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Abstract

Family resemblance describes the covarying information across members of a category.

In an attempt to demonstrate human categorization based on family resemblance—

that is, on the style of a category, it seems that categorical definition must be made an

incidental part of the task so that participants employ a strategy described by Brooks

(1978) as “nonanalytic cognition”. Eigenvectors obtained from the dimension reduc-

tion of pixel-maps describe the underlying structural variation across a set of images.

Partially reconstructed images made from a subset of their derived eigenvectors were

used as stimuli in investigating judgements of style, as they appear to be without

human-nameable features. The following exploratory experiments provide evidence

for spontaneous judgements based on family resemblance using as little information

as is contained in the first 10 eigenvectors of Monet and Picasso paintings.
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Chapter 1

Pigeons’ Judgements of Complex Categories

Herrnstein and Loveland (1964) successfully trained pigeons to discriminate between

photographs that contained people from those that did not.1 Many of the people

in the photographs were partially obscured by objects, such as vehicles, trees, and

window frames. They were located in different areas throughout the photographs:

at the centre or off to the side, at the top or the bottom, close up or far off in

the distance. Some photographs contained one person, and others contained various

sizes of groups. The appearances of the people themselves varied considerably: they

were dressed, semi-nude, and nude; male and female; adults and children; standing,

sitting up, and lying down; of European, African, or Asian descent. The attributes of

the photographs themselves also varied considerably in lighting, colouration, tinting,

and season. The photographs of people varied so considerably that there wasn’t any

apparent consistent characteristic of the images that unified them all, except for the

fact that they depicted something about people. These photographs demonstrate a

class of visual stimuli so complex that it defies simple description.

The pigeons were able to learn to discriminate photographs containing “people”

from those that were “non-people” quite easily, even when the experiment was redone

with black and white photos and when the images were out-of-focus. Herrnstein and

Loveland (1964) also found the nature of the errors that the pigeons made to be quite

interesting. The pigeons sometimes failed at the discrimination task when the people

in the photographs were largely obscured, and they occasionally responded to photos

that contained objects relating to people, such as vehicles. Although both of these

1Although the two types of images in Herrnstein and Loveland (1964) are being referred to as
“people” and “non-people”, these terms refer only to discriminating photographs containing people
from those that do not; there was no claim that the pigeons were discriminating people directly.
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types of errors decreased as training continued, some errors that the pigeons made

were beyond any known explanation.

What is less clear is how the pigeons succeeded. Herrnstein and Loveland (1964)

interpreted the pigeons’ ability as well as their ease with accomplishing the task

as evidence for the pigeons using a pre-existing concept of “people” to discriminate

between the photographs. They thought that performing the task allowed the pigeons

to make use of an innate concept of “people”, and they concluded that these animals

have greater powers of conceptualization than what is normally attributed to them.

Such an interpretation was particularly compelling, given that the pigeons—once they

had been trained—were able to generalize their discriminating ability to never-before-

seen photographs. Herrnstein and Loveland (1964) compared the pigeons’ learning of

the discrimination with their being taught to peck for access to a feeder; the capacity

to do so is innate, and training need only be done to teach the animal to map the

pre-existing concept in order to receive the rewards of the task.

In a similar vein, Watanabe, Sakamoto, and Wakita (1995) trained pigeons to

judge between paintings by Monet and paintings by Picasso. There are many possible

cues for such a judgement, but there is unlikely to be a single feature that consis-

tently differentiates one artist’s work from the other’s. The paintings presented to

the pigeons were displayed in grey-scale, left-right reversed, and out of focus, but the

pigeons’ success at the task persisted. Not only could the pigeons successfully gener-

alise to never-before-seen paintings by Monet and Picasso, but also they were able to

judge other Impressionist and Cubist painters, such as Braque and Cezanne. These

results have been replicated with paintings by Van Gogh and Chagall (Watanabe,

2001).

These experiments contained such complex categorical structure that there is un-

likely to be any simple way to define the photographs containing people (Herrnstein
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& Loveland, 1964) or paintings by particular artists (Watanabe et al., 1995). The

question, then, is how pigeons are able to perform the task correctly; that is, what is it

(if anything) that persisted throughout alterations to the photographs and paintings

that made it still possible?

In subsequent research, Herrnstein, Loveland, and Cable (1976) trained pigeons

to discriminate images that contained trees, bodies of water, and even specific people

from those that did not. The ability to perform such a difficult task appears to

pose two problems. First is the analysis of the individual features that enable a

participant to determine whether a particular object is a member of a certain class.

The other is the analysis of properties of classes that allow them to be discriminable.

The traditional explanation describes the common elements that persist across the

members of a class. According to such a theory, trees, for example, have something

specific that is common to all of them, such as a particular shape or texture (or a

combination).

Having carefully looked at the hundreds of images they used for their discrimina-

tion tasks, however, Herrnstein et al. (1976) could not even begin a list of common

elements. To recognize a tree, for instance, it is not necessary for it to be green. Nor

does it have to be leafy, vertical, woody, branching, etc. Further, in order to decide

that something is not a tree, that object need not be void of green, leaves, wood, etc.

Neither were they able to identify common elements in the experiments involving

bodies of water and specific people.

An alternative to common elements is offered: what we see and describe as trees

actually make up a complex list of probabilistic co-variations. In a tree, for example,

the green should be on the leaves if either one is present. The branching parts should

also be woody (rather than anything else), and so forth. The complete listing of all of

the probabilistic co-variations that make objects “trees” would then be so long and

3



complex that the learning of individual items in the list would be an unlikely feat.

Rather, categorical inclusion is determined by “family resemblance” (e.g., Wittgen-

stein, 1953; Ryle, 1951; Brooks, 1978; Brooks, Squire-Graydon, & Wood, 2007; Medin

& Schaffer, 1978; Rosch, 1975).

1.1 Family Resemblance

People have no trouble in their everyday lives making categorical judgements. Under

most circumstances, one would not confuse, say, a cat and a dog. The task even seems

trivially easy; however, the visual information that falls on the retina is remarkably

similar for the two animals. Not only that, but we are able to correctly apply the

labels of “cat” and “dog” to myriad stimuli without difficulty. Animals as distinct

from one another as a husky and a teacup poodle both fall under the same label of

“dog”. One might attempt to generate a rule that includes all breeds of dogs and

excludes all breeds of cats, but the task is not easy; a typical rule might be something

like, “dogs bark and wag their tails, and cats meow”. However, no one would confuse

a dog for a cat if it never barked or had its tail fully docked. Furthermore, the

category of “dog” is not so strictly defined in itself; a rescued pet with a missing limb

would still easily be considered a “dog”. Our explanations for the categorization of

stimuli eventually come to an end somewhere.

To be fair, there do exist specific rules in the world of zoology that determine

what species a particular organism is a member of. However, we certainly do not

run through such a set of rules in our daily lives in order to decide that something

is a dog (or, for that matter, a person, a Monet, or a Picasso). Indeed, our decision

that something is a dog is instantaneous. We don’t use an explicit rule that defines a

dog relative to another animal, such as cat. Rather, membership to these categories
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is based on family resemblance. Say, for example, that Picasso’s Ma Jolie looks

like Guernica. Guernica, in turn, looks like Old Guitarist. Old Guitarist, then,

looks like Garçon à la pipe. Although Ma Jolie bears no resemblance to Garçon

à la pipe, the members of the Picasso “family” may be thought of as lying along a

continuum according to their degree of similarity to one another. As there are multiple

characteristics of each member to be considered, the continuum describing degrees

of similarity spans out in multiple directions. Aside from looking for a signature,

there seems to be no simple rule that determines the inclusion of these paintings into

the one category of “Picasso”; instead, the resemblance of their polymorphous traits

creates the basis for indirect categorisation.

1.2 Judgements of Style

Beyond establishing categorical boundaries, the concept of family resemblance sug-

gests that individuals become sensitive to the structural regularities in stimuli through

incidental, everyday exposure to examples of categories. People then develop sensi-

tivities to structural regularities such that our judgements of stimuli can be described

as the identification of style. That is, for example, we consider a new painting at the

gallery to have been painted by an Impressionist because we see a stimulus with an

overall style of “Impressionism” (whatever that may be).

It is important to note, however, that Herrnstein et al.’s (1976) example demon-

strates the idea of family resemblance using human-nameable features. That is, traits

such as verticality or greenness are linguistic labels unique to humans. In doing so,

they admit the following:

Having looked at the hundreds of instances used here or even at the two

positive instances [shown in a Figure in the original paper] (let alone the
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tens of thousands involved in real-life discriminations), we cannot begin

to draw up a list of common elements. To recognize a tree, the pigeons

did not require that it be green, leafy, vertical, woody, branching, and so

on (overlooking the problem of common elements nested within terms like

leafy, vertical, woody, and so on). Moreover, to be recognizable as a non-

tree, a picture did not have to omit greenness, woodiness, branchiness,

verticality, and so on. Neither could we identify common elements in the

other two experiments. (pp. 297-298).

Clearly, even those positing family resemblance are uncertain as to its correctness.

