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Abstract—A previously studied model of prokaryotic
transcription [Roussel and Zhu, Bull. Math. Biol. 68
(2006) 1681–1713] is revisited. The first four moments
of the distribution of transcription times are obtained
analytically and analyzed. A Gaussian is found to be a
poor approximation to this distribution for short tran-
scription units at typical values of the rate constants, but
a good approximation for long transcription units. An
approximate form of the distribution is obtained in which
the slow steps are treated exactly and the fast steps are
lumped together into a single lag term. This approximate
form might be particularly useful as a function to be fit
to experimental transcription time distributions. Multi-
polymerase effects are also studied by simulation. We find
that the analytic model generally predicts the behavior
of the multi-polymerase simulations, often quantitatively,
provided termination is not rate-limiting.
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I. INTRODUCTION

For many years, proteins were regarded as the “hard-
ware” of the cell, with DNA as the “software” [1, p. 111].
The central dogma of molecular biology relegated RNA
to a secondary role, that of a messenger between the
software and hardware layers. Ribosomal and transfer
RNA (rRNA and tRNA) have of course been known
for a long time but, being involved in the translation
machinery, they were still considered, implicitly at least,
to be a means to an end, the end being proteins. In fact,
“gene expression” was often explicitly defined to mean
the expression of proteins as a result of transcription
and translation [2, p. 327]. The roles of messenger
RNA (mRNA), rRNA and tRNA in translation of course

continue to be studied, and with just cause, but our
appreciation for the versatility of RNA has expanded
tremendously in recent years with the discovery of the
diverse cellular roles of RNAs, including catalysis [3],
[4], sensing [5], and regulation [6], [7], [8], [9], all roles
traditionally believed to be the exclusive province of
proteins.

With this greater appreciation of RNA has come
an increased interest in RNA synthesis and processing
processes. Gene transcription has always been of in-
terest because of its role in the expression of protein-
coding genes, but now we are equally interested in the
transcription of non-coding RNAs (ncRNAs) [10], [11].
Transcription thus claims for itself a larger portion of
the stage, with gene expression now including processes
in which an RNA, rather than a protein, is the “gene
product”.

In the last few years, several models of the tran-
scription process have appeared [12], [13], [14], [15],
[16], [17], [18]. The unifying theme of these models
has been a stochastic formulation designed to facilitate
a study of the statistical properties of transcription. Why
should we think of transcription as a stochastic process?
There are a number of reasons. First and foremost is that
stochasticity is an inescapable property of transcription.
If we consider a typical gene in a diploid cell, there are
either zero, one or two copies of the gene active at any
given time. Small molecular populations inevitably lead
to large fluctuations, which in this case manifest them-
selves as transcriptional bursts [19], [20]. The inherent
stochasticity of transcription leads us to a second reason
to consider stochastic models of this process, namely that
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the stochasticity at this level is an important determinant
of fluctuations in protein expression levels [21], [22],
[23], and these fluctuations can have functional signif-
icance [24]. If we want to understand fluctuations in
RNA or protein levels, or if we want to model a genetic
control system in which these fluctuations are likely
to be important, then we need a strong understanding
of the statistical properties of transcription. If we can,
for example, obtain an easily evaluated formula for
the transcription time, we can apply delay-stochastic
modeling methods [25], [26], [27], [28], [29] to simulate
a gene expression system [30], [31].

One of the benefits of a mathematical model, and
particularly of one with analytic solutions, is that it
is easy to vary parameters. Among other benefits, this
sometimes allows us to rapidly discover unexpected be-
haviors, or to provide specific criteria for the observation
of some particular phenomenon. In this spirit, we have
pursued models that both provide a reasonable cartoon
of a biological system, and that are, in some useful limit,
analytically solvable [13], [18]. While the analytic solu-
tions are correct only under particular conditions, they
often provide vital clues for interesting regimes to be
studied by simulation and, ultimately, in the experimental
laboratory.

In the next section, our model, which was originally
presented elsewhere [13], is described, and its first four
moments are obtained analytically. In section III, the
moments are analyzed using the analytic expressions ob-
tained in section II, with particular emphasis on shorter
transcripts in which some interesting statistical effects
are observed. An approximate form of the distribution
of transcription times is also obtained, which involves an
analytic expression for the distribution of the slow steps
and an empirical lag phase. In section IV, the analytic
predictions of this model are compared to stochastic
simulations. The concluding section reviews some of the
findings and offers some perspectives on this area of
research.

II. A PROKARYOTIC TRANSCRIPTION MODEL

A. Model description

In our models, the nucleotides of the DNA template
strand are numbered 1 to n, where n is the length of the
transcription unit. Conceptually, we track the position
of the active site of the RNA polymerase. In multi-
polymerase simulations, a rigid polymerase is assumed
(consistent with the lack of “inchworm” movements in
transcription [32]), and the leading and trailing edges
of the polymerase are located relative to the active

6 U7 U8 U9U

...

1 U2 U3 U4 O5 U

Fig. 1. Schematic diagram illustrating the relationship between the
polymerase active site and the template strand states. The polymerase
is represented by the green rounded rectangle, and its active site by
the hooked arrow. Here, the active site occupies site 5, while all
other sites are “unoccupied” in the sense discussed in the text. This
illustration is not intended to realistically portray the geometry of the
transcription complex. In particular, a much longer stretch of DNA
passes through the polymerase than is shown here.

site [18]. Polymerases can be prevented from overlapping
by imposing a minimum distance constraint between the
active sites of adjacent polymerases [18], or by adopting
a more sophisticated labeling system than the one used
here [16].

