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Electromagnetic Charge-Monopole versus Gravitational Scattering
at Planckian Energies
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The amplitude for the scattering of a point magnetic monopole and a point charge, at center-
of-mass energies much larger than the masses of the particles, and in the limit of low momentum
transfer, is shown to be proportional to the (integer-valued) monopole strength, assunitng the Dirac
quantization condition for the monopole-charge system. It is demonstrated that, for small mo-
mentum transfer, charge-monopole electromagnetic e8ects remain comparable to those due to the
gravitational interaction between the particles even at Planckian center-of-mass energies.
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The amplitude due to graviton exchange between two
particles colliding at Planckian center-of-mass (c.m. ) en-
ergies and in the ¹mit of vanishingly small momentum
trs.nsfer has been shown [1,2] to be calculable semiclas-
sically, corresponding to the eikonal approximation of
quantum gravity. This simplification originates from the
decoupling of all physical graviton modes in this kine-
matical regime, and the pure gauge states left behind
have been shown to be describable by a topological sigma
model in 1+1 dimensions with difreomorphism invariance

[3] resembling a string theory. The semiclassical ampli-
tude found by 't Hooft also showed a striking resemblance
to the Veneziano amplitudes of string theory. One signif-
icant aspect was the existence of poles in this amplitude
at c.m. energies Gs = iN (wher—e N is a positive inte-

ger) [4]. If the particles carry electric charge, the ampli-
tude is still calculable semiclassically, corresponding to a
shift Gs ~ Gs+ eu with G being Newton's constant, s
the squared c.m. energy, e any integer (positive or neg-

ative), and a the fine structure constant. Thus, at the
Planck scale, electromagnetic effects due to these charges
constitute a minor perturbation on the gravitational ef-
fects. At sub-Planckian c.m. energies that are still large
compared to the particle masses, the quantum electro-
dynamic eikonal approximation [5] has been exactly re-
produced from the semiclassical amplitude, and the cor-
responding topological sigma model has been identified

[6]
In this paper, we study the scattering of a Dirac mag-

netic monopole with a pointlike electric charge in the
same kinematical limit. At sub-Planckian energies (i.e. ,

in the absence of graviton exchange), the amplitude turns
out, remarkably, to be proportional to the integer n oc-
curring in the Dirac quantization condition, modulo stan-
dard kinematical factors. Next we turn to gravity, and
show that even when the c.m. energy becomes on the
order of the Planck scale, the monopole-charge interac-
tion contribution to the cross section remains almost as
large as the gravitational contribution, the former being
characterized by the monopole strength n as compared
to the energy dependent gravitational coupling strength
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Observe that we have made the gauge choice A = 0, and
have chosen an orientation of our coordinates such that

Gs occurring in the latter. Another remarkable feature
of the amplitude in the presence of magnetic charge is
the existence of poles at Gs = —i(N + ns), in contrast to
poles at Gs = iN for —two-particle scattering, and akin
to poles in three particl-e scattering amplitudes found by
't Hooft [4]. We shall comment on this result towards the
end of the paper.

Consider first the scattering of an ultrarelativistic
monopole from a slowly moving charged particle within
a kinematical region defined by a c.m. energy s )) msi 2

(m, i,2 are the rest masses of the particles) and momen-

tum transfer t ~ 0, where s and t are the usual Man-
delstam variables. This kinematical region corresponds
to a situation where the particles scatter almost solely in

the forward direction, and for all practical purposes be-
have as though they are massless [1]. Further, the scat-
tering can be described in terms of the response of the
"target" charged particle to the electromagnetic "shock"
wave front carried by the fast-moving monopole. Treat-
ing the shock wave front as classical, the calculation of
the scattering amplitude reduces to determining the over-

lap of the wave functions of the point charge evaluated
before and after encountering the monopole shock front.
Basically, the fields in the shock front produce a phase
factor in the charge wave function, which can be exactly
computed.