A slight alternative is proffered here. It may be that family resemblance describes an

overall gestalt co-variation rather than a co-variation of nameable features. It seems

necessary to generate stimuli that are absent of any human-nameable features in order

to test for human participants’ judgement ability based on this gestalt covariation.

The techniques of dimension reduction described in Chapter 2 will serve to do just

that.

Another possibility is that there is some sort of simple consistency across images

that has yet to be noticed. It could be, for example, that all images containing trees

(or people, or bodies of water, etc.) are also lighter in one particular corner, or are all

darker in another. To account for such a possibility, eigen-decomposition is necessary.

Our initial inability to detect such a simple regularity does not prove that one does

not exist.

The capacity to make indirect categorical judgements based on style would explain

the wide assortment of rather sophisticated-looking discrimination tasks that pigeons

can perform (Herrnstein & Loveland, 1964; Siegel & Honig, 1970; Poole & Lander,

1971; Malott & Siddall, 1972; Morgan, Fitch, Holman, & Lea, 1976; Herrnstein et al.,

1976; Cerella, 1979, 1980; Herrnstein, 1979; Herrnstein & de Villiers, 1980; Blough,
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1982, 1985; Bhatt, Wasserman, Reynolds, & Knauss, 1988; Jitsumori & Yoshihara,

1997; Aust & Huber, 2001; Watanabe, 1993). The experiments that follow are ex-

ploratory. They are attempts to investigate under what, if any, circumstances human

participants may make judgements based on the overall style of paintings as visual

stimuli.

7



Chapter 2

Generating Stimuli with Dimension Reduction for

the Investigation of Judgements of Style

Given the human capacity to use language as a tool to describe specific object detail

(this point will be discussed more later on), it seems it is imperative to generate

stimuli with structure that is not easily articulated (i.e., without human-nameable

features), and as well to capture any covariance across the members of a family.

Dimension reduction reduces the number of variables in high-dimensional data in

order to make the remaining information more tractable. Many common statistical

dimension reduction techniques such as principal components analysis (PCA) and

singular value decomposition (SVD) use this strategy (Jolliffe, 1986; Stevens, 1996;

Tabachnick & Fidell, 2007).

For the purposes of the following experiments, statistical dimension reduction has

been used to compile a large set of Monet and Picasso painting images (including the

images used by Watanabe et al., 1995) that were constructed with reduced dimen-

sionality. 160 images of Monet paintings and 160 images of Picasso paintings were

brought to the standard size of 320 x 240 pixels by expanding or cropping, as needed.

The shortest axis for every image was adjusted to either 320 or 240 pixels (depending

on which axis), and was then centred and cropped. Thus, each painting was repre-

sented as a cropped computer image composed of 240 × 320 × 3 (Red-Green-Blue) =

230,400 pixels. The vectors of the images were assembled into a matrix that was then

decomposed into its orthogonal dimensions (i.e., the eigenvectors) that described the

underlying structural covariation across the set of images. Each of the images was

then partially reconstructed using a weighted, linear combination of some of its eigen-

vectors (e.g., Devijver & Kittler, 1982; Hancock, Bruce, & Burton, 1998; Valentin,

8



Abdi, Edelman, & O’Toole, 1997), and coded as to whether it was a Monet or a Pi-

casso image. See Figures 2.1 and 2.2 for examples of full and partially reconstructed

images.

2.1 Classifying the Images With a Neural Network

A linear autoassociative neural network is built from simple units that are linked by

weighted interconnections. It is a classifier that learns based on prior exposure to stim-

uli; that is, it adapts. During the process of learning, the weighted interconnections

are modified in order to maximise the neural network’s capacity of classification. The

network itself, then, may be considered as an artificial memory, as the content gained

from exposure to stimuli is stored and disseminated across the interconnections. As

a result of exposure to different stimuli, the neural network develops the capacity to

recognise stimuli. It can also generalise its knowledge to never-before-seen stimuli

(e.g., Abdi, Valentin, & Edelman, 1999; Dayhoff, 1990). Given the distributed nature

of its learning capacity, a neural network might serve as an appropriate simulation

for learning based on family resemblance.

This memory—the 230,400 pixels × 230,400 pixels weight matrix, W, relating the

connection value between each pixel and every other pixel over the 320 images—can

be computed via the SVD of the 230,400 pixels × 320 matrix, X, of the images. The

SVD of a rectangular matrix, X, is expressed as X = U∆VT, for which U is the

matrix of eigenvectors of XXT, V is the matrix of eigenvectors of XTX, and ∆ is

the diagonal matrix of singular values—the square-root of the eigenvalues of either

XXT or XTX (as they are the same).1 In statistics, the related eigendecomposition

of the data matrix is called principal components analysis (PCA), and so such linear

1XT denotes the transposition of matrix X.

9



autoassociators are often referred to as PCA neural networks (see Abdi et al., 1999).

From this perspective, W can be represented in terms of the eigenvectors, U, of the

pixels × pixels cross-products matrix (see Abdi et al., 1999):

W = δUUT

where δ corresponds to the eigenvalues. The effect of Widrow-Hoff learning is to

spherise the weight matrix, i.e., render all of the resultant eigenvectors equally im-

portant in reconstructing the stimuli (Abdi et al., 1999), yielding:

W = UUT

Retrieval of an item from this memory, x̂i, is computed as

x̂i = Wxi (2.1)

= Ul:m(UT
l:mxi) (2.2)

where the subscript, l:m, denotes the range of eigenvectors used to reconstruct the

item. For our purposes, the eigenvectors are ordered in terms of the magnitude of the

associated eigenvalues (i.e., proportion of variance accounted for), from most to least.

As only the eigenvectors with associated eigenvalues greater than zero are retained,

there are at most as many eigenvectors as there are items in the training set. The

expression in parentheses of Equation 2.2 can be interpreted as the projection, pi|l:m,

of the item into the space defined by the eigenvectors,

pi|l:m = UT
l:mxi

10



where the values of pi|l:m are the weights on each eigenvector used to reconstruct the

item from the linear combination of eigenvectors:

x̂i = Ul:mpi|l:m

Thus, given the eigenvectors of the set as a whole, each item can be represented in

a very reduced form as its projection weights on the eigenvectors. It is in this sense

that the eigenvectors can be seen as the “macrofeatures” of the items, as the visual

images differ along the dimensions that the eigenvectors encode for (see, e.g., Abdi,

Valentin, Edelman, & O’Toole, 1995; Turk & Pentland, 1991, for similar analyses of

photographs of faces).2

The learning of the labels (Monet/Picasso) associated with the images was sim-

ulated by training a simple classifier, a variant of a perceptron known as an “ada-

line” (see, e.g., Dayhoff, 1990). The adaline is a simple linear heteroassociator with

Widrow-Hoff error-correction, composed of a multiple-unit input layer and one binary

output unit. In statistical terms, it is a simple linear discriminant function analysis

of the inputs to predict the binary classification of the items (see, e.g., Abdi et al.,

1995).The inputs to the classifier were the projection weights on the eigenvectors for

each item to produce a final set of discriminative weights to predict the artist cate-

gory, in the form of a simple linear equation, from the projection weights for any given

input item. This approach is equivalent to fitting a hyper-plane to the projections of

the items that best (in the sense of the least-squares criterion) separates the Monet

images from the Picasso images.

2Using the leave-one-out technique (e.g., Abdi et al., 1995), each image was projected into the
space defined by all the remaining 319 images. The cosine similarity of each projected image com-
pared with itself was determined. The cosine similarity is indicative of how representative the image
is of that space. In the subsequent experiments to be reported, the cosine similarity was used to se-
lect the “best” Monet and Picasso images (i.e., those that are best representatives of their respective
spaces).
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2.1.1 Results

The classification responses for different ranges of eigenvectors (i.e., representing the

use of more and more of the “macrofeatures” of higher dimensionality) of the Monet

and Picasso images were scored as hits and false-positives (for the respective positive

category it had been trained with), and then converted to a non-parametric, signal-

detection measure of discrimination, A′. Values of A′ vary between 0.00 and 1.00,

and approximate the results of a two-alternative forced-choice (2AFC) task with the

same discriminative stimuli; a value of A′ = 0.50 indicates “chance” discrimination;

values of A′ greater than 0.50 indicate increasingly successful levels of discrimination

(see, e.g., Wickens, 2001). This discrimination index was computed for classification

based on just the first “macrofeature” or eigenvector, the first 2, the first 3, . . . , 10,

15, 20, 25, 30,. . . 95, 100, 150, 200, 250, 300, and all 319 eigenvectors.

The results are shown in Figure 2.3. Clearly, substantial levels of discrimination

between the Monet and Picasso images is possible with this approach. Discrimination

increased as more eigenvectors were used to make the discrimination, although the

effect appeared to asymptote once the first 8 or so eigenvectors were included.