Each site on the DNA template strand can be labeled
U (unoccupied), O (occupied by the active site of the
polymerase), or A (activated for translocation). Figure 1
illustrates the relationship between the polymerase and
the U and O nucleotide states. The A state can be
thought of as a variant of the O state, in the sense
that it represents a state in which the polymerase active
site occupies a template site and the polymerase has
been activated for translocation. We use subscripts to
indicate the site to which a given state applies. Thus, Ui

indicates an unoccupied site i, Oi indicates an occupied
site i, and so on. In the independent polymerase case,
we only need to track the location of the active site.
Any site not occupied by the active site of a polymerase
is labeled Ui, even though the polymerase covers many
sites on the template. As noted above, we can maintain
this notation and deal with the multi-polymerase case
by adding distance constraints between active sites to
our model, as we do in the stochastic simulations in
section IV.

In the first step of our model, the polymerase locates
the transcription start site (TSS):

RNAP + U1
k0−→ O1. (1)

This of course is not a single-step process. Minimally, it
would involve binding of appropriate initiation factors to
the promoter, loading of the polymerase, and positioning
of the polymerase at the TSS, which would typically
also involve conformational changes of the DNA (e.g.
unwinding) [33], [34], [35]. As an initial model however,
we assume that this multi-step process has a single rate-
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limiting step, represented as shown above. Note also that
in a delay stochastic model of gene expression [26],
[27], [28], we might separate out the binding of initiation
factors and the initial binding of the polymerase to the
promoter as steps to be explicitly modeled, particularly
since these steps are often regulated [34]. In the present
case, we further assume that the local RNA polymerase
concentration is constant, so that this process reduces
to a pseudo-first-order process. These assumptions can
easily be relaxed, as discussed later.

Once the polymerase is positioned, the initiation com-
plex is activated by binding the two nucleotide triphos-
phates complementary to the first two nucleotides of
the expressed sequence. Assuming a constant pool of
free nucleotides, this process can be represented as the
pseudo-first-order reaction

O1
k1−→ A1. (2)

Note that the first two steps are being assigned a slightly
different interpretation than in our original paper [13].
This is a conscious choice which will enable us to
more easily use the results of our analysis in other
contexts, particularly in delay stochastic simulations.
Consequently, we expect k0 to be smaller than k1, since
the former includes the rate-limiting transition from a
closed to an open promoter complex [36].

Once the polymerase has been activated, formation
of the phosphodiester bond between the two bound
nucleotides provides the free energy required to drive
the polymerase forward, i.e. to translocate:

A1 + U2
k′
2−→ O2 + U1. (3)

Although shown as involving two “reactants”, the reac-
tion is represented this way only to maintain the logic
of the labeling of sites. It is in fact a first-order process
if polymerases are sufficiently widely spaced along the
template strand. Otherwise, it is still a first-order process,
but one whose rate constant is contingent on the position
of a downstream polymerase (if any). In the multi-
polymerase case, we number the polymerases in the
order in which they loaded onto the DNA, so polymerase
1 is the one furthest downstream, and the polymerase
with the highest index is the last one to have loaded. Let
xj be the current position of the active site of polymerase
j. Then,

k′2 =

{
k2 if xj−1 − xj > ∆,
0 otherwise.

(4)

Here, k2 is the value of the rate constant for a polymerase
that is free to move, and ∆ is the minimum distance
between polymerase active sites.

After the first translocation, nucleotides are added
one at a time in a process that alternates between
activation by a nucleotide and translocation driven by
phosphodiester bond formation:

Oi
k3−→ Ai, i = 2, 3, . . . , n; (5)

Ai + Ui+1
k′
2−→ Oi+1 + Ui, i = 2, 3, . . . , n− 1. (6)

These two steps together model the elongation phase
of transcription. Note that we assume here that translo-
cation, whether from the first site (reaction 3) or from
subsequent sites (reaction 6), occurs with a common rate
constant, an assumption which can easily be relaxed as
we discuss below.

Finally, we model termination as a single-step pro-
cess although, as with initiation, we could contemplate
much more complex models. In our simplified model,
we assume that a polymerase becomes activated for
termination in much the same way and with a similar
rate as in activation for translocation. However, once the
polymerase has been activated and the last phosphodi-
ester bond formed, the polymerase, RNA and template
strand dissociate from each other:

An
k4−→ RNAP + RNA + Un. (7)

Many criticisms could be made of this model. How-
ever, as a minimal model, it allows us to explore the
effects of various steps on the overall statistical proper-
ties of transcription.

B. Model analysis methodology

The single-polymerase model is solvable, in the sense
that the moments of the distribution of transcription
times can be obtained analytically. This case arises when
transcription initiation is sufficiently infrequent that
polymerases only rarely interact with each other [13].
As pointed out by Greive et al. [17], our current model
belongs to the class of Brownian ratchets, undergoing a
set of irreversible transitions from one state to the next.
We can obtain the distribution of “jump” times from one
site to the next, and then using some straightforward
mathematical tricks, obtain the moments of the distri-
bution of total transcription time. We have refined this
procedure somewhat since our original publication [13],
so we work through the details here.

Let ρi(τi) be the distribution of jump times (τi) from
site i to site i+ 1. We adopt the convention that ρ0(τ0)
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is the distribution of initiation times, and ρn(τn) is the
distribution of termination times. The jump from site i
to site i+ 1 is independent of all the other jumps, so the
joint probability distribution for the jump times is just
the product

ρ(τ0, τ1, . . . , τn) =

n∏
i=0

ρi(τi). (8)

The total transcription time is defined by

τ =

n∑
i=0

τi. (9)

By a standard theorem of statistics, the distribution of
the total transcription time is given by the convolution

ρ(τ) =

∫
· · ·
∫

∑
τi=τ

ρ(τ0, τ1, . . . , τn) dτ1 . . . dτn

=

∫
· · ·
∫

∑
τi=τ

n∏
i=0

ρi(τi) dτ1 . . . dτn. (10)

For the class of models considered here, this convolution
is not straightforwardly computable except in some spe-
cial cases. However, the convolution theorem for Laplace
transforms [37] allows us to convert this problem into
a tractable form. Let f̃(s) ≡ Ls[f(t)], the Laplace
transform of f(t). Then,

ρ̃(s) =

n∏
i=0

ρ̃i(s). (11)

We therefore only need the Laplace transforms of the
distributions of jump times from one site to the next
in order to obtain the Laplace transform of the overall
distribution of transcription times. The jump distribution
Laplace transforms are easy to obtain from the Laplace
transforms of the master equations for the survival of the
occupation of a site, as illustrated in the next section.
From here, we have two options:

1) The Laplace transform can sometimes be numeri-
cally (or semi-numerically) inverted to obtain the
distribution of transcription times.

