented out from the vehicle owners with appropriate incen-

tives based on their capabilities and can be utilized to carry out computing tasks offloaded

15

2.4. VEHICULAR CLOUDS (VC)

to it instead of renting a computing infrastructure. Both the parties benefit economically

here. Moreover, the parked vehicles need to be connected to a power supply and a data

port offering Internet access. Without any power supply, the parked vehicles cannot have

their on-board computers and resources on all the time waiting for task assignments. Figure

2.3(a) depicts an example of a centralized VC formed at a parking lot which is provided in

[7].

Autonomous Vehicular Clouds

An autonomous VC can be formed temporarily in a self-organizing fashion without the

help of a central entity (i.e. cloud controller). For example, in some scenarios like- traffic

jam, an intersection of a road etc. a VC can be formed to help the city traffic authorities to

alert and re-route vehicles, rescheduling traffic lights to mitigate the congestion. In such a

case, computing resources from the vehicles in the vicinity of the event are self-organized

to handle the required task.

An autonomous VC has short life span with low computing requirements compared to

the relatively long-lasting centralized VC. Thus it does not involve a central cloud controller

along with the broker component like the well-planned centralized VC. It requires limited

resource management and task scheduling functionalities that are managed by a VC coordi-

nator (e.g., a vehicle elected from the participating vehicles forming the VC). Similar to the

centralized VCs, vehicles can be grouped into clusters and managed by a cluster controller.

In autonomous VCs, the cluster controllers create links between the node controllers and

the VC coordinator, when needed.

Figure 2.3(b) depicts a the architecture of an autonomous VC which is given in [7].

2.4.3 Services of VC

The types of services a VC can provide are described as follows.

16

2.4. VEHICULAR CLOUDS (VC)

(a) Architecture of a centralized VC.

(b) Architecture of an autonomous VC.

Figure 2.3: The different architectures of vehicular clouds [7].

17

2.4. VEHICULAR CLOUDS (VC)

Processing as a Service (PRaaS)

With on board unit (OBU) a smart vehicle has the computing capabilities of a personal

computer which can be utilized to perform processing tasks. While vehicles spend several

hours in the parking lot (or garage or driveway) their idle processing resources can be used

by the authorized users by renting them from the vehicle owners. Aggregated resources

from multiple vehicles can be utilized to handle tasks with high processing requirements

that exceed a single vehicles capabilities. Efficient task scheduling mechanisms are needed

to handle such scenario.

Storage as a Service (STaaS)

Smart vehicles are anticipated to have plenty of on-board storage capability (e.g.- Ter-

abytes of storage). Vehicles with this capability can provide storage as a service [11].

Vehicles can share their storage resources with others (i.e. service providers) in need of

storage with appropriate security measurement. For example, storage resources from the

vehicles parked in an airport parking lot can be used as a data center in return of free park-

ing facility. Due to the mobility, vehicles can support their use as data mules carrying data

between a pair of nodes in need of data delivery which is an advantage over the traditional

cloud system.

Network as a Service (NaaS)

Some vehicles can connect to the Internet while moving and can offer internet access to

other vehicles in a ‘Drive-by Internet Access’ model like mobile hotspots. However, many

vehicles do not have this capability of Internet connection. Vehicles having this capability

and having the interest to share their resources advertise this offer to the vehicles interested

in renting it.

18

2.4. VEHICULAR CLOUDS (VC)

Information as a Service (INaaS)

Smart vehicles are considered as the storehouse of information collected by their ad-

vanced on-board equipments (e.g.- sensors, GPS etc). Vehicles in a VC can store informa-

tion like - traffic information, weather or road conditions, traffic jam warnings, etc. obtained

from other vehicles or road side units (RSUs) by utilizing their sensors. Depending on the

information type the service provider who rented the vehicular resources from the owner

can resolve queries generated from the other moving vehicles or the vehicles outside of the

VC.

2.4.4 Applications of VC

With the above discussed service scopes, there are several applications where VC paradigm

can be utilized. As mentioned above our thesis mainly focuses on the first service type, so

we will briefly discuss some applications of this service type at first. Later we will outline

some applications of the rest of the services.

Computing Engines at a Parking Lot

Resources from the vehicles parked idle in a parking lot can be utilized as computing

engines that can carry out computing tasks offloaded to them by the user. These combined

vehicular resources work as a computing infrastructure for the user renting the resources

where both the user and the vehicle owner get the benefit. This application can be consid-

ered as an example of PRaaS and/or STaaS services.

Dynamic Traffic Light Managemant

An autonomous VC of vehicles formed at an intersection can help in controlling the

city traffic by dynamically rescheduling the traffic lights of the city. On board computa-

tional resources of the vehicles are used to run complex simulations designed to control the

congestion of a road. This application also falls in the category of PRaaS service type.

19

2.5. COMPUTATIONAL COMPLEXITY

More Applications There are many other potential application of VC cloud paradigm

such as - Vehicular Public Sensing, airport parking lot as a data center, shopping mall

data center, managing evacuation during natural disasters, road safety, weather condition

analysis, managing parking facilities, autonomous congestion alleviation etc.

2.5 Computational Complexity

The problems that we consider appear in two versions: (i) decision version and (ii)

optimization version. In decision problems, the solution (or the answer) is simply “yes” or

“no”. On the other hand, in the optimization problems, each feasible solution has an asso-

ciated value, and the feasible solution with the best value is chosen as the final solution. In

other words, the solution for any optimization problem is given as minimum (or maximum)

of an objective.

We introduce some important definitions of complexity theory from the book [16].

P: The class P is the set of all decision problems which can be solved in polynomial

time. More specifically, these are the problems which can be solved in time O(nk) for some

constant k, where n is the input size to the problem.

NP: The class NP is the set of problems which can be “verified” in polynomial time. That

means if we were given a “certificate” of a solution, then we could verify that the certificate

is correct in polynomial time in the size of the input to the problem. Any problem in P is

also in NP. Thus P⊆ NP.

Polynomial-time Reduction: Suppose, we are given two problems P1 and P2. If there is

a polynomial time function f such that, I is a “Yes” instance of P1 if and only if f (I) is a

“Yes” instance of P2, we can say that, P1 is polynomially reducible to P2. We represent it

as P1 ≤p P2. In other words, each instance of P1 can be transformed to an instance of P2 in

polynomial time in the size of the instance.

20

2.5. COMPUTATIONAL COMPLEXITY

NP-complete: A problem is NP-complete if it is in NP and is as “hard” as any problem in

NP. Formally, a problem P2 that is in NP is also in NP-complete if and only if every other

problem P1 in NP can be reduced to P2 in polynomial time. It means that we can solve P1

quickly if we know how to solve P2 quickly. In other words, we can say P2 is NP-complete

if-

1. P2 ∈ NP, and

2. P1 ≤p P2 for every P1 ∈ NP.

NP-completeness does not apply directly to the optimization problems. It applies to the

decision problems.

NP-hard: A problem X is NP-hard if all other NP problems can be reduced to X , but X

not necessarily belongs to NP. This problem is as hard as any other problem in NP.

2.5.1 Approximation Algorithms

For any NP-hard problem, it is unlikely to find an exact optimal solution within poly-

nomial time in the size of an instance I. Therefore, approximation algorithms are proposed

for this kind of problems which give near-optimal solutions in polynomial time. The formal

definition of approximation algorithm is given as below.

“Let X be a minimization (respectively, maximization) problem. Let ε > 0, and set

ρ= 1+ε (respectively, ρ= 1−ε). An algorithm A is called a ρ-approximation algorithm for

problem X, if for all instances I of X it delivers a feasible solution with objective value A(I)

such that |A(I)−OPT (I)| ≤ ε.OPT (I). In this case, the value ρ is called the performance

guarantee or the worst case ratio of the approximation algorithm A.”

Here, OPT (I) is the optimal objective value for instance I.

Approximation Scheme An approximation scheme for an optimization problem is an

approximation algorithm that takes both an instance of the problem and a value ε > 0 as

21

2.6. SCHEDULING PROBLEM

input, such that the scheme is a (1+ ε)-approximation algorithm, for any fixed ε. There

are two types of approximation schemes namely polynomial time approximation scheme

(PTAS) and fully polynomial time approximation scheme (FPTAS).

An approximation scheme is a polynomial-time approximation scheme (PTAS) if its

time complexity is polynomial in the input size, for any fixed ε > 0. The running time of a

PTAS increase very rapidly as ε decreases.

An approximation scheme is a fully polynomial-time approximation scheme (FPTAS)

if it is an approximation scheme and its running time is polynomial in the input size and

also polynomial in 1/ε.

Approximation Ratio The ratio between the solution obtained from an approximation

algorithm and the optimal solution for the same problem instance is known as the approxi-

mation ratio of that algorithm. Let, A(I) be the solution returned by algorithm A on instance

I and OPT (I) is the optimal solution on the same instance, then the approximation ratio

(AR) of algorithm A on instance I is,

AR = A(I)
OPT (I) .

2.6 Scheduling Problem

A scheduling process is concerned with the allocation of the limited resources (e.g.

processors, machines etc.) to a group of tasks in order to optimize a particular objective

function.

A scheduling problem can be specified in terms of the three-field notation scheme, de-

noted by α|β|γ. The meaning of each of these fields can be adapted based on the problem

type. The first two fields are generally used to represent the task and machine environments

(in any order) and the third field can be used to represent the constraints or to describe

the optimality criteria of the problem. The machine environment can have either a single

machine or parallel machines. Parallel machines can be categorized into three types:

22

2.7. RELATED RESEARCH

(i) Identical The machines are identical and any task requires same amount of time for

processing on any machine.

(ii) Uniform Each machine i has a speed si and any task j with processing requirement

p j requires p j/si time to process on machine i.

(iii) Unrelated Machines have different capabilities. Speed of machine i on task j si j,

depends on both machine and the task. Task j requires p j/si j processing time on

machine i.

Moreover, a scheduling problem can have several constraints [15]. These constraints in-

clude but are not limited to the following:

• Precedence constraint Tasks may have precedence relations between them which can

be represented by an acyclic directed graph G = (V,E) where the vertices correspond

to the tasks and an edge from vertex i to vertex j indicates that task i must be com-

pleted before task j can start processing.

• Preemption Processing of a task can be interrupted and resumed at a later time, even

on another machine.

• Deadline A task cannot be scheduled after its deadline.

Furthermore, various objectives are considered while handling a scheduling problem, such

as minimizing makespan, minimizing maximum lateness, profit maximization, cost mini-

mization, total flow time [15].

The following is an example illustrating the three-field notation.

Example 2.1. The problem of scheduling tasks with arbitrary precedence constraints on m

identical parallel machines to minimize the makespan can be represented as: I|prec|Cmax,

where I,prec, and Cmax represents identical machines, the precedence relations between

tasks, and the makespan minimization objective, respectively.