To determine the fields due to an ultrarelativistic
monopole, we first boost the vector potential of a static
monopole along the positive z axis to some velocity P,
and then evaluate the limit of this potential as P —+ 1,
as in Refs. [1] and [6]. The vector potential of a static
monopole carrying magnetic charge g can be given in

spherical polar coordinates, following Wu and Yang [7],
by
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only the x and y components survive. We consider first
the potential (1). Giving it a Lorentz boost of magnitude

[9 along the positive z axis yields

Immediately after the shock front passes by, the wave
function is also a plane wave but with a gauge potential
dependent phase factor, i.e.,

p r —gEpg Pg z —Pt
(3) tp& = exp

[ ief dzeAe
I iie. (8)

where r~& ——x2+ yz, Rp = [(z —Pt)z + (1 —P2)r&~]& and

i,j = 1,2. Using the limit [6]

1 1
lim = —6(x )1np r~
p-e1 Rp x

(where p is an arbitrary dimensional parameter, and x+
are the usual light cone coordinates), we get

Aa = lim PA; = 8(x )Pp-+1 Ti (4)

which is the vector potential of an ultrarelativistic
monopole. Note that, due to the presence of the 8 func-
tion, Aal is singular only along that part of the z axis
which is behind the monopole Sim. ilarly, boosting Aarl

one obtains an expression (as P -+ 1) which is propor-
tional to 8(—x ) and is hence singular along the z axis
ahead ofthe monopole. In other words, these boosted po-
tentials continue to satisfy the Wu-Yang criteria [7] for
nonsingular potentials due to a monopole.

The electric and magnetic fields can be calculated f'rom

above to yield

Upon using Eq. (6) for the gauge potential in (8), we
obtain

= exp[i2egg] @a for x ) 0. (9)

The plane wave solutions ga and ga are related through
the continuity requirement

at x = 0. (10)

eirsgyi (12)

This sort of phase factor in the almost-forward scattering
of a monopole and a charge was first found by Goldhaber

[8]. Expanding Q in plane waves a la 't Hooft [1],we get

ii) ——f dkrdekg A(ke, kz)exp[ikx rz —ikex

Assume now that the monopole-charge system obeys the
Dirac quantization condition

n
eg

2

so that

—ik x+] (13)

Ao ——2g8(x )ViII[, (6)

where V is the gradient operator in the transverse (i.e. ,
x-y) plane. Before the arrival of the monopole with its
shock front, the electric charge is described by a wave
function which is a plane wave,

for x (0. (7)

This shows that Aal is a pure gauge everywhere except
on the null plane. Note that the same fields can be ob-
tained using duality symmetry, i.e., by the transforma
tion E -+ B and B ~ Eon th—e fields already obtained
by Jackiw et uL [6] for the scattering of two point charges.
Furthermore, it is possible to choose a gauge in which
only the light cone components Ay of the boosted vector
potential survive, with the transverse components van-
ishing everywhere, yielding the same field strengths as in
Eq. (5). We shall discuss this case later.

Next we proceed to compute the scattering amplitude;
to this end, we first rewrite Aa as a total derivative in
the following form:

with the on shell condition k+ ——(k&~ + m2)/k . Multi-

plying both sides of (13) by a plane wave and integrating
over x, we have

A(k+, k~) =
z d r~exP(in4+q r1),~(k+ p+)—

(14)

where q = pg —k~ is the transverse momentum transfer,
k and p being the final and initial momenta, respectively.
After integrating over the angular variable P, and appro-
priate scaling of the radial coordinate, the integral over
the latter in (14) reduces to

1
dp pJ (p)

q

where J„(p) is the Bessel function of order n The inte-.
gration over the radial coordinate is standard [9],yielding

(1 ) 2I'(1+"—, )
I -t) 1(z)

with t—:—q2 being the momentum transfer. Putting ev-
erything together and incorporating canonical kinemati-
cal factors, the scattering amplitude is given by
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f(»t) = ~(&+ —p+) l l
(16)

k+ t' n')
2m'kp ( —&)

Thus, as already mentioned, the scattering amplitude is
proportional to the monopole strength n Note that we

would obtain the same result if we had used the second
of the gauge potentials in (2) and performed the Lorentz
boost, etc. One reason for this is that the potentials,
boosted to )9 —1, are both gauge equivalent to a gauge
potential A'„given by

A& ——0 = A+, A' = 2ggS(x ) everywhere.