2) The moments of the distribution can always be
obtained by differentiation of ρ̃(s) [13]. From the
definition of the Laplace transform, we have

ρ̃(s) =

∫ ∞
0

e−sτρ(τ) dτ. (12)

By definition, the moments of the distribution are
given by

〈τm〉 =

∫ ∞
0

τmρ(τ) dτ. (13)

Taking successive derivatives of the Laplace trans-
form, we get

〈τm〉 = (−1)m
dmρ̃

dsm

∣∣∣∣
s=0

. (14)

Differentiation is a simple mechanical operation
which, in the worst case, can be carried out reliably
by a symbolic algebra system. Arbitrarily high
moments can be obtained by this method.

Both approaches are illustrated below.
We note here that our models are modular in precisely

the same sense used by Greive et al. [17] and that, more-
over, the analysis has a corresponding modular structure:
We can replace any part of the model with one describing
different chemistry, and the only effect is to replace the
corresponding jump distribution Laplace transform in
equation (11). Thus, studying model variations requires
adjustments only to those parts of the analysis directly
concerned with the parts of the model that have been
changed. For example, rather than assuming that all
translocation steps [reactions (3) and (6) in the current
model] have a common rate constant, we could assume,
for example, that there were different rate constants
at each of the first several sites, until the polymerase-
DNA-RNA complex had stabilized, after which these
rate constants could reach a constant value for the
remainder of the transcription process. The cost of such
an assumption would be a number of added parameters,
and some additional mathematical derivations for the ρ̃i
in the region of variable translocation rate constant.

C. Jump distributions

In this section, we work out the Laplace transforms
of the jump distributions for our model. Formally, each
jump distribution is the solution of a survival problem
[38] for the occupation of a given site by the polymerase
active site.

In the following work, we denote by pi,σ the probabil-
ity that site i is in state σ ∈ {U,O,A}. Because we treat
the case of a single polymerase, we do not need to con-
sider joint probabilities (e.g. the probability that site i is
in state A while the site to which the leading edge of the
polymerase will move is unoccupied). The construction
of the master equations for the joint probabilities was
discussed in our previous work [13], although extending
the methods used here to that case is still very much an
open problem.

We start with ρ̃0, which is associated with initiation
or, in our model, reaction (1). Here, the relevant survival
problem is the survival time for an unoccupied site 1.
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Thus we assume that at t = 0, site 1 is unoccupied and
monitor this site until it becomes occupied. Under the
pseudo-first-order (constant polymerase pool) assump-
tion, the corresponding master equation is

dp1,U
dt

= −k0p1,U, (15a)

dp1,O
dt

= k0p1,U, (15b)

with initial conditions p1,U(0) = 1, p1,O(0) = 0. While
equation (15b) is apparently redundant, it plays a very
important role in the survival problem: Since O1 is a sink
state in this simplified master equation, p1,O(t) is the
cumulative probability distribution for initiation. Thus,

p1,O(t) =

∫ t

0
ρ0(τ0) dτ0, (16)

or, using the fundamental theorem of calculus,

ρ0(t) =
dp1,O
dt

. (17)

In the space of Laplace transforms, and using the identity
[37]

Ls [df/dt] = sf̃(s)− f(0), (18)

equation (17) becomes

ρ̃0(s) = sp̃1,O(s). (19)

The Laplace transform of equations (15) subject to the
appropriate initial conditions is

sp̃1,U − 1 = −k0p̃1,U, (20a)

ρ̃0(s) = sp̃1,O = k0p̃1,U. (20b)

Solving these equations, we get

ρ̃0(s) =
k0

s+ k0
. (21)

This is, not surprisingly, the Laplace transform of an
exponential probability distribution [37].

Once the polymerase has reached site 1, the sequence
of steps (2) and (3) is required to reach site 2. The
relevant master equation is

dp1,O
dt

= −k1p1,O, (22a)

dp1,A
dt

= k1p1,O − k2p1,A, (22b)

dp2,O
dt

= k2p1,A. (22c)

Here, p2,O is the cumulative probability distribution for
the transcription time. The initial conditions used to
determine the jump time distribution are p1,O(0) = 1,

p1,A(0) = p2,O(0) = 0. Taking the Laplace transform of
these equations, we get

sp̃1,O − 1 = −k1p̃1,O, (23a)

sp̃1,A = k1p̃1,O − k2p̃1,A, (23b)

ρ̃1(s) = sp̃2,O = k2p̃1,A. (23c)

The last of these equations follows from the interpreta-
tion of p2,O as a cumulative probability distribution for
the jump times. Solving these equations, we get

ρ̃1(s) =
k1k2

(s+ k1)(s+ k2)
. (24)

The elongation phase, which in this model extends
from nucleotides 2 to n − 1, consists of reactions (5)
and (6). The algebra required to derive the equation for
ρ̃i(s) in this region is of course essentially identical to
that required to obtain ρ̃1(s), with the result

ρ̃i(s) =
k2k3

(s+ k2)(s+ k3)
, i = 2, 3, . . . , n− 1.