2.1.2 The Perceptron Applied Directly to the Pixel

Maps

As mentioned in Chapter 1, it is possible, for example, that the Monet paintings are

generally darker than Picasso ones, or contain more blue, etc., and hence, may be

discriminated directly in terms of these mean differences rather than the covariant

differences in the pixel values themselves. To assess this issue directly, the perceptron

classifier was applied directly to the pixel-maps of the images to predict their classi-

12



fication. Shown as well in Figure 2.3 as a dashed line, mean training discrimination

(A′) of the Monet from the Picasso images when the perceptron classifier is applied

directly to the pixel maps is 0.64—far lower in terms of performance than with items

that have undergone eigen-decomposition.

2.2 The Importance of Early Eigenvectors

Every eigenvector has an associated eigenvalue that indicates the degree of variance

throughout the whole image set that the corresponding eigenvector accounts for; a

larger eigenvalue denotes a larger degree of variance. An image varies along the most

salient dimensions that so-called “early” eigenvectors account for. Smaller eigenval-

ues correspond to “late” eigenvectors, and they represent less salient dimensions of

variation.

The early eigenvectors encode for key categorical information; for example, male

and female faces have a strong tendency to be oppositely weighted on the second

eigenvector (Abdi et al., 1995). The primary dimensions of a stimulus depend on the

images that the eigenvectors are extracted from; the first eigenvector is essentially

the prototype of all of the images (Devijver & Kittler, 1982). Therefore, the second

eigenvector is actually the first one to depict any variation between the images. Eigen-

vectors only encode for visually-relevant information; semantic labels—like gender or

age—have no relevance. Given such information, it is impressive that an explicit se-

mantic category would spontaneously emerge. Another important point is that some

eigenvectors—because the model is free to extract whatever information it deems use-

ful for the discrimination of specific images—will encode for visual information that

typically possesses no corresponding semantic label (Turk & Pentland, 1991).
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2.3 Generality

The concepts of dimension reduction and neural network modeling are not limited

to visual stimuli; for example, a linear associator can successfully learn to discrimi-

nate music composed by Bach from music composed by Mozart (Crump, 2002). A

dimension reduction mechanism can also be successfully applied to language. SVD

applied to written text constitutes latent semantic analysis (LSA). Extremely large

bodies of text may be reduced into a subset of dimensions of variation. Words are

then considered to be nodes in a multidimensional semantic space; words with similar

semantic meaning are closer together in the space (Landauer & Dumais, 1997).

LSA offers a possible solution to Plato’s “poverty of the stimulus” problem, as its

learning process is extremely inductive, and could provide insight into how children

acquire language at a rate that is exponentially greater than what would be expected,

given how much could ever be taught directly. The majority of information needed

in order for LSA to identify a word on a vocabulary test is based on where the word

does not occur. Therefore, it could be that the majority of information contained

within language relates to word choice, rather than word order (Landauer, 2002).

It is also possible that dimension reduction may be able to help explain how indi-

viduals acquire other forms of knowledge; applying LSA to introductory psychology

textbooks and testing it using the same multiple-choice exam administered to under-

graduate students yields a grade of 60 percent—only slightly below the class average.

Although not conclusive, it is possible that LSA demonstrates the same mechanism

that individuals use when acquiring some types of information. Evidence for such a

claim is supported by the fact that the LSA and human participants tend to make the

same types of errors; for example, conceptual questions were answered less accurately

than factual ones (Landauer, Foltz, & Laham, 1998).
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2.4 Physiological and Evolutionary Evidence for

Dimension Reduction

The term “natural scene” refers to any image that an individual could possibly en-

counter as a visual stimulus (so, despite the misleading name, man-made objects such

as buildings can occur in natural scenes). Natural scenes merely occupy a small frac-

tion of all possible scenes (Attneave, 1954; Ruderman, 1994). Therefore, all of the

images that an individual could encounter in a lifetime are only a minuscule portion of

all possible images. When images are considered simply as arrays of pixels, a random

image is composed entirely of random pixels; that is, there is no relationship between

a pixel and any of the ones adjacent to it. When random images are generated, they

appear as white noise (Ruderman, 1994). The pixels in a natural image, however,

are correlated with one another, as they typically share a common form; that is, for

example, pixels in an image of a sky would have correlated properties, as they are

collectively an image of the same object. Such a correlation gives rise to a structure

in natural images that does not occur in random images (Atick & Redlich, 1992).

The visual system has had exclusive exposure to natural stimuli throughout his-

tory. It would, therefore, be the only environment in which the visual system evolved

in. The visual system could possibly have adapted to make use of the structure present

in natural visual stimuli (Barlow, 1961, 2001; Marr, 1982). Dimension reduction is

based on these structural regularities, and therefore appears to be consistent with the

evolutionary history of the visual system (Hancock, Baddeley, & Smith, 1992).

By applying dimension reduction techniques to images of natural scenes, re-

searchers have found remarkable consistencies in the emerging dimensions; the ex-

tracted eigenvectors of natural images are very similar, regardless of the size, number,

or quality of the images (Baddeley & Hancock, 1991; Hancock et al., 1992; Heide-
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mann, 2006). The results provide evidence for a possible innate consistency in the

structure of natural images. The visual system might make use of core consisten-

cies, and dimension reduction demonstrates an efficient method for extracting them.

Therefore, because natural images vary along the eigenvectors, specifically encoding

these dimensions is a logical method for analysing visual stimuli.

There are many characteristics of dimension reduction and of the resulting eigen-

vectors that seem analogous to physiological structures in the visual system; for ex-

ample, the first few early eigenvectors are depicted as an oriented bar (Baddeley

& Hancock, 1991; Hancock et al., 1992; Heidemann, 2006), and may correspond to

“bar” and “edge” detectors in the primary visual cortex (Hubel & Wiesel, 1959).

Another parallel occurs when dimension reduction is applied to coloured natural im-

ages; early eigenvectors appear that consistently code for red-green, yellow-blue, and

black-white dimensions (Buchsbaum & Gottschalk, 1983; Rubner & Schulten, 1990;

Usui, Nakauchi, & Miyake, 1994). This specific colour encoding corresponds to the

colour-opponent processes (Valois, Abramov, & Jacobs, 1966).

2.5 Non-Human Animals

Given the preceding evolutionary and physiological evidence for dimension reduc-

tion, it is possible that non-human animals are capable of using such a mechanism.

Herrnstein and Loveland (1964) originally thought they had trained pigeons to use

some pre-existing category of “people” in order to discriminate photographs, but

Greene (1983) contradicted their claim by training pigeons to discriminate between

Herrnstein and Loveland’s stimuli after the people in the photographs had been re-

moved. The pigeons responded to Greene’s photographs just as they had to the

originals. Therefore, there may have been a general style to the people photographs
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that the pigeons could respond to in order to perform the discrimination task; that is,

there may be some features in the photographs that occur as a result of the constraints

of taking a photograph with people in it.

Although pigeons have a visual acuity comparable to humans, they do not auto-

matically perform the same in certain visual tasks. People can easily understand the

concepts of “greater than” and “equal to”, but pigeons do not seem able to do so

(Pearce, 1988). However, pigeons can easily discriminate between “small area” and

“large area”, although such a task is much more difficult for people to do. Pearce

(1988) theorised that the reason for such a discrepancy is that the rules that gov-

ern “small area” and “large area” are not easily verbalised. It seems that because

the pigeons were not attempting to find any relationships or rules that defined the

categories, they were able to do the task.

If pigeons are capable of performing discrimination tasks without regard to possi-

ble rules or labels to stimuli, then it is possible that humans can do so as well—under

certain conditions. In one sense, the propensity to look for rules and justifications

may be deemed a secondary mechanism in that it must serve some sort of advantage

(otherwise it would not exist), but it is obviously not necessary. It is not the case that

pigeons should be considered less intelligent; as described in Chapter 1, they are quite

capable of making rather sophisticated judgements. In order to “turn people into pi-

geons”, it appears necessary to use stimuli with restrained verbalisable content—and

dimension reduction does just that.

2.6 Human Animals and Processing Strategies

Traditionally, implicit learning has been described as an automatic process that is

outside of conscious control (e.g., Reber, 1967). Instances of separate automatic and
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controlled systems can be seen in ubiquitous descriptions of conscious versus uncon-

scious memory. However, it has been demonstrated through the use of opposition

logic that what appears as different memory systems are actually deliberate appli-

cations of different strategies (Higham, Vokey, & Pritchard, 2000; Higham & Vokey,

2000).

A human participant, then, is capable of deliberately applying a particular strat-

egy when performing a judgement task. The unintended discriminative effects of a

strategy are the sources of different influences. It is these influences on behaviour that

can be either controlled or automatic. Control over humans’ processing of stimuli is

therefore achieved by manipulating what strategy is used.

There is no reason to suspect that the capacity to judge stimuli based on family

resemblance has been lost in humans. However it has been notoriously difficult to

demonstrate that such a capacity exists, as participants who are brought into the

lab for experiments adopt an “analytic” strategy; that is, they actively search for a

specific attribute or rule that defines one category relative to another. As analysis

depends on verbalisable features upon which to base rules, non-linguistic animals are

therefore not capable of it. Some examples of such tasks that require analysis are

distinguishing inside vs. outside (Herrnstein, Vaughan, Mumford, & Kosslyn, 1989)

and whether two vertical bars stand at equal or unequal heights (Pearce, 1988). By

employing an analytic strategy, however, human participants can perform the tasks

very easily.