23

2.7. RELATED RESEARCH

2.7 Related Research

In this thesis, we have studied the resource assignment problem in vehicular clouds

that falls in the category of unrelated parallel machine scheduling problems. Despite a rich

literature in machine scheduling [38] and grid computing [21], this problem has not been

examined extensively yet. In this section, we discuss the previous works which are related

to the task scheduling problems in vehicular clouds.

2.7.1 Parallel Machine Scheduling

Task scheduling problems are known to be NP-hard [36, 24, 52], so finding a poly-

nomial time algorithm is as hard as any other NP-hard problem (e.g.- knapsack problem,

traveling salesman problem etc). Therefore, approximate algorithms are studied which

guarantee solutions close to the optimal solutions with lower polynomial complexity.

The job-shop scheduling problem is the most general of the scheduling problems where

a set of tasks need to be scheduled on a set of machines with varying processing powers,

while the objective is to minimize the total scheduling length. Graham et al. [28] first pre-

sented a greedy list scheduling algorithm for this problem that has a worst case performance

of (2−1/m), where m is the number of machines. This algorithm assigns the jobs as soon

as there is machine availability to process them: whenever a machine becomes idle, then

one of the remaining jobs is assigned to start processing on that machine. Further, Graham

et al. [29] proposed another greedy algorithm known as LPT (longest processing time)

schedule for the multiprocessor scheduling that has worst case performance bounded by

4/3. The idea of the LPT algorithm is to sort all the jobs in decreasing order of processing

times and then apply the list scheduling algorithm.

Scheduling problems are studied with different objective functions subject to various

constraints. Sahni et al. [49] discussed dynamic programming based algorithms for schedul-

ing the independent task to obtain optimal solutions for the problems such as - job sequenc-

ing with deadlines (JSD) , minimum finish time (MFT), optimal mean flow time (OMFT)

24

2.7. RELATED RESEARCH

and weighted mean flow time (WMFT). He also presented ε-approximate algorithms for the

JSD problem. Additionally, Horowitz and Sahni [32] presented a polynomial time-bounded

approximation algorithm for fixed number of unrelated machines. Gonzalez, Ibarra and

Sahni [26] proposed an algorithm for uniform parallel machines where jobs are ordered

in nonincreasing processing times and assigned to the fastest machine. They have shown

that for m > 2 the performance of the algorithm approaches 3/2 as m increases. In [54] a

2-approximation algorithm is presented that uses a local search method for scheduling jobs

on identical parallel machines with the goal of minimizing the total finishing time of all the

jobs. In [27] a polynomial time algorithm is given for preemptively scheduling n jobs on

m uniform machines within a deadline. Furthermore, Papadimitriou et al. [46] presented a

polynomial time scheduling algorithm on m processors subject to a precedence constraint.

In [50] scheduling problems with machine availabilities are considered where the pro-

cessors are available to execute jobs non-preemptively only during certain moments in time

with the objectives of minimizing maximum and total completion time of all the jobs and

minimizing maximum lateness.

More details on different parallel machine scheduling problems along with their solved

results are shown in [30, 38, 39, 40].

As mentioned above, task scheduling is NP-hard and one of the techniques to solve any

NP-hard problem is to reduce it into a well-known combinatorial optimization problem. We

observed that the single task scheduling sub-problem for the resource assignment problem

in vehicular clouds can be solved approximately by reducing it to a knapsack cover (KC)

problem instance. Hence, the relationship between single task scheduling and KC is shown

below which is followed by the previous works for solving the KC problem.

2.7.2 Relationship with Knapsack Cover Problem

The single task allocation on a set of unrelated machines (vehicles) sub-problem can

be related with the knapsack cover (KC) problem which is a transformation of the classical

25

2.7. RELATED RESEARCH

knapsack maximization problem into a minimization problem. Each machine (vehicle) can

be considered as an item of the KC instance with a processing capacity (size) and a rental

cost (cost) calculated based on an availability interval. Once the single task scheduling

problem instance is constructed, the near-optimal solution can be found by applying the

approximation algorithms proposed for solving the KC problem such that it satisfies all the

constraints of the task scheduling problem in VC.

Following are some related works on the knapsack cover (KC) problem which can be

used for solving the task allocation problem in vehicular clouds.

2.7.3 Approximation Algorithm for Knapsack Cover

The knapsack cover (KC) problem is the minimization version of the classical knapsack

problem (KP). At first, an existing pseudo-polynomial time algorithm and a FPTAS for the

knapsack problem is discussed. Further, we describe a (1+ ε) approximation scheme for

the knapsack cover problem proposed by Islam [34].

PTAS and FPTAS for Knapsack problem Ibarra and Kim [33] proposed a dynamic

programming (DP) based pseudo-polynomial time algorithm for the KP problem. They

used the following recurrence to build the DP table where each item i∈ {1, ...,n} represents

a row and the profit values are the columns.

A(i, p) =
{ A(i−1, p) if pi > p

min{A(i−1, p),wi +A(i−1, p− pi)} Otherwise.

Here, A(i, p) denotes the total weight of the selected items. The subset of items with max-

imum profit and total weight within knapsack capacity C is considered as the optimal

solution. Suppose P is the most profitable item among all the items, then this pseudo-

polynomial time algorithm has a running time of O(n2P).

Further, using a scaling based technique the above mentioned pseudo-polynomial time

algorithm can be modified into a FPTAS for the knapsack problem and can exihibit a per-

formance ratio of (1− ε) for all ε > 0 [33].

26

2.7. RELATED RESEARCH

Algorithm 1: Pseudo-polynomial time algorithm for knapsack cover
Input : Set of items {1, ...,n} with each item having cost ci and size si and an

interger d.
Output: A minimum cost feasible solution.

1 Set C = max{ci}.
2 Set A(0,0) = 0, A(0,c) = ∞ for c = 1, ...,nC
3 For i = 1,,n and c = 0, ...,nC do

A(i,c) =
{

A(i−1,c) if ci > c
max{A(i−1,c),si +A(i−1,c− ci)} Otherwise.

4 Determine the minimum cost subset S(i,c) such that ∑i∈S(i,c) si ≥ d and return S(i,c)
as final solution.

FPTAS for Knapsack Cover Islam [34] proposed a scaling based fully polynomial time

approximation scheme for minimum knapsack cover problem in his thesis. Initially they

discussed a dynamic programming based pseudo polynomial time algorithm for the min-

imum knapsack problem. Given an instance of the KC problem with n items where each

item i ∈ {1, ...,n} has a cost ci and a size si, and a demand d. Let S(i,c) denote a subset of

items {1, ..., i} such that the total cost of these items is exactly c and total size is maximum.

Furthermore, let A(i,c) denotes the sum of the sizes of the items in subset S(i,c). Therefore,

the following recurrence can be used to compute A(i,c),

A(i,c) =
{ A(i−1,c) if ci > c

max{A(i−1,c),si +A(i−1,c− ci)} Otherwise.

The optimal solution can be found by selecting the minimum cost subset of items such that

the total size of the items in this subset is at least d. Suppose C = max{ci} is the maximum

cost item among all the n items. So the maximum cost of a solution can be nC. As there are

n items, therefore total running time of the dynamic programming algorithm will be O(n2C)

which is pseudo polynomial in n. The pseudocode for this is presented in Algorithm 1.

Now using a scaling technique a FPTAS can be obtained for the KC problem [34].

Consider a subproblem Pi that involves i number of items {1,2, ..., i}. Suppose c∗i is the

maximum cost item in the subproblem. Therefore for any ε > 0, obtain the scaling factor

27

2.7. RELATED RESEARCH

Algorithm 2: FPTAS for Minimum Knapsack
1 Sort all the items in nondecreasing order of their costs.
2 foreach i = 1 to n do
3 foreach subproblem Pi do
4 Let scaling factor, ki =

εc∗i
i for a fixed ε > 0.

5 For each item j, set scaled cost c′j =
⌊

c j
ki

⌋
.

6 Apply the DP algorithm 1 with these scaled cost and find the minimum cost
feasible solution.

7 end
8 end
9 Find the minimum cost feasible solution over all the subproblems and output this as

the final solution.

ki for this subproblem as: ki =
εc∗i

i and the scaled cost of each item j in Pi as c′j =
⌊

c j
ki

⌋
.

Using these scaled cost apply algorithm 1 to find the minimum cost solution. Hence, the

minimum cost feasible solution for the KC problem will be the minimum cost solution over

all the subproblems. The procedure is given in Algorithm 2.

The following theorem is claimed and proved in the thesis [34] for this FPTAS.

Theorem 2.2. [Islam et al., 2009] If A is a solution returned by the Algorithm 2 and O is

the optimal solution then, c(A)≤ c(O)(1+ ε), where c(V) is the total cost of items in set V

and the running time of the algorithm is O(n4

ε
).

Greedy Approximation Algorithm for Knapsack Cover Gens and Lenver [25] pro-

posed a greedy heuristics for the knapsack cover problem. Further analysis of this greedy

heuristic with the proof for the worst-case bound of 2 is described in [17].

Given a list L = {1, ...,n} of items. Let si and ci denote the size and the cost, respec-

tively, of an item i of the problem instance and D is the demand. Furthermore, relative cost

of an item i is: ci/si. Therefore, the steps for this greedy algorithm are as follows:

Step 1. Sort the the items in L such that c1/s1 ≤ c2/s2 ≤≤ cn/sn.

Step 2. Find index k1 such that ∑
k1
i=1 si < D < ∑

k1+1
i=1 si. Let S1 = {1,2, ..,k1} be the first set

28

2.7. RELATED RESEARCH

of small items. Therefore, the candidate solution is S1∪{k1 +1}.

Step 3. Find all the items before k2 such that ∑
k1
i=1 si + sk2 < D and ∑

k1
i=1 si + s j ≥ D, for all

j ∈ [k1 +2, ...,k2−1]. Let B1 = {k1 +1, ...,k2−1} as the first set of big items, then

set S1∪{ j}, j ∈ {k1 +2, ...,k2−1} as candidate solutions.

Step 4. Find index k3 ≥ k2 such that ∑
k1
i=1 si +∑

k3
i=k2

si < D ≤ ∑
k1
i=1 si +∑

k3+1
i=k2

si. Let S2 =

{k2, ..,k3} be the second set of small items. Then S1∪S2∪{k3+1} becomes another

candidate solution.

Step 5. Repeat from step 2 to step 4 until the end of the list L where in i-th iteration use k2i+1

instead of k1 and k2i+2 instead of k2.

Step 6. Return the smallest cost candidate solution.

In the above procedure, the sorting step has a computational complexity of O(n logn)

and the later steps take O(n) time. Suppose GR(L) is the solution obtained from the above

greedy procedure and OPT (L) is the optimal solution. Following theorem and its proof is

given for the worst-case bound of this greedy algorithm in [17].

Theorem 2.3. [Csirik et al., 1991] For all lists L, GR(L)≤ 2 ·OPT (L).