One can show that this gauge potential produces the
same scattering amplitude as in (16). Thus, it appears
that one can ignore the Dirac string singularity associ-
ated with the monopole gauge potential, in the kinemat-
ical limit under consideration. Observe that this is not
true for boost velocities that are subluminal.

Two remarks are in order at this point. First of all,
the scattering of an ultrarelativistic electric charge from
a slow-moving Dirac monopole can be shown to yield
an identical result as (16). The easiest way to see this
is to use the dual formalism wherein one introduces a
gauge potential A~M such that the dual field strength

F„„—:8(„AM~. If this gauge potential is used to define
electric and magnetic fields, then it follows that the stan-
dard field tensor must satisfy a Bianchi identity, which
would then imply that the gauge potential due to a point
charge must have a Dirac string singularity. Further, the
monopole will behave identically to the point charge of
the usual formalism, so that our method above is readily
adapted to produce identical consequences. Second, one
can treat the scattering of two Dirac monopoles in the
same kinematical limit exactly as in [6], using this dual
formalism. This would yield a result identical to the one
for the electric charge case, with e and e' being replaced

by g and g', the monopole charges.
Next, we consider the efFect of turning on the gravi-

tational interaction between the particles. As shown by
't Hooft [1], the gravitational shock wave due to the fast-
moving particle also produces an extra phase factor in the
wave function of the slow-moving target particle. The net
efFect of the two shock waves then is to produce a phase
factor that is given by the superposition of the individ-

ual phase factors. It follows that the integral in Eq. (14)
must be replaced by

d r~ exp[i(nP —Gs lnp, rz+ q r~)].

Once again, the integration over P is readily done, giving
the integral

The radial integration is again quite standard, and yields
[9] an amplitude

II.+ Inf(st), = 6(k —p ) ~

——ios)
Vrkp E2

r(-", -iGs) (4 &'-' '
r(-", iiGs) (, -t~ (17)

With this, one can easily shower that the cross section

d'o 1 fn2
dk2~ t~ (4 )

- —
I

—+ G's'
I

(18)
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Clearly, for c.m. energies of the order of the Planck
mass, the contribution to this cross section due to the
monopole-charge electromagnetic interaction is of the
same order of magnitude as that due to the gravitational
interaction between the particles. This is dramatically
different from the case when the particles only have elec-
tric charge, where the electromagnetic efFects constitute a
small perturbation on the gravitational eIFects at Planck
scale.

It is also remarkable that the amplitude given in
Eq. (16) exhibits poles at Gs = —i(N + n2) as opposed
to the poles at Gs = iN fo—und in the absence of mag-
netic charge. Following the argument given in Ref. [4],
therefore, the spectrum of "bound states" would appear
to admit states of half-odd integral spin (for odd values
of the monopole quantum n), in addition to those of inte-
gral spin. This appears to be similar to the spectrum dis-
cerned in three-particle scattering amplitudes [4]. While
it is well known [10] that a monopole-charge system obey-
ing Dirac quantization carries half-odd integral spin, the
relation of this to the spectrum of states above is not
quite transparent. In any event, the existence of such
states in the spectrum would tend to imply that the un-

derlying string structure (if any) corresponds to a su-

persymmetric rather than a bosonic string. Perhaps this
would become clearer if we were to follow Verlinde and
Verlinde [3] in an attempt to identify a topological sigma
model for the pure gauge states of the system. We hope
to report on this elsewhere.
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