The alternative strategy is what Brooks (1978) has described as nonanalytic cog-

nition, which involves the memory for individual cases. It is nonanalysis that follows

the exemplar model of judgements of style by gaining information from individual

examples. That is, by processing stimuli nonanalytically, humans might judge stim-

uli based on family resemblance (e.g., a painting is thought to be by an Impressionist
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because it is in the overall style of Impressionism).

Brooks successfully diverted participants’ analysis of stimuli by having them focus

on the use of the stimuli rather than on the way they are defined. In such a way,

classification becomes an incidental part of the task (e.g., Brooks et al., 2007; Whit-

tlesea & Price, 2001). In using human participants, it seems it may be necessary to

prevent their approaching the experimental stimuli with an analytic strategy in order

to demonstrate stimulus judgements based on exemplars.

2.7 The Current Experiments

Images that have undergone dimension reduction provide for stimuli that are unlikely

to possess human-nameable structural regularities or features. By making stimulus

definition an incidental part of the task, we hope to elicit a nonanalytic strategy

for processing stimuli. By doing so, it may be possible to demonstrate that human

participants are able to pick up the information remaining in partially reconstructed

images in order to perform an indirect discrimination.

One main goal of the following experiments is to determine whether humans can

judge complex categories of images that are only comprised of their primary visual

dimensions. Judgements of style above chance should provide evidence that human

beings may be “turned into pigeons” in the sense that they would be indirectly dis-

criminating stimuli in the same manner that has been demonstrated in pigeons.

Subsequent experiments also seek to demonstrate not only that humans are ca-

pable of making judgements based on family resemblance, but that they can do so

undirected. Showing undirected use of a nonanalytic strategy may have implications

for humans’ ubiquitous use of nonanalysis in everyday matters, and will help to under-

stand the conditions that elicit different processing strategies; as well the relationship
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between the visual system of humans and non-human visual systems may be better

understood.
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Chapter 3

Experiment 1: Stopping the Analytic Strategy

Given that pigeons are capable of indirectly discriminating between images containing

people from those that do not—even when each the information in each image has

been rearranged (Aust & Huber, 2001) or flipped (Greene, 1983)—there should be

enough redundant visual information across the images within a category to make

a categorical judgement. Likewise, pigeons’ sensitivity to the seemingly complex

nature of artistic style (e.g., Watanabe et al., 1995) demonstrates that there is enough

information within a Monet painting for the pigeon to determine that it is not a

Picasso, regardless of the fact that both of the artists painted various scenes, people,

and objects.

The learning of complex, polymorphous stimuli exhibited by pigeons may be

present as a mechanism within the human capacity for visual processing as well.

However, demonstrating such a capacity with human participants in a laboratory

setting has been notoriously difficult (Gross & Vokey, 2009). Humans seem unique

from other animals in that they possess two different strategies for processing stimuli.

An analytic strategy attempts to apply or generate a rule to determine category in-

clusiveness, whereas a nonanalytic strategy denotes a focus on memory for individual

cases (Brooks, 1978). Particularly in an experimental setting, humans have a strong

tendency to go analytic in their processing of stimuli (e.g., Gross & Vokey, 2009).

In order to demonstrate the human capacity for non-analysis, it may be an im-

portant step to construct experimental conditions that prevent participants from

employing an analytic strategy. Brooks et al. (2007) successfully diverted analysis by

providing a distractor task that required the use of a rule-finding strategy. To show

that judgements of style can be made absent from verbalizable content, stimuli were
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used that are likely devoid of any capacity to have semantic, rule-based attributes

applied to them.

3.1 Method

3.1.1 Participants

Twenty-eight undergraduate students from the University of Lethbridge were re-

cruited from the psychology undergraduate student participant pool, and received

course credit in either a first or second year psychology course for their participation.

All participants were näıve as to the true intention of the experiment, and instructions

were given both verbally and by accompanying text on the computer screen.

3.1.2 Design

The 320 standard-sized images of Monet and Picasso paintings were deconstructed

and partially reconstructed using a weighted, linear combination of their first 20

eigenvectors. The first 20 were used because, as shown in Figures 2.1 and 2.2, the

first 20 eigenvectors should contain the most covariant, category-relevant information

before many easily-nameable features of the original image—such as distinct objects

and lines—begin to show up.

Using the leave-one-out technique, the 16 “best” Monet and Picasso images (i.e.,

those that are best representative of their respective spaces) were chosen. The 16

most similar images (i.e., the best matches to the best Monet and Picasso images)

and the 16 least similar images (i.e., the worst matches to the best Monet and Picasso

images) to the projection of each of the best Monet and Picasso images were selected,
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producing conditions of test stimuli conceptually similar to the “near” and “far”

stimuli of Vokey and Brooks (1992).

3.1.3 Procedure

The experiment consisted of two conditions (one for being shown Picasso images

during training and the other for being shown Monet images), each with a training and

test phase. During the training phase, the “best” items of the condition’s category

were shown. Each “best” image was paired with the name of a Canadian city, as

participants were informed at the start of the experiment that they were to memorize

the pairing of each name with each image for a subsequent test of memory. The

pairing of images with words served as a diversion to the processing of the style of the

images (e.g., Brooks, 1978). Each image and word pair was serially presented 4 times

for 3 seconds each for a total of 64 paired stimuli. The reconstructed images did not

seem at a glance to actually be pictures in themselves; rather, they were introduced

to participants as “image cards”.

During the test phase, the reconstructed “best”, “best match”, and “worst match”

images of both categories were shown. Participants were tested for their recognition

of the Monet and Picasso 20-eigenvector images using a scale of 1 to 12 (1 being

“Sure New” and 12 being “Sure Old”). If the participants retained a memory for the

style of the images presented during the training phase, then they should show an

effect of recognition for the new test images that are more representative of the space

projected for whichever artist’s images were used during training (i.e., their “best

matches”).

Following completion of the experiment, the participants were then instructed to

fill out a short, hand-written survey. It consisted of two question: “What did you
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Table 3.1: Mean Hit and False-positive Rates As a Function of Training Category
(Same vs. Different) and Test Item Type in Experiment 1

Best Best Match Worst Match
Same Category 0.74 0.59 0.13
Different Category 0.56 0.48 0.12

use to remember the images?” and “What did you use to reject the images?”. Upon

completion of the survey, participants were debriefed and free to leave.

3.2 Results and Discussion

Shown in Table 3.1 and Figure 3.1 are the mean hit and false-positive rates (scale-

responses >6) as a function of training category (same vs. different) and test item-

type, collapsed over training category (Monet vs. Picasso). Items from the same cate-

gory as training were identified as “old” (M = .49) significantly more frequently than

were items from the different category (M = .38), F (1, 27) = 18.14;MSE = .023, p =

.0002. There was also a significant main effect of test item type: best items (M = .63)

were labelled as “old” more often than best match items (M = .54) and worst match

items (M = .12), F (2, 54) = 194.05;MSE = .022; p < .0001. Test item type inter-

acted significantly with training category, F (2, 54) = 9.08;MSE = .011; p = .0004.

Planned comparisons of the interaction showed that old (same category) best items

were labelled as “old” more frequently than new (different category) best items

[t(1, 27) = 4.45, p = .0001], false-positive responses to same category best match

items were significantly higher than false-positive responses to different category best

match items [t(1, 27) = 3.0830, p = .0047], but there was no significant difference in

false-positive responses between same category and different category worst match

items [t(1, 27) = .5419, p = .5924].

Figure 3.2 depicts the receiver operating characteristic (ROC) curves fitted to the
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mean cumulative hit and false-positive rates at each level of confidence to each of the

three item type conditions (best, best match, and worst match) for the discrimination

of the category of the images. ROC curves plot the unit square of paired hit (same

category items) and false-positive (different category items) rates for different crite-

rion settings of the willingness to label an image as one encountered at study. They

were derived for each participant (and then averaged) based on the confidence levels

assigned to each response (see, e.g., Wickens, 2001). The fitted curves were computed

via a web-based program (see Eng, n.d.) assuming equal-variance Gaussian distribu-

tions. It is evident from Figure 3.2 that participants in Experiment 1 discriminated

best items better than best match items, which, in turn, were better discriminated

than worst match items.

This impression was confirmed by an analysis of the area under the ROC curves

(AUC) for the three test item types. These AUC statistics were computed for each

participant from their 12-point confidence ratings using the equivalent of the trape-

zoidal rule, the Wilcoxon (or Mann–Whitney) statistic, W , using the Hanley and

McNeil (1982) algorithm. Values of AUC typically vary between .50 (chance dis-

crimination) and 1.0 (perfect discrimination) and, accordingly, index discrimination

between targets and distractors independent of decision criterion. These AUC values

were subjected to a one-way (item type), within-subjects ANOVA, with participants

crossing the factor as the random variate. There was a significant difference among

the three conditions, F (2, 81) = 11.2;MSE = 0.0123; p < 0.0001.