Moreover, an improved bound of 3/2 in O(n2) running time for the knapsack cover

problem is also presented in [17].

2.7.4 Lower bound for Knapsack Cover

A greedy procedure is proposed by Gens and Lenver [25] that computes the lower bound

for the knapsack cover problem. Suppose S = {1,2, ...,n} is the set of items with si and ci

be the size and cost, respectively, of each item i. Let lb denote the lower bound value. The

description of this procedure is given in Algorithm 3 which has a running time of O(n logn).

In this thesis, we have extended the above discussed procedures for the task scheduling

problem in vehicular cloud.

29

2.7. RELATED RESEARCH

Algorithm 3: Lower bound for Knapsack Cover
1 Sort all the items according to the nondecreasing order of relative costs.
2 Set lower bound, lb = ∑

n
i=1 si.

3 Fill the knapsack based on the sorted order of the items until k such that ∑
k
i=1 si ≥ D.

4 Set C = ∑
k
i=1 ci.

5 Set lb← min(lb,C).
6 Set S← S\k. If ∑i∈S si > D, then repeat step 3 to step 5.

30

Chapter 3

Resource Assignment in Vehicular
Clouds

This chapter discusses the details of the problem in consideration along with the proposed

solutions. At first, the system model is presented in section 3.1. Then the problem formula-

tion and the proposed algorithms are discussed in sections 3.2 and 3.3, respectively. Finally,

an algorithm with the guranteed accuracy for this problem is proposed in section 3.4.

3.1 System Model

We consider a vehicular cloud (i.e.- can be centralized or autonomous as described in

2.4.2) consisting of a set of m vehicles available during a determined time interval. An

arbitrary vehicle is denoted by symbol i. Each vehicle i has a processing speed (processing

capability) denoted by α(i). It represents the number of operations the processor can handle

per unit of time. Since a vehicle will not stay in the area that defines the VC forever, it has

an availability interval where the arrival and the departure time of vehicle i is defined by t−i

and t+i , respectively. Additionally, based on i’s resource capabilities a constant rental cost

per unit of time, C(i), is associated with vehicle i. Hence, the total resource utilization cost

for vehicle i is calculated based on how long it’s resources are going to be used if selected.

Each processing task is denoted by k and has a processing requirement ρk, measured by

the number of machine instructions, which needs to be served by the resources in the vehic-

ular cloud. We consider an offline environment where the problem instance is completely

available that means the algorithm has access to the whole input instance before starting

31

3.1. SYSTEM MODEL

the scheduling process. In this problem, the availability of the vehicles and the processing

requirements of the tasks are known ahead of time. We assume that all the tasks have a

common deadline T , representing the maximum allowable duration each task can take to

finish. We note that this requirement can be made more general to include task specific

deadlines.

Preemption is allowed to complete the processing requirement of each task. Situations

for preemption in VC are described in Section 3.1.1.

3.1.1 VC-preemption

Processing of any task can be interrupted at any time and resumed immediately on

another processor. We call this event task migration. In this study, we focus on the effect of

availability of processors on the computational capabilities of the cloud and ignore the task

transfer cost. A task is allowed to migrate to a different processor if the current processor

becomes unavailable or if a more cost efficient processor is found.

3.1.2 Scheduling Problem in VC

We adapt the standard three field problem notation (see Section 2.6) to our context:

T/M/C, where T is an integer representing the number of tasks to be scheduled, M rep-

resents the machine environment which is I for identical machines or U for unrelated ma-

chines, and C is the constraint which is VC for VC-preemption with task deadlines. There-

fore, the single task scheduling and multitask scheduling problem in vehicular clouds can be

represented as 1/U/VC and n/U/VC, respectively. The problem objective is to minimize

the cost of the schedule.

For the task scheduling problem in vehicular cloud (VC), a schedule is called feasible

if it satisfies the following constraints:

• All tasks must be processed completely. (In case of experimental analysis, this con-

straint is relaxed for the experimental scenario presented in Section 4.4.)

32

3.2. PROBLEM FORMULATION

• All tasks must be processed before the deadline, T .

• (Migration constraint) A task is not allowed to be paused and resumed at a later time,

it can only be transferred and resumed immediately on a different machine without

any loss.

• Each machine can process only one task at a time.

• (Availability constraint) Each machine can only process during its availability time.

The formal description of a schedule and the cost of a schedule for the scheduling

problem in VC is given below:

Schedule A task schedule consists of an assignment of tasks to processors at certain mo-

ments in time. If a task k is assigned to lk different machines, then the schedule for task

k specifies a list of lk consecutive time intervals denoted Lk = (δ1,δ2, . . . ,δlk) and a corre-

sponding sequence of machines Mk = (i1, i2, . . . ik) so that task k is scheduled on machine is

during the time interval δs. A time interval δs consists of a pair of time values, δs = (δ−s ,δ
+
s)

with δ−s < δ+s . The time intervals are consecutive, δ+s = δ
−
s+1. If we abuse the notation to

denote by δs the duration of time interval δs, then a feasible schedule must satisfy the task’s

demands, ∑
lk
s=1 δsα(is) = ρk, and if two tasks are scheduled on the same machine, then the

time intervals during which the two tasks are scheduled are disjoint.

Cost of schedule Any schedule has a cost associated equal to the total cost of renting the

resources, ∑
n
k=1 ∑i∈Lk

C(s)δs. The objective of the scheduling is to minimize this cost.

3.2 Resource Assignment in Vehicular Clouds

In this thesis, we have focused on a resource assignment problem in vehicular clouds

that falls in the class of machine scheduling problems where the smart vehicles are consid-

ered as the machines with computing resources. In this section, at first we formulate the

problem and then we describe our algorithms proposed for solving the problem.

33

3.2. PROBLEM FORMULATION

3.2.1 Problem Formulation

We divide the required allocation interval (i.e.- the life time of a VC) into consecutive

time intervals determined based on the availability change (e.g. arrival or departure) infor-

mation of the vehicles. Each time interval [t1, t2] is such that t1 and t2 represent the starting

or the ending point of the availability interval for some vehicle and no other availability in-

terval starts or ends between t1 and t2. In fact, the set of available vehicles does not change

between t1 and t2. We call these intervals partitions. The available processors in each

partition are called the objects and are denoted by oi j.

Definition 3.1. An arbitrary partition Pi is a set of objects such that each object oi j ∈ Pi has

a length of δi = Pt+i −Pt−i , where δi represents the partition length, Pt−i is the start time,

and Pt+i is the end time of partition Pi.

We denote the set of partitions and the set of objects as P and O, respectively. The end

time of the last partition corresponds to the deadline T . Each object o j ∈ Px has a resource

capacity of sx j and a total access cost cx j which are calculated as: sx j = α(j) ∗ δx and

cx j = C(j) ∗ δx, respectively. We assume that all the cost values are integers. Moreover,

we introduce the notion of scheduling intervals, collectively represented by set I , where

each interval Ii is defined as follows:

Definition 3.2. A scheduling interval Ii, denoted by [Pt−s ,Pt+t], is a collection of objects

from partitions {Ps,Ps+1,,Pt} where Pt−s and Pt+t are the start time and the end time,

respectively, of this interval. The scheduling interval length |Ii| is measured as the number

of partitions from Ps to Pt .

Example 3.3. Given two partitions, P1 and P2, so I = {I1,I2,I3} such that I1 = {P1},I2 =

{P1,P2} and I3 = {P2} and length of each scheduling interval is 1,2 and 1, respectively.

Additionally, we represent the set of processing requirements as Γ = {ρ1,ρ2,,ρn}.

The total demand of all the tasks is denoted by D, and calculated as D = ∑
n
k=1 ρk.

Table 3.1 summarizes the notations used throughout the thesis.

34

3.2. PROBLEM FORMULATION

Table 3.1: Notation Table

Symbol Meaning

i An arbitrarily vehicle.
α(i) Processing speed per unit of time of vehicle i.
C(i) Cost per unit of time of vehicle i.

[t−i , t+i] Availability interval of vehicle i.
k An arbitrarily task.
ρk The processing requirements of task k.
D (Demand) Total processing requirements of all the tasks.
T Common deadline for all the tasks.
Γ The set of processing requirements.
Px An arbitrary partition x.
δx The length of a partition Px.
P The set of partitions.
ox j An object o j of partition Px.
sx j The size of an object ox j.
cx j The cost of an object ox j.
O The set of objects.
Iy An arbitrary interval y.
I The set of intervals.

Figure 3.1 shows an example of the resource allocation problem formulation in a VC

scenario.

Figure 3.1: Resource allocation problem formulation in VC - an example.

35

3.2. PROBLEM FORMULATION

NP-hardness result for 1/U/VC: As mentioned in Section 2.7.2, the single task schedul-

ing problem, represented as 1/U/VC, is related to the knapsack cover (KC) problem. To

prove that 1/U/VC optimization problem is NP-hard, we need to show that its correspond-

ing decision problem is NP-complete. Decision version of the 1/U/VC problem is given

below.

Problem 3.4. 1/U/VC: Given a set of m machines V = {1,2, . . . ,m} with a capacity (size)

Si ∈ Z+ and a rental cost Ci ∈ Z+ for each machine i, a task with task requirement ρ ∈ Z+,

and a scheduling cost K ∈ Z+. Does there exist a schedule V ′ such that ∑i∈V ′ Si ≥ ρ and

∑i∈V ′Ci ≤K ?

Now, to prove that the decision version of 1/U/VC is NP-complete (see Section 2.5), at

first, we show that it belongs to the class NP and then we show a polynomial time reduction

from the KC problem which is a known NP-complete problem. The decision version of the

KC problem is given below.

Problem 3.5. Knapsack Cover (KC): Given is a set of n items X = {1,,n} with a cost

ca ∈ Z+ and a size sa ∈ Z+ for each item a, a demand D ∈ Z+ and a value goal K ∈ Z+. Is

there a subset of items F ⊆ X such that ∑a∈F sa ≥ D and ∑a∈F ca ≤K ?

Following is the formal proof for the NP completeness of 1/U/VC.

Theorem 3.6. Task migration constraint. 1/U/VC is NP-complete.

Proof. 1/U/VC is in NP. Given a schedule consists of a set V ′ of machines, we can verify

in polynomial time that the sum of their capacities (total size) is at least ρ, and the sum of

their rental costs is at most K .

Given an instance X of KC, we construct an instance V of 1/U/VC as follows. Each

item a ∈ X in KC corresponds to a machine i with an availability interval and speed calcu-

lated so that it equals the size of the item. The availability intervals are chosen so that they

are consecutive in some arbitrary order of the items. Suppose, δti and α(i) are the length

of the availability interval and the speed, respectively, of machine i such that its size Si and

36

3.2. PROBLEM FORMULATION

cost Ci, are set as Si = Ci = δti ∗α(i) = sa = ca. Let A denotes the set of these machines.