(25)
Termination consists of steps (5) and (7). Again, the

algebra to be carried out is not too different from the
foregoing. We get

ρ̃n(s) =
k3k4

(s+ k3)(s+ k4)
. (26)

If we assemble the Laplace transforms of the jump
time distributions according to equation (11), we get

ρ̃(s) = k0k1k
n−1
2 kn−13 k4(s+ k0)

−1(s+ k1)
−1

× (s+ k2)
−(n−1)(s+ k3)

−(n−1)(s+ k4)
−1.

(27)

This equation differs from one presented in [13] by the
term (21) due to the different interpretation of the two
initial reactions mentioned above.

D. Moments of the distribution

Using equation (14), for the Laplace transform (27),
the first two moments about zero work out to

〈τ〉 =
1

k0
+

1

k1
+
n− 1

k2
+
n− 1

k3
+

1

k4
; (28)

〈τ2〉 = 〈τ〉2 +
1

k20
+

1

k21
+
n− 1

k22
+
n− 1

k23
+

1

k24
. (29)

Higher moments can easily be computed, although their
algebraic forms are much more complicated.
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The central moments actually have somewhat simpler
forms than the moments about zero:

σ2 = 〈τ2〉 − 〈τ〉2

=
1

k20
+

1

k21
+
n− 1

k22
+
n− 1

k23
+

1

k24
; (30)

µ3 = 〈τ3〉 − 3σ2〈τ〉 − 〈τ〉3

= 2

(
1

k30
+

1

k31
+
n− 1

k32
+
n− 1

k33
+

1

k34

)
; (31)

µ4 = 〈τ4〉 − 4µ3〈τ〉 − 6σ2〈τ〉2 − 〈τ〉4

= 3σ4 + 6

(
1

k40
+

1

k41
+
n− 1

k42
+
n− 1

k43
+

1

k44

)
.

(32)

III. ANALYTIC RESULTS

A. Noise minimization

Analytic expressions are of course amenable to deeper
analysis than simulation results. Accordingly, despite
the approximations made to obtain these expressions,
analysis plays a prominent role in the work of my
laboratory on these problems. We can then carry out
computational experiments to verify whether the prop-
erties discovered by analysis are robust, in particular to
interactions between polymerases which are neglected in
the foregoing work.

One interesting observation we have made repeatedly
in our work is that there typically exist combinations of
parameters in these models that minimize the variability
in the transcription time [18], in the following sense: The
coefficient of variation (CV) is defined by

CV = σ/〈τ〉. (33)

This is a measure of the relative variability in the
transcription time, and is therefore one of many measures
of transcriptional noise. From equations (28) and (30),
we have

CV =

√
1
k2
0

+ 1
k2
1

+ n−1
k2
2

+ n−1
k2
3

+ 1
k2
4

1
k0

+ 1
k1

+ n−1
k2

+ n−1
k3

+ 1
k4

. (34)

We have observed that the CV frequently displays a
minimum when plotted against one or the other of the
rate constants [18]. In fact, there is a global minimum
value for the CV in the single-polymerase case, as we
shall now see.

To minimize the CV, we differentiate with respect to
each of the ki and set the derivatives equal to zero. In
general, from (33), we have

∂(CV)

∂ki
=

1

〈τ〉2

(
∂σ

∂ki
〈τ〉 − σ∂〈τ〉

∂ki

)
, (35)

which is obviously zero when

∂σ

∂ki
〈τ〉 = σ

∂〈τ〉
∂ki

. (36)

If we evaluate equation (36) for each ki using equations
(28) and (30), we get, in each case and after some
simplification,

σ2

〈τ〉
=

1

ki
(37)

which, intriguingly, is a condition on the Fano factor,
another commonly used measure of noise [21], [39].
Since each of the ki is equal to 〈τ〉/σ2 at the critical
point, then they must be equal to each other. At this
critical point (which is in fact a degenerate line in the
space of rate constants, parameterized by the value of
the common rate constant, corresponding to the choice
of time scale), the CV becomes

CVmin = (2n+ 1)−1/2. (38)

An easy if somewhat tedious calculation shows this
critical point to be a minimum, hence the label in
equation (38). Thus we reach the interesting conclusion
that the CV is minimized when the rate constants for all
the steps of transcription are identical.

Note that we need not simultaneously optimize with
respect to all of the rate constants. For example, if
we suppose that the rate constants k0 and k4 are most
directly subject to evolutionary pressures, we could
minimize with respect to just those two rate constants.
Equation (37) still holds for i = 0 and 4, so we must
have k0 = k4, i.e. the CV reaches a local minimum when
the initiation and termination rates are matched. In this
case, we calculate

k0 = k4 =
1
k1

+ n−1
k2

+ n−1
k3

1
k2
1

+ n−1
k2
2

+ n−1
k2
3

. (39)

In figure 2, the CV is plotted vs k0 and k4. From
equation (39), we calculate that the minimum CV should
occur at k0 = k4 = 5.24 s−1 for the parameters used to
generate the figure, and this is indeed what we observe.
The value of the CV at this minimum is 0.067, which is
somewhat larger than the global minimum CV of 0.050
given by equation (38) for the value of n used here. Note
that the CV surface shown in the figure increases only
slowly away from the minimum. Thus, CVs approaching
the theoretical constrained minimum can be obtained for
a wide range of values of the initiation and termination
rate constants, provided neither of these is too small. The
value of k0 at which the minimum occurs is perhaps a
little large [40], but noting the scale of the figure, we see
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Fig. 2. CV plotted vs k0 and k4 with k1 = 0.5 s−1, k2 = 10 s−1,
k3 = 10 s−1 and n = 200 nt.

TABLE I
BIOLOGICALLY REASONABLE RANGES FOR THE RATE CONSTANTS

k0 10−2–100 s−1 [36], [40]
k1

1
20
k3– 1

10
k3 [36]

k2 5–800 s−1 [13]
k3 5–800 s−1 [13]
k4 ≥ k0 [13]

that CVs of the same order of magnitude as the minimum
are available within the biologically plausible range (k0
up to about 1 s−1 [40]).