The mean AUC of the best, [t(1, 27) = 5.11, p < .0001], and the best-match,

[t(1, 27) = 3.60, p = .001] conditions were both significantly greater than chance, but

the worst match was not, [t(1, 27) = 0.1441, p = .8844]. Best was significantly greater

than best match, [t(1, 27) = 2.78, p=. 28], and best match was significantly greater

than worst match, [t(1, 27) = 3.82, p= 0.001].
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Thus, as with the pigeon studies, participants in Experiment 1 showed some ability

to recognize old (i.e., training) items, and some ability to generalise what they had

learned of the category to new, highly similar to training, best match items, but not

to new, not similar to training, worst match items.

3.2.1 Participants’ Spontaneous Utterances and

Descriptions

At the onset of the test phase, many participants expressed surprise at being suddenly

confronted with the task of deciding whether they had seen the images before. Some

of them protested, insisting that there must be more to what they had to do. After

all, they had just spent significant effort trying to remember which of the images

had been paired with which city name. Similar to Brooks’ (1978) participants, they

were generally hesitant and not confident that they could correctly perform the task.

Many of the participants offered unsolicited guesses as to what the images that they

were working with were. Many thought they were looking at streaks or splotches of

paint, and several wondered whether they were optical illusions.

Regarding the results of the survey that was completed by each participant at

the end of the experiment, the majority of the participants cited general patterns,

shapes, and textures as their reasons for remembering and rejecting images. One

person specifically stated remembering images based on seeing specific items such as

a bottle. Two participants stated that they based their judgements on whether or

not the images were familiar to them. The remaining few responses included criteria

such as shadows, colour, and brightness.
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3.3 Experimental Shortcoming: Too Much Infor-

mation Remaining in the Images

Given the reports from some participants that they thought they were basing their

recognition on objects or features that they thought they could make out, it is possible

some high-level information was still present in images constructed from their first 20

eigenvectors. As such, some participants may have been focusing on specific details of

images rather than their overall style and inadvertently discriminating the categories

on that basis. If we removed this information and participants still selected more

same category best match items than different category best match images as old,

such results would provide stronger evidence for judgements based on style. The next

experiment did just that.
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Chapter 4

Experiment 2: Reducing the Available

Information to Just the First Ten Eigenvectors

The prior experiment provided evidence that human participants are capable of judg-

ing stimuli based on the information available across a set of partially reconstructed

images. Furthermore, the first 20 eigenvectors contain enough information of the orig-

inal images to do so. However, many participants reported that they were still able

to discern some verbalizable detail from the images, which raises some question as to

whether they were basing their judgements on the style of stimuli or on particular

human-nameable features. The second experiment attempted to replicate the results

of Experiment 1, but with using stimuli containing even less information.

As shown in Figure 2.3, the performance of a neural network in the same sort of

discrimination task for reconstructed images tends to asymptote around the 8th to

10th eigenvector (depending on the images). Therefore, the information remaining in

images reconstructed with those eigenvectors does contain the information necessary

for the neural network to perform the task at above chance levels. If a neural network

is a proper model for human judgement of visual stimuli, then those first 10 eigen-

vectors should hold the information necessary for human participants to perform the

task as well.
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4.1 Method

4.1.1 Participants

Sixteen undergraduate students from the University of Lethbridge were recruited from

the psychology undergraduate student participant pool, and received course credit in

either a first or second year psychology course for their participation. All participants

were näıve as to the true intention of the experiment, and instructions were given both

verbally and by accompanying text on the computer screen.

4.1.2 Design

Creation of the 320 images was the same as in Experiment 1, except that each of

the images was reconstructed using a weighted, linear combination of only the first

10 eigenvectors, rather than the first 20 eignvectors as in Experiment 1. Using the

leave-one-out technique, each image was projected into the space defined by all the

remaining 159 images of a given category and the 16 best (i.e., highest reconstruction

cosines) were chosen for each category. The 16 best matches and the 16 worst matches

to the projection of each the best Monet and Picasso images were then selected.

4.1.3 Procedure

As in Experiment 1, this experiment consisted of a training phase and a test phase.

Participants were informed at the start of the experiment that they were to memorise

the pairing of the name of a Canadian city with each “image card” for a subsequent

test of memory, and were evenly divided between the Monet and Picasso conditions.

During the training phase, the best images from a condition’s category were shown.
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Table 4.1: Mean Hit and False-positive Rates As a Function of Training Category
(Same vs. Different) and Test Item Type in Experiment 2.

Best Best Match Worst Match
Same Category 0.72 0.69 0.34
Different Category 0.50 0.55 0.30

Each image and word pair was serially presented 4 times for 3 seconds each for a total

of 64 paired stimuli.

Again as in Experiment 1, during the test phase, the best images from training,

their best matches, and their worst match were randomly shown. Participants were

tested for their recognition of the reconstructed images using a scale of 1 to 12 (1

being “Sure New” and 12 being “Sure Old”). If participants are capable of indirectly

discriminating the images of paintings based on information contained within only

the first 10 eigenvectors, then they should identify the same category best match

items as old more frequently than the different category best match items.

Also as in Experiment 1, following the completion of the test phase, participants

were asked to complete a short survey regarding their criteria for remembering and

rejecting the images. They were then debriefed and free to leave.

4.2 Results and Discussion

Shown in Table 4.1 and Figure 4.1 are the mean hit and false-positive rates (scale-

responses > 6) as a function of training category (same vs. different) and test item-

type, collapsed over training category (Monet vs. Picasso). Items from the same

category as training were identified as “old” (M = .57) significantly more frequently

than were items from the different category (M = .45), F (1, 15) = 17.08;MSE =

.022, p = .0009. There was also a significant main effect of test item type: best

items (M = .61) were labelled as “old” more often than best match items (M = .62)
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and worst match items (M = .30), F (2, 30) = 14.98;MSE = .069; p < .0001. Test

item type interacted significantly with training category, F (2, 30) = 4.70;MSE =

.017; p = .02. As in Experiment 1, planned comparisons of the interaction showed

that old (same category) best items were labelled as “old” more frequently than new

(different category) best items [t(1, 15) = 4.44, p = .0005], false-positive responses to

same category best match items were significantly higher than false-positive responses

to different category best match items [t(1, 15) = 3.25, p = .005], but there was no

significant difference in false-positive responses between same category and different

category worst match items [t(1, 15) = .90, p = .38]. Thus, as with the pigeon studies

and the results of Experiment 1, participants in Experiment 2 showed some ability

to recognize old (i.e., training) items, and some ability to generalise what they had

learned of the category to new, highly similar to training, best match items, but not

to new, not similar to training, worst match items.

As in Experiment 1, Figure 4.2 depicts the receiver operating characteristic (ROC)

curves fitted to the mean cumulative hit and false-positive rates at each level of

confidence to each of the three item type conditions (best, best match, and worst

match) for the indirect discrimination of the category of the images. Compared with

the same curves from Experiment 1, although the category of the best items appears

to be relatively well-judged, it is less clear that the same was true for the best match

and worst match items. This impression was confirmed by an analysis of the area

under the ROC curves (AUC) for the three test item types. These AUC values

were subjected to a one-way (item type), within-subjects ANOVA, with participants

crossing the factor as the random variate. As in Experiment 1, there was a significant

difference among the three conditions, F (2, 45) = 5.35;MSE = 0.0129; p = 0.008,

with the mean AUC of the best, [t(1, 15) = 5.63, p < .0001], and the best-match,

[t(1, 15) = 2.40, p = .025] conditions both significantly greater than chance, but the
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worst match was not, [t(1, 15) = .9440, p = .3450]. Best was significantly greater than

best match, [t(1, 15) = 3.45, p = 0.001], but, unlike the results of Experiment 1, best

match was not significantly greater than worst match, [t(1, 15) = 0.8385, p = 0.45].

Still, for the most part the results of Experiment 2 replicate those of Experiment 1,

even though the images were constructed from just the first 10 eigenvectors.

The results of both experiments bode well for neural networks and their attempted

modeling of human visual discrimination. Just as the network can learn from images

with most of the information removed, so apparently can humans. As well, the results

indicate that judgements of style—normally considered to be quite a sophisticated

skill—may actually be a lot simpler.

4.2.1 Participants’ Spontaneous Utterances and

Descriptions

Unlike the results of Experiment 1, none of the participants in this experiment cited

seeing specific shapes as their reason for remembering the images. Instead, virtually

all of them gave specific descriptions of colour (such as boldness, variation, and hue)

as at least part of their reasons for their judgements. Five of the participants de-

scribed their judgements as coming from feelings of familiarity or unfamiliarity with

the images. Several complained that the task was too difficult, and one specifically

claimed to have relied on “gut feelings”. Thus, we appear to have accomplished our

goal: successful judgements of style in the absence of nameable features.
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4.3 Experimental Shortcoming: May Be Either Ex-

emplars or Prototype

The results of Experiment 2 demonstrate how little visual information is apparently

needed in order to make categorically–consistent judgements about Monet and Picasso

images. As well, it provides some evidence for the neural network as a plausible

model of some visual processing. However, the results do not yet describe whether

participants’ structural learning is in the form of individual exemplars or prototypes.