We set ρ = K = D. We double the number of machines by adding exactly one machine

with the availability interval equal to that of a machine corresponding to a KC item but

with (size,cost) := (0,0) and let B represents this set of machines. So, V = A∪B. The

construction idea is depicted in Figure 3.2. Clearly, this construction process is polynomial

in the input size.

Figure 3.2: Construction of a single task scheduling problem instance V from a given knap-
sack cover (KC) instance X .

If X is a ‘Yes’ instance of KC problem, then we claim that V is also a ‘Yes’ instance

of 1/U/VC. Suppose F ⊆ X is the set of items picked by the KC solution such that

∑a∈F sa ≥ D and ∑a∈F ca ≤ K . Let F corresponds to a feasible schedule for 1/U/VC

such that ∑a∈F Sa +∑b∈B Sb = ∑a∈F sa ≥ ρ and ∑a∈F Ca +∑b∈BCb = ∑a∈F ca ≤ K , that

means the feasible schedule consists of machines corresponding to the items in the KC so-

lution plus possible other machines with zero cost and speed that are chosen to satisfy the

VC-preemption constraints. Therefore, V is a ‘Yes’ instance for the 1/U/VC problem.

Conversely, if V is a ‘Yes’ instance of 1/U/VC problem, then we claim that X is also a

‘Yes’ instance of KC. Suppose, there exists a subset V ′ ⊆V of machines in the schedule for

1/U/VC such that ∑i∈V ′ Si ≥ ρ and ∑i∈V ′Ci ≤ K . Let the KC solution contains the items

in V ′, and it follows that ∑i∈V ′ si = ∑i∈V ′ Si ≥ D and ∑i∈V ′ ci = ∑i∈V ′Ci ≤K . We conclude

that, X is a ‘Yes’ instance for the KC problem.

Now, a scheduling interval corresponds to the actual period of time that a task is sched-

uled on the vehicular cloud processors. If the scheduling interval for a task is known, then

37

3.3. THE ALGORITHMS

the actual minimum cost schedule for that task can be obtained by solving an instance of

the multiple choice knapsack cover problem.

Problem 3.7. Multiple Choice Knapsack Cover Problem (MCKCP): Given n classes

N1,N2, ...,Nn of items, where each item j ∈ Ni has a non-negative size, si j and a non-

negative cost ci j, and given a demand D ∈ Z+, the objective is to choose exactly one item

from each class such that the total size of the chosen objects is at least D and the total cost

of the objects is minimized.

Hence, by incorporating the MCKCP constraint (i.e. pick exactly one item from each

class) the 1/U/VC problem can be defined as below:

“Given a set of intervals I and a task k with it’s processing requirements ρk ∈ Z+, the

objective is to find a minimum cost interval Ii ∈ I subject to the constraint that exactly one

object is chosen from each partition Pi ∈ Ii and the total size of the chosen objects is at least

ρk.”

Since we do not know the optimal scheduling interval for task k, we can enumerate all

possible scheduling intervals and we can solve the MCKCP corresponding to the scheduling

interval, retaining the case with the smallest cost.

3.3 The Algorithms

3.3.1 Greedy Algorithm for n/U/VC

Scheduling for n/U/VC can be approached in a greedy fashion. This is the “main

procedure” that takes each task, one at a time, and schedules it with the minimum cost

by calling a second procedure, the “single task scheduling procedure” which solves the

1/U/VC problem. This second procedure can be implemented with two algorithms, a

PTAS and a greedy approximation. Depending on the algorithm used for scheduling one

task, we call the algorithm for problem n/U/VC as GrPTAS or GrGr, respectively.

The basic idea of this greedy algorithm is:

38

3.3. THE ALGORITHMS

(i) For each task k solve the MCKCP instance using the PTAS (described in Section

3.3.2) or the Greedy algorithm (described in Section 3.3.3) to find the cheapest avail-

able interval that fulfills the task requirements of k.

(ii) Repeat step (i) until task requirements of all the tasks are completed. If an available

interval is not found for any task to complete then there is no feasible solution for the

problem.

3.3.2 PTAS for 1/U/VC problem

We assume that the scheduling interval is given and thus we need to solve an instance of

MCKCP. A scaling based fully polynomial time approximation scheme (FPTAS) for mini-

mum knapsack cover (KC) problem is proposed in a thesis by Islam [34]. Their proposal

uses a dynamic programming (DP) approach for solving the KC problem. We extend this

scheme to the MCKCP problem. We show that with our recurrence, the algorithm exihibits

the performance ratio of (1+ ε).

At first we show that, the MCKCP problem can be solved in pseudo polynomial time.

The algorithm uses dynamic programming approach that builds a dynamic programming

(DP) table. We assume that the cost of objects in the MCKCP are all integer.

We denote the DP sub-problem by S(i,c), which represents the maximum total size of

objects from partitions {1,, i} given a budget c used to pay the costs of the objects. The

DP sub-problem can be obtained recursively,

S(i,c) = max
oi j∈Pi∧ci j≤c

{S(i−1,c− ci j)+ si j} (3.1)

In this relation, we extend the total size of the objects selected by one more partition.

Suppose there are total z partitions and cmax is the highest cost of an object among all

partitions, then the maximum cost for any solution can be C ∗ = zcmax. If there are a total

of n objects, then the total running time taken for building the DP table is O(nC ∗). Once

the DP table S(,) is built, the optimal solution can be found by looking at the entry that

39

3.3. THE ALGORITHMS

Algorithm 4: Dynamic Programming Algorithm for 1/U/VC
Input : Integers C ∗, ρk, objects set O with size (si j) and cost (ci j) of each object.
Output: A minimum cost feasible solution.

1 Set S(0,0) = 0, S(0,c) = ∞ for c = 1, ...,C ∗
2 For i = 1,,z; c = 0, ...,C ∗ and j = 1,,n do

S(i,c) =
{

0 if ci j > c
maxS(i−1,c− ci j)+ si j Otherwise

3 Determine the minimum cost feasible solution and return as final solution.

satisfies the demand with minimum cost c. This is a pseudo polynomial time algorithm for

the 1/U/VC problem. A description of the steps of this dynamic programming algorithm

is given in Algorithm 4.

Algorithm 4 returns the subset O ′ ⊆ O with minimum cost c ∈ {0, ...,C ∗} such that

∑oi j∈O ′ si j ≥ ρk.

Now the above pseudo polynomial time algorithm can be converted into a fully polyno-

mial time approximation scheme (FPTAS) using a cost scaling technique. For each partition

Pl where l ∈ [1..z], a sub-problem denoted by SPl is solved, using the dynamic programming

approach with object costs scaled by a scaling factor.

Definition 3.8. A sub-problem SPl is a collection of all the objects belong to the partitions

{P1,P2, ...,Pl}.

Suppose, c∗ is the maximum cost object found in the optimal solution OPT . Since

this value is unknown, for each object belongs to an interval Il , we assume c∗ = ci j, and

compute the scaling factor, denoted by kl , as kl =
εci j

z , for any ε > 0, where z is the interval

length. Using this scaling factor kl , cost of each object oi j ∈ Il is scaled as follows:

c′i j =

⌊
ci j

kl

⌋
where c′i j is the scaled cost of object oi j. Using these scaled costs we apply the dynamic

programming Algorithm 4 to find the minimum cost feasible solution in the space of scaled

40

3.3. THE ALGORITHMS

Algorithm 5: FPTAS for 1/U/VC
Input : A processing requirement ρk, intervals set I , objects set O with size (si j)

and cost (ci j) of each object and a number ε > 0.
Output: A minimum cost feasible schedule for task k.

1 foreach interval a ∈ I do
2 Let Oa be the set of objects belong to a.
3 foreach object cost c∗ ∈ Oa do
4 Set scaling factor, kl =

εc∗
l .

5 Let O ′a←{o j ∈ Oa : c j ≤ c∗}.
6 For each object o j ∈ O ′a, set scaled cost c′j = b

c j
kl
c.

7 Apply the DP algorithm 4 with these scaled cost on the instance (c∗,ρk,O ′a)
and let Z′(c∗,a) be the minimum cost solution over the scaled costs.

8 Let Z(c∗,a) be the true cost corresponding to Z′(c∗,a).
9 end

10 end
11 Return min

∀a∈I
{min
∀c∗∈a

{Z(c∗,a)}}.

costs. This solution represents the task schedule for a fixed scheduling interval. This pro-

cedure is explained in Algorithm 5.

We claim the following theorem followed by the proof for the performance ratio of this

algorithm.

Theorem 3.9. For a fixed ε > 0 and m number of partitions, there is a FPTAS for the

1/U/VC problem that outputs a (1+ε)- approximation solution with running time O(n2 m3

ε
).

Proof. Let OPT be the optimal solution of the problem. Now consider a sub-problem SPl

consisting of the partitions [P1,P2,,Pl]. Suppose, Sl is the solution of the sub-problem

SPl returned by the dynamic programming algorithm after scaling the costs of the objects

by the scaling factor kl . For simplicity, we will use k = kl for further discussion. Let C (Sl)

denotes the sum of the original costs and C ′(Sl) denotes the sum of the scaled costs of the

objects in set Sl .

As the dynamic programming algorithm returns the minimum cost solution, therefore

41

3.3. THE ALGORITHMS

the following holds with the total scaled cost of the objects in the OPT denoted by C ′(OPT),

C ′(Sl)≤ C ′(OPT) (3.2)

After scaling the costs by k, there is an error between the scaled cost of an object and

the true cost of the object.

0≤ ci j− c′i j ≤ k (3.3)

From equation 3.3 we can write,

C ′(OPT)≤ C (OPT) (3.4)

As there are l partitions in the sub-problem SPl , so there will be a total of l objects in

the solution Sl . Thus, the total error for this sub-problem is,

C (Sl)−C ′(Sl)≤ kl (3.5)

Now, with m partitions in the original problem, using equation 3.3, the total error in the

optimal solution is,

C (OPT)−C ′(OPT)≤ km (3.6)

Assume that S is the final solution returned by the algorithm. So it is the minimum cost

feasible solution over all the sub-problems, i.e. C (S) ≤ C (Sl). Therefore for a total of m

partitions we can write,

C (S)−C ′(S)≤ km (3.7)

Adding equations 3.6 and 3.7,

C (OPT)−C ′(OPT)+C (S)−C ′(S)≤ 2km

42

3.3. THE ALGORITHMS

⇒ C (S) ≤ 2km+C ′(OPT)+C ′(S)−C (OPT)

≤ 2km+C ′(OPT)+C ′(OPT)−C (OPT) using(3.2)

= 2km+2C ′(OPT)−C (OPT)

≤ 2km+2C (OPT)−C (OPT) using(3.4)

≤ 2km+C (OPT)

Now, we choose k so that 2km ≥ εC (OPT). If C∗ is a lower bound on C (OPT), then

k = εC∗
2m . For example, we choose C∗ to be the maximum cost of an object in OPT . Since

this is unknown, we guess C∗.