If we numerically minimize the CV (using the
Optimization[Minimize] routine in Maple 15
[41]) while constraining the rate constants to lie within
biologically plausible ranges (table I), we find the mini-
mum value to be CV=0.055 for our small 200-nucleotide
transcription unit when k0 = 1.00 s−1, k1 = 0.65 s−1,
k2 = 5.00 s−1, k3 = 6.51 s−1 and k4 = 4.55 s−1,
which is very close to the global minimum. Selective
pressures favoring reasonably constant intervals between
RNA syntheses would therefore tend to favor rapid
initiation (i.e. efficient promoters) but slow elongation.
The question then occurs of whether such pressures exist
for any transcription units.

In the foregoing and in much of the rest of this
paper, we focus on small values of n. The main reason
for doing so is that many of the statistical properties
studied here assume interesting extreme values in this
regime. Small sequences are of biological interest since
regulatory RNAs and other ncRNAs are often transcribed
from small transcription units [8]. However, we will
examine the effect of varying n as appropriate. For
example, we can consider the effect of n on the CV

of the transcription time. At large n, equation (34) tends
to

CV→
√
k22 + k23
k2 + k3

1√
n
. (40)

Thus, we see that the CV must eventually decrease with
n. Moreover, the coefficient of n−1/2 is strictly bounded
between 2−1/2 (when both rate constants are equal) and
1 (when one of the coefficients is much smaller than
the other, a situation that can be closely approached by
taking the extreme values from table I). This means that
larger transcription units have smaller CVs, although the
CV does not decay quickly with transcription unit length.

B. Shape of the distribution

When faced with the problem of choosing a dis-
tribution with which to model a random process, a
theoretician will generally, absent specific reasons to
the contrary, choose a Gaussian. The central limit the-
orem certainly suggests that this is a sensible default
choice [38]. However, when we have a detailed, solv-
able statistical model, we can explore the shape of the
distribution in detail and give explicit conditions under
which a Gaussian is not expected to be a good model.

To study these questions, it is useful to introduce two
additional statistical parameters. The first of these is the
skewness, defined by

γ1 = µ3/σ
3, (41)

where µ3 is the third central moment [equation (31)].
The name of this quantity suggests its interpretation:
it is a measure of asymmetry of the distribution. A
symmetric distribution such as a Gaussian has a skew-
ness of zero, while the exponential distribution has a
skewness of two [42]. Because there is a sharp cut-
off in the distribution of transcription times at zero,
but there is no such cut-off for the long-time tail, the
skewness of this distribution will always be positive, as
is evident from equation (31). However, the skewness
can be large or small, and if reasonably small, then
a Gaussian approximation may be sufficiently accurate
for generating transcription times in a delay stochastic
simulation.

The second statistical parameter of interest is the
excess kurtosis defined by

γ2 =
µ4
σ4
− 3, (42)

where µ4 is the fourth central moment [equation (32)].
The excess kurtosis measures the heaviness of the tails
of a distribution [43]. The excess kurtosis of a Gaussian
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is zero, a Laplace (double exponential) distribution has
an excess kurtosis of three, but the simple exponential
distribution has an excess kurtosis of six, showing that
the kurtosis is a subtle quantity whose precise value
depends both on the tail and on the overall shape of
the distribution. Combining equations (30) and (32), we
find that the distribution of transcription times has an
excess kurtosis of

γ2 =
6

σ4

(
1

k40
+

1

k41
+
n− 1

k42
+
n− 1

k43
+

1

k44

)
> 0.

(43)
A positive γ2 implies that the distribution of transcription
times always has heavier tails than a Gaussian. But how
much heavier? In other words, under what conditions
will γ2 be small, so that a Gaussian approximation is
appropriate, and when do we expect it to be large, so
that a more careful choice of statistical models will be
necessary?

From table I, we see that k0 will typically be the
smallest rate constant of the model. Suppose that k0 �
min

(
k1, k2(n− 1)−1/4, k3(n− 1)−1/4, k4

)
. (The condi-

tions on k2 and k3 are more restrictive than they need
be, but will be needed to obtain results for the kurtosis
below. The point of this demonstration is that there is
a common set of conditions that makes the distribution
distinctly non-Gaussian.) Then σ ≈ k−10 and µ3 ≈ 2k−30 ,
from which we obtain γ1 ≈ 2, a value representing a
highly skewed distribution.

Under the same conditions as above, γ2 ≈ 6, a
value consistent with an exponential distribution. We
therefore conclude that when k0 is sufficiently small and
n is not too large, the distribution is significantly non-
Gaussian, with large skewness and excess kurtosis. Given
the ranges in table I, these conditions will typically be
realized for short transcription units provided k4 is not
too similar to k0. Accordingly, it will typically be the
case that the distribution of transcription times of short
transcription units is poorly modeled by a Gaussian.