The prototype view of categorization describes individuals as forming an ideal or

average prototype of a category as they come across individual members (e.g., Rosch,

1973, 1975). For the category of “bird”, for example, individuals would have formed

a prototypical perfect or average bird that is most representative of that category.

Judgements about other stimuli would then be based on comparing them to that

prototype. Given that the participants in both Experiments 1 and 2 were given the

best examples of their training category, it is possible that they simply formed a

prototype and made their recognition judgements relative to it, rather than make

judgements based on family resemblance and studied instances. The next experiment

was an attempt to investigate that issue.
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Chapter 5

Experiment 3: Disrupting the Formation of a

Prototype: Random Selection During Training

The results of Experiments 1 and 2 have successfully demonstrated that human partic-

ipants are capable of picking up the remaining information in partially reconstructed

images. By using a distraction task, such as having to remember which image is

paired with which Canadian city name, learning the structure of the images becomes

incidental to the main task, and participants’ tendency to search for a rule that gov-

erns category definition can be diverted. This task can be accomplished when the

images have been partially reconstructed using their first 20 eigenvectors—roughly

the maximum amount of eigenvectors that can be used for reconstruction before ver-

balizable aspects of the images (e.g., shapes and lines) seem noticeable—and when the

reconstruction uses only the first 10 eigenvectors—around the same number needed

for asymptotic performance of a neural network.

However, results so far fail to show whether human participants are making judge-

ments of style based on memory for individual instances or on the formation of a

prototype. For each condition, the stimuli selected for the training portion of the ex-

periment were the “best” Monet and Picasso paintings, as these give the participants

the best impression of the artists’ styles. That is, the “best” images are the ones that

share the most characteristics with the other images of their category. In terms of

the family resemblance continuum, they are the ones with many connections with the

other images. In terms of a prototype, they are the ones that are clustered closest

around it. In either case, they are, for example, the robins of the “bird” category

rather than the ostriches, as robins are closer to an ideal or average bird.

Using the best Monet and Picasso images makes it difficult to determine whether
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participants are learning from these excellent examples, or whether they could be

abstracting a prototype that the images are gathering around. In the current ex-

periment, it is necessary to introduce particular circumstances where drawing on

exemplars would generate better performance in judging stimuli than would drawing

on a prototype (e.g., Whittlesea, 1987).

5.1 Method

5.1.1 Participants

Sixteen undergraduate students from the University of Lethbridge were recruited from

the psychology undergraduate student participant pool, and received course credit in

either a first or second year psychology course for their participation. All participants

were näıve as to the true intention of the experiment, and instructions were given both

verbally and by accompanying text on the computer screen.

5.1.2 Design

The images used in this experiment are the same ones that underwent dimension

reduction and partial reconstruction. As the prior experiment demonstrated that only

the information present within the first 10 eigenvectors is necessary for discrimination,

that is the extent to which the current images were reconstructed.
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5.1.3 Procedure

Once again, participants were equally divided between Monet and Picasso conditions,

each with a training and test phase. During the training phase, randomly-selected

images from that condition’s category were shown. By using random images from an

artist category rather than the “best” images, there should be, at best, loose clustering

of the selected images around a possible prototype. The “image cards” were again

paired with names of Canadian cities as a diversion to the processing of the style of

the images (Brooks, 1978). Each image and word pair was serially presented 4 times

for 3 seconds each for a total of 64 paired stimuli.

During the test phase, the randomly-selected training images, the best matches

to those images, and another set of randomly-selected images of both categories were

shown. Participants were tested for their recognition of the reconstructed images using

a scale of 1 to 12 (1 being “Sure New” and 12 being “Sure Old”). If the participants

were basing their judgements on memory for instances, then those judgements would

be based on the randomly-selected training items rather than a prototype for the

category that is formed from them. As such, they should perform better at the best

matches to the randomly selected training items than to randomly selected images

from that category.

When the experiment was finished, participants were asked to fill out a short

survey regarding their reasons for deciding whether images were new or old, and were

debriefed about the true intentions of the experiment. They were then free to leave.

5.2 Results and Discussion

Shown in Table 5.1 and Figure 5.1 are the mean hit and false-positive rates (scale-

responses > 6) as a function of training category (same vs. different) and test item-
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Table 5.1: Mean Hit and False-positive Rates As a Function of Training Category
(Same vs. Different) and Test Item Type in Experiment 3

Random Train Best Match Random
Category 0.61 0.59 0.40

Non-Category 0.42 0.39 0.34

type, collapsed over training category (Monet vs. Picasso). Items from the same

category as training were identified as “old” (M = .53) significantly more frequently

than were items from the different category (M = .38), F (1, 15) = 15.19;MSE =

0.0354, p = 0.001. There was also a significant main effect of test item type: random

training items (M = .52) were labelled as “old” more often than best match items

(M = .49) and random items (M = .37), F (2, 30) = 11.89;MSE = 0.0166; p =

0.0002. However, unlike the previous experiments, test item type did not interact

significantly with training category, F (2, 30) = 2.63;MSE = .0175; p = .09. Despite

that, and similar to the results of the the previous experiments, planned comparisons

of the interaction showed that old (same category) random training items were la-

belled as “old” more frequently than new (different category) random training items

[t(1, 15) = 4.11, p = .0009], false-positive responses to same category best match

items were significantly higher than false-positive responses to different category best

match items [t(1, 15) = 3.23, p = .006], but there was no significant difference in

false-positive responses between same category and different category random items

[t(1, 15) = 1.16, p = .26]. Thus, as with the pigeon studies and Experiments 1 and

2, participants in Experiment 3 showed some ability to recognize old (i.e., training)

items, and some ability to generalise what they had learned of the category to new,

highly similar to training, best match items, but not to new, not similar to training,

random items.

As with Experiments 1 and 2, Figure 5.2 depicts the receiver operating charac-

teristic (ROC) curves fitted to the mean cumulative hit and false-positive rates at
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each level of confidence to each of the three item type conditions (random train, best

match, and random) for the judgement of the style of the images. Unlike the previous

experiments, there appears to be little to be gained from the ROC analyses, perhaps

because the overall levels of indirect categorisation were quite low.

This impression was confirmed by an analysis of the area under the ROC curves

(AUC) for the three test item types. As in Experiments 1 and 2, The AUC values

were subjected to a one-way (item type), within-subjects ANOVA, with participants

crossing the factor as the random variate. Unlike the previous experiments, there

was no significant difference among the three conditions, F (2, 45) = 2.04;MSE =

0.0180; p = 0.142. However, the mean AUC of the random training, [t(1, 15) =

3.83, p = .001], and the best-match, [t(1, 15) = 3.14, p = 0.0055] conditions were both

significantly greater than chance, but the random test was not, [t(1, 15) = 1.15, p =

.2528]. Also unlike the previous experiments, random train was not significantly

greater than best match, [t(1, 15) = 0.3936, p = 0.64], nor was best match significantly

greater than random test, [t(1, 15) = 0.0047, p = 0.15].

As with the pigeon studies and Experiments 1 and 2, participants in Experiment

3 showed some ability to recognise old (i.e., training) items, and some ability to

generalise what they had learned of the category to new, highly similar to training,

best match items, but not to new, not similar to training, random items.

Because the training items were selected at random from each category, it is less

likely that participants would form a prototype of the training category (or they

would form a prototype that was noisier). But even if they had done so, it should

apply equally to the best match items as to the random test items. Yet only on the

best match items did the participants show significant indirect categorisation. Thus,

these results do not seem to support what one would expect from the abstraction

of category prototypes as much as they are consistent with a simple nonanalytic,
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instance-based memory for the source of the effects of category structure.

5.2.1 Participants’ Spontaneous Utterances and

Descriptions

Five of the participants claimed to be basing their judgements on feelings of famil-

iarity or lack thereof. Several of them described specified strategies that they used

to remember the pairings of each image with its city name, such as Nanaimo being

blue because it has lots of water and Vancouver being grayish because it is frequently

cloudy. One person tried to pair city sport team colours with the colours of the image.

Several cited specific aspects of colour, such as “extremeness”, and one person com-

plained of not knowing beforehand how difficult the memory task would be without

the city names paired with the images.

5.3 Experimental Shortcoming: Only Inducement

Has Been Demonstrated Thus Far

The prior experiments have provided evidence that not only can human participants

make categorically-consistent judgements based on what little information remains

in images that have been reconstructed with only their first 10 eigenvectors, but also

that they seem to do so by learning from individual examples of a category more

likely than by forming a prototype. However, the preceding experiments only go so

far as to demonstrate evidence under strict laboratory conditions. They cannot speak

to whether humans can base their judgements on instances in everyday, undirected

life. The following experiments attempted to address that issue, and are intended to
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help begin the generalisation of results to circumstances outside the laboratory.
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Chapter 6

Experiment 4: Testing Undirected Sorting Based

On Similarity to Instances Using the First Ten

Eigenvectors

Prior experiments have provided evidence that humans are capable of making dis-

criminations based on judgements of style when placed under very specific laboratory

conditions. The current experiment sought to demonstrate that human participants

could still make such judgements when experimental conditions were less restricted.