C (S)≤ 2
ε

2
C (OPT)+C (OPT)

⇒ C (S)≤ (1+ ε)C (OPT)

⇒ C (S)
C (OPT)

≤ (1+ ε)

For the running time, with a total of m partitions and the highest cost C∗, maximum

cost that occurs for the mth sub-problem is mC∗. Now with the scaling factor k = εC∗
2m

there will be mC∗
k = 2m2

ε
columns and m rows in the DP table for mth sub-problem and total

n calculations are required for n objects. So, total running time for this sub-problem is

O(nm3

ε
). Moreover, the guess for the C∗ is done with every possible object. Therefore the

overall running time for a total of m sub-problems is O(n2 m3

ε
).

3.3.3 Greedy Algorithm for 1/U/VC problem

We propose a natural greedy algorithm to solve the 1/U/VC problem. The main idea

is as follows: we enumerate all scheduling intervals. Given a fixed scheduling interval, we

select the object from each partition with the smallest cost per unit of size value. We select

the best feasible solution obtained over the set of all scheduling intervals.

43

3.4. LOWER BOUND FOR N/U/VC

Formal description of this procedure is given in Algorithm 6.

Algorithm 6: Greedy algorithm for 1/U/VC
Input : A processing requirement ρk, intervals set I and objects set O with size (si j)

and cost (ci j) of each object.

Output: A minimum cost feasible schedule for task k.

1 foreach interval a ∈ I do

2 foreach partition Pi ∈ a do

3 Find the object with minimum ci j
si j

.

4 Save si j of minimum ratio object. Save ci j of minimum ratio object.

5 end

6 Save interval a with chosen object sizes such that it satisfies the task requirement.

Save the total cost of this interval.
7 end

8 Return the minimum cost feasible solution among all the intervals.

9 if no min. cost solution found then

10 no solution

11 end

3.4 Lower bound for n/U/VC

Algorithm 3 solves the knapsack cover (KC) problem fractionally which is proposed in

[25]. We propose the following simple lower bound on the cost of the optimal task schedule

for scheduling n tasks by solving knapsack cover fractionally. Consider all machines i ∈

{1, . . . ,n} indexed in non-decreasing order of their cost per speed ratio (C(i)
α(i) ≤

C(i+)
α(i+) for

all 1 ≤ i ≤ n− 1). This ratio represents the cost for serving a unit of demand. We denote

each ratio as λ1 = C(1)
α(1) , and so on. Given a problem instance I, the total demand of I

is denoted as D. Let δti is the length of the availability interval of machine i which is

computed as δti = t+i − t−i . Then the cost of renting a machine is, Ci = δti ∗C(i) and the

44

3.4. LOWER BOUND FOR N/U/VC

Algorithm 7: Lower bound for n/U/VC

1 Sort all i’s in nondecreasing order of their cost per speed ratios.
2 Find λk such that k is the smallest index subject to ∑

k
i=1 Si ≥ D.

3 Caculate the total cost, C′(I) = ∑
k−1
i=1 Ci +(

D−∑
k
i=1 Si

Sk
)∗Ck.

4 Output C′(I).

size is, Si = δti ∗α(i). We calculate the cost of serving the total demand D by the cheapest

resources. Let C′(I) represents the total cost of the schedule for instance I. Clearly, the

optimal schedule cannot do better than this. This procedure is described in Algorithm 7.

45

Chapter 4

Experimental Analysis

In this chapter, the performance of the greedy algorithms, presented in Chapter 3, are eval-

uated in diverse set of scenarios.

4.1 Experimental Scenarios and System Setup

We consider a typical VC formed at a parking lot (or parking garage/driveway/traffic

jam etc.). Everyday, many vehicles are parked in a parking lot for several hours with each

having different (or same) arrival and departure times, as vehicles do not stay in the parking

lot forever. These vehicles are parked idle with ample unexploited computing resources

where the resource capabilities (e.g.- processing speed per unit of time) of each vehicle are

different. Vehicles with these amount of untapped resources are the perfect candidates for

nodes for a cloud system. These resources can be rented out from the vehicle owners with

appropriate incentives (e.g.- access cost-per-unit of time) based on their capabilities and

can be utilized to carry out computing tasks offloaded to it by the service provider.

We evaluated our scheduling algorithms in three different scenarios:

• fixed number of vehicles and varying number of tasks,

• varying the ratio between tasks with a large demand (long tasks) and tasks with a

small demand (short tasks) while maintaining the ratio between total demand and the

total available processing resource constant, and

• task profiles extracted from real grid workload traces.

46

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

Test instances for the first two scenarios are generated randomly for experimental anal-

ysis. For the last scenario we have used real time data traces. For each vehicle the in-

formation generated are: the availability span [t−i , t+i], speed-per-unit (α(i)) and access

cost-per-unit (C(i)). A processing requirement (ρk) is generated for each task. For the ran-

domly generated instances, we used a normal distribution for the duration of the availability

intervals for the machines.

We used a bi-modal distribution for task requirements to create sets of short and long

tasks. We call a task short (long) if its request can be served at the average machine speed

in time that is a fifth of (three times) the average duration of a partition (see Section 3.2.1).

The intuition behind these assumptions is to observe the behaviour of the algorithms when

tasks having longer processing requirements. More details about the experimental setup for

each of these simulation scenarios are explaind in their respective sections.

Since no benchmark problem instances are available for the n/U/VC problem we have

compared the performance of our proposed algorithms relative to each other. We consider

a greedy algorithm for solving the n/U/VC problem. We obtain the approximation ratios

of our proposed algorithms with respect to the lower bounds obtained from the greedy

algorithm for both large and small size test instances.

Let CA(I) is the cost of the solution returned by algorithm A on instance I and C′(I) is

the value obtained from the lower bound algorithm, then the approximation ratio (AR) of

algorithm A on instance I is:

AR(I) =
CA(I)
C′(I)

≥ 1. (4.1)

We implemented our algorithms in the C++ programming language. All the compu-

tational experiments for the solved instances were carried out on an Intel(R) Core(TM)

i7-4500U CPU@1.80 GHz x 4 with 8 GB RAM computer powered by the ubuntu 14.04

LTS operating system.

47

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

4.2 Scenario A: fixed number of vehicles and varying number of tasks

In this experiment, we observe the behaviour of the proposed approaches by varying the

total demand while keeping the total resource capacity fixed. For varying the total demand

we vary the number of tasks (n) with a fixed ratio of short and long tasks while the number

of vehicles (m) participate to form a VC is kept fixed.

We categorized the test instances into two groups: small and large, based on the values

of m (the number of vehicles) and n (the number of tasks). For both sizes of test instances,

we evaluate the performance of the algorithms based on their calculated “approximation

ratios”.

4.2.1 Experimental settings

Randomly generated test instances are used for this experiment by varying the val-

ues for m and n. For small-size instances m and n values are taken as {5,8,10} and

{5,10,20,30,50,100,200}, respectively. For large-size instances m ∈ {20,30,50} and

n ∈ {10,20,30,50,100,200} are considered. Therefore, 50 x 200 is the largest instance

size that is used for the experiment.

For each m value, instances are generated based on the following factors:

• Availability intervals [t−i , t+i]. For each of the m vehicles the avilability interval is

generated within a specific deadline, where t−i and t+i are both integers from the

normal distribution with an average interval length and a standard deviation.

• Speed-per-unit (α(i)). For this scheduling problem, α(i) of each vehicle i is an integer

number drawn from the uniform distribution [1,10].

• Cost-per-unit (C(i)). The rental cost-per-unit value is an integer which is generated

by uniform distribution [1,10].

For each n value the following information is generated:

48

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

• Processing requirements (ρ). For all the n tasks processing requirements are gener-

ated with a fixed proportion of short and long tasks (i.e.- 90% short and 10% long).

Definitions of short task and long task are given in the Section 4.1. All the processing

requirements are integers and generated using a bi-modal distribution where the av-

erage processing requirements used for the short and long tasks are calculated based

on their definition.

We generate 10 random machine instances for each value of m and 10 random sets of

tasks for each value of n. We solved instances corresponding to all possible combinations

of values for m and n and we report the average over all of the instances with the same value

of n. So, it resulted a total of 100 test instances for a specific m value. For all the m and

n values from the small and large groups (defined above), problem instances are generated

following the similar procedure. The code for input data generation is implemented in

Octave.

4.2.2 Results

Table 4.1 lists the performance ratio of the algorithms obtained for small-size test prob-

lems. Each ratio value entry in table 4.1 represents an average value based on 100 test

instances generated for the same m and n. For all the instances ratio values are obtained

for the GrGr and the GrPTAS with 3 different ε values with respect to the solution obtained

from the lower bound (LB) algorithm for n/U/VC. Percentage of instances solved for each

(m,n) pair are given in the “Solved Instances” column. Value 0 in this column means the

algorithms were unable to find any feasible schedule for that (m,n) pair.

Figure 4.1 shows the “approximation ratio” as a function of number of tasks for small

size test instances. Each line in this figure represents the algorithm used for solving the

1/U/VC instance. We observe that, GrPTAS (for ε = 0.1) performs better than GrGr for

most of these small test instances.

Running times of the algorithms on small-size instances are given in table 4.2. Each

49

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

Table 4.1: Performance ratio for small test problems

m n Solved Approximation Ratio

Instances GrGr GrPTAS

(%) ε = 0.1 ε = 0.5 ε = 1

5 5 100 1.0042651763 1.0034562636 1.0034562636 1.0034562636
10 100 1.0037292248 1.0034862914 1.0034862914 1.0034862914
20 100 1.0018969333 1.0015681315 1.0064242807 1.0066708821
30 70 1.0080097386 1.0057548386 1.0081280415 1.0088495752
50 20 1.0161997705 1.0075369441 1.0197927653 1.0383268234
100 0 NR NR NR NR
200 0 NR NR NR NR

8 5 100 1 1 1 1
10 100 1 1 1 1
20 100 1.0272647209 1.0106707629 1.0157910906 1.0300768049
30 100 1.0133409029 1.0095198702 1.0194901325 1.0258031901
50 100 1.0216276729 1.0043784095 1.0241911958 1.0386142026
100 0 NR NR NR NR
200 0 NR NR NR NR

10 5 100 1 1 1 1
10 100 1.0020834133 1 1 1
20 100 1 1 1 1
30 100 1.0036079245 1 1.0028944582 1.0203494529
50 100 1.0006327535 1.0002571211 1.0036433571 1.0939219627
100 100 1.0003333686 1.0010825887 1.0048393962 1.0453044202
200 80 1.0023528692 1.0045015189 1.0128820598 1.0252636296

NR: No Result. No feasible schedules were found for these instances.