So what do these highly skewed, large-kurtosis dis-
tributions look like? Figure 3 shows an example of one
of these distributions, for values of the parameters that
give γ1 = 1.90 and γ2 = 5.56, with a CV of 0.75.
This distribution was computed by the semi-numerical
inversion of the Laplace transform using Maple 15 [41].
(For a Laplace transform of the form (27), Maple is able
to obtain the inverse Laplace transform exactly. The only
difficulty is that the coefficients of the final expression
involve complicated combinations of the original param-
eters, which must be evaluated carefully to get accurate
results. It is therefore necessary to use extra precision,

Fig. 3. Distribution of transcription times obtained by semi-
numerical Laplace inversion of equation (27) for k0 = 0.04 s−1,
k1 = 8.0 s−1, k2 = k3 = 100.0 s−1, k4 = 0.2 s−1 and n = 200 nt.
The inverse Laplace transform was computed in Maple [41], and
stability of the result with respect to the number of floating-point
digits used was verified. The inset shows a semi-log plot of the tail
(the upper quartile of the distribution).

and to verify that the coefficients are stable to variation
in the number of digits used in the calculation.) It is clear
that no Gaussian could correctly capture the behavior of
this distribution, both because of the strong asymmetry
and because of the exponential decay of the tail. The
excess kurtosis calculated for these parameters is almost
as large as that of an exponential distribution, which is
related to the slow, exponential decay of the tail. Indeed,
in the limit of large τ , d ln ρ/dτ → −0.04 s−1 for the
distribution shown in figure 3 (evaluated numerically),
which is −k0. This is not a coincidence: the tail in this
sequential model of transcription is dominated by the
slowest step, which in the case studied here is the initial
location of the TSS by the polymerase.

We can also ask ourselves what happens to the skew-
ness and excess kurtosis in the limit of large n. It is easy
to see from equations (30), (31) and (41) that

γ1 →
2(k32 + k33)(
k22 + k23

)3/2 1√
n
, (44)

and from equations (30) and (43) that

γ2 →
6(k42 + k43)

(k22 + k23)2
1

n
. (45)
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Taking these two results together, we see that in the
limit of large n, both the skewness and excess kurtosis
tend to zero, so that a Gaussian approximation becomes
increasingly accurate. We also see that the skewness goes
to zero much more slowly than the excess kurtosis. There
will therefore be a regime where it might be important
to take the skewness of the distribution into account,
but where the slowly decaying tail might not be so
significant.

C. A limiting case

While we cannot, in general, analytically invert the
Laplace transform (27), we can obtain approximate dis-
tributions valid in some special cases. Suppose for ex-
ample that k0 and k4 are substantially smaller than all of
the other rate constants (the case considered in figure 3).
Then, for s� min(k1, k2, k3), ρ̃ is approximately

ρ̃ ≈ k0k4
(s+ k0)(s+ k4)

. (46)

This approximation would cease to hold at larger values
of s. From the definition of the Laplace transform (12),
we see that, because of the exponential term, the Laplace
transform at large s is only significantly dependent on the
value of the function at small τ . Flipping this observation
on its head, the breakdown of the approximation given
above at large s will only affect the distribution at small
transcription times.

If we invert the Laplace transform (46), we get the
two-exponential distribution

ρ(τ) ≈ k0k4
k4 − k0

(
e−k0τ − e−k4τ

)
≡ ρa(τ) (47)

if k0 6= k4. (When k0 = k4, we get a gamma dis-
tribution.) The exact and approximate distributions are
compared in figure 4. As expected, the two distributions
differ at small τ : While the shapes of the distributions
are very similar, the exact distribution has a region of
negligible probability density up to about τ = 4 s. This
discrepancy is due to elongation, which we neglect com-
pletely in the approximate model. Although any single
elongation step is fast, the large number of elongation
steps results in a lag, i.e. an essentially nil probability
that transcription will terminate before a certain time has
elapsed, even if, by luck, the initiation and termination
steps happen quickly. A much better fit to the exact
distribution can be obtained by modifying the naive
approximation (47) as follows:

ρ(τ) ≈ H(τ − τmin)ρa(τ − τmin), (48)

 0
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Fig. 4. Exact distribution of transcription times (solid curve replotted
from figure 3), two-exponential approximate distribution (47) (dashed
curve), and lag-corrected approximate distribution (48) (dotted, al-
most coincident with the exact distribution). The two-exponential
distribution uses the exact values of k0 and k4, i.e. k0 = 0.04 s−1

and k4 = 0.2 s−1. For the lag-corrected distribution, k0, k4 and
τmin are treated as fitting parameters, with least-squares estimates
k0 = 0.039 987 ± 0.000 021 s−1, k4 = 0.2001 ± 0.0003 s−1, and
τmin = 4.111± 0.004 s−1.

where τmin is an additional fitting parameter and H(·)
is the Heaviside function (0 for negative arguments, 1
for positive arguments). We call this the lag-corrected
distribution.

Equation (48) was fit to the exact distribution using
the Marquardt-Levenberg algorithm as implemented in
Gnuplot 4.6 [44]. Both of the rate constants as well as
the lag time were used as fitting parameters, resulting in
the following estimates: k0 = 0.039 987±0.000 021 s−1,
k4 = 0.2001 ± 0.0003 s−1, and τmin = 4.111 ± 0.004 s.
Note the excellent agreement between the least-squares
values of k0 and k4 and the values used to generate
the exact distribution. Moreover, from figure 4, we see
that the lag-corrected distribution closely reproduces the
exact distribution. Our simple ansatz involving the two
small rate constants and a lag therefore gives an excellent
account of the overall shape of the distribution. By
fitting, we can recover k0 and k4, as well as the empirical
parameter τmin.

What is the physical meaning of τmin? Several consec-
utive rapid steps have a narrow distribution, converging
to a Dirac delta distribution as n → ∞ [45], [46],
[47]. The mean time for the fast steps is therefore the
value of τmin, at least to the extent that the lag-corrected
distribution represents the exact distribution. Here, the
consecutive rapid steps are the binding of the initial
pair of nucleotide triphosphates to the polymerase (re-
action 2) and the elongation steps (reactions 3/6 and 5).
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Thus,

τmin =
1

k1
+
n− 1

k2
+
n− 1

k3
. (49)

For the parameters of figures 3 and 4, this analytic esti-
mate of τmin is 4.105 s, which is in excellent agreement
with the value obtained by fitting equation (48) to the
exact distribution.