The procedure subsequently described was an attempt to make a small step towards

mimicking conditions of the real world. Participants were not specifically directed to

use nonanalysis like in the prior experiments, but a sorting task still maintains much

of the same properties. Particularly because participants were still able to see images

after they had made their judgements on them, it was still very much a matching

task.

6.1 Method

6.1.1 Participants

Twenty-four undergraduate students from the University of Lethbridge were recruited

from the psychology undergraduate student participant pool, and received course

credit in either a first or second year psychology course for their participation. All

participants were näıve as to the true intention of the experiment, and instructions

were given both verbally and by accompanying text on the computer screen.
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6.1.2 Design

The same 160 Picasso and 160 Monet images from Experiments 2 and 3 were used as

stimuli for this experiment. The images were partially reconstructed with the first 10

eigenvectors. As demonstrated in prior experiments, the first 10 eigenvectors contain

enough information for a judgement above chance. The 320 images were randomly

shuffled into a single virtual stack for each participant.

6.1.3 Procedure

Participants were informed that they would be performing a card sorting task, and

were seated in front of a vertically bisected computer screen. At the bottom of the

centre of the screen sat a randomly shuffled pile of “image cards”. Participants were

instructed to sort the pile of images by clicking on and dragging them to either side

of the vertical line, forming two separate piles. They were specifically informed that

they could use whatever criteria they wanted in order to decide which image belonged

in which pile, and could change their minds and rearrange the cards as they wished

at any time. At the top centre of the screen was a button labeled “Clean Up” for

de-cluttering the two piles that the participants were free to use if they wanted their

piles of images to be better organised. Cleaning up the screen only caused the already-

sorted images to cluster closer together into their separate piles; it did not change

which side of the screen the images had been placed. Once the entire image card

pile had been sorted, a “Done” button under the pile could be clicked to end the

experiment when the participants were satisfied with how they had sorted the cards.

The task was not timed.

Upon confirming that they were finished sorting the cards, each participant was

presented with a short survey that inquired about their basis for sorting the cards into
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the two piles. When finished, participants were free to leave, and they were debriefed

about the true intentions of the experiment if they expressed interest.

6.2 Results and Discussion

As the participants did not label their two piles as “Monet” and “Picasso”, we des-

ignated the pile with the largest proportion of Monet images as the “Monet” pile

for scoring, and the other pile was designated the “Picasso” pile. Therefore, the hit

rate was obtained by dividing the number of Monet images placed in the “Monet”

pile by the total number of Monet images (i.e., the proportion of Monet images that

were correctly sorted). The false alarm rate was calculated by dividing the number

of Picasso images in the same pile by the total number of Picasso images (i.e., the

proportion of Picasso images incorrectly labeled as Monet images).

6.2.1 Estimation of Procedural Response Bias

Due to the scoring procedure, the hit-rate is necessarily biased to be greater than

the false-alarm rate, even if participants were sorting the image cards entirely at

random with respect to our Monet and Picasso distinction. To estimate the degree

of that bias, and to produce a randomisation distribution with which to compare the

results of the experiment, the experiment was simulated 10,000 times. For each of the

10,000 simulated experiments, 24 simulated participants (to match the experimental

conditions) were run.

The simulated participants each produced “Pile 1” and “Pile 2” responses drawn

from a random uniform distribution containing the equal numbers of the values “1”

and “2” for each of the 320 images. The simulated data were then scored in the
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same manner as described for the actual participants, creating simulated hit and

false-positive rates. The simulated results for each simulated participant were then

converted into their associated A′ values to provide a measure of the degree to which

our procedure for scoring could produce apparent discrimination of the two Monet

and Picasso categories in the absence of any real discrimination. For each of the 24

simulated participants, the simulated A′ values were averaged and recorded to create

a sampling distribution of mean A′ values for the 10,000 simulated experiments. The

simulated sampling distribution is shown in Figure 6.1.

The 24 real participants who were given the task of sorting a stack of image cards

into two separate piles on the computer screen did so with a mean hit rate of 0.53,

a mean false-positive rate of 0.39, and A′ of 0.62, exceeding even the highest A′

of the simulated sampling distribution of such values (p < 0.0001), indicating that

they were indirectly discriminating the two categories of images at a level well above

chance. Thus, even though they could use any criteria at all for sorting the items, the

participants still sorted the items along the lines of the Monet and Picasso distinction

of the original images.

6.3 Participants’ Spontaneous Utterances and De-

scriptions

It is interesting to note that, upon being given the instructions for the experiment

and finally seeing the stack of images to be sorted, many participants responded with

unease and uncertainty about the task. Even after being told that they could use

whatever criteria they wanted in deciding which of the two piles each card should

go, several individuals still asked what criteria the experimenter wanted them to use.

Such questions, of course, were met with the assurance that they could use whatever
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they wanted. Several of the participants sought to confirm what they were expected

to do by asking whether the stack of image cards would flip around so that the image

would be visible once they clicked on the card. They were surprised and seemed a bit

confused that what they thought was the nondescript backside of a card was actually

the image on the card itself.

During the experiment, many participants chose to leave the image cards spread

out, and rarely cleaned up their two piles. They spent quite some time in sorting,

often mulling over their decisions and hesitating.

Of the 24 participants who were given this sorting task, 18 of them reported in the

post-experiment survey that they had based their decisions on colour. Given that the

mean performance A′ = 0.62 is almost identical to that of the perceptron classifier

applied directly to the pixel-maps in Chapter 2, this result suggests that sorting by

colour might be a the basis for the sorting of the two categories. However, none of

the ten eigenvectors used to reconstruct the stimuli is primarily correlated with a

simple colour distinction, so despite its popularity as a cited basis, it is unlikely to

be a plausible explanation. The remaining responses included such things as whether

an image looked “worn like an old couch”, whether the image was more transparent

vs. more abstract, and whether the image had texture.

6.4 Experimental Shortcoming: Further Evidence

Needed for Generalising Results to the Natu-

ral World

Participants given unspecified criteria may make judgements based on style when the

stimuli are likely devoid of any human-nameable feature, but, of course, we do not
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experience stimuli in the real world that have undergone eigen-decomposition. The

next experiment sought to demonstrate whether participants continue to sort on the

basis of family resemblance, even when verbalisable image content is present. It was

intended as another—albeit small—step toward conditions in the real world.
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Chapter 7

Experiment 5: Testing Undirected Sorting Based

On Similarity to Instances Using the Full Images

The results of Experiments 1-4 have successfully provided some evidence that people

are capable of sorting Picasso and Monet images based on style both when placed

under specific laboratory conditions and also when conditions are less restricted. The

remaining question is whether people will continue to do so when the full image (that

is, all information—including human-nameable features) is presented.

7.1 Method

7.1.1 Participants

Twenty-four undergraduate students from the University of Lethbridge were recruited

from the psychology undergraduate student participant pool, and received course

credit in either a first or second year psychology course for their participation. All

participants were näıve as to the true intention of the experiment, and instructions

were given both verbally and by accompanying text on the computer screen.

7.1.2 Design

160 Picasso and 160 Monet images were used as stimuli for the experiment. The

images used were the original ones of the actual paintings (i.e., fully constructed

with all eigenvectors) that had been the source of the eigen-reconstructed images in

Experiments 1-4. The 320 images were randomly shuffled into a single virtual stack
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for each participant.

7.1.3 Procedure

As in experiment 4, participants were informed that they would be performing a card

sorting task, and were seated in front of a vertically bisected computer screen. At

the bottom of the centre of the screen sat a randomly shuffled pile of “image cards”.

Participants were instructed to sort the pile of images by clicking on and dragging

them to either side of the vertical line, forming two separate piles. They could use

whatever criteria they wanted to decide which image belonged in which pile, and

could change their minds and rearrange the cards as they wished at any time. At the

top centre of the screen was the “Clean Up” button for de-cluttering the two piles

that the participants were free to use. Once the entire pile of image cards had been

moved, a “Done” button under the pile could be clicked to end the experiment if the

participants were satisfied with their sorting. The task was not timed.

Participants were required to fill out a short survey regarding their criteria for

sorting the images into the two piles at the end of the experiment.

7.2 Results and Discussion

Once again, as the participants did not label their two piles as “Monet” and “Picasso”

(or as anything else), we designated the pile with the largest proportion of Monet

images as the “Monet” pile for scoring, and the remaining pile as the ”Picasso” pile.