50

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

1.00

1.005

1.010

1.015

1.020

1.025

1.030

1.035

 5 10 15 20 25 30 35 40 45 50

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Approximation ratios w.r.t. the number of tasks for m = 5

1.00

1.005

1.010

1.015

1.020

1.025

1.030

1.035

 5 10 15 20 25 30 35 40 45 50

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Approximation ratios w.r.t. the number of tasks for m = 8

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

 20 40 60 80 100 120 140 160 180 200

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(c) Approximation ratios w.r.t. the number of tasks for m = 10

Figure 4.1: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) in
the scenario of fixed number of vehicles and varying number of tasks on small test instances
for m = {5,8,10}.

51

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

Table 4.2: Time comparison for small test problems

m n Running Time (seconds)

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

5 5 .0001 0.015 0.005 0.003
10 0.0002 0.03 0.005 0.004
20 0.0003 0.048 0.008 0.006
30 0.0005 0.09 0.012 0.008
50 0.0008 0.20 0.018 0.015

100 NR NR NR NR
200 NR NR NR NR

8 5 0.05 0.08 0.013 0.009
10 0.12 0.14 0.03 0.01
20 0.25 0.34 0.07 0.03
30 0.38 0.58 0.13 0.06
50 0.64 1.008 0.21 0.11

100 NR NR NR NR
200 NR NR NR NR

10 5 0.0001 0.49 0.10 0.05
10 0.12 0.60 0.12 0.06
20 0.24 2.22 0.45 0.26
30 0.37 3.52 0.70 0.36
50 0.64 5.84 1.17 0.59

100 1.29 12.64 2.54 1.29
200 2.64 15.42 4.19 1.98

time entry in table 4.2 shows the averaged value over 100 instances measured in seconds.

NR represents no result that means no feasible schedule were found for these instances.

Table 4.3 and 4.4 show the performance ratio and running times (in seconds), respec-

tively, of the algorithms calculated for the large-size test problems. Each table entry repre-

sents an averaged value based on 100 instances with same (m,n) pair.

Figures 4.2 and 4.3 depict the comparison of approximation ratios and average running

times (in seconds) for the large-size problem instances, respectively.

52

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

Table 4.3: Performance Ratio for large test problems

m n Approximation Ratio

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

20 10 1 1 1 1.3132884135
20 1.0149864195 1.0110016632 1.0678738513 1.433949878
30 1.0040286289 1.0034930499 1.0350509619 1.4874533071
50 1.0072546277 1.007306224 1.1344033173 1.4812007261
100 1.005412322 1.0064493545 1.08854351 1.2847682554
200 1.0020657922 1.0014951151 1.008519394 1.1063117439

30 10 1.0044452002 1.0027206257 1.1113489769 1.6278264279
20 1.0034145 1.0052614353 1.2433206347 1.8727646427
30 1.0006978206 1.0036604889 1.3165311294 1.8786351984
50 1.0059853691 1.005184444 1.0471565037 1.1056036436
100 1.0000334124 1.0047810162 1.0229938326 1.0493419268
200 1.0017240687 1.0030011488 1.0109509785 1.0195261929

50 10 1.0078810959 1 1.0088860679 1.8699196022
20 1.0000286008 1.0000286008 1.2402299508 1.6370666972
30 1 1 1.3806954008 1.5637541444
50 1.0021928347 1.0057508991 1.3185778668 1.7470751582
100 1.0028497485 1.0080463057 1.1868062582 1.4629466708
200 1.0012647793 1.0028718395 1.1605930911 1.4237349384

53

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

Table 4.4: Time comparison for large test problems

m n Running Time (seconds)

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

20 10 0.12 11.35 2.26 1.13
20 0.25 23.81 4.73 2.35
30 0.37 27.84 5.57 2.76
50 0.62 68.15 13.58 6.75

100 1.12 160.94 23.82 14.65
200 2.57 259.39 52.19 26.37

30 10 0.12 194.64 38.85 19.38
20 0.25 402.88 80.49 40.13
30 0.37 663.87 132.45 66.13
50 0.64 1212.20 510.47 380.03

100 1.31 2606.83 1629.63 977.92
200 2.65 5402.75 3788.76 2752.95

50 10 0.19 3301.98 658.25 328.23
20 0.22 6325.78 1259.52 628.43
30 0.37 8816.16 1742.97 869.88
50 0.65 14495.70 2877.63 1436.29

100 1.32 29136.60 5769.93 2878.12
200 2.69 62017.96 12285.71 6122.81

54

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

 20 40 60 80 100 120 140 160 180 200

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Approximation ratios w.r.t. the number of tasks for m = 20

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80
1.90

 20 40 60 80 100 120 140 160 180 200

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Approximation ratios w.r.t. the number of tasks for m = 30

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80
1.90

 20 40 60 80 100 120 140 160 180 200

A
p

p
ro

xi
m

a
tio

n
 R

a
tio

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(c) Approximation ratios w.r.t. the number of tasks for m = 50

Figure 4.2: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) in
the scenario of fixed number of vehicles and varying number of tasks on large test instances
for m = {20,30,50}.

55

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

 0.100

 1.000

 10.000

 100.000

10 50 100 150 200

T
im

e
 (

se
c)

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Average running time w.r.t. the number of tasks for m = 20

 0.100

 1.000

 10.000

 100.000

 1000.000

10 50 100 150 200

T
im

e
 (

se
c)

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Average running time w.r.t. the number of tasks for m = 30

 0.100

 1.000

 10.000

 100.000

 1000.000

 10000.000

10 50 100 150 200

T
im

e
 (

se
c)

Number of Tasks

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(c) Average running time w.r.t. the number of tasks for m = 50

Figure 4.3: Average running time comparison between GrGr and GrPTAS (for ε =
{0.1,0.5,1}) in the scenario of fixed number of vehicles and varying number of tasks on
large test instances for m = {20,30,50}.

56

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

Table 4.5: Average running times with respect to the number of vehicles

m Average Running Time (seconds)

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

5 0.0003 0.16 0.009 0.007
8 0.24 0.43 0.09 0.04

10 0.44 5.82 1.32 0.65
20 0.68 91.92 17.03 9.002
30 0.89 1747.19 1030.11 706.09
50 0.91 20682.36 4099.001 2043.96

In table 4.5, the changes of the average running times of the algorithms for different

number of tasks (i.e. number of tasks those are considered for the large and small test

instances) for a fixed number of vehicles are given for the comparison purpose.

Figure 4.4 shows the performance of the algorithms when the number of vehicles in-

creases. More specifically, Figure 4.4(a) depicts the average running times as a function

of number of vehicles for the GrGr algorithm and for all three ε values of GrPTAS. Fig-

ure 4.4(b) shows the approximation ratios of the algorithms when the number of vehicles

increases.

Observation It is clear that, both the GrGr and the GrPTAS (for ε = 0.1) shows similar

performances in case of cost minimization. More specifically, GrPTAS performs noticeably

well in case of small size test instances and sometimes better or similar performance for

large test instances. On the other hand, GrGr outperforms GrPTAS in terms of running

time for both size test instances.

57

4.2. FIXED NUMBER OF VEHICLES AND VARYING NUMBER OF TASKS

 0.000

 0.001

 0.010

 0.100

 1.000

 10.000

 100.000

 1000.000

 10000.000

5 20 35 50

T
im

e
 (

s
e
c
)

Number of Vehicles

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Average running time w.r.t. the number of vehicles.

1.00

1.05

1.10
1.15

1.20

1.25
1.30

1.35

1.40
1.45

1.50

1.55

1.60

5 20 35 50

A
p
p
ro

x
im

a
ti
o
n
 R

a
ti
o

Number of Vehicles

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Approximation ratios w.r.t. the number of vehicles.

Figure 4.4: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) as
a function of number of vehicles.

58

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

4.3 Scenario B: Varying ratios with fixed constraint level

In this scenario we vary the ratio between the total processing demand of the tasks and

the total processing capability of the machines. We call this ratio the constraint level (also

known as load factor) and we denote it by γ.

4.3.1 Configuration of test problems

The problem instances for this experiment are generated based on following factors:

1. Constranit level (γ). We used five different constraint levels: 10%, 25%, 50%, 75%

and 100%.

2. Number of vehicles (m). We used four different numbers: 8,10,15 and 20. For

each vehicle i, the availability interval, speed-per-unit and cost-per-unit are generated

similarly as described in section 4.2.

3. Long/Short Ratio (β). We used task instances for five different ratios β between the

total demand originating from long tasks and the total demand originating from short

tasks for β ∈ {9,1,2,1/2,1/9}.

4. Number of tasks (n). The task instances were generated so that the constraint level

remains constant. The number of tasks for this experiment is generated based on the

β value and the total processing requirements are calculated based on the γ value. The

calculations for generating n value and the processing requirements are shown below.

The following notations are used:

i) CAPm : total processing capacity of m vehicles,

ii) PRn : total processing requirements of n tasks,

iii) γ : constraint level of the problem,

iv) nL and nS : number of long and short tasks, respectively,

59

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

v) β : ratio of the number of long tasks to the number of short tasks,

vi) LPRavg and SPRavg : average processing requirement for long and short task, respec-

tively,

vii) Pavg and Savg : average partition duration and average speed-per-unit, respectively.

For any m, we know the values of CAPm, Pavg and Savg. Given a fixed value for γ, we can

find the PRn value as follows:

PRn = γ x CAPm (4.2)

Now, using the definition of short and long task we can compute the SPRavg and LPRavg

values as below-

SPRavg =
Pavg x Savg

number of short tasks per partition
, (4.3)

where it is assumed that, the number of short tasks per partition may vary between 5 to 10.

And,

LPRavg = Pavg x Savg x number of partitions per task, (4.4)

where the number of partitions per task can be 3 or more. With PRn, SPRavg and LPRavg

calculated, we can write-

SPRavg · nS +LPRavg · nL = PRn, (4.5)

For a given β value, we know,

β =
nL

nS

⇒ nL = β · nS (4.6)

60

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

Replacing nL in equation 4.5 we get,

SPRavg · nS +LPRavg · β · nS = PRn

⇒ nS(SPRavg +β · LPRavg) = PRn

⇒ nS =
PRn

SPRavg +β · LPRavg
(4.7)

Using 4.7 in 4.6 we get the value of nL. So, total number of tasks generated are:

n = nS + nL

Finally, the processing requirement for each task is generated using a bi-modal distribution

with the calculated average values for short and long tasks.

For each m value we considered all the five constraint levels while testing the perfor-

mance of the proposed algorithms. For each (γ,β) pair, 10 random instances were gener-

ated. So, for a specific γ we generated 10 x 5 = 50 test instances. In total, 50 x 5 = 250 test

problems were tested for each m value.

4.3.2 Computational results

Table 4.6 shows the setup used for generating test problems for this experiment. First

three column entries show the vehicle information that includes - number of vehicles (m),

average partition duration (Pavg) in seconds and average speed-per-unit (Savg), respectively.