IV. STOCHASTIC SIMULATIONS

A number of criticisms could be leveled at our model
and at its analysis thus far. Perhaps the most serious crit-
icism might be that our analysis assumes a single poly-
merase not interacting with other molecular machines.
The case where many polymerases may transcribe the
same transcription unit at the same time can easily be
dealt with by stochastic (Gillespie) simulation [48]. We
can then compare the predictions of our analytic theory
with those of the stochastic simulations.

The stochastic model requires an additional parameter,
namely the minimum distance between polymerase ac-
tive sites, ∆. The bacterial RNA polymerase protects ap-
proximately 35 bp (base pairs) of the DNA duplex from
cleavage by nucleases [49]. This is the length of DNA
that is inaccessible to other macromolecular machines
while RNAP is transcribing a gene. Moreover, the DNA
takes a 90◦ bend on its way through the polymerase [50]
(figure 5). The minimum distance between polymerase
active sites is clearly 35 bp. However, there may be
additional steric factors limiting the distance of closest
approach, such as DNA conformational requirements, or
the need to accommodate the RNA exiting the leading
polymerase. For the sake of argument, we suppose that
polymerases must be spaced by at least ∆ = 40 bp.
The computed distributions of transcription times are not
greatly sensitive to this choice (figure 6). In the simu-
lations, the transcription time was taken to be the time
from clearance of the TSS by the previous polymerase to
completion of the transcript. This is a direct analog of the
transcription time considered in the single-polymerase
analytic theory.

Figure 6 also compares the distributions from Gille-
spie simulations to the analytic distribution (replotted
from figure 3). Despite the inclusion of interactions be-
tween polymerases in the simulations, which are absent
from the analytic theory, the distributions obtained are
not greatly different. The statistics of the distributions are
compared in Table II. The statistics confirm our visual
assessment that the distribution of transcription times is
not greatly affected by ∆, nor is the distribution obtained

Fig. 5. Schematic diagram of a pair of polymerases simultaneously
transcribing a gene. The green boxes represent the polymerases, the
blue curve is the template strand, the cyan curve is the coding strand,
and the magenta curve is the nascent RNA. The arrow indicates
the direction in which the DNA is pulled through the polymerases.
Approximately 35 bp are protected from cleavage, i.e. this length of
RNA is sufficiently inside the polymerase to be inaccessible to other
macromolecular machines.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  50  100  150  200

(
)/s

-1

/s

Analytic distribution
 = 20 nt
 = 40 nt
 = 60 nt

Fig. 6. Analytic distribution of transcription times (replotted from
figure 3), and simulated distributions for three different values of ∆.
Each simulated distribution was obtained from stochastic simulations
continued until 106 RNAs had been synthesized.

TABLE II
STATISTICS FOR THE DISTRIBUTIONS AT VARIOUS VALUES OF ∆
COMPARED TO THE STATISTICS OF THE ANALYTIC DISTRIBUTION

FOR THE PARAMETERS OF FIGURE 6.

∆/nt 〈τ〉 σ γ1 γ2
20 35.37 24.82 1.98 5.97
40 35.36 24.84 1.98 6.03
60 35.34 24.84 1.98 6.02
Analytic 34.11 25.50 1.90 5.56
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Fig. 7. CV [equation (33)] vs k0 for k1 = 5 s−1, k2 = 10 s−1,
k3 = 100 s−1, k4 = 0.01 s−1, n = 200 nt and ∆ = 40 nt. The solid
curve is the CV computed from the analytic theory, i.e. equation (34).
The points are from stochastic simulations. For each value of k0, the
model was simulated until 100 000 RNAs had been synthesized.

from the analytic theory dramatically different from the
distributions computed by stochastic simulation.

As in the analytic theory, in some stochastic sim-
ulations of related models, a minimum CV has been
observed as one of the rate constants is varied [18].
Figure 7 shows the CV plotted vs k0 both for the
analytic model and from stochastic simulations. You
will note that the curve computed from the simula-
tions does not have the pronounced minimum of the
analytic result. At low initiation frequencies, the den-
sity of polymerases on the template strand is small
and the single-polymerase analytic theory predicts many
properties of the model, including the CV, reasonably
well. However, as the initiation frequency increases,
interactions between polymerases become more frequent,
and the single-polymerase equations become less and
less accurate. As k0 increases beyond k4, the initiation
frequency exceeds the termination frequency, and a traf-
fic jam ensues in the simulations. Interestingly, the traffic
jam condition results in a lower minimum CV than is
observed at these parameters in the single-polymerase
case. This is perhaps not surprising. Once a traffic jam
has formed, most of the time in the queue is spent
waiting, with motion limited to short bursts when the
leading motor (in this case, a polymerase) exits the jam
(terminates transcription).

Note that some pairs of rate constants, notably k0
and k4, appear symmetrically in the single-polymerase
equation (34). Thus, if we set k0 to the value of k4
we used in figure 7, and vary k4, the analytic theory
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Fig. 8. CV vs k4. All parameters and simulation conditions are
as in figure 7, except k0 = 0.01 s−1. The solid curve is the CV
computed from the analytic theory, i.e. equation (34). The points are
from stochastic simulations.

predicts an identical curve to that obtained by varying k0.
(Compare the solid curves in figures 7 and 8.) When
there are many polymerases however, varying k0 or k4
is not the same because it matters whether k0 < k4, in
which case termination is faster than initiation and no
traffic jam occurs, or k0 > k4, which leads to a traffic
jam. When varying k4, the single-polymerase theory is
therefore accurate for large values of k4.

As outlined above, the reason that the single-
polymerase theory fails when either k0 is large or k4
is small is that termination becomes rate limiting, which
causes the polymerases to pile up along the strand. On
the other hand, if we vary one of the other rate constants
under conditions in which one of the two initiation steps
[reactions (1) and (2)] is rate limiting, we get good
agreement between the single-polymerase theory and
the stochastic simulations. In particular, the predicted
minimum in the CV as we vary the parameters becomes
a robust feature of the model, as seen in figure 9.