The hit rate was the proportion of Monet images that were correctly sorted, and the

false alarm rate was the proportion of Picasso images incorrectly labeled.
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7.2.1 Estimation of Procedural Response Bias

Identically to experiment 4, the scoring procedure results in the hit-rate being biased

to exceed the false-alarm rate—even if participants were sorting the image cards

entirely at random with respect to our Monet and Picasso distinction. The results of

this experiment were compared to the sampling distribution, shown in Figure 6.1. For

each of the 24 simulated participants, their simulated A’ values were averaged and

recorded to create a sampling distribution of mean A’ values for the 10,000 simulated

experiments.

The 24 real participants who were given the task of sorting a stack of image cards

into two separate piles on the computer screen did so with a mean hit rate of 0.86,

a mean false-positive rate of 0.19, and A′ = 0.87, exceeding the the highest value of

the simulated sampling distribution (p < 0.0001), and indicating sorting of the two

categories at a level substantially above chance.

7.2.2 Participants’ Descriptions

Unlike the prior experiments, many of the participants seemed at ease with being

given this particular task. Several of them confirmed the instructions of using what-

ever criteria they wished to sort the images into two piles by asking, “Whatever I

want, right?”. It is worth nothing that, unlike in Experiment 4, participants were

very quick to complete the task; they sorted the images with little to no hesitation.

18 of the 24 participants, when asked afterwards for their basis for sorting the

images into the two piles, specifically stated that they based their judgements on such

criteria as abstract vs. realism/Cubism vs. Impressionism/“artistic style”. Another

person specifically claimed, “I saw two different kinds of art”. Given these facts, it

appears likely that they generally sorted the image cards on the basis of covariation
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information shared across a category; that is, on the basis of style. The majority of

the remaining participants claimed to be sorting the images on the basis of colour

such as “dullness”, which—as already discussed—is unlikely to lead to as good of

individual performance as what they actually gave. The rest gave such reasons as

some pictures making them happy while others made them sad and whether or not

the images contained people.

7.3 Comparing Sorting of Reconstructed and Full

Images

Participants who were tasked with sorting partially reconstructed images and partic-

ipants who sorted full images both indirectly categorised Monet from Picasso images

significantly better than their simulated sampling distribution. In addition, a two-

sample randomisation test based on 10,000 random permutations using the R sta-

tistical computing language (R Core Team, 2013) and the “ez” package (Lawrence,

2013) demonstrates that the mean A′ value for participants who sorted full images

was significantly greater than the mean A′ value for those who sorted the partially

reconstructed images (p < 0.0001). The mean A′ value for the participants who dis-

criminated the full images was near perfect (over half of the participants scored an

A′ over 0.95).

Given the significant difference between the results of the two experiments, it is

obvious that more research is needed in order to determine the full basis for partici-

pants’ responses in Experiment 5. It is worth nothing, however, that nonanalysis can

work with nameable and non-nameable features. If, for example, participants were

placing an image containing a skull on the left because that pile already contained

images with skulls, that would still be nonanalysis because the judgement is based
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on individual examples.
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Chapter 8

General Discussion

The preceding experiments sought to demonstrate whether human participants are

capable of judging stimuli based on family resemblance between individual items.

Several important insights are provided from the experimental results.

In an attempt to determine the basis for the categorisation of visual stimuli by

human beings, images with limited verbalizable content were used in judgement tasks.

The first experiment used Monet and Picasso paintings that had been partially re-

constructed using only their first 20 eigenvectors. By diverting participants’ strong

tendency to search for verbalizable rules using a distraction task, it was demonstrated

both that there is enough information remaining the the first 20 eigenvectors for hu-

man participants to make the discrimination and that humans can be induced to use

a non-analytic strategy for processing stimuli. It is in this way that it seems people

can be “turned into pigeons”.

The second experiment followed the same methodology, but used as stimuli images

that had been partially reconstructed with only their first 10 eigenvectors. Despite

less information remaining in the images than in the first experiment, participants

were still able to indirectly discriminate Monet from Picasso paintings at levels above

chance, despite the apparent indistinctness of the images. The results provide evi-

dence as well for the neural network being a plausible model of human learning, as it

is at this level of image reconstruction that neural network discrimination asymptotes

in performance. Given that neural network asymptotic performance is better than

the mean human participant performance, further investigation is necessary in order

to determine whether, for example, human performance can be further improved, or

whether the neural network possesses a particular advantage over humans in this sort
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of task. The neural network was selected as a model to compare human performance

against due to the distribution of its nodes resembling the distribution of knowledge

believed to relate to family resemblance. It seems preferable for its simultaneity of

processing, as compared to a Von Neumann machine that processes information seri-

ally. The second experiment also shows that judgements of artistic style—something

normally considered to be a rather sophisticated skill—may actually be simpler than

originally thought.

The third experiment used randomly-selected members of each category during

training, so as to prevent participants from potentially forming a prototype of the

category they were trained on. Despite the further restriction in information, partic-

ipants were still able to indirectly categorise at levels above chance—as long as the

items are highly similar to the specific items they were trained with. The results show

that participants are possibly learning about and remembering stimuli on the basis

of memory of individual examples rather than from an abstracted prototype. Indeed,

what appears to be structural learning might actually be a memory for instances.

The fourth experiment provided evidence that, not only are participants capable

of making indirect categorical distinctions on the basis of family resemblance, but

also they can do so under less restricted conditions. The results have important

implications for how people might judge stimuli in a natural setting. That is, when

outside of the laboratory people might be using an nonanalytic strategy for much of

the time. It would be interesting to determine whether participants are speaking to

themselves as they mull over their responses to this sort of task.

The final experiment showed that participants can still use a nonanalytic strategy

when verbalizable content is present—attempting to mimic the stimuli in the natural

world. The results, however, seem to belie previous research demonstrating the diffi-

culty in depicting a nonanalytic strategy under laboratory conditions (e.g., Gross &
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Vokey, 2009). Further investigation is needed in order to determine why the task in

the final experiment seemed to work, but other methods, such as incorporating the

mere exposure effect, do not seem to demonstrate nonanalytic cognition.

Judgements of stimuli do not seem to be exclusively based on the specific objects

or nameable features that differ between them. Rather, the countless attributes of

stimuli that together look a certain way may be sufficient. It is this possibility that

likely makes the presumed bases of stimulus judgement difficult to articulate.

8.1 Corresponding Research: Wu et al., 2012

Wu, Tangen, Vokey, and Humphreys (2012) investigated whether human partici-

pants are sensitive to the stylistic differences constrained by the main target of a

photograph—similar to the stylistic constraints between painting styles imposed by

artists. They developed two sets of photographs, the first depicting either people or

objects that were definable on the basis of their intended targets (people or objects).

The second set was identical to the first except for the removal of the category-defining

target from each image. That is, that set was intended to be definable on the basis

of style.

The first experiment of Wu et al. (2012) was similar to that of Experiment 5 in

that participants were asked to sort a stack of complete images. Those who sorted

images containing the category-definable target tended to do so analytically; their

mean discrimination was near perfect, and the majority of participants explicitly

stated the person-target and object-target as their basis for discrimination. Those

who sorted the target-absent photographs, however, still showed evidence of sorting

on the basis of style. They showed significantly less discrimination (though still above

chance), and cited a variety of reasons for their sorting.
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Their second experiment was similar to Experiment 4; the target-present and

target-absent photographs were reconstructed with their first 10 eigenvectors, and

then used again in the same sorting task. Interestingly, reconstructed target-present

images look virtually the same as target-absent photographs, suggesting that the

covariation shared between individual photographs may not be dependent on the

target objects.

The mean A′ values for both the target-present and target-absent groups exceeded

a simulated sampling distribution similar to the one used in Experiments 4 and 5.

Unlike their first experiment, though, there was no significant difference between the

two groups. Just as in the current experiments, many of their participants cited colour

as the basis for discrimination. Wu et al. (2012), though, also performed a neural

network simulation of the categorization task when the linear classifier was applied

directly to the pixel maps, and showed that their photographs cannot be distinguished

on such bases of colour, brightness, or shading. When eigen-decomposition is included

in the simulated task, however, the neural network discriminates both the person-

target and object-target photographs well above chance, regardless of whether the

target is present. Thus, the results of Wu et al. (2012) provide corroborating evidence

that the stylistic information contained across the members of a category may be

sufficient for making a distinction, and that an analytic strategy can be diverted by

limiting human-nameable features.

8.2 Further Research

The results so far provide some evidence for a human capacity to make judgements

based on style. However, no firm conclusions regarding the precise mechanisms may

be drawn from them. The significant difference between the results of sorting par-
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tially reconstructed images compared to full ones, for example, provides evidence that

humans may be using human-nameable features at least some of the time. Sorting

full images into two piles—though an attempt to simulate undirected sorting in the

real world—is certainly only a small step towards doing so.

Further investigation should explore and seek to discover what circumstances are

necessary in order for people to employ a non-analytic strategy. In doing so, it could

perhaps be possible to gain some purchase on specifically controlling participants’

processing strategies. As well, it is necessary to continue studying the remaining

properties of partially reconstructed images. The information remaining within them

as well as any corollary to the natural world could provide insight into quotidian

visual and cognitive processing.
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