Rest four columns represent the average processing requirements and the standard deviation

value used for generating short and long tasks, respectively, using normal distribution. Here

we assumed that, the number of short tasks per partition = 5 and the number of partitions

per task = 3 while calculating the SPRavg and LPRavg, respectively.

Tables 4.7, 4.8, 4.9 and 4.10 list the performance ratio of the algorithms for each of

the five γ values for m = 8,10,15 and 20, respectively. Each of the entry in these tables

represent the averaged value generated for all β values under each γ. So, total 100 instances

61

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

Table 4.6: Experimental setup for test problems

m Pavg Savg Short Tasks Long Tasks

SPRavg SPRSD LPRavg LPRSD

8 102.86 4.50 92.57 46.29 1388.57 520.71
10 59.47 4.60 54.72 27.36 820.74 307.78
15 57.6 4.87 56.06 28.03 840.96 315.36
20 53.33 4.05 43.20 21.60 648.00 243.00

Table 4.7: Approximatio ratio for different constraint levels on m = 8

γ Approximation Ratio

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

10% 1 1 1 1

25% 1.0385798697 1.0151462084 1.031272599 1.0410139468

50% 1.025316028 1.0145165543 1.0284017812 1.0389316325

75% 1.0566296818 1.0387399686 1.0607249695 1.0756284775

95% 1.0357084617 1.0193400494 1.0299195342 1.0454995954

were tested for each γ.

Figures 4.5(a) and 4.5(b) depict the performance ratio and the average running time

graphically for different load conditions for m = 8.

Figures 4.6(a) and 4.6(b) shows the performance ratio and the average running time for

the algorithms in graphical format when m = 10.

Performance of the algorithms for m = 15 are shown in figure 4.7.

Figure 4.8(a) shows the performance ratio of the algorithms in graphical form and figure

4.8(b) shows the average running time taken by the algorithms for m = 20.

62

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

10 25 50 75 100

A
p
p
ro

x
im

a
ti
o
n
 R

a
ti
o

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Approximation ratios w.r.t different constraint levels for m = 8

 0.000

 0.000

 0.001

 0.010

 0.100

10 25 50 75 100

T
im

e
 (

s
e
c
)

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Time comparison w.r.t different constraint levels for m = 8

Figure 4.5: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) in
the scenario of different constraint levels with fixed number of vehicles for m = 8.

63

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

Table 4.8: Approximatio ratio for different constraint levels on m = 10

γ Approximation Ratio

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

10% 1 1 1 1

25% 1.0305095661 1.0124226392 1.0243942757 1.0764115094

50% 1.0642984648 1.0597793637 1.0730401301 1.105347783

75% 1.0072355315 1.0026085114 1.007077421 1.0136714425

95% 1.0211724245 1.0196975725 1.0238819093 1.0304208273

Table 4.9: Approximatio ratio for different constraint levels on m = 15

γ Approximation Ratio

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

10% 1.0052729237 1.0055174534 1.3136787274 1.4692090996

25% 1.0014205901 1.0027045368 1.1834681644 1.3010851058

50% 1.0086692605 1.0082995969 1.0684859159 1.15107655

75% 1.0388831751 1.0197370174 1.0452380217 1.0726919522

95% 1.0143503292 1.0103138965 1.018375467 1.0315704628

Table 4.10: Approximatio ratio for different constraint levels on m = 20

γ Approximation Ratio

GrGr GrPTAS

ε = 0.1 ε = 0.5 ε = 1

10% 1.0215477658 1.0216786372 1.0421389202 1.2905405478

25% 1.0259012126 1.0213817908 1.0436631956 1.1090164646

50% 1.0120256336 1.0106101233 1.012455491 1.0335111287

75% 1.0073288192 1.0075112079 1.0113429221 1.0207583508

95% 1.0259461391 1.0259622386 1.0291551779 1.0451084967

64

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

1.01

1.03

1.05

1.07

1.09

10 25 50 75 100

A
p
p
ro

x
im

a
ti
o
n
 R

a
ti
o

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Approximation ratios w.r.t different constraint levels for m = 10

 0.001

 0.010

 0.100

 1.000

 10.000

10 25 50 75 100

T
im

e
 (

s
e
c
)

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Time comparison w.r.t different constraint levels for m = 10

Figure 4.6: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) in
the scenario of different constraint levels with fixed number of vehicles for m = 10.

65

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

10 25 50 75 100

A
p
p
ro

x
im

a
ti
o
n
 R

a
ti
o

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Approximation ratios w.r.t different constraint levels for m = 15

 0.000

 0.001

 0.010

 0.100

 1.000

 10.000

10 25 50 75 100

T
im

e
 (

s
e
c
)

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Time comparison w.r.t different constraint levels for m = 15

Figure 4.7: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) in
the scenario of different constraint levels with fixed number of vehicles for m = 15.

66

4.3. VARYING RATIOS WITH FIXED CONSTRAINT LEVEL

1.00

1.05

1.10

1.15

1.20

1.25

10 25 50 75 100

A
p
p
ro

x
im

a
ti
o
n
 R

a
ti
o

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(a) Approximation ratios w.r.t different constraint levels for m = 20

 0.000

 0.001

 0.010

 0.100

 1.000

 10.000

 100.000

10 25 50 75 100

T
im

e
 (

s
e
c
)

Constraint Level (%)

GrGr

GrPTAS(EPS=0.1)

GrPTAS(EPS=0.5)

GrPTAS(EPS=1)

(b) Time comparison w.r.t different constraint levels for m = 20

Figure 4.8: Performance comparison between GrGr and GrPTAS (for ε = {0.1,0.5,1}) in
the scenario of different constraint levels with fixed number of vehicles for m = 20.

67

4.4. PERFORMANCE WITH REAL LIFE APPLICATION

Observation In terms of cost minimization, we observe that performance of the GrPTAS

(for ε = 0.1) is better than the GrGr when the instance size is small (i.e. m = {8,10})

regardless of their constraint levels. Moreover, GrPTAS also has good approximation ratios

for ε = 0.5 for these instances as observed in 4.5(a) and 4.6(a). However, for the larger

instances (i.e. m = {15,20}) both the algorithms perform almost identical for all the con-

straint levels. In case of running time, GrGr is significantly faster than GrPTAS for all ε

values as the load factor increases.

4.4 Scenario C: Performance with real life data

In this experiment we have used a real time dataset that contains mobility traces col-

lected from taxis in San Francisco, USA. It contains GPS coordinates of approximately 500

taxis collected over 30 days. The dataset was provided by [47].

It is assumed that vehicles (taxis) from cabspotting database are equipped with proces-

sors. These processors are organized into a vehicular cloud around a fixed reference point

on the San Francisco map. Given a radius (eg. 100 metres), the program will compute,

based on the time stamp information from the database, the time intervals within the cho-

sen radius of the fixed point. These time intervals become computing resource intervals of

availability.

To generate the machine instances, we selected a reference point in San Francisco which

is the location of City Hall. We simulate an application based on real life data where we

assume that City Hall in cooperation with the nearby vehicles (i.e. in this case vehicles are

are only the taxis which are available within 100m of city hall) can offload computing tasks

for processing to the available vehicular resources instead of renting/outsourcing a comput-

ing infrastructure. The vehicle owners can be offered incentives such as monetary rewards

or free parking service for the use of their resources so both parties benefit. Therefore, we

computed the availability intervals according to the time interval in which taxis are within

100 meters radius of the City Hall as shown in Figure 4.9.

68

4.4. PERFORMANCE WITH REAL LIFE APPLICATION

Figure 4.9: 100m radius around City Hall, San Francisco.

For this experiment, the simulation time window was chosen as one day (86400 sec-

onds). We selected 10 slices of one-day duration each from the taxi mobility database

collected within 100m radius of the City Hall. For the task requirements we have used

traces from the DAS-2 system which is obtained from the Grid Workloads Archive (GWA)

[9]. The RunTime field value in the trace file is considered as the processing requirement of

a task that represents the duration (in seconds) required to complete that job. We selected

10 sets of task requirements from the DAS-2 system workload trace based on the running

time of the jobs from 10 randomly chosen slices of one-day duration.

We assume that each vehicle has a specific processing speed and an usage cost per unit

of time is associated with it based on its processing power. The cost-per-unit is chosen

uniformly between 1 and 10. For each machine availability / task requirement pair, we as-

signed processor speeds uniformly at random to obtain a particular constraint level ranging

from 100% (heavily loaded) to an instance of 10% (lightly loaded).

The instances extracted are extremely large, and so we have executed only the GrGr

scheduler. From the previous experiments, it is evident that GrGr generates schedules with

almost identical cost minimization performance ratios as the GrPTAS and has significantly

better running time than the GrPTAS for the large size test instances. The goal of this

69

4.5. CONCLUDING REMARKS

experiment is to observe the performance of GrGr algorithm in case of fulfilling the total

demands in such real-life data.

Figure 4.10 shows the performance of the algorithm as a function of the system load

(load factor). Fig. 4.10(a) depicts the success rate in terms of the fraction of demand

fulfilled and the fraction of tasks completed as a function of the system load (load factor).

Additionally, Fig. 4.10(b) shows the average duration of both tasks accepted and tasks

rejected. Since we relax the constraint level in the graph from Fig. 4.10(b) by increasing

the randomly assigned speed of the processors, the average duration of the accepted tasks

as well as the rejected tasks decreases. In 4.10(b) we also represent a reference line (i.e.

the blue line) corresponding to the average duration of the rejected tasks at 100% load. We

thus notice that the average duration of the accepted tasks increases with the decrease in

constraint level up to the 50% mark. Fig. 4.10(c) depicts the approximation ratio of the

scheduler which is worse than in the case of randomly generated task requirements.

Observation Comparing figures 4.10(a) and 4.10(b) indicates that, GrGr was able to

schedule most of the short tasks successfully whereas it failed to schedule some long tasks.

Moreover, increasing the speed of the vehicles does not necessarily allow the vehicular

cloud to process more tasks in some cases. We remark that, for any real life system, the

tasks rejected by the vehicular cloud can be assigned to a fixed cloud infrastructure.

4.5 Concluding Remarks

We observed that, the GrGr algorithm can produce a schedule with the minimum cost

being almost similar to the GrPTAS algorithm in much lesser time. From the experimental

results presented in sections 4.2.2 and 4.3.2 it is also visible that, for the GrPTAS algo-

rithm, the running time reduces though the scheduling cost increases as the ε value in-

creases. Moreover, from the results given in section 4.4 we see that, GrGr can also produce

a schedule with good performance ratio which can be used with traditional cloud systems

70

4.5. CONCLUDING REMARKS

40

50

60

70

80

90

100

10 25 50 75 100

S
u

c
c
e

s
s
 R

a
te

 (
%

)

Load (total demand / total resource in %)

Demand Fulfilled
Tasks Assigned

(a) Success rate w.r.t the system load.