V. DISCUSSION AND CONCLUSIONS

If we look at figures 7, 8 and 9, we see that the
single-polymerase analytic theory gives excellent results
provided initiation [reactions (1) and (2)] is rate limiting.
Miller’s classic electron micrograph snapshots of bacte-
rial transcription in action always show the polymerases
well spaced [51]. Thus, for typical transcription units, we
do not observe the slow termination processes that would
cause the traffic jams shown here to lead to significant
deviations from the single-polymerase theory. Of course,
transcriptional pauses, particularly if they occur late in a
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Fig. 9. CV vs k1 computed from the analytic theory (equation (34),
solid line) and from stochastic simulations (dots). The parameters
were as follows: k0 = 0.01 s−1, k2 = 10 s−1, k3 = 100 s−1, k4 =
0.1 s−1, n = 200 and ∆ = 40. In the stochastic simulations, statistics
were collected until 100 000 RNAs had been synthesized.

transcription unit, could have a similar effect. Pauses are
known to occur during transcription in prokaryotes [52],
[53], and there are specific sites on the template that
are pause-prone [54]. The effect of pausing on single-
polymerase transcription statistics has been studied by
Voliotis and coworkers [15], where pausing was found
to cause a heavy-tailed distribution of transcription times.
Ribeiro’s group studied pausing in a gene expression
model and found, among other things, that a pause in
the middle of a gene can cause a trimodal distribution
of intervals between transcript completions, with the
middle mode corresponding to “normal” spacing of
the polymerase, one mode corresponding to microbursts
(two or three transcriptions completing in an unusually
short interval), a less extreme version of the traffic jams
observed here, and another corresponding to the long
intervals occasioned when one polymerase runs through
the pause site without pausing, while the next one does
pause [55]. Clearly, it would be interesting to look
at the similarities and differences between the effects
of pausing and of simple traffic jams caused by slow
termination.

Traffic is a particular problem for the ribosomal RNA
genes, which are transcribed at very high rates [56].
Klumpp and Hwa have studied traffic in a model of
rRNA transcription, where they found that short pauses,
which are common events during transcription, would
cause traffic jams were it not for the action of the
antiterminator (AT) complex which, among other things,
inhibits pausing [14]. To maintain high rates, it is not

enough to inhibit pausing in most elongation complexes;
it is also necessary to remove complexes that have not
assembled with AT, lest they cause traffic jams. Here,
Klumpp and Hwa found that the termination factor
Rho can have precisely the desired effect by removing
slow, pause-prone polymerases from the template, thus
allowing elongation complexes properly complexed with
AT to work at the optimal rate. For rapidly transcribed
genes, of which the rRNA genes are an extreme, traffic
may thus prove to be a rate-limiting process.

In the large n regime, the CV, skewness and excess
kurtosis all go to zero [equations (40), (44) and (45)].
At large n then, the distribution is at once relatively
narrow, minimally skewed, and roughly as heavy-tailed
as a Gaussian. Long transcription units therefore pose
few modeling difficulties. Their transcription time dis-
tributions are reasonably Gaussian, so two parameters,
the mean and variance, are sufficient to describe these
distributions. It might even be tolerable, because of the
small CV, to use a fixed delay in these cases, just as
can be done for ordinary differential equation subsystems
consisting of a linear decay chain [47].

The transcription time distributions of short transcrip-
tion units on the other hand may be highly skewed and
have large excess kurtoses. In such distributions, the
mode, median and mean are quite different, so that there
is no uniquely defined “typical” behavior. Accordingly,
modeling the expression of short transcription units
requires a careful approach. We may in some cases be
able to obtain the exact distribution by inversion of the
Laplace transform (27) (or the equivalent expression for
a model involving additional biochemical steps) by a
semi-numerical method, as was done for figure 3 using
Maple [41], or by a fully numerical method [57]. Alter-
natively, we could use the lag-corrected ansatz (48) as an
approximation to the exact distribution. Any of the above
representations of the distribution can then be used to
generate random deviates in a delay-stochastic code like
SGN Sim [29]. Of course, all approaches based on the
computation of a single-polymerase transcription time
distribution assume that perturbations due to interactions
between polymerases, or between polymerases and ri-
bosomes [58], are insignificant. If this is not the case,
then eventually we will want to develop a many-body
theory that yields approximate analytic distributions or
moments thereof.

The approach of section III-C can be generalized to
any small number of slow steps since it is easy to work
out the inverse Laplace transform in these cases with the
assistance of a computer algebra system like Maple [41].
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If we have a mechanistic model in which the slow steps
are identified, fitting a lag-corrected distribution to an
experimental distribution will give estimates of the slow
rate constants and of the lag time, which combines all
the fast processes. These lag-corrected distributions are
much simpler to handle than their exact counterparts,
and summarize all of the information that can reliably
be extracted from a sequential set of reaction processes
with a few slow steps and many fast steps. Note that
experimental distributions of transcription times are be-
ginning to appear in the literature [59], [60].

As mentioned earlier, our model is modular. More
complicated modules can be substituted for some of the
modules in the current, highly simplified model, leading
to more complex survival time problems. Our eukary-
otic transcription model [18] contains some modules
not present in our current prokaryotic model, such as
abortive initiation and pausing modules. Because of the
product form of the Laplace transform (11), replacing
or adding modules to the model is easy. In the model
studied here, the various moments and derived quantities
of interest (CV, skewness and kurtosis) adopt particularly
simple forms. However, if we insert more complex
modules into the model, especially ones that represent
alternative pathways rather than simply additions to the
sequential chain of events, then the expressions obtained
for the moments become less straightforward. Many
interesting modules can still be treated in the framework
presented here. Future publications will describe this
work, with the current publication, as well as our original
paper [13], serving as an important baseline against
which new models can be compared.
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