50

100

150

200

250

300

350

400

450

10 25 50 75 100

A
v
e

ra
g

e
 D

u
ra

ti
o

n
 (

s
e

c
)

Load (total demand / total resource in %)

Tasks Rejected

Tasks Accepted

Constant Processing Requirements

(b) Average duration w.r.t the system load.

1.10

1.15

1.20

10 25 50 75 100

A
p

p
ro

x
im

a
ti
o

n
 R

a
ti
o

Load (total demand / total resource in %)

(c) Approximation Ratios w.r.t the system load.

Figure 4.10: Performance of GrGr as a function of the system load on real life data.

71

4.5. CONCLUDING REMARKS

side-by-side for handling the short tasks efficiently for real life applications. In summary,

in terms of the cost minimization objective function GrPTAS outperforms GrGr for small

size test instances and both the algorithms perform almost equal for large size instances. In

terms of running time, GrGr shows significantly better performance than the GrPTAS.

Finally, it is mentioned earlier that the scheduling problem in consideration falls in the

category of NP-complete problems. So, an algorithm which can solve a real life scheduling

problem in shorter periods of time by producing a good result is in demand in today’s highly

competetive industrial environment. Analyzing above simulation results, we suggest that

GrGr can be a good choice for task scheduling in such real life scenarios.

72

Chapter 5

Conclusion and Future works

5.1 Conclusion

Vehicular cloud systems have emerged from the motivation of taking the combined ve-

hicular resources to the cloud for providing computational services. This pool of vehicular

resources in a VC system implement the concept of fog computing, therefore plays a sig-

nificant role in the Internet of Things.

One major difference between the conventional cloud and a VC is the mobiltiy of the

vehicles which leads to a dynamic situation in terms of resource availability over time. In

this thesis, we argued that task scheduling in vehicular clouds, unlike in any other dis-

tributed computing environment, requires the solution to a machine scheduling problem

with special constraints.

We provide a first theoretical and empirical analysis of the scheduling problem and

we present concrete measurements on the computational capacity of vehicular clouds. We

proposed a greedy approach as a main procedure for solving the n/U/VC problem that

schedules n tasks by solving the 1/U/VC problem each time. Then we proposed two greedy

heuristics for solving 1/U/VC problem based on a PTAS and a natural greedy procedure.

We also propose an algorithm that provides guranteed accuracy for the n/U/VC problem.

Our findings may not only prove useful to engineers considering an actual vehicular

cloud deployment, but also for further research on algorithms for concrete resource schedul-

ing problems in vehicular clouds.

73

5.2. OPEN PROBLEMS

5.2 Open Problems

In the future, it would be fruitful to investigate the following aspect of the resource

assignment problem in vehicular clouds:

• Resource assignment strategy in an on-line environment with tasks becoming avail-

able in real time. Unlike the off-line algorithms, the whole input instance is not

known to an on-line algorithm beforehand, that makes the scheduling scenario more

realistic. Therefore, introducing natural heuristics for the task scheduling problem in

vehicular clouds considering the on-line behavior of the tasks is an interesting open

direction.

74

Bibliography

[1] Accelerating the world to sustainable energy. http://www.tesla.com/presskit/
autopilot.

[2] Chip-maker driven by digital dream. http://www.driven.co.nz/news/
chip-maker-driven-by-digital-dream/.

[3] Ford partners with microsoft azure to deliver cloud-based services and software up-
dates. http://cloud-computing-today.com/tag/ford/.

[4] Nvidia-smart car super computers. http://www.theconnectedplanet.net/
nvidia-smart-car-super-computers/.

[5] Fog computing and the internet of things: Extend the cloud to where the things are.
White Paper, 2015.

[6] Sherin Abdelhamid. Towards provisioning vehicle-based information services. 2014.

[7] Sherin Abdelhamid, Robert Benkoczi, and Hossam S. Hassanein. Vehicular clouds -
ubiquitous computing on wheels. Unpublished Book Chapter in Emergent Computa-
tion, edited by Andrew Adamatzky.

[8] Sherin Abdelhamid, Hossam S. Hassanein, and Glen Takahara. Vehicle as a resource
(VaaR). IEEE Network Magazine, 29(1):12–17, 2015.

[9] Advanced School of Computing and Imaging (ASCI). GWA-T-1 DAS2. GWF format
in Grid Workloads Archive, 2005.

[10] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan. A comprehensive
survey on vehicular ad hoc network. Journal of network and computer applications,
37:380–392, 2014.

[11] Samiur Arif, Stephan Olariu, Jin Wang, Gongjun Yan, Weiming Yang, and Ismail
Khalil. Datacenter at the airport: Reasoning about time-dependent parking lot occu-
pancy. IEEE Transactions on Parallel and Distributed Systems, 23(11):2067–2080,
2012.

[12] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[13] Flavio Bonomi. Connected vehicles, the internet of things, and fog computing. In
The Eighth ACM International Workshop on Vehicular Inter-Networking (VANET),
Las Vegas, USA, pages 13–15, 2011.

75

BIBLIOGRAPHY

[14] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[15] Peter Brucker. Scheduling Algorithms, chapter Classification of Scheduling Problems,
pages 1–10. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2007.

[16] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[17] János Csirik, Johannes Bartholomeus Gerardus Frenk, Martine Labbé, and Shuzhong
Zhang. Heuristics for the 0-1 min-knapsack problem. University of Szeged. Acta
Cybernetica, 10:15–20, 1991.

[18] R. Deng, R. Lu, C. Lai, and T. H. Luan. Towards power consumption-delay tradeoff by
workload allocation in cloud-fog computing. In 2015 IEEE International Conference
on Communications (ICC), pages 3909–3914, June 2015.

[19] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang. Optimal workload allocation in
fog-cloud computing towards balanced delay and power consumption. IEEE Internet
of Things Journal, PP(99):1–1, 2016.

[20] A. Destounis, G. S. Paschos, and I. Koutsopoulos. Streaming big data meets back-
pressure in distributed network computation. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications, pages 1–9,
April 2016.

[21] Fangpeng Dong and Selim G Akl. Scheduling algorithms for grid computing: State
of the art and open problems. Technical report, Queen’s University, 2006.

[22] European Union Agency for Network and Information Security. Security framework
for governmental clouds, February 2015.

[23] FedRAMP compliant systems. http://www.fedramp.gov/marketplace/compliant-
systems/. retrieved on April 3, 2016.

[24] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

[25] Georgii V Gens and Eugenii V Levner. Computational complexity of approximation
algorithms for combinatorial problems. In International Symposium on Mathematical
Foundations of Computer Science, pages 292–300. Springer, 1979.

[26] Teofilo Gonzalez, Oscar H Ibarra, and Sartaj Sahni. Bounds for lpt schedules on
uniform processors. SIAM journal on Computing, 6(1):155–166, 1977.

[27] Teofilo F Gonzalez, Joseph Y-T Leung, and Michael Pinedo. Minimizing total com-
pletion time on uniform machines with deadline constraints. ACM Transactions on
Algorithms (TALG), 2(1):95–115, 2006.

76

BIBLIOGRAPHY

[28] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45(9):1563–1581, 1966.

[29] Ronald L Graham. Bounds on multiprocessing timing anomalies. SIAM journal on
Applied Mathematics, 17(2):416–429, 1969.

[30] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 5:287–326, 1979.

[31] Hannes Hartenstein and LP Laberteaux. A tutorial survey on vehicular ad hoc net-
works. IEEE Communications magazine, 46(6):164–171, 2008.

[32] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM (JACM), 23(2):317–327, 1976.

[33] Oscar H Ibarra and Chul E Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM (JACM), 22(4):463–468, 1975.

[34] Mohammad Tauhidul Islam et al. Approximation algorithms for minimum knapsack
problem. PhD thesis, Lethbridge, Alta.: University of Lethbridge, Dept. of Mathe-
matics and Computer Science, c2009, 2009.

[35] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil. Ve-
hicular networking: A survey and tutorial on requirements, architectures, challenges,
standards and solutions. IEEE Communications Surveys & Tutorials, 13(4):584–616,
2011.

[36] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[37] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems, chapter The
Multiple-Choice Knapsack Problem, pages 317–347. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[38] EL Lawler. Recent results in the theory of machine scheduling. In Mathematical
Programming The State of the Art, pages 202–234. Springer, 1983.

[39] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B
Shmoys. Sequencing and scheduling: Algorithms and complexity. Handbooks in
operations research and management science, 4:445–522, 1993.

[40] Chung-Yee Lee, Lei Lei, and Michael Pinedo. Current trends in deterministic schedul-
ing. Annals of Operations Research, 70:1–41, 1997.

[41] Peter Mell and Tim Grance. The NIST definition of cloud computing. Technical
report, Computer Security Division, Information Technology Laboratory, National
Institute of Standards and Technology Gaithersburg, 2011.

77

BIBLIOGRAPHY

[42] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. In-
ternet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[43] S. Olariu, M. Eltoweissy, and M. Younis. Towards autonomous vehicular clouds. ICST
Transactions on Mobile Communications and Applications, 11(7-9):1–11, 2011.

[44] Stephan Olariu, Tihomir Hristov, and Gongjun Yan. The next paradigm shift: from
vehicular networks to vehicular clouds. Mobile Ad Hoc Networking: Cutting Edge
Directions, Second Edition, pages 645–700, 2013.

[45] Stephan Olariu, Ismail Khalil, and Mahmoud Abuelela. Taking vanet to the clouds.
International Journal of Pervasive Computing and Communications, 7(1):7–21, 2011.

[46] Christos H. Papadimitriou and Mihalis Yannakakis. Scheduling interval-ordered tasks.
SIAM Journal on Computing, 8(3):405–409, 1979.

[47] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. CRAW-
DAD dataset epfl/mobility (v. 2009-02-24). Downloaded from http://crawdad.
org/epfl/mobility/20090224, February 2009.

[48] Public Works and Government Services Canada. Request for information cloud com-
puting solutions, December 2014. document number EN578-151297/B.

[49] Sartaj K Sahni. Algorithms for scheduling independent tasks. Journal of the ACM
(JACM), 23(1):116–127, 1976.

[50] Günter Schmidt. Scheduling with limited machine availability. European Journal of
Operational Research, 121(1):1–15, 2000.

[51] SINTRONES. In-vehicle computing. http://www.sintrones.com/products/
invehiclecomputing.php, 2015. Accessed: 18-03-2016.

[52] Jeffrey D. Ullman. Np-complete scheduling problems. Journal of Computer and
System Sciences, 10(3):384–393, 1975.

[53] M. Whaiduzzaman, M. Sookhak, A. Gani, and R. Buyya. A survey on vehicular cloud
computing. Journal of Network and Computer Applications, 40:325–344, 2014.

[54] David P Williamson and David B Shmoys. The design of approximation algorithms.
Cambridge university press, 2011.